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Abstract

In this thesis, the search for direct pair production of the supersymmetric top quark partner

with the HEPTopTagger algorithm is presented. An integrated luminosity of 20.3 fb−1 of

proton-proton collision data at
√
s = 8 TeV collected by the ATLAS detector at the Large

Hadron Collider is used. The top squark, t̃1, is assumed to decay into a top quark and a

neutralino, χ̃0
1, with BR(t̃1 → tχ̃0

1) = 100%. The analysis targets the fully hadronic final

state: the HEPTopTagger is employed to reconstruct the hadronically decaying top quarks

with pT > 200 GeV; the MT2 variable together with the missing transverse momentum is

used to measure the momentum imbalance of the undetected neutralinos.

In order to reliably apply the HEPTopTagger to search for the top squark, its perfor-

mance is studied in a sample enriched in top quark pairs in the lepton+jets channel. The

efficiency of identifying moderate to high pT top quarks is measured to vary from 10% to

45%. A novel method is developed to estimate in-situ the uncertainty on the energy scale

of the subjets, representing the top quark decay products. The simulation has been found

to be a reliable tool to predict the Standard Model background and the HEPTopTagger

can be safely employed in the search for top partners.

In the search for direct top squark pair production, no significant excess over the Stan-

dard Model background expectation is found, and exclusion limits are set as a function

of the top squark and neutralino masses. Top squark masses between 250 − 720 GeV are

excluded for neutralino masses of a few tens of GeV.

Kurzfassung

In dieser Arbeit wird die Suche nach direkter Paarproduktion des supersymmetrischen

Partners des Top Quarks mit dem HEPTopTagger-Algorithmus unter Verwendung von

Proton-Proton-Kollisionsdaten entsprechend einer integrierten Luminosität von 20.3 fb−1,

die bei
√
s = 8 TeV vom ATLAS-Detektor am Large Hadron Collider aufgezeichnet wur-

den, vorgestellt. Es wird angenommen, dass das Top Squark, t̃1, mit BR(t̃1 → tχ̃0
1) = 100%

in ein Top Quark und ein Neutralino, χ̃0
1, zerfällt. Die Analyse konzentriert sich auf den

vollständig hadronischen Endzustand. Der HEPTopTagger wird verwendet, um hadronisch

zerfallendende Top Quarks mit pT > 200 GeV zu rekonstruieren und die MT2 Variable

wird zusammen mit dem fehlenden transversalen Impuls verwendet, um das Impulsungle-

ichgewicht aufgrund der undecktierten Neutralinos zu messen.

Um den HEPTopTagger in der Suche nach dem Top Squark zuverlässig anwenden

zu können, wird seine Leistungsfähigkeit in einem Datensatz untersucht, der mit Top-

Quarkpaaren im Lepton+Jets-Kanal angereichert ist. Die gemessene Effizienz der Identi-

fizierung von Top Quarks mit niedrigem und hohem pT variiert zwischen 10% und 45%.

Eine neue Technik wird entwickelt, um in-situ die Unsicherheit auf die Energieskala der

Subjets, die die Top-Quark-Zerfallsprodukte darstellen, abzuschätzen. Die Simulation hat

sich als zuverlässiges Mittel zur Vorhersage des Standardmodell-untergrundes erwiesen

und der HEPTopTagger kann bei der Suche nach Top Squarks sicher eingesetzt werden.

In der Suche nach Top-Squark-Paaren wird kein signifikanter Überschuss im Vergle-

ich zur Standardmodell-untergrunderwartung gefunden und Ausschlussgrenzen werden als

Funktion der Top-Squark- und Neutralino-Massen gesetzt. Top-Squark-Massen zwischen

250− 720 GeV sind für Neutralino-Massen von wenigen Dutzend GeV ausgeschlossen.
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Introduction

The Standard Model (SM) has been shown to be the most comprehensive and predic-

tive theory of elementary particle physics so far. The discovery of the so long-sought-

after Higgs boson by the ATLAS and CMS experiments at the Large Hadron Collider

[1, 2] represents its last success. Nevertheless, the SM leaves compelling questions

unanswered, including the hierarchy problem, the matter-antimatter asymmetry and

the nature of dark matter, and leaves room for physics beyond the SM (BSM).

The search for new physics phenomena is one of the primary goals of the Large

Hadron Collider. It has been designed to collide protons at unprecedented high

energies (up to a centre of mass energy of
√
s = 14 TeV) and luminosities. Thanks to

the sizeable amount of data collected by the ATLAS detector, a large variety of BSM

theories, predicting TeV scale particles, are currently under investigations. Most of

these models aim to provide a solution to the hierarchy problem, which regards the

quadratically divergent corrections to the Higgs boson mass, and the tremendously

large fine tuning needed to account for a Higgs boson mass of 125 GeV, if no new

physics phenomena appear before the Planck scale at 1019 GeV.

The top quark plays a crucial role in these models. Due to its large Yukawa

coupling, the top loop dominates the divergent corrections to the Higgs boson mass.

Many models predict the existence of top quark partners, which provide a cancel-

lation to the large top loop contribution. The minimal supersymmetric extension

of the SM, one of the most promising candidates of new physics theories, predicts

the existence of a boson partner for every SM fermion and vice versa. In particular,

two scalar partners for the top quark with large mass splitting are foreseen, and the

lightest of the two top partners, called stop t̃1, is expected to be the lightest of the

quark partners by many models.

If kinematically allowed, the top quark is expected to be among the decay prod-

ucts of new particles. The decay signature of hadronically decaying top quarks,

t→ bW → bq′q̄, consists of collimated bundle of particles combined into jets. As

new particles are searched for at the TeV scale, the top quarks in the final state are

expected to be produced with large transverse momentum, pT. The decay products

of top quarks with large pT are collimated and their reconstruction by means of

standard techniques, consisting in assigning a small radius jet to each of the three

quarks, bq′q̄, becomes unfeasible. Specialised techniques for boosted top quark recon-

struction are essential to considerably enhance the significance of searches for new

heavy particles. New methods have been developed in the past few years to identify
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Introduction

and reconstruct boosted top quarks. The top decay products may be contained in

a single large and massive jet, called large-R jet. By looking into the internal struc-

tures of large-R jets it is possible to discriminate those originating from the top

quark decay against those originating from a gluon or a light quark. Among these

methods, the HEPTopTagger algorithm [3, 4] is capable to tag and to reconstruct

the kinematics of top quarks over the widest range of the top transverse momentum

down to 200 GeV, and it provides significant background rejection power.

Before the HEPTopTagger algorithm can be used in physics analyses, it is funda-

mental to assess how well the simulation describes the measured outcome of the algo-

rithm and to evaluate the systematic uncertainties connected to the HEPTopTagger

usage. In this thesis, a data sample enriched in hadronically decaying top quarks is

used for this purpose. The data has been collected in 2012 by ATLAS at a centre of

mass energy of
√
s = 8 TeV corresponding to an integrated luminosity of 20.3 fb−1.

The top quark sample is obtained by selecting those events with a top-antitop pair

in the `+jets channel, with one top quark decaying semi-leptonically t→ Wb→ `νb

and the other hadronically, requiring exactly one lepton (electron or muon), missing

transverse momentum, b-tagged small-R jets, and a large-R jet. A novel method, first

suggested in [5], is developed in order to evaluate in-situ the energy scale uncertainty

of subjets reconstructed within the HEPTopTagger, exploiting the very clean top

mass peak. The simulated outcome of the HEPTopTagger is compared in data and

simulation, and the efficiency of tagging large-R jets originating from hadronically

decaying top quarks is measured. The outcome of the performance measurement of

the HEPTopTagger together with other top tagging techniques has been published

in [6].

Thanks to its wide range of sensitivity in transverse momentum and its significant

discrimination power, the HEPTopTagger is the best suited algorithm to investigate

new models with final state top quarks produced with moderate to very large trans-

verse momentum (pT > 200 GeV). The HEPTopTagger is employed in this thesis to

search for the top squark using the full
√
s = 8 TeV proton-proton collision dataset.

In R-parity conserving models, the stop is produced in pairs at the LHC and its

decay mode (t̃1 → tχ̃0
1), into a top quark and a neutralino, χ̃0

1 , the lightest super-

symmetric particle, is kinematically allowed if the stop-neutralino mass difference

is larger than the top quark mass. If this mass difference is sizeable, the final state

top quarks are produced with moderately large transverse momentum. The channel

with both top quarks decaying hadronically has the advantage that the kinematics

of the two tops can be fully reconstructed and the missing transverse momentum

only depends on the neutralino pair kinematics. The HEPTopTagger application

can enhance the significance of analogous searches [7]. The analysis strategy of this

thesis, similar to the one proposed in [4, 8], has been defined to target signal models

with small χ̃0
1 masses and heavy stops, with mass of several hundreds of GeV. The

final goal is to quantify the sensitivity improvements of the search by employing the

HEPTopTagger algorithm.

2



The Standard Model and theories beyond the SM, with special emphasis on

supersymmetry, are summarised in chapter 1. The ATLAS experiment is described

in chapter 2. The same chapter details the simulated samples and the uncertainties,

concerning the `+jets analysis of the HEPTopTagger performance and the search

for the direct stop pair production. The HEPTopTagger algorithm, explained in

chapter 3, is validated in the `+jets channel in chapter 4. The search for the direct

stop pair production in the fully hadronic final state of a top-neutralino pair is

detailed in chapter 5.
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Chapter 1

Standard Model and beyond

The laws of nature are governed by four forces: the gravitational, the strong, the

electromagnetic and the weak force.

The Standard Model (SM) theory represents a fundamental step in the attempt

to unify these forces, started at the end of the 1960s [9–12]. Its success is based on

the unification of the electromagnetic, the weak and the strong force under the same

comprehensive quantum field theory description through local gauge invariance. On

the experimental side, the SM has been accurately verified in quantitative tests,

and has provided crucial predictions of the existence and properties of the three

massive vector bosons. The latest triumph of the Standard Model is the discovery

of the Higgs boson in 2012 by ATLAS and CMS with mass at about 125 GeV [1, 2],

decades after it was predicted [13–15].

Although well established, the SM seems not to be the ultimate theory. There

are observed phenomena, which are not explained or considered in the SM, like

neutrino masses, matter-antimatter asymmetry and dark matter. Other outstanding

theoretical issues remain unsolved: gravity is not included in the quantum field

theory description; the SM Higgs mass receives large quantum corrections, leading

to the gauge hierarchy problem; the three gauge coupling constants seem to get

closer at high energies, but they do not meet, leading to the open issue of describing

the three gauge interactions with only one force via the so called Grand Unified

Theories.

Many theories beyond the Standard Model, like supersymmetric ones, may pro-

vide an answer to one or more of these open questions. In these theories the top

quark plays a special role, as it is the heaviest fundamental particle, discovered so

far.

The formulation of the Standard Model is described in section 1.1; the following

references are used for the SM overview [16–20]. The theoretical concepts concerning

physics at hadron colliders are reported in section 1.2. The phenomenology of the top

quark is described in section 1.3, following the review [21]. An outlook on theories

beyond the Standard Model, with particular emphasis on Supersymmetry is given

in section 1.4.1.
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1. Standard Model and beyond

1.1 Standard Model of particle physics

The elementary particles so far discovered are divided in fermions and bosons.

Quarks and leptons, as well as their anti-particles, have spin 1/2 and belong to

the first group. They are the constituents of ordinary matter. Quarks, contrary to

leptons, participate in strong interactions. Both classes of fermions appear in three

different generations :

leptons:

(
νe
e−

) (
νµ
µ−

) (
ντ
τ−

)
quarks:

(
u

d

) (
c

s

) (
t

b

)
where “ν`” stays for neutrino of the ` = e, µ, τ species, e− for electron, µ− for

muon, τ− for tau, the quarks appear in six different flavours: “u”, up-quark; “d”,

down-quark; “c”, charm-quark, “s” for strange-quark, “t” for top-quark, “b” for

bottom-quark. The anti-particles are omitted for simplicity. The up-type quarks, u,

c, s, have electric charge +2/3, the down-type quarks (d, s, b) have electric charge

-1/3. The neutrinos are electrically neutral. The down-type leptons are charged,

with negative unitary charge and they are commonly referred to as charged leptons.

The anti-particle of these fermions have the same mass, same lifetime and opposite

electric charge of the corresponding particle. Being subject to the strong force, quarks

form bound states called hadrons. The hadrons are subdivided in baryons, formed

by three quarks or three anti-quarks, and mesons, bound states of quark-antiquark

pairs.

The bosons that acts as mediators of the interactions are the massive W+, W−,

Z0, and the massless photon, γ, and gluon, g.

The Standard Model is the theory that better describes the interactions among

all the elementary particles, except for gravity, within the context of quantum field

theory. The principle that drives the description of the fundamental interactions is

the local gauge invariance, i.e. the assumption that the Lagrangian does not change

under a set of transformations which are space-time dependent. To satisfy the prin-

ciple of local gauge invariance of the free Dirac field Lagrangian, the fermions need

to couple with the boson fields, interaction mediators.

Among the theories of elementary particle dynamics the simplest is Quantum

Electrodynamics, which is invariant under local phase transformations of the group

U(1) (section 1.1.1).

The extension of the gauge principle to non-Abelian groups, i.e. noncommutative

groups, for example to SU(2)⊗U(1), allows the formulation of the electroweak theory

(section 1.1.2). This theory on its own does not foresee mass terms for the weak gauge

fields and for the fermions, which preserve the symmetries. The BEH-mechanism,

through the spontaneous symmetry breaking of SU(2)⊗U(1)Y to U(1)em
1, gener-

1The subscript Y of U(1)Y corresponds to the weak hypercharge, the subscript em to the

6



1.1.1. Quantum electrodynamics

ates masses for the W±, Z0 bosons, makes the inclusion of fermionic mass terms

possible and predicts the existence of a massive scalar particle, called Higgs boson

(section 1.1.3).

The strong force has been formulated as a non-Abelian gauge theory, with lo-

cal invariance under SU(3)C transformations as stated by the theory of quantum

chromodynamics (section 1.1.4)

The SU(3)C⊗SU(2)⊗U(1)Y gauge theory and the BEH-mechanism define the

Standard Model of particle physics.

1.1.1 Quantum electrodynamics

All the particles that carry the electromagnetic charge are subject to the electromag-

netic interaction. The mediator of this interaction is the photon, which is massless.

The Lagrangian of a free Dirac field, ψ, of mass m is:

LDirac = ψ̄(i/∂ −m)ψ

where the first term represents the kinetic energy and the second is the mass

term2.

The Lagrangian of a free electromagnetic field, Aµ, describing the photon as a

massless vector field, consists of the kinetic energy term:

LEM = −1

4
(Fµν)

2 (1.1)

with the electromagnetic field tensor defined as Fµν ≡ ∂µAν − ∂νAµ.

To describe the interaction between the electromagnetic field and the Dirac field,

the two Lagrangians, LDirac and LEM, can be combined with the addition of the

interaction term to give the Lagrangian of quantum electrodynamics (QED):

LQED = ψ̄(i /D −m)ψ − 1

4
(Fµν)

2

with Dµ ≡ ∂µ + ieAµ, the gauge covariant derivative, which includes the in-

teraction term. LQED is symmetric under local transformation of the abelian U(1)

group. This means that the Lagrangian is invariant under the phase rotation which

transforms the fields:

ψ(x)→ e−ieα(x)ψ(x) (1.2)

Aµ(x)→ Aµ(x) + ∂µα(x) (1.3)

where e is the Dirac field charge, and α(x) is a real arbitrary differentiable function

of x.

electromagnetic charge, and C to the colour charge
2In this chapter the following notation is employed. /∂ ≡ γµ∂µ where γµ are the gamma matrices

with µ = 0, 1, 2, 3 and ∂µ is the partial derivative with respect to xµ, ∂µ ≡ ∂
∂xµ ; a summation over

repeated indexes (e.g. µ) is implied. ψ̄ is the product of ψ†, Hermitian conjugate of ψ, and γ0:
ψ̄ ≡ ψ†γ0.

7



1. Standard Model and beyond

From another point of view, the electromagnetic field, Aµ, appears, once the U(1)

gauge invariance of the free Dirac field Lagrangian is imposed.

1.1.2 Electroweak model

All quarks and leptons are subject to the weak interactions. The mediators are the

three massive vector bosons: the electrically charged W+ and W− bosons, and the

electrically neutral Z0 boson.

Depending on the electromagnetic charge of the mediator, it is possible to dis-

tinguish between neutral current processes (where the Z0 boson is involved) and

charged current ones (with the exchange of the W+ or W− boson). Processes in

which both hadrons and leptons are present, are called semileptonic processes ; in

case either only leptons or only hadrons are involved, the processes are referred to

as leptonic or non-leptonic processes, respectively.

The formulation of the electroweak theory requires the extension of the QED local

gauge invariance principle to unitary groups of larger degree. The generalisation of

this principle to any continuous symmetry group was performed by Yang and Mills.

In the electroweak theory case, the starting point is the invariance of the Lagrangian

under SU(2), weak isospin group. A doublet of Dirac fields defined as:

Ψ =

(
ψ1

ψ2

)
transforms in the spinor representation of SU(2) according to:

Ψ→ exp
(
igαi(x)

τ i

2

)
Ψ (1.4)

where g is the coupling constant, αi(x), with i = 1, 2, 3, are three arbitrary real

differentiable functions of x, τ i represents the i-th Pauli matrix, satisfying the com-

mutation relation [τ i, τ j] = 2iεijkτk, with j, k = 1, 2, 3. The SU(2) transformation

acting on the field doublet Ψ is a local transformation which mixes the doublet

components.

Three vector fields, W i
µ are needed to preserve the SU(2) symmetry, one for each

generator of the SU(2) group. The covariant derivative replacing the simple partial

derivative is:

Dµ = ∂µ + igW i
µ

τ i

2
.

The Lagrangian invariant under SU(2),

L = Ψ̄(i /D −m)Ψ,

is adjusted to take into account experimental observation of particle interactions.

The weak interactions violate parity and reveal a “V-A” (vector minus axial) struc-

ture. This means that the interactions involve only the “left-handed” component

8



1.1.2. Electroweak model

of the Dirac field, ψ. The “left-handed” and “right-handed” fields, ψL and ψR re-

spectively, are defined to be the chirality states of ψ, and are the eigenstates of the

projection operators PL and PR:

ψL = PLψ PL ≡
(1− γ5)

2
(1.5)

ψR = PRψ PR ≡
(1 + γ5)

2
(1.6)

where γ5 = iγ0γ1γ2γ3.

The charged current processes couple neutrinos to charged leptons, or up-type

quarks to down-type quarks. Thus, the field doublet, called weak isospinor, is iden-

tified with

ΨL =

(
ν`L
`L

)
or ΨL =

(
uL

d′L

)
3.

The field ΨL transforms as in equation 1.4 under local SU(2) transformations,

while the right-handed Dirac fields being singlet do not change under SU(2). The

interaction term of the doublet ΨL to the three vector bosons, W i
µ, appears from the

requirement of SU(2) gauge invariance:

LW = −gW i
µΨ̄Lγµ

τ i

2
ΨL.

The right-handed fields, which are SU(2) singlets, do not couple to the W i
µ gauge

bosons.

To interpret the gauge bosons as the particle mediators of the charged current

interaction, the gauge fields W+
µ and W−

µ , defined as:

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) (1.7)

are used in place of W 1
µ and W 2

µ with the corresponding matrix combination:

τ± =
1

2
(τ 1 ± iτ 2)

The remaining vector field, W 3
µ identifies a neutral current term, connecting ν`L

with ν̄`L and `L with ¯̀
L. It cannot be identified with the photon because W 3

µ couples

to νL and `L with opposite charges. However, the second term, connecting `L with ¯̀
L,

is a part of the electromagnetic current, apart from a constant factor. To include the

electromagnetic interaction in the Lagrangian, the invariance under U(1) is required,

and the gauge field, Bµ, appears to preserve the symmetry. This transforms as in

equation 1.3, with g′Y coupling constant of Bµ with each Dirac field ψ. Y is the

weak hypercharge and takes different values with respect to the field it is associated

to (left-handed or right-handed fermion, charged lepton or neutrino).

3d′L is the field resulting from the application of the CKM matrix to the down-type quark. A
detailed review on the CKM matrix can be found in [21]

9



1. Standard Model and beyond

The interaction term of the electroweak Lagrangian becomes:

LI =− g√
2

∑
i

Ψ̄i
Lγµτ

+Ψi
LW

+
µ −

g√
2

∑
i

Ψ̄i
Lγµτ

−Ψi
LW

−
µ (1.8)

− gW 3
µ

∑
i

Ψ̄i
Lγµ

τ3

2
Ψi

L (1.9)

− g′

2
Bµ

(∑
i

YiLΨ̄i
LγµΨi

L +
∑
j

YjRψ̄
j
Rγ

µψjR

)
(1.10)

where the first row represents the charged current terms and the second and

third are neutral currents, i indicates the doublet species and j the fermion. The

gauge fields has to transform as well in order for the total Lagrangian, sum of the

free-Dirac Lagrangian and LI, to be gauge invariant under SU(2)⊗U(1)Y.

Under the hypothesis that Bµ and W 3
µ are a composition of the Aµ and Zµ fields,

with mixing angle θW, called Weinberg angle:

Bµ = Aµ cos θW − Zµ sin θW

W 3
µ = Aµ sin θW + Zµ cos θW

the exact fermion couplings to the photon, identified with the field Aµ, are imposed:

Qe = gT 3 sin θW +
g′

2
Y cos θW

where T 3 corresponds to the τ3
2

weak isospin for ΨL, and T 3 is zero for its right-

handed components. By convention, Y`L is chosen to be −1. From the known cou-

plings of the photons to the fermions it follows that g sin θW = g′ cos θW = e,

Y`R = −2 and YνR = 0. The following relation is thus valid:

Q = T 3 +
Y

2

with Q being a conserved quantity, and T 3 the weak isospin.

LI, expressed in terms of the physical fields, is hence:

LI =− g√
2

∑
i

Ψ̄i
Lγµτ

+Ψi
LW

+
µ −

g√
2

∑
i

Ψ̄i
Lγµτ

−Ψi
LW

−
µ

− e
∑
j

Qjψ̄jγ
µψjAµ

− g

2 cos θW

∑
j

ψ̄jγ
µ
(
(T 3

j − 2Qj sin2 θW)− T 3
j γ

5
)
ψjZµ

where the index i denote the flavour of a doublet and j the flavour of a fermion.

The Lagrangian of the free vector boson fields, where the masses of the gauge

bosons are assumed to be zero, is in analogy to the electromagnetic field kinetic

term of equation 1.1:

LB = −1

4
BµνB

µν − 1

4
GiµνG

µν
i .

10



1.1.3. Spontaneous electroweak symmetry breaking

The generalisation of the field tensor Fµν to the W µ
i case requires an additional

term in order to preserve the gauge invariance under SU(2). Thus, Bµν and Gµν
i are

defined as:

Bµν ≡ ∂νBµ − ∂µBν

Gµν
i ≡ F µν

i + gεijkW
µ
j W

ν
k

F µν
i ≡ ∂νW µ

i − ∂µW ν
i .

The direct consequence of the second term in the definition of Gµν
i is the appearance

of interactions terms of the bosons among themselves in the free boson Lagrangian.

Contrary to the photon field, which does not carry electromagnetic charge, the W µ
i

fields carry weak isospin charge.

1.1.3 Spontaneous electroweak symmetry breaking

No mass terms for the gauge bosons and the fermions have been considered so far.

A Lagrangian which would include the mass of these fields could be:

m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ

for the boson fields; and

−mf ψ̄fψf

for the fermion fields.

However, these terms would not be SU(2)⊗U(1)Y gauge invariant. Either the

masses of the fields are zero, which is the case only for the photon, or a mecha-

nism is needed which introduces the field masses but preserves the invariance under

SU(2)⊗U(1)Y. This effect is given by the spontaneous symmetry breaking mecha-

nism, also referred to as the BEH-mechanism (from the names of Brout-Englert-

Higgs).

Spontaneous symmetry breaking occurs in a system defined by a Lagrangian

which is symmetric under a group of transformations. If the lowest energy level

of the system is degenerate, the ground state is not unique. As soon as a specific

ground state is selected, the system is no longer symmetric under the group trans-

formations and thus its symmetry is spontaneously broken. In field theory, if the

vacuum expectation value is different from zero and is not invariant under the sym-

metry transformations, a particular vacuum state can be chosen. A scalar field is

needed for the vacuum states under the assumption of Lorentz invariance. The Gold-

stone model is the simplest example of a theory which reveals spontaneous symmetry

breaking. This model is defined by the Lagrangian:

L = ∂µφ∗∂µφ− V (|φ|2) (1.11)

V (|φ|2) = µ2|φ|2 + λ|φ|4 (1.12)

11



1. Standard Model and beyond

Figure 1.1: Potential V (φ) as a function of the real and imaginary component
of φ.

where φ(x) is a complex scalar field and µ2 and λ are real parameters. The La-

grangian is invariant under global U(1) phase transformations. If µ2 < 0, the poten-

tial has the form illustrated in figure 1.1 with an infinite number of minima:

φmin =
(−µ2

2λ

)1/2

eiθ, 0 ≤ θ < 2π.

If a particular θ is chosen, symmetry is spontaneously broken. For example, a vacuum

state with a real expectation value can be selected:

φmin =
(−µ2

2λ

)1/2

=
1√
2
v

and φ(x) can be expressed in terms of the real fields σ(x) and η(x)

φ =
1√
2

(v + σ + iη).

The Lagrangian expressed in terms of σ and η is composed of their free Lagrangian

terms and other terms which concern the interactions among themselves. The out-

come of the spontaneous symmetry breaking mechanism consists of two real scalar

fields: σ with mass
√

(2λv2); and the massless η, called Goldstone boson, which is

not observed in nature.

If the U(1) gauge invariance is imposed on the Goldstone model Lagrangian of

equation 1.12, the gauge field Aµ is introduced to preserve the symmetry in the

definition of the covariant derivatives. After the spontaneous symmetry breaking

occurs, the interaction of Aµ with the field φ produces the appearance of a mass

term for the real vector field Aµ. The invariance under U(1) gauge transformations

allows to find a gauge which transforms φ into a real field. In this so called unitary

gauge, the field η can be discarded.

The spontaneous breaking of the U(1) symmetric Lagrangian of a complex scalar

field and a massless real vector field leads to a Lagrangian for a real scalar field and

12



1.1.3. Spontaneous electroweak symmetry breaking

a massive real vector field. This effect is the so called BEH-mechanism, and the

massive scalar boson associated to σ is the Higgs boson.

By extending the BEH-mechanism to the Lagrangian invariant under

SU(2)⊗U(1)Y, the weak isospin doublet of the scalar fields φa(x) and φb(x) is defined

as:

Φ(x) =

(
φa(x)

φb(x)

)
The SU(2)⊗U(1)Y symmetric Lagrangian for Φ is as in 1.12, but with the substi-

tution of φ → Φ and ∂µ → Dµ = ∂µ + ig τ
i

2
W i
µ + ig′Y Bµ. The ground state of this

Lagrangian can be chosen to be:

Φ0 =

(
0

v/
√

2

)
, with v =

(−µ2

λ

)1/2

.

In order not to break the electromagnetic gauge invariance and to ensure that the

photon is massless, the value of 1 is assigned to the hypercharge Y of the Higgs field

and the lower component of Φ is neutral.

Additional SU(2)⊗U(1)Y gauge invariant terms can be added to the electroweak

Lagrangian by taking into account the Yukawa interaction between fermions and

the Higgs doublet. For example, the Lagrangian for the charged leptons is:

L = −g`(Ψ̄`
Lψ

`
RΦ + Φ†ψ̄`RΨ`

L) (1.13)

In the unitary gauge, the Φ field becomes

Φ =
1√
2

(
0

v + h

)
with h(x), being a real field. In this gauge, the up-component of the covariant deriva-

tive acting on Φ is i
2
vgW+

µ which results in a Lagrangian mass term for the fields W±

with mass mW = 1
2
vg. In a similar way, the down component has a term i

2
√

2
v Zµ

cos θW

which is connected to the mass term Lagrangian 1
2
m2
ZZµZ

µ with mZ = mW/ cos θW.

Moreover the Lagrangian terms of equation 1.13 expressed in terms of the unitary

gauge gives raise to the fermion mass term with m` = vg`/
√

2.

Other terms, which have not been mentioned, lead to the interaction among the

gauge boson fields, the Higgs boson h and the fermions themselves. The vacuum

expectation value v is obtained from the Fermi constant, GF , determined experi-

mentally:

v = (
√

2GF )−1/2 ≈ 246 GeV , GF =

√
2

8

g2

m2
W

In conclusion, the application of the BEH-mechanism to the Lagrangian with

SU(2)⊗U(1)Y symmetry, spontaneously broken to U(1)em, leads to terms with non-

vanishing masses of the W± and Z0 bosons, to mass terms for the fermions and to

the prediction of a massive scalar boson, the Higgs boson.
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1. Standard Model and beyond

1.1.4 Quantum Chromodynamics

After the discovery of the neutron in 1935 by Chadwick, it was clear that two

different nuclear forces were involved in the nucleus dynamics: unstable nuclei are

subject to decay via weak processes; but the force that holds the nucleus together

is the strong force.

Yukawa was the first one to propose a theory of the strong force (in 1934): the

attraction between protons and neutrons is due to the exchange of a meson. Yukawa

predicted the mass of the strong force mediator to be approximately 200 GeV by

realising that this mass is inversely proportional to the force range, which is of the

order of 1 fm for nuclear forces. This meson, called pion, was eventually discovered

in 1947 with a mass at about 140 GeV.

Many more hadrons have been discovered since then. Gell-Mann provided a struc-

ture to organise all the discovered particles into geometrical patterns according to

their mass, electric charge, and strangeness, a particle property conserved in strong

interactions but not in weak ones. The explanation for this complex structure was

independently provided by Gell-Mann and Zweig: the hadrons were not fundamental

particles, but they were composed of quarks with spin 1/2.

Two characteristics of the quark dynamics were puzzling. Isolated quarks have

never been observed: they are subject to “quark confinement”. Baryons with three

quarks with the same flavour and same spin seemed to violate Pauli’s principle.

The model, which satisfactory describes the strong interactions, is based on the

non-abelian gauge theory with the group SU(3). The model of strong interactions

is called quantum chromodynamics (QCD), since the charge of the theory is called

colour. The quarks appear in the triplet representation of SU(3), i.e. in three different

colour states.

The quark confinement requires that free hadronic states are only colour singlets.

The Pauli principle is not violated because the colour wave function of the baryons

is totally antisymmetric.

A triplet of Dirac fields, ψi, is defined as

Ψ =

ψ1

ψ2

ψ3


The Lagrangian of the free Dirac field triplet Ψ is invariant under transformations

of the SU(n = 3) group. T a are the n2 − 1 = 8 generators of the group with index

a = 1, ...8. The generators satisfy the commutation relation

[T a, T b] = ifabcT c

with fabc being the structure constants of the SU(3) algebra. After requiring the La-

grangian to retain invariance under local transformations, eight vector gauge bosons

Aaµ, called gluons, are introduced. The SU(3) gauge invariant QCD Lagrangian is:
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1.1.4. Quantum Chromodynamics

LQCD = −1

4
F µν
a F a

µν +
∑

f

(
Ψ̄f(i/∂ −mf)Ψ

f − gSΨ̄fT a /AaΨ
f
)

(1.14)

F a
µν = ∂µA

a
ν − ∂νAaµ − gS

∑
b,c

fabcA
b
µA

c
ν (1.15)

where gS is the strong coupling constant and f is the index running over the quark

flavours. The first term describes the gluon dynamics. The consequences of gluons

carrying non-zero colour charges are the impossibility to observe them as isolated

free particles, due to colour confinement, and the existence of gluon self-interaction

terms. The last term represents the quark-gluon interaction. The strong coupling

constant of this interaction is independent of the quark flavour and thus the flavour

number Nf ≡ N(f)−N (̄f), defined as the difference between the number of quarks

and antiquarks of flavour f, is conserved.

Another striking feature of QCD is the asymptotic freedom, which allows to treat

quarks and gluons as free particles at high energies or short ranges. Before going into

the detail of the asymptotic freedom, the phenomenon of scaling is described. It was

observed in deep inelastic scattering processes (DIS) at the end of the 1960s. DIS

processes are the collisions of leptons with a nucleon target, resulting in numerous

massive particles in the final state. The parton model was proposed by Bjorken and

Feynman to describe the structure of the proton as a loosely bound collection of a

few constituents. In this picture, the lepton scatters from one of these partons.

The dimensionless Bjorken variables are used to describe the kinematics of the

scattering process:

x ≡ Q2

2p · q
y ≡ q · p

k · p
(1.16)

where p is the nucleon four-momentum, q is the four-momentum transferred to the

nucleon with Q2 = −q2, and k is the incoming lepton four-momentum. Under the

hypothesis of negligible mass of the lepton and of the hypothetical parton and that

the electron-parton scattering is elastic, x corresponds also the longitudinal fraction

of the proton momentum carried by the parton in the electron-proton centre of mass

frame.

Bjorken predicted that in the high energy limit, the leading order differential

cross section of DIS processes in terms of x and y given by the parton model is:

d2σ

dxdy
=
∑
f

xff (x)Q2
f

2πα2s

Q4
[1 + (1− y)2] (1.17)

where ff (x) is the parton distribution function (PDF), such that ff (x)dx is the prob-

ability of finding the parton of f species with x longitudinal fraction of the proton

momentum. The first order dependence of ff (x) solely on x and not on Q2 coincides

with the concept of Bjorken scaling, observed in DIS processes at SLAC with an
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1. Standard Model and beyond

accuracy of 10% for large values of Q. Bjorken scaling implies that the structure of

the proton is the same independently from the energy of the electromagnetic probe

and suggests that the lepton is scattered by pointlike constituents.

The observation of the Bjorken scaling reinforced the need to have a field theory

description of the strong force that becomes weak at high energies and thus is asymp-

totically free. The theory of quantum chromodynamics, being a non-Abelian gauge

theory, reveals asymptotic freedom. QCD theory is a renormalisable field theory,

if all the ultraviolet divergences can be absorbed by a redefinition of the coupling

constants and the fields. The dependence of physical quantities on the ultraviolet

cutoff M is eliminated by the redefinition of the coupling constant α in terms of the

renormalised coupling constant αren and the finite scale µR, called renormalisation

scale: αren = αren(α,M/µR) and α = α(αren,M/µR). In order to leave physical quan-

tities invariant under µR variations, αren has to vary as well. The evolution of the

coupling constant as a function of the scale µR is expressed via the renormalisation

group equation in terms of the β function, which depends only on the renormalised

coupling constant:

dαren

d log µ2
R

= β(αren) (1.18)

β(αren) = −b0α
2
ren − b1α

3
ren + O(α4

ren) (1.19)

b0 =
11Nc − 2nf

12π
(1.20)

whereNc is the number of colours, nf is the number of active flavours. The solution of

the differential equation requires a boundary value usually taken at the Z boson mass

scale. From figure 1.2 it can be seen that the evolution of the coupling constant αS
leads to asymptotic freedom, becoming smaller as higher energies are probed. This

effect is due to the value of b0: being positive, the evolution of αren is characterised

by a negative slope at higher scales.

1.2 Physics at the Large Hadron Collider

At the Large Hadron Collider (LHC) protons have been collided at energies ranging

from a few TeV up to 13 TeV. The interactions with large momentum exchange

between constituents of the two colliding protons, referred to as hard interactions,

can be described by the perturbative expansion of QCD. The parton model, which

represents hadrons as being made of quark-, antiquark-, gluon-constituents, generi-

cally referred to as partons, is used to make quantitative predictions at parton level

of observables like cross sections, angular and momentum distributions, and so on.

Under the assumption that the proton-proton interaction is hard and parton binding

effects are negligible, the cross section for a scattering process which results in the

final state X can be factorised in terms of a partonic scatter cross section σ̂ and
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QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  
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Figure 1.2: Measurement summary of αs as a function of the energy scale
Q. In brackets the order of αs extraction in perturbative QCD is indicated:
next-to-leading order (NLO); next-to-next-to leading order (NNLO); NNLO
matched with resummed next-to-leading logarithms (res. NNLO); or next-to-
NNLO (N3LO). Figure from [21].

factors for the flux of interacting partons as follows:

σ(pp→ XY ) =

∫ 1

0

dx1

∫ 1

0

dx2

∑
i,j

fi(x1, µ
2
F )fj(x2, µ

2
F )σ̂ij→X(x1x2s, αs(µ

2
R), µR, µF )σp1rp2r→Y ,

(1.21)

where two protons, with four-momentum P1 and P2 and energy P , collide. The sum

runs over all the possible initial state partons i, j, representing gluons, quarks and

anti-quarks. The energy fraction of the parton i (j) with respect to the proton is

x1 (x2). The partonic centre of mass energy is ŝ = x1x2s, where s = (P1 + P2)2 is

the proton-proton centre of mass energy square. The probability to find a parton i

with an energy fraction x in a proton is described in terms of the PDFs fi(x, µ
2
F ).

The PDFs depend on the factorisation scale µF , according to the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation [22–24]. σ̂ij→X is the short distance cross

section of the parton i interacting with parton j producing the system X. It can

be calculated as a perturbative expansion in αs. The underlying event cross section,

σ(p1rp2r → Y ), is due to the interaction of the residual parts of the two protons, p1r

and p2r, not directly involved in the hard scatter resulting in a hadronic final state

Y .

1.2.1 Simulation

The partons produced in the hard scatter immediately initiate a process, called

parton shower, of radiating low-energy and collinear gluons. Afterwards partons

evolve into hadrons in a process called hadronization. The transition of a system of

partons into confined hadrons is described by models which take into account non-

perturbative effects. In order to describe the final state particles realistically and

to make theoretical predictions, Monte Carlo (MC) simulation programs are used.
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1. Standard Model and beyond

An event is generated by a MC program by randomly defining the kinematics and

partonic channels of a hard scattering process. The cross section of a hard process

is generated by MCs at leading order (LO). Afterwards the parton shower follows:

gluons randomly split into a quark-antiquark pair or quarks randomly emit gluons.

Each emission and splitting is generated at a lower scale than the previous one. If

the radiation comes from the partons leaving the hard collision, it is referred to as

final state radiation (FSR). Radiation emitted by the incoming particles is referred

to as initial state radiation (ISR). As soon as the energy scale approaches 1 GeV, the

hadronization model is employed to transform partons into hadrons. The scattering

between the proton remnants is also used to simulate the underlying event (UE),

consisting of a 2 → 2 scattering at the GeV scale. Free parameters are tuned to

better model the observation.

In addition to UE, a similar soft contribution to the event, called pileup, is given

by additional simultaneous proton-proton interactions, as the protons are collided

in bunches. The pileup is modelled by overlaying with simulated inelastic proton-

proton scattering events.

After hadronization the decay of all the particles present in the event occur until

only stable particles are left. These are defined as particles with a lifetime τ in the

laboratory system such that cτ > 10mm [21]. The simulation at the experimental

level is achieved by propagating stable particles through the ATLAS detector by the

Geant4 software toolkit [25] within the ATLAS simulation framework [26], where

the particle interactions with the detector material and the signal formation are

simulated. The same algorithm used for data is employed for the reconstruction in

the simulation.

1.3 Top quark phenomenology

The top quark is the heaviest particle known and was the last quark to be discovered

in 1995 at the Tevatron [27, 28]. Its phenomenology depends mainly on its large mass.

Combined ATLAS measurements report a top mass value of mt = 172.84±0.70 [29].

It decays into a real W boson. Its life time, of the order of 10−25 s, is so short that its

decay occurs before it can hadronise, with the hadronization time of QCD being of

the order of 10−24 s, and the distance between the production and the decay vertices

of the order of 10−16 m. Thus, the top quark is a unique laboratory for studying the

properties of a bare quark free from non-perturbative effects of QCD confinement.

