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Measurement of Neutrino and Proton Asymmetry
in the Decay of polarized Neutrons

The Standard Model of Particle Physics is in excellent agreement with all experimental results.
However, it is not believed to be the most fundamental theory. It requires, for example, too
many free parameters and is not able to explain the existence of effects such as parity-violation
or CP -violation. Thus measurements have to be performed to probe the Standard Model and
to search for “new physics”. An ideal laboratory for this is the decay of the free polarized
neutron.

In this thesis, we present measurements of the neutrino asymmetry B and the proton asym-
metry C in neutron decay. These coefficients describe the correlation between neutron spin
and momentum of the respective particle, and provide detailed information on the structure
of the underlying theory. The experiment was performed using the electron spectrometer
PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined
electron-proton detector to reconstruct the neutrino in a coincidence measurement.

The uncertainty of our neutrino asymmetry result, B = 0.9802(50), is comparable to the
present best measurement, and, for the first time ever, we obtained a precise value for the
proton asymmetry, C = −0.2377(36). Both results are used to analyze neutron decay for hints
on “Physics beyond the Standard Model” by studying possible admixtures of right-handed
currents and of scalar and tensor couplings to the interaction.

Messung der Neutrino- und Proton-Asymmetrie
im Zerfall polarisierter Neutronen

Das Standarmodell der Teilchenphysik liefert eine hervorragende Beschreibung für alle ex-
perimentellen Beobachtungen. Dennoch geht man davon aus, dass es nicht die fundamentale
Theorie der Teilchenphysik ist, unter anderem da es sehr viele freie Parameter benötigt und
keine Begründung für Phänomene wie etwa Paritäts- oder CP -Verletzung liefert. Daher wird
es ständig experimentellen Tests unterzogen, in denen auch nach “Physik jenseits des Stan-
dardmodells” gesucht wird. Hierzu bietet der Zerfall freier, polarisierter Neutronen ideale
Rahmenbedingungen.

In dieser Arbeit wird eine Messung der Neutrino-Asymmetrie B und der Proton-Asymmetrie
C im Neutronenzerfall vorgestellt. Diese beschreiben Korrelationen zwischen dem Neutro-
nenspin und dem Impuls des jeweiligen Teilchens und können präzise Informationen über die
Struktur der schwachen Wechselwirkung liefern. Das Experiment wurde mit dem Elektronen-
Spektrometer PERKEO II am Institut Laue-Langevin (ILL) durchgeführt. Um das Neutrino
aus einer koinzidenten Messung von Elektron und Proton zu rekonstruieren, wurde ein kom-
binierter Elektron-Proton-Detektor verwendet.

Das Ergebnis der Neutrino-Asymmetrie B = 0.9802(50) hat eine Genauigkeit, die mit der
bislang besten Messung vergleichbar ist. Weiterhin ist im Rahmen dieser Arbeit die er-
ste Präzisionsmessung der Proton-Asymmetrie gelungen, das Resultat ist C = −0.2377(36).
Beide Werte werden verwendet, um den Neutronenzerfall nach Hinweisen auf “neue Physik”
zu untersuchen. Das Hauptaugenmerk liegt dabei auf rechtshändigen Strömen und neuen
Kopplungen.
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Chapter 1

Introduction

“Experiments in [...] β decay have significantly con-
tributed in the past to the determination of basic as-
pects of the weak interaction. They continue to be
a powerful tool to test the underlying symmetries,
to determine the structure in more detail, and to
search for physics beyond the standard model.”

N. Severijns et al. [Sev06]

Usually, elementary particle physics is considered to be a synonym for high energy physics,
and now, at the beginning of the year 2007, the physics community yearns for the start
of the Large Hadron Collider (LHC) at CERN. Four experiments are dedicated to study
nature at the highest available energies. They should find the Higgs-boson – the missing
part of the Standard Model of particle physics – and hopefully also new (supersymmetric?)
particles. Once these particles are detected, they should be examined precisely with the
planned International Linear Collider (ILC). In this giant instrument of about 40 km length,
electrons and positrons will collide at center of mass energies of 500−1000 GeV.

However, particle physics can also be done at much lower energies. No new particles will
be found here, but low energy experiments are an ideal suited environment to do precision
physics. Significant contributions to the knowledge about the structure of weak interactions
and the role of the underlying symmetries have been determined from experiments studying
β-decay. And when experimental results of very precise measurements differ from Standard
Model expectations, this may suggest evidence for new physics, i.e. physics that is not
described by the Standard Model. The expected effects are tiny but they are accessible due
to the high precision achievable at low energies.

The subject of this thesis is a precision experiment in low energy particle physics: We mea-
sured emission anisotropies of decay products in the decay of free polarized neutrons, in
particular the so-called neutrino asymmetry B and the proton asymmetry C. These are cor-
relations between neutron spin and momentum of the respective particles. In combination
with other parameters, these quantities can be used to study fundamental properties of the
electroweak interaction, such as the origin of parity violation or the general structure of the
weak Lagrangian.
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6 CHAPTER 1. INTRODUCTION

We used Heidelberg’s electron spectrometer PERKEO II for the experiment. Compared to
the high energy physics instruments mentioned above, this is a rather small device, however,
it constitutes probably one of the largest mobile experiments at all. Although it has an overall
weight of almost 20 tons, it was regularly moved to the Institut Laue-Langevin (ILL) that
operates one of the largest scientific neutron sources in the world. Here, in Grenoble (France),
the measurement of the asymmetries was performed in summer 2004.

Neutrons are mostly used to obtain information about materials in scattering experiments,
especially for samples where synchrotron light is not applicable. Hence it is not surprising,
that the vast majority of experiments conducted at the ILL are related to solid state physics,
material science, but also chemistry and biology. Only a small scientific community studies
the neutron itself and tries to answer basic questions in particle physics via precision mea-
surements. PERKEO IIB, the experiment described in this thesis, is an excellent example for
this.

In the experiment, it was neccessary to detect electrons and protons in coincidence to re-
construct the neutrino. We had the possibility to measure altogether eight electron spectra
generated with different conditions on the emission direction of the charged particles with
respect to the neutron spin, and on the detector giving the first trigger signal. These spec-
tra provide many different informations and can be analyzed in several ways to obtain the
neutrino asymmetry B and the proton asymmetry C.

The experimental setup and the measurements will be described extensively in chapter 3,
followed by data analysis in chapter 4, where we also present the results for the asymmetries.
Implications following from these and the analysis regarding new physics can be found in
chapter 5, followed by a summary and a brief look into PERKEO’s future. Some impressions
of the experiment PERKEO IIB are shown at the end of the thesis, on page 123. First of all,
we will give an introduction to the weak interaction at low energies and to possible extensions
of the Standard Model in the following chapter.



Chapter 2

The Weak Interaction in the
Standard Model

The decay of the free neutron into electron, proton, and anti-neutrino

n→ e− + p+ νe (2.1)

is probably the best-known example of a weak semi-leptonic decay. In this chapter, we will
give a brief introduction into the theory of weak interactions as described within the Standard
Model of Particle Physics. However, limits of this model and possible extensions will be also
mentioned, in particular left-right symmetric models.

The main part of the chapter covers the theory of neutron decay relevant to the measurement
that was performed within the framework of this thesis.

2.1 Weak Interaction and Neutron Decay

Standard Model of Particle Physics: In the 1860s, Maxwell realized that electric and
magnetic forces have the same origin; the so-called Maxwell Equations are the basic equations
of the unified theory of electromagnetism. 100 years later, Weinberg and Salam were able to
show that electromagnetic and weak interactions of leptons could be regared as manifesta-
tions of a single electroweak interaction; Glashow then managed to extent this theory to the
hadronic sector. Just as in QED (quantum electrodynamics), the field theoretical formulation
of relativistic quantum mechanics, this new theory - called QFD (quantum flavor dynamics)
- is based on the request of local gauge invariance of the Dirac spinor. This automatically
leads to the existence of vector fields that couple to the spinor. The corresponding particles
are the gauge bosons γ, W+, W−, and Z0.

Together with the theory of strong interactions, quantum chromodynamics (QCD), QFD
constitutes the so-called Standard Model of Particle Physics. It is based on the gauge group

SU(2)L ⊗ U(1) ⊗ SU(3)c (2.2)

and describes the weak, electromagetic, and strong interaction of the six leptons
(
νe

e−

)
,

(
νµ

µ−

)
,

(
ντ

τ−

)
, (2.3)

7



8 CHAPTER 2. THE WEAK INTERACTION IN THE STANDARD MODEL

and six quarks (
u
d

)
,

(
c
s

)
,

(
t
b

)
(2.4)

by exchange of the four electroweak gauge bosons mentioned above and eight additional QCD
gluons gα.

Weak Interaction: We will now focus on the weak interaction, the only force that is
not flavor invariant, i.e. that can change quark flavors. We distinguish interactions mediated
by weak neutral currents, corresponding to the exchange of a Z0-boson, and charged current
interactions. In the latter, a W+ or W− boson is exchanged and the charge of the initial state
changes by one elementary charge e. Neutron decay, where - on the quark level - a down-quark
(qd = −1

3) is transformed into an up-quark (qu = +2
3), is governed by the charged current.

Parity Violation: In the year 1956, Lee and Yang [Lee56] realized that the weak inter-
actions is not neccessarily invariant under parity transformation

P : (t, r) → (t,−r) (2.5)

describing a reflection of the spatial coordinates at the origin. In 1957, Wu [Wu57] experi-
mentally confirmed this parity violation in the decay of polarized 60Co

60Co → 60Ni + e− + νe (2.6)

by measuring an anisotropy in the electron emission direction. The PERKEO experiment de-
scribed in this thesis is in some sense a modern and very precise version of the Wu-experiment
for neutrons.

All experimental results on parity violation indicate that (massless) neutrinos are always
left-handed, i.e. that their spin is aligned antiparallel to their momentum, their helicity is
H = −1. Anti-neutrinos found in β−-decays are always right-handed. Nowadays, it is known
from the observation of neutrino oscillations that neutrinos must have a mass. But at least
the electron neutrino seems to be very light, and the assumption of a masseless neutrino works
quite well. The massive leptons (e−, µ−, τ−) are also left-handed, however, their helicity is
only H = −v

c as one can always find a frame of reference moving faster than the particle
itself. To account for the experimental results, maximal parity violation is included in the
Standard Model of weak interactions: Massless leptons are always left-handed.

In 1964, not even ten years after the discovery of parity violation, Christensen et al. found ex-
perimentally that also CP , the combination of a parity P and a charge conjugation C : q → −q
transformation, is violated in weak K-decays [Chr64]. However, the combination CPT includ-
ing additionally the time reversal transformation T : (t, r) → (−t, r) must be a symmetry in a
Lorentz invariant field theory with arbitrary interactions [Lue54]. Thus time reversal T must
also be violated in weak interactions since CP violation has been observed and evidence for
T non-invariance was found in the neutral kaon system [Ang98].
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W -

n(udd)

p(udu) e-
�e

Figure 2.1: Feynman diagram of neutron β-
decay: On the quark level, a down quark decays
into an up quark; the intercation is mediated by a
charged W -boson.

n(udd)

p(udu) e-�e

Figure 2.2: In the low energy limit, the W -boson
mass in the propagator dominates the momentum
tranfer q, and the interaction can be described as
a four-fermion point interaction.

From the Feynman Diagram to V−A Theory: From the Feynman diagram describing
neutron decay (figure 2.1) one can calculate the transition matrix matrix

Tfi = −g
2

2
eγµ 1− γ5

2
νe

(
−gµν + qµqνm

−2
W

q2 −m2
W

)
〈p|uγν 1− γ5

2
d|n〉 (2.7)

where e, νe, p, n, u, and d denote the Dirac spinors af the respective particles, mW is the
W -boson mass, g the weak coupling constant, gµν the metric tensor, and q the momentum
transfer. The hadronic part is written in bra-ket notation to account for hadronic structure.

Maximal parity violation is included in the theory using the projection operator h = 1
2(1−γ5).

The application of h to a spinor ψ yields only the left-handed part ψL of the field:

ψL = hψ =
1− γ5

2
ψ. (2.8)

In the limit of massless particles, only the left-handed SU(2)L doublets
(
νe

eL

)
,

(
νµ

µL

)
,

(
ντ

τL

)
,

(
uL

dL

)
,

(
cL
sL

)
, and

(
tL
bL

)
(2.9)

participate in the interaction, the right handed particles are singlets under SU(2)L transfor-
mations and do not interact weakly at all.

Due to the high W -boson mass mW = 80.4 GeV, and the rather low momentum transfer q
given by the mass difference between neutron and proton, we have |q2| ¿ m2

W , and equation
(2.7) can be simplified to

Tfi = − g2

8m2
W

eγµ(1− γ5)νe 〈p|uγµ(1− γ5)d|n〉. (2.10)

This corresponds to Feynman graph 2.2, a four-fermion-coupling where the two vertices coin-
cide and the four fermion lines meet in one point; the coupling constant in this case is GF /

√
2,

where GF is the Fermi constant. By comparing the constants one gets the relation

g2

8m2
W

=
GF√

2
=

1.16 · 10−5 GeV2

√
2

. (2.11)
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The reason for the “weakness” of the weak interaction is not due to a small coupling constant
g, which is of the order of magnitude of the electromagnetic coupling e, but due to the high
mass mW in the denominator.

Equation (2.10) provides a perfect description of all weak processes at low energies and is also
referred to as V −A formulation of β-decay: The vector part (γµ) in the matrix element has
the same size as the axial-vector part (−γµγ5) but an opposite sign.

To account for processes like strangeness violating decays, i.e. decays between the three quark
families, and to preserve universality, the quark fields d, s, and b have to be replaced by the
weak eigenstates d′, s′, b′ that are linear combinations of the mass eigenstates:



d′

s′

b′


 =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






d
s
b


 . (2.12)

The transformation between the two bases is achieved with the unitary 3 × 3 quark mixing
matrix (CKM-matrix1) V .

If we separate the matrix element between the nucleon states into a vector and an axial-
vector part to account for hadronic structure (assuming exact isospin invariance of the strong
interaction, i.e. mn = mp)

〈p|uγµ(1− γ5)d|n〉 = 〈p|uγµd|n〉 − 〈p|uγµγ
5d|n〉 = gV pγµn+ gA pγµγ

5n, (2.13)

and include quark mixing, the full transition matrix of neutron decay reads:

Tfi = −GF√
2
Vud eγ

µ(1− γ5)νe pγµ

(
1 +

gA

gV
γ5

)
n. (2.14)

The ratio of axial-vector gA to vector coupling constant gV is often denoted by

λ =
gA

gV
. (2.15)

Most General Description of Weak Interaction: We conclude that the weak in-
teraction in neutron decay and at low energies in general can be perfectly described by a
four-fermion point interaction. The currents show a V −A structure that was first proposed
by Feynman and Gell-Mann [Fey58].

However, if we only assume Lorentz-invariance and (for simplicity) only linear couplings, the
most general Lagrangian reads

L =
∑

k

(pΩkn) (eΩk(gk + g′kγ
5)νe) + h.c., (2.16)

where the operator Ωk describes the type of interaction: Scalar ΩS = 1, vector ΩV = γµ,
tensor ΩT = σµν/

√
2 = −i 2−

3
2 (γµγν − γνγµ), axial-vector ΩA = γµγ5, and pseudo-scalar

ΩP = γ5. The coefficients gk, g′k determine its relative strength. Which interactions are
actually realized in nature cannot be concluded from the spectral shape or life time τ of a
weak process. Additional information is needed, and very important experiments for this
purpose are measurements of angular distributions in the decay of a particle, the topic of this
thesis. However, up to now no deviations from the V −A structure have been found [Sev06].

1Cabbibo-Kobayashi-Maskawa-matrix
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2.2 Limits of the Standard Model

The Standard Model of electroweak interactions, whose low-energy description of the weak
force was introduced in the last section, is a well established theory. It had some great
successes by predicting the existence of formerly unknown particles (e.g. Z0, top-quark), and
up to now no experiment is known that cannot be explained within this model. (To some
extent with slight adjustments as in case of the finite neutrino masses and lepton number
non-conservation known from neutrino oscillation experiments.) However, scientists do not
assume it to be the “final” theory of particle physics since it is unsatisfactory in many aspects:

• It has a vast amount of free parameters: The “original” standard model needs 18
parameters to describe interactions and observed masses, seven more are neccessary to
account for massive neutrinos. Although it is unlikely (but not undesirable) that the
next generation of theories will predict all particle masses, they should at least reduce
the number of coupling constants.

• There are two separate theories covering electroweak and strong processes. Gravity, the
fourth fundamental interaction, is not included in the Standard Model at all.

• There is no intrinsic motivation for the left-handedness of the weak interaction leading
to parity violation. The origin of CP -violation remains unclear, too.

• The Standard Model gives no explanation for the existence of the three generations of
quarks and leptons. Another property not understood is the equality of proton and
electron absolute charge; the deviation being smaller than 1.0 · 10−21 [PDG06].

• Finally there is a cosmological reason: We know the matter content of the universe
from nuclear synthesis and very precisely from the WMAP observation of the cosmic
microwave background [Spe06]. Less that 5 % are due to baryonic matter as described
within the Standard Model. There is neither an explanation for the additional 20 % of
dark matter nor for the remanining dark energy.

Therefore the Standard Model is constantly tested experimentally, and searches for “Physics
beyond the Standard Model” are very important to obtain a starting-point to approach the
problems mentioned above. Many theoretical extensions have been proposed, some of them
will be sketched in the following sections. In doing so, we will focus on left-right symmetric
models that address the question of the origin of parity violation. A measurement of the
neutrino asymmetry B in neutron decay, as described in this thesis, is very sensitive to
possible right-handed currents.

2.2.1 Grand Unified Theories and Supersymmetry

The three interactions included in the Standard Model have three coupling constants, the
fine structure constant αem, the strong coupling constant αs, and the Fermi-constant GF

(cf. equation 2.11)2. After electroweak unification at energies mZ ≈ 102 GeV, we still have
three coupling constants αs, g and g′, where the latter two are linked by the Weinberg-angle

2In this overview, we closely follow [Gro90].
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Electricity
Magnetism

Weak Interaction

Strong Interaction QCD

Gravity General Relativity

Maxwell
QED QFD

GUT?
SUSY? String-

theory?
SUGRA?Standard Model

Figure 2.3: The figure illustrates
the unification of the fundamental in-
teractions: The shaded region - be-
fore the unification of electroweak
and strong interaction - is referred
to as the Standard Model. Possible
extensions including QCD are Grand
Unified Theories (GUTs), Supersym-
metry, or String Theory. (Figure
based on [Gro90]).

θW . Thus, the overall number of parameters has not decreased. Only the explanation of all
interactions based on gauge invariance with respect to a simple group G leads to a single
coupling constant. A simple group G cannot be written as a direct product of two subgroups,
as it is the case in QFD

GQFD = SU(2)L ⊗U(1), (2.17)

where we still have two couplings.

To reduce the number of free parameters by unification of electroweak theory and QCD (cf.
figure 2.3), one therefore has to look for a simple group G with

G ⊃ SU(2)L ⊗U(1)⊗ SU(3)c (2.18)

since the new theory has to include the Standard Model. The smallest group satisfying this
condition is SU(5), the so-called “Minimal Solution” of a Grand Unifying Theory (GUT):
To obtain three different interactions from a fundamental simple group G, the corresponding
symmetry must be spontaneously broken at a mass scale mX ≈ 1015 GeV. Above this energy,
only one interaction mediated by “X-bosons” exists, and after symmetry breaking the gauge
bosons of the Standard Model occur:

G
mX−→ SU(3)c ⊗ SU(2)L ⊗U(1) mZ−→ SU(3)c ⊗U(1)em (2.19)

An implication of this scenario is that the coupling constants gs(q2), g(q2), and g′(q2), de-
pending on momentum tranfer q, have to coincide at mX .

At first, the simple SU(5)-GUT was quite successful since it managed to explain some points in
the list given above: It unified all three interactions, was able to calculate the Weinberg-angle
θW , and explained the equality of electron and proton charge in a natural way. In SU(5),
however, there are still almost 20 free parameters, neither the origin of parity violation is
explained nor the existence of the three quarks and lepton generations, and gravity is again
not included. On the experimental side, the model predicts the proton to decay via X-boson
emission in positron and pion,

p
X→ e+ + π0, (2.20)

with a lifetime of τGUT ≈ 1030 years. However, the actual limit is already two orders of
magnitude larger: τp > 1.6 · 1032 years [PDG06]. Therefore the simple SU(5) model seems to
be refuted and more complicated extensions had to be conceived.
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SO(10) with Intermediate Symmetries: The next simple group including SU(5) as
subgroup is SO(10). Now, there may be intermediate symmetries for energies M > mX , and
many possible models based on this approach exist. In these, neutrinos appear as massive
particles (as found in the oscillation experiments), and the proton lifetime can be longer.
Furthermore, the existence of intermediate symmetries, i.e. more than one symmetry breaking
from SO(10) to the observed SU(3)c⊗SU(2)L⊗U(1), allows that the three coupling constants
do not coincide at one particular energy mX [Fuk03].

Among the most prominent theories based on SO(10) are the so-called Left-Right-Symmetric
models [Pat74, Moh75]: At energy M > mX , these break down the symmetry group into an
“extended color” (EC) group, identifying the leptons as fourth color charge, and a left-handed
and a right-handed SU(2) group:

SO(10) M−→ SU(4)EC ⊗ SU(2)L ⊗ SU(2)R

mWR−→ SU(3)c ⊗ SU(2)L ⊗U(1)
mWL

≈mZ−→ · · · . (2.21)

The interaction corresponding to SU(2)R is mediated by heavy right-handed WR-bosons; at
its mass scale mWR

, symmetry is again spontaneously broken into the Standard Model groups.
This model will be discussed in more detail in section 2.2.2.

Supersymmetry (SUSY): The alternative to SO(10) is the introduction of supersym-
metry into SU(5), generating a symmetry between fermions and bosons by arranging them
in “supermultipletts”. To do so, a “superpartner” has to be introduced for every particle;
unfortunately none of the known particles can be linked together, so many new particles have
to be invented: For example six spin-0 squarks as superpartners for the quarks and spin-1

2
bosinos for the bosons. Until now, no new SUSY-particles were detected, but maybe the
neccessary energies will be reached in the LHC (CERN). In exact supersymmetry, the masses
of particle and sparticle would be degenerate. Since this is not the case, SUSY is broken at
the mass scale mSUSY; this scale, however, is not predicted by the theory itself.

In general, supersymmetry can explain the coarse structure in the particle mass spectrum and
yields a longer proton lifetime. There are many SUSY versions, amongst others local SUSY
models that intrinsically include gravity (SUGRA), and supersymmetric left-right models
based on the group

SU(3)c ⊗ SU(2)L ⊗ SU(2)RU(1)BL, (2.22)

where BL denotes baryon-lepton symmetry [Aul97].

2.2.2 Left-Right Symmetric Models

It is assumed that the universe was in a left-right symmetric state at the high energies just
after the big bang. The Standard Model, valid at much lower energies, is not left-right
symmetric at all and provides no information on the origin of parity violation.

This was one of the reasons to develop the so-called left-right symmetric models [Pat74,
Moh75]: They assume that parity is an exact symmetry of the weak interaction Lagrangian
above an energy mWR

that is much larger than the electroweak breaking scale mZ . A left-
and a right-handed group SU(2) are spontaneously broken into the well-known SU(2)L ⊗
U(1) when temperature drops below mWR

due to the cooling of the expanding universe.
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Analogous to mass generation in the Higgs-mechanism, parity violation can now be explained
as a consequence of spontaneous symmetry breaking in a transition to lower energies. Below
mWR

, weak interaction is mediated by the “normal” W±
L -bosons that only couple to the left-

handed particle doublets, however, there should be additional bosons W±
R , remnants from

the right-handed SU(2)R group. The model also requires massive right-handed neutrinos as
needed in the “seesaw-mechanism” to explain the smallness of the neutrino masses.

Manifest Left-Right Symmetry: Left- and right-handed coupling constants are as-
sumed to be equal in the manifest left-right symmetric model [Beg77], g′LV = g′RV , g′LA = g′RA,
the same holds for quark mixing. In left-right symmetric theories considering a minimal Higgs
sector, with only one complex Higgs doublet and a single physical Higgs boson, manifest left-
right symmetry is approximately realized [Bab06, Bar02]. Similar to quark-mixing, the weak
eigenstates of the WL,R-bosons are given by a linear combination of the mass eigenstates W1,2:

(
WL

WR

)
=

(
cos ζ − sin ζ
eiφ sin ζ eiφ cos ζ

) (
W1

W2

)
, (2.23)

with mixing angle ζ and a CP violating3 phase φ. (We will neglect φ in the following since it
has no observable effect.) Further parameters of the manifest left-right symmetric theory are
the ratios

δ =
m2

1

m2
2

and λ′ =
g′A
g′V

. (2.24)

However, λ′ may be different from the Standard Model value.

Until now, there is no experimental evidence for currents mediated by right-handed WR-
bosons. Therefore WR (and W2) have to be very heavy. One expects values in the order
of mWR

≈ 104 GeV [Nac86], what is also assumed to be the symmetry breaking scale. The
Standard Model is restored from the theory when no mixing occurs (ζ = 0) and the W2 boson
is infinitely heavy (δ = 0).

Right-Handed Currents in Neutron Decay: We can deduce limits on the parameters
λ′, ζ, and δ from three independent experimental quantities, e.g. the correlation coefficients
A, B, and the lifetime τn (cf. chapter 2.3). In 2004, when we started to work on this thesis,
the status of right-handed currents in neutron decay was as shown in figure 2.4, which gives
the 50 %, 90 %, and 95 % confidence levels for ζ and δ projected along the λ′ axis. The
input parameters are the mean values given by the Particle Data Group (PDG) [PDG04].
Obviously, data is fully consistent with the Standard Model.