Its Yukawa coupling with the Higgs boson is very close to unity:

gt =
√

2
mt

v
≈ 1.

For this reason, which is connected to its large mass, the top quark plays a crucial

role in the Higgs physics and also in new physics models, as described in section 1.4
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1.3.1 Top quark production and decay

At hadron colliders, the top quark is mainly produced in pair through the gluon-

gluon fusion process, gg → tt̄ and through the quark-antiquark annihilation process

qq̄ → tt̄. At the LHC, where the colliding particles are protons, gluon-gluon fusion is

the leading process contributing from 80 to 90% of the total production cross section

for proton-proton centre of mass energy from 7 to 14 TeV.

One top quark can be also produced alone via electroweak interactions in the so

called, single-top production. Although suppressed by the weak coupling constant

with respect to the strong tt̄ production, single top production has a considerable

cross section, since it is kinematically enhanced. The production occurs via three

production mechanisms. The leading one is called the t-channel: the top quark is

produced in association with another quark, qb→ q′t via the mediation of a virtual

t-channel W boson. The sub-leading production process occurs via the s-channel,

in which a virtual W boson is exchanged in the s-channel. In this case a single

top quark is produced in association with a b-quark, via the process qq̄′ → tb̄. The

final state of the last production channel is composed of the single top quark in

association with a W boson. For this process a gluon interacts with a b-quark either

directly or via the exchange of a virtual top quark.

The top quark decay width and its decay modes are determined by the fact that

the top quark mass is larger than the sum of the W boson and b quark masses and

by the CKM element |Vtb| � |Vtd|, |Vts|. Thus, the Wb final state is dominant. For

a value of the top pole mass, mt, of 173.3 GeV/c2 and αs(MZ) = 0.118 the width is

1.35 GeV/c2 and the corresponding lifetime is at about 0.5× 10−24s.

The W decay modes, that characterise the top quark final state, are divided in

hadronic decays into a quark-antiquark pair BR(W → q1q̄2) ≈ 2/3 ; and leptonic

decays into a lepton-neutrino pair with branching ratio
∑

l=e, µ τ BR(W → lν̄l) ≈
1/3. If the charged lepton is a tau, in turn, it decays 35% of the time into a final

state with an electron or a muon plus neutrinos. The final state with a leptonically

decaying tau is accounted for in experimental measurements with electron and muon

final states, as the leptonic tau decay signature is almost identical to the W → e/µν

one. Concerning the remaining 65% of the time, the τ decays into hadrons and a

neutrino.

Events containing tt̄ pair production can be divided into three classes depending

on the number of leptons in the final state. The most probable tt̄ channel, which

occurs to 45.7% of the time, is fully hadronic: tt̄→ W+(qq̄′)bW−(q′′q̄′′′)b̄. The final

state quarks hadronise and evolve into jets of hadrons. The channel with slightly

lower probability is the so called l+jets channel, with only one charged lepton, l,

in the final state, occurring 43.8% of the time. The remaining decay channel is the

dilepton channel, with two charged leptons in the final state, corresponding to 10.5%

of the cases.
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1. Standard Model and beyond

1.4 Physics beyond the Standard Model

The most fundamental question that theories beyond the SM seek to answer, con-

cerns the electroweak symmetry breaking sector.

In the SM, the scalar mass of the Higgs boson is affected by large quantum

corrections from the coupling with fermions. In particular, the largest contribution

comes from the massive top quark. The physical value of the Higgs boson mass is:

m2
h ≈ m2

h0 −
|gf |2

8π2
N f
c

∫ Λ d4p

p2
≈ m2

h0 −
g2
f

8π2
N f
c Λ2 (1.22)

where mh is measured to be approximately at 125 GeV [30], mh0 is the bare Higgs

boson mass and the remaining term is the 1-loop correction, mh 1−loop, N f
c is the

number of colours, gf is the Yukawa coupling of the fermion f to the Higgs boson,

and Λ is the upper energy scale limit of validity of the SM. If Λ is assumed to

be the Planck scale, mPl = (GN)−1/2 ≈ 1019 GeV, at which the magnitude of the

gravitational interaction of particles becomes of the order of the gauge interactions,

an unnatural fine-tuning of the Higgs boson bare mass is required in order to can-

cel the large radiative corrections. The gauge hierarchy problem concerns the huge

difference between the Higgs boson mass and the Planck scale.

The top quark plays a crucial role in searches for physics beyond the Standard

Model (BSM). Theory models, which address the naturalness problem, foresee a

direct connection between new physics and the top quark. For example, the Little

Higgs and Composite Higgs models are based on a spontaneously broken global sym-

metry, leading to a pseudo-Goldstone Higgs boson. These theories predict vector-like

quarks, in particular vector-like top partners, which behave like the top quark apart

from the electroweak couplings. The couplings of these vector-like top partners to

top quarks is large, giving the top quark a decisive role in the search for these new

particles. In other models the electroweak symmetry breaking is a dynamical mech-

anism where top quarks are directly involved. In topcolor, for example, a new strong

gauge force which couples preferentially to the third generation quarks is the source

of a low energy condensate of top-antitop pair which breaks the SM SU(2)⊗U(1)Y

symmetry. In topcolor-assisted technicolor, a heavy Z ′ boson is predicted which cou-

ples especially to third generation quarks.

The gauge hierarchy problem is also addressed by supersymmetric models. These

models are discussed in section 1.4.1 and [20, 21, 31, 32] are used as references.

1.4.1 Supersymmetry

The SM Lagrangian is invariant under transformation of the Poincaré group. A

non-trivial extension of the space-time symmetries is called supersymmetry (SUSY),

which transforms fermions into bosons and vice versa. This symmetry was born in the

generalisation of the Coleman-Mandula theorem, which states that it is not possible

to non-trivially combine Lorentz invariance and an internal symmetry for physical
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1.4.1. Supersymmetry

theories. However, the theorem was found not to hold any more for supersymmetries

with fermionic generators, defined by anticommutative relations. A supersymmetric

generator, Q, is an operator which commutes with the Hamiltonian and carries half-

integer spin, in the simplest case 1/2, in order to convert bosonic into fermionc states

and vice versa:

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (1.23)

This operator, Qα with α = 1, 2 is defined by spinor components, which are left-

handed, while its Hermitian conjugates Q†β are right-handed. The anticommutator

transforms under Lorentz transformations:

{Qα, Q
†
β} = 2σµα,βP

µ (1.24)

{Qα, Qβ} = {Q†α, Q
†
β} = 0 (1.25)

[P µ, Qα] = [P µ, Q†α] = 0 (1.26)

where P µ is the total energy-momentum, which commutes with Q. The single-

particle states are represented by supermultiplets, containing both fermion and boson

states, which are superpartners of each other. Since Q commutes also with −P 2 and

the generator of gauge transformations, particles of the same supermultiplet must

have equal masses, the same electric charges, weak isospin and colour degrees of free-

dom. Moreover the number of fermion and boson degrees of freedom must be equal.

The scalar supermultiplet is composed of a single Weyl fermion with two degrees of

freedom and two real scalars combined into a complex scalar field. While the gauge

supermultiplet is formed by a massless spin-1 boson and a Weyl fermion. The phe-

nomenological implication of supersymmetry is that for every fermion (leptons and

quarks), which appears in the left-handed or right-handed component, two complex

scalar partner are predicted, one for each Weyl spinor. These scalar partners are

called sfermions (slepton and squarks), denoted by the symbol ˜: for example, the

superpartners of the left-handed and right-handed parts of the top quark Dirac field

are called left- and right-handed stops, t̃L and t̃R.

In the minimal supersymmetric extension of the SM (MSSM) the existence of

an additional Higgs doublet is predicted, resulting in two SU(2)L doublets Hu =

(H+
u , H

0
u) and Hd = (H0

d , H
−
d ), the first one giving masses to the up-type fermions

and the second to the down-type fermions. Their spin-1/2 superpartners are called

higgsinos.

The particle content in the MSSM is composed of three families for each quark

and lepton supermultiplets, two chiral Higgs supermultiplets, eight gluon gauge su-

permultiplets and four electroweak gauge supermultiplets.

In the MSSM Lagrangian renormalisable gauge-invariant terms not conserving

the baryon number and the lepton number could be present. Their inclusion in

the theory would lead to an unstable proton, which could decay into a lepton and a

meson. Measurements of the proton lifetime set a lower limit of the order of 1029 years
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1. Standard Model and beyond

[21], resulting in strong constraints on the proton decay. A new discrete symmetry,

called R-parity, is thus included in the MSSM defined for each particle as:

PR = (−1)3(B−L)+2s

where B is the baryon number, L is the lepton number, s is the spin of the particle.

SM particles have even R-parity, while all squarks, sleptons, gauginos and higgsinos,

generically referred to as sparticles, have odd R-parity. If R-parity is conserved,

sparticles cannot mix with SM particles and in every interaction vertex an even

number of sparticles must be foreseen. Thus, only even number of sparticles can be

produced at the LHC. The most relevant phenomenological implication of R-parity

conservation is the stability of the lightest supersymmetric particle (LSP), which

should be present in the final state of every sparticle decay. If the LSP has neutral

electric charge, it interacts only weakly with matter and, thus constitutes a good

dark matter candidate.

The presence of extra particles with respect to the SM leads to an interesting

behaviour of the gauge couplings in the MSSM at high energies. The SM contains

three independent gauge couplings, g, g′ and gS. An appealing idea would be that

the three gauge symmetries SU(3)C⊗SU(2)⊗U(1)Y are subgroups of a larger sym-

metry group, like SU(5), that is spontaneously broken at very high energies into

SU(3)C⊗SU(2)⊗U(1)Y. In such a SU(5) theory, with coupling constant g5, the fol-

lowing relation would be valid

g5 = gS = g =

√
5

3
g′.

According to the SM, the extrapolation of the coupling constant from a scale of

mZ up to very high energies results in values that come close to each other without

converging. However, the MSSM particle content leads to the gauge coupling unifi-

cation at a scale mGUT ≈ 1016 GeV, called Grand Unification scale. The evolution

of α−1
a , where αa = g2

a/4π, and g1 =
√

5/3g′, g2 = g and g3 = gS, as a function of

the energy scale Q is compared between the SM and the MSSM predictions in figure

1.3 [32].

If SUSY were unbroken, the squarks and sleptons would have the same mass as

their SM fermionc partners. The direct consequence of an unbroken supersymmetric

Lagrangian is that the Yukawa couplings for fermionic fields yf and for scalar fields yS
satisfy the relation yS = |yf |2, and thus the quadratic divergences in the Higgs mass

vanishes to all orders in perturbation theory as they cancel through the opposite

contributions between fermions and bosons. However, squarks and sleptons should

have already been detected if they had masses of the order of the SM particle ones.

Since none of them have been found so far, if nature is supersymmetric, SUSY must

be broken in the vacuum state. Under the hypothesis that even a broken SUSY has to

provide a cancellation to the quadratic corrections to the Higgs mass, SUSY should

be softly broken. Given the largest mass scale associated to the softly symmetry
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1.4.1. Supersymmetry

Figure 1.3: Extrapolation as a function of the energy scale Q of the g1 =√
5/3g′, g2 = g and g3 = gS coupling constants, expressed with respect to

(αa)
−1 = (g2

a/4π)−1, using the β functions calculated in the context of the MSSM
or SM particle content represented with solid and dashed lines respectively.
Figure from [32].

breaking terms, msoft, the corrections to the Higgs mass are of the form:

∆m2
h ≈ m2

soft

(
ln(Λ/msoft)

16π2

)
.

msoft should be of the order of 1 TeV to provide corrections to the Higgs mass of the

order of the vacuum expectation value.

After symmetry breaking, mixing can occur between electroweak gauginos and

higgsinos as well as within sets of squarks, sleptons and Higgs scalars with the same

electric charge, R-parity and colour quantum numbers. Concerning the Higgs sector,

the two complex SU(2)L-doublets are composed of eight scalar degrees of freedom.

After electroweak symmetry breaking five Higgs mass eigenstates survive: h, SM-like

Higgs; H, heavy CP-even boson mixing with the state h; a CP-odd state A; and two

charged Higgs bosons, H±, with the same mass.

Higgsinos and electroweak gauginos mix between themselves after electroweak

symmetry breaking. The resulting four mass eigenstates from the mixing of neutral

higgsinos, H̃0
u and H̃0

d , and neutral gauginos, B̃ and W̃ 0 are the neutralinos : χ̃0
1, χ̃0

2,

χ̃0
3 and χ̃0

4. In a similar way the positively (negatively) charged higgsino, H̃+
u (H̃−d )

mix with the W̃+ (W̃−) wino to form the charginos, χ̃+
1 and χ̃+

2 (χ̃−1 and χ̃−2 ).

Most of the mixing angle between sleptons, sneutrinos and squarks is foreseen to

be very small. A significant mixing is expected among the third-generation (t̃L, t̃R),

(̃bL, b̃R) and (τ̃L, τ̃R) pairs, which are characterised by large Yukawa couplings. On

the contrary, the first- and second families of squarks and leptons are expected to

have a negligible mixing and to be almost mass degenerate due to their negligible

Yukawa coupling.

23



1. Standard Model and beyond

The phenomenological particle set of the MSSM is composed of the mass states

of table 1.1.

Names PR = +1 PR = −1 PR = −1 mass

PR = +1 PR = −1 particles sparticles eigenstates

uL uR dL dR ũL ũR d̃L d̃R (same)

quarks squarks cL cR sL sR c̃L c̃R s̃L s̃R (same)

tL tR bL bR t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

νL, eL eR ν̃e ẽL ẽR (same)

leptons sleptons νµ µL µR ν̃µ µ̃L µ̃R (same)

ντ τL τR ν̃τ τ̃L τ̃R ν̃τ τ̃1 τ̃2

gluon gluino g g̃ (same)

Higgs-es Higgsinos H+
u H−d H0

u H
0
d H̃+

u H̃−d H̃0
u H̃

0
d χ̃+

1 χ̃−1 χ̃0
1 χ̃

0
2

W/B bosons winos, binos W± W 0 B0 W̃+ W̃− W̃ 0 B̃0 χ̃+
2 χ̃−2 χ̃0

3 χ̃
0
4

Table 1.1: MSSM particle content. R-parity odd and even states are reported,
together with the mass eigenstates of the R-parity odd states. The mixing of
H+
u , H−d , H0

u and H0
d into h, A, H, H± is not reported in this table. For each

chiral super-multiplet there is a corresponding anti-particle multiplet of charged
conjugated fermions and their associated scalar partners.

Depending on the values of the masses and mixing parameters the sparticle

mass spectrum can have large variations. However, some general features, which

often recur in several models are:

• the LSP is the lightest neutralino χ̃0
1;

• the gluino is predicted to be much heavier than the lighter neutralinos and

charginos;

• the first and second family squarks are almost degenerate and the left-handed

squarks are likely to be heavier than the right-handed ones.

• due to their large mixing effects, the lighter stop t̃1 and the lighter sbottom b̃1

are probably the lightest squarks

• the stau is expected to be the lightest charged slepton;

• the h SM-like Higgs is expected to be much lighter than the other Higgs mass

eigenstates.

With respect to the structure of the soft supersymmetry breaking terms, several

models have been suggested with different sets of parameters, which reduce the

MSSM parameter space. The resulting supersymmetric particle spectrum depends
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1.4.1. Supersymmetry

only on a relatively small number of input parameters. However, the large number

of models with different theoretical descriptions of the symmetry breaking sector

makes it difficult to interpret experimental results in term of each model. Thus, for

experimental tests simplified models [33] are used in order to focus only on a reduced

set of hypothetical supersymmetric particles. The signal process is characterised by

the production of a specific sparticle pair each decaying into a chain defined by only

few dominant decay modes. With this approach the masses of SUSY particles are

considered as free parameters.

Phenomenology of the top scalar partner

Supersymmetric models predict the existence of two scalar partners of the top quark,

t̃R and t̃L, each associated either to the right- or the left- handed chiral component

of the top quark. They significantly mix to form the mass eigenstates t̃1 and t̃2,

where the first is much lighter than the second.

Concerning SUSY models with R-parity conservation, a pair of stop squarks

could be produced at the LHC via gluon-gluon or quark-antiquark fusion. The pro-

duction cross section depends only on the t̃1 mass to leading order. It is calculated

with PROSPINO [34, 35] in p − p collisions at
√
s = 8 TeV to next-to-leading or-

der in the strong coupling constant with the resummation of soft gluon emission at

next-to-leading-logarithmic accuracy (NLO+NLL)[36–38] and it is shown in figure

1.4(a).
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The analyses that have already been published are only briefly reviewed, while those presented for the83

first time in this paper are discussed in detail. Appendix C provides further details of a combination of84

analyses which is performed for the first time in this paper. Finally, Appendix D provides details about85

the generation and simulation of the signal Monte Carlo samples used to derive the limits presented.86

2. Third-generation squark phenomenology87

The cross section for direct stop pair production in proton–proton collisions at
p

s = 8 TeV as a function88

of the stop mass as calculated with PROSPINO [43, 44] is shown in Figure 1a. It is calculated to next-to-89

leading order accuracy in the strong coupling constant, adding the resummation of soft gluon emission at90

next-to-leading-logarithmic accuracy (NLO+NLL) [45–47]. In this paper, the nominal cross section and91

its uncertainty are taken from an envelope of cross-section predictions using di↵erent parton distribution92

function (PDF) sets and factorisation and renormalisation scales described in Ref. [44]. The di↵erence in93

cross section between the sbottom and stop pair production is known to be small [46], hence the values94

of Figure 1a are used for both.95
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Figure 1: (a) Direct stop pair production cross section at
p

s = 8 TeV as a function of the stop mass. The band
around the cross section curve illustrates the uncertainty (which is everywhere about 15–20%) on the cross section
due to scale and PDF variations. (b) Illustration of stop decay modes in the plane spanned by the masses of the
stop (t̃1) and the lightest neutralino (�̃0

1), where the latter is assumed to be the lightest supersymmetric particle and
the only one present among the decay products. The dashed blue lines indicate thresholds separating regions where
di↵erent processes dominate.

Searches for direct production of stops and sbottoms by the ATLAS collaboration have covered several96

possible final-state topologies. The experimental signatures used to identify these processes depend on97

the masses of the stop or sbottom, on the masses of the other supersymmetric particles they can decay98

into, and on other parameters of the model, such as the stop and sbottom left-right mixing and the mixing99

between the gaugino and higgsino states in the chargino–neutralino sector.100

Assuming that the lightest supersymmetric particle is a stable neutralino (�̃0
1), and that no other super-101

symmetric particle plays a significant role in the sbottom decay, the decay chain of the sbottom is simply102

b̃1 ! b�̃0
1 (Figure 2a).103

26th June 2015 – 15:12 4

(b)

Figure 1.4: (a) and (b) from [39]. (a) Cross section at
√
s = 8 TeV of the direct

stop pair production process. (b) Dominant stop decay channels with respect to
the stop mass and the neutralino mass.

After the stop is pair produced, the decay chain leads to a final state with

neutralinos and SM particles. Which SM particles are involved in the final state

depends principally on the t̃1 mass, mt̃1 , and the neutralino mass, mχ̃0
1
, or more

precisely on their difference ∆m(t̃1, χ̃
0
1) = mt̃1−mχ̃0

1
, as can be seen in figure 1.4(b).
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This difference reveals the energy left to produce the remaining decay products: if

∆m(t̃1, χ̃
0
1) is larger than the top quark mass, mt, the decay t̃1 → tχ̃0

1 is the favoured

one.
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Chapter 2

The ATLAS experiment at the
Large Hadron Collider

The Large Hadron Collider (LHC) [40] at the European Organisation for Nuclear

Research (CERN) is the largest experiment ever built and able to explore new

high energy regimes. The LHC has been built to accelerate and collide protons

or heavy ions at unprecedented energies. The experience and knowledge acquired

with preceding high energy colliders like the Tevatron [41] and HERA [42] has been

applied in the design and construction of the LHC.

Four large experiments have been engineered according to specific physics re-

quirements. Two general purpose experiments, ATLAS (A Toroidal LHC Appa-

ratuS) [43] and CMS (Compact Muon Solenoid) [44], have been built to unveil the

electroweak symmetry breaking mechanism, and to probe new reachable high energy

scales searching for hints of Physics Beyond the Standard Model. The LHCb (Large

Hadron Collider beauty) experiment [45] is devoted to investigate the phenomenol-

ogy of the b-quark, measuring with high precision rare decays of B hadrons and

the CP violation in order to search for indirect evidence of new physics. ALICE (A

Large Ion Collider Experiment) [46] has been built to study the physics of strongly

interacting matter and of the quark-gluon plasma in heavy ion collisions, especially

lead-lead collisions provided by the LHC at a maximum design ion beam energy of

2.76 TeV/nucleon.

After a brief description of the Large Hadron Collider machine in section 2.1,

the ATLAS detector is presented in section 2.2. The Run 1 data taking conditions

are reported in section 2.3. The ATLAS trigger system is described in section 2.4.

Objects used in physics analyses are reconstructed from the signals of one or more

sub-detectors, as explained in section 2.5. The Monte Carlo simulation used to model

the background and the systematic uncertainties which concern the analyses of this

thesis are described in sections 2.6 and 2.7, respectively.
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2. The ATLAS experiment at the Large Hadron Collider

2.1 The Large Hadron Collider

The following description is focused on proton-proton collisions and [40, 47] are used

as references. The LHC consists of a two-ring tunnel of about 27 km formerly built

for LEP [48], equipped with superconducting magnets for the particle bending. As

Figure 2.1: Schematic of the LHC structure from [47].

depicted in figure 2.1, the LHC machine consists of eight arcs connected by eight

straight sections corresponding to the insertion regions (IRs). The ATLAS and CMS

detectors are located in the two opposite high-luminosity interaction points (IPs). In

the regions contiguous to ATLAS, two additional IPs are located where the ALICE

and LHCb detectors are installed together with the beam injection systems. On

the four remaining IR the storage ring hardware for the 400 MHz radio frequency,

the collimation, the beam extraction and the dump systems are placed. The beam

crossing occurring at the four IPs leads to two trajectories of the same size for the

two beams. The LHC is designed to accelerate protons up to an energy of 7 TeV,

thanks to the superconducting dipole magnets with nominal field strength of 8.3 T.

Magnets with “twin-aperture” are placed in a common return yoke and cryostat in

order to have a compact layout, fitting in the tunnel with a diameter of about 4 m.

The beam optics is characterised by the standard FODO lattice: repeated groups of

two quadrupole magnets, one focusing and the other defocusing, separated by three

dipoles which bend the beam. Superconducting correction coils are included. The

beam stability is achieved by the presence of multipole compensation coils, which

correct for multipole errors of the main magnets.

The proton beams are provided to the LHC by an injector chain formed by

several accelerating stages, as displayed in figure 2.2. Protons are produced in Linac2

and accelerated up to 750 keV. Protons are transferred to the Proton Synchrotron

Booster (PSB), formed by four stacked rings, and reach energies of about 1 GeV.

The Proton Synchrotron (PS) accelerates protons up to energies of 26 GeV. Protons

finally running in the Super Proton Synchrotron (SPS) reach energies of 450 GeV.
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2.1. The Large Hadron Collider

Figure 2.2: Schematic of the proton accelerator stages from [49].

Multiple bunch trains (up to 288) can be run and their collision occurs at the four

IPs. The design bunch distance is 25 ns and a maximum of 2808 bunches per beam

can circulate. Each bunch is composed of 1.15× 1011 protons. The LHC can provide

beam intensities corresponding to a instantaneous luminosity, L, of 1034 cm−2s−1.

This luminosity, concerning a Gaussian transverse particle distribution, is given by

the formula:

L =
N1N2frevnb

2π
√
σ2

1x + σ2
2x

√
σ2

1y + σ2
2y

· F ·W (2.1)

where N1 and N2 are the number of particles in the nb colliding bunches of beam

1 and beam 2; frev is the ring revolution frequency and σ is the transverse beam

size with respect to the horizontal (x) and vertical (y) plane for each of the two

beams at the IP. The factors F and W are introduced to take into account the

luminosity reduction due to a final crossing angle of the two beams and the transverse

offset at the collision point, respectively. The peak luminosity in Run 1 has been

7 × 1033 cm−2s−1 for ATLAS and CMS. A lower luminosity has been provided to

the specific purpose experiments, corresponding to typical values of 1032 cm−2s−1

for LHCb and 1027 cm−2s−1 for ALICE.

In physics analyses aiming to reconstruct and measure specific hard processes, the

instantaneous luminosity is an important ingredient determining the size of the data

sample. The rate of events, Ṅevent, produced by the collisions of protons concerning
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2. The ATLAS experiment at the Large Hadron Collider

a certain process, with cross section σevent, is given by:

Ṅevent = σevent × L

The higher the instantaneous luminosity, the higher is the expected number of events

per unit time. However, at higher luminosities a disadvantage has to be considered:

the number of additional proton-proton interactions in the same collision of pro-

ton bunches is enhanced. These soft-interactions, characterised by low momentum

transfer, are considered spurious with respect to the hard process of interest, and

are referred to as pileup. The average number of interactions per bunch crossing,

〈µ〉, depends on the instantaneous luminosity, L, on the cross section of the inelas-

tic proton-proton scattering, σinel
1, and the mean time interval between two bunch

crossings, 〈t〉:
〈µ〉 = L× σinel × 〈t〉

The 2012 pileup conditions are represented by the distribution of the variable 〈µ〉
in figure 2.3. On average the pileup activity in 2012 corresponded to values of mean
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Figure 2.3: Luminosity weighted distribution of the average number of inter-
actions per bunch crossing in 2012 from [50].

number of interactions per bunch crossing of 〈µ〉 ≈ 20.7.

A distinction is made with respect to the pileup source. If additional proton-

proton interactions occur in the same bunch-crossing as the one of interest, they are

referred to as in-time pileup. Otherwise, if the additional collisions happen in bunch

crossings before or after the one of interest, they are referred to as out-time pileup.

In ATLAS, the liquid argon calorimeter sub-detector is characterised by a signal

duration of about 600 ns. This time is much larger than the time spacing between

two bunch crossing of 50 ns in 2012. Therefore, the detector is affected by signal

residuals from proton collisions occurring in the 12 preceding bunch crossings.

1σinel = 73 mb for protons colliding at a centre of mass energy
√
s = 8 TeV.
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2.2. The ATLAS detector

2.2 The ATLAS detector

The ATLAS experiment has been designed to cover the full solid angle via a cylin-

drical structure with a central barrel and two endcaps to close the sides in order

to detect particles with directions quite close to the beam pipe. It is built with

a multi-layer structure of sub-detectors components with respect to the increasing

radius from the interaction point, in order to provide precise measurements of dif-

ferent particle properties. Very close to the IP tracking detectors are placed within

a strong magnetic field to measure the kinematics of charged particles coming from

the IP. The tracking system is then surrounded by the electromagnetic and hadronic

calorimeters to measure the energies of electrons, photons and hadrons. The farthest

sub-detectors from the IP are the muon chambers for muon identification and re-

construction.

Figure 2.4: Sketch of the ATLAS detector from [51].

2.2.1 ATLAS coordinates

The coordinate system of the ATLAS detector has its origin in the nominal inter-

action point. The plane which is transverse to the beam direction is defined to be

the x-y plane, with the positive x- and y-axis pointing in the direction of the centre

of the LHC ring and upwards, respectively. The z-axis coincides with the direction

of the beam. Polar coordinates are also defined: the azimuthal angle φ in the x-y

plane starting from the x axis and the polar angle θ from the z-axis. The coordinate

θ is often replaced by the pseudorapidity η 2, defined as η = − ln tan(θ/2). η is

2The pseudorapidity η coincides with the rapidity y = 1
2 ln E+pL

E+pL
, where pL is the longitudinal

particle momentum, in the limit of a massless particle.
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used together with φ to define the direction of a vector in the detector. The angular

distance ∆R between two trajectories (i = 1, 2), with (ηi, φi) coordinates, is defined

as the distance in the η − φ plane:

∆R =
√

∆η2 + ∆φ2 (2.2)

∆φ = φ1 − φ2 (2.3)

∆η = η1 − η2. (2.4)

The transverse momentum, ~pT, is defined by the momentum components in the x−y
plane and its magnitude is pT =

√
p2
x + p2

y.

2.2.2 Inner detector

The inner detector (ID) provides accurate track reconstruction within |η| < 2.5

in a high track multiplicity environment of about 1000 tracks and determines the

positions of primary and secondary vertices. This information is of fundamental im-

portance for electron identification, heavy-flavour and τ lepton tagging. A precise

measure of the track momentum is achieved by detectors with fine granularity, im-

mersed in an axial 2 T magnetic field generated by a solenoid of length 5.3 m and

diameter of 2.5 m. Three layers of pixel detectors are placed close to the beamline,

at a radial distance of about 45 mm up to 242 mm, surrounded by four layers of

silicon microstrip trackers (SCT), occupying the space region from a radius of 255

mm up to 549 mm. Straw tubes of the Transition Radiation Tracker fill the remain-

ing space within the solenoid. The pixels and SCT, divided into barrel and end cap

regions, consists of concentric cylinders around the beam axis with respect to the

barrel layers, while the endcap layers are formed by discs placed in the transverse

plane. Pixel sensors, which are placed from the beamline, have a nominal size of

50× 400 µm2 with a total of 80.4 million readout channels.

The SCT barrel is composed of four layers of small angle stereo microstrip de-

tector modules with pairs of single-sided sensors glued back-to-back. They measure

the R − φ coordinates. The endcap region is characterised by a set of strips dis-

placed radially and a set of stereo strips at an angle of 40 mrad. The total number

of readout channels is about 6.3 million.

The TRT is composed of 4 mm diameter straw tubes parallel to the beam axis

in the barrel region and perpendicular in the endcap regions. R − φ information is

given by the TRT up to |η| < 2.0. The readout system is composed of approximately

351000 readout channels.

The layout of the subdetectors with the exception of the TRT barrel is shown in

figure 2.5. The track reconstruction in the barrel region typically relies on 3 pixel

hits, 8 SCT hits and about 30 TRT hits.
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Figure 2.5: Sketch of the ATLAS inner detector crossed by two 10 GeV tracks
with η = 1.4 and η = 2.2. The TRT barrel detector is omitted in the picture.
Figure from [52].

2.2.3 Calorimeter

The calorimeter system in ATLAS consists of electromagnetic and hadronic sam-

pling calorimeters covering a region of |η| < 4.9, see figure 2.6. Its transversal size

corresponds to radiation lengths (X0) greater than 22 (24) and the active calorimeter

hadronic interaction lengths, λ, of 9.7 (10) in the barrel (endcaps).

The electromagnetic calorimeter (EM) is characterised by high granularity for

electron and photon identification and reconstruction. It is divided into a barrel part

covering the pseudorapidity range |η| < 1.475 and two endcaps within 1.375 < |η| <
3.2. The first is composed of two identical half-barrels, the second is divided in two

coaxial wheels. The EM calorimeter is a sampling liquid-argon (LAr) calorimeter

which uses lead as an absorber and has accordion-shaped kapton electrodes. The

detector part covering |η| < 2.5 is divided in three longitudinal layers (strip, middle

and back layer) and is finely segmented in the lateral direction to provide accurate

information on EM shower properties. The middle layer, which collects most of the

high energy EM showers, has η×φ size of 0.025×0.025. The strip layer is composed

of strips segmented in the η-direction with coarser φ granularity. The back layer

collects the energy deposits of the EM shower tail. In the pseudorapidity region

|η| < 1.8 a thin presampler is located to correct for fluctuation of electron and

photon energy losses. Between the barrel and endcap there is a transition region,

within 1.37 < |η| < 1.52, with a large amount of dead material in front of the first

active calorimeter layer.

The hadronic calorimeter is characterised by coarse granularity which provides

the reconstruction of energy deposits combined in jets. It is divided into three parts:

one located in the central barrel region, |η| < 0.8; and two extended barrel regions

within 0.8 < |η| < 1.7. The hadronic calorimeter technology consists of three layers

of scintillator-tile/steel calorimeter (Tile) azimuthally divided in 64 modules with

angular aperture of π/32 rad.
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Two regions within 1.5 < |η| < 3.2 are instrumented by liquid-argon/copper

calorimeter modules forming the hadronic endcap calorimeters. These consists of two

wheels per endcap located directly behind the EM calorimeter endcap. Each wheel

is formed by 32 identical wedge-shaped modules and is divided in two segments in

depth.

The region 3.1 < |η| < 4.9 is covered by the forward liquid-argon/copper and

liquid-argon tungsten calorimeter modules providing electromagnetic and hadronic

energy measurements, respectively.

Figure 2.6: Illustration of the ATLAS calorimeter from [51].

2.2.4 Muon spectrometer

In order to identify and reconstruct muons, a muon spectrometer (MS) system has

been built in the outermost part of ATLAS. Its acceptance extends up to |η| = 2.7.

As shown in figure 2.7, the MS consists of a barrel composed of cylindrical layers

around the beam axis, covering the region of |η| < 1.05, and two endcap sections

perpendicular to the beam. The MS is immersed in a magnetic field with a bending

integral of about 2.5 Tm in the barrel and up to 6 Tm in the endcaps which is

generated by a system of three large superconducting air-core toroid magnets, one

large barrel toroid placed within the |η| < 1.4 region and two endcap magnets placed

in the 1.6 < |η| < 2.7 region. The generated magnetic field is mostly orthogonal to

the muon trajectories. Three doublet layers of Resistive Plate Chambers (RPC) in

the |η| < 1.05 region and three triplet and doublet layers of Thin Gap Chambers

in the 1.0 < |η| < 2.4 region provide fast η − φ position measurements for trigger

decisions. Three layers of Monitored Drift Tube (MDT) Chambers for |η| < 2 and
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two layers of MDT together with one layer of cathode strip chambers in the 2.0 <

|η| < 2.7 region provide precise muon momentum reconstruction through six to eight

η measurements along the muon trajectory.

Figure 2.7: ATLAS muon sub-system schematic from [53].

2.3 Run 1 data-taking

After the first collisions with unsqueezed beams, delivered on 30 March 2010, and

the first year of beam commissioning in 2010, the ATLAS Run 1 data-taking started,

and it lasted until 17 December 2012. In 2011 the LHC entered its first year of high

luminosity running providing proton-proton collisions at a centre of mass energy of√
s = 7 TeV. The bunch spacing was reduced to 50 ns with up to 1380 bunches per

beam. Afterwards the bunch intensity was increased with the corresponding ramp-

up of the luminosity. A luminosity peak of 3.6 × 1033 cm−2s−1 was achieved at the

end of 2011. The instantaneous luminosity evolution from 2010 to 2012 is shown in

figure 2.8.

In 2012 the beam energy was increased to provide proton-proton collisions at√
s = 8 TeV. The bunch spacing remained unchanged with respect to 2011 with

about 1380 bunches per beam. The bunch intensity was raised up to 1.7 × 1011

protons per bunch, more than the design bunch intensity. However, the LHC running

conditions have been very stable and a maximum luminosity of 7.7 × 1033 cm−2s−1

was reached.

The integrated luminosities delivered to ATLAS is shown in figure 2.9 for the

years 2011 and 2012. The delivered luminosity, consisting of collisions from the start

of stable beams until the request of LHC to put the ATLAS detector in a safe standby

mode have been of 5.46 fb−1 and 22.8 fb−1 in the years 2011 and 2012 respectively.
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Figure 2.8: Peak instantaneous luminosity of proton-proton collisions delivered
to ATLAS as a function of the time. The picture is divided with respect to the
proton collision year 2010, 2011 and 2012. Figure from [50].

A small part of these luminosities has not been recorded due to data acquisition

inefficiency and due to the time needed to ramp the high-voltage and to turn on the

preamplifiers of the tracking system. After data reprocessing, the quality of data is

verified to be good for physics. A fraction of 89.9% and 95.5% of the recorded data

has been certified as good for physics in 2011 and 2012 respectively, resulting in

4.57 fb−1 and 20.3 fb−1 integrated luminosity proton-proton collision data collected

at
√
s = 7 TeV and

√
s = 8 TeV.
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Figure 2.9: Integrated luminosity as a function of time, delivered to ATLAS in
green, recorded by ATLAS in yellow and certified for physics analyses as good
quality data in blue. Figure from [50].

After the first long shutdown (LS1) started on 14 February 2013 and ended at

the beginning of 2015, Run 2 began with proton-proton collision data collected at√
s = 13 TeV.
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2.4 Trigger system

During Run 1, three distinct sequential trigger levels were used to reduce the rate

of events to read out and store [54].

The hardware based Level 1 trigger (L1) exploited coarse granularity data com-

ing from the muon spectrometer to identify high transverse-momentum muons and

the calorimeter subdetectors for the selection of events with electrons, photons, jets,

τ -leptons decaying hadronically and large missing transverse energy. The rate was

reduced from the nominal 40 MHz bunch crossing rate to 20-75 kHz. Regions of

Interest (RoIs) were defined by the L1 trigger. These are η − φ regions where in-

teresting physics objects are identified. The trigger decision was made in less than

2.5 µs. Due to this constrained latency, the tracking information from the inner

detectors could not be read out at this level.

The Level 2 trigger (L2) and the Event Filter (EF) were the two high level trigger

(HLT) systems, which ran on large farm processors, and they selected events with

a rate around 400 Hz to record on line. The L2 was the first trigger level that could

access the partial information at full resolution from the Inner Detector (ID) and

from the other subdetectors in the L1 selected RoIs (around 2% of the total volume).

It reduced the trigger rate to few kHz with a decision time less than 100 ms. The

full detector data of events selected by the L2 , was read out and processed within

a few seconds by the EF, which used offline analysis procedures to reconstruct and

base its event selection on physics objects like leptons, photons and jets, and global

quantities such as missing transverse momentum.

Data events selected by the trigger system are subdivided in specific data streams.

Four main physics data streams are present in ATLAS: one regarding events with

reconstructed electron or photon trigger objects, one collecting events with muon

trigger objects, one grouping events selected by jet, tau and missing transverse

energy triggers, and events with only very soft collisions belong to the minimum

bias stream. Overlap between different streams is allowed.

The configuration of the trigger system is based on a trigger menu. It defines all

the triggers used to select and record data. These are grouped in different classes:

triggers selecting events with at least one trigger object belong to the single object

trigger class; triggers selecting events with two or more reconstructed objects at

trigger level are grouped in the multiple object trigger class if the objects are of

the same type, otherwise they belong to the combined triggers if the object type is

different; triggers using the information from two or more RoIs belong to the class

of topological triggers.

2.5 Object reconstruction

The accurate reconstruction and identification of particles and jets by the ATLAS

detector is of primary importance for physics analyses and depends on the oper-
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ational performance of each sub-detector and on the algorithms which transform

the raw sub-detector measurements into particle objects used in physics analyses.

Fully reconstructed final states consist of: collections of individual particle objects

like electrons, photons, muons, and taus; bundles of hadrons, reconstructed as jets;

and the missing transverse energy, measuring the transverse momentum imbalance

resulting from the reconstructed objects.

The reconstruction strategy is presented regarding these objects used in the anal-

yses reported in this thesis: tracks, electrons, muons, topological clusters combined

into jets and missing transverse momentum.

2.5.1 Tracks

Charged particle tracks with transverse momentum pT > 500 MeV and |η| < 2.5

are reconstructed in the ID. The reconstruction of these tracks [55, 56] starts from

the identification of clusters from raw hits. A point in the three dimensional space

is directly calculated for each pixel hit, while a pair of clusters from each side of an

SCT module form a single space point.

Tracks for physics analyses originate mainly from primary particles with lifetimes

grater than 3 × 10−11 s either promptly produced in the proton proton interaction

or from the decay of short lifetime (smaller than 3 × 10−11 s) particles. They are

reconstructed with an inside-out pattern recognition algorithm, which starts from

the space points close to the interaction point up to the TRT. Three space points

in the silicon layers define a track seed. A road is constructed from the seeds in

order to find, moving outwards, other hits associated to the track. The extension of

the track candidate to the TRT is tested. From the final collection of hits a track

fitter extracts the track parameters and removes overlapping tracks. These tracks

are required to have pT > 400 MeV. At this step, the hits used in each reconstructed

track are removed from the hits list.