However, if one halves the error on the neutrino asymmetry B, the quantity we have measured
within this thesis, one obtains figure 2.5: The Standard Model in not included anymore in the
90 % confidence level, emphasizing the sensitivity of this parameter to right-handed currents
and “physics beyond”.

3It is interesting to note that in left-right symmetric models CP is violated even with only two generations,
whereas the Standard Model needs three [Bab06].
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Figure 2.4: Exclusion plot for possible right-
handed currents in neutron decay obatained with
experimental values from 2004 [PDG04]. The
Standard Model δ = ζ = 0 is consitent with the
experimental situation.

Figure 2.5: Exclusion plot with the values used
in figure 2.4 but an halved error on the neutrino
asymmetry B. This shows the sensitivity of this
quantity on possible right-handed currents and the
mass m2 of the right-handed boson.

2.2.3 Measurements of Right-Handed Currents

Many experiments have been performed to get constraints on the mixing angle ζ and the mass
m2 of the right-handed boson WR. In this section, we only give a brief overview following
closely the Particle Data Group Summary [Bab06]: It suggests a limit of m2 > 715 GeV
obtained from a simultaneous fit to electroweak data, but does not give a value for ζ at all
since the experimental situation is quite unclear.

Direct Search Limits: Direct search for the W2-boson depends on the energy available to
produce the particle and on the accessible decay channels. These are heavily model dependent
and one has to make assumptions in order to get constraints: For example in the limit of
small ζ and mνR > m2, where the decay

W+
2 → `+R + νR (2.25)

is forbidden by energy conservation, the D∅ experiment at Tevatron excludes a mass range
from 300 to 800 GeV [Aba04]. Other experiments, however, yield considerably lower values.
If one assumes a light right-handed neutrino the decay (2.25) is possible, and the D∅ limit
reduces to m2 > 720 GeV (mνR ¿ m2)) or m2 > 650 GeV (mνR = m2/2)) [Aba96]. Although
all these limits already assume simple manifest left-right symmetry or pseudo-manifest left-
right symmetry4, they heavily depend on assumptions on particle masses etc.

Indirect Constraints: These are obtained from experiments that precisely measure elec-
troweak quantities, since right-handed remnants would cause small deviations from the Stan-
dard Model values. Limits on the angle ζ can be derived from nonleptonic K-decays, from
the transition b→ s+ γ in radiative B-meson decays, and from β-decays. However, they also

4In pseudo-manifest left-right symmetric models the quark mixing matrices V are related via VL = (VR)∗.
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depend on assumptions on single parameters (ζ small, mνR heavy, etc.) and published results
differ partly by more than one order of magnitude.

If the mass of the right-handed neutrino is small enough to allow its emission in muon or
β-decay, limits on m2 can be derived. A polarized muon decay experiment [Bar97] yields the
constraint m2 > 549 GeV in the ζ = 0 limit. Futher contraints come from astrophysics and
cosmology, but again special assumptions have to be made: With a light νR, nucleosynthesis
and supernova models give limits of several TeV, however, a heavy right-handed neutrino is
required in the see-saw mechanism. Neutrinoless double beta decay experiments, assuming
the neutrino to be a Majorana-particle, also give high limits m2 > 1.1 TeV if there exists an
heavy right-handed neutrino (see references in [Bab06]).

We conclude that every measurement providing limits without the need of a very specific set
of parameters can give further insight into the question of left-right symmetry.

2.3 Neutron Decay

The neutron is the heavier of both nucleons (mnc
2 = 939.565 MeV) and has the quark content

udd. If not bound in a nucleus it decays into proton p, electron e−, and anti-neutrino νe

n→ p+ e− + νe (2.26)

with a lifetime τ = 885.7(8) s (all values taken from [PDG06]). The q-value of the process is
given by the mass difference

q = (mn −mp −me −mν)c2 = 782.32 keV. (2.27)

If we consider proton recoil and a massless neutrino, this corresponds to an endpoint energy
E0=781.57 keV of the contiuous electron spectrum.

Low Energy Particle Physics: Compared to high energy physics with center of mass
energies in the TeV-range, neutron decay with its tiny q-value is a perfect example of low
energy particle physics. Needless to say, no new particles will be found at these energies,
however, many insights into the structure of electroweak interactions (and also into QCD
that enters via small corrections) can be obtained from very precise experiments. Therefore,
low energy physics is an important subarea of particle physics. And if the next generation
accelerators (LHC, ILC) will not find new particles, maybe the only way to discover new
physics will be to study low energy processes5 very carefully to find its remnants causing
small deviations from well established parameters.

In principle, if a new physics process takes place at an energy scale M∗ ≈ 106...19 GeV that is
much too high to be directly accessible, it makes no difference if the experiments are carried
out at energies p = O(1 neV) or O(1000 GeV); their influence on the propagator

1
p2 +M∗2 →

1
M∗2 (2.28)

is negligible in both cases [Dub07].
5In this sense, “low energy” spans a rather wide range from peV-neutrons trapped in the earth’s gravitational

potential to LEP energies.
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The neutron delivers a perfect environment for precision measurements since it is available
in large numbers at powerful sources, and all quarks and leptons of the first generation
participate in its decay. Compared to studies of nuclear β-decay, where similar observables
can be measured, it has the advantage that no corrections with large uncertainties due to
nuclear structure arise.

Decay Probability: The neutron’s decay probability ω can be calculated using Fermi’s
“Golden Rule”

dω(E) =
2π
h̄
|Tfi|2 dφ(E)

dE
dE, (2.29)

where the number of possible final states is given by the phase space factor

dφ(E) =
1

4π4(h̄c)6
(E +mec

2)
√

(E +mec2)2 −m2
ec

4 (E0 − E)2 dE = F ′(E) dE. (2.30)

Throughout this text, E denotes the kinetic energy of the electron, me its mass, and E0 the
endpoint energy of its spectrum. Additional small corrections have to be applied to the phase
space factor F ′(E), plotted in figure 2.6, to account for Coulomb interaction between electron
and proton, proton recoil, and radiative corrections (cf. chapter 4.5.1 for details).

From equation (2.14) we can calculate the transition matrix element Tfi in (2.29) and obtain
the transition probability

dω ∝ G2
F |Vud|2 F (E) (g2

V + 3g2
A) dE (2.31)

for unpolarized neutrons. F (E) denotes the phase space factor with corrections.

Parity Violation in Neutron Decay: Within standard V − A theory, there are two
possible β-decay transitions: Fermi-transitions via vector currents conserve the orientation of
the hadronic spin since the lepton spins are in a singlet state S = 0. As illustrated in figure
2.7, particle emission is isotropic here.

Axial-vector or Gamow-Teller transitions couple the lepton spins to the triplett state S = 1
and may flip the hadron spin. Parity violation becomes visible in this case since the spin
orientation of the leptons is determined by angular momentum conservation, and the posi-
tive anti-neutrino helicity requests its momentum to be aligned in spin direction. Therefore
emission of electrons and neutrinos is not isotropic; the same holds for protons since they are
kinematically coupled to the two leptons.
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Figure 2.6: The “Fermi-function”, the uncor-
rected phase space factor F ′(E) of the electron
spectrum. Small corrections still have to be ap-
plied to account for Coulomb interaction between
the charged decay products, proton recoil, and ra-
diative corrections. The endpoint energy of the
spectrum is at E0 = 781.57 keV.
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F: ⇑ −→ ⇑ (⇑↓⇓↓ − ⇓↑⇑↑)

mmminmmmmmmmmapmmmmme−mνemmmme−mνe

GT: ⇑ −→ ⇑ (⇑↓⇓↓ + ⇓↑⇑↑)

mmmmmmmmmmmminmmmmmmmmipmmmmme−mνemmmme−mνe

⇑ −→ ⇓ ⇑↓ ⇑↑
mmmmmmmmmmmmmmanmmmmmmmmipmmmae−mmmνe

Figure 2.7: Fermi- (F) and Gamow-Teller transitions (GT): The double arrows represent the spin,
the superscript arrow the momentum. The last GT-transition is the only one violating parity since
the anti-neutrino is fully right-handed in V − A theory, resulting in a non-isotropic emission of the
decay products. (Figure based on [Rei99].)

2.3.1 Correlation Coefficients

As it is evident from figure 2.7, the neutron spin has to be aliged in a certain direction in
order to detect the emission asymmetries of the decay products, i.e. the neutrons have to be
polarized. In this case, the transition probability ω can be expressed in terms of measurable
quantities, the so-called correlation coefficients [Jac57]:

dω ∝ G2
F |Vud|2 F (E) (g2

V + 3g2
A) dE dΩe dΩν

×
(

1 + a
pepν

EEν
+ b

me

E
+ 〈sn〉

[
A

pe

E
+B

pν

Eν
+D

pe × pν

EEν

])
, (2.32)

where pe, pν , E, Eν are momentum and energy of electron and neutrino respectively. 〈sn〉
is the neutron spin direction, the Ωi denote solid angles, and the parameters a, b, A, B,
and D are the correlation coefficients, also referred to as “asymmetries”: a is the correlation
between the momenta of electron and neutrino. A non-vanishing Fierz interference term b
would indicate the existence of scalar and tensor interactions, thus it is zero in the Standard
Model. The parameters A and B are parity violating since they correlate the neutron spin
with the momentum of electron and neutrino respectively. A non-vanishing triple-coefficient
D would violate time reversal invariance.

In V −A theory, all coefficients are functions of λ = gA
gV

:

a =
1− |λ|2
1 + 3|λ|2 , A = −2

|λ|2 + Re(λ)
1 + 3|λ|2 , B = 2

|λ|2 − Re(λ)
1 + 3|λ|2 , D =

2 Im(λ)
1 + 3|λ|2 . (2.33)

The proton does not occur in equation (2.32). However, since it is kinematically coupled to
electron and neutrino energies and momenta, one can give a relation between the correlation
coefficients A and B and the proton asymmetry C, and describe the latter in terms of λ
[Glu95, Glu96]:

C = xC(A+B) and C = xC
4 Re(λ)
1 + 3|λ|2 , (2.34)
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Quantity Value
Lifetime τn 885.7(8) s
Coupling Ratio λ −1.2695(29)
Electron Asymmetry A −0.1173(13)
e− ν Correlation a −0.103(4)
Neutrino Asymmetry B 0.981(4)
Proton Asymmetry C not listed
Triple Coefficient D −4(6) · 10−4

Figure 2.8: Average values of τn, λ, and the cor-
relation coefficients in neutron decay as published
by the Particle Data Group [PDG06].
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Figure 2.9: Sensitivity of the correlation coeffi-
cients a, A, B, and C on λ, the ratio of axial-vector
to vector coupling constant.

where xC = 0.27484 is a kinematical factor6. We present the 2006 average values of the
various neutron decay coefficients in figure 2.8.

The precise knowledge of λ is important for calculations within the quark model and to
compute neutrino cross sections. Moreover it is an essential ingredient in many astrophysical
and cosmologial models describing the sun, supernovae, or nucleosynthesis after the big-bang.
However, the sensitivity of the correlation coefficients to λ is quite diverse (cf. figure 2.9):
The favoured observable to determine λ is the electron asymmetry A, and already many
experiments have been performed on this topic [Abe02, Mun06]. Experiments to obtain λ
via a are currently performed [Bae03] or developed [Wie05]. The sensitivity of the neutrino
asymmetry B is rather poor; the proton asymmetry C looks somewhat better, up to now,
however, it has never been tried to obtain λ in this way.

Within the framework of this thesis we measured both asymmetries, B and C, to search for
physics beyond the Standard Model. In the following sections, we will discuss how these
observables can be accessed experimentally.

2.3.2 Neutrino Asymmetry B

In polarized neutron decay, the neutron spin defines a plane that divides the full solid angle
into two hemispheres: One in neutron spin direction and one against it. The basic quantities
we measure in the experiment are the energy resolved electron spectraN↑(E), N↓(E). Therein
the arrow denotes the emission direction with respect to the neutron spin (↑: parallel, ↓:
anti-parallel), corresponding to the hemisphere in which the electron was detected. For the
measurements presented here, a coincident detection of the proton hemisphere is additionally
required, and a second arrow is introduced in the notation to represent this: N↑↑(E), N↓↓(E),
N↑↓(E), and N↓↑(E). The proton energy is not measured.

6Please note that we define the proton asymmetry C with opposite sign compared to [Glu95]. This retains
the convention that a positive asymmetry indicates more particles to be emitted in spin direction.
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Electron Spectra without Proton Information: We will just briefly mention the case
where the proton is not detected. The sum S of the two electron spectra

S(E) = N↑(E) +N↓(E) ∝ F (E) (2.35)

is then given by the corrected Fermi-function defined in (2.30). The difference D scales with
the electron velocity v:

D(E) = N↓(E)−N↑(E) ∝ v

c
F (E). (2.36)

The experimental electron asymmetry Aexp(E) a function of energy E and is related to the
scalar correlation coefficient A from equation (2.32) via

Aexp(E) =
N↓(E)−N↑(E)
N↓(E) +N↑(E)

=
1
2
v

c
A F (E), (2.37)

where the factor 1
2 stems from integration over the solid angle of one hemisphere. One can

see nicely here, how the energy dependent experimental asymmetry Aexp(E) is related to
the scalar (integal) asymmetry or correlation coefficient A. The relations for the neutrino
asymmetry are not that simple.

Coincident Spectra in the Same Hemisphere: One aim of this thesis was the mea-
surement of the neutrino asymmetry B. As the neutrino cannot be detected easily, we have to
deduce its emission direction from a coincident measurement of electron and proton emitted
into the two hemispheres defined by the neutron spin.

The first - statistically as well as systematically favoured - case comprises events where elec-
tron and proton are emitted into the same hemisphere as illustrated in figure 2.10. The
corresponding electron spectra N↑↑(E), N↓↓(E) can be written as follows:

N↑↑(E) = Q++(E) F (E) (2.38)
N↓↓(E) = Q−−(E) F (E). (2.39)

Electron Proton

Neutron Spin

Neutrino

Figure 2.10: Illustration of a same-hemisphere-
event: The neutron spin divides space into two
hemispheres, electron and proton are emitted into
the same hemisphere. The neutrino is restricted to
the opposite hemisphere due to momentum con-
servation.

Energy [keV]
0 100 200 300 400 500 600 700

C
ou

nt
s 

[a
.u

.]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Q++
Q--
Difference
Sum

Figure 2.11: Simulation of the functions Q++

and Q−− (multiplied with the Fermi-function
F (E)), where electron and proton are measured
in coincidence in the same hemisphere. A + indi-
cates emission in neutron spin direction. Sum S
and difference D of the spectra are also shown.
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Glück et al. [Glu95] calculated the Q-functions by integrating the transition probability (2.32)
with respect to the observed particles:

Q++(E) =





1− r
2 + aβ

4

(
r2

2 − 1
)

+ PAβ
(

1
2 − r

3

)
+ P B

2

(
r2

3 − 1
)

for r < 1
1
2r

(
1− aβ

4r + PAβ
3r − 2PB

3

)
for r ≥ 1

(2.40)

Q−−(E) = Q++(E)[P → −P ]. (2.41)

The definition is separated into two regions by the energy dependent parameter

r = β
E +me

E0 − (E +me)
(2.42)

which is unity at E = 236 keV. a, A, and B are the correlation coefficients, β = v
c , and P is

the neutron spin polarization that has to be changed to −P to describe the Q−− spectrum.
Both functions are shown in figure 2.11.

Sum Ssame(E), difference Dsame(E), and asymmetry Bsame(E) built out of spectra satisfying
the “same hemisphere” condition can be easily described using the Q-functions defined above:

Dsame(E) = N↓↓(E)−N↑↑(E) = (Q−−(E)−Q++(E)) F (E) (2.43)
Ssame(E) = N↓↓(E) +N↑↑(E) = (Q−−(E) +Q++(E)) F (E) (2.44)

Bsame(E) =
N↓↓(E)−N↑↑(E)
N↓↓(E) +N↑↑(E)

=
Q−−(E)−Q++(E)
Q−−(E) +Q++(E)

. (2.45)

From a fit of expression (2.45) to the measured asymmetry spectrum Bexp(E) we obtain the
value of the neutrino asymmetry B. Figure 2.12 shows the energy dependence of Bsame(E):
At energies greater than 200 keV it is almost flat, a very appealing feature since energy
calibration of the detectors is less important in this case. Futhermore the curve is located
at relatively large values (≈ 0.65) leading to a high statistical significance. The determi-
nation of B from electrons and protons emitted in the same hemisphere is statistically and
systematically favoured.

Opposite Hemispheres: The second possibility to determine the neutrino asymmetry
B is to analyze the spectra N↑↓(E) and N↓↑(E). These contain events measured under the
condition that electron and proton have been emitted into opposite hemispheres, a situation
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Figure 2.12: Energy dependence of the experi-
mental asymmetries measured in the same hemi-
sphere Bsame(E) and in opposite hemispheres
Bopp(E) (lower curve). The first is systematically
favoured since its characteristics is flat above 200
keV which leads to almost no dependence on the
detector calibration uncertainty. Unfortunately,
this is not the case for the rather steep Bopp(E)
where detector calibration plays a crucial role.
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Figure 2.13: Illustration of an event with elec-
tron and proton in opposite hemispheres. This
provides more possibilities for the νe-direction.
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Figure 2.14: Simulation of the theoretical func-
tions Q+−, Q−+, Dopp, and Sopp where electron
and proton are detected in opposite hemispheres.

depicted in figure 2.13. The analytical expressions make use of the functions Q+− and Q−+

[Glu95]

Q+−(E) = 2 + PAβ −Q++(E) (2.46)
Q−+(E) = 2− PAβ −Q−−(E) (2.47)

(cf. figure 2.14) and read

N↑↓(E) = Q+−(E) F (E) (2.48)
N↓↑(E) = Q−+(E) F (E). (2.49)

From equations (2.46) and (2.47) we can again get expressions for difference Dopp(E), sum
Sopp(E), and asymmetry spectrum Bopp(E). The resulting equations are lengthy and show
nothing new, therefore we do not write them down here.

The energy dependence of the experimental asymmetry Bopp(E) is also shown in figure 2.12.
Although it is the kinematically favoured type of event - approximately 78 % of all decays
have electron and proton emitted in opposite hemispheres - its statistical significance is rather
low: It reaches the highest sensitivity on B at very low energies where electron spectroscopy
is very difficult and suffers from threshold and backscattering effects. Additionally, Bopp(E)
strongly depends on the electron energy E requiring a very well known detector calibration.

2.3.3 Proton Asymmetry C

Having determined the experimental spectra N↑↑, N↓↓, N↑↓, and N↓↑ corresponding to the
various Q-functions (multiplied with the Fermi-function F ), we can use them to obtain the
proton asymmetry C. Figure 2.15 shows the spectra

ρ↑(E) = Q++(E) +Q−+(E) (2.50)
ρ↓(E) = Q−−(E) +Q+−(E) (2.51)

including only events where the proton is emitted into a particular hemisphere, the electron
direction is not considered. The arrow refers to the proton momentum. From these, the
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Figure 2.15: The functions ρ↑ = Q+++Q−+ and
ρ↓ = Q−− + Q+− that include all events with a
proton emitted into a particular hemisphere. The
asymmetry built from their integrals is called the
proton asymmetry C.
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Figure 2.16: Graph of the experimental proton
asymmetry Cexp. However, since there is no an-
alytical description for this function based on C,
the integral proton asymmetry, we can only obtain
the neutrino asymmetry B from a fit.

electron energy dependent experimental proton asymmetry

Cexp(E) =
ρ↑(E)− ρ↓(E)
ρ↑(E) + ρ↓(E)

(2.52)

can be constructed (cf. figure 2.16). However, since the decay probability ω, equation (2.32),
is expressed in terms of electron and neutrino parameters, there is no analytical expression
based on the scalar proton asymmetry C to describe Cexp. Thus we cannot obtain C from a fit
to this data, however, it can be used as a third method to determine the neutrino asymmetry
B, since Cexp can be described using a combination of all four Q-spectra. Please note that
the result from this approach is not independent of the B-values obtained in measurements
of Bsame and Bopp since it uses the same data.

The only way to determine the proton asymmetry C itself from the measured spectra N ij is
an integral method: C defines the asymmetry in proton emission with respect to the neutron
spin. Mathematically this reads

C =
∫
ρ↑(E)dE − ∫

ρ↓(E)dE∫
ρ↑(E)dE +

∫
ρ↓(E)dE

, (2.53)

where the integration is performed over all electron energies. In other words, C can be
obtained by calculating the asymmetry in the area below the functions ρ↑(E) and ρ↓(E)
in figure 2.15. Due to linearity of integration we can also integrate the four Q-functions
themselves and get the same result. This approach will be persued in the final analysis,
however, we will have to extrapolate from an integration interval at medium energies to lower
values, since a precise measurement of Qij is impossible at low energies due to the finite
detector threshold.
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2.3.4 Previous Measurements of Correlation Coefficients B and C

Up to now, five measurements of the neutrino asymmetry B in neutron decay have been
performed. Their results are shown in the table:

B = Year Authors
0.995(34) 1970 Erozolimsky et al. [Ero70]
1.00(5) 1970 Christensen et al. [Chr70]
0.9894(83) 1995 Kuznetsov et al. [Kuz95]
0.9801(46) 1998 Serebrov et al. [Ser98]
0.967(6) 2005 Kreuz et al. [Kre05b]

The experiments of the 70s are not competitive anymore as they suffered from large uncer-
tainties and corrections. The measurements in the 90s, dominating the current world average,
were done by one Russian collaboration using the same instrument (cf. figure 2.17): It only
allowed a detection of electron and proton in opposite hemispheres, however, the statistical
sensitivity was improved by an additional determination of the proton’s momentum projection
onto the axis defined by the neutron spin. This was achieved using a time-of-flight method.
The corrections ∆ that had to be applied to obtain the final value were significantly larger
than the errors: ∆ ≈ 33 % in [Kuz95] and ∆ ≈ 5 % in [Ser98].

All experiments mentioned so far were only able to measure in opposite hemispheres, but
could be analyzed differently since no integration over hemispheres was performed. However,
this gives rise to uncertainties due to solid angle corrections. The first experiment allowing
an analyis of Bsame was the latest B-measurement published by the PERKEO collaboration
(Kreuz et al. [Kre05b]), using the same spectrometer PERKEO II that we have used in the
experiment described in this text. The uncertainty is quite large due to severe statistical
problems, however, it was shown for the first time that a determination of Bsame is feasible.

Since all four spectra N ij are needed to get the proton asymmetry, only the last measurement
could be analyzed in this way. A value for C was obtained with a rather large uncertainty of
5 % [Kre04b, Abe05].

Figure 2.17: Sketch of the Gatchina instrument
to measure the neutrino asymmetry B using oppo-
site hemispheres. However, a analysis method dif-
ferent to PERKEO II could be used since the pro-
ton momentum was additionally measured using
a time-of-flight technique. The polarized neutrons
enter the vacuum chamber (3) from the bottom.
Shown are (1) electron detector, (2) proton detec-
tor, (4) decay region, (5,7) electrodes, (6) TOF
electrode, (8) spherical grid, (9) LiF diaphragm.
Figure from [Kuz95].
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2.3.5 Right-Handed Currents in Neutron Decay

We close the introductory part of this thesis with the discussion how possible right-handed
contributions can be derived from neutron decay data: Admixtures of right-handed currents
will change the Standard Model relations (2.33) between the correlation coefficients and λ =
ga

gV
, and two more parameters, the mixing angle ζ and the mass ratio δ introduced in section

2.2.2, have to be considered. Therefore, we need three experimental input values, e.g. A, B,
and the lifetime τn, in order to obtain these three parameters:

(A,B, τn) → (λ′, ζ, δ =
m2

1

m2
2

). (2.54)

The Left-Right-Symmetric Lagrangian: To calculate the dependence of the corre-
lation coefficients on the left-right-symmetric (LR) parameters, we need to know the LR-
symmetric Lagrangian. Here, we will only sketch the important steps of the derivation, which
is presented in detail in [Beg77, Hol77, Doe90].

Starting point is the usual four-fermion V −A current-current interaction, equation (2.14):

LV−A = −GF√
2
pγµ(1− λγ5)n eγµ(1− γ5)νe. (2.55)

When we use equation (2.11), and introduce a shortened notation for the hadronic and leptonic
vector and axial-vector currents, Vh = pγµn, Ah = pγµγ5n, V` = eγµνe, A` = eγµγ

5νe

omitting the Lorentz indices, the equation can be rewritten:

LV−A = − g2

8m2
W

(Vh − λAh) (V` −A`) = − g2

8m2
W

(Jh J`). (2.56)

This expression is still pure V −A theory, where the interaction is mediated by a left-handed
WL-boson. If we now introduce LR-symmetry and an additional right-handed boson WR,
mixing occurs according to equation (2.23) with the mass eigenstates W1 and W2, given by

W1 = WL cos ζ −WR sin ζ, W2 = WL sin ζ +WR cos ζ, (2.57)

and we can write down the Lagragian of the LR-symmetric model

LLR = − g2

8m2
1

(Jh1 J`1)−
g2

8m2
2

(Jh2 J`2). (2.58)

The currents Jh1 etc. are compositions of left- and right-handed currents, e.g.

Jh1 = JL
h cos ζ − JR

h sin ζ = (Vh − λAh) cos ζ − (Vh + λAh) sin ζ (2.59)
J`1 = JL

` cos ζ − JR
` sin ζ = (V` −A`) cos ζ − (V` + λA`) sin ζ, etc. (2.60)

The operator (1+γ5) gives the right-handed part (RH) of a spinor, thus there is only a simple
sign change in the currents JR to account for the right-handed contributions.