Afterwards a back-tracking sequence starts form a seed in the TRT and perform

an extrapolation inside to the silicon layers taking into account only the remaining

hits. With the back-tracking sequence, most of the secondary particles, coming from

the interaction of the primary ones, are reconstructed.

The track information is used to reconstruct primary vertices [57]. A primary

vertex finding algorithm associates reconstructed tracks to the vertex candidates.

A vertex fitting algorithm reconstructs the vertex position and its error matrix.

Afterwards, tracks associated to the primary vertex are refitted in order to constrain

them to originate from the reconstructed vertex.

2.5.2 Electrons

Electrons are reconstructed from energy deposits in the EM calorimeter, EM clusters,

associated with a track in the inner detector [58–60]. A grid of towers is defined in

the η−φ plane with size ∆ηtower×∆φtower = 0.025×0.025 in order to characterise the
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event energy distribution. This size corresponds to the EM middle layer granularity.

The energy associated to each tower is calculated by summing the energy of the

cells belonging to the tower in all longitudinal layers. If a cell corresponds to more

than one tower, its energy is uniformly distributed among the associated towers. A

sliding-window algorithm [61] searches for seed clusters with a minimum energy of

2.5 GeV within a window of 3 × 5 towers in the η − φ space. Loose shower shape

requirements are applied to select those seed clusters to be matched to tracks. A

candidate electron track is reconstructed via pattern recognition [62] and via a track

fit using the ATLAS global χ2 track fitter [63]. If the standard pion hypothesis

used in track reconstruction fails, the electron hypothesis is employed. The track

is matched to the EM cluster if it points towards it (approximately ∆η < 0.05

and ∆φ < 0.05 − 0.2 between the track and the cluster). The parameters of the

electron-track candidate are re-estimated with an electron track fitter, the Gaussian

Sum Filter algorithm [64]. If more than one track is associated to the electron, the

discrimination criteria for the optimal track choice are at first based on the number

of hits in the Pixel detector and then on the angular distance between the track and

the EM cluster.

Each track-cluster combination is considered an electron candidate, whose energy

and position is readjusted to take into account contribution coming from other cells.

The cluster energy is calibrated to weight the contribution from each of the three

EM layer. Electron candidate energy in data is corrected with factors derived by in

situ measurements in Z → ee events, while it is smeared in simulated events. The

final candidate four-momentum is defined by the energy of the cluster, by the η and

φ of the track.

Longitudinal and transverse shapes of the electromagnetic showers in the

calorimeters together with track quality requirements and particle identification

using the TRT are used in order to discriminate electrons from other particles,

producing hadronic jets, and to reject electrons from photon conversion or from

semileptonic heavy flavour decays.

In order to be selected as signal electrons in the `+jets analysis of chapter 4,

reconstructed electrons are required to be in a region of |η| < 2.47 and outside of

the calorimeter transition regions 1.37 < |η| < 1.52 between the calorimeter barrel

and the endcap. Only reconstructed electrons with transverse energy ET > 25 GeV

are taken into account, where ET is calculated from the energy of the cluster Ecluster

and the direction of the associated track ηtrack: ET = Ecluster/ cosh ηtrack. Their longi-

tudinal impact parameter to the primary vertex should be less than 2 mm to match

the electron to the collision vertex. An η− φ cone is defined around the direction of

the electron track. Its size shrinks for higher electron ET, as ∆R = 10 GeV/ET. If

the sum of the track pT within this cone is less than 5% of the transverse energy of

the reconstructed electron, the reconstructed electron is considered isolated.

Selection criteria which are looser in the the direct stop search than the `+jets

analysis are used for electron reconstruction. The transverse energy of the electron
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candidates must exceed 10 GeV and requirements only on the hadronic leakage and

on the shower shape variables are applied, corresponding to the “loose” selection

described in [58, 60].

2.5.3 Muons

Reconstructed muons are categorised, depending on the available information from

the ID, the MS and the calorimeter [65].

The categories of muons reconstructed from at most a pair of sub-detectors

are: stand-alone muons, reconstructed only in the MS; segment-tagged muons or

calorimeter-tagged muons, defined by a track in the ID identified as a muon which

is associated with at least a track segment in the MDT or CSC chambers (segment-

tagged) or with energy deposits compatible with a minimum ionising particle for

the second type (calorimeter-tagged).

The main type with the highest muon purity consists of combined muons. An

inner detector track is combined with one reconstructed in the muon spectrometer.

Two different reconstruction strategies have been employed to reconstruct combined

muons. Regarding the first one, the staco algorithm is employed to perform a

statistical combination of the parameters and covariance matrices of the two tracks.

The resulting full track parameters define the muon object. Concerning the second

strategy, muid, a global refit using hits from both the subdetectors is performed in

order to obtain a muon candidate.

Kinematic requirements of the “muid” combined muon in the `+jets analysis

are: |η| < 2.5 and pT > 25 GeV. The compatibility of the muon originating from

the primary vertex is defined by requiring that the longitudinal impact parameter

related to the collision vertex is less than 2 mm, and the significance of the transverse

impact parameter d0/σd0 < 3. An isolation criterion very similar to the electron one

is applied: the muon isolation cone size shrinks as function of pµT, ∆R = 10 GeV/pµT,

and the sum of the track pT within this cone is less than 5% of the transverse energy

of the reconstructed muon.

In the direct stop search, staco combined and segment-tagged muons are se-

lected as signal muons if they have a momentum greater than 10 GeV and pseudo-

rapidity |η| < 2.4.

2.5.4 Topological clusters

The reconstruction of isolated hadrons, jets and hadronically decaying τ -leptons

is performed via the association of topologically connected calorimeter cell signals,

referred to as topo-clusters [66]. The strategy of the clustering algorithm aims to

extract the significant signal from a background originating from electronic noise

and other spurious fluctuations due to pileup. The reduction of the background

contribution is possible thanks to the high calorimeter granularity, both in the fine

lateral read-out segmentation and the subdivided longitudinal sampling layers which
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allows for particle energy-flow patterns to be resolved. The signal reconstruction

consists in the identification of three-dimensional confined energy structures from

particle showers in the active calorimeter material.

The reconstruction of topo-clusters from calorimeter cells proceeds according to

a spatial signal-significant criterion, which follows the pattern of particle showers.

Each cell measurement is characterised by a signal significance defined as the ratio

between the absolute signal value and the average expected noise. To a seed cell with

high signal significance (greater than 4), topologically connected cells are associated

if they satisfy the requirement of a signal significance greater than 2. Finally the

direct neighbours with positive signal significance are added and the collection of

the selected cells defines a proto-cluster. This procedure often leads to the formation

of large proto-clusters. They cannot provide a good energy flow observation: they

merge together cells with large signal significance and several local signal maxima

surrounded by an envelope of cells with small signal significance. Proto-clusters with

two or more local maxima are split in the three spatial dimensions by means of a

cluster splitting algorithm, and topo-clusters are the results of this procedure.

Each topo-cluster can originate from the total or the fractional energy depo-

sition of a single particle or the combined energy deposition of more particles. In

fact hadronic showers subjected to large intrinsic fluctuations are affected by large

variations in their shapes and compactness, contrary to compact and dense electro-

magnetic showers.

The energy scale of the topo-clusters so far considered is electromagnetic (EM

scale). This scale is suited for the correct reconstruction of energy deposits from

electrons and photons but does not include compensation for hadron signal loss. A

local hadronic calibration, also referred to as local hadronic cell weighting (LCW), is

applied to provide calorimeter clusters with well-estimated energy for physics object

reconstruction. Properties of the topo-clusters can be used to extract information

on the shower generating the cluster. The calibration scheme, derived from single

pion (π0 and π±) simulations, takes into account these properties to identify the

probability of the shower to be electromagnetic or hadronic and consequently to

correct for effects of the non-compensating calorimeter response to hadrons, signal

losses due to inactive material or to the intrinsic noise suppression of the clustering

procedure.

2.5.5 Jets

After the production of quarks and gluons, their hadronization process occurs re-

sulting in a collimated spray of hadrons, called jet. These quarks and gluons could

directly come from the parton interaction, or from the decay of a heavy particle.

Jet algorithms define a criterion to combine objects into different groups, with each

group being a jet, and to evaluate the momentum of the original parton by com-

bining the momenta of the associated final state objects into a jet. An algorithm is
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well-defined if it can be described by partonic calculations, and if it can be applied

on simulated particles, clusters or tracks, generically referred to as constituents, re-

sulting in a common representation of all the jets in each event. If the constituents

are generated particles, the clustered jets are called particle jets or truth jets ; if

either calorimeter clusters or tracks are combined by the algorithm, the resulting

jets are called calorimeter jets and track jets, respectively. Among the jet algorithm

properties infrared and collinear safety are the most important. These properties

consist in the invariance of the final set of hard jets in an event under the addi-

tion of soft radiation or under the collinear splitting of an object. This invariance

is needed in order not to be sensitive to the non-perturbative effects of QCD and

to be compatible with the finite resolution and non-zero momentum thresholds of

experimental measurements.

A specific category of algorithms is used at the LHC: the sequential recombination

algorithms. They combine the four-momentum of the constituents into protojets in

several sequential steps until the final jets are formed. The three most common re-

combination algorithms, called kt [67–69], anti-kt [70] and Cambridge Aachen (C/A)

[71, 72] differ in the order, in which the constituents are combined. A measure dij
defines which pair of objects i and j has to be merged. i and j are either con-

stituents or in later stages of the algorithm protojets. The algorithm starts with a

list of constituents; those having the lowest dij distance among all the possible pair

combination are tested for merging: if dij is less than an upper value diB, than the

(i, j) object pair is merged3 into a protojet, and the (i, j) pair is replaced in the list

of objects by the protojet; otherwise if dij > diB, i is identified as a jet and removed

from the list of objects. The algorithm is recursively applied until only jets are left.

The definitions of dij and diB are:

dij =
∆Rij

R
min(pT

a
,i, pT

a
,j)

diB = pT
a
,i

where R is called distance parameter, a is 1 for kt, a = −1 for anti-kt and a = 0 for

C/A. The distance parameter R represents the minimum angular distance between

a jet and any other remaining object in the list not belonging to the jet. Since it can

occur that very soft jets result from the clustering, if they are far away from other

objects, a minimum transverse momentum is required on the final jets to ensure the

jets to be theoretically well defined.

The anti-kt jets are defined by the highest pT constituents and are characterised

by circular shapes. The kt and C/A algorithms cluster the hardest and most sepa-

rated objects last, respectively; thus, they provide useful information on the order

in which pairs of objects are clustered, also referred to as clustering history, and on

their jet substructures.

3The result of the i, j merging is the four-momentum sum of the two objects.
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A further algorithm distinction is made: the description so far reported corre-

sponds to the inclusive implementation of the recombination algorithms. A different

approach, called exclusive clustering, can be employed if a fixed number of jets, N ,

parameter of the algorithm, is needed in the final state. The algorithm proceeds as

for the inclusive algorithm, but the merging procedure does not stop when all the

final objects have dij > diB, but when N protojets are left in the list of objects.

These N protojets are the exclusive clustered jets.

The jet algorithms are implemented in the framework of FastJet [73]. The stan-

dard ATLAS jet reconstruction proceeds via the recombination of locally calibrated

calorimeter topo-clusters by means of the anti-kt algorithm with distance parameter

R = 0.4. The reconstructed jets are referred to as small-R jets. These are mainly

suited for the reconstruction of activity produced via the fragmentation of quarks

and gluons, and for the identification of b-jets.

Small-R jets are calibrated to restore the energy scale to that of jets reconstructed

from simulated stable particles [74]. The calibration procedure begins with the re-

duction of the pileup contribution via the so called area correction technique [75],

which was originally proposed in [76]. This technique exploits the large correlation

between the pileup contributing to the jet and the size of the jet, evaluated by its

area4 in the η − φ plane. The assumption is made that the pileup contribution in

the calorimeter can be treated as a uniform diffuse energy deposition. An estimate

of the pileup activity in each event is given by the median, ρ, of the jet pT density

distribution, defined as the ratio of the jet pT over its area. To calculate ρ and to

be sensitive to soft radiation, all the reconstructed jets in the event are taken into

account without any lower limit in the jet pT cut. The contribution of the pileup to

each jet is reduced by subtracting from the jet pT a quantity given by the product

of the jet area and the median pT density.

After the jet is area-corrected, its energy scale (JES) response is tuned to pro-

vide the expected particle jet response. Calibration constants are derived for this

purpose by the comparison of the reconstructed jet energy with the corresponding

particle-level jet in multi-jet simulation as a function of the energy and the jet η.

An additional correction coming from in-situ measurements is applied [77].

In the `+jets analysis the final small-R jet four-momentum is required to be

pT > 25 GeV and |η| < 2.5. Low-pT jets which lie in a region of |η| < 2.4 are

required to have 50% of the pT scalar sum of tracks in the jet, if any, to come from

tracks associated with the primary vertex. This parameter, called jet vertex fraction,

allows to suppress jets originating from pileup energy deposits. Small-R jets used in

the direct stop search are required to have pT > 35 GeV and |η| < 2.8.

A b-tagging algorithm is applied to the small-R jets in order to identify those

jets originating from the fragmentation of a b-quark [78]. This multivariate based

4The area of a jet is a measure of the limited region in the η−φ space such that if a soft particle
is in that region, it is clustered into the jet. The jet area is dimensionless and in anti-kt jets, which
are characterised by circular shape, the jet area is approximately πR2.
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algorithm exploits the information of the secondary vertex and of the track impact

parameters. Only jets within the acceptance of the inner detector (|η| < 2.5) are

tested by the b-tagging algorithm. The working point used for this analysis cor-

responds to an average efficiency of 70% of tagging b-quark jets in a simulated tt̄

sample and to a probability of rejecting c-jet (light flavour jets) of about 20% (1%).

A second category of jets is used to reconstruct the decay products of a hadroni-

cally decaying top quark in a large and massive jet, called large-R jet, used as input

to the HEPTopTagger algorithm. The C/A jet algorithm with distance parameter

R = 1.5 combines locally calibrated topo-clusters into large-R jets. Similarly to

small-R jets, the contribution due to pileup effects is subtracted from the large-R

jet four-momentum and the remaining energy is calibrated. Only large-R jets with

pT > 200 GeV and |η| < 2.0 are taken into account.

2.5.6 Missing transverse momentum

The momentum conservation in the transverse plane with respect to the beam di-

rection leads to the statement that the sum of the vectorial transverse momenta,

~pT, of all the particles in the final state has to be zero. However, neutral weakly

interacting particles, like neutrinos, escape the detector undetected. The resulting

transverse momentum imbalance can be measured by the negative vector sum of the

transverse momenta of all the reconstructed and calibrated physics objects [79], and

is called missing transverse momentum ~Emiss
T :

~Emiss
T = −

∑
i∈{e, γ, µ}

~p i
T −

∑
j∈{jets}

~p j
T + ~Emiss

T
cells. (2.5)

Its magnitude is often referred to as missing transverse energy

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2. The electron term, −

∑
i∈{e} ~p

i
T, is given by the

transverse vectorial sum of electrons reconstructed with pT > 10 GeV. The

contribution of photons with pT > 10 GeV, −
∑

i∈{γ} ~p
i

T is accounted in a similar

way. The total muon contribution −
∑

i∈{µ} ~p
i

T is the sum of reconstructed muon

momenta with pT > 5 GeV and |η| < 2.7. The contribution of muon energy deposits

in the calorimeter is taken into account with parametrised estimates to avoid double

counting of a fraction of their momenta. Regarding the sum of the jet momenta,∑
j∈{jets} ~p

j
T, only calibrated jets with pT > 20 GeV are taken into account. The

remaining low-pT jets and cluster cells not belonging to any other previous objects

contribute to the ~Emiss cells
T term, called soft term.

Sources of missing transverse momentum due to mismeasurement, referred to as

fake Emiss
T , arise from the undetection of particles going through regions not covered

by detecting material, the pT mismeasurement, miscalibration and misidentification

of physics objects.
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2.6 Sample simulation

The details of the simulated samples used in this thesis are reported. These samples

are used to evaluate the signal prediction and the background expectation of the

`+jets channel of chapter 4 and of the search for direct production of a pair of SUSY

top partners in the fully hadronic channel reported in chapter 5.

The details of the Monte Carlo samples concerning the generator, the hadroniza-

tion, the parton shower, the underlying event modelling and their tune, with the

parton distribution functions set employed, are summarised in table 2.1.

• tt̄→ (lνb)(qq̄′b): pair production of top-antitop with one top decaying hadron-

ically and one semi-leptonically with l = e, µ, τ . Different simulated sam-

ples are taken into account in order to evaluate the expected contribution

and its systematic uncertainties. The nominal signal sample is simulated with

powheg generator[80–83] interfaced with pythia [84], and it is also referred

to as the powheg+pythia sample. A discrepancy between the
√
s = 7 TeV

powheg+pythia sample and the data collected at
√
s = 7 TeV was ob-

served in the tt̄ differential cross section measurement [85]. This discrepancy

has been corrected for by applying a sequential reweighting of the top quark’s

and the tt̄ system’s transverse momenta, as explained in [86]. In the study

of the HEPTopTagger performance using `+jets events, the sample produced

with the full detector response using geant4 [25] is employed. A sample with

a parametrised description of the calorimeter response (fast simulation frame-

work [87]) is used for the direct stop production search, as a larger amount

of simulated events is needed. In order to evaluate the tt̄ modelling system-

atic uncertainties, alternative samples are used. The generator uncertainties

are evaluated with a sample produced with mc@nlo [88, 89] interfaced to

Herwig [90]. The evaluation of the uncertainty related to the parton shower

and hadronization simulation is obtained by comparing the nominal sample

with the one generated with powheg interfaced to Herwig and Jimmy [91].

acermcs [92] samples are used to evaluate the effects related to the modelling

variation of the QCD initial and final state radiation (ISR and FSR). These

samples are interfaced with pythia with different settings of the parton shower

parameters to increase and decrease the ISR and FSR, within the range al-

lowed by data [93]. To account for the PDF uncertainties, a sample generated

with powheg, interfaced with pythia, is produced with the HERAPDF set,

instead of the nominal CT10 set. The tt̄ cross section is σtt̄ = 253+13
−15 pb for a

top quark mass of 172.5 GeV/c2. It has been calculated at next-to-next-to lead-

ing order (NNLO) in the strong coupling constant αs including resummation

of next-to-next-to-leading logarithmic (NNLL) soft gluon terms [94–99] with

top++2.0 [100], using the MSTW 2008 NNLO PDF set. The fully hadronic fi-

nal state of the top quark pair production has the same settings as the nominal

l+jets tt̄ sample.
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• Single top: the processes in the s-, Wt-, and t−channels are generated with

powheg interfaced with pythia. The last process was simulated in the four-

flavour (4F) scheme, in which the b-quarks are dynamically produced in the

hard scatter and the b-quark is not considered an active flavour in the proton.

The diagram-removal scheme [101] is used to get rid of the overlap between

the Wt and tt̄ production. The approximate NNLO cross section prediction

[102–104] is used to normalise the single top processes.

• W+jets and Z+jets: production of a W or a Z boson in association with

jets. In the `+jets channel, W+jets and Z+jets samples are generated with

alpgen interfaced with pythia. In these samples, the final state consists of

a vector boson and up to five additional partons, which are included in the

calculation of the matrix element. The c quarks, cc̄ and bb̄ pairs which are

produced among all the additional partons, are considered with their masses.

The W+jets simulated events are weighted in order to predict the data charge

asymmetry related to the W boson production, as explained in [105, 106].

Concerning the stop search, samples generated with sherpa [107] are used

for the W+jets and Z+jets production. Up to four additional partons, taking

into account also heavy flavour jets with massive b/c quarks, are included in

the leading order matrix elements. The theoretical cross section of V+jets is

used to normalise the samples. It is calculated with DYNNLO [108] with the

MSTW 2008 NNLO [109] PDF set. A discrepancy in the reconstructed boson

transverse momentum between data and simulation has been observed [110],

and events are weighted with respect to the generated vector boson transverse

momentum to correct for this difference [111].

• V V : diboson production, WW , WZ, ZZ. Events are generated with sherpa

and up to three additional partons are included in the matrix element, the

cross section for the sample normalisation is calculated with MCFM [112]

with MSTW 2008 NLO PDFs.

• tt̄V : associated production of a top quark pair with a vector boson V = Z,W .

This processes is simulated using MadGraph [113] interfaced with pythia with

up to two additional partons and it is normalised to the NLO cross section

[114, 115].

• multijet: QCD processes generated with pythia.

• t̃1t̃∗1 → (tχ̃0
1)(t̄χ̃0

1): direct production of a top supersymmetric partner pair,

each decaying into a top quark and a neutralino, signal of the stop search. The

signal samples are produced with Herwig++[116]. The phenomenology of the

SUSY particle is described via simplified models, such that the neutralino is

a pure bino and the decay of the t̃R component of the t̃1 to a right-handed

top quark is enhanced. The parameters of these samples are the t̃1 and χ̃0
1
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masses. The cross section calculated to NLO in the strong coupling constant,

with the additional resummation of soft gluon emission at next next-to-leading

logarithmic accuracy (NLO+NLL) [36–38], is used to normalise the signal

samples.

Simulated events are weighted in order to match the pileup data distribution.

type generator
parton shower, hadronization

UE tune PDF set
UE model

tt̄

nominal POWHEG-BOX r2129 PYTHIA v6.426 Perugia 2011C [117] CT10 [118]

generator MC@NLO v4.01 Herwig v6.520, Jimmy v4.31 AUET2 [119] CT10

PS POWHEG-BOX r2330.3 Herwig v6.520, Jimmy v4.31 AUET2 CT10

ISR/FSR ACERMC v3.8 varied PS param, PYTHIA AUET2B CTEQ6L1 [120]

PDF POWHEG-BOX r2330.3 PYTHIA v6.427 Perugia 2011C HERAPDF

single top POWHEG-BOX PYTHIA v6.426 and v6.427 Perugia 2011C CT10(-F4)

W+jets (`+jets) ALPGEN v2.13 PYTHIA v6.426 Perugia 2011C CTEQL1

W/Z+jets (SUSY) SHERPA 1.4.1 SHERPA AUET2B CT10

V V SHERPA 1.4.1 SHERPA AUET2B CT10

tt̄V MadGraph 5 v1.3.33 PYTHIA 6.426 AUET2B CTEQ6L1

multijet PYTHIA 8 PYTHIA AU2 CT10

t̃1 → tχ̃0
1 (SUSY) Herwig++ 2.5.2 Herwig UEEE3 CTEQ6L1

Table 2.1: Simulated samples with detailed production information. Concerning
the tt̄ process, different samples are used either to estimate the nominal expected
signal contribution or to estimate a particular modelling uncertainty. Its usage
is specified in the table. In parenthesis it is indicated if a sample is employed
only in the stop search or in the HEPTopTagger performance analysis in the
`+jets channel.

2.7 Systematic uncertainties

The systematic uncertainties, concerning the HEPTopTagger performance analysis

in the `+jets channel and the search for direct pair production of stops, are reported

in this section. These uncertainties concern: the reconstruction of the HEPTopTagger

candidate affected by uncertainties on the large-R jet and subjet energy scale and

resolution; the reconstruction of small-R jets with uncertainties on the energy scale

and resolution, and on the efficiency of being b-tagged. Reconstructed muons and

electrons are affected by uncertainties on the momentum scale, resolution, and on

their identification. If events are selected by single lepton triggers, an uncertainty on

the trigger efficiency has to be taken into account. Uncertainties on the theory pre-

diction of the background are considered. The integrated luminosity of the collected

data is affected by an uncertainty.
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Luminosity

A 2.8% relative uncertainty on the integrated luminosity is used. It was derived

in November 2012 from a preliminary calibration of the luminosity scale beam-

separation scans. The procedure, described in [121], consists in combining simul-

taneous precision measurements of the bunch current and of the transverse size of

colliding bunches to finally estimate the luminosity and its accuracy.

bbb-tagging efficiency, ccc-jet mistag rate, lll-jet mistag rate

The identification of b-tagged jets helps in the reduction of background. The effi-

ciency of tagging a b-jet and the probability of mis-tagging as b-jet a jet containing

a c hadron or a light-flavour parton, also referred to as mistag rate have been mea-

sured [78]. A sample of tt̄ events with one or two leptons in the final state has been

used to determine the former. The latter has been measured in multijet events. A

calibration of the b-tagging efficiency and mis-tag probability has been provided

as data-to-simulation scale factors. These were calculated in terms of the ratio be-

tween the observed efficiency (mistag rate) in data and the efficiency (mis-tag rate)

predicted by simulation. Systematic uncertainties on the scale factors have been

derived.

If b-tagged jets are included in the event selection, the b-tagging associated sys-

tematic uncertainties are fully specified by the systematic uncertainties on the scale

factors. Hence, the measured scale factors with the corresponding systematic un-

certainties are applied as corrections in order to evaluate the nominal and the ±σ
uncertainty MC prediction.

Lepton reconstruction efficiency

Electron and muon objects are affected by uncertainties on the reconstruction and

identification. These uncertainties are determined with tag-and-probe method using

Z → ee and Z → µµ samples [58, 59] and [65]. The reconstruction efficiency of

muons with pT > 10 GeV is corrected by means of scale factors. These scale factors

depend on the muon η and φ and are mainly close to one with few η − φ regions

with 0.05 maximum deviation from one. The same approach is applied to correct

the reconstruction and identification efficiency of electrons with transverse energy

ET > 7 GeV. The scale factors, measured differentially in (ET, η) bins of the electron

object, are close to unity within 2%.

The muon and electron momentum scale and resolution have been measured

and corrections have been derived together with uncertainties to be used in physics

analyses. These uncertainties have been found negligible in the analyses of this thesis.

If a single lepton trigger is employed to select a `+jets sample, scale factors are

applied to correct discrepancies between the data and MC trigger efficiency.
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Large-R and subjet energy scale

The HEPTopTagger algorithm identifies and reconstructs hadronically decaying top

quarks, by looking into the substructure of a large-R jet. In particular, it extracts

the large-R jet hard structures by filtering and recombining the large-R constituents

into subjets. Both the large-R jet and the subjets are calibrated, as described in

section 3.2.

The scale of the large-R jet energy is affected by an uncertainty which depends

on the degree of accuracy of the jet pT modelling. This uncertainty is derived using

the R-track double-ratio method [122]. The quality of the calorimeter response sim-

ulation can be estimated by comparing the pT of each calorimeter jet with the pT of

the associate track-jet. In fact, track jets provide a reliable momentum reference for

each jet. The comparison between the momenta of the two kinds of jets is expressed

by means of the rtrack variable, defined as the ratio between the transverse momenta

of the calibrated calorimeter jet, pjet
T , and its associated track jet ptrack jet

T :

rtrack =
ptrack jet

T

pjet
T

.

The data and MC distribution of rtrack in several regions of large-R jet pT are

compared by evaluating the discrepancy between the average values, 〈rdata
track〉 in data

and 〈rMC
track〉 in simulation. In fact, the mean values of these distributions are supposed

to be very similar in data and MC, if the detector response is well modelled. The

data-MC agreement is measured through the double ratio:

Rtrack =
〈rdata

track〉
〈rMC

track〉

Its deviation from unity, in addition to the propagation of the uncertainties on the

tracking efficiency and the choice of the MC generator and PS, gives the measure

of the relative calorimeter large-R jet pT uncertainty. The relative pT uncertainty is

measured to vary from 2% for pT < 400 GeV up to 5% for pT > 700 GeV [123].

The uncertainty on the subjet momentum is estimated by means of an in situ

technique which exploits the top mass peak, as described in section 4.2. The uncer-

tainty on the subjet momentum varies between 4-10% for subjets with pT < 50 GeV

and between 1-3% for subjets with pT > 50 GeV.

The uncertainties on the large-R jet and the subjet energy scales are assumed to

be uncorrelated. The impact of each uncertainty in the analysis is evaluated by vary-

ing “up” and “down” the energy scale of the subjets and large-R jets independently

and quantifying the effect of this variation on signal and background distributions

or on the expected event yield.

Large-R jet and subjet energy resolution

In addition to the energy scale uncertainty, the energy of the large-R jet and of the

subjet is affected by an uncertainty on the resolution.
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The subjet energy resolution uncertainty was derived in a di-jet sample, studying

the pT balance of several C/A jet collections corresponding to different values of the

distance parameter (R = 0.2, 0.25, 0.3, . . . , 0.6, 1.5) [124]. The simulated calorime-

ter response is found to have a slightly better resolution than the observation. The

difference between the measured resolution in data and MC is applied as an uncer-

tainty on the jet resolution. Each jet is thus smeared with a Gaussian with mean

at one and width given by the resolution calculated from the data-MC difference.

The impact of the jet energy resolution uncertainty is evaluated by comparing the

distribution obtained from smeared jets to the nominal distribution.

Small-R energy scale and resolution

The uncertainty on the energy scale of small-R jets reconstructed with the anti-kt
algorithm and distance parameter R = 0.4 is determined using a combination of

techniques [74, 77, 125]. In situ techniques measure the uncertainty on the small-R jet

pT by analysing events where the jet pT is balanced by a well-measured momentum of

a reference object, like a photon or a Z boson. Other techniques measure the energy

scale uncertainty using single isolated hadron calorimeter response. The measured

uncertainty is 3% (4%) for jets with pT < 30 GeV and |η| < 1.5 (|η| > 1.5) and

about 1% (3%) for higher pT jets with |η| < 1.5 (|η| > 1.5).

As for the large-R jet and subjet energy resolution, the small-R jet energy res-

olution uncertainty is measured using the jet response asymmetry in dijet events

[74]. The impact of the small-R jet energy resolution on the results of this thesis

was found to be negligible.

Uncertainties on the theory prediction

The tt̄ uncertainties on the theory prediction are divided in modelling uncertainties

and uncertainties on the cross section, on the factorisation and renormalisation scale.

The modelling uncertainties are evaluated by comparing a pair of samples whose

simulation process and tools are the same apart from the modelling part undergoing

test. The uncertainty due to the choice of the parton shower is evaluated by com-

paring the nominal tt̄ sample, generated with powheg interfaced to pythia, to the

sample generated with powheg but interfaced with Herwig. The difference between

the predictions of the two simulated samples is symmetrised to obtain an “up” and

“down” uncertainty evaluation:

∆n
up(down)
PS = +

(−)(nHerwig − nPYTHIA),

where ∆n
up(down)
PS is the difference corresponding to the “up” (“down”) uncertainty

on the nominal number of counts, nPYTHIA, with respect to those obtained from the

sample with the Herwig PS, nHerwig. This difference is used to estimate the impact

of the parton shower uncertainty on the analysis results.

In a similar way, the uncertainties on the generator and on the PDF are accounted

for, by comparing distributions of the mc@nlo sample with respect to the sample
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generated with powheg interfaced to Herwig, and of the sample simulated with

HERAPDF set with respect to the nominal sample.

The uncertainties on the modelling of initial and final state radiation are eval-

uated by comparing the acermc samples generated with different settings of the

parton shower parameters to increase and decrease the ISR and FSR. These samples

correspond to the “up” and “down” variation of the ISR/FSR modelling uncertainty.

The relative ISR/FSR uncertainty is given by the difference between the number of

events with more, nmore, and less ISR/FSR, nless, divided by their sum. Thus the

absolute uncertainty on the nominal event prediction, nnominal, is:

∆n
up(down)
ISR/FSR = +

(−)nnominal
nmore − nless

nmore + nless

The PDF and αS uncertainties on the tt̄ cross section, σtt̄ = 253+13
−15 pb, were

calculated using the PDF4LHC prescription [126] with the MSTW2008 68% CL

NNLO [109, 127], CT10 NNLO [118, 128] and NNPDF2.3 5f FFN [129] PDF sets,

added in quadrature to the scale uncertainty. An additional uncertainty of about

7 pb is added in quadrature to take into account ±1 GeV top quark mass variations.

The total realtive normalisation uncertainty is about +6%
−7%.

The impact of the factorisation and renormalization scale on the phase space is

evaluated by comparing dedicated tt̄ samples where the scales are varied indepen-

dently by a factor of 2 and 0.5. Only the renormalization scale has a non negligible

impact in the phase space distribution.

Systematic uncertainties due to the modelling and normalisation of the V+jets

background are evaluated comparing the prediction of the samples generated with

sherpa with the samples generated with alpgen.

The relative uncertainty on the single top production cross section is about 4%

in the s- and t- channel [102, 104], and 7% in the Wt-channel [103].

The relative diboson cross section uncertainty, quadratic sum of scale and

PDF+αs, is estimated to be around 7% [130].

The dominant uncertainty on the tt̄+V background is on the NLO cross section

and amounts to 22% relative uncertainty [114, 131].

The uncertainty on the direct stop production cross section is determined from

an envelope of cross section predictions with different PDF sets, factorisation and

renormalisation scale [35].
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Chapter 3

HEPTopTagger

The last missing quark of the Standard Model (SM), the top quark, has been dis-

covered at Tevatron after years of search in 1995.

Its extremely large mass and small lifetime makes it different from the other

quarks: the top quark decays before hadronization and its coupling with the Higgs

field is very close to unity.

The top quark plays a special role in searches for physics beyond the Standard

Model. Many new physics models predict new heavy particles to couple to third

generation quarks. As higher and higher mass scales are proven, top quarks in the

final state are expected with larger transverse momentum, referred to as boosted

tops.

The full-hadronic decay mode of the top is defined by the presence of three

quarks in the final state and it is characterised by a three-prong signature. After

their hadronization, the produced spray of particles are recollected into jets. If the

transverse momentum of the original top is small, resolved techniques can be em-

ployed to reconstruct the top quark. These consist in assigning a small-R jet to each

top decay product, and in reconstructing the top kinematic from the three recon-

structed small-R jets. As soon as the top quark transverse momentum exceeds its

rest mass these classical techniques are not adequate any more. The more boosted

the top quark is, the more collimated its final decay products become.

Nevertheless, information about the top quark three-prong decay is not com-

pletely lost, if a large-R jet, which contains the final decay products, is reconstructed.

In fact, very useful information can be extracted by looking into the momentum and

spatial distribution of the large-R jet constituents. Over the last few years, many top

tagging techniques have been developed to study how this substructure information

can be used to discriminate large-R jets originating from top quark decays with

respect to those from hard light quarks and gluons, also referred to as QCD jets.

Not only can a simple identification of the origin of the jet be extracted looking

into substructure, but also the kinematic information of the original particle can be

reconstructed. The HEPTopTagger algorithm [3, 4] is one of the most complete top

tagging techniques for the identification and reconstruction of boosted hadronically
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decaying top quarks.

This chapter reports the explanation of the HEPTopTagger algorithm. Thus,

only hadronically decaying top quarks are taken into account: t→ bqq̄′.

3.1 The HEPTopTagger algorithm

The idea behind the HEPTopTagger algorithm is to identify the hard substructures

of a massive large-R jet. The compatibility of these hard subjets with the top quark

decay products is then verified.

If top quarks are produced with moderate or high transverse momentum,

i.e. pT > 200 GeV, all the directions of the top decay products lie in a cone

of decreasing aperture with the rise in top quark pT. This trend can be ob-

served in figure 3.1(a) and (b). For top quarks with pT in the range 200-300 GeV

the maximum angular distance, ∆R, among the three top decay products is

on average around 1.5, while the minimum angular distance is smaller than 1.

The decrease in the minimum angular separation, which drops below 0.5 for top

quarks with pT > 400 GeV, denotes the difficulty in disentangling each decay prod-

uct by means of separated standard jets with R = 0.4, as done by resolved tech-

niques, and the need of substructure techniques for this high pT regime.

 [GeV]
T

generated top quark p

0 100 200 300 400 500 600 700 800 9001000

) 2
,q 1

R
(b

,q
∆

m
ax

im
um

 

0

0.5

1

1.5

2

2.5

3

1

10

210

(a)

 [GeV]
T

generated top quark p

0 100 200 300 400 500 600 700 800 9001000

) 2
,q 1

R
(b

,q
∆

m
in

im
um

 

0

0.5

1

1.5

2

2.5

3

1

10

210

310

(b)

Figure 3.1: Maximum (a) and minimum (b) angular distance ∆R between the
three quark decay products of top quarks in a SUSY signal sample with two top
quarks in the final state produced by the decay of two SUSY top partners.

The distribution of the maximum angular distance among the three quarks in

the low pT region is characterised by long tails towards large ∆R values, as shown

in figure 3.1(a): a non-negligible fraction of low pT top quarks will have one of the

decay products outside a large-R jet, with distance parameter R ∼ 1.5.

According to a specific top pT range of interest, a particular jet distance param-

eter R can be chosen, such that a large fraction of top quarks have their three decay

products reconstructed in the same jet. At the same time R cannot take an arbitrary
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large value, otherwise the jet would be affected by huge contribution of pileup or

other processes not directly related to the top quark decay. In order to be sensitive

to the moderately boosted regime (pT > 200 GeV), the distance parameter of the

large-R jet is chosen to be R = 1.5.

Large R = 1.5 jets reconstructed with the C/A algorithm are used as input

to the HEPTopTagger algorithm. The C/A recombination algorithm, explained in

section 2.5.5, clusters the protojets with larger angular distance last and allows the

HEPTopTagger algorithm to have access to the clustering history. The most distant

protojets are identified in each backward step of the recombination history. The

constituents of these large-R jets at the experimental level are locally calibrated

topological clusters.

The HEPTopTagger algorithm combines different procedures to identify and re-

construct top quarks starting from the large-R jet constituents and clustering history.

These are the mass drop criterion [132], the filtering technique, and kinematic-based

requirements. The HEPTopTagger has internal parameters that can be optimised

for the specific analysis. The values of the parameters, used in this thesis, are listed

in table 3.1, and their definition is given in the following.

parameter value
mcut 50 GeV
Rmax

filt 0.25
Nfilt 5
fW 15%

Table 3.1: The HEPTopTagger parameter settings used in this thesis.

Mass drop criterion

Declustering backwards through the clustering history of the large-R jet, the two

protojets which were clustered last are obtained and the mass balance of these

is verified. If the one with the leading mass carries more than 80% of the initial

parent jet mass the other is discarded. The procedure continues recursively until the

remaining protojets have mass smaller than a parameter mcut.

For example in figure 3.2(a), a large-R jet associated to a simulated hadroni-

cally decaying top quark undergoes the procedure of the mass drop criterion. The

constituents of the four final protojets, labelled as a, b, c, and d, which survive

the mcut > 50 GeV requirement, are shown in the η − φ plane as squares with size

proportional to their energy.

Filtering procedure

The following step takes place on every combination of three protojets, called triplet,

among the ones surviving the mass drop procedure. The triplet constituents (topo-

logical clusters) are recombined with the C/A algorithm using a distance parameter
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Figure 3.2: η − φ distribution of clusters of a tagged large-R jet originating
from a hadronically decaying top quark, corresponding to different steps of the
HEPTopTagger algorithm. The size of the squares is proportional to the energy
of the clusters. After the mass drop criterion, the constituents of the resulting
protojets are shown in different colours (a). The clusters associated to the in-
clusive and exclusive subjets are shown in different colours in figure (b) and (c),
respectively. The η−φ coordinates of the final exclusive subjets and of the three
decay products of the generated top quark are displayed in figure (d).
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3.1. The HEPTopTagger algorithm

Rfilt which varies for each triplet and amounts to half of the minimum separation

among the three protojets but does not exceed the Rmax
filt parameter value. At most

Nfilt resulting hardest subjets, called inclusive subjets are kept and their invariant

mass is determined. It corresponds to the reconstructed top mass associated to the

triplet. After this procedure the pileup and underlying event contribution is highly

reduced. Thus, the invariant mass of the resulting top candidate should not be sensi-

tive to this soft contribution. The triplet and its inclusive subjets, whose associated

invariant mass is closest to the mass of the top quark, is chosen as final triplet.

In the example of figure 3.2, the constituents of the triplet, formed by a, b and

c protojets of figure (a), are filtered with Rfilt =0.17. In figure 3.2(b), the resulting

four inclusive subjets, labelled as 1, 2, 3, and 4, are used to determine the mass of

the reconstructed top. In this example, the a, b, c triplet is the one that gives the

reconstructed mass closest to the top mass.

Compatibility with a top quark decay

The constituents of the final inclusive subjets are recombined into exactly three

subjets, called exclusive subjets, using the exclusive C/A algorithm.

The inclusive subjet constituents are reclustered into the A, B, and C exclu-

sive subjets (figure 3.2(c)). In figure 3.2(d), the reconstructed exclusive subjets are

compared to the three generated quarks of the top decay in the η − φ coordinates.

The exclusive subjets, which should correspond to the three jets originated from

the three top quark decay products, are used to test the compatibility with the

3-prong pattern of the top decay, by applying kinematic requirements. One of the

constraint regards the compatibility of two subjets with a W decaying into two

quarks. At least one of the three exclusive subjet pairs must have the invariant mass

in the W mass range, 80.4 GeV · (1 ± fW). The invariant mass, m123, is given by

the sum of the three exclusive subjets four-momentum, p1, p2 and p3, in decreasing

order of the transverse momentum:

m2
top = m2

123 = (p1 + p2 + p3)2 (3.1)

= m2
12 +m2

13 +m2
23 (3.2)

where m12 is the invariant mass of the leading and subleading exclusive subjet

four-vector sum, m13 of the leading and lowest pT exclusive subjets and m23 of the

sub-leading and lowest pT exclusive subjets. This equality, in the limit of negligible

invariant masses of the subjets, can be described as a sphere with m123 = mtop

radius. Every point on this sphere corresponds to a specific top quark kinematic and

it is univocally defined by two parameters, which could be for example the cos θ,

with θ polar angle, and the azimuthal angle φ:

θ = arctan
(m13

m12

)
and φ =

m12

m123

In this coordinate system, the requirement that at least one of the subjet pair

has to be compatible with a W decay causes the signal large-R jets, originating
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3. HEPTopTagger

from hadronically decaying top quarks, to gather within an “A”-shaped region, fig-

ure 3.3(a), while QCD jets lie in the low arctan(m13/m12) or low m23/m123 phase

space, figure 3.3(b). The additional requirements of 0.2 < arctan(m13/m12) < 1.3,

of m23/m123 > 0.35 and that the reconstructed mass is close to mtop, reduces sig-

nificantly the multijet background. The thick line contours of figure 3.3 denote the

candidates which are tagged by the HEPTopTagger.
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Figure 3.3: Distribution of the mass ratio m23/m123 with respect to
arctan(m13/m12) for large-R jets associated to hadronically decaying top quarks
of the tt̄ → (lνb)(qqb) process (a), and large-R jets from background multijet
events (b).

3.2 HEPTopTagger in ATLAS

In ATLAS the constituents of large-R jets are locally calibrated topological clusters.

These clusters can originate from the deposition of particles from the hard process,

or from pileup and underlying events, not related to the physics process of interest.

The reconstructed four-momentum of a large-R jet is heavily affected on the latter

spurious contribution. The area correction technique, described in section 2.5.5,

reduces it, by subtracting to the jet pT a quantity proportional to the jet area

times the average pT density of the event. Afterwards, the energy of the large-R is

calibrated. The calibration constants are derived by comparing the reconstructed jet

energy with the corresponding particle-level jet in multijet simulation. A minimal

transverse momentum of 180 GeV is required for the calibrated large-R jet to be

tested by the HEPTopTagger.

The inclusive and exclusive HEPTopTagger subjets are first calibrated, then only

those with pT > 20 GeV are kept. The area correction procedure is not applied to

these subjets, because the HEPTopTagger filtering step reduces by itself a substan-

tial amount of the pileup contribution.
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Chapter 4

HEPTopTagger performance
in the `̀̀+jets channel

It is important to validate the performance and the simulation modelling of the

HEPTopTagger algorithm in a data sample pure in hadronically decaying top quarks,

before applying it in physics analyses. An enriched sample of pair produced top

quarks, where one top quark decays semi-leptonically and the other hadronically, is

exploited for this purpose. This sample is obtained by selecting those events with

exactly one lepton 1, missing transverse momentum, b-tagged small-R jets, and a

large-R jet. The event selection is detailed in section 4.1.

Since a very pure reconstructed top quark mass peak is obtained, the uncertainty

on the momentum scale of the HEPTopTagger subjets can be constrained by com-

paring the data mass distribution with the Monte Carlo prediction, as discussed in

section 4.2.

In section 4.3, the enriched tt̄ data sample is used to validate the simulation

prediction of the internal variables of the HEPTopTagger.

The measurement of the algorithm efficiency of tagging hadronically decaying

top quarks is reported in section 4.4. Finally, the dependence of the reconstructed

top mass with respect to different pileup conditions is studied in section 4.5.

The studies described in this chapter have been published in [6].

4.1 Selection and samples

The dataset used in this analysis was collected in 2012 by the ATLAS experiment

and corresponds to an integrated luminosity of 20.3 fb−1 of proton-proton collisions

at a centre of mass energy of
√
s = 8 TeV.

A sample enriched in tt̄ events is used, in order to study the performance of the

HEPTopTagger algorithm in data. Such a signal rich sample is obtained by selecting

events with a single isolated lepton, electron or muon, and hadronic activity: large-R

1In the conventional ATLAS nomenclature leptons, `, are electrons and muons, while the neu-
trinos, being undetected, are not included in the lepton definition. Taus are usually not considered
in the ` category, since they in turn decay hadronically or leptonically.
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4. HEPTopTagger performance in the `+jets channel

jets and b-tagged jets. This channel, called `+jets channel (` = e, µ), aims to collect

events where a top quark pair is produced, with the final production of a W decaying

leptonically and the other W decaying hadronically, see figure 4.1.

Figure 4.1: The top quark pair production in the `+jets channel, described by
the process tt̄→ (W+b)(W−b̄)→ (`+νb)(qq̄′b̄). The leptonic side is characterised
by the presence of a lepton, a neutrino and a b-quark, reconstructed as a lepton
candidate, missing transverse momentum and a b-tagged jet. The hadronically
decaying top quark can appear as a large-R jet which might be top-tagged.

4.1.1 Monte Carlo simulation

The main SM processes characterised by the presence of exclusively one prompt

lepton and jets in the final state are: tt̄ → (lνb)(qqb)2, single top production, and

W+jets. The contribution of other SM processes like multi-jet, Z+jets is negligible

after the application of the selection described in section 4.1.5.

The signal for this analysis consists of tt̄ events with a large-R jet originating

from a hadronically decaying top quark. The background is composed of non-tt̄

events with QCD large-R jets, as for the W+jets process, and from tt̄ and single

top events, where the large-R jet is not associated to any hadronically decaying top

quark, referred to as “not matched” tt̄ background.

These SM processes are simulated using Monte Carlo (MC) generators. Detailed

information regarding the generator, the parton shower (PS), the underlying event

(UE) modelling, and the parton density function (PDF), used to produce the MC

samples, are described in section 2.6.

4.1.2 Quality requirements

A baseline quality selection identical to most analyses is applied. It requires data col-

lection with complete functionality of all subdetectors during stable beam conditions

and the rejection of events contaminated by detector noise. At least one primary ver-

tex should be reconstructed close to the LHC beam spot position from at least five

associated inner detector tracks with pT > 400 MeV. If the event contains more

than one reconstructed primary vertex, these are ordered in descending
∑
p2

T,track

2In the MC sample production l can be an electron, a muon or a tau.
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4.1.3. Electron and muon triggers

and the first one is taken as the primary vertex, the process originated from. Events

where the primary vertex comes from non collision events are rejected. Those events

containing at least one fully calibrated anti-kt R = 0.4 jet with pT > 20 GeV with

bad calorimeter conditions are rejected.

4.1.3 Electron and muon triggers

The data sample corresponding to events with an electron in the final state is called

electron channel. These events are collected with electron triggers, which select

events where electromagnetic calorimeter energy clusters are found. These clusters,

which define the electron trigger objects, are characterised by electron-like shower

shapes and a matched track in the inner detector. Data are collected by a first trig-

ger, which requires an electron object of medium quality, with transverse energy

(Ee
T) greater than 24 GeV and the associated track to be isolated. In addition to

this, a second trigger is used to recover some of the efficiency for high-pT electrons.

This has looser requirements on the electron trigger object, for example, no track

isolation is required, but the Ee
T threshold is 60 GeV.

The data of the muon channel are collected by muon triggers. These require

the presence of at least one muon trigger object, which is reconstructed using

tracks identified in the muon spectrometer and in the inner detector. Events of the

muon-channel data sample pass at least one of the following single muon triggers: the

lowest unprescaled one selects events with isolated muon objects with pµT > 24 GeV;

a second trigger has a pT threshold of 36 GeV with no isolation requirement.

In both electron and muon channels, the inclusive disjuction of two triggers

provide a uniform efficiency for offline lepton objects with transverse momentum

pT > 25 GeV.

4.1.4 Object reconstruction

Small-R jets, large-R jets, missing transverse momentum, and electron and muon

objects are used in this analysis. Their main selection criteria are summarised in

table 4.1. A more detailed description of their reconstruction is given in section 2.5.

muon pµT > 25 GeV

electron Ee
T > 25 GeV

small-R = 0.4 anti-kt jet pT > 25 GeV

small-R = 0.4 anti-kt jet |η| < 2.5

large-R = 1.5 C/A jet pT > 200 GeV

large-R = 1.5 C/A jet |η| < 2.0

Emiss
T > 20 GeV

Table 4.1: Main selection criteria for the object reconstruction.

61



4. HEPTopTagger performance in the `+jets channel

An overlap of physics objects can happen. Therefore a procedure to assign

calorimeter deposits or tracks only to one reconstructed object is necessary.

While the algorithm for the Emiss
T determination has its own overlap removal

procedure, electrons, muons and jets need a specific one optimized for the regime

where the two top quarks have a moderate or high pT [133].

After the reconstruction of electrons, if for any of them there is a close-by jet

with ∆R < 0.4, the electron four-vector is subtracted from the close-by jet. If the

electron is close to the recalculated jet, ∆R < 0.2, the electron is removed and the

jet is considered with its original four-momentum in the analysis. In case the electron

and the jet are far from each other, i.e. ∆R > 0.2, they are treated as separated

objects and the kinematic variables of the jet is updated to the electron-subtracted

one.

Reconstructed muons are removed if their angular distance from a small-R jet is

such that ∆R < 0.04 + 10 GeV/pµT. This pµT dependent requirement ensures not to

lose efficiency in the reconstruction of events with high pT top quarks.

4.1.5 `̀̀+jets selection

Exactly one muon, matched with the object that fired the trigger, and no electrons

are required for the muon channel, and vice versa for the electron channel. This

selected lepton will be used as a reference for subsequent requirements.

Among those events containing one single isolated lepton, the ones with one

leptonically decaying W boson needs to be selected. Therefore Emiss
T coming from

the undetected neutrino is required to be grater than 20 GeV. The transverse mass

of this W candidate is defined as

MW
T =

√
2p`TE

miss
T (1− cos ∆φ) , (4.1)

where ∆φ is the azimuthal angle between the vectors of the transverse lepton mo-

mentum ~pT
` and of ~Emiss

T . The requirement of Emiss
T +MW

T > 60 GeV is applied.

Events are selected if they contain at least one large-R jet far from the region,

where the isolated lepton is reconstructed. This large-R jet is probably originating

from the hadronic decay of a top quark with moderate transverse momentum. The

leading large-R jet, among those far away from the lepton, i.e. ∆R > 1.5, is taken

into account for the subsequent analysis.

The selection based simply on the leptonic W boson candidate and a distant

large-R jet does not help in rejecting one of the main background components, the

W+jets process. By requiring that a small-R jet should be reconstructed within

∆R < 1.5 from the lepton, the amount of remaining W+jets is reduced by two-

thirds, while the tt̄ only by one-quarter. If this jet is b-tagged, the W+jets contam-

ination decreases even more and becomes approximately 10% of the total selected

events.

An additional requirement of a second b-tagged jet is applied in specific parts

of this analysis. This small-R jet lies in the spatial region of the large-R jet, by
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4.2. Subjet energy scale uncertainty

requiring its angular distance from the lepton to be greater than 1.5. After this

requirement, the W+jets contribution becomes almost negligible.

All of the above-mentioned requirements, summarised in Table 4.2, are effective

in reducing another particular background source, which consists in tt̄ events where

the selected large-R jet originates from event hadronic activity different from a

hadronically decaying top quark.

Trigger single lepton (µ or e)
Number of ` 1

Emiss
T > 20 GeV

Emiss
T +MW

T > 60 GeV
Number of large-R jets ≥ 1

∆R(`, large-R jet) > 1.5
b-jet with ∆R(`, b-jet) < 1.5 ≥ 1

Table 4.2: Selection criteria before the HEPTopTagger application.

4.2 Subjet energy scale uncertainty

As described in section 3.2, the energy and momentum of the subjets reconstructed

by the HEPTopTagger algorithm are calibrated with energy and η dependent func-

tions.

A procedure for the uncertainty determination of the subjet energy scale is de-

scribed in this section. The events selected for this study are coming only from the

muon channel where at least one b-tagged jet is reconstructed close to the muon.

The requirement of a second b-tagged jet is not applied in this study. In fact, after

the application of the HEPTopTagger algorithm a very pure sample of tt̄ events is

obtained and the W+jets background contribution is almost negligible.

The four-momentum of the top candidate is given by the four-momentum sum

of the calibrated inclusive subjets which pass the HEPTopTagger filtering proce-

dure. Therefore, any change in the latter appears accordingly in the former. This

feature is particularly visible in the HEPTopTagger top candidate mass distribution

of figure 4.2(b), which is characterised by a peak at around 170 GeV. Any scaling of

the subjet four-momenta determines a shift of the entire peak. Its position changes

proportionally to the relative scaling of the subjets.

This peak structure can be exploited in order to constrain the energy scale un-

certainty of the HEPTopTagger subjets. This idea was first suggested in [5].

The method proceeds as follows.

1. The pT-energy scale of all the calibrated subjets reconstructed by the

HEPTopTagger is varied in the simulation. For example, their four-momenta

can be scaled constantly by 1.03, corresponding to a pT-energy shift of +3%,

as illustrated in figure 4.2(a).
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Figure 4.2: (a) Illustration of the HEPTopTagger subjet momentum variation.
(b) Data and MC HEPTopTagger candidate mass distribution. The nominal
and the varied distributions, where the pT of the subjets have been scaled up or
down by 3%, are shown in black line with green systematic error band, magenta
think line and red thin, respectively. The data is represented in black points.
In the bottom panel the ratio of the data and the nominal MC prediction is
represented with black points, the ratio between the up (down) MC variation
and the nominal MC is represented with magenta thick (red thin) lines. (c)
Illustration of the extreme subjet variations obtained from the χ2 distribution
as a function of the subjet momentum variation.

2. The resulting top candidate mass distribution is compared with the data dis-

tribution and a χ2 is calculated. In figure 4.2(b), the magenta top mass peak

resulting from the 3% energy shift of the HEPTopTagger subjets moves to

higher masses with respect to the nominal MC expectation, where no varia-

tion is applied. Similarly, if the subjets are scaled by 0.97, corresponding to

a -3% shift, the peak moves to lower mass values. A χ2 value is associated to

each of these variations.

3. After taking into account different subjet variations, the constraint on the

subjet pT scale uncertainty is obtained by those extreme distributions that

describe the data mass peak within the uncertainties. The extreme variations

are determined from the χ2 distribution as a function of the subjet variation,

as illustrated in figure 4.2(c).

4.2.1 Subjet pT scale variation

All the reconstructed subjet four-momenta related to a mass distribution are varied

up or down in a correlated way:

pν → pν (1± f) , (4.2)

where f = f(pT) specifies the relative shift that is applied to a subjet as a function

of the subjet pT. Three different functional forms are considered in order to take

64



4.2.1. Subjet pT scale variation

into account possible dependencies of the relative pT scale uncertainty on the subjet

transverse momentum:

• f = k1
√
pT: larger variation for high pT subjets;

• f = k2: the uncertainty is independent of the subjet pT;

• f = k3/pT: larger variation for low pT subjets;

where, k1, k2 and k3 are constant parameters. These functional forms aim to describe

different uncertainty configurations: the pT dependence of the uncertainty is deter-

mined by the effect, contributing predominantly to the subjet pT scale uncertainty.

For example, the uncertainty could be dominated by effects due to pileup mismod-

elling leading to a relative uncertainty which is high for low pT subjets, and small at

high pT, described by the f = k3/pT functional form. If the dominant source of the

subjet pT uncertainty is due to non-closure in the MC calibration, i.e. the calibrated

subjet response is on average over- or underestimated compared to the particle jet

scale, the subjet pT scale uncertainty might be independent on the subjet pT to a

first approximation. If the miscalibration of very high pT subjets dominates the un-

certainty, for example, due to effects of jet collimation and merging, the f = k1
√
pT

functional form would be the correct description of the subjet pT scale uncertainty.

The functions corresponding to different k values, considered for the uncertainty

estimate, are shown in figure 4.3.
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Figure 4.3: Several pT-dependent relative variations used to study the un-
certainty of the HEPTopTagger subjet pT scale. The percentage relative shift
applied to subjets is shown as a function of the subjet pT. The values listed in
the legend are the values of the parameter k.
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4. HEPTopTagger performance in the `+jets channel

4.2.2 Comparison of the data and Monte Carlo distributions
after the subjet variation

A χ2 value is calculated by comparing the data distribution and the simulated

one after each subjet variation. In order to see the dependence of the subjet scale

uncertainty with respect to the large-R jet pT and η, this comparison is performed in

four different regions. In particular the tagged large-R jet sample is divided in central

and forward regions, with |ηlarge-R jet| < 0.7 and |ηlarge-R jet| > 0.7, respectively. These

two are in turn divided in other two phase spaces, one characterised by large-R jets

with pT < 320 GeV and the other with pT > 320 GeV, for a total of four regions.

For example, the top candidate mass distribution corresponding to the central

regions for low pT large-R jets and for high pT ones is shown in figure 4.4(a) and

4.4(b), respectively. The main difference between the two is the width of the top

mass peak. It is broader for the low pT region, since the probability of one top decay

product to be lost outside the large-R jet is higher. On the contrary, the decay

products of more boosted top quarks are collimated enough to be well contained

in the higher pT large-R jets, determining a narrower top mass peak structure. In

addition to the data and expected nominal MC distributions, the ones shown in

red and magenta lines correspond to a subjet pT shift of f = k3/pT where k3 =

±103 MeV. In order to easily compare the impact of the different functional forms,

the numerical value of the shift applied to a subjet of pT = 100 GeV, called JES

shift, is used as reference for a specific variation instead of the k parameter value.

The 100 GeV reference value is chosen, since it corresponds to the average pT of the

HEPTopTagger subjets. The relative shift of the top mass peak with respect to the

nominal position is very close to the value of f(pT)|pT=100 GeV.

The varied and nominal distributions are then compared to data in the mass

region 133 < mtop cand. < 210 GeV and a χ2 value is determined as follows. As

expressed by equation 4.3, the squared difference of the expected number of events

from the varied simulation N tt̄
i and the measured number of data events Ndata

i is

weighted with respect to the quadrature sum of systematic uncertainties from the

first ∆N tt̄
i and statistical uncertainty from the second ∆Ndata

i . The sum over all i

mass bins in the top candidate mass region 133 < mtop cand. < 210 GeV is defined as

the χ2 associated to a varied MC distribution.

χ2 =
∑
bin i

(
N tt̄
i −Ndata

i

)2

(∆N tt̄
i )2 + (∆Ndata

i )2
(4.3)
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4.2.3. Subjet pT scale uncertainty estimate with χ2 fit
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Figure 4.4: Data/MC comparison of the HEPTopTagger top candidate mass
distributions relative the central regions, |ηlarge-R jet| < 0.7. Figure (b) from [6].
The style convention is identical to figure 4.2(b) but the red thin and magenta
thick lines correspond to the MC variation of the subjet pT with the f(pT) =
k/pT functional form, corresponding to a relative ±1% pT shift for subjets with
pT = 100 GeV.

4.2.3 Subjet pT scale uncertainty estimate with χ2 fit

The χ2 value is calculated for every simulated variation using the three different

functional forms, previously described, in the four pT − η bins. The distribution

of these values as a function of the corresponding JES shift can be fitted with a

parabola.

The minimum of the parabola defines the minimum value, χ2
min, and the optimal

JES shift corresponds to the shift f̂ such that χ2(f̂) = χ2
min. The uncertainty on f̂

then is given by the σf̂ value that satisfies the condition:

χ2(f̂ ± σf̂ ) = χ2
min + 1

In this case σf̂ is the uncertainty on the optimal JES shift f̂ . Ideally f̂ should

correspond to the nominal simulated distribution where no shift is applied: f̂ = 0.

However, this condition is not met in most of the cases, as can be seen in figure 4.5

for the functional form f = k3/pT in the four pT − η regions. Although the nominal

subjet pT scale is not optimal and a correction to this could be applied, this shift

is included in the systematic uncertainty. Therefore, the estimate of the systematic

uncertainty on the subjet pT scale is the maximum between |f̂ + σf̂ | and |f̂ − σf̂ |.
This estimate is obtained for the three different functional forms in the four pT−η

kinematic regions, and the values are summarised in table 4.3. The uncertainty on the

pT scale of the subjets is estimated to vary between 1.4% and 2.7% for pT = 100 GeV

subjets.

In figure 4.6, the JES shift, summarised in table 4.3, is translated into functions

with respect to the subjet pT describing the subjet energy scale uncertainty.
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Figure 4.5: χ2 distributions corresponding to four large-R jet pT −η bins as a
function of the relative pT shift of subjets with pT = 100 GeV (JES shift) for
C/A R = 1.5 large-R jets. The functional variation of the subjet four-momentum
is f(pT) = k/pT. Figure (b) from [6].
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subjet pT = 100 GeV 200< pT <320 GeV pT >320 GeV
k1
√
pT k2 k3/pT k1

√
pT k2 k3/pT

|η| < 0.7 2.4% 2.1% 1.4% 2.2% 2.5% 2.2%
0.7 < |η| < 2.0 2.7% 2.4% 2.2% 2.0% 2.2% 1.7%

Table 4.3: Relative pT scale uncertainty for HEPTopTagger subjets with
pT = 100 GeV in different bins of large-R jet pT and η for three different func-
tional forms of the relative pT variation.

To estimate the impact of the subjet energy scale on the results of physics analy-

ses, the following procedure has to be performed. The impact of the HEPTopTagger

subjet energy scale uncertainty on a sample of top candidates should be evaluated

using the three different functional forms separately and applying both as up and

down variations. The functional form, which gives the maximum deviation, is used

to evaluate the systematic uncertainty.

In the following analyses, the functional form f(pT) = k/pT has been found to

be the dominant one and is used to evaluate the impact of the subjet pT uncertainty.

This is the case for all the physics processes where the top candidates are mainly

reconstructed with a moderate momentum (200 < pT < 400 GeV).
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Figure 4.6: Relative energy scale uncertainty as a function of the
HEPTopTagger subjet pT in different large-R jet pT and η bins for three different
functional forms. Figures from [6].

4.3 Validation of the HEPTopTagger in data

In order to study how well the simulation models the outcome of the HEPTopTagger,

data and Monte Carlo distributions are compared for several variables before and

after the application of the algorithm.

The selection described in section 4.1, including the second b-tag requirement, is

applied. As can be see in figure 4.7(b), the selected sample is very pure of top quarks.
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4. HEPTopTagger performance in the `+jets channel

The fraction of W+jets events expected from the simulation is approximately 3%.

The rest of the events contain real top quarks (6% single top and 91% tt̄).

Although the sample of the selected events is very pure in top quarks, only a

fraction of the leading large-R jets can be geometrically associated to top quarks

decaying hadronically. If a generated top quark, which decays hadronically, is found

within an angular distance of 1 from the large-R jet, ∆R(large-R jet, top) < 1.0,

this jet and the corresponding event are defined as matched. Those which are not

matched constitute a background for this analysis, aiming to select only large-R jets

originating from hadronically decaying top quarks.

As can be seen from figure 4.7(a), the angular distance between the large-R

jet and the lepton is a crucial requirement for the reduction of the unmatched

tt̄ background. For this reason the selected large-R jet in every event is the

leading one among those which are reconstructed away from the lepton, i.e.

∆R(`, large-R jet) > 1.5.

The remaining unmatched large-R jets are mainly composed of a low number of

hard subjets. The large-R jet constituents can be reclustered into very small C/A

jets with distance parameter R = 0.2. The multiplicity distribution of the R = 0.2

jets with pT > 20 GeV is shown in figure 4.7(b). The matched large-R jets are

mainly composed of at least two reconstructed R = 0.2 jets. On the contrary, the

unmatched large-R jets are characterised by low multiplicity of hard structures.

Almost half of the unmatched large-R jets originates from one of the two b-quarks

from the top decay, either because both top quarks decay semileptonically or because

the hadronically decaying top quark has moderately low pT (pT . 200 GeV). Its

decay products are too apart to be reconstructed in a single large-R jet. The other

half of events containing an unmatched large-R jet corresponds to events where the

hadronically decaying top quark has low pT (pT . 100 GeV) and the large-R jet

originates from the non-top-quark hadronic activity in the event: the ISR or the

underlying event.
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Figure 4.7: Distribution of the angular distance between the leading large-R
jet of the event and the lepton (a). After requiring that the large-R jet should be
the leading one among those with the angular distance from the lepton greater
than 1.5, (b) multiplicity distribution of C/A R=0.2 subjets reconstructed from
the constituents of the large-R jet. The SM prediction is represented as a stacked
histogram with green total uncertainty band (quadrature sum of statistical and
systematic uncertainties) while the data distribution is overlaid as black points.
The tt̄ contribution is divided in events with the large-R jet matched to the
hadronically decaying top quark (signal) and events in which the large-R jet does
not originate from a hadronically decaying top quark (background). The lower
panel shows the ratio between the data and the SM prediction. The contribu-
tion to the total systematic uncertainty (green band) is divided in experimental
uncertainties (red line) and modelling uncertainties (blue line), whose definition
is reported in section 4.3.1.

4.3.1 Impact of systematic uncertainties

The impact of the systematic uncertainties can be divided in experimental and

modelling uncertainties.

Among the experimental uncertainties, the dominant ones are on: luminosity,

lepton reconstruction efficiency, b-tagging efficiency, large-R jet energy scale (JES),

large-R jet energy resolution (JER), subjet energy scale, subjet energy resolution.

Other experimental uncertainties were found to be negligible: the Emiss
T recon-

struction, the energy scale and resolution of the lepton and of the small-R jet.

The modelling uncertainties are related to the simulation of tt̄ events and to

the theory knowledge. The ones considered are: tt̄ cross section; tt̄ ISR/FSR; tt̄

generator; tt̄ parton shower; tt̄ PDF; tt̄ renormalization scale.

The way the uncertainties are evaluated is explained in section 2.7.

All these uncertainties affect the shape of several distributions in different ways.

In order to evaluate the impact of the uncertainties before (pre-tag) and after (post-

tag) applying the HEPTopTagger, the simulated yield of events passing the selection

with the large-R jet far from the lepton is compared to the yield after a systematic
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4. HEPTopTagger performance in the `+jets channel

uncertainty variation. The impact on the pre-tag and post-tag event yield is given

in table 4.4.

Systematic uncertainty
relative uncert. [%]
pre-tag post-tag

Luminosity 2.8 2.8
b-tagging efficiency 7.5 7.3

c-jet mistag rate 1.2 0.6
l-jet mistag rate 0.6 0.3

lepton reconstruction efficiency 4.3 4.4
large-R jet JES 5.1 0.9
large-R jet JER 2.0 0.8

subjet energy scale – 8.1
subjet energy resolution – 1.9

tt̄ cross section 5.4 5.7
tt̄ ISR/FSR 1.8 7.6
tt̄ generator 1.6 4.1
tt̄ PDF 4.7 5.7

tt̄ parton shower 6.5 2.7
tt̄ renormalization scale 2.2 3.1

Table 4.4: Impact of systematic uncertainties on the simulated pre-tag and
post-tag large-R jet yield. The numbers give in percentage the relative yield
variation. The quoted values correspond to the absolute value of the maximum
shift when applying “up” and “down” variations with respect to the nominal
prediction.

The number of events before tagging is mainly affected by the uncertainties on

the b-tagging efficiency, on the tt̄ cross section normalisation, on the large-R jet

energy scale, and on the parton shower with an impact of 7.5%, 5.4%, 5.1%, and

6.5%, respectively.

After the application of the HEPTopTagger, only those candidates with mass

between 140 and 210 GeV are considered.

The total number of events containing a tagged large-R jet is not any more

affected by the large-R jet energy scale uncertainty. The transverse momentum of the

reconstructed top quark is generally smaller than the unfiltered large-R jet pT. The

tagger selects only those candidates with pT > 200 GeV. This requirement is more

stringent than the one applied on the large-R jet pT. Moreover, the HEPTopTagger is

less efficient in tagging top quarks with moderate momentum (ptop
T < 400 GeV) with

respect to those more boosted. Therefore, large-R jets with pT close to the 200 GeV

threshold have a low probability to be tagged. Hence, the large-R jet energy scale

uncertainty becomes negligible in the post-tag region, and the dominant one becomes

the uncertainty on the subjet energy scale. The major effect of the subjet energy

scale uncertainty comes from the 20 GeV minimal pT requirement applied both to

calibrated inclusive and exclusive subjets. In fact when shifting ”up” or ”down”

their four-momenta, if they are close to the 20 GeV pT threshold they could increase
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4.3.2. Control distributions

or decrease their transverse momentum by approximately 15%. Therefore low pT

subjets could be kept or discarded, leading to an increase or decrease in tagging

probability.

Moreover the number of tagged large-R jets has a substantial dependence on

the generator choice, the ISR/FSR modelling and the PDF, whose uncertainties are

4.1%, 7.6% and 5.7%, respectively.

4.3.2 Control distributions

The comparison of data-MC distributions for several variables before and after the

application of the HEPTopTagger is performed in order to validate that the tagger

output and its discriminant quantities are well described by the simulation.

The transverse momentum and the mass distributions of those large-R jets in

input to the HEPTopTagger are shown in figures 4.8(a) and 4.8(b), respectively.

The former is characterised by a steeply falling spectrum. The latter peaks at ap-

proximately 190 GeV, close to the top quark mass, but with a very broad structure

due to the pileup and underlying event contamination. The distribution of large-R

jet masses from not matched top quarks, single top and W+jets is shifted to lower

values than the top quark mass. Both distributions are well described within the

systematic uncertainties.

It can be observed from the data over simulation panel of figure 4.8(a), that

the relative systematic uncertainties have a large dependence on the large-R jet pT,

and in particular they increase proportionally with the latter. These uncertainties

are divided in experimental and modelling ones. The former is dominated by the

contribution of the large-R jet energy scale uncertainty. This contribution rises with

the large-R jet pT: it is around 3% at 200 GeV and it becomes ≈ 20% for pT >

500 GeV. The large pT dependence of the uncertainty results from the large-R jet

uncertainty measurement. As explained in section 2.7 this uncertainty is estimated

using as a reference track jets. The dense jet environment enhances the chances that

hits of two charged particles are reconstructed as a single track, leading to track

jet momentum losses. This occurs especially in high pT jets leading to a large effect

of the large-R jet energy scale uncertainty at high large-R jet pT. The modelling

uncertainties increase as well with the transverse momentum of the large-R jet.

The distributions of Emiss
T and MW

T before tagging are shown in figures 4.8(c)

and 4.8(d). Both are quite well described by the simulation within the systematic

uncertainties. These uncertainties do not appear to have a dependence on either

Emiss
T or MW

T . A peak close to the W boson mass is visible in the MW
T distribution.

The application of the HEPTopTagger reduces prominently the background. In

fact the W+jets process which contributes less than 1% can be neglected and the

fraction of not matched tt̄ events is reduced to 5%. The mass of the HEPTopTagger

candidate distribution is shown in figure 4.9(a). The top mass distribution is more

affected by systematic uncertainties in the region where the reconstructed top mass
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Figure 4.8: (a) and (b) large-R jet pT and mass distribution before the ap-
plication of the HEPTopTagger. Emiss

T and MW
T quantities which are used in the

baseline selection are shown in (c) and (d). The style convention is identical to
figure 4.7. Figures (a), (b), (c) and (d) from [6].

is higher than the top quark mass (at 173 GeV). Here the systematic uncertainty

on the HEPTopTagger subjet pT resolution is the dominant one and it affects the

shape and the peak width. In addition, the modelling of ISR and FSR influences

both the number of tagged events and the HEPTopTagger mass shape.

The transverse momentum, the pseudorapidity and the azimuthal angle of the

top candidate are shown in figure 4.9(b)-4.9(d). Two variables, arctan(m13/m12)

and m23/m123, used in the HEPTopTagger can be seen in figures 4.9(e) and 4.9(f),

respectively. They help in the discrimination between a purely QCD three prong

structure and the top decay one. The variable given by the ratio of the invariant

mass of the two sub-leading subjets, m23, and the invariant mass of the three top

candidate subjets, m123, is mainly close to the ratio of the W mass and the top

mass, as can be seen from the peak in the distribution of figure 4.9(f). This feature

suggests that the leading subjet is most probably originating from the b-quark.

Other variables related to the reconstruction of the top decay subjets can be
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4.3.2. Control distributions

seen in figures 4.10(a)-4.10(f). The simulation distributions of the three top candi-

date subjet transverse momenta, figures 4.10(a)-4.10(c), agree well with the data.

Similarly the maximum distance between the protojets of the triplet, figure 4.10(d),

which gives the final top candidate is well modelled by the MC. These three protojets

are the result of the mass drop procedure. The average distance is 1.3.

In figure 4.10(e), the distribution of the number of inclusive subjets used to

reconstruct the top candidate mass and which are exclusively clustered into three

top candidate decay subjets is shown. This quantity is very sensitive to the ISR

and FSR modelling, to the generator, and also, to the detector response simulation.

Although the total number of tagged large-R jet is the same, if the fast simulation

is used, which is characterised by a simplified calorimeter description, the number

of inclusive subjets can be lower than using the full complexity detector simulation.

Regarding the experimental uncertainty the two that have the largest impact are

the subjet energy resolution and scale uncertainties. The former does not affect

the total number of tagged events, but it leads the distribution of the number of

inclusive subjets to be shifted to higher values. The latter affects mainly the number

of tagged large-R jets which are reconstructed from those characterised by three

inclusive subjets.

A similar behaviour is related to the variable of figure 4.10(f), which counts

the number of HEPTopTagger pre-candidates per large-R jet. There might be more

than one combination of protojet triplets which lead to a plausible top candidate.

Afterwards, the one with the mass closest to the top quark is chosen as a final

candidate.

The simulation describe very well the data distributions of both the pre-tag and

post-tag variables within the systematic uncertainties: the HEPTopTagger can be

reliably used in physics analyses and the background expectation can be accurately

estimated by means of the MC simulation.
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Figure 4.9: (a) Distribution of the HEPTopTagger candidate mass. Top candi-
dates within the mass range 140−210 GeV are considered as tagged, and the dis-
tribution of their kinematic variables, pT, φ and η, are shown in (b),(c) and (d).
(e) and (f) distributions of the mass ratio quantities used by the HEPTopTagger
algorithm to tag large-R jets. The style convention is identical to figure 4.7. Fig-
ures (a), (b), (e) and (f) from [6].
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Figure 4.10: (a), (b) and (c) distributions of the leading, second and third lead-
ing exclusive subjets of the HEPTopTagger candidate, respectively. (d) Max-
imum distance distribution between the protojets of the triplet which gives
the final top candidate. (e) Number of inclusive subjets distribution of the
HEPTopTagger candidates. (f) Distribution of the number of HEPTopTagger
candidates per large-R jet. The style convention is identical to figure 4.7.
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4. HEPTopTagger performance in the `+jets channel

4.4 HEPTopTagger efficiency measurement

The very pure top quark sample obtained with the `+jets selection is used to measure

the HEPTopTagger efficiency in data and to compare it with the simulation.

The HEPTopTagger efficiency is defined as the fraction of tagged over all large-R

jets originating from hadronically decaying top quarks. The efficiency depends on

the top quark momentum. Thus, it can be measured as a function of the large-R jet

pT and η.

The number of data large-R jets, matched with a top quark, in a particular pT

range before and after tagging is obtained by subtracting the simulated background.

Thus, the HEPTopTagger efficiency in data for a certain large-R jet pT range cor-

responding to bin i is defined as:

fdata,i =

(
N tag

data −N
tag
tt̄ not matched −N

tag
non-tt̄

Ndata −Ntt̄ not matched −Nnon-tt̄

)
i

(4.4)

As discussed previously, the background consists of those processes which are

not tt̄, i.e. W+jets and single top production, whose number of (tagged) large-R

jets is N
(tag)
non-tt̄, and of those tt̄ (tagged) large-R jets not associated to any hadroni-

cally decaying top quark, amounting to N
(tag)
tt̄ not matched large-R jets. These counts are

subtracted from the number of measured (tagged) large-R jets N
(tag)
data .

Similarly the MC efficiency is calculated using the nominal tt̄ powheg+pythia

sample:

fMC,i =

(
N tag

MC

NMC

)
i

(4.5)

where N
(tag)
MC is the number of (tagged) large-R jets which are associated to

hadronically decaying top quarks.

In figure 4.11 the data-MC efficiency comparison is shown as a function of the

large-R jet pT for two different η regions: |η| < 0.7 and 0.7 < |η| < 2.0. The

HEPTopTagger efficiency increases from 10% for large-R jet pT in the range 200−
250 GeV, up to ≈ 50% for pT > 450 GeV. The maximum large-R jet pT bin is

chosen with respect to the statistical error in data. Only bins with relative statistical

uncertainty lower than 30% are shown.

The background subtracted data and the simulated efficiencies agree very well.

Their ratio is compatible with unity within the uncertainties.

Integrating over pT and η, the impact of the systematic uncertainties on the data

and MC efficiency curves is determined and listed in table 4.5.

The data have systematic uncertainties due to the subtraction of the simulated

background, which is affected by systematic uncertainty. The amount of subtracted

events is different with respect to the pre-tag and post-tag regions. In fact, the back-

ground contribution post-tag is almost negligible. Therefore the systematic uncer-

tainties of numerator and denominator do not cancel out. The ones that contribute
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4.4. HEPTopTagger efficiency measurement

the most are those related to the modelling of the not-matched tt̄, in particular

related to the generator choice. In fact, the fraction of not-matched large-R jets is

different for powheg and mc@nlo, determining a large uncertainty in the not-

matched tt̄ background subtraction from data.

However, most of the systematic uncertainties, which have a non-negligible im-

pact on the pre-tag and post-tag large-R jet pT distributions, cancel out for fMC,i,

with the exception of those that have a very different impact on the numerator and

denominator. Among these the large-R jet energy scale has a non-negligible impact

only in the pre-tag region, and vice versa for the subjet energy scale.

Since the systematic uncertainties are correlated for the data efficiency distri-

bution and the simulated one, this correlation is taken into account. The total cor-

related uncertainty is shown as the blue band in the bottom panels of figure 4.11,

which displays the ratio between the measured efficiency and the expected efficiency.