Using relations (2.59), (2.60), and the corresponding expressions for Jh2 and J`2 , equation
(2.58) can be transformed into

LLR = − G′√
2

(VhV` + ηAA λAhA` + ηVA (VhA` + λAhV`)), (2.61)
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an expression first given in [Beg77], with the definitions

ηAA =
ε2m2

2 +m2
1

ε2m2
1 +m2

2

=
ε2 + δ

ε2δ + 1
, (2.62)

ηVA =
−ε(m2

2 −m2
1)

ε2m2
1 +m2

2

=
−ε(1− δ)
ε2δ + 1

, (2.63)

ε =
1 + tan ζ
1− tan ζ

, and (2.64)

G′√
2

=
g2

8m2
1

(cos ζ − sin ζ)2 +
g2

8m2
2

(cos ζ + sin ζ)2. (2.65)

Reorganization in terms of the hadronic vector Vh and axial-vector Ah currents yields

LLR = − G′√
2

[ Vh (V` + ηVAA`) + λAh (ηAAA` + ηVAV`)]

= − G′√
2

[
Vh

(
1− ηVA

2
(V` −A`) +

1 + ηVA

2
(V` +A`)

)

+λAh

(
ηAA − ηVA

2
(V` −A`) +

ηAA + ηVA

2
(V` +A`)

)]
, (2.66)

therefore the admixture of right-handed relative to the much larger left-handed currents is
given by

rV =
1 + ηVA

1− ηVA
and rA =

ηAA + ηVA

ηAA − ηVA
(2.67)

for the vector and the axial-vector parts respectively.

Effects of Right-Handed Currents on Observables: We can use these results to
calculate wave functions of final states in neutron decay. For this purpose, we assume the
leptons to be massless, thus in helicity eigenstates, however, the results agree with the exact
solutions [Beg77, Hol77]. Within V − A theory, the wave function of the neutron final state
of a Gamow-Teller transition, for example, would be

|ψV−A〉 = gA MGT

√
2
3
| ⇑↓⇑↑〉, (2.68)

where gA is the coupling constant, MGT =
√

3 the matrix element, and
√

2
3 the Clebsch-

Gordan coefficient from angular momentum coupling. This state corresponds to the last row
of figure 2.7 on page 18, the arrows indicate spin (⇑) and momentum (↑) of electron and
neutrino respectively. The states are orthogonal, i.e. 〈⇑↑⇑↓ | ⇑↓⇑↑〉 = 0. Further details can
be found in [Doe90].

Let us now account for right-handed currents added with the relative admixture rA: They turn
the lepton’s momenta since the spin directions are fixed by angular momentum conservation,
thus we get for the example above

|ψLR〉 = g′A MGT

√
2
3

(
| ⇑↓⇑↑〉+ rA| ⇑↑⇑↓〉

)
. (2.69)
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In this way, we obtain wave functions of all states we are interested in, e.g. |ν↑〉 and |ν↓〉,
where the neutrino is emitted in or against neutron spin direction respectively, in order to
calculate the expression for the neutrino asymmetry B. Using the probabilities

Pν↑ = 〈ν↑|ν↑〉 and Pν↓ = 〈ν↓|ν↓〉 (2.70)

the asymmetry can be defined and evaluated:

B =
Pν↑ − Pν↓

Pν↑ + Pν↓
=

2g′A(g′A(1− r2A) + g′V (rV rA − 1))
g′2V (1 + r2V ) + 3g′A(1 + r2A)

. (2.71)

The primed coupling constants g′A, g′V do not necessarily correspond to the V −A constants
gA, gV , however, since the conserved vector current hypothesis (CVC) is also valid here we
can still set g′V = gV = 1 [Hol77] and λ′ = g′A

g′V
= g′A. In general, we are interested in ζ and δ

and look for limits on these values for arbitrary λ′.

When we apply this notation to (2.71), and furthermore calculate the corresponding expres-
sions for the electron-asymmetry A, the eν-correlation a, and the rate function

Rft =
fRτn ln(2)
ft0+→0+

, (2.72)

which is the ratio of the neutron’s ft-value7 and the same expression for superallowed nuclear
decays8, we get the following terms9:

A = 2
λ′(rV rA − 1) + λ′2(r2A − 1)

(1 + r2V ) + 3λ′2(1 + r2A)
(2.73)

B = 2
λ′2(1− r2A) + λ′(rV rA − 1)

(1 + r2V ) + 3λ′2(1 + r2A)
(2.74)

a =
(1 + r2V )− λ′2(1 + r2A)
(1 + r2V ) + 3λ′2(1 + r2A)

(2.75)

Rft =
2(1 + r2V )

(1 + r2V ) + 3λ′2(1 + r2A)
. (2.76)

Now, we can relate measured correlation coefficients to limits on right-handed contributions
to the weak interaction by using these equations. In the Standard Model case, rV = rA = 0
and λ′ = λ, and equations (2.73)−(2.76) are equivalent to (2.33).

7The ft-value

ft = const.
ln 2

g2
V M2

F
+ g2

AM2
GT

is a measure for nuclear matrix elements and coupling constants. It can be determined by measuring life-time
τ and q-value of a β-decay. [May94]

8Superallowed nuclear 0+→0+ decays, making pure Fermi-transitions with matrix element MF =
√

2, are
used to normalize the neutron’s fRt value to get rid of proportionality constants. fR = 1.71335(15) already
includes radiative corrections [Wil82]; a sign error is mentioned in [Abe04].

9The expressions for A and Rft can also be found in [Hol77]. [Doe90] and [Abe98] present all four equations
but include some misprints.
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Chapter 3

Measurement of Correlation
Coefficients B and C

The experiment to determine the correlation coefficients B and C in the decay of polarized
neutrons – called PERKEO IIB – was done in summer 2004. We decided to tackle this
measurement and applied for beamtime in spring 2004, hence there was only little time for
preparations. But since a determination of the electron asymmetry A was performed by our
group from winter 2003 to summer 2004 [Mun06], we were able to reuse large parts of the
already existing installations. Nevertheless many important parts – detection system, data
acquisition, beam collimation, etc. – had to be prepared for the B and C measurement.

This chapter presents the details of the measurement, introduces the electron spectrometer
PERKEO II and the experimental setup. In section 3.4, we describe the detection system
in-depth and give some comments on background and shielding in section 3.5.

3.1 The Spectrometer PERKEO II

The central part of the electron spectrometer PERKEO II (cf. figure 3.1) consists of two
superconducting coils with an inner diameter of 890 mm. They are arranged in a near-
Helmholtz configuration which produces a magnetic field with a slight gradient on the central
axis. We us a maximum field strength of B = 1.03 T between the coils. The neutron beam
passes the center of the spectrometer perpendicular to the field lines, and charged particles
that are created in neutron decays in the decay volume between the coils are guided onto
the two detectors by the magnetic field. The uncharged neutrons are not affected by the
field; Stern-Gerlach-effects occuring in an inhomogenious magnetic field are tiny and can be
neglected for the asymmetry measurement [Kre04b].

Baffles are used to define the length of the decay volume: Only particles from decays in this
region can be seen by the detectors, but for these we have a full 2× 2π solid angle detection
since all charged particles are guided onto one of the two detectors by the magnetic field,
independently of their initial emission direction. The particular detector is determined by the
particle’s momentum component p‖ parallel to the field lines1: The decay volume is separated
in two hemispheres.

1The magnetic mirror effect (cf. sections 3.3.3 and 4.5.2) is neglected here.

29
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Figure 3.1: A schematic drawing of the electron spectrometer PERKEO II: The neutron beam enters
the spectrometer from the left with the spin polarized parallel to the magnetic field which is created
by two superconducting coils (diameter: 890 mm). The field guides the charged particles out of the
decay volume, and separates the full solid angle into two hemispheres each covered by a detector.

Measuring Principle: In order to obtain the neutrino asymmetry B and the proton
asymmetry C, we have to generate the spectra Qij by measuring the number of particles
emitted in and against spin direction. Hence we use the magnetic separation in hemispheres
by aligning the spin of the polarized neutrons (cf. section 3.3.2) with the field lines in the
decay volume. Now the full solid angle is divided into hemisphere in spin direction and
hemisphere opposite to the spin direction.

One big advantage of PERKEO II is its possibility to measure the electron’s energy spec-
trum. Compared to an integral measurement of the asymmetries, this allows many additional
systematic checks and limits the uncertainties due to detector effects.

3.2 The Beam Position PF1B at ILL

We performed the experiment at the cold neutron beam position PF1b of the High Flux
Neutron Source operated by the Institut Laue-Langvin (ILL) from June to August 2004.
The ILL is located in Grenoble (France) and houses one of the strongest neutron sources
for scientific use in the world (flux φ = 1.5 · 1015 cm−2 s−1). Scientific interest of ILL users
is usually located in the area of solid state physics, soft matter physics, chemistry, and bio
sciences where the neutron is used as a “tool” to examine matter. Only a small group of
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scientists studies the neutron as a physical “object” – this work is an example for these
activities.

ILL-Reactor: In principle, the reactor has a thermal power of 58.3 MW and consumes
about 1 kg of 235U-fuel during a continuous reactor cycle of 50 days. Due to modifications of
beam tubes the reactivity has decreased and reactor power is reduced to 54 MW for 50 days
operation. This was also the situation when our experiment was done. Initially, the fission
neutrons have high energies (several MeV, “fast neutrons”) but are quickly thermalized by
interacting with the cooling water surrounding the fuel element. These thermal neutrons
with energies of E ≈ 1

40 eV still have velocities v ≈ 2200 m s−1 what is much too fast for
particle physics experiments, where the number of neutrons decaying within the apparatus is
inversely proportional to their velocity. Therefore some of the neutrons are moderated in a
vessel filled with liquid deuterium at 25 K, the so-called “cold source”. These cold neutrons2

have velocities of about 1000 m s−1 corresponding to a wavelength of λ ≈ 4 Å, since the
velocity v is related to the wavelength via

λ =
3956
v

m s−1 Å. (3.1)

Beam Position PF1b: We find an excellent environment for our experiments with
PERKEO at the fundamental physics beam position PF1b. It consists merely of free ex-
perimental space (10 × 3 m2) with infrastructure (electricity, water, air, etc.) where the
user can build up his own experimental setup. The supermirror neutron guide H113 with
a cross section of 60 × 200 mm2 ends right in front of the beam position and delivers the
virtually most intense beam of cold neutrons in the world. Its capture flux φc at the entrance
is φc = 1.4 · 1010 cm−2 s−1 [Sch04, Abe06]. This is the particle flux

φ =
∫

v
φ(v) dv (3.2)

weighted with the velocity v, thus

φc =
∫

v
φ(v)

v0
v

dv, (3.3)

with the thermal velocity v0 = 2200 m s−1. In the type of experiments described here, the
capture flux is more interesting than the normal flux since neutron detectors often have a 1

v -
detection efficiency and the neutron decay rate at a given location is also inversely proportional
to the velocity. For cold neutrons, the absolute flux is lower than the capture flux since v < v0.

The beam position is located at about 80 m from the reactor core. Nevertheless, a very high
flux is delivered since neutrons can be efficiently transported through supermirror neutron
guides by reflection. Supermirrors consist of typically 100 double layers of nickel and titanium
to increase the critical angle of reflection by a factor of two compared to the standard guides.
Details on the properties of the ballistic supermirror guide H113 can be found in [Hae02] and
[Abe06].

2Besides their advantages in particle physics experiments, cold neutrons are also easier to transport in
neutron guides, polarization is facilitated, and they are better suited for some scattering experiments.
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Figure 3.2: The experimental setup of PERKEO IIB: Neutrons enter from the left, are polarized and
collimated and transit the spectrometer. The beam is disposed in a beam stop made out of 6LiF-tiles.

3.3 Experimental Setup

In this section, we describe the installations that was built up at the beam position PF1b
in order to perform the asymmetry measurement. Figure 3.2 shows the whole experimental
setup drawn to scale. For clarity, the lead, boron, and polyethylene shieldings protecting from
γ-radiaton and neutrons are not displayed.

3.3.1 Beamline

When the neutrons have left the supermirror neutron guide, they entered the PERKEO IIB
setup and pass several important parts of the experiment. These are briefly described in this
section:

Polarizers: Two supermirror polarizers in crossed geometry [Kre05] were used to spin
polarize the neutrons perpendicular to their direction of motion. Since we measure correlations
with the neutron spin, polarization is a crucial topic of this measurement and explained in
more detail in section 3.3.2. Both polarizers were housed in the casemate, a small building
with concrete walls of 60 cm thickness, and were additionally surrounded by 10 cm of lead to
absorb the γ-radiation emerging in the polarization process.