The systematic uncertainties are larger than the statistical ones.
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Figure 4.11: The HEPTopTagger efficiency fdata is represented by black points
and compared with fMC, red triangles, as a function of the large-R jet pT for two
bins of large-R jet pseudorapidity. The ratio fdata/fMC is shown in the bottom
panels with an uncertainty band that takes into account the correlation between
the numerator and denominator systematic uncertainties. Figure from [6].
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4. HEPTopTagger performance in the `+jets channel

|η| < 2.0
uncertainty ∆fdata/fdata (%) ∆fMC/fMC (%)

large-R jet energy scale 2.9 4.4
large-R jet energy resolution 1.5 0.1

luminosity 1.3 0.0
b-tagging efficiency 3.5 0.2

lepton reconstruction efficiency 2.0 0.0
tt̄ cross section 2.0 0.0
tt̄ ISR/FSR 3.2 3.6
tt̄ generator 6.7 0.3

tt̄ parton shower 1.7 2.9
tt̄ PDF uncertainty 2.2 1.2

tt̄ renormalization scale 0.6 0.5
subjet energy scale 1.1 8.3

subjet energy resolution 0.7 0.0
total 9.9 10.6

Table 4.5: Impact of systematic uncertainties on the pT-integrated fraction
of tagged large-R jets in data (from [6]) and simulation. The numbers give the
absolute shift of the tagging fraction and correspond to the maximum shift when
applying “up” and “down” variations with respect to the nominal prediction.

4.5 Pileup stability

Making use of the `+jets selection, the stability of the HEPTopTagger against pileup

can be studied in data and MC.

The effect that the pileup contribution has on the top candidate mass distribution

can be observed in figure 4.12. The average HEPTopTagger mass in the window

140 < mt < 210 GeV is shown as a function of the average number of interactions

per bunch crossing 〈µ〉 and of the number of reconstructed primary vertices, NPV.

The pileup dependence of the mass is rather small, but it is larger with respect to

the NPV compared to the dependence with respect to 〈µ〉. This behaviour suggests

that in a specific event the number of reconstructed primary vertices describes the

amount of pileup better, compared to the average number of interactions per bunch

crossing.

The data and MC points, which are consistent within the uncertainty, are fitted

with a linear function. The increase in the reconstructed top mass is approximately

of 1 GeV from low to high 〈µ〉 conditions. While a shift of ≈ 2 GeV is observed in

the average reconstructed mass of events with small NPV with respect to those with

large number of primary vertices.
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Figure 4.12: Average mass of the reconstructed HEPTopTagger top quark can-
didate in data (black points) and MC (red points) as a function of the average
number of interactions per bunch crossing, 〈µ〉, (left) and the number of recon-
structed primary vertices, NPV, (right) in events passing the `+jets selection.
The mass average is determined in the window 140 < mt < 210 GeV. The
points are fitted with a linear function and the slope related to the data (MC)
fit is displayed in black (red).

4.6 Summary and conclusions

The HEPTopTagger algorithm is used to identify and reconstruct hadronically de-

caying top quarks with pT > 200 GeV each contained in a large-R jet. The charac-

terisation of this tagger is necessary before its application in physics analyses, for

example in searches for physics beyond the SM with top quarks in the final state.

The performance of this algorithm has been studied in proton-proton collision

data collected at a centre of mass energy of
√
s = 8 TeV corresponding to an in-

tegrated luminosity of 20.3 fb−1 [6]. An event sample enriched in tt̄ events in the

`+jets channel has been selected by requiring one charged lepton, electron or muon,

a large-R jet and b-tagged small-R jets. This sample has provided a sizeable fraction

of large-R jets originating from hadronically decaying top quarks with a contamina-

tion from non-tt̄ background less than 10%.

The large-R jet kinematic observables together with the variables used internally

by the HEPTopTagger have been found to be well modelled by the simulation. The

mass peak very pure of top quarks reconstructed by the HEPTopTagger has been

employed to determine in situ the energy scale uncertainty of the HEPTopTagger

subjets. The estimated uncertainty for the average pT subjet, about pT = 100 GeV,

is measured to be approximately 2.5%. A recipe for the determination of the contri-

bution of this uncertainty in physics analyses has been developed.

The efficiency of tagging a jet containing a hadronically decaying top quark is

measured in the `+jets channel as a function of the large-R jet pT in the central and

forward η regions. On average about 10% (45%) of large-R jets with pT ≈ 200 GeV

(pT & 400 GeV) associated to hadronically decaying top quarks are identified and
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4. HEPTopTagger performance in the `+jets channel

reconstructed by the algorithm. The dominant systematic uncertainty source comes

from the modelling of the tt̄ SM process. The measured and simulated efficiencies

are consistent within a few percent.

This performance study has demonstrated the reliability of employing MC simu-

lation to model and predict the output of the HEPTopTagger algorithm concerning

large-R jets from hadronically decaying top quarks.
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Chapter 5

Search for direct pair production
of the SUSY top quark partner
with the HEPTopTagger

Naturalness requires Supersymmetry to be unbroken above energy scales of a few

TeV, implying that the mass difference between the top quark and the lightest of

its scalar partners, the stop (t̃1), should be of the order of 1 TeV: the stop could

be accessible at the energies of the LHC. If R-parity is conserved, the stop can be

produced in pairs at the LHC and the lightest supersymmetric particle (LSP), in

many models corresponding to the neutralino (χ̃0
1), is stable and weakly interacting.

As explained in section 1.4.1, the stop decay modes depend on its mass and the

mass of the neutralino, being one of the final products of the stop decay chain. In

models with the stop mass being much larger than the neutralino mass, the leading

decay mode involves a top quark in the final state: t̃1 → tχ̃0
1.

Many analyses in ATLAS and CMS have been performed to look for direct stop

production. Searches conducted at a centre of mass energy of
√
s = 8 TeV using

a data sample corresponding to integrated luminosities of about 20 fb−1 have not

revealed any signal [39, 134–138]. Under the assumption of BR(t̃1 → tχ̃0
1) = 100%,

stop masses in the range 200− 700 GeV and 200− 755 GeV have been excluded for

small neutralino masses by ATLAS and CMS, respectively. The most recent searches

are performed using data collected at
√
s = 13 TeV corresponding to an integrated

luminosity of approximately 13 fb−1. The ATLAS and CMS results improve the

limits significantly compared to the 8 TeV analyses: stop masses up to 840 GeV

(ATLAS) and 910 GeV (CMS) are excluded [139–146].

The majority of the ATLAS searches at
√
s = 8 TeV make use of resolved or

semi-resolved techniques for the reconstruction of the top quarks. As soon as higher

and higher stop masses are tested, the top quark in the final state is expected to be

boosted enough to impede its reconstruction by means of standard techniques. The

HEPTopTagger is perfectly suited to reconstruct the boosted hadronically decaying

top quarks from the stop decays and to reject significantly non-top quark hadronic

activity, as suggested in [4, 8].
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5. Search for the direct pair production of the stop with the HEPTopTagger

In this chapter, the search for the direct production of a pair of top squarks,

each decaying via t̃1 → tχ̃0
1, in the all hadronic final state with the HEPTopTagger

algorithm is reported. The proton-proton collision data collected at
√
s = 8 TeV is

used in this analysis.

The chapter is structured as follows. The HEPTopTagger performance in select-

ing signal events is studied in section 5.1. Common requirements are shared among

the signal enriched regions. These concern the trigger, data quality and loose selec-

tion criteria specific to the signal topology under study. Altogether they are referred

to as baseline selection, and are described in section 5.2. The description of the

physics objects used in the analysis, like electrons, muons and jets is also reported

in section 5.2. The analysis strategy is explained in section 5.3. It consists in the

definition of signal regions with enhanced signal over background ratio and in the

estimation of the main background sources by means of control regions in data.

The procedure to statistically evaluate the outcome of the analysis is detailed in

section 5.4. The impact of the systematic uncertainties is described in section 5.5

and the analysis results are reported in section 5.6 and 5.7. A comparison with the

publicly available ATLAS results at
√
s = 8 TeV which searches for the direct stop

production in the fully hadronic final state is discussed in section 5.8.

5.1 Study of the HEPTopTagger performance in

simulated SUSY signal events

In this analysis the signature with two hadronically decaying top quarks and miss-

ing transverse momentum is considered. This top pair decay mode has two main

advantages. Firstly, the fraction of events with both top quarks decaying hadron-

ically is large, around 45%; secondly, the missing transverse momentum in signal

events provides direct information on the transverse momentum of the neutralino

pair system, as no neutrinos from the top quark decays are present.

The signature of the signal events in the detector is characterised by the presence

of jets, some of which might be b-tagged, and large missing transverse momentum,

as illustrated in figure 5.1.

Under the assumption that the mass difference between t̃1 and χ̃0
1,

∆m(t̃1, χ̃
0
1) = mt̃1 −mχ̃0

1
, is much larger than the top quark mass, the tops in the

final state are produced with moderate or high momentum. In figure 5.2 the trans-

verse momentum of the top quark produced from a t̃1 decay is shown for several

t̃1 and χ̃0
1 mass hypotheses. The larger the t̃1 mass and ∆m(t̃1, χ̃

0
1) are, the higher

the average of the generated top quark pT is. The fraction of signal events having

at least one top quark (both top quarks) in the final state with pT > 200 GeV is

90% (50%) for the signal sample with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV. In this regime,

the hadronic decay products of the top quark start being collimated and might not

be reconstructed as separate small-R jets. Therefore top tagging techniques for the

reconstruction of these boosted top quarks are crucial to select signal events. In par-
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5.1. Study of the HEPTopTagger performance in simulated SUSY signal events

ticular, the HEPTopTagger is well suited for this search [4, 8]. In fact, the algorithm

reconstructs hadronically decaying top quarks with pT > 200 GeV from a large-R

jet.

Figure 5.1: Sketch depicting the signature of signal events with a produced t̃1
pair with each stop decaying via t̃1 → tχ̃0

1. The final state with two hadroni-
cally decaying top quarks and neutralinos are characterised by jets and missing
transverse momentum.
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Figure 5.2: Transverse momentum distribution of top quarks from several signal
models with different top squark and neutralino masses.

The performance of the HEPTopTagger in data and simulation has been studied

in detail in the `+jets channel, as reported in chapter 4. In that case, the hadroni-

cally decaying tops of tt̄ → (lνb)(qqb) events are mainly isolated, since the two top

quarks are produced back-to-back. On the contrary, the two tops of the SUSY signal

final state might be close to each other. The distributions of the angular separation

between the two top quarks are compared in figure 5.3(a) for the tt̄ process and the
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5. Search for the direct pair production of the stop with the HEPTopTagger

signal with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV. The first is peaking at π and have less than

4% of events with a top quark angular separation ∆R < 1.5, while the fraction of

events with ∆R < 1.5 is about 20% for the signal process. Hence, it is interesting to

study the performance of the HEPTopTagger algorithm with respect to this SUSY

signal topology.

The number of reconstructed large-R jets and the number of HEPTopTagger

candidates depend on the transverse momentum of the two top quarks in each event.

As illustrated in figure 5.3(b), the transverse momenta of the top quarks produced

by the decay of a stop pair are mutually independent, while they are correlated in

the tt̄ process, see figure 5.3(c).

The performance of reconstructing one or two top tags in a signal sample with

(mt̃1 ,mχ̃0
1
) = (600, 1) GeV is discussed in the following.
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Figure 5.3: (a) Comparison of the ∆R angular distance distributions between
the two top quarks, generically called top1 and top2, for the simulated tt̄ process
(red line) and the SUSY signal process with (mt̃1 ,mχ̃0

1
) = (600, 1) GeV (black

line). Correlation between the transverse momenta of the two top quarks in
simulated signal (b) and tt̄ events (c).

5.1.1 HEPTopTagger tagging efficiencies

The HEPTopTagger tagging efficiency is defined as the fraction of generated hadron-

ically decaying top quarks with |η| < 2, such that a top candidate is found within

an angular distance of ∆R(gen. top, top cand.) < 1 from the generated top. This

efficiency is highly dependent on the generated top quark transverse momentum. In

figure 5.4(a), the probability of reconstructing a hadronically decaying top quark

becomes higher with the transverse momentum of the top quark, ptop
T , and reaches

a plateau of approximately 40% when ptop
T > 400 GeV. In fact the higher the top

quark transverse momentum is, the more collimated its decay products are and the

higher the probability of reconstructing all them together in a single large-R jet be-

comes. At low transverse momentum, the tagging efficiency is smaller for top quarks

which are distant from other tops, i.e. ∆R > 2.0. In fact, for low pT tops, one decay

product might be lost outside of the large-R jet, J , and therefore the probability of

86



5.1.2. MT2, the stransverse mass

tagging it is much smaller. But if a second top quark decays hadronically nearby,

one of its decay products might be reconstructed in the large-R jet J , enhancing the

chances of mis-reconstructing a top candidate in J .

In figure 5.4(b) the efficiency of tagging a moderately boosted top quark, with

ptop
T < 300 GeV, significantly depends on the distance between the two hadronically

decaying top quarks: it increases if the two are closer than the distance parameter

R = 1.5 of the large-R jet.

Signal events are characterised by moderately large missing transverse momen-

tum. The tagging efficiency is independent of this variable, see figure 5.4(c). The

slight increase in tagging efficiency for moderate pT top quarks (200 < pT < 250)

does not directly depend on Emiss
T , but it is rather related to the lower average an-

gular separation between the two tops in events with higher Emiss
T . The dependence

of the average angular distance of the top quarks with respect to the event missing

transverse momentum is represented in figure 5.4(d).

In every event it is possible that two top candidates are reconstructed. The

double tagging efficiency is defined as the fraction of fully hadronic events with two

top tags, with each tag being close to one of the two hadronically decaying top

quarks (∆R < 1.0). In figure 5.5(a), its dependence with respect to the average

top quark transverse momentum is shown. Contrary to what was observed for the

efficiency of tagging only one top quark, the double tagging efficiency relative to top

quarks with pT < 400 GeV decreases when the two top quarks are too close to each

other 5.5(b): the reconstruction of two large-R jets becomes unfeasible when the two

tops are too close.

5.1.2 MT2, the stransverse mass

The kinematic information given by two reconstructed HEPTopTagger candidates

is useful to construct a variable, called MT2 or stransverse mass [147–150], which

aims to extract information regarding the pair-produced particle mass: the t̃1 mass

in the current search.

In general, the mass of a decaying particle can be calculated if the four-momenta

of its daughters are known. If one of the decay products escape the detector, the

missing momentum in the transverse plane is the only information that can be used

to calculate the transverse mass of the original particle. For example, the transverse

mass of the W boson, which undergoes a leptonic decay W → `ν, is defined as:

MW
T ≡

√
(ET,` + ET,ν)2 − (~pT,` + ~pT,ν)2

=
√
m2
` +m2

ν + 2(ET,`ET,ν − ~pT,` · ~pT,ν) ,
(5.1)

where ET =
√
m2 + p2

T, m` (~pT,`) and mν (~pT,ν) are the masses (vectorial trans-

verse momenta) of the charged lepton ` and of the neutrino ν, respectively. The
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Figure 5.4: Distributions of the simulated (mt̃1 ,mχ̃0
1
) = (600, 1) GeV signal

sample. (a) Efficiency of tagging hadronically decaying top quarks with (without)
an isolation requirement marked with empty circles (filled triangles) as a function
of the generated top transverse momentum. Top-tagging efficiency as a function
of the angular distance between the top quark pair in each event for different
ranges of the generated top transverse momentum (b) and as a function of the
event missing transverse momentum (c). (d) Correlation of the generated missing
transverse momentum with respect to the angular distance between the two top
quarks; the mean of the ∆R distribution as a function of the missing transverse
momentum is overlaid as black points.
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Figure 5.5: Distributions of the simulated (mt̃1 ,mχ̃0
1
) = (600, 1) GeV signal

sample. (a) Efficiency of tagging both tops in events with two hadronically de-
caying top quarks with (without) an isolation requirement marked with empty
circles (filled triangles) as a function of the generated top transverse momentum.
Efficiency of tagging both tops as a function of the angular distance between the
top quark pair in each event for different ranges of the generated top transverse
momenta (b).

endpoint of the MW
T distribution is the W boson mass, MW

T ≤ mW . Since m` and

mν are negligible and ~pT,ν = ~Emiss
T , the equation 5.1 reduces to equation 4.1.

If the neutralino transverse momentum (~pT,χ̃0
1
) were known, the transverse mass

of the t̃1 particle, M t̃1
T , could be calculated after the reconstruction of the top quark

transverse momentum, ~pT,t. The same relation would be valid:M t̃1
T (~pT,t, ~pT,χ̃0

1
) ≤ mt̃1 .

However, in the all-hadronic channel under study, the particles escaping the

detectors are two neutralinos, χ̃0
1,a and χ̃0

1,b and their transverse momenta ~pT,χ̃0
1,a

and

~pT,χ̃0
1,b

cannot be individually assessed. The measured missing transverse momentum,
~Emiss

T , carries the information only of the sum of their transverse momenta:

~Emiss
T = ~pT,χ̃0

1,a
+ ~pT,χ̃0

1,b
. (5.2)

This constraint allows the construction of a quantity, MT2, which satisfies the rela-

tion MT2 ≤ mt̃1 . In fact, the (~pT,χ̃0
1,a
, ~pT,χ̃0

1,b
) parameter space is scanned with the

constraint stated in equation 5.2, and the maximum value between the squared t̃1
transverse masses, (M t̃1

T (~pT,t, ~pT,χ̃0
1,a

))2 and (M t̃1
T (~pT,t, ~pT,χ̃0

1,b
))2, is chosen. The min-

imum over several (~pT,χ̃0
1,a
, ~pT,χ̃0

1,b
) points is defined as M2

T2:

M2
T2 = min

~Emiss
T =~p

T,χ̃01,a
+~p

T,χ̃01,b

(
max

((
M t̃1

T (~pT,t, ~pT,χ̃0
1,a

)
)2
,
(
M t̃1

T (~pT,t, ~pT,χ̃0
1,b

)
)2
))

(5.3)

MT2 is derived under the assumption that both t̃1 squarks decay in the same

mode and under a χ̃0
1 mass hypothesis, chosen to be 1 GeV in this thesis for the MT2

calculation.
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5. Search for the direct pair production of the stop with the HEPTopTagger

The distribution of the generatedMT2 variable, constructed from the true missing

transverse momentum and the simulated top quark four-momenta, referred to as true

MT2, for different mt̃1 and mχ̃0
1

hypothesis is shown in figure 5.6. The samples with

the χ̃0
1 mass of 1 GeV, assumed also for the MT2 calculation, have an endpoint at

the generated t̃1 mass. If mχ̃0
1
> 1 GeV, the endpoint does not correspond any more

to the t̃1 mass and the distribution is shifted to lower values of MT2.
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Figure 5.6: Distribution of the generated MT2 for different signal models.

At the experimental level, the calculation of the MT2 profits from the recon-

struction of two HEPTopTagger candidates, which provide the top quark transverse

momenta and masses needed in equation 5.3.

The dependence of the double tagging efficiency as a function of the MT2 is

shown in figure 5.7(a). The correlation of MT2 with the angular distance between

the two top quarks is illustrated in figure 5.7(b). Similarly to the missing transverse

energy, on average the two top quarks are closer, the higher MT2 is, see figure 5.7(b).

Therefore, if one of the two generated top transverse momenta is below 400 GeV the

efficiency of tagging both quarks decreases with the increase of MT2 (figure 5.7(a)).
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Figure 5.7: Distributions of the simulated (mt̃1 ,mχ̃0
1
) = (600, 1) GeV signal

sample. (a) Efficiency of tagging both tops as a function of the MT2 calculated
from generator level observables. (b) Correlation of MT2 with respect to the
angular distance between the two top quarks (top1 and top2); the mean of the
∆R distribution as a function of MT2 is overlaid as black points.

5.1.3 MT2 resolution

The performance in the reconstruction of MT2 depends on the momentum resolu-

tion of the reconstructed top candidates. The HEPTopTagger reconstruction per-

formance is studied in the signal sample with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV by compar-

ing the candidate transverse momentum with respect to the associated generated

top quark (∆R(gen. top, top cand.) < 1.0). Only isolated hadronically decaying top

quarks with pT > 200 GeV are taken into account. The isolation criterion consists

of requiring that no other top quark is found within an angular separation of 2.

The distribution of the ratio between the reconstructed and the generated top

quark pT is given for different ranges of the generated top quark pT. The shape of

the distribution is Gaussian between 0.8 and 1.2 and contains approximately 85% of

the entries, but presents non-Gaussian tails outside this range. The mean and width

(σ) parameters of the Gaussian fit performed in the central part of the distribution

are shown in figure 5.8(a) and 5.8(b), respectively. The Gaussian mean is close to

one over most of the pT range. The resolution of the reconstructed top pT improves

with the increase in top pT.

If two top quarks are reconstructed, MT2 can be calculated. The comparison

between the reconstructed and true MT2 is shown in figure 5.9 for the signal sample

with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV. A Gaussian fit of the reconstructed and true MT2

ratio is performed: on average the reconstructed MT2 is close to the true value with

a resolution of approximately 7%.
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Figure 5.8: Distributions of the simulated (mt̃1 ,mχ̃0
1
) = (600, 1) GeV signal

sample. Gaussian fit mean (a) and standard deviation (b) of the distribution of
the reconstructed and generated top transverse momentum ratio as a function
of the generated top pT.
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Figure 5.9: Distribution of the generated and reconstructed MT2 ratio. Super-
imposed is the Gaussian fit with 0.984 mean value and 0.073 standard deviation.
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5.2. Object reconstruction and baseline event selection

5.2 Object reconstruction and baseline event se-

lection

The experimental signature for this search is characterised by large missing trans-

verse momentum and hadronic activity, reconstructed as C/A jets with R = 1.5 and

tagged by the HEPTopTagger. A baseline event selection in part identical to many

all-hadronic ATLAS supersymmmetric searches is applied. In particular the baseline

selection of this analysis is similar to the ATLAS one, published with data collected

at
√
s = 8 TeV, targeting at the same signal process (direct stop pair production)

in the all hadronic final state [7].

An integrated luminosity of 20 fb−1 of data is collected by a missing transverse

energy trigger. The first level trigger selects events for which transverse vector sum

of all trigger towers is larger than 40 GeV. Afterwards, events having an HLT miss-

ing transverse energy larger than 80 GeV, calculated using the vector sum of the

calibrated clusters of calorimeter cells, are used for the analysis. This trigger reaches

an efficiency greater than 98% for an offline reconstructed Emiss
T of at least 150 GeV,

as can be seen from figure 5.10.
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Figure 5.10: In red, simulated 2012 Emiss
T trigger efficiency in a direct stop

pair production sample for selected events with muon and electron veto and
one large-R jet with pT > 200 GeV. The lowest unprescaled Emiss

T trigger chain
consists in Emiss

T > 80 GeV at the EF level, Emiss
T > 45 GeV at L2 and Emiss

T >
40 GeV at L1. The offline Emiss

T distribution for the direct stop pair production
is overlaid as a black line.

In addition to the quality requirements described in section 4.1.2, events with

muons not originating from the interaction point, which might also be coming from

cosmic rays, are discarded.
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5.2.1 Monte Carlo samples

The simulation is used to describe the background and the signal distributions in

this analysis. The background consists of processes characterised by the presence of

large missing transverse energy and hadronic activity. These are:

• tt̄→ (lνb)(qqb): l = e, µ, τ ;

• V+jets: V = Z,W vector boson produced in association with jets;

• single top;

• V V : (ZZ, WW , ZW ) diboson production;

• tt̄V : associated production of a top quark pair and a vector boson.

The tt̄ contribution in the fully hadronic final state is found negligible in this

analysis.

The signal samples are generated according to the simplified model approach:

the direct production of a stop pair is simulated in the t̃1 → tχ̃0
1 decay mode, with

100% branching ratio. The stop mass and the neutralino mass are the only free

parameters of the model, and define univocally the signal sample. A collection of

signal samples is generated covering a grid in the stop-neutralino mass plane, with

stop mass ranging from 250 to 800 GeV with 50 GeV spacing and neutralino masses

mχ̃0
1
≥ 1 GeV with 50 GeV spacing, such that mt̃1 −mχ̃0

1
> mt.

The detailed description of the MC settings (the generator, the parton shower,

the underlying event modelling, and the set of PDFs), used to produce the samples,

are described in section 2.6.

A preliminary comparison between the data and the MC expectation is per-

formed in control regions, and the SM background yield is normalised to the theory

cross sections. The full cross section description is given in section 2.6.

5.2.2 Object reconstruction

Electron and muon candidates, small-R jets which may be b-tagged, large-R jets

and missing transverse momentum are the objects used in this analysis. Their re-

construction proceeds as explained in section 2.5. The main object requirements are

summarised in table 5.1.

The overlap between reconstructed electrons, muons and jets is removed by con-

sidering the angular distance between the leptons and the jets. If a muon is found

to be angularly close to the jet, ∆R(µ, jet) < 0.4 the first is discarded. An electron

is rejected if its separation from a jet is 0.2 < ∆R(e, jet) < 0.4 or if it is close to a

b-tagged jet with ∆R(e, jet) < 0.2. Otherwise the calorimetric object is considered

to be an electron.
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muon pµT > 10 GeV

loose electron Ee
T > 10 GeV

small-R = 0.4 anti-kt jet pT > 35 GeV

small-R = 0.4 anti-kt (b-)jet |η| < 2.8 (2.5)

large-R = 1.5 C/A jet pT > 200 GeV

large-R = 1.5 C/A jet |η| < 2.0

Emiss
T > 150 GeV

Table 5.1: Main selection criteria for the object reconstruction.

5.2.3 Baseline selection

In order to select only events with hadronically decaying top quarks, those events

containing reconstructed electrons or muons are vetoed (Ne = 0 and Nµ = 0, being

Ne and Nµ the number of reconstructed electrons and muons, respectively). The

selected event fraction corresponds approximately to 60% of the total signal events.

The minimal offline Emiss
T requirement consistent with the plateau region of the

Emiss
T trigger is 150 GeV. This reduces the fraction of signal events to 50%, with

(mt̃1 ,mχ̃0
1
) = (600, 1) GeV. This Emiss

T requirement reduces the multijet background.

However, a consistent fraction of multijet events are characterised by fake Emiss
T . If

the reconstructed four-vector of a jet is mis-measured, a fake transverse momentum

imbalance could lead to the selection of the multijet event. The jet term of equation

2.5 is the dominant component of the Emiss
T calculation in such events characterised

mainly by hadronic activity. Thus, the missing transverse momentum is most prob-

ably aligned with one of the highest-pT small-R jets of the event. The absolute value

of the jet-Emiss
T angular separation, ∆φ, being the difference between the φ azimuthal

angles of ~Emiss
T and of each of the three pT-leading small-R jets, jet0, jet1 and jet2, is

small for multijet events, as can be seen in figure 5.11(a) and 5.11(b) for the second-

and third-leading jet (jet1 and jet2). The ∆φ distribution is different for the signal

process where the reconstructed missing transverse momentum is mainly due to par-

ticles escaping the detector. Thus, the missing transverse momentum is not aligned

with the three leading small-R jets. The requirement |∆φ(jet0,1,2, ~Emiss
T )| > π/5 re-

jects most of the multijet background with a small impact on the signal acceptance.

The Standard Model background sources, which are left after the previous se-

lection, are composed of those processes which are characterised by large missing

transverse energy and hadronic activity. One of the major contributions is given by

tt̄→ (lνb)(qqb), where l is most likely a τ lepton. The production of a vector boson

(W or Z) in association with jets, or with tt̄, contributes to the background pre-

dominantly in the Z → νν and W → τν channels. Finally, single top and diboson

production processes are the remaining background sources.

C/A R = 1.5 jets are reconstructed and calibrated. The pT distribution of the

leading large-R jet is shown in figure 5.12(a). For low pT large-R jets, the main detec-

tor systematic uncertainty is due to the small-R jet energy scale, which has an impact
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Figure 5.11: Distributions of the azimuthal angular distance between the di-
rection of the missing transverse momentum and the second-leading (a) and

third-leading (b) small-R jet pT. The requirement of |∆φ(jet0, ~Emiss
T )| > π/5 and

|∆φ(jet0,1, ~Emiss
T )| > π/5 is applied to obtain the distribution in (a) and (b), re-

spectively. The SM background prediction is represented as a stacked histogram
while the data distribution is overlaid as black points. The signal expectation
for the sample with (mt̃1 ,mχ̃0

1
) = (600, 1) GeV is multiplied by a factor reported

in the legend to improve visibility and is represented by a red dashed line. The
lower panel shows the ratio between the data and the SM prediction and overlaid
is the impact of the systematic and statistical uncertainties added in quadrature.

on the Emiss
T reconstruction. On the contrary, the large-R jet energy scale uncertainty

increases with the jet pT, as described in section 4.3.2 concerning figure 4.8(a). The

SM background pT distribution is characterised by a steeply falling spectrum, while

the signal pT distribution has its maximum at approximately plarge-R jet
T ∼ 350 GeV.

Events containing a leading large-R jet with plarge-R jet
T > 280 GeV are selected.

Approximately 25% of the so-far-selected signal events are rejected after this pT

requirement .

The missing transverse energy distributions in figure 5.12(b) have similar features

to the leading large-R jet pT. While the background is mainly characterised by low

Emiss
T , large missing transverse energy identifies signal events.

Two hadronically decaying top quarks are produced in a signal event. Thus, it

can happen that a second large-R jet is reconstructed. Its pT distribution can be

seen in figure 5.12(c). The sub-leading large-R jet has low transverse momentum for

both signal and background processes.

The dominant background components before the requirement of a reconstructed

HEPTopTagger candidate are Z+jets, W+jets, tt̄, which contribute 35%, 35% and

21%, respectively, to the total expected background. After requiring the leading

large-R jet to be tagged, the multijet background contribution becomes negligible,

the tt̄ becomes the dominant one, followed by Z+jets and W+jets. The percentage

contributions of the different processes after the requirement of the leading large-R
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Figure 5.12: Distributions of the transverse momentum of the highest-pT

large-R jet (a), of Emiss
T (b), of the transverse momentum of the second highest-

pT large-R jet (if reconstructed) (c), and of the top quark candidate mass re-
constructed by the HEPTopTagger (d). The requirement on the top candidate
mass window is not applied in figure (d). The style convention is identical to
figure 5.11.
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5. Search for the direct pair production of the stop with the HEPTopTagger

Process
Composition Composition

pre-tag post-tag

Z+jets 35% 18%

W+jets 35% 16%

tt̄ 21% 60%

multijet 4% 1%

Single top 2% 3%

V V 2% 2%

tt̄ V < 1% < 1%

total expected events in 20 fb−1 ∼ 28× 103 ∼ 3× 103

Table 5.2: Relative contribution of different background sources express in
percentage after the quality, the trigger, the missing transverse energy and the
large-R jet requirements, referred to as pre-tag. Concerning the post-tag col-
umn the additional requirement of a reconstructed HEPTopTagger candidate is
applied. The sum of the contributions is 100%.

jet pT to be greater than 280 GeV, pre-tag, and after an HEPTopTagger candidate

is found in the event, post-tag, are shown in table 5.2.

The HEPTopTagger candidate mass distribution, reconstructed from the con-

stituents of the leading large-R jet, is shown in figure 5.12(d). The signal distri-

bution peaks at the top quark mass with a full width at half maximum of about

30 GeV, similarly to the tt̄ background, where a hadronically decaying top quark

is reconstructed. The distributions of W+jets and Z+jets which do not contain

any top quark decay are characterised by a broader structure. In this analysis, the

arctan(m13/m12) is required to be in the range (0.3, 1.2), with respect to what

was described in section 3.1, as it leads to a reduction of the non-top quark back-

ground with a negligible effect on the signal efficiency. The large-R jet is tagged by

the HEPTopTagger, if the top candidate mass is within the (140, 210) GeV mass

window.

The baseline requirements are summarised in table 5.3 with the corresponding

efficiency loss for the signal sample with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV. Events with final

state top quarks decaying semileptonically are included. The main reduction of the

signal acceptance is given as expected by the lepton veto, and by the requirement of a

reconstructed HEPTopTagger candidate. Concerning the (mt̃1 ,mχ̃0
1
) = (600, 1) GeV

signal sample, the signal rate is approximately reduced by a factor of ten.
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5.3. Analysis strategy

Selection
Fraction of events

(mt̃1 ,mχ̃0
1
) = (600, 1) GeV

Quality requirements 98%

Ne = 0 & Nµ = 0 61%

Emiss
T trigger 57%

Emiss
T > 150 GeV 50%

|∆φ(jet0,1,2, ~Emiss
T )| > π/5 42%

large-R jet, pT > 280 GeV 33%

HEPTopTagger candidate pT > 200 GeV 13%

Table 5.3: Baseline selection criteria with the corresponding fraction of selected
events (always with respect to the total events in the signal sample including
those with final state top quarks decaying semileptonically.). The signal sample
considered has (mt̃1 ,mχ̃0

1
) = (600, 1) GeV. For each row, the left column selection

criteria in upper rows are applied in logical conjunction (AND).

5.3 Analysis strategy

The signature of the signal process is similar to other SM processes with much

larger cross sections. A tight selection has to be applied in order to maximise the

sensitivity of this search. Regions of phase space are defined to select a significant

excess of predicted signal events with respect to the expected background. These

signal regions (SRs) are described in section 5.3.1.

Two approaches are taken into account to estimate the background, as explained

in section 5.3.2. The contribution to the SRs of those SM processes with a small cross

section is predicted by the simulation yields normalised to the theory cross section. A

more robust approach is used to estimate the impact of the main background sources:

tt̄ and V+jets. Control regions (CRs) enriched in these types of processes are defined

in order to extract normalisation factors by comparing the data and the simulated

distributions. Systematic uncertainties related to these background sources are then

constrained in these regions. The outcome of the background estimation is probed in

validation regions (VRs), defined to be kinematically close to the SRs, as described

in section 5.3.3.

A likelihood fit is performed to test the background-only hypothesis or the signal-

plus-background hypothesis and to extract the final result. The contribution of signal

and background processes are simultaneously taken into account in the three differ-

ent types of regions. Normalisation factors for simulated background processes and

constraints on systematic uncertainties are extracted from the fit. The fit and the

hypothesis testing are described in section 5.4.
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5. Search for the direct pair production of the stop with the HEPTopTagger

5.3.1 Signal regions

The search for the fully hadronic final state of the t̃1 → tχ̃0
1 pair production, where

the t̃1 is heavy and much heavier than the χ̃0
1 , can benefit significantly by the selec-

tion of events with large MT2. The discrimination power of this variable is illustrated

in figure 5.13, where the background distribution represented by the tt̄→ (lνb)(qqb)

process is compared to several signal samples. The majority of tt̄ background events

can be rejected by requiring MT2 > 300 GeV while keeping a large fraction of signal

events. Moreover, the larger the ∆m(t̃1, χ̃
0
1) mass difference is, the more substantial

the separation between the signal and the background distributions results.
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Figure 5.13: Distribution of the reconstructed MT2 for events of different signal
models containing two hadronically decaying top quarks and for events of the
tt̄→ (lνb)(qqb) background.

The MT2 calculation requires the four-momentum reconstruction of two top

quarks, provided by the HEPTopTagger. However, it can be noticed in figure 5.14(a)

that the fraction of selected signal events is largely reduced after the requirement

of two top tags. Most of the sub-leading top quark transverse momenta are below

200 GeV for small t̃1 masses (mt̃1 ∼< 400 GeV), while they mainly have pT between

100 and 300 GeV for mt̃1 ∼ 600−700 GeV, see figure 5.14(b). Only those signal sam-

ples with large t̃1 masses, mt̃1 ∼> 700 GeV, have the majority of the events with both

top quarks boosted enough to have chances of being tagged by the HEPTopTagger.

The experimental sensitivity to the t̃1 pair production can be enhanced by tak-

ing into account also events where only one top tag is reconstructed. Three signal

regions, differing in the number of reconstructed large-R jets and top candidates, are

then defined: the first, SR1, composed of events with two top-tagged large-R jets;

the second, SR2, with two large-R jets of which exclusively one is top-tagged; and

the third, SR3, with exclusively one large-R jet, which is top-tagged. The SRs are

separately optimized using additional variables in order to reduce the background
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5.3.1. Signal regions
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Figure 5.14: Distributions of the number of HEPTopTagger candidates (a) and
of the minimum generated pT top quark (b) for events of different signal models
containing two hadronically decaying top quarks.

contamination and enhance the ratio S/
√
B, where S is the number of signal events

and B the number of expected background events.

Two HEPTopTagger candidates: signal region SR1

The first event category, referred to as SR1, is selected by requiring two reconstructed

HEPTopTagger top candidates. The leading large-R jet as input to the algorithm

is required to have pT > 280 GeV and the sub-leading is required to have pT >

200 GeV. Their four-momenta are used to calculate the MT2 variable. Events with

Emiss
T > 275 GeV and MT2 > 300 GeV are kept. The signal acceptance of SR1 is

0.7% in the signal sample with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV.

The distributions of the missing transverse energy and the MT2 are shown in

figure 5.15.

Single HEPTopTagger candidate and a second large-R jet: signal region
SR2

For those events where the leading top quark is moderately boosted, pT > 300 GeV,

and the transverse momentum of the subleading one is slightly higher than 200 GeV,

it is rather unlikely that both top quarks are reconstructed. These events can be

selected by requiring one top candidate corresponding to one generated top and

an untagged large-R jet originating from some decay products of the other gener-

ated top quark. Events belong to the second signal region, SR2, if they contain at

least two reconstructed large-R jets, one with pT > 280 GeV and the other with

pT > 200 GeV, and only one of them is top-tagged.

The requirement of only one HEPTopTagger candidate does not provide enough

rejection power to be sensitive to the signal process. The presence of a b-tagged

small-R jet is additionally required. Most of the Z+jets and W+jets events,
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Figure 5.15: SR1 distributions of Emiss
T (a) and MT2 (b). The SM background

prediction is represented as a stacked histogram with an error band of the sim-
ulation statistical uncertainty while the data distribution is overlaid as black
points. The signal expectation for the sample with (mt̃1 ,mχ̃0

1
) = (600, 1) GeV is

represented by a red dashed line.

which mainly do not have b-tagged jets, are rejected. The transverse mass,

Mb,min
T =

√
2pbTE

miss
T (1− cos ∆φ(~p b

T ,
~Emiss

T )), calculated from the missing transverse

momentum and the pT of the b-tagged jet, pbT, with the smallest azimuthal sep-

aration from ~Emiss
T , is a useful discriminating variable to diminish the dominant

tt̄ → (lνb)(qqb) background contribution. A large fraction of tt̄ events are charac-

terised by Mb,min
T values peaking below the top quark mass, while signal events have

largeMb,min
T values, as can be seen in figure 5.16. Only events withMb,min

T > 175 GeV
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Figure 5.16: Mb,min
T distribution of events passing the baseline selection to-

gether with the requirement of a b-tagged jet. The style convention is identical
to figure 5.11.

and with moderately large missing transverse momentum, Emiss
T > 275 GeV,
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5.3.1. Signal regions

are selected. The signal acceptance for SR2 is 3.1% for a signal sample with

(mt̃1 ,mχ̃0
1
) = (600, 1) GeV.

The distributions of the missing transverse energy and of the top candidate mass

in SR2 are shown in figure 5.17(a) and 5.17(b), respectively.
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Figure 5.17: SR2 distributions of Emiss
T (a) and the HEPTopTagger candidate

mass (b). The style convention is identical to figure 5.15.

Single large-R jet tagged by the HEPTopTagger: signal region SR3

If the sub-leading top quark has a transverse momentum even lower than 200 GeV,

it can happen that no large-R jet can originate from its decay and the signature is

characterised by only one tagged large-R jet associated to the leading top quark. The

signature with only one reconstructed and tagged large-R jet per event occurs also if

the two tops are so close to each other (∆R < 2.0) that only one large-R jet can be

reconstructed. If one large-R jet is exclusively reconstructed and has pT > 280 GeV,

the event might be selected for the third signal region, SR3. The Mb,min
T and b-tagged

jet requirements are the same as in SR2. However, the Emiss
T selection criterion is

tightened to reduce the background that in SR2 was rejected by the second large-R

jet requirement. Only events with Emiss
T > 400 GeV are selected for SR3.

The fraction of selected signal events in SR3 is 2.2% in a signal sample with

(mt̃1 ,mχ̃0
1
) = (600, 1) GeV. The missing transverse energy and the top candidate

mass distributions for SR3 are shown in figure 5.18.
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Figure 5.18: SR3 distributions of Emiss
T (a) and the HEPTopTagger candidate

mass (b). The style convention is identical to figure 5.15.

The requirements of the three signal regions are summarised in table 5.4. The

fraction of the events selected by the union of SR1, SR2, and SR3 is 6% in the signal

sample with (mt̃1 ,mχ̃0
1
) = (600, 1) GeV, and 12% with (mt̃1 ,mχ̃0

1
) = (800, 1) GeV.

SR1 SR2 SR3

Nlarge-R jet ≥ 2 ≥ 2 = 1

N cand.
top ≥ 2 = 1 = 1

Emiss
T ≥ 275 GeV ≥ 275 GeV ≥ 400 GeV

MT2 ≥ 300 GeV – –

Nb-jets ≥ 0 ≥ 1 ≥ 1

Mb,min
T – ≥ 175 GeV ≥ 175 GeV

Table 5.4: Summary of the selection criteria specific to each signal region.

In table 5.5, the number of observed events in each SR is compared to the

expected number events, obtained from the normalisation of the processes to the

theory cross section. Good agreement between the data and the SM expectation

is observed. Since no significant data excess is found, a statistical evaluation is

performed in section 5.7 aiming to set exclusion limits at 95% confidence level in

the (mt̃1 ,mχ̃0
1
) parameter space.

5.3.2 Background estimation

The tt̄ → (lνb)(qqb) process constitutes the main background component in the

three signal regions. If two top candidates are reconstructed as in SR1, the other

irreducible background is the associated production of two top quarks with a Z

decaying into a neutrino pair: the signature of tt̄Z is large missing transverse energy

and two top quarks. If only one top candidate is reconstructed (SR2 and SR3),
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5.3.2. Background estimation

Event number class SR1 SR2 SR3

Observed 2 30 39

SM MC expected 1.33 30.24 34.96

Expected signal (600, 1) GeV 3.55 15.63 11.26

Table 5.5: Event yields in each signal region (SR1, SR2, and SR3). The observed
events are reported together with the expected SM background events. The
expected signal events for one signal model with (mt̃1 ,mχ̃0

1
) = (600, 1) GeV are

presented.

Z+jets, W+jets and the single top production have a non-negligible contribution to

the background.

The contribution of low cross section processes, like tt̄V , single top and dibo-

son, are evaluated by means of simulation. On the other hand, a semi-data-driven

approach can be used to estimate the expected contribution of background sources

like tt̄ and V+jets (where V = Z,W ), characterised by a large cross section. This

method consists in employing the simulation to predict the background shape, while

normalisation factors are extracted by comparing the number of simulated events

to the data ones in control regions. This comparison allows the reduction of the

background systematic uncertainties in the signal regions by constraining them in

the control regions. The orthogonality to the signal regions and the enhancement

of a specific background process with negligible signal contamination are the main

aspects to consider in the definition of CRs. Moreover, a compromise has to be found

in defining the CR event selection: it should contain enough events to result in a

small statistical uncertainty on the background prediction, but at the same time it

should be kinematically close to the SR.

Despite of being enriched in a specific process, a CR might present contamina-

tion from other processes with normalisation factors to be derived from other CRs.

Therefore a fit is performed on all these regions simultaneously in order to take into

account the cross contamination.

Three CRs are defined to estimate the tt̄ and V+jets background processes. These

are described in the following and their selection requirements are summarised in

table 5.6.

The contribution from multijet processes due to misidentified top quarks is found

to be negligible when large Emiss
T is required in association with two top tags, or one

top tag and one b-tagged jet.

V+jets control region

The baseline requirements of section 5.2.3, apart from the HEPTopTagger candidate

requirement, are applied in order to define the control region enriched in Z+jets and

W+jets events. Thus, events with at least one large-R jet with pT > 280 GeV are
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5. Search for the direct pair production of the stop with the HEPTopTagger

V+jets CR tt̄ CR µ +jets CR

Trigger Emiss
T Emiss

T muon trigger

N` 0 0 1 (` = µ)

Emiss
T ∈ (150, 275) GeV ∈ (150, 275) GeV > 150 GeV

|∆φ(jet0,1,2, ~Emiss
T )| > π/5 > π/5 –

N b-jet =0 ≥ 1 ≥ 0

Mb,min
T – > 100 GeV –

leading large-R jet pT > 280 GeV > 280 GeV > 280 GeV

HEPTopTagger candidate inverted default default

candidate mass ∈ (120, 240) GeV ∈ (120, 240) GeV ∈ (120, 240) GeV

Table 5.6: Selection criteria of the control regions defined to estimate the back-
ground of: associated production of a vector boson with jets in the V+jets CR;
top quark pair production in the tt̄ CR; tt̄ → (lνb)(qqb) and W+jets processes
in the µ+jets CR. The HEPTopTagger candidate type is either the default one
(explained in sections 5.2.3 and 3.1) or inverted if the requirements on the mass
ratio variables arctan(m13/m12) and m23/m123 are complementary to the default
ones, see figure 5.19(a).

selected. The orthogonality to the signal regions is respected with the requirement

that the missing transverse momentum does not exceed 275 GeV.

As described in section 3.1, after the three exclusive subjets are reconstructed,

the candidate is considered a top quark, if its subjet mass ratio variables lie in the

A-shaped region of the arctan(m13/m12) and m23/m123 plane of figure 3.3, and if

its mass is close to the top quark mass. The first requirement is very effective in

rejecting large-R jets originating from light-quark/gluon hadronization. The ma-

jority of the V+jets events populate the low arctan(m13/m12) and low m23/m123

phase space, as can be seen in figure 5.19(a). A V+jets event purity of about 80%

is achieved by vetoing b-tagged jets and inverting the HEPTopTagger requirements

on the variables arctan(m13/m12) and m23/m123, and thus enhancing the selection

of fake top quarks. In particular, only selected regions in the arctan(m13/m12) and

m23/m123 plane are considered, as illustrated by the black boxes of figure 5.19(a).

The fake candidate selection, also referred to as inverted selection, is optimized to

have negligible contribution from multi-jet events and to be kinematically close but

complementary to the default top candidate selection. Events with the mass of the

HEPTopTagger fake-top candidate (also referred to as pre-candidate) between 120

and 240 GeV are considered for the V+jets control region. The main variables used

to define the CR, which are the fake-top candidate mass, the subjet mass ratio vari-

ables arctan(m13/m12) and m23/m123, the missing transverse energy and the large-R

jet transverse momentum are well described by the simulation within the statistical

and systematic uncertainties, as shown in figures 5.19(b)-(f).
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Figure 5.19: (a) Two-dimensional distribution of m23/m123 versus
arctan(m13/m12) in the Z+jets background process. Overlaid are black squares
which identify the part of the phase space used to define the inverted selec-
tion for the fake candidate reconstruction. V+jets CR distributions respec-
tively of the mass (b), arctan(m13/m12) (c) and m23/m123 (d) reconstructed
by the HEPTopTagger with the requirements of the inverted selection in the
(arctan(m13/m12), m23/m123) plane. Distributions of Emiss

T (e) and of the high-
est transverse momentum large-R jet pT (f). The style convention is identical to
figure 5.11.
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5. Search for the direct pair production of the stop with the HEPTopTagger

tt̄ control region

The tt̄ CR selection criteria are similar to the SR2 and SR3 ones. After the baseline

selection of section 5.2.3, with a looser requirement on the top candidate mass,

required within (120, 240) GeV, events with at least one b-tagged small-R jet and

a top tagged large-R jet with pT > 280 GeV are taken into account. A highly pure

sample of tt̄ events is selected, by loosening the Mb,min
T lower limit down to 100 GeV.

As for the V+jets control region, the orthogonality to the signal regions is

achieved by taking into account events with moderate missing transverse energy,

between 150 and 275 GeV, figure 5.20(a). The distributions of Mb,min
T , of the tagged

large-R jet pT and the HEPTopTagger variables are shown in figures 5.20(b)-(f).

The tt̄ simulation performs well in describing the data distributions.

µ+jets control region

An additional control region, called µ+jets, is taken into account. Its goal is to

mimic the background of the signal regions and to reduce the uncertainty of the

background normalisation factors by its inclusion in the simultaneous fit. The SR

background contains at least one hadronically decaying top candidate, and other

hadronic activity which is reconstructed as another large-R jet or a b-tagged jet.

This hadronic activity in the case of tt̄→ (lνb)(qqb) and W+jets processes is often

characterised by the presence of hadronically decaying τ leptons. The µ+jets CR

aims to select the tt̄→ (lνb)(qqb) and W+jets processes in which a muon is produced

instead of a τ .

The baseline selection for the events in this region is defined according to the

muon channel strategy of chapter 4. Events are required to have one isolated muon

with pT > 25 GeV, moderate Emiss
T , a small-R jet close to the muon, and a re-

constructed large-R jet, tagged by the HEPTopTagger with mass between 120 and

240 GeV. The requirement of a b-tagged small-R jet is excluded, in order to have a

non-negligible contribution from W+jets.

In addition to this baseline selection, stringent requirements are applied on

the pT of the large-R jet, pT > 280 GeV, and on the missing transverse energy,

Emiss
T > 150 GeV, to be closer to the SRs. The data missing transverse energy

distribution, shown in figure 5.21(a), is well described by simulation within the sys-

tematic uncertainties. A small overestimation of the expected events with respect to

the data is observed in the high pT region tails of the muon transverse momentum in

figure 5.21(b), and of the leading large-R jet pT in figure 5.21(c). At high muon and

large-R jet pT the impact of the total systematic uncertainty increases comparing

to the low pT region. This slight disagreement with respect to the data is within the

total systematic uncertainty. The top candidate mass distribution in figure 5.21(d)

is characterised by the clear mass peak from hadronically decaying top quarks over

a flat background distribution of W+jets events. Overall good agreement between

data and MC prediction is observed.
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Figure 5.20: tt̄ CR distributions of Emiss
T (a), of Mb,min

T (b) and of the high-
est transverse momentum large-R jet pT (c). tt̄ CR distributions respectively
of the mass (d), arctan(m13/m12) (e) and m23/m123 (f) reconstructed by the
HEPTopTagger. The style convention is identical to figure 5.11.

109



5. Search for the direct pair production of the stop with the HEPTopTagger

The SM background in this CR is composed of approximately 80% of tt̄ →
(lνb)(qqb) events and 15% W+jets events, with a small remaining contribution from

single top and diboson processes.
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Figure 5.21: µ+jets CR distributions respectively of Emiss
T (a), of the muon

transverse momentum (b), of the highest transverse momentum large-R jet pT

(c) and of the top candidate mass (d). The SM background prediction is rep-
resented as a stacked histogram while the data distribution is overlaid as black
points. The lower panel shows the ratio between the data and the SM prediction
and overlaid is the impact of the systematic and statistical uncertainties added
in quadrature.

5.3.3 Validation regions

In addition to the CR and the SR, a third class of events is collected in the validation

region (VR). Its selection criteria are kinematically closer to the SR than the CR.

In fact, the purpose of this region of phase space is to validate the background

estimation, by verifying in this intermediate step the extrapolation of the background

from the CR to the SR. Two validation regions are considered. The first (called
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“2 HTTs VR”) is defined to be close to SR1, by requiring two top candidates.

These candidates can either be selected through the default top candidate definition

or the inverted definition. This enhances the number of selected events, reducing

the statistical uncertainty. The orthogonality with respect to SR1 is achieved by

inverting the missing transverse energy requirement: events with Emiss
T in the range

150 − 275 GeV are selected. The MT2 distribution in this VR is shown in figure

5.22(a). Compatibility between the data and the SM expectation is observed.

The second VR (called “1 HTT VR”) selects events kinematically close to the

union of SR2 and SR3, but is orthogonal to the two SRs by requiring the single

HEPTopTagger candidate for each event to be selected with the inverted candidate

criteria. The missing transverse energy is required to be larger than 275 GeV as in

SR2 and is displayed in figure 5.22(b). At high Emiss
T an overestimation of the SM

expectation with respect to the data is observed. This might be due to statistical

fluctuation or overestimation of the small-R jet energy scale at high energies.
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Figure 5.22: MT2 distribution in 2 HTTs VR (a) Emiss
T distribution in 1 HTT

VR (b). The style convention is identical to figure 5.11.

5.4 Statistical hypothesis testing

The goal of this analysis is to look for the top quark’s supersymmetric partner. The

observed data events might lead to the discovery or the exclusion of the signal pres-

ence. It is important to determine the consistency of the Standard Model hypothesis

or the SUSY signal hypothesis given the experimental measurement.

This issue can be addressed with a hypothesis testing statistical tool. The main

concepts [151, 152] relevant for this analysis are introduced in this section.

The background-only hypothesis is that the SM is the theory expected to be

true and to govern the outcome of the data. It is complemented to an alternative

hypothesis, consisting in the assumption of the presence of new particles, in this case

the t̃1 and χ̃0
1 , predicted by SUSY models. This signal-plus-background hypothesis
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5. Search for the direct pair production of the stop with the HEPTopTagger

depends on a free parameter, which is the signal strength µS. It is a normalisation

factor applied to the nominal cross section of the signal. The signal-plus-background

hypothesis concerning the nominal signal expectation corresponds to µS = 1. The

background-only hypothesis corresponds to µS = 0.

A scalar quantity, called test statistic qµHS , is needed for the hypothesis testing

in order to evaluate the compatibility of the observed measurement n with an hy-

pothesis characterised by a specific µH
S . Here the “H” superscript indicates that µH

S

corresponds to the hypothesis undergoing test.

If the generic output of a measurement is given by a binned distribution with N

bins, the expectation value of the observed data in bin i is the sum of the expected

background events in bin i, bi, and the expected signal events in bin i, si, times the

signal strength: µSsi + bi. The background and signal expectation may depend on

a set of nuisance parameters θθθ: si = si(θθθ) and bi = bi(θθθ). Given the observed data

distribution, n = (n1, n2, · · ·nN), the likelihood function is defined as the product of

the Poisson probabilities of observing ni given the expectation value µSsi(θθθ) + bi(θθθ):

L(n|µS, θθθ) =
N∏
i=1

(µSsi + bi)
ni

ni!
e−(µSsi+bi),

which depends on the signal strength µS and on the nuisance parameters θθθ.

The optimal choice for qµHS , as stated by the Neyman-Pearson lemma, is based

on the likelihood ratio,

qµHS = −2 ln(Q(µH
S )), with Q(µH

S ) =
L(n|µH

S ,
ˆ̂
θθθ)

L(n|µ̂S, θ̂θθ)
(5.4)

where the numerator and the denominator likelihoods are maximised separately by

means of a fit procedure on the data distribution nnn. The set
ˆ̂
θθθ corresponds to the

maximum likelihood estimator of θθθ, namely
ˆ̂
θθθ is the set of values of the nuisance

parameter set θθθ maximising the numerator likelihood, given a fixed µH
S . The denom-

inator, instead, is maximised with respect to µS and θθθ: µ̂S and θ̂θθ are the values of

µS and θθθ which maximise the denominator likelihood.

The profile likelihood ratio Q(µH
S ) ranges between 0 and 1. In fact, the condition

L(n|µH
S ,

ˆ̂
θθθ) ≤ L(n|µ̂S, θ̂θθ) is always true because when the hypothesised µH

S is equal

to the free parameter optimal choice µ̂S, which maximises L(n|µ̂S, θ̂θθ), the two likeli-

hoods have similar values and their ratio is close to 1. Since µ̂S is the result of the fit

over the data distribution, the likelihood ratio close to 1 means that there is com-

patibility between the hypothesis, defined by the value µH
S , and the data, connected

to the best choice µ̂S profiled on the measurement. On the contrary, if µ̂S and µH
S are

very different, i.e. the data and the hypothesis are incompatible, the denominator

maximised by the value µ̂S is greater than the numerator where µH
S is fixed, and

thus the ratio Q(µH
S ) is close to 0. Consequently, the larger the test qµHS , the more

incompatible the hypothesis, defined by the µH
S value, is with respect to the data.
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5.4. Statistical hypothesis testing

To proceed with the hypothesis testing, the probability density function of qµHS ,

g(qµHS |µS), has to be calculated with respect to the hypothesis, described by the

value µS, which is assumed in the distribution of the data. For example, as in the

case of limit exclusion, the nominal signal-plus-background hypothesis is tested and

the test statistic is q1 (with µH
S = 1). The distributions g(q1|µS = 1) and g(q1|µS =

0) are derived. They represent the probability density functions with respect to

the variable q1 under the hypothesis that the data are described by the signal-

plus-background hypothesis or the background-only hypothesis, respectively. The

g(qµHS |µS) distribution is obtained by multiple pseudo-experiments or, according to

the Wilks’ theorem [153], it follows a χ2 distribution in the case of a large statistics

data sample (called the asymptotic regime).

Discovery, p-value and expected significance

To quantify the discrepancy between the measurement and an hypothesis, the

p-value is computed.
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Figure 5.23: Example distribution of the q test statistic probability density
function under the background-only hypothesis (red curve) and signal-plus-
background hypothesis (blue line). The filled red area represent the observed
p-value, while the small blue shaded area represent the expected p-value.

As represented in figure 5.23, the p-value, p0, expresses the probability of mea-

suring a value of q0 greater or equal than the observed qobs
0 under the assumption of

background-only hypothesis to be true:

p0 =

∫ ∞
qobs0

g(q0|µS = 0) dq0 (5.5)

This value estimates the probability of having an excess of events with respect to

the background-only expectation, given that the corresponding hypothesis is true.
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5. Search for the direct pair production of the stop with the HEPTopTagger

The p-value is used to quantify a discovery. The background-only hypothesis is

rejected if the p0 is smaller than 2.87× 10−7, equivalent to 5σ significance.

In order to evaluate the discovery sensitivity of a test, it is useful to know its

expected significance. This indicates the expected deviation from the background-

only hypothesis, under the assumption that the signal-plus-background hypothesis

is true. The p-value, pexp
0 , calculated with respect to the median of g(q0|µS = 1),

instead of qobs
0 in equation 5.5, is the expected confidence level and gives information

on the expected significance. Here g(q0|µS = 1) represents the probability density

function of the test statistic q0 under the assumption of the signal-plus-background

hypothesis with nominal signal strength.

Hypothesis exclusion

Similarly, the p-value, p1, is calculated with respect to the signal-plus-background

hypothesis with the signal cross section as predicted by the theory, µS = 1:

p1 =

∫ +∞

qobs1

g(q1|µS = 1) dq1. (5.6)

It quantifies the probability of excluding a signal hypothesis. For example, a

p-value threshold of 5%, p1 < 0.05, corresponds to a 95% confidence level (CL).

The expected significance of a test in the case of exclusion limits is related to

the expected p-value, pexp
1 . This is defined as:

pexp
1 =

∫ +∞

qexp1

g(q1|µS = 1) dq1 (5.7)

where qexp
1 is the median of the background-only hypothesis probability density

function. Having pexp
1 small suggests that, in case the background-only hypothesis

is true, the typical experiment will be inconsistent with the signal-plus-background

hypothesis.

If the signal contribution is small or the signal and background cannot be easily

disentangled, g(q1|µS = 1) and g(q1, µS = 0) distributions are not well separated. In

this case the experiment is close to the sensitivity limit, and if the data distribution

is characterised by a downward fluctuation of the observed events with respect to

the background-only hypothesis, the signal-plus-background hypothesis might be

excluded, although there is no real sensitivity. The CLS method [154] does not set

an exclusion limit on p1 itself but on the ratio CLS = p1/(1 − p0). Therefore the

signal-plus-background hypothesis is rejected if CLS < 5%. This criterion is applied

to set exclusion limits on the signal-plus-background hypothesis.

5.4.1 HistFitter and fit description

The statistical treatment of the measurement is performed using the HistFitter soft-

ware framework [155]. It is configured to take into account control, signal and vali-

dation regions, with the scope of constraining, extrapolating and validating models
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5.4.1. HistFitter and fit description

for the data description. These are treated by the tool with statistically rigorous

methods using the Frequentist approach.

The extraction of information from the data is possible via the usage of prob-

ability density functions which model the expected distribution in the regions. In

particular these probability density functions depend on free parameters which are

adjusted to the data with a fit. Although separate probability density functions are

used to model all the regions due to their statistical independence, the free param-

eters of the probability density functions are shared among the regions. Thus the

fit needs to be simultaneous in all the regions in order to extract consistently the

information of the background, the signal and the systematic uncertainties.

The parameters of interest are:

• the normalisation factors, µbµbµb, for the two main background sources, V+jets

and tt̄, used as a multiplicative parameter in front of the theory cross section;

• the signal strength, µS, normalisation factor with respect to the nominal

signal cross section;

• the nuisance parameters, θθθ, which model the impact of the systematic un-

certainties or of the MC statistical uncertainties. Each systematic uncertainty

i is represented by the continuous parameter θi, such that the nominal expec-

tation corresponds to θi = 0 and the ±1σ variations correspond to θi = ±1.

The general form of the constructed likelihood used in equation 5.4 is

parametrised by µS, µbµbµb, θθθ and is given by the product of the Poisson measure-

ments of the observed events nnn in the CR and SR,PCR and PSR, and the constraint

term for the systematic uncertainties Csyst:

L(nnn,θ0θ0θ0|µS,µb, θµb, θµb, θ) = PSR × PCR × Csyst. (5.8)

In case of independent nuisance parameters, the probability density function of

the systematic uncertainties, Csyst, can be expressed as the product of Gaussians

with unit width centred at θi − θ0
i , with θ0

i , being the central value of the auxil-

iary measurement, usually set to zero. The probability density function of the MC

statistical uncertainties is represented by Poisson distributions.

Fit description

Three types of fits are considered in this analysis: the background-only fit, the model-

independent signal fit and the model-dependent signal fit.

The background-only fit aims to estimate the background contribution in SRs

and VRs. This is achieved by performing the fit only in the CRs and using the

resulting fit parameters to extrapolate the background expectation to the SRs and

VRs, being excluded from the fit.
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5. Search for the direct pair production of the stop with the HEPTopTagger

The purpose of the model-independent signal fit is to set upper limits on the

number of signal events in each SR. It is performed for every SR, taking into ac-

count all the CRs and only one SR at a time. To be model-independent, integrated

event yields are used instead of distributions. The expected signal contribution is

considered only in the SR under study and a possible signal contamination in the

CRs is neglected. Once the fit is performed and the fit parameters are optimized with

respect to the observation, several hypotheses with different signal strength values

are tested and the CLS is evaluated each time. The signal strength which leads to

a CLS at 5% represents the 95% CL upper limit on the number of signal events in

a SR. Both the observed and expected upper limits, N95
obs and N95

exp are determined.

The background-only hypothesis is also tested and the p-value, p0, is calculated in

order to quantify the significance of an event excess in a SR.

The goal of the model-dependent signal fit is to test a specific signal model. If

no significant excess of events in each SR is found, exclusion limits are set on the

signal model. The model-dependent signal fit takes into account the CRs together

with the SRs. The signal contribution is considered in both types of regions and

includes a signal contamination in the latter. The signal model is tested with its

expected cross section. If the resulting CLS is less than 5% the model is excluded. In

general, better sensitivity is achieved by taking into account multiple SRs and their

shape information. In fact, distributions of SRs help discriminating the signal from

the background. In this analysis the fit is performed on the Emiss
T distribution which

provides a significant discrimination power between the signal and the background.

Extrapolation

The background prediction, which depends on the estimators of the systematic un-

certainty nuisance parameters and of the background normalisation factors, is ex-

trapolated to the SRs and VRs from the fit in the CRs. The extrapolation procedure

is possible since the background parameters of the probability density function are

shared among all the different regions.

Once the parameters are constrained in the CRs by means of the background-

only fit, the values of the background normalisation factors and the θi central value

of the systematic uncertainty, i, are used to estimate the contribution of all the SM

processes in the SRs and VRs. The uncertainty, σb,tot, on the extrapolated back-

ground prediction, b, is estimated by error propagation:

σ2
b,tot =

n∑
i

(
∂b

∂ηi

)2

σ2
ηi

+
n∑
i

n∑
j 6=i

ρij

(
∂b

∂ηi

)(
∂b

∂ηj

)
σηiσηj (5.9)

where ηi is the collection of all the free parameters (normalisation factors, µbµbµb,

and the set of systematic uncertainty auxiliary measurements, θθθ) with standard

deviation σηi , and ρij is the correlation coefficient between the parameters ηi and ηj.
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5.5 Systematic uncertainties

The sources of the systematic uncertainties in this analysis are either experimental

or come from modelling uncertainties of the SM processes.

The main detector-related uncertainties affect the energy scale of the

HEPTopTagger subjets and the large-R jets. The uncertainty on the subjet en-

ergy resolution is included, since it has a non-negligible contribution before the fit.

The contribution of the energy scale uncertainty of small-R jets is considered as

well, as it influences the reconstruction of the missing transverse energy, while the

uncertainty on the small-R jet resolution is found to be negligible. In the regions

where a b-tagged jet is required, the corresponding uncertainties are included. The

uncertainties related to the reconstruction of the soft term of the Emiss
T , coming

from the energy deposits not associated with other particle objects, are found to be

negligible.

Concerning the modelling uncertainties on the SM expectation, those on the cross

section of the SM processes are considered. In addition, the modelling uncertainties

of the V+jets and tt̄ processes are estimated. The tt̄ modelling uncertainties consist

of parton shower, generator, ISR/FSR, PDF and renormalisation scale uncertainties.

All the systematic uncertainties and their estimate by means of auxiliary mea-

surements are explained in section 2.7.

5.5.1 Systematic uncertainty profiling

The systematic uncertainties are introduced in the fit as nuisance parameters θ̂̂θ̂θ and

are constrained in the CRs. They are modelled before the fit by a Gaussian centred

at the origin (θ0 = 0), with unitary width. The uncertainties are constrained with

the fit. In particular the preferred Gaussian mean value in units of the input σ

are profiled on the CR data. The Gaussian mean and width, which result from the

background-only fit are displayed in figure 5.24. The central values after fit of the

systematic uncertainties related to b-tagged jets and of those on the theory cross

sections are close to zero with unitary width.

The uncertainties, that benefit most from the profiling on the CR data, are those

affecting the shape of the top quark mass peak: the tt̄ modelling, subjet energy

scale and resolution uncertainties. These are considerably constrained by the data

distribution of the top candidate mass in the tt̄ CR and µ+jets CR and they are

reduced to 50% for the tt̄ parton shower uncertainty and to 70%-80% for most of

the others.

After extrapolating all the fit parameters to the SRs, the impact of each system-

atic uncertainty is estimated by fixing all the other parameters and propagating the

error of the nuisance parameter under study to the background prediction.

SR1 is the signal region which is affected by the largest relative systematic un-

certainty, 23%. SR2 and SR3 have systematic uncertainties of 11% and 13%, respec-
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Figure 5.24: Fit values of the nuisance parameters associated to the system-
atic uncertainties. The shift of the fitted central value θ̂ with respect to initial
parameter value θ0 is represented on the x-axis for each source of uncertainty
on the y-axis. θ0 is by convention zero for all the uncertainties, apart from the
normalisation factors whose central nominal value is θ0 = 1. The pre-fit varia-
tion of each uncertainty by +1σ or −1σ corresponds to a pre-fit absolute error
on θ0 of 1. After the fit, the impact of each uncertainty is constrained by the
observation and thus the error on θ̂ may be reduced.
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tively.

The dominant uncertainty of SR1 is the one due to the limited MC statistics

with an effect of 20%: the requirement of two top tags rejects a large fraction of

simulated background events. The requirement of the second top candidate implies

that the subjet energy scale, the tt̄ normalisation and modelling have a large impact,

each ranging from 3% to 9%. In fact, in events with only one hadronically decaying

top quark, as for the tt̄ → (lνb)(qqb) process, one of the two top candidates is a

fake top reconstructed from other hadronic activity combined in a large-R jet. The

substructure properties of this jet heavily depend on the modelling of the additional

hadronic activity in the event. These non-top jets are mostly characterised by low

pT subjets, whose energy scale uncertainty have a large impact on the total number

of selected events.

Regarding SR2 and SR3, the uncertainties on the normalisation factors of tt̄ and

V+jets, on the tt̄ parton shower and on the energy scale of small-R jets have the

largest effect which ranges from 4% to 10%. The breakdown of all the systematic

uncertainties for the three SRs is reported in appendix B.

5.5.2 Uncertainty correlations

To account for the total uncertainty in a certain region, the correlations between

the fit parameters must be considered. The correlation matrix resulting from the

background-only fit is represented in figure 5.25. A negative (positive) correlation

between parameter θ1 and θ2 means that the increase in θ1 is reflected in the fit by

a decrease (increase) in θ2.

A correlation of approximately -0.6 is found between the normalisation factor of

the tt̄ process and its theory cross section; and of -0.5 (-0.7) between the normalisa-

tion of the Z+jets (W+jets) and its modelling.

The normalisation factors are correlated with the estimate of the energy scale of

the large-R jets and subjets. Under the hypothesis that the nominal energy scales

are underestimated and the corresponding θ parameters are centred at positive val-

ues after fit, the number of events selected in the CRs increases. This effect has to

be compensated by a decrease of the background normalisation factors. This ex-

plains the negative correlation which is around -0.4 between the above-mentioned

uncertainties.

As explained in section 4.2, the uncertainty on the subjet energy scale has a

direct effect on the top mass peak. If the scale were underestimated, and the best

estimate would be close to the “up” variation of the uncertainty, the peak of the

reconstructed top mass would shift to higher values and more large-R jets would

be tagged. This uncertainty presents interesting correlations with other parameters.

The largest value, 0.7, is with the tt̄ ISR/FSR uncertainty. In fact the enhancement

of the initial and final state radiation makes the event more busy, slightly decreasing

the efficiency of top-tagging a large-R jet. An additional effect is to reconstruct the
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top candidate with a mass lower than in top events with nominal conditions. This

can be explained by the higher number of reconstructed protojets in the large-R jet

and the consequent misidentification of one of the three subjets, representing the

top quark decay products. The resulting shift to lower masses of the top candidate

mass distribution related to the condition with enhanced ISR or FSR should be than

compensated by higher energy scale applied to the subjets which moves to higher

values the reconstructed mass.

The reason for a correlation of -0.5 between the uncertainties on the scale and

the resolution of the subjet energy lies in the shape of the top candidate mass

with the application of the resolution uncertainty variation. Protojets and subjets

reconstructed by the HEPTopTagger algorithm are calibrated and a minimum pT

of 20 GeV is required. All the subjets and protojets are smeared before calibration.

The lower the pT of these jets is, the larger the applied smearing is. As a result, a

larger number of protosubjets pass the 20 GeV threshold, which contribute to the

final candidate mass. The top mass peak broadens with the smearing applied to the

subjets. This effect could be partially compensated by a reduced energy calibration

scale applied to the subjets.

The uncertainty correlation between the energy scale of the large-R jets and

the one of the subjets is 0.3. If the central value of the first increases, the energy

scale of the large-R jets becomes larger. Hence, large-R jets, which had transverse

momentum just below the threshold of 280 GeV before the fit, are able to pass the pT

requirement. However, these are low pT large-R jets whose HEPTopTagger mass is

probably small, as one top decay product might not lie in the jet. Thus, the effect of

increasing the scale of large-R jets is to enhance the low values of the top candidate

mass distribution, which can be compensated by a larger estimate on the energy

scale of the subjets.
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Figure 5.25: Correlation matrix of the systematic uncertainties from the
background-only fit.
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5.5.3 Systematic uncertainties on the signal process

The systematic uncertainties on the signal process are evaluated before the fit is

applied and are reported in the following with respect to the sample with t̃1 mass

of 600 GeV and χ̃0
1 mass of 1 GeV.

The dominant experimental uncertainties are the subjet energy scale and resolu-

tion with a contribution of 2-8% and 6-9%, respectively. These uncertainties affect

mainly SR1, due to the requirement of two reconstructed top quarks. The large im-

pact of the subjet uncertainties is mitigated after the fit in the CRs. The uncertainty

on the scale of small-R jets is about 3% for SR1 and SR2 and 6% for SR3, while

the one on the large-R jet energy scale is non-negligible only for SR2, due to the

requirement of a second large-R jet, with an effect of 3% on the signal yield. The

uncertainty on the b-tagging efficiency related to SR2 and SR3 is of the order of

1%. All these detector-related systematic uncertainties are considered in the fit as

correlated with the background ones.

The uncertainties on the theory modelling of the top squark production are not

taken into account as nuisance parameters in the fit. Their impact is considered

explicitly in the exclusion limit by performing independent hypothesis tests with

modified nominal cross section according to the uncertainty.

5.6 Validation of the background extrapolation

The background contribution in the SRs and VRs is predicted by means of the

extrapolation of the parameters resulting from the background-only fit of the CRs.

The expectation of the V + jets (where V = W or Z) and tt̄ processes is corrected

by the corresponding normalisation factor, summarised in table 5.7. The fitted value

of these two factors is compatible with 1 within the uncertainty. The contribution of

the other background processes is given by the simulation normalised to the theory

cross section. The total background prediction depends not only on the normalisation

factors, but also on the central values of the systematic uncertainties, included in

the fit as nuisance parameters and profiled on the CR data.

Background Source Normalisation Factor

tt̄ 1.05± 0.10
V + jets 0.98± 0.17

Table 5.7: Normalisation factors of the main background sources obtained from
the background-only fit: tt̄ and V+jets production (where V = W or Z)

The number of expected events in the CRs before and after the fit is reported

in table 5.8 together with the separated contribution of the different sources. The

systematic uncertainties and their nuisance parameters are discussed in detail in

section 5.5.
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V+jets CR tt̄ CR µ+jets CR

Observed events 511 1045 1289

Fitted background events 513.06± 22.16 1048.97± 30.10 1282.71± 33.46

tt̄ 65.81± 11.78 905.60± 31.12 1019.68± 39.18
W+jets 251.23± 32.92 50.65± 7.93 201.48± 27.44
Z+jets 174.19± 27.73 40.06± 6.67 –
V V 15.53± 2.19 4.42± 0.56 15.94± 0.95
tt̄V 0.96± 0.26 12.49± 2.77 12.92± 2.83
Single Top 5.34± 0.86 35.75± 3.28 32.69± 2.50

Expected events (before fit) 517.16 1056.91 1328.64

tt̄ 68.06 910.73 1069.06
W+jets 243.47 50.57 197.98
Z+jets 183.27 42.83 –
V V 16.25 4.49 15.94
tt̄V 0.99 12.53 12.91
Single Top 5.12 35.77 32.76

Table 5.8: Number of events in the control regions after the background-only
fit. Nominal simulation expectations (before fit) are given for comparison. The
errors shown are the total systematic uncertainty.

The pull value, χ, is employed to validate the background extrapolation. χ is

defined as the difference between the number of observed and predicted events, nobs

and npred, divided by σtot, which is the quadrature sum of the systematic uncertainty

on the background prediction, σb, and the Poissonian statistical uncertainty σstat on

npred:

χ =
nobs − npred

σtot

(5.10)

σtot =
√
σ2
b + σ2

stat

The pull distributions for all the regions is shown in figure 5.26. The maximum

deviation between the observation and the prediction in the VRs is 1.2σ.

The observed and predicted number of events in the two VRs are summarised in

table 5.9.

5.7 Results, interpretation and limits

The three fit procedures, described in section 5.4.1, are used to interpret the obser-

vations with respect to the background-only hypothesis or to the background-plus-

signal hypothesis. The signals considered are either a model-independent non-SM

contribution or the direct t̃1 pair production SUSY model in the (tχ̃0
1)(t̄χ̃0

1) final

state.
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Figure 5.26: In the top panel the predicted number of events are represented
by the stacked histogram and the observed ones by black points in CRs, VRs and
SRs. The dashed lines correspond to the total systematic uncertainty added in
quadrature with the statistical uncertainty. In the bottom panel the pull distri-
bution of the observed yields with respect to the predicted yields is represented
for CRs, VRs and SRs.

The estimate of the background prediction and the events observed in data in

each SR are reported in table 5.10. The SM prediction is determined from the

background-only fit and its error results from the propagation of the systematic

uncertainties through the background extrapolation procedure.

The compatibility of the observation with the background-only hypothesis is

tested as described in section 5.4.1. The p-value for each SR is calculated and re-

ported in table 5.10. Since the smallest p0 is 0.13, corresponding to 1.1σ deviation,

no significant excess with respect to the SM expectation is observed. Upper limits

on BSM contribution are set for each SR by means of the model-independent fit.

The 95% CL upper limits on the number of expected and observed signal events,

N95
exp and N95

obs, are summarised in table 5.10. These limits are derived using the

CLS method and calculated with the asymptotic formulae [152]. It has been verified

that these results are in good agreement with those obtained from throwing multiple

pseudo-experiments.

The signal model of direct t̃1 pair production is tested against the SM-only

assumption with the model-dependent signal fit and hypothesis test. A class of SUSY

models is described in terms of the unknown mass parameters of the SUSY particles

involved: the mass of the top squark, mt̃1 , and the mass of the neutralino, mχ̃0
1
. This

class is formed by a grid of signal samples with t̃1 masses ranging from 250 GeV up

to 800 GeV in steps of 50 GeV. Similarly the χ̃0
1 masses vary between 1 GeV up to
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2 HTTs VR 1 HTT VR

Observed events 46 109

Fitted background events 37.51± 3.68 106.80± 11.39

W+jets 10.81± 2.14 20.05± 4.07
Z+jets 4.79± 0.89 36.92± 7.28
tt̄ 17.90± 2.96 38.34± 3.57
V V 1.54± 0.19 1.98± 0.35
tt̄V 1.43± 0.33 2.16± 0.49
Single Top 1.04± 0.13 7.35± 0.67

Table 5.9: Validation Regions: The fit results are obtained from the control
regions using the background-only fit. The errors shown correspond to the total
systematic uncertainty.

the allowed value for the decay t̃1 → tχ̃0
1 (i.e. mt̃1 > mt +mχ̃0

1
). Every point in this

bi-dimensional grid is a SUSY model undergoing the hypothesis testing procedure.

For each point, the fit is performed simultaneously in the SRs and the CRs, taking

into account the specific signal contribution in every region. The three SRs are

statistically independent and thus are combined in order to enhance the sensitivity

of the test. The SR Emiss
T distributions are displayed in figure 5.27. The background

expectation is the result of the model-dependent fit, while the contribution of two

representative signal models is obtained from the normalisation of the signal event

yields to the nominal signal cross section. The asymptotic approximation is employed

to calculate the CLS for each (mt̃1 ,mχ̃0
1
) model. The compatibility of the asymptotic

approximation with the results obtained from pseudo-experiments has been verified

on one signal model.

A contour in the (mt̃1 ,mχ̃0
1
) plane delimits the region of the phase space which

contains the models excluded at 95% CL. Several exclusion contours can be seen

in figure 5.28. The observed limits are calculated from the data distributions with

respect to models with nominal signal cross section for the central value or with

±σ SUSY
theory variation on the signal theory uncertainties. The expected limits are ob-

tained in the same way as the observed limits by substituting the data with the

background expectation. The limit excursion due to the background systematic un-

certainty variation by±σ exp is also evaluated. Under the assumption of 100% branch-

ing ratio of the decay t̃1 → tχ̃0
1, models with top squark mass ranging from 250 GeV

to 720 GeV are excluded if the neutralino mass is of the order of a few GeV. For neu-

tralino masses less than 75 GeV, the observed limits are very close to the expected

limits. The observation cannot exclude potential signals with mχ̃0
1
> 140 GeV, while

the analysis was expected to be sensitive to exclude models with neutralino masses

up to 200 GeV for mt̃1 ≈ 600 GeV. The reason for this difference is the following.