Neutron Shielding: In this experiment, all areas intensively hit by neutrons were covered
with 6LiF since 6Li has a high absorption cross section for neutrons (σn,α = 949 b [Nuc95])
in the reaction

6Li + n → 4He +3H. (3.4)

In some of these reactions an additional γ-quant is emitted but this effect is suppressed by
10−4 what makes 6Li the ideal material for low background neutron shielding. However,
fast neutrons are also produced with almost the same supression factor. Unfortunately these
neutrons are very difficult to shield. We used sintered 6LiF-tiles [Kre04] with a thickness up
to 6 mm on heavily irradiated surfaces and 6LiF-rubber (2 mm) to protect from scattered
neutrons.
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Boron (10B) has an even higher absorption cross section (σn,α = 3840 b) but emits a photon
in every reaction. For this reason we used boron only in the casemate, far away from the
detectors and in areas of the setup where no direct neutron irradiation was present.

Shutter: A beam shutter was placed right after the second polarizer. It consisted of a
6LiF-tile of 5 mm thickness, and was used to close the neutron beam automatically to allow
background and calibration measurements.

Vacuum System: Now, the polarized neutrons entered the vacuum system through an
150 µm thick aluminium window. Vacuum is necessary to avoid neutron scattering in air
(≈ 5 % per meter) and to enlarge the mean free path of the charged decay products.

Two large turbomolecular pumps (1500 l s−1) were installed on the beamstop tube, one small
turbopump was used to evacuate the beamline. An additional cryopump was placed right
in front of the spectrometer, but due to technical problems this pump further reduced the
pressure only by a factor of two.

The evacuated beamline was surrounded by a weak orthogonal magnetic guiding field to keep
the neutrons polarized. Near the spectrometer the guiding field is not neccessary due to the
presence of its own field. However, since we wanted to monitor the beam polarization, another
guiding field had to be installed around the beamstop tube behind PERKEO II.

Radiofrequency Spinflipper: The spinflipper was the first part of the evacuated beam-
line used to reverse the neutron spin by 180◦ on a regular basis. This allowed for a polarization
measurement and to reduce detector related effects in the experiment, since it was possible
to make the asymmetry measurement with one single detector (the spinflipper provides both
spin directions) which is a systematically cleaner method compared to the measurement with
both detectors and a fixed spin direction.

Beyond a certain threshold, the flipping efficiency of a radiofrequency (RF) spinflipper [Baz93]
is independent of the neutron wavelength and close to unity. This is achieved by a superpo-
sition of an oscillating RF-field with an orthogonal static magnetic field that exhibits a field
gradient. In the rest frame of the neutron, rotating with the Larmor frequency

Ω =
2
h̄
µnµNB0 = γB0 = −1.832 · 108B0

rad
s T

, (3.5)

where µnµN = −1.913µN is the magnetic moment of the neutron, µN the nuclear magneton,
and B0 a value of the static field, this superposition leads to a spin rotation.

Collimation System: We had to collimate and shape the neutron beam to guide it
through the setup without collisions that would cause severe background problems. Further-
more, it was necessary to limit the beam width in the decay volume to reduce the magnetic
mirror effect (cf. chapter 4.5.2). This was achieved by placing five orifices made out of
6LiF-tiles glued onto a lead support in the beam tubes. The first four orifices were installed
such that the background produced in the collimation systems is almost invisible in the de-
tectors [Mun06]. However, a fifth orifice closer to PERKEO II had to be installed for this
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measurement since the neutron beam was far too broad for a B-measurement. (The initial
collimation system was designed for an A-measurement where a larger beam cross-section
could be accepted.)

Decay Volume: In the center of PERKEO II the beam had a cross section of (x× y) =
(53×58) mm2, aluminium baffles limited the decay volume length to z = 90 mm. Here we use
the standard coordinate system for neutron guides: The neutrons propagate in z-direction,
x is the horizontal and y the vertical coordinate; the system is right-handed. The (slightly
divergent) neutron beam was homogenious over the length of the decay volume what had been
checked using copper-foil activation, a method to directly measure neutron beam profiles (cf.
section 3.3.3).

Beamstop: Behind the spectrometer, a large beamstop tube (length: 2.5 m, diameter:
0.8 m), housing the 6LiF-beamstop to annihilate the remaining neutrons, was installed. A
shutter opeing a small aperture in the beamstop allowed to monitor the degree of polarization
during the measurement.

3.3.2 Neutron Polarization

A neutron beam is called polarized if there is a vector a with 〈a ·σn〉 6= 0, where σn denotes
the neutron spin. In the laboratory frame, polarization P can be treated as a classical vector
[NDB02] and the polarization in the direction a is defined by the relation

Pa =
N+ 1

2 −N− 1
2

N+ 1
2 +N− 1

2

. (3.6)

N+ 1
2 is the number of particles with spin eigenstate +1

2 and N− 1
2 the number with eigenstate

−1
2 . There are two commonly used methods to polarize cold neutrons, we will briefly discuss

them in the following. The same methods can be used to analyze the degree of polarization.

Supermirror Polarizers: Cold neutrons can be totally reflected at the surface of most
materials (e.g. Nickel) since the vacuum has a higher optical density for neutrons than the
materials. Reflection occurs if the incident angle is smaller than a critical angle θc which
depends on the neutron wavelength λ. This angle can be further increased in supermirrors:
In a stack out of several thin layers of two materials with a high and a low neutron optical
density respectively (e.g. Nickel and Titanium), assembled in alternating layers of varying
thickness, neutrons get Bragg reflected by interference of the partial waves [Sch89]. The
integral transmission is increased at the cost of a higher beam divergence.

Supermirror polarizers exploit that the magnetic field B = µµ0H inside magnetic materials
is much higher than outside creating a potential well for one neutron spin component. If such
a material is used as one part of the supermirror, one spin component is Bragg-reflected on
the magnetic layer, while the other transits it and is absorbed in the last layer containing
Gadolinium: The beam is polarized by sorting out the “wrong” spin direction. Since the
neutron beam has a width of a few centimeters the polarizer consists of several supermirrors
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next to each other, curved along the beam direction to avoid direct view. Now every neutron
has to hit the polarizer at least once, and a previously unpolarized beam leaves polarized.

However, absorption of neutrons with the wrong spin direction in the polarizer (together
with a certain fraction of neutrons with correct spin) lowers the neutron flux to 25 % of the
incident value [Sch04] and is a strong source of γ-radiation that can cause severe background
problems in the detectors. Hence the polarizers are placed inside the concrete casemate and
shielded with a large amount of lead. For the B-measurement, we have no effect related to
this background.

Polarizers in Crossed Geometry: This method was developed to increase the absolute
value of neutron polarization and to gain a uniform polarization over the whole beam cross
section and wavelength spectrum (see details in [Kre05]). A second supermirror polarizer
is rotated by 90◦ and placed behind the first; the magnetic field between the polarizers
is turned adiabatically to ensure that the neutron spins can follow. Now, the polarizers are
independent of each other and polarize in perpendicular directions. A neutron with the wrong
spin component that is still reflected in the first polarizer has thus a much higher probability
to get absorbed in the rotated polarizer compared to another one in parallel orientation. The
second polarizer reduced the beam intensity by another factor of two.

3He-Cells: Another possibility to polarize cold neutrons is to use polarized 3He-cells as
opaque spin filters [Sur97, Zim99]: Such a cell is transparent only for neutrons which have
their spins aligned parallel to the nuclear helium-spins due to a strongly spin dependent
absorption cross section. Unfortunately, this also depends on the neutron wavelength λ and
the cell pressure p, thus a “white” neutron beam has to be restricted to a small wavelength
band by using a monochromator to be polarized.

Approaching the opaque wavelenth region of the 3He spin filter, neutron transmission gets
very poor but the polarization P given by

P (λ) = tanh(Pkp`λ) (3.7)

increases up to unity. P is the helium polarization, k = 0.0733 bar−1 Å−1 cm−1, p the cell
pressure, and ` the cell length. For example, typical numbers would be P = 50 %, p = 3.5 bar,
` = 10 cm resulting in P (4Å) = 0.99993. This makes 3He-cells an ideal analyzing tool for
absolute polarization measurements.

Polarization in this Experiment: For the PERKEO IIB experiment we used two su-
permirror polarizers in crossed geometry and a radiofrequency spinflipper. Beam polarization
was measured with a second radiofrequency spinflipper and two smaller supermirror polarizers
(“analyzers”), again in crossed geometry. For the precise measurement of the polarization,
several opaque polarized 3He cells were used. A mechanical chopper allowed for a wavelength
dependent analysis; polarization homogeneity over the full beam was measured by moving
the whole analysis setup.

With two supermirror analyzers one can only obtain APF , the product of polarization P ,
analyzer strength A, and flipper efficiency F . The latter can be measured independently,
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however, since we do not know the analyzer efficiency A, we only get an approximate result:

P ≈
√
AP . (3.8)

This relative measurement was supplemented by an absolute polarization measurement using
several 3He-cells (for different wavelengths) with A = 1 in a certain wavelength range. During
the asymmetry measurements the spin flip ratio

R =
Non

Noff
(3.9)

was monitored using one supermirror analyzer (which is only transparent for neutrons with a
certain polarization) and a 3He neutron counter; Ni is the number of neutrons measured with
the spinflipper on or off respectively: A ratio R changing in time is a signal for a changing
degree of polarization. During this experiment R was constant.

Since the mathematical description of the polarization analysis was already discussed in detail
in many theses (e.g. [Rei99, Sch04, Kre04b]) we will skip this here and just give the results.
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Some plots of the measurements are shown in figures 3.3−3.5: The flipping efficiency is
F = 1.000(1) between 2 and 12 Å, the polarization was measured to be P = 0.997(1) in
the same wavelength region. Furthermore polarization is constant over the full beam cross
section. With two supermirror polarizers in crossed geometry, neutron beam polarization is
no longer a limiting factor in correlation coefficient measurements.

Influence on the measured Spectra: In an experiment with ideal polarizer (P = 1) and
ideal spinflipper (F = 1) the electron count rates3 Non/off for the two flipper modes coincide
with the count rates N↑/↓ of certain neutron spin directions:

Noff = N↑ and Non = N↓. (3.10)

For the opposite detector, N↑ and N↓ have to be interchanged, however, since the formalism
is identical we will omit it here. The detailed derivation can be found in [Kre04b].

The experimental asymmetry Bexp is defined by the ratio of difference D and sum S of these
count rates:

Bexp =
D

S
=
N↑ −N↓
N↑ +N↓

=
Noff −Non

Noff +Non
. (3.11)

However, with P 6= 1 and F 6= 1, the equalities in (3.10) no longer hold and the measured
spectra Noff/on become linear combinations of N↑/↓:

Noff =
1
2

((1 + P )N↑ + (1− P )N↓) (3.12)

Non =
1
2

((1− P (2F−1))N↑ + (1 + P (2F−1))N↓) . (3.13)

If we insert this into equation (3.11) we obtain the expressions for the spectra measured with
an imperfectly polarized neutron beam:

D = Noff −Non = FP (N↑ −N↓) (3.14)

S = Noff +Non =

(
1 + P (1−F )

N↑ −N↓
N↑ +N↓

)
(N↑ +N↓) (3.15)

Bexp =
Noff −Non

Noff +Non
=

FP (N↑ −N↓)
(N↑ +N↓) + P (1−F )(N↑ −N↓)

. (3.16)

The difference spectrum D just gains an additional scaling factor FP , but in case of the
sum S and the asymmetry Bexp the spectral shape is altered due to the mixing of the two
polarization states. This has to be taken into account in the fit functions for the asymmetry
analysis (cf. sections 4.6 and 4.7).

3.3.3 Magnetic Mirror Effect and Neutron Beam Alignment

To measure the neutrino asymmetry with high-precision and small corrections it is necessary
that neutron beam n and magnetic field B are aligned in the decay volume. To achieve this,

3In the experiment, the count rates Noff/on of the charged particles are functions of the electron’s kinetic
energy E, i.e Noff(E) and Non(E). The same holds for the spectra D, S, and Bexp. For simplicity, we omit
this dependence in the notation.
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Figure 3.6: The magnetic mirror effect is a well
known phenomenon occuring for charged particles
moving in inhomogeneous magnetic fields: Parti-
cles emitted in a region of a low magnetic field,
that move against a positive field gradient, may
be reflected. The effect depends on the initial an-
gle θ between particle momentum and magnetic
field lines. Figure taken from [Jac02].

shape and maximum of the field were determined using a Hall-probe. The neutron beam
profile, which could be changed in shape and position by varying the last collimation orifice,
was measured with copper foil activation analysis and aligned with the magnetic field. This
procedure is called B-n-Scan.

Magnetic Mirror Effect: The motivation for the laborious B-n-Scan is the magnetic
mirror effect [Jac02], an important correction on the electron spectra in PERKEO II mea-
surements: For a charged particle in an inhomogeneous magnetic field B the quantity

M =
p2
⊥
B

(3.17)

is an adiabatic invariant, where

p⊥ = sin θ
1
c

√
E2 −m2c4 (3.18)

is the particle’s momentum perpendicular to the magnetic field lines and θ the angle between
field vector and momentum.

In a field decreasing from Bmax to B1 this results in a momentum transfer from the normal
to the parallel component of motion, p‖ gets larger, and the new angle is

sin θ1 = sin θmax

√
B1

Bmax
. (3.19)

If the particle moves in an increasing field, equation (3.19) is still valid but p‖ decreases and,
for initial angles

θ1 > θcrit = arcsin

√
B1

Bmax
, (3.20)

p‖ even changes sign: An electron emitted towards detector 1 can be reflected at the magnetic
field and generate a signal in the opposite detector. This is illustrated in figure 3.6. In general,
this does only depend on the initial angle θ and not on the particles energy. However, the
spectra are angle dependent due to the anisotropic particle emission, and the mirror effect
distorts them, what gives rise to corrections. Details on determination and implementation
of the correction functions can be found in section 4.5.2.
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sphere) due to the magnetic mirror effect. (Figure
is based on data of [Rei99]).
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There are two kinds of corrections related to the magnetic mirror effect: The first is a relative
change in the asymmetry since the magnetic field has a maximum in the spectrometer center
and decreases over the neutron beam width d. Hence the mirror effect is always present –
even if B and n are perfectly aligned – but can be diminished by reducing the overall beam
width (see figure 3.7): We chose a medium width of d = 50 mm. The second correction
occurs when magnetic field and neutron beam are not aligned but displaced by a distance
∆, e.g. consider the case where the whole beam is located next to the field maximum (figure
3.8). Now, the mirror effect is very different for both detectors: The count rate is increased
in the first and lowered in the second detector. However, these relative changes cancel if we
can average over both detectors. Moreover, as can be seen in figures 3.9 and 3.10, the mirror
effect is only important for the asymmetry Bsame where electron and proton are detected in
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the same hemisphere; it can be almost neglected for an asymmetry measurement in opposite
hemispheres (Bopp). The impact on the proton asymmetry C is also small. Throughout this
text, we use the convention that a positive displacement ∆ indicates the beam to be closer
to detector 2.

Magnetic Field Scan: To align magnetic field and neutron beam we had to determine
the shape and the maximum of PERKEO’s magnetic field first. This was done with a three
axis Hall probe that could be moved in all three dimensions with step motors to scan the
whole decay volume. Since it is not exactly known where the Hall plate is fixed in the probe
the scan was repeated with the probe turned by 180◦.

We measured a symmetric, parabula shaped magnetic field B with the expected maximum
of Bmax = 1.03 T. Size and shape agree within 0.3 % with a finite elements calculation of
PERKEO II [Mae05]. To simulate the magnetic mirror effect we use the quadratic expression
for the field in the decay volume suggested by [Rei99],

B(x) = Bmax

(
1−

(
x

`

)2
)

, (3.21)

but choose the field parameter to be ` = 690 mm [Dei05], which agrees much better with the
measurements and the calculation than the values used in previous measurements. The value
of the horizontal maximum determined from the measured data is independent of the vertical
position (y).

Neutron Beam Scan: Copper foil activation (cf. e.g. [Kre04]) is a fast and precise way to
determine the size and shape of a neutron beam: A thin (≈ 150 µm) copper foil is irradiated
with neutrons for about 30 minutes to activate the nuclei 63Cu and 65Cu to 64Cu (τ = 18.3 h)
and 66Cu (τ = 7.4 min). After activation, the foil stays untouched for half an hour to let the
66Cu decay. Then it is put onto an imageplate. Electrons emitted in the decay of 64Cu are
recorded and generate a two-dimensional intensity picture of the neutron beam. As example,
figure 3.11 shows the cross section of the neutron beam in the decay volume center.

x and y projections of figure 3.11 take into account the whole profile and allow a precise
analysis of the neutron beam shape: The x-profile, figure 3.12, is almost symmetric and

Figure 3.11: Two-dimensional neutron beam
profile in the decay volume center measured with
copper foil activation. Cuts through the figure al-
low a quantitative determination of beam shape
and barycenter.
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Figure 3.12: Projection onto the horizontal (x)
axis of figure 3.11. The beam is symmetric within
0.4 % and can be well described by a sum of three
Gauss functions (red curve). Its barycenter was
shifted to the origin of the axis.
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Figure 3.13: Projection onto the vertical (y) axis
of fig. 3.11. Its asymmetric shape is not critical for
the mirror effect but has to be taken into account
for detector calibration. A sum of three Gauss
functions is used for an analytical description.

shows only a tiny asymmetry of 0.4 % on the positive x-side (detector 2). However, instead
of the beam maximum, the beam’s barycenter x0 has to be aligned with the maximum of the
magnetic field.

We managed to align the neutron beam with the magnetic field with a final displacement of

∆ = (1.0± 1.4) mm, (3.22)

where the uncertainty is due to the size of the laser spot (1 mm) that was used to provide a
fixed reference point in the spectrometer. A sum of three Gauss functions is used to describe
the projections analytically. This is necessary to implement the beam shape in simulations of
the magnetic mirror effect (see chapter 4.5.2). The asymmetry of the y-projection (fig. 3.13)
is not critical for the mirror effect but very important for the electron detector calibration
(cf. section 4.1.5).

3.4 Detection System

Since we cannot measure neutrinos directly to obtain the neutrino asymmetry B, we have
to detect electrons and protons coincidently from the decay to reconstruct the neutrino’s
emission direction. This section describes the core of PERKEO IIB, the combined electron-
proton detector, a setup that allows to detect electrons and protons using the same detector.
Only this enables us to measure the statistically and systematically favoured correlation
Bsame.

3.4.1 Combined Electron-Proton Detector

The difficulty to detect electrons e− and protons p with one single detector is their difference
in kinetic energy of three orders of magnitude,

Emax(e−) = 782 keV and Emax(p) = 780 eV. (3.23)
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Figure 3.14: Sketch of the the combined electron-proton detector: Protons are converted into electrons
by a thin carbon foil on negative high voltage. A large grounded plastic scintillator detects these
secondary electrons and the electrons from the decay. Thin aluminium wires on ground (0 kV) shield
the decay volume from a reach-through of the high voltage potential. Only one side of the symmetric
detection system is drawn, and the particle trajectories omit the gyration around the field lines.

Commonly used proton detectors such as PiN-diodes, multichannel plates, and surface barrier
detectors cannot detect electrons with sufficient energy resolution. Moreover, the detector
has to be quite large (≈ 250 cm2) to cover the whole decay volume. Futher requirements
on the detector are a rather small proton time-of-flight to allow a coincident electron-proton
measurement, a detection efficiency that is energy and angle independent for both charged
particles, and last but not least, the system has to work in an evacuated environment with a
strong magnetic field.

Our solution is a detector developed by [Rei99] and [Kre04b] applying a method described in
[Kra66, Dob75, Str78]. Figure 3.14 illustrates the principle, displaying only one half of the
symmetric detection system.

Electron Detector: We detected the electrons with a standard plastic scintillator (Bicron
BC-404) of dimensions 130 × 190 mm2. Its thickness of 5 mm was chosen to ensure that the
1 MeV-electrons of the calibration peak loose all their energy in the scintillator. A 30 mm
thick lightguide made out of plexiglass (Bicron BC-810) with the same refraction index than
the scintillator, directly glued to the scintillator with optical cement (Bicron BC-600), was
used to distribute the scintillation light onto a larger area. Finally, the photons were detected
in six mesh photomultipliers4 (Hamamatsu R5504). These are the only photomultipliers
(PMT) that work in magnetic fields greater than 0.5 T, provided that they are installed
with the correct angle towards the magnetic field lines [Plo00]. All free detector surfaces at
the side and the back were covered with diffuse reflecting paint (Bicron BC-620) to increase
light output, and the whole setup including photomultipliers was placed within the vacuum
vessel. It fulfilled our needs in terms of stability, linearity, homogeneity (cf. section 4.1),

4In contrast to ordinary photomultipliers employing a series of dynodes for electron amplification, mesh
photomultipliers consist of several fine meshes directly behind each other to amplify the signal. This allows to
use them in high magnetic fields, however, their quantum efficiency is usually lower than for dynode-tubes.
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and low sensitivity to γ-radiation from the background. Furthermore, the fast scintillator-
photomultiplier combination allowed a time resolution of about 1 ns.

Proton Detector: The protons were accelerated onto a thin (15−30 µg cm−2) carbon
foil [Sto02] on negative high voltage (about −18 kV) that was placed between decay volume
and scintillator. Whereas the electrons transit the foil almost unperturbed, the accelerated
heavy protons have enough ionization power and total energy to release one or more secondary
electrons from the foil. These get again accelerated by the negative potential U and depose
the corresponding energy in the scintillator. Hence the foil works as a “proton to electron
converter”. Detailed studies have shown that the proton conversion is independent of energy
and incident angle on the foil for values ocurring in the PERKEO II setup [Bra00]; the same
holds for the electron detection in the scintillator.

Generally we applied a high voltage of U = −18 kV to both detector foils. However, the
high voltage had to be ramped up slowly and sometimes the desired value was not reached
due to severe high voltage related background accompanied by electric sparkovers. We even
operated the system several days with different voltages on both sides (∆Umax = 2 kV) for
stability reasons. Although former tests with this setup were performed with voltages up to
−30 kV [Rei99] we never succeeded to get beyond −20 kV. The difference is probably due to
the strong magnetic field that was not present during the tests.

Scintillator and decay volume had to be grounded: The first to accelerate the secondary
electrons towards the detector by repulsion from the foil, the second to inhibit changes of the
initial angular distribution of the particles in the decay volume due to the electric potential.
Additionally, the energy of the decay electrons should not be affected, they should therefore
start and stop on the same potential.

We covered the scintillator front with a thin layer (50 nm) of aluminium and connected it to
ground potential. In case of the decay volume, we used 4 layers of thin linear aluminium grids
for shielding. The wires of the two inner grids (towards the neutron beam) had a diameter
of d = 10 µm, the others d = 25 µm with a spatial distance of 6 mm between the wires on
a grid and 15 mm between subsequent grids; the reason for this choice will be given in the
next section. Figure 3.15 shows a photograph of the setup.

Figure 3.15: Photograph of the proton-to-
electron converter: In the foreground one can see
the thin carbon foil set to negative high voltage.
The decay volume (not visible) is shielded with
polished aluminium plates; only a small rectangu-
lar aperture allows the charged particles to reach
the detector. Four grid-layers made out of thin
aluminium wires ground the decay volume; the
first is visible in the back. Behind the grids one
can see the vertical baffles that define the decay
volume length.
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3.4.2 High Voltage Test Measurements

The first experiment to measure B and C with PERKEO II was performed in the year 2000
[Kre04b, Kre05b]. It used the same detection principle but had to face some severe difficulties
that limited the precision of the result significantly. One of the crucial points was the high
voltage related background and its instabilities what may be caused by the extremely thin
carbon wires that were used to ground the decay volume in that experiment: Very high
electric fields occuring in the neighborhood of the wire surfaces may ionize residual gas atoms
that then generate triggers in the detection system. Another problem arose due to the low
proton efficiency: To increase it, the coincidence condition “2 out of 6”, i.e. an event is only
considered to be valid if at least two from the six photomultipliers per detector trigger, was
omitted in the proton branch of the electronics (cf. also section 3.4.4). Unfortunately, the
photomultipliers tend to show after pulses some time after an initial signal. These pulses were
difficult to eliminate as they had the same signature as protons.

We have considered these experiences in the preparations for the new PERKEO IIB measure-
ment, and therefore made some test measurements on the high voltage system at the ILL.
The test setup was similar to the real one (without magnetic field) and consisted of an old
electron detector from the last measurement that was read out by two photomultipliers, a
carbon foil on high voltage, and a grid that was used for grounding purposes. A weak 207Bi
electron source allowed to calibrate the measurements.

Especially the grounding grids – the possible origin of the HV-background – were studied
copiously. Some results are shown in figure 3.16: High voltage effects depend strongly on
diameter and material of the wires, as well as on the condition of their support frame. We
achieved the lowest count rates in a setup with 25 µm AlSi-wires5 on a frame that was
completely hidden in a polished aluminium cover. The difference to the much thinner (8 µm)
carbon wires used in the year 2000 is quite remarkable, hence, for the real experiment, we
decided to use 25 µm AlSi-wires for the two outer grids and 10 µm AlSi-wire for the inner
ones, where the electric potential is already much lower. However, the effect of the finite wire
size acting as an obstacle to the particles has to be taken into account; this is referred to as
the grid effect (cf. section 4.5.6). To reduce the HV-background even further all parts of the
new detection system that had direct sight to the high voltage foil were specially polished to
avoid tiny metal spikes.

599 % Al, 1 % Si
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3.4.3 Electric shielding of the Decay Volume

An important point regarding the combined electron-proton detection system is to shield the
decay volume from the potential of the foils, since this could severely disturb (especially if
the potential is asymmetric) the initial momenta of the charged particles. Detailed studies
on this topic have been made in the past [Rei99, Bra00] generating the following results:

• In an asymmetric setup, i.e. different voltages applied to the foils, the overall change
of the potential Φ in the decay volume should be below ∆Φ = Φmax − Φmin < 1 mV.

• For a symmetric setup the limit can be higher since the effect of deflecting charged
particles onto the wrong detector is partly compensated by the second foil. Here the
relative change should be ∆Φ < 100 mV in order to not have a significant effect on the
asymmetry measurement. However, the absolute potential in the decay volume could
be larger. For these reasons we operated the system only in the symmetric setup.

Anyhow, we repeated the old electrostatic simulations with enlarged CPU power to ensure
that the electric field is no limiting factor in the PERKEO IIB experiment. Both, analytic
calculation and direct measurement are not possible here.

Simulation of the electric reach-through is also very complicated due to the extremely small
diameter of the grounding grids compared to the overall dimensions. Altogether three simu-
lations of the realized setup (cf. section 3.4.1) have been done to tackle the problem:

• Ferenc Glück [Glu05] performed a simulation with his new method using surface charges.

• Torsten Soldner [Sol05] wrote a program to solve the Maxwell equations with the finite
element method on a cubic grid and studied effects of the grid constant.

• We used the commercial finite element program EM Studio from CST6 to simulate the
setup (with the friendly assistance of Bastian Märkisch): In the most accurate simula-
tion run we used approximately 3.6 · 106 three-dimensional mesh cells. Fortunately we
only had to simulate one eighth of the interesting volume for symmetry reasons. The
finest mesh (0.3 mm) was placed between the grounding wires, in the outer parts of
the simulation it was rather coarse with equilibrated transitions between the different
mesh sizes. But still even the finest mesh was 10 times larger than the wires used for
grounding. Hence the absolute values obtained in the simulation are only lower borders.

Figure 3.17 shows the results of the latter simulation: It gives the absolute electric potential
Φ on the symmetry axis connecting the detectors where we expect the highest values. The
effect of the grounding grids can be clearly seen and the maximum potential at the decay
volume border is below Φ = 8 mV. The change in the potential is below ∆Φ = 1 mV what
is two orders of magnitude smaller than demanded by the studies quoted above.

Since the other two simulations yield similar results we conclude that the relative change in the
potential ∆Φ and even the absolute potential Φ of our setup are well below ∆Φmax = 100 mV.
Of course we have to consider the numerical limitations of the simulations but we do not
expect them to change the results by more than an order of magnitude what is still below
the necessary threshold.

6CST GmbH, Darmstadt; www.cst.de
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Figure 3.17: Reach-through of the electric poten-
tial: The result was obtained using EM Studio,
a commercially available simulation program for
electric and magnetic fields. It shows the absolute
electric potential Φ on one half of the line connect-
ing both detectors. In the decay volume (red box)
the potential is well below the desired value. In the
simulation, the foil is at U = −18 kV, the steps
between 150 and 200 mm are due to the ground-
ing grids. Please note the logarithmic scale.

3.4.4 Data Acquisition

We recall that the method of determing the neutrino asymmetry B is to measure the momenta
of electron and proton from a single decay in coincidence. Hence data acquisition must fulfill
certain conditions:

• To allow for different cuts and conditions in data analyis, each event should be recorded
with all available information (“event mode data”) instead of just measuring spectra.

• We have to detect the electron’s energy signal which is also used as “start” signal of the
coincidence measurement.

• Since the proton is heavier and moves slower than the electron, it occurs after the
electron trigger: Thus is is detected it as “stop” signal within a certain coincidence
window.

• To deal with high voltage background and accidential coincidences, several stop signals
should be measurable within the coincidence window; the energy content of the first
four should be stored.

• The global time of an event ocurring during the measurement should be recorded to be
able to look for false periodic structures.

• A fast timing measurement within an event is necessary to measure electrons that
depose only a part of their energy in the first detector and get backscattered to the
other detector (guided by the magnetic field lines). For full energy reconstruction the
ADCs of both detectors were read out simultaneously whenever a trigger occurs.

Data acquisition was realized with VME modules and PC readout, a CAMAC discriminator,
and standard NIM logic devices7. The incoming signals to deal with were 12 analog photo-
multiplier signals that were split by a linear fan: One signal was delayed by 200 ns and fed to
a charge integrating input of the ADC (CAEN V792N), the other entered a constant fraction
discriminator (CAEN C808). The digital outputs for each detector were sent to a “2 out of
6” coincidence unit triggering only if at least two of the six photomultipliers per detector

7This are commonly used electronics standards: VME stands for Versa Module Euro card, CAMAC for
Computer Aided Measurement and Control, and NIM for Nuclear Instrument Module.
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Figure 3.18: Logic part of the data acquisition electronics to measure the energy signal of the electron
and up to four coincident stop signals: The 2 × 6 signals from the discriminator enter the logic from
the left. Rectangles (turquoise) indicate standard NIM logic modules, ovals (violet) VME modules,
circles (yellow) with equal numbers and inhibit symbolize connections, and Veto abbreviates the sum
of all VME busy signals. The red shaded part is the electron logic, the grey part for the proton, and
the “post-trigger” branch served to finish the event after 80 µs. The following abbreviations are used:
&&: logic AND module, FAN : OR module with several inputs and outputs, K3 : threefold coincidence
unit, GG : gate generator that creates a gate of the indicated length t (L-output) if it is not stopped
in advance via the stop-input, its D-output generates a short NIM-pulse after a delay-time t.

have detected a signal. This is the first stage of the digital logic part shown in figure 3.18: It
is divided in an electron part that starts an event and ensures that all devices got a trigger
at the end of the 80 µs coincidence window, even if nothing happened after the start. This
“post-triggering” is necessary to ensure that all devices have registered the same number of
events, otherwise event-reconstruction is impossible. The proton part of the logic triggered
different ADCs (DL 6428) to measure the energy of the first four stop signals.

For timing measurements within an event we used a TDC with 0.8 ns resolution (CAEN
V676A). This is good enough to measure backscattering effects since the minimal flight time
for electrons from one detector to the other is about 3 ns. TDC-measurements were made
relative to a global time window started by the electron part of the digital logic. Triggering of
two separate TDC-channels for the detectors was done directly by the “2 out of 6” modules.
So up to 32 stops for each detector could be measured. Another TDC (DL 643A) with a
much lower time resolution (1 µs) allowed to determine the time of an event within a cycle,
which is the shortest measurement unit (2 s) between two spin-flipper turns. A timing-module
(ILL StartStop) for automatic dead time correction and several counters completed the data

8The “DL” modules were developed and manufactured by the electronics workshop of the Physics Institute
(PI), University of Heidelberg.
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acquisition system that was also used to control the experiment, i.e. to switch spin-flipper,
move shutters (for background measurements) and calibration sources according to a fixed
scheme. Details on the detector calibration follow in the next section.

3.4.5 Detector Calibration

Whereas the neutrino asymmetry Bsame in the same hemisphere is almost not sensitive to
detector calibration due to its flat distribution, detector calibration is crucial for the mea-
surement with opposite detectors Bopp, and the proton asymmetry C. In this section we will
just mention the efforts made to characterize the detectors precisely, the results of detector
performance are presented in section 4.1.

We used five monoenergetic conversion electron sources covering the whole energy region of
neutron decay with six peaks9 since 207Bi shows two:

109Cd 139Ce 113Sn 137Cs 207Bi
Half Life T1/2 462.6 d 137.2 d 115.1 d 30.2 a 32.2 a
Peak Position [keV] 78.1 136.6 371.9 629.3 504.7 997.9

We applied the sources onto very thin carbon foils (≈ 12 µg/cm2) to minimize energy loss in
the foil transit. Unfortunately, the inner diameter of the support structure for the foils was
chosen too small (15 mm) for the upper Bi-peak: Electrons with energy Ee (in units of the
electron rest mass) in a magnetic field B (in T) gyrate around the field lines with a maximal
radius

rmax =
1.70

√
Ee(Ee + 2)
B

mm T, (3.24)

when they are emitted perpendicular to the magnetic field. For bismuth in the field of
PERKEO II (B = 1.03 T), this yields rmax = 4.6 mm, but since an undisturbed gyration
needs a free space of 2 rmax around the source center, a certain fraction of the electrons
collide with the support. However, this concerns only the upper Bi-peak leading to an overall
intensity loss but no spectral distortion, since all individual lines are effected the same amount.
Hence the ratio of both Bi-peaks is changed without any impact on the calibration.

Additionally, one has to remember the γ-background generated by the daughter nuclei of the
sources and photons from compton scattering. This cannot be removed from the spectra in
the calibration and may yield a shift of the peak positions.

Calibration Plates: After installation of the electron detectors, we adjusted the photo-
multiplier tubes with calibration signals emitted from a plate equipped with six Bi-sources
each positioned exactly in front of a photomultiplier tube. This facilitates an equal calibra-
tion of all tubes simultaneously, whereas the signal depends on the PMT-positions if only one
single source is used.

9In reality the peaks consist of up to 20 individual lines of conversion electrons from different shells and
additional Auger electrons with different energies (cf. e.g. [Met95]). But due to the low energy resolution of
the plastic scintillators and PERKEO’s magnetic field, that collects all electrons, one can sum up these lines
to one peak. However, the fit functions incorporate all of the individual lines.
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Calibration Carousel: Placed in between the detectors, this device consists of two turn-
able half plates with three particular calibration sources each. In “normal” position, the
sources are shielded with lead and cannot be seen by the detectors. By turning one of the
half plates by 90◦, 180◦, or 270◦, one source is placed right in the decay volume center, the
others are still invisible.

We used the carousel regularly within a fixed measuring scheme to calibrate the detectors
with all sources (rate 300−1000 e−/s) to avoid drift effects in the detector function. For the
calibration of the proton ADCs, random coincidences, i.e. several electrons inside the coinci-
dence window, were used. To get them in sufficient amount, a strong 207Bi source (≈ 7 kHz)
was mounted in the sixth position. However, the energy-channel-relation determined with
the calibration carousel has to be corrected since the sources were positioned in the center
whereas the neutrons decay in the whole decay volume and the decay products cover the
whole detector.

Scanner: The scanner was used to determine this correction: It allows to move a single
calibration source two-dimensionally between the detectors, covering the whole decay volume
projection. The motion in vacuum and in the high magnetic field of PERKEO II was realized
by using piezo micro-motors from Nanomotion (cf. [Bre03, Sch04]).

We performed the scanner measurement three times (2 × 207Bi, 1 × 139Ce) after reactor
shutdown10. Analysis and results of the detector calibration are presented in section 4.1.

3.4.6 Vacuum Requirements

All PERKEO experiments used an evacuated beamline and spectrometer to prevent neutron
scattering on air and to allow the decay products to reach the detectors. In this measurement
we also wanted to detect the slow and heavy protons and had to use a detection setup on
high voltage for this purpose. Hence vacuum requirements were slightly higher than in pure
electron measurements.

One problem of PERKEO II is that we cannot put any pressure gauge in the neighborhood of
the decay volume because of the strong magnetic field. This, however, was the region where
pressure is crucial as the detection system with the foils on high voltage and the photomulti-
pliers were installed here. Instead we measured the pressure in the beamline between orifices
2 and 3 (directly above a small turbopump, cf. figure 3.2) and at the beginning of the beam
stop tube (located in between the decay volume and two big turbo pumps). Usually, the
pressure measured in the beamline was slightly worse (≈ 30 %) than in the beamstop.

The minimal pressure reached was 6.3 · 10−7 mbar measured at the beamstop tube. We
switched on the photomultipliers below 5 · 10−5 mbar, and the high voltage at pressures
around 8 · 10−6 mbar. At these levels no problems associated with vaccum occurred.

10One reactor cycle at the ILL takes 50 days, afterwards there is a break of several days to change the fuel
element. During this time, no neutrons are available.
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3.5 Background and Shielding

Background is a severe problem in precision mesurements. We faced different background
sources and therefore had to tackle them in different ways. A very detailed discussion of the
backgrounds in a measurement like this can be found in [Kre04b].

External Background: This is generated by the environment in the experimental hall
ILL 7 and consists of γ-radiation, fast, and thermal neutrons. We can fully subtract the
external background, as it can be measured with closed neutron shutter, provided it is constant
in time. The shutter was effectively shielded with lead so that the background produced there
was not visible in the detectors [Mun06].

Beam related Background: Background generated by neutrons in our experimental
setup is called “beam related”. Main sources were the collimation system generating gammas
and fast neutrons in the 6LiF covering the orifices, scattered neutrons hitting the beam tubes
that are protected by borated glass, and the 6LiF-beamstop. Neutrons backscattered from the
latter were catched by an installation called “aquarium”, a cube made of borated aluminium
(Boral) with an opening for the neutron beam at one side and the beamstop at the other. In
short, we had beam related background produced in lithium or boron.

We made an effort to minimize this background by shielding the sources with a sandwich struc-
ture of polyethylene to moderate fast neutrons, boron to convert the neutrons to gammas, and
lead to absorb the γ-radiation [Kre04, Mun06]. Furthermore, the big background-advantage
of PERKEO IIB is the coincidence measurement: An event is only valid, if a second signal
occurs within a given time interval after the first. All backgrounds described so far are effec-
tively suppressed by this condition. They only act as accidential coincidences, an effect that
can be well described mathematically, measured, and subtracted