For scenarios with the same top squark mass, the higher the χ̃0
1 mass is, the lower

the missing transverse momentum of the signal events is on average. The Emiss
T dis-
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Figure 5.27: Missing transverse energy distributions for SR1 (top), SR2 (cen-
tre), and SR3 (bottom), after the model-dependent fit is performed. The SM
background prediction is represented as a stacked histogram while the data dis-
tribution is overlaid as black points. The signal expectations for the samples
with (mt̃1 ,mχ̃0

1
) = (600, 1) GeV and (mt̃1 ,mχ̃0

1
) = (700, 1) GeV are represented

by a violet and purple dashed line respectively. The lower panel shows the ratio
between the data and the SM prediction and overlaid is the after-fit impact of
the systematic uncertainties. 125
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SR1 SR2 SR3

Observed events 2 30 39

Fitted background events 1.51± 0.35 24.36± 2.76 30.54± 4.10

tt̄ 0.78± 0.25 9.52± 2.30 14.69± 2.38
W+jets 0.05± 0.02 3.28± 0.62 3.54± 0.76
Z+jets 0.15± 0.05 5.16± 0.94 7.58± 1.61
V V 0.21± 0.07 0.47± 0.13 0.44± 0.17
tt̄V 0.26± 0.08 1.86± 0.41 1.07± 0.25
Single Top 0.05± 0.02 4.06± 0.35 3.24± 0.37

Expected signal events (mt̃1
,mχ̃0

1
)

(600, 1) GeV 3.55 15.63 11.26
(700, 1) GeV 1.87 7.60 5.44

N95
obs 4.7 17.3 22.5

N95
exp 4.1+2.2

−1.1 12.6+5.6
−3.6 15.9+6.6

−4.6

p0 0.35 0.17 0.13

Table 5.10: Event yields in each signal region (SR1, SR2, and SR3). The
observed events are reported together with the simulated prediction after the
discovery fit is performed. The predicted contribution of different background
sources is summarised. The errors in the table correspond to the total system-
atic uncertainty, which is calculated taking into account all the correlations. The
expected signal events before fit for two signal models are presented. For each
signal region the 95% CL upper limits on the number of observed (expected)
signal events, N95

obs (N95
exp) are included together with the observed p-value con-

cerning the background-only hypothesis.

tributions of SR2 and SR3 are characterised by a small excess of data events with

respect to the SM expectation in the lowest bin. This particular bin is populated by

most of the events of signal models with large χ̃0
1 masses (mχ̃0

1 ∼> 100 GeV). Thus

the signal-plus-background hypothesis is not incompatible with the observation and

it cannot be rejected.
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Figure 5.28: 95% CL expected and observed exclusion limits in blue dashed
line and red solid line respectively in the mass plane (mt̃1 ,mχ̃0

1
). The yellow band

represents the ±1σ uncertainty on the expected limit, obtained by taking into
account all the systematic and statistical uncertainties apart from the signal the-
ory uncertainty whose impact on the limits is indicated by the dashed red lines.
The observed contour from the published ATLAS analysis [7] is superimposed
and represented by a green line.

5.8 Comparison with the published ATLAS anal-

ysis

The analysis reported so far makes use of the HEPTopTagger to search for direct

production of a pair of the scalar top partners each decaying into a top quark and

a neutralino. This strategy is sensitive to events with both top quarks decaying all-

hadronically and to signal models where the t̃1 mass is much larger than the χ̃0
1 mass,

such that a non-negligible fraction of events have moderately boosted top quarks in

the final state.

A different reconstruction approach of the hadronically decaying top quarks has

been employed by the published ATLAS analysis [7]. In order to be sensitive to

models with t̃1 masses ranging from low to high values, i.e. mt̃1 between 250 GeV

and 700 GeV, with χ̃0
1 masses in the interval (0,mt̃1 −mt), resolved or semi-resolved

techniques are used. The resolved approach is used for events with six or more small-

R jets: a jet is reconstructed for each top quark decay product. Each of the two top
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5. Search for the direct pair production of the stop with the HEPTopTagger

candidates is built by one b-tagged jet, and by two close jets in the η − φ plane,

representing the W decay. Loose requirements on the reconstructed top masses are

applied in order to provide high signal efficiency. The top candidate mass in the

resolved signal region is required to be greater than 50 GeV.

The semi-resolved approach is applied as an alternative to the previous one to

reconstruct higher pT top quarks. In this case not all the decay products result in an

individual small-R jet. The events selected for this category are thus characterised

by four or five small-R jets. In order to associate a group of these jets to each top

quark decay, they are reclustered by the anti-kt algorithm with R = 1.2, i.e. the

small-R jets themselves are used as input to the anti-kt algorithm. A semi-resolved

signal region is defined to select events with at least two reclustered R = 1.2 jets.

The probability of reconstructing at least one candidate, associated to a hadron-

ically decaying top quark, is different for the three techniques and depends on

the pT of the associated top quark. The comparison between the three methods

is shown in figure 5.29(a). The signal model with (mt̃1 ,mχ̃0
1
) = (700, 1) GeV is em-

ployed for this and the following comparisons, unless stated otherwise. While the

resolved technique is not suitable for high pT top quarks, both the semi-resolved one

and the HEPTopTagger algorithm aim to reconstruct top quarks in the moderately

boosted regime. The HEPTopTagger has the best efficiency to identify top quarks

with pT > 300 GeV.
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Figure 5.29: Top tagging efficiency comparison in the signal sample
(mt̃1 ,mχ̃0

1
) = (700, 1) GeV (a), top tagging mis-tag fraction in the background

Z(νν̄)+jets sample (b). A HEPTopTagger top tag is found if a top candidate
with mass in the range (140, 210) GeV is found. A top is reconstructed by means
of the resolved method if the invariant mass of a b-tagged small-R jet and other
two close-by small-R jets is within the range (50, 250) GeV, as required in the
analysis described in [7]. The leading top candidate reconstructed with the semi-
resolved method is required to have mass in the range (140, 500) GeV.

A simulation of Z+jets events with the Z boson decaying to neutrinos is used to

calculate the fraction of events containing a fake top candidate for the different top
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5.8. Comparison with the published ATLAS analysis

reconstruction techniques. This mis-tagged fraction is represented in figure 5.29(a)

as a function of the generated Z boson transverse momentum. The HEPTopTagger

and the resolved method have the best rejection power, with a fraction of selected

events which increases with higher Z boson transverse momentum up to 3% and

1% respectively. It should be noticed that the resolved method has the implicit

requirement of the reconstruction of at least one b-tagged jet per top candidate. The

Z+jets simulation contains events with light and heavy flavour jets and the fraction

of selected events by requiring at least one b-tagged jet is between 5 and 10%.

Without b-tag information, the rejection power of requiring two candidates re-

constructed by the resolved or semi-resolved technique would not be enough to

disentangle the signal from the background. Hence, additional requirements are ap-

plied to reject SM background. The most important ones are large missing transverse

momentum, as required also in the HEPTopTagger analysis, and two b-tagged jets,

with Mb,min
T > 175 GeV. On the contrary, the HEPTopTagger has the capability to

reject a large fraction of background events not containing hadronically decaying

top quarks and its application does not need the requirement of two b-tagged jet to

acquire sensitivity to the signal process.

The comparison of the visible signal event fraction between the HEPTopTagger

analysis and the published ATLAS analysis using the resolved and semi-resolved

techniques is shown in figure 5.30 as a function of the minimum and maximum

top quark transverse momentum in the event. It can be noticed that the signal

acceptance of the HEPTopTagger analysis (SR1, SR2, SR3 combined) is about three

times larger than the one that uses (semi-)resolved techniques. This difference is

mainly caused by the requirement of two b-tagged jets, that have the advantage of

rejecting a large fraction of the background, but the negative effect of discarding

signal events. For comparison purposes, the amount of selected signal events with

the additional requirement of two b-tagged jets in the HEPTopTagger analysis is

shown in figure 5.30. The signal acceptance for this selection is higher than the one

from the published analysis for events with boosted top quarks.

The final results of the two analyses are compared in figure 5.28, where the ex-

clusion limits of the signal models are shown in the (mt̃1 ,mχ̃0
1
) plane. The observed

exclusion contour of the published analysis reaches a mt̃1 value of 660 GeV for mass-

less neutralinos, while the HEPTopTagger analysis is able to exclude models up to

mt̃1 ≈ 720 GeV. On the other hand, the published analysis could exclude models

with large χ̃0
1 masses, while the HEPTopTagger analysis has no sensitivity to reject

these models. Similar limits are obtained by the two analyses for regions in the pa-

rameter space with small t̃1 and χ̃0
1 masses. Thus, as expected, the HEPTopTagger

analysis is the most suitable to test models with mt̃1 � mχ̃0
1

which are more likely

to have boosted top quarks in the final state.

It is interesting to calculate the overlap between the (semi-)resolved analysis

and the HEPTopTagger one. This estimate is performed by applying the analyses

requirements on a signal model with (mt̃1 ,mχ̃0
1
) = (700, 1) GeV. About 14% is the
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Figure 5.30: Ratio of the number of signal events selected by the
HEPTopTagger analysis, i.e. SR1, SR2 and SR3 combined, represented in red
dashed line, over the number of total simulated signal events. The same ratio is
represented in blue dashed line if the requirement of two b-tagged jet is added
to the analysis selection. The fraction of signal events selected by the published
analysis [7] is represented in solid black line. The fraction of selected events are
represented as a function of the maximum and minimum generated top quark
pT in (a) and (b) respectively.

fraction of events selected by the HEPTopTagger analysis which are also contained

in the signal regions of the published analysis. Even by requiring two b-tagged jets

in the HEPTopTagger analysis the overlap reaches at most a level of 30%. The

small overlap keeps open the option to create orthogonal signal regions between the

HEPTopTagger and the published analyses for future t̃1 searches at higher centre of

mass energies.
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In this thesis, a detailed analysis of the HEPTopTagger performance and its appli-

cation in a search for the top squark in proton-proton collision data collected at a

centre of mass energy of
√
s = 8 TeV by the ATLAS detector are reported. The

dataset corresponds to an integrated luminosity of about 20 fb−1.

The HEPTopTagger algorithm is validated in a sample enriched in top quarks,

obtained by applying the `+jets channel selection, which consists of one isolated

electron or muon, b-tagged jets, and a large-R jet. It is shown that the four-momenta

of the large-R jet (the input to the HEPTopTagger) and of the top quark candidate

are very well described by the simulation of Standard Model processes.

In my work, an innovative technique is developed to measure in-situ the energy

scale uncertainty of the subjets reconstructed within the HEPTopTagger. The sub-

jet energy scale is one of the dominant sources of uncertainty, since the top quark

candidate four-momentum is the result of the sum of the reconstructed and cali-

brated subjets. By comparing the mass of the top quark candidate reconstructed in

data and simulation, the derived relative uncertainty on the subjet pT is at most

10% for subjets with pT = 20 GeV and decreases to approximately 2-3% for high pT

subjets. A recipe for the evaluation of the contribution of this uncertainty has been

developed for physics analyses.

The efficiency of tagging hadronically decaying top quarks is measured to vary

from 10% for large-R jets with pT ≈ 200 GeV to 45% for large-R jets with pT &
400 GeV. The dominant systematic uncertainty is the modelling of the tt̄ SM process.

The measured and simulated efficiencies are consistent within few percent. The MC

simulation has been verified to be a reliable tool to model and predict the output

of the HEPTopTagger algorithm. The results of this work has been published in [6],

together with the performance of other top tagging techniques.

The HEPTopTagger has been applied in the search for the direct production of

a pair of supersymmetric top partners in the fully hadronic channel. Under the as-

sumption that each top squark decays into a top and a neutralino with a branching

ratio of 100%, the experimental signature consists of large missing transverse mo-

mentum and jets. The HEPTopTagger capability to discriminate between large-R

jets originating from top quarks and those from light quarks or gluons, and to recon-

struct the kinematics of top quarks, makes the algorithm a very valuable tool in this

search. In a signal enriched region the reconstruction of two HEPTopTagger candi-

dates is exploited to calculate the stransverse mass, MT2, which carries information
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about the mass of the top squark. Events with large missing transverse momentum

and large MT2 are selected for a first signal region. The significance of the search is

further enhanced by the use of two other signal enriched categories with only one

top tag, at least one b-tag and large missing transverse momentum. Improvements

in sensitivity to the top squark pair production is provided by the statistical combi-

nation of the three signal regions. No significant excess is observed over the expected

SM background. Hence, exclusion limits are set in the plane defined by the mass of

the top squark and the mass of the neutralino. Under the assumption that the top

squark decays with 100% branching ratio into a top quark and a neutralino, top

squark masses between 250 − 720 GeV are excluded for small neutralino masses of

a few GeV.

A comparison of these results with those from the analogous search published

by ATLAS [7] is performed. The latter uses standard resolved techniques for top

reconstruction. The usage of the HEPTopTagger extends the exclusion limits for

signal models with large top squark masses and small neutralino masses. Thus, the

HEPTopTagger improves the sensitivity in the search for heavy top squarks.

Since proton-proton collisions at higher centre of mass energy (
√
s = 13 TeV so

far) and higher luminosities than in 2012 have been provided by the LHC since 2015,

new regions in the parameter space of the top squark-neutralino masses are tested.

As models with top squark masses close to the TeV scale are explored, a search

strategy with top tagging techniques for high pT top reconstruction is needed. In

this thesis, the HEPTopTagger has been proven to be a well suited technique for this

purpose. Thus, the combination of the two search strategies, one with events selected

by the HEPTopTagger algorithm, and the other with top quarks reconstructed with

resolved techniques, as described in [7], promises to be the best approach to reach

high sensitivity in yet unexplored regions in the fully hadronic channel.
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Appendix A

Fast Tracker

More than 25 fb−1 of proton-proton collision data have been recorded by the ATLAS

detector from 2010 to 2012. During these three years, not only the energy increased

from
√
s = 7 TeV to

√
s = 8 TeV but also the instantaneous luminosity by many

orders of magnitude. The increasing number of colliding bunches and number of

protons in each bunch brought the average number of distinct proton-proton inter-

actions per bunch crossing up to 20-30 during 2012.

The event rate peak registered in 2012 was approximately 20 MHz. The ATLAS

trigger system has been designed to select only a few hundred of possibly interesting

events per second over the dominant soft interaction processes.

The LHC machine and experiments were upgraded during the Long Shutdown 1,

in order to get closer to the design parameters. In 2015 the LHC Run 2 started and

protons have been collided at a center of mass energy of
√
s = 13 TeV. The design

instantaneous luminosity peak of Run 2 has been raised up to L ∼ 2×1034 cm−2s−1.

The Run 2 trigger system had to adjust not only to the new machine condi-

tions but also to the evolved physics program. In fact, after the discovery of the

Higgs boson and its observation in its bosonic decay modes, the main interest has

moved towards the Higgs coupling to fermions. The most favourite channels are

those involving the Higgs boson decaying into a τ pair or a b-quark pair.

In a similar way, beyond the Standard Model searches are characterised by the

presence in the event of τ leptons, b-jets, top quarks or missing transverse momen-

tum.

The selection of these events at the first stages of the trigger level is very chal-

lenging, due to the overwhelming multijet background. The tracking information,

because of its fine resolution and granularity, plays a crucial role in disentangling

interesting physics events from multijet ones. However, the processing time per event

made it impossible in Run 1 to have the global track information at the early stages of

the trigger. In Run 2 the installation of the Fast TracKer (FTK), hardware system

with massively parallel processing, can permit the global reconstruction of tracks

immediately after the first trigger level.

After the trigger system overview and comparison between Run 1 and Run 2
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(section A.1), the illustration of the FTK and its performance are presented in

section A.2 and A.2.1, respectively. The usage of the FTK track information in the

missing transverse energy trigger is described in section A.2.2.

A.1 Trigger system

During Run 1, three distinct sequential trigger levels were used to reduce the rate of

events to read out and store: the level 1 (L1), level 2 (L2) trigger and the event filter

(EF), see section 2.4. The ATLAS Trigger and Data Acquisition System underwent

limited changes accordingly to the new Run 2 conditions.

The maximum accepted rate of the L1 has increased from 75 kHz to 100 kHz. The

High Level Trigger has a new architecture in which L2 and EF have been merged and

run on the same processing unit with the reduction of the CPU and network usage.

In addition, the trigger algorithms have been re-optimised on a processing time basis.

The data bandwidth for the Readout System has been raised from 400 Hz to 1 kHz.

A comparison between the Run 1 and the Run 2 trigger systems is illustrated in

figure A.1.

High tracking performance can be very helpful in object reconstruction. The

gain in event selection and trigger rate control is more efficient, the earlier the track

information is available in the trigger sequence. In Run 1 the track reconstruction

at the trigger level was performed twice: a first time at the L2 in a Region of

Interest (RoI) based mode and a second time at the EF level with a software shared

with the offline reconstruction. At the HLT of Run 2, a fast tracking stage using

the Fast Track Finder seeds a subsequent precision tracking, with a reduction by

a factor of three of the processing time with respect to Run 1. In addition to the

improvement in the software tracking strategy, the installation of a new hardware

track finder, the Fast TracKer (FTK) [156], will highly reduce the timing required

for track reconstruction and will allow track related information, like primary vertex

position, to be available at the earliest stages of the HLT just after the L1. This

feature is crucial for selecting events with b-quark jets and taus.

At regime, the FTK will provide tracking information over the full detector

coverage for the events accepted by the L1 with a latency of around 100µs.

A.2 Fast Tracker

The Fast Tracker aims to provide the global track information at the early stages of

the HLT trigger. During Run 2, this information is extracted using data from the

ATLAS Inner Detector, composed of the pixel, the semiconductor tracker (SCT)

and the Insertable B-Layer (IBL) pixel detector [157].

To perform global and fast track reconstruction and to deal with the large event

rate selected by the L1, the FTK hardware system has been designed to be massively

parallel. It consists of a combination of FPGA-based hardware and custom ASICs.
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Figure A.1: Illustrative comparison of Run 1 and Run 2 trigger systems

FTK performs track reconstruction in two stages. In the first one, low precision

tracks are found through pattern recognition, which uses only 8 Inner Detector

layers. In the second step a linearised track fit is performed which makes use of

the full hit resolution. Good tracks are extrapolated and the remaining 4 layers are

added to the refined fit which gives the final track parameters.

The FTK system is composed of different boards and cards that perform different

steps of the track reconstruction, illustrated in figure A.2. The data from the Inner

Detector is duplicated by the dual output HOLA and sent to the FTK. The Input

Mezzanine finds the clusters from the hits of the SCTs and pixels; the data are

organised into 64 η − φ regions by the Data Formatter and sent to 64 pairs of

Processing Units, each pair corresponding to one η − φ region. The segmentation

in multiple geometrical regions, which overlap in the φ direction, characterises the

highly parallel structure of the FTK. Each Processing Unit is composed of the

Auxiliary (AUX) Card, which contains the Data Organizer, the Track Fitter and

the Hit Worrior, and by the Associative Memory (AM) boards. The conversion of

the cluster centroids to coarse resolution superstrips is performed by the Processing

Unit. These silicon detector wide strips are the input to the Associative Memory

boards, which are custom associative memory chips designated to perform pattern

recognition.

As can be seen from Figure A.3, coarse resolution tracks are found using only 8

silicon detector layers by comparing the superstrip collection with patterns, defined

as a set of eight superstrips consistent with charged particle trajectory. One billion

patterns are obtained from single-muon simulation and they are stored in the As-

sociative Memory chips. Afterwards compatibility of the clusters in the superstrips

with the found pattern is verified.

The track helical fit is replaced by a simple linear fit in the local hit position in

each silicon layer.

The Track Fitter performs a linearised track fit in the local cluster position
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Figure A.2: Sketch of FTK. AM is the Associative Memory, DO is the Data
Organizer, FLIC is the FTK-to-Level-2 Interface Crate, HW is the Hit Warrior,
ROB is the ATLAS Read Out input Bu er, ROD is a silicon detector Read Out
Driver, and TF is the Track Fitter. Second Stage Fit stands for the Second Stage
Board. Figure from [156].

SUPERSTRIP

Figure A.3: Simplified sketch of the track reconstruction process. On the left,
a coarse resolution track, defined by the collection of the light blue superstrips,
is found in the pattern recognition stage using 8 silicon detector layers only.
A linearised fit is performed using the cluster position in the previous selected
superstrips. The resulting track candidate is shown in green. On the right plot,
a second fit is performed using the 12 layer information and a refined track
candidate, red line, is found.
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belonging to those superstrips of the coarse resolution track in each silicon layer.

Helix parameters and χ2 are estimated from linear calculations, defined by a set

of scalar products of the cluster centroid coordinates and precalculated constants

taking into account the detector geometry and alignment.

Those full resolution tracks, which has χ2 < 6, are sent to the Second Stage

Board. The track candidates from the previous stages are extrapolated to the 4

remaining silicon layers and a second fit is performed. Good tracks with χ2 < 4 and

pT > 1 GeV undergo duplicate removal. Two tracks are both kept if they don’t share

more than 6 cluster centroids.

The cluster coordinates, 5 helix parameters and the χ2 of the good tracks are

sent to the HLT. The FTK tracks can be used as seed in the HLT tracking, or can

be refitted in particular RoIs.

At 3× 1034cm−2s−1 instantaneous luminosity with 25 ns bunch spacing around

300 tracks per event can be found by FTK.

A software emulation is used to estimate the FTK track reconstruction perfor-

mance [156]. Since FTK is a massively parallel hardware system, it is not possible to

perform a bit-by-bit simulation. The hardware behaviour is reproduced with a func-

tional emulation of each stage of the FTK processing, and the result is converted into

trigger or general data formats. The software and the simulation configuration are

in continuous development. The setup used for the study presented in this appendix

is described in [156].

A.2.1 Fast Tracker performance

The main part of my service task is related to the integration of part of the FTK

emulation into the software validation framework of the inner detector trigger. This

trigger validation framework produces performance plots to verify that changes in

the software do not affect the performances of the trigger. The framework is used

to validate that developments in part of the FTK emulation code do not affect

dramatically the FTK performance.

As an example of the output after the FTK integration into the trigger validation

framework, the efficiency and resolution of the FTK track reconstruction is obtained

in a single muon sample. This sample is simulated without pileup and with a flat

distribution in the particle helix parameters: η, φ, |d0| < 1.5 mm, |z0| < 120 mm and

curvature. The ATLAS detector geometry includes the IBL. The track reconstruction

efficiency is defined as the fraction of generated muons with pT > 1 GeV matched

to a reconstructed track. The matching criterion is defined in terms of the angular

separation between the track and the generated muon, which has to be smaller than

0.05 (∆R < 0.05). In figure A.4, the track-finding efficiency for the FTK tracks is

compared to the one for the HLT muon track, labelled as muon trigger object, as a

function of the muon pseudorapidity and of the muon transverse momentum. The

FTK efficiency increases with the muon transverse momentum, ranging from about
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Figure A.4: Track-finding efficiency for the FTK and the HLT in a single
muon sample with no pileup as a function of the muon pseudorapidity (a) and
the muon transverse momentum (b).

90% for low pT muons, up to 95% for high pT muons, and is higher in the central

pseudorapidity region (|η| < 1.0).

The track reconstruction performance is also evaluated in terms of the resolution

of track kinematic variables. The resolution is defined as the root mean square of the

difference between the reconstructed and generated variable in a range containing

95% of the events. In figure A.5, the resolution of φ, of η, of the impact parameter,

d0, and of the curvature, q/pT, as a function of the curvature is compared for the

HLT reconstructed muons, for the FTK tracks and for FTK tracks refitted using the

HLT tracking software. The resolution of the refitted FTK tracks is very close to the

HLT one. The φ, d0 and 1/pT resolution of the original FTK track reconstruction is

similar to the refitted one for large absolute values of curvature. The resolution of

these transverse quantities is dominated by multiple scattering in the low pT regime.

At low curvature, the FTK track resolution is worse than the HLT one due to the

worse FTK hit resolution and worse fit precision.

A.2.2 Emiss
TE
miss
TE
miss
T trigger with the Fast Tracker

The global track information at the very early stages of the HLT is very important

to discriminate at the trigger level not only events containing b-jets and τ -leptons,

but also events with missing transverse energy, Emiss
T .

As described in section 2.5.6, the missing transverse energy is the opposite of the

vectorial sum of the transverse momentum of reconstructed objects, which could be

physics objects, like jets, photons or charged leptons, contributing to the so called

hard term but also generic tracks or calorimeter clusters, contributing to the soft

term. In Run 2 at the offline level, the missing transverse energy is calculated using
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Figure A.5: Resolution of φ (a), η (b), d0 (c) and curvature (d) as a function
of the curvature for the HLT muon trigger objects, the FTK tracks, and the
refitted FTK tracks.

the reconstructed physics objects as in Run 1, but with tracks instead of low-pT

calorimeter energy deposits for the soft term contribution. To avoid double counting,

the tracks matched to the high-pT physics objects are not included in the soft term.

The usage of tracks associated to the primary vertex to evaluate the soft term leads

to a reduction from the pileup contribution.

The signal acceptance of physics analyses heavily depends on the trigger effi-

ciency. The wider the overlap between the trigger selection and the offline selection,

the larger the signal acceptance is with respect to a constant rate of triggered back-

ground events.

In Run 1, the L2 Emiss
T was calculated from the transverse momentum of calorime-

ter cells. In Run 2, the reconstructed objects at the HLT used for the Emiss
T calcula-
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tion are either topological clusters calibrated at the hadronic scale (LCW) or jets.

As the FTK provide a global track information at the beginning of the HLT,

missing transverse energy triggers can be defined in every similar way to the offline

Emiss
T calculation, reducing the impact of pileup effects by only using tracks associ-

ated to the primary vertex. Two approaches are proposed to improve the missing

transverse energy trigger at the HLT. The first approach, referred to as FTK+JET

Emiss
T , consists in the direct usage of tracks not associated to jets for the soft term

calculation and the jets for the hard term. The second more sophisticated approach,

referred to as FTK PFlow Emiss
T , exploits the high resolution of a new collection of

jets for the jet term calculation: the particle flow jets; the soft term is calculated

with FTK tracks not associated to particle flow jets. The performance of the trigger

defined with this approach has been studied in the second part of my service task

in comparison to the Run 2 missing transverse energy triggers and FTK+JET Emiss
T

trigger.

After a brief explanation of the Particle Flow algorithm, the performance of jets

reconstructed from different types of constituents, particle flow objects or calorime-

ter clusters, is compared. Afterwards, the performance of Emiss
T reconstruction with

different jet collections and the consequent improvements in the trigger definition

are presented.

Particle flow algorithm

The particle flow (PFlow) algorithm [158] has been implemented in order to combine

track and calorimeter measurements to achieve the best performance of the energy

momentum measurement and the reduction of pileup effects.

Neutral and charged particles are detected as energy deposits in the calorimeter.

Before reaching the calorimeter, charged particle passing through the inner detector

are reconstructed as tracks. In order to avoid double-counting the energy of charged

particles, its signal in the calorimeter has to be identified and removed. For low en-

ergy charged particles, the track momentum resolution is better than the calorimeter

energy resolution; hence the track measurement is kept and the calorimeter mea-

surement is removed.

Good quality tracks, with pT < 40 GeV, are extrapolated by the PFlow algorithm

to the second layer of the EM calorimeter. The charged shower associated to the

track is subtracted at the calorimeter cell level. The remaining cells are combined

again by the topological cluster algorithm (see section 2.5.4). For these studies, the

resulting topological clusters are used at the electromagnetic (EM) scale (the local

hadronic calibration is not applied). The result is a collection of particle flow objects:

the charged ones, corresponding to tracks; the neutral ones, corresponding to the

remaining topological clusters. Each PFlow object ideally represents an individual

particle.

By considering in an event only those charged PFlow objects associated to the

primary vertex, the calorimeter energy deposits coming from in-time pileup interac-
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tions are substantially reduced in the jet and Emiss
T reconstruction.

Particle flow jet performance

FTK and offline tracks are used as input to the Pflow algorithm, for the HLT and

offline reconstruction of PFlow objects called FTK PFlow objects and offline PFlow

objects, respectively. At the HLT and offline together with PFlow objects, topological

clusters are available.

Different jet collections are reconstructed from these kinds of constituents. In

this study, four jet collections are considered:

• standard jets at the LC scale: anti-kT R=0.4 jets built from topological

clusters with local hadron calibration;

• standard jets at the EM scale: anti-kT R=0.4 jets built from clusters at

the electromagnetic scale;

• offline PFlow jets: anti-kT R=0.4 jets built from PFlow objects exploiting

the full offline reconstructed track information, and the remaining clusters at

the EM scale;

• FTK PFlow jets: anti-kT R=0.4 jets built from PFlow objects exploiting the

FTK reconstructed track information, and the remaining clusters at the EM

scale.

Jets are calibrated with different calibration constants, derived for each jet collec-

tion in simulated multijet events. The performance of the jet collections is compared

in terms of the jet pT resolution. The resolution is the width of a Gaussian fit of

the transverse momentum ratio of the reconstructed jet and of the geometrically

matched truth jet.

The resolutions of the four jet collections as a function of the truth jet pT are

shown in figure A.6 for jets reconstructed over the full detector area (figure A.6(a)),

and for jets reconstructed within |η| < 1.1 (figure A.6(b)). Offline PFlow jets give

the best resolution, and FTK PFlow jets give a better resolution than Standard jets

for pT . 100 GeV. The resolution improvements in momentum reconstruction with

PFlow jets is enhanced in the central detector region.
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Figure A.6: Jet energy resolution as a function of the transverse momentum
of the truth jet for the four jet collections over the full detector region (a) and
the |ηjet| < 1.1 region (b): standard jets at the LC scale (blue), standard jets
at the EM scale (green), FTK PFlow jets (red), and Offline PFlow jets (black).
The multi-jet sample is used for this study.

Emiss
T performance

The four jet collections described above can be used in the jet term calculation of

the missing transverse energy. In this section, several types of missing transverse

energy algorithms are compared.

At the offline level two methods are available depending on the jet collections

used for the jet term. If standard calorimeter jets are used, the Offline Hybrid Emiss
T

is reconstructed. If PFlow jets are employed, the Offline PFlow Emiss
T is obtained.

At the HLT, the Emiss
T algorithm does not take into account the contribution of

the soft term, and uses standard jets for the hard term.

With the FTK global track information, two additional Emiss
T definitions can be

considered at the HLT: one using standard jets in the jet term and FTK tracks in

the soft term, Jet+FTK Emiss
T ; and one using PFlow jets for the jet term calculation

and charged PFlow objects, corresponding to FTK tracks, in the soft term. The

tracks used for the soft term calculation are not geometrically associated to jets

with pT > 20 GeV. The definitions are summarised in Table A.1.

The performance is studied for the different Emiss
T reconstructions by looking at

the difference between the reconstructed and generated x component of the missing

transverse momentum in a signal process with Emiss
T due to undetected particles and

in a background process with fake Emiss
T , due to jet mismeasurement. The signal and

background samples are ZH → ννbb and multi-jet processes, respectively, with 60

average number of interactions per bunch crossing.

The difference between the reconstructed Emiss
x and the truth Emiss

x in the signal

and background samples is shown in Figure A.7. Particle Flow Emiss
T algorithms

perform better than the standard Emiss
T algorithms.

In Figure A.8, the correlations among different Emiss
T definitions is compared.
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Jet hard term Soft term

Offline Hybrid Emiss
T standard jets offline tracks

Offline PFlow Emiss
T Offline PFlow jets charged PFlow obj. (offline tracks)

FTK PFlow Emiss
T FTK PFlow jets charged PFlow obj. (FTK tracks)

Jet+FTK Emiss
T standard jets FTK tracks

Jet Emiss
T standard jets -

Table A.1: Definition of Emiss
T reconstruction according to jet term and objects

used as input to the Emiss
T algorithm.

(a) (b)

Figure A.7: Differences between the reconstructed and the truth Emiss
x for

various algorithms. The ZH signal (a) and multi-jet background (b) samples
are used for this study.

The JET+FTK Emiss
T is highly correlated to the offline Hybrid Emiss

T (figure A.8(a)).

This correlation is stronger than the correlation between the FTK PFlow Emiss
T and

its offline PFlow Emiss
T counterpart (figure A.8(e)). This difference can be attributed

to the fact that the first pair uses the same jet collection for the jet hard term, while

the second pair uses similar but not exactly the same PFlow jet collection.

To compare the trigger efficiency, the threshold for each Emiss
T trigger has to be

defined. The Run 2 Emiss
T HLT with 80 GeV threshold, based on the vectorial sum of

topological clusters, is used as a reference. The threshold value for each other Emiss
T

HLT definition is set such that the Emiss
T HLT selects the same rate of background

events passing the L1 Emiss
T trigger with 50 GeV threshold, as the topocluster Emiss

T

trigger with 80 GeV threshold. For Emiss
T triggers, the background rate is dominated

by multijet events. The threshold values are summarised in Table A.2.

The performance of the Emiss
T HLT triggers are compared in terms of efficiency

curves. The Emiss
T HLT efficiency is defined as the fraction of events selected by the
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(a) (b) (c)

(d) (e) (f)

Figure A.8: Correlations among different Emiss
T definitions: between the trigger

JET+FTK Emiss
T and Hybrid Emiss

T (a), offline PFlow Emiss
T (b), truth Emiss

T ; (f)
between the trigger FTK PFlow Emiss

T and Hybrid Emiss
T (d), offline PFlow Emiss

T

(e), truth Emiss
T (c). The ZH signal sample is used for this study.

threshold (GeV)

Topo Cluster Emiss
T (current reference) 80.0

Jet+FTK based Emiss
T 106.0

Jet based Emiss
T 107.0

FTK PFlow Emiss
T 96.0

Table A.2: Threshold values for various Emiss
T definitions which give the same

background rate.

L1 Emiss
T trigger which pass the HLT with the threshold values reported in table A.2.

The efficiencies for the ZH → νν̄bb̄ sample for the three different Emiss
T definitions

and the Run 2 topo cluster Emiss
T HLT are shown in Figure A.9 as a function of

(a) the truth Emiss
T , (b) the offline Hybrid Emiss

T , and (c) the offline PFlow Emiss
T .

With the respect to the true Emiss
T , the FTK PFlow Emiss

T has a steeper efficiency

curve than the other two definitions, and reaches the plateau sooner than the other

HLTs. The JET+FTK Emiss
T performs best with respect to the offline hybrid Emiss

T

(figure A.9(b)) and the FTK PFlow performs best with respect to the offline PFlow

(figure A.9(c)).

These results show that the FTK track reconstruction is very useful for Emiss
T

high level triggers, as it provides the possibility to define a Emiss
T HLT algorithm
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highly correlated to the offline Emiss
T reconstruction.
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(a)

(b)

(c)

Figure A.9: Efficiency curve of four HLT Emiss
T definitions with respect to the

truth Emiss
T (a) and the offline Emiss

T (b) and (c) for the ZH → νν̄bb̄ signal
sample.
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Appendix B

Systematic uncertainties
breakdown

The breakdown of the dominant systematic uncertainties on the number of predicted

events are reported in table B.1, B.2 and B.3 for SR1, SR2 and SR3, respectively.

It has to be noticed that the individual uncertainties can be correlated, and do

not necessarily add up quadratically to the total background uncertainty.
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Uncertainty of channel SR1

Total background expectation 1.51

Total statistical (
√
Nexp) ±1.23

Total background systematic ±0.35 [22.94%]

MC statistics ±0.30 [19.9%]
subjet energy scale ±0.14 [9.3%]
tt̄ PDF ±0.13 [8.6%]
tt̄ ISR/FSR ±0.09 [6.0%]
tt̄ normalization ±0.08 [5.3%]
small-R jet JES ±0.07 [4.6%]
tt̄V theory σ ±0.06 [4.0%]
tt̄ generator ±0.05 [3.3%]
tt̄ theory σ ±0.05 [3.3%]
V+jets normalization ±0.04 [2.6%]
Z+jets theory model. ±0.03 [2.0%]
tt̄ renormalization scale ±0.02 [1.3%]
diboson theory σ ±0.01 [0.7%]
W+jets theory model. ±0.01 [0.7%]
subjet energy resolution ±0.01 [0.7%]

Table B.1: Breakdown of the dominant systematic uncertainties on background
estimates in SR1. Note that the individual uncertainties can be correlated, and
do not necessarily add up quadratically to the total background uncertainty.
The percentages show the size of the uncertainty relative to the total expected
background.
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Uncertainty of channel SR2

Total background expectation 24.36

Total statistical (
√
Nexp) ±4.94

Total background systematic ±2.76 [11.31%]

tt̄ parton shower ±2.42 [9.9%]
V+jets normalization ±1.49 [6.1%]
small-R jet JES ±1.42 [5.8%]
Z+jets theory model. ±1.04 [4.3%]
tt̄ generator ±0.97 [4.0%]
tt̄ normalization ±0.92 [3.8%]
tt̄ PDF ±0.81 [3.3%]
large-R jet JES ±0.79 [3.2%]
tt̄ ISR/FSR ±0.77 [3.2%]
W+jets theory model. ±0.60 [2.5%]
tt̄ theory σ ±0.57 [2.3%]
tt̄ renormalization scale ±0.56 [2.3%]
subjet energy scale ±0.51 [2.1%]
tt̄V theory σ ±0.41 [1.7%]
b-tagging efficiency ±0.40 [1.6%]
l-jet mistag rate ±0.35 [1.4%]
single top theory σ ±0.27 [1.1%]
c-jet mistag rate ±0.24 [1.0%]
MC statistics ±0.17 [0.7%]
diboson theory σ ±0.12 [0.5%]
subjet energy resolution ±0.02 [0.1%]

Table B.2: As for table B.1, breakdown of the dominant systematic uncertain-
ties on background estimates in SR2.
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Uncertainty of channel SR3

Total background expectation 30.54

Total statistical (
√
Nexp) ±5.53

Total background systematic ±4.10 [13.42%]

small-R jet JES ±3.01 [9.9%]
V+jets normalization ±1.96 [6.4%]
Z+jets theory model. ±1.53 [5.0%]
tt̄ normalization ±1.42 [4.6%]
tt̄ parton shower ±1.40 [4.6%]
tt̄ ISR/FSR ±1.17 [3.8%]
tt̄ theory σ ±0.87 [2.8%]
tt̄ renormalization scale ±0.85 [2.8%]
tt̄ PDF ±0.81 [2.7%]
b-tagging efficiency ±0.81 [2.7%]
W+jets theory model. ±0.64 [2.1%]
l-jet mistag rate ±0.51 [1.7%]
subjet energy scale ±0.34 [1.1%]
c-jet mistag rate ±0.32 [1.0%]
subjet energy resolution ±0.31 [1.0%]
MC statistics ±0.28 [0.9%]
tt̄V theory σ ±0.23 [0.8%]
tt̄ generator ±0.22 [0.7%]
single top theory σ ±0.21 [0.7%]
large-R jet JES ±0.08 [0.3%]
diboson theory σ ±0.02 [0.1%]

Table B.3: As for table B.1, breakdown of the dominant systematic uncertain-
ties on background estimates in SR3.

150



Bibliography

[1] ATLAS Collaboration, Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.

Lett. B716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30–61,

arXiv:1207.7235 [hep-ex].

[3] T. Plehn, G. P. Salam, and M. Spannowsky, Fat Jets for a Light Higgs

Boson, Phys. Rev. Lett. 104 (2010) 111801, arXiv:0910.5472 [hep-ph].

[4] T. Plehn, M. Spannowsky, M. Takeuchi, and D. Zerwas, Stop reconstruction

with tagged tops, JHEP 1010 (2010) 078, arXiv:1006.2833 [hep-ph].

[5] S. Schaetzel and M. Spannowsky, Tagging highly boosted top quarks, Phys.

Rev. D89 no. 1, (2014) 014007, arXiv:1308.0540 [hep-ph].

[6] ATLAS Collaboration, Identification of high transverse momentum top

quarks in pp collisions at
√
s = 8 TeV with the ATLAS detector, JHEP 06

(2016) 093, arXiv:1603.03127 [hep-ex].

[7] ATLAS Collaboration, Search for direct pair production of the top squark in

all-hadronic final states in proton-proton collisions at
√
s = 8 TeV with the

ATLAS detector, JHEP 1409 (2014) 015, arXiv:1406.1122 [hep-ex].

[8] T. Plehn, M. Spannowsky, and M. Takeuchi, Stop searches in 2012, JHEP 08

(2012) 091, arXiv:1205.2696 [hep-ph].

[9] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22

(1961) 579–588.

[10] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.

[11] A. Salam, Elementary Particle Theory. ed. N. Svartholm (Almquist and

Wiksells, Stockholm), 1969.

[12] S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with

Lepton-Hadron Symmetry, Phys. Rev. D2 (1970) 1285–1292.

151

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevLett.104.111801
http://arxiv.org/abs/0910.5472
http://dx.doi.org/10.1007/JHEP10(2010)078
http://arxiv.org/abs/1006.2833
http://dx.doi.org/10.1103/PhysRevD.89.014007
http://dx.doi.org/10.1103/PhysRevD.89.014007
http://arxiv.org/abs/1308.0540
http://dx.doi.org/10.1007/JHEP06(2016)093
http://dx.doi.org/10.1007/JHEP06(2016)093
http://arxiv.org/abs/1603.03127
http://dx.doi.org/10.1007/JHEP09(2014)015
http://arxiv.org/abs/1406.1122
http://dx.doi.org/10.1007/JHEP08(2012)091
http://dx.doi.org/10.1007/JHEP08(2012)091
http://arxiv.org/abs/1205.2696
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1103/PhysRevD.2.1285


BIBLIOGRAPHY

[13] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector

Mesons, Phys. Rev. Lett. 13 (1964) 321–323.

[14] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys.

Lett. 12 (1964) 132–133.

[15] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys.

Rev. Lett. 13 (1964) 508–509.

[16] D. J. Griffiths, Introduction to elementary particles; 2nd rev. version.

Physics textbook. Wiley, New York, NY, 2008.

https://cds.cern.ch/record/111880.

[17] The BEH-Mechanism, interactions with short range forces and scalar

particles, Nobel Media AB (2014).

http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/.

[18] A. Bettini, Introduction to elementary particle physics. Cambridge Univ.

Press, Cambridge, 2008. https://cds.cern.ch/record/1111396.

[19] F. Mandl and G. G. Shaw, Quantum field theory; 2nd ed. Wiley, New York,

NY, 2010. https://cds.cern.ch/record/1236742.

[20] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field

Theory; 1995 ed. Westview, Boulder, CO, 1995.

https://cds.cern.ch/record/257493.

[21] K.A. Olive et al. (Particle Data Group), 2015 Review of Particle Physics,

Chin. Phys. C 38 (2014) 090001 and 2015 update.

http://pdg.lbl.gov/2015/reviews/contents_sports.html.

[22] G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl.

Phys. B126 (1977) 298–318.

[23] Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic

Scattering and e+ e− Annihilation by Perturbation Theory in Quantum

Chromodynamics., Sov. Phys. JETP 46 (1977) 641–653. [Zh. Eksp. Teor.

Fiz.73,1216(1977)].

[24] V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in perturbation

theory, Sov. J. Nucl. Phys. 15 (1972) 438–450. [Yad. Fiz.15,781(1972)].

[25] GEANT4 Collaboration, S. Agostinelli et al., GEANT4—a simulation

toolkit, Nucl. Instrum. Meth. A506 (2003) 250–303.

[26] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J.

C70 (2010) 823–874, arXiv:1005.4568 [physics.ins-det].

152

http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
https://cds.cern.ch/record/111880
http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/
https://cds.cern.ch/record/1111396
https://cds.cern.ch/record/1236742
https://cds.cern.ch/record/257493
http://pdg.lbl.gov/2015/reviews/contents_sports.html
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://arxiv.org/abs/1005.4568


BIBLIOGRAPHY

[27] CDF Collaboration, F. Abe et al., Observation of top quark production in p̄p

collisions, Phys. Rev. Lett. 74 (1995) 2626–2631, arXiv:hep-ex/9503002

[hep-ex].

[28] D0 Collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev.

Lett. 74 (1995) 2632–2637, arXiv:hep-ex/9503003 [hep-ex].

[29] ATLAS Collaboration, Measurement of the top quark mass in the tt̄→
dilepton channel from

√
s = 8 TeV ATLAS data, Phys. Lett. B761 (2016)

350–371, arXiv:1606.02179 [hep-ex].

[30] ATLAS, CMS Collaboration, Combined Measurement of the Higgs Boson

Mass in pp Collisions at
√
s = 7 and 8 TeV with the ATLAS and CMS

Experiments, Phys. Rev. Lett. 114 (2015) 191803, arXiv:1503.07589

[hep-ex].

[31] D. E. Morrissey, T. Plehn, and T. M. P. Tait, Physics searches at the LHC,

Phys. Rept. 515 (2012) 1–113, arXiv:0912.3259 [hep-ph].

[32] S. P. Martin, A Supersymmetry primer, arXiv:hep-ph/9709356 [hep-ph].

[Adv. Ser. Direct. High Energy Phys.18,1(1998)].

[33] LHC New Physics Working Group Collaboration, Simplified models for LHC

new physics searches, Journal of Physics G: Nuclear and Particle Physics 39

no. 10, (2012) 105005.

http://stacks.iop.org/0954-3899/39/i=10/a=105005.

[34] W. Beenakker, R. Hopker, and M. Spira, PROSPINO: A Program for the

production of supersymmetric particles in next-to-leading order QCD,

arXiv:hep-ph/9611232 [hep-ph].

[35] M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, T. Plehn,

and X. Portell, Supersymmetry production cross sections in pp collisions at√
s = 7 TeV, arXiv:1206.2892 [hep-ph].

[36] W. Beenakker, M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas, Stop

production at hadron colliders, Nucl. Phys. B515 (1998) 3–14,

arXiv:hep-ph/9710451 [hep-ph].

[37] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, and

I. Niessen, Supersymmetric top and bottom squark production at hadron

colliders, JHEP 08 (2010) 098, arXiv:1006.4771 [hep-ph].

[38] W. Beenakker, S. Brensing, M. n. Kramer, A. Kulesza, E. Laenen,

L. Motyka, and I. Niessen, Squark and Gluino Hadroproduction, Int. J. Mod.

Phys. A26 (2011) 2637–2664, arXiv:1105.1110 [hep-ph].

153

http://dx.doi.org/10.1103/PhysRevLett.74.2626
http://arxiv.org/abs/hep-ex/9503002
http://arxiv.org/abs/hep-ex/9503002
http://dx.doi.org/10.1103/PhysRevLett.74.2632
http://dx.doi.org/10.1103/PhysRevLett.74.2632
http://arxiv.org/abs/hep-ex/9503003
http://dx.doi.org/10.1016/j.physletb.2016.08.042
http://dx.doi.org/10.1016/j.physletb.2016.08.042
http://arxiv.org/abs/1606.02179
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://arxiv.org/abs/1503.07589
http://arxiv.org/abs/1503.07589
http://dx.doi.org/10.1016/j.physrep.2012.02.007
http://arxiv.org/abs/0912.3259
http://arxiv.org/abs/hep-ph/9709356
http://stacks.iop.org/0954-3899/39/i=10/a=105005
http://arxiv.org/abs/hep-ph/9611232
http://arxiv.org/abs/1206.2892
http://dx.doi.org/10.1016/S0550-3213(98)00014-5
http://arxiv.org/abs/hep-ph/9710451
http://dx.doi.org/10.1007/JHEP08(2010)098
http://arxiv.org/abs/1006.4771
http://dx.doi.org/10.1142/S0217751X11053560
http://dx.doi.org/10.1142/S0217751X11053560
http://arxiv.org/abs/1105.1110


BIBLIOGRAPHY

[39] ATLAS Collaboration, ATLAS Run 1 searches for direct pair production of

third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C75

no. 10, (2015) 510, arXiv:1506.08616 [hep-ex]. [Erratum: Eur. Phys.

J.C76,no.3,153(2016)].

[40] L. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001.

[41] TeVI Group, Design Report Tevatron 1 project, FERMILAB-DESIGN-1984-01.

[42] HERA - A Proposal for a Large Electron Proton Colliding Beam Facility at

DESY, Hamburg Desy - DESY HERA 81-10 (81,REC.AUG.) 292p (1981).

[43] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron

Collider, JINST 3 (2008) S08003.

[44] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3

(2008) S08004.

[45] LHCb Collaboration, The LHCb Detector at the LHC, JINST 3 (2008)

S08005.

[46] ALICE Collaboration, The ALICE experiment at the CERN LHC, JINST 3

(2008) S08002.

[47] Schörner-Sadenius, Thomas, ed., The Large Hadron Collider. Springer,

Berlin, 2015. http://www.springer.com/gb/book/9783319150017.

[48] LEP design report. CERN, Geneva, 1984.

https://cds.cern.ch/record/102083.

[49] F. Marcastel, CERN’s Accelerator Complex. La chaine des accelerateurs du

CERN,. https://cds.cern.ch/record/1621583.

[50] ATLAS Collaboration, “Luminosity Public Results.”

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults.

[51] ATLAS Collaboration, “ATLAS Experiment @ 2016 CERN.”

http://atlasexperiment.org/photos/index.html.

[52] ATLAS Collaboration, M. Kayl, Tracking Performance of the ATLAS Inner

Detector and Observation of Known Hadrons, in Hadron collider physics.

Proceedings, 22nd Conference, HCP 2010, Toronto, Canada, August 23-27,

2010. 2010. arXiv:1010.1091 [physics.ins-det].

[53] J. Pequenao, Computer generated image of the ATLAS Muons subsystem,

Mar, 2008. http://cds.cern.ch/record/1095929.

[54] ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010,

Eur. Phys. J. C72 (2012) 1849, arXiv:1110.1530 [hep-ex].

154

http://dx.doi.org/10.1140/epjc/s10052-015-3726-9, 10.1140/epjc/s10052-016-3935-x
http://dx.doi.org/10.1140/epjc/s10052-015-3726-9, 10.1140/epjc/s10052-016-3935-x
http://arxiv.org/abs/1506.08616
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://arxiv.org/abs/FERMILAB-DESIGN-1984-01
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1007/978-3-319-15001-7
http://www.springer.com/gb/book/9783319150017
https://cds.cern.ch/record/102083
https://cds.cern.ch/record/1621583
http://arxiv.org/abs/1010.1091
http://cds.cern.ch/record/1095929
http://dx.doi.org/10.1140/epjc/s10052-011-1849-1
http://arxiv.org/abs/1110.1530


BIBLIOGRAPHY

[55] ATLAS Collaboration, Performance of the ATLAS Inner Detector Track and

Vertex Reconstruction in the High Pile-Up LHC Environment,

ATLAS-CONF-2012-042. https://cds.cern.ch/record/1435196.

[56] ATLAS Collaboration, Tracking Results and Comparison to Monte Carlo

simulation at
√
s = 900 GeV, ATLAS-CONF-2010-011.

https://cds.cern.ch/record/1276323.

[57] ATLAS Collaboration, Performance of primary vertex reconstruction in

proton-proton collisions at
√
s =7 TeV in the ATLAS experiment,

ATLAS-CONF-2010-069. http://cds.cern.ch/record/1281344.

[58] ATLAS Collaboration, Electron efficiency measurements with the ATLAS

detector using the 2012 LHC proton-proton collision data,

ATLAS-CONF-2014-032. http://cdsweb.cern.ch/record/1706245.

[59] ATLAS Collaboration, Electron reconstruction and identification efficiency

measurements with the ATLAS detector using the 2011 LHC proton-proton

collision data, Eur. Phys. J. C74 no. 7, (2014) 2941, arXiv:1404.2240

[hep-ex].

[60] ATLAS Collaboration, Electron performance measurements with the ATLAS

detector using the 2010 LHC proton-proton collision data, Eur. Phys. J. C72

(2012) 1909, arXiv:1110.3174 [hep-ex].

[61] W. Lampl, S. Laplace, D. Lelas, P. Loch, H. Ma, S. Menke, S. Rajagopalan,

D. Rousseau, S. Snyder, and G. Unal, Calorimeter Clustering Algorithms:

Description and Performance, ATL-LARG-PUB-2008-002.

https://cds.cern.ch/record/1099735.

[62] T. Cornelissen, M. Elsing, S. Fleischmann, W. Liebig, E. Moyse, and

A. Salzburger, Concepts, Design and Implementation of the ATLAS New

Tracking (NEWT), ATL-SOFT-PUB-2007-007.

https://cds.cern.ch/record/1020106.

[63] T. G. Cornelissen, M. Elsing, I. Gavrilenko, J.-F. Laporte, W. Liebig,

M. Limper, K. Nikolopoulos, A. Poppleton, and A. Salzburger, The global χ2

track fitter in ATLAS, Journal of Physics: Conference Series 119 no. 3,

(2008) 032013. http://stacks.iop.org/1742-6596/119/i=3/a=032013.

[64] ATLAS Collaboration, Improved electron reconstruction in ATLAS using the

Gaussian Sum Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047.

https://cds.cern.ch/record/1449796.

[65] ATLAS Collaboration, Measurement of the muon reconstruction performance

of the ATLAS detector using 2011 and 2012 LHC proton-proton collision

data, Eur. Phys. J. C74 no. 11, (2014) 3130, arXiv:1407.3935 [hep-ex].

155

http://arxiv.org/abs/ATLAS-CONF-2012-042
https://cds.cern.ch/record/1435196
http://arxiv.org/abs/ATLAS-CONF-2010-011
https://cds.cern.ch/record/1276323
http://arxiv.org/abs/ATLAS-CONF-2010-069
http://cds.cern.ch/record/1281344
http://arxiv.org/abs/ATLAS-CONF-2014-032
http://cdsweb.cern.ch/record/1706245
http://dx.doi.org/10.1140/epjc/s10052-014-2941-0
http://arxiv.org/abs/1404.2240
http://arxiv.org/abs/1404.2240
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://arxiv.org/abs/1110.3174
http://arxiv.org/abs/ATL-LARG-PUB-2008-002
https://cds.cern.ch/record/1099735
http://arxiv.org/abs/ATL-SOFT-PUB-2007-007
https://cds.cern.ch/record/1020106
http://stacks.iop.org/1742-6596/119/i=3/a=032013
http://arxiv.org/abs/ATLAS-CONF-2012-047
https://cds.cern.ch/record/1449796
http://dx.doi.org/10.1140/epjc/s10052-014-3130-x
http://arxiv.org/abs/1407.3935


BIBLIOGRAPHY

[66] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters

and its performance in LHC Run 1, arXiv:1603.02934 [hep-ex].

[67] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock, and B. R. Webber, New

clustering algorithm for multi - jet cross-sections in e+ e- annihilation, Phys.

Lett. B269 (1991) 432–438.

[68] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron

collisions, Phys. Rev. D48 (1993) 3160–3166, arXiv:hep-ph/9305266

[hep-ph].

[69] S. Catani, Y. L. Dokshitzer, M. Seymour, and B. Webber, Longitudinally

invariant k⊥ clustering algorithms for hadron hadron collisions, Nucl. Phys.

B406 (1993) 187–224.

[70] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm,

JHEP 0804 (2008) 063, arXiv:0802.1189 [hep-ph].

[71] Y. L. Dokshitzer, G. Leder, S. Moretti, and B. Webber, Better jet clustering

algorithms, JHEP 9708 (1997) 001, arXiv:hep-ph/9707323 [hep-ph].

[72] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections

in deep inelastic scattering, pp. , 270–279. 1998. arXiv:hep-ph/9907280

[hep-ph].

[73] M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J.

C72 (2012) 1896, arXiv:1111.6097 [hep-ph].

[74] ATLAS Collaboration, Jet energy measurement with the ATLAS detector in

proton-proton collisions at
√
s = 7 TeV, Eur. Phys. J. C73 no. 3, (2013)

2304, arXiv:1112.6426 [hep-ex].

[75] ATLAS Collaboration, Pile-up subtraction and suppression for jets in

ATLAS, ATLAS-CONF-2013-083. http://cds.cern.ch/record/1570994.

[76] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett.

B659 (2008) 119–126, arXiv:0707.1378 [hep-ph].

[77] ATLAS Collaboration, Jet energy measurement and its systematic

uncertainty in proton-proton collisions at
√
s=7 TeV with the ATLAS

detector, Eur. Phys. J. C75 (2015) 17, arXiv:1406.0076 [hep-ex].

[78] ATLAS Collaboration, Performance of b-Jet Identification in the ATLAS

Experiment, JINST 11 no. 04, (2016) P04008, arXiv:1512.01094 [hep-ex].

[79] ATLAS Collaboration, Performance of algorithms that reconstruct missing

transverse momentum in
√
s = 8 TeV proton-proton collisions in the ATLAS

detector, arXiv:1609.09324 [hep-ex].

156

http://arxiv.org/abs/1603.02934
http://dx.doi.org/10.1016/0370-2693(91)90196-W
http://dx.doi.org/10.1016/0370-2693(91)90196-W
http://dx.doi.org/10.1103/PhysRevD.48.3160
http://arxiv.org/abs/hep-ph/9305266
http://arxiv.org/abs/hep-ph/9305266
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://dx.doi.org/10.1016/0550-3213(93)90166-M
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1088/1126-6708/1997/08/001
http://arxiv.org/abs/hep-ph/9707323
http://arxiv.org/abs/hep-ph/9907280
http://arxiv.org/abs/hep-ph/9907280
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1140/epjc/s10052-013-2304-2
http://dx.doi.org/10.1140/epjc/s10052-013-2304-2
http://arxiv.org/abs/1112.6426
http://arxiv.org/abs/ATLAS-CONF-2013-083
http://cds.cern.ch/record/1570994
http://dx.doi.org/10.1016/j.physletb.2007.09.077
http://dx.doi.org/10.1016/j.physletb.2007.09.077
http://arxiv.org/abs/0707.1378
http://dx.doi.org/10.1140/epjc/s10052-014-3190-y
http://arxiv.org/abs/1406.0076
http://dx.doi.org/10.1088/1748-0221/11/04/P04008
http://arxiv.org/abs/1512.01094
http://arxiv.org/abs/1609.09324


BIBLIOGRAPHY

[80] S. Frixione, P. Nason, and G. Ridolfi, A positive-weight next-to-leading-order

Monte Carlo for heavy flavour hadroproduction, JHEP 0709 (2007) 126,

arXiv:0707.3088 [hep-ph].

[81] P. Nason, A new method for combining NLO QCD with shower Monte Carlo

algorithms, JHEP 0411 (2004) 040, arXiv:hep-ph/0409146 [hep-ph].

[82] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with

parton shower simulations: the POWHEG method, JHEP 0711 (2007) 070,

arXiv:0709.2092 [hep-ph].

[83] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for

implementing NLO calculations in shower Monte Carlo programs: the

POWHEG BOX, JHEP 1006 (2010) 043, arXiv:1002.2581 [hep-ph].

[84] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and

manual, JHEP 0605 (2006) 026, arXiv:hep-ph/0603175 [hep-ph].

[85] ATLAS Collaboration, Measurements of normalized differential cross

sections for tt̄ production in pp collisions at
√
s = 7 TeV using the ATLAS

detector, Phys. Rev. D90 no. 7, (2014) 072004, arXiv:1407.0371 [hep-ex].

[86] ATLAS Collaboration, Search for the Standard Model Higgs boson produced

in association with top quarks and decaying into bb̄ in pp collisions at
√
s =

8 TeV with the ATLAS detector, Eur. Phys. J. C75 no. 7, (2015) 349,

arXiv:1503.05066 [hep-ex].

[87] The simulation principle and performance of the ATLAS fast calorimeter

simulation FastCaloSim, ATL-PHYS-PUB-2010-013.

http://cds.cern.ch/record/1300517.

[88] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton

shower simulations, JHEP 0206 (2002) 029, arXiv:hep-ph/0204244

[hep-ph].

[89] S. Frixione, P. Nason, and B. R. Webber, Matching NLO QCD and parton

showers in heavy flavor production, JHEP 0308 (2003) 007,

arXiv:hep-ph/0305252 [hep-ph].

[90] G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al.,

HERWIG 6: an event generator for hadron emission reactions with

interfering gluons (including supersymmetric processes), JHEP 0101 (2001)

010, arXiv:hep-ph/0011363 [hep-ph].

[91] J. Butterworth, J. R. Forshaw, and M. Seymour, Multiparton interactions in

photoproduction at HERA, Z. Phys. C72 (1996) 637–646,

arXiv:hep-ph/9601371 [hep-ph].

157

http://dx.doi.org/10.1088/1126-6708/2007/09/126
http://arxiv.org/abs/0707.3088
http://dx.doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/hep-ph/0409146
http://dx.doi.org/10.1088/1126-6708/2007/11/070
http://arxiv.org/abs/0709.2092
http://dx.doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/1002.2581
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1103/PhysRevD.90.072004
http://arxiv.org/abs/1407.0371
http://dx.doi.org/10.1140/epjc/s10052-015-3543-1
http://arxiv.org/abs/1503.05066
http://arxiv.org/abs/ATL-PHYS-PUB-2010-013
http://cds.cern.ch/record/1300517
http://dx.doi.org/10.1088/1126-6708/2002/06/029
http://arxiv.org/abs/hep-ph/0204244
http://arxiv.org/abs/hep-ph/0204244
http://dx.doi.org/10.1088/1126-6708/2003/08/007
http://arxiv.org/abs/hep-ph/0305252
http://dx.doi.org/10.1088/1126-6708/2001/01/010
http://dx.doi.org/10.1088/1126-6708/2001/01/010
http://arxiv.org/abs/hep-ph/0011363
http://dx.doi.org/10.1007/s002880050286
http://arxiv.org/abs/hep-ph/9601371


BIBLIOGRAPHY

[92] B. P. Kersevan and E. Richter-Was, The Monte Carlo event generator

AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5

and ARIADNE 4.1, Comput. Phys. Commun. 184 (2013) 919–985,

arXiv:hep-ph/0405247 [hep-ph].

[93] ATLAS Collaboration, Measurement of tt̄ production with a veto on

additional central jet activity in pp collisions at
√
s = 7 TeV using the

ATLAS detector, Eur. Phys. J. C72 (2012) 2043, arXiv:1203.5015

[hep-ex].

[94] M. Cacciari, M. Czakon, M. Mangano, A. Mitov, and P. Nason, Top-pair

production at hadron colliders with next-to-next-to-leading logarithmic

soft-gluon resummation, Phys. Lett. B710 (2012) 612–622,

arXiv:1111.5869 [hep-ph].

[95] M. Beneke, P. Falgari, S. Klein, and C. Schwinn, Hadronic top-quark pair

production with NNLL threshold resummation, Nucl. Phys. B855 (2012)

695–741, arXiv:1109.1536 [hep-ph].

[96] P. Baernreuther, M. Czakon, and A. Mitov, Percent-Level-Precision Physics

at the Tevatron: Next-to-Next-to-Leading Order QCD Corrections to

qq → tt+X, Phys. Rev. Lett. 109 (2012) 132001, arXiv:1204.5201

[hep-ph].

[97] M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron

colliders: the all-fermionic scattering channels, JHEP 1212 (2012) 054,

arXiv:1207.0236 [hep-ph].

[98] M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron

colliders: the quark-gluon reaction, JHEP 1301 (2013) 080,

arXiv:1210.6832 [hep-ph].

[99] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark Pair-Production

Cross Section at Hadron Colliders Through O(α4
s), Phys. Rev. Lett. 110

(2013) 252004, arXiv:1303.6254 [hep-ph].

[100] M. Czakon and A. Mitov, Top++: A program for the calculation of the

top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185

(2014) 2930, arXiv:1112.5675 [hep-ph].

[101] S. Frixione, E. Laenen, P. Motylinski, B. R. Webber, and C. D. White,

Single-top hadroproduction in association with a W boson, JHEP 0807

(2008) 029, arXiv:0805.3067 [hep-ph].

[102] N. Kidonakis, Next-to-next-to-leading logarithm resummation for s-channel

single top quark production, Phys. Rev. D81 (2010) 054028,

arXiv:1001.5034 [hep-ph].

158

http://dx.doi.org/10.1016/j.cpc.2012.10.032
http://arxiv.org/abs/hep-ph/0405247
http://dx.doi.org/10.1140/epjc/s10052-012-2043-9
http://arxiv.org/abs/1203.5015
http://arxiv.org/abs/1203.5015
http://dx.doi.org/10.1016/j.physletb.2012.03.013
http://arxiv.org/abs/1111.5869
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.021
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.021
http://arxiv.org/abs/1109.1536
http://dx.doi.org/10.1103/PhysRevLett.109.132001
http://arxiv.org/abs/1204.5201
http://arxiv.org/abs/1204.5201
http://dx.doi.org/10.1007/JHEP12(2012)054
http://arxiv.org/abs/1207.0236
http://dx.doi.org/10.1007/JHEP01(2013)080
http://arxiv.org/abs/1210.6832
http://dx.doi.org/10.1103/PhysRevLett.110.252004
http://dx.doi.org/10.1103/PhysRevLett.110.252004
http://arxiv.org/abs/1303.6254
http://dx.doi.org/10.1016/j.cpc.2014.06.021
http://dx.doi.org/10.1016/j.cpc.2014.06.021
http://arxiv.org/abs/1112.5675
http://dx.doi.org/10.1088/1126-6708/2008/07/029
http://dx.doi.org/10.1088/1126-6708/2008/07/029
http://arxiv.org/abs/0805.3067
http://dx.doi.org/10.1103/PhysRevD.81.054028
http://arxiv.org/abs/1001.5034


BIBLIOGRAPHY

[103] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark

associated production with a W− or H−, Phys. Rev. D82 (2010) 054018,

arXiv:1005.4451 [hep-ph].

[104] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon

corrections for t-channel single top quark production, Phys. Rev. D83 (2011)

091503, arXiv:1103.2792 [hep-ph].

[105] ATLAS Collaboration, Measurement of the charge asymmetry in top quark

pair production in pp collisions at
√
s = 7 TeV using the ATLAS detector,

Eur. Phys. J. C72 (2012) 2039, arXiv:1203.4211 [hep-ex].

[106] ATLAS Collaboration, Measurements of top quark pair relative differential

cross-sections with ATLAS in pp collisions at
√
s = 7 TeV, Eur. Phys. J.

C73 no. 1, (2013) 2261, arXiv:1207.5644 [hep-ex].

[107] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert,

and J. Winter, Event generation with SHERPA 1.1, JHEP 02 (2009) 007,

arXiv:0811.4622 [hep-ph].

[108] S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M. Grazzini, Vector boson

production at hadron colliders: a fully exclusive QCD calculation at NNLO,

Phys. Rev. Lett. 103 (2009) 082001, arXiv:0903.2120 [hep-ph].

[109] A. Martin, W. Stirling, R. Thorne, and G. Watt, Parton distributions for the

LHC, Eur. Phys. J. C63 (2009) 189–285, arXiv:0901.0002 [hep-ph].

[110] ATLAS Collaboration, Further search for supersymmetry at
√
s=7 TeV in

final states with jets, missing transverse momentum, and isolated leptons

with the ATLAS detector, Phys. Rev. D 86 (2012) 092002.

http://link.aps.org/doi/10.1103/PhysRevD.86.092002.

[111] ATLAS Collaboration, Search for pair-produced third-generation squarks

decaying via charm quarks or in compressed supersymmetric scenarios in pp

collisions at
√
s = 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014)

052008. http://link.aps.org/doi/10.1103/PhysRevD.90.052008.

[112] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production

at the LHC, JHEP 07 (2011) 018, arXiv:1105.0020 [hep-ph].

[113] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph

5: Going Beyond, JHEP 06 (2011) 128, arXiv:1106.0522 [hep-ph].

[114] J. M. Campbell and R. K. Ellis, tt̄W+− production and decay at NLO, JHEP

07 (2012) 052, arXiv:1204.5678 [hep-ph].

159

http://dx.doi.org/10.1103/PhysRevD.82.054018
http://arxiv.org/abs/1005.4451
http://dx.doi.org/10.1103/PhysRevD.83.091503
http://dx.doi.org/10.1103/PhysRevD.83.091503
http://arxiv.org/abs/1103.2792
http://dx.doi.org/10.1140/epjc/s10052-012-2039-5
http://arxiv.org/abs/1203.4211
http://dx.doi.org/10.1140/epjc/s10052-012-2261-1
http://dx.doi.org/10.1140/epjc/s10052-012-2261-1
http://arxiv.org/abs/1207.5644
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://dx.doi.org/10.1103/PhysRevLett.103.082001
http://arxiv.org/abs/0903.2120
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://dx.doi.org/10.1103/PhysRevD.86.092002
http://link.aps.org/doi/10.1103/PhysRevD.86.092002
http://dx.doi.org/10.1103/PhysRevD.90.052008
http://dx.doi.org/10.1103/PhysRevD.90.052008
http://link.aps.org/doi/10.1103/PhysRevD.90.052008
http://dx.doi.org/10.1007/JHEP07(2011)018
http://arxiv.org/abs/1105.0020
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/1106.0522
http://dx.doi.org/10.1007/JHEP07(2012)052
http://dx.doi.org/10.1007/JHEP07(2012)052
http://arxiv.org/abs/1204.5678


BIBLIOGRAPHY

[115] M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi, Z0 -

boson production in association with a top anti-top pair at NLO accuracy

with parton shower effects, Phys. Rev. D85 (2012) 074022,

arXiv:1111.1444 [hep-ph].

[116] M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamilton, et al., Herwig++

physics and manual, Eur. Phys. J. C58 (2008) 639–707, arXiv:0803.0883

[hep-ph].

[117] P. Z. Skands, Tuning Monte Carlo generators: The Perugia tunes, Phys. Rev.

D82 (2010) 074018, arXiv:1005.3457 [hep-ph].

[118] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et al., New parton

distributions for collider physics, Phys. Rev. D82 (2010) 074024,

arXiv:1007.2241 [hep-ph].

[119] ATLAS Collaboration, New ATLAS event generator tunes to 2010 data,

ATL-PHYS-PUB-2011-008. http://cds.cern.ch/record/1345343.

[120] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al., New

generation of parton distributions with uncertainties from global QCD

analysis, JHEP 0207 (2002) 012, arXiv:hep-ph/0201195 [hep-ph].

[121] ATLAS Collaboration, Improved luminosity determination in pp collisions at√
s = 7 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C73

no. 8, (2013) 2518, arXiv:1302.4393 [hep-ex].

[122] ATLAS Collaboration, Performance of jet substructure techniques for

large-R jets in proton-proton collisions at
√
s = 7 TeV using the ATLAS

detector, JHEP 1309 (2013) 076, arXiv:1306.4945 [hep-ex].

[123] ATLAS Collaboration, Boosted top quark identification in pp collisions at
√
s

= 8 TeV with the ATLAS detector, Tech. Rep. ATL-COM-PHYS-2014-1492,

CERN, Geneva, Nov, 2014. https://cds.cern.ch/record/1971108.

[124] S. Schaetzel, Jet pT resolution for HEPTopTagger Jets in ATLAS,

ATL-COM-PHYS-2012-1463. https://cds.cern.ch/record/1483229.

[125] ATLAS Collaboration, Single hadron response measurement and calorimeter

jet energy scale uncertainty with the ATLAS detector at the LHC, Eur. Phys.

J. C73 no. 3, (2013) 2305, arXiv:1203.1302 [hep-ex].

[126] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, et al.,

The PDF4LHC Working Group Interim Recommendations,

arXiv:1101.0538 [hep-ph].

160

http://dx.doi.org/10.1103/PhysRevD.85.074022
http://arxiv.org/abs/1111.1444
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
http://arxiv.org/abs/0803.0883
http://dx.doi.org/10.1103/PhysRevD.82.074018
http://dx.doi.org/10.1103/PhysRevD.82.074018
http://arxiv.org/abs/1005.3457
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://arxiv.org/abs/1007.2241
http://arxiv.org/abs/ATL-PHYS-PUB-2011-008
http://cds.cern.ch/record/1345343
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://arxiv.org/abs/hep-ph/0201195
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
http://dx.doi.org/10.1007/JHEP09(2013)076
http://arxiv.org/abs/1306.4945
https://cds.cern.ch/record/1971108
http://arxiv.org/abs/ATL-COM-PHYS-2012-1463
https://cds.cern.ch/record/1483229
http://dx.doi.org/10.1140/epjc/s10052-013-2305-1
http://dx.doi.org/10.1140/epjc/s10052-013-2305-1
http://arxiv.org/abs/1203.1302
http://arxiv.org/abs/1101.0538


BIBLIOGRAPHY

[127] A. Martin, W. Stirling, R. Thorne, and G. Watt, Uncertainties on αS in

global PDF analyses and implications for predicted hadronic cross sections,

Eur. Phys. J. C64 (2009) 653–680, arXiv:0905.3531 [hep-ph].

[128] J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, et al., CT10

next-to-next-to-leading order global analysis of QCD, Phys. Rev. D89 no. 3,

(2014) 033009, arXiv:1302.6246 [hep-ph].

[129] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. Del Debbio, et al.,

Parton distributions with LHC data, Nucl. Phys. B867 (2013) 244–289,

arXiv:1207.1303 [hep-ph].

[130] J. Butterworth, E. Dobson, U. Klein, B. Mellado Garcia, T. Nunnemann,

J. Qian, D. Rebuzzi, and R. Tanaka, Single Boson and Diboson Production

Cross Sections in pp Collisions at sqrts=7 TeV, ATL-COM-PHYS-2010-695.

https://cds.cern.ch/record/1287902.

[131] M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi, t t̄ W+−

and t t̄ Z Hadroproduction at NLO accuracy in QCD with Parton Shower and

Hadronization effects, JHEP 11 (2012) 056, arXiv:1208.2665 [hep-ph].

[132] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, Jet

Substructure as a New Higgs-Search Channel at the Large Hadron Collider,

Phys. Rev. Lett. 100 (2008) 242001, arXiv:0802.2470 [hep-ph].

[133] ATLAS Collaboration, A search for tt̄ resonances using lepton-plus-jets

events in proton-proton collisions at
√
s = 8 TeV with the ATLAS detector,

JHEP 08 (2015) 148, arXiv:1505.07018 [hep-ex].

[134] CMS Collaboration, Search for direct pair production of supersymmetric top

quarks decaying to all-hadronic final states in pp collisions at
√
s = 8 TeV,

Eur. Phys. J. C76 no. 8, (2016) 460, arXiv:1603.00765 [hep-ex].

[135] CMS Collaboration, Exclusion limits on gluino and top-squark pair

production in natural SUSY scenarios with inclusive razor and exclusive

single-lepton searches at 8 TeV, CMS-PAS-SUS-14-011.

[136] CMS Collaboration, Search for direct pair production of scalar top quarks in

the single- and dilepton channels in proton-proton collisions at
√
s = 8 TeV,

JHEP 07 (2016) 027, arXiv:1602.03169 [hep-ex]. [Erratum:

JHEP09,056(2016)].

[137] CMS Collaboration, Search for top-squark pair production in the single

lepton final state in pp collisions at 8 TeV, CMS-PAS-SUS-13-011.

161

http://dx.doi.org/10.1140/epjc/s10052-009-1164-2
http://arxiv.org/abs/0905.3531
http://dx.doi.org/10.1103/PhysRevD.89.033009
http://dx.doi.org/10.1103/PhysRevD.89.033009
http://arxiv.org/abs/1302.6246
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003
http://arxiv.org/abs/1207.1303
http://arxiv.org/abs/ATL-COM-PHYS-2010-695
https://cds.cern.ch/record/1287902
http://dx.doi.org/10.1007/JHEP11(2012)056
http://arxiv.org/abs/1208.2665
http://dx.doi.org/10.1103/PhysRevLett.100.242001
http://arxiv.org/abs/0802.2470
http://dx.doi.org/10.1007/JHEP08(2015)148
http://arxiv.org/abs/1505.07018
http://dx.doi.org/10.1140/epjc/s10052-016-4292-5
http://arxiv.org/abs/1603.00765
http://arxiv.org/abs/CMS-PAS-SUS-14-011
http://dx.doi.org/10.1007/JHEP07(2016)027, 10.1007/JHEP09(2016)056
http://arxiv.org/abs/1602.03169
http://arxiv.org/abs/CMS-PAS-SUS-13-011


BIBLIOGRAPHY

[138] CMS Collaboration, Searches for third-generation squark production in fully

hadronic final states in proton-proton collisions at
√
s = 8 TeV, JHEP 06

(2015) 116, arXiv:1503.08037 [hep-ex].

[139] ATLAS Collaboration, Search for the Supersymmetric Partner of the Top

Quark in the Jets+Emiss
T Final State at

√
s = 13 TeV,

ATLAS-CONF-2016-077.

[140] ATLAS Collaboration, Search for top squarks in final states with one isolated

lepton, jets, and missing transverse momentum in
√
s = 13 TeV pp collisions

with the ATLAS detector, ATLAS-CONF-2016-050.

[141] CMS Collaboration, Search for supersymmetry in events with jets and

missing transverse momentum in proton-proton collisions at 13 TeV,

CMS-PAS-SUS-16-014.

[142] CMS Collaboration, Search for new physics in the all-hadronic final state

with the MT2 variable, CMS-PAS-SUS-16-015.

[143] CMS Collaboration, An inclusive search for new phenomena in final states

with one or more jets and missing transverse momentum at 13 TeV with the

AlphaT variable, CMS-PAS-SUS-16-016.

https://cds.cern.ch/record/2205163.

[144] CMS Collaboration, Search for direct top squark pair production in the fully

hadronic final state in proton-proton collisions at
√
s = 13 TeV corresponding

to an integrated luminosity of 12.9/fb, CMS-PAS-SUS-16-029.

[145] CMS Collaboration, Search for supersymmetry in the all-hadronic final state

using top quark tagging in pp collisions at
√
s = 13 TeV,

CMS-PAS-SUS-16-030.

[146] CMS Collaboration, Search for direct top squark pair production in the single

lepton final state at
√
s = 13 TeV, CMS-PAS-SUS-16-028.

[147] C. G. Lester and D. J. Summers, Measuring masses of semiinvisibly decaying

particles pair produced at hadron colliders, Phys. Lett. B463 (1999) 99–103,

arXiv:hep-ph/9906349 [hep-ph].

[148] A. Barr, C. Lester, and P. Stephens, m(T2): The Truth behind the glamour,

J. Phys. G29 (2003) 2343–2363, arXiv:hep-ph/0304226 [hep-ph].

[149] C. Lester and A. Barr, MTGEN: Mass scale measurements in pair-production

at colliders, JHEP 12 (2007) 102, arXiv:0708.1028 [hep-ph].

[150] H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m(T2), JHEP

12 (2008) 063, arXiv:0810.5178 [hep-ph].

162

http://dx.doi.org/10.1007/JHEP06(2015)116
http://dx.doi.org/10.1007/JHEP06(2015)116
http://arxiv.org/abs/1503.08037
http://arxiv.org/abs/ATLAS-CONF-2016-077
http://arxiv.org/abs/ATLAS-CONF-2016-050
http://arxiv.org/abs/CMS-PAS-SUS-16-014
http://arxiv.org/abs/CMS-PAS-SUS-16-015
http://arxiv.org/abs/CMS-PAS-SUS-16-016
https://cds.cern.ch/record/2205163
http://arxiv.org/abs/CMS-PAS-SUS-16-029
http://arxiv.org/abs/CMS-PAS-SUS-16-030
http://arxiv.org/abs/CMS-PAS-SUS-16-028
http://dx.doi.org/10.1016/S0370-2693(99)00945-4
http://arxiv.org/abs/hep-ph/9906349
http://dx.doi.org/10.1088/0954-3899/29/10/304
http://arxiv.org/abs/hep-ph/0304226
http://dx.doi.org/10.1088/1126-6708/2007/12/102
http://arxiv.org/abs/0708.1028
http://dx.doi.org/10.1088/1126-6708/2008/12/063
http://dx.doi.org/10.1088/1126-6708/2008/12/063
http://arxiv.org/abs/0810.5178


BIBLIOGRAPHY
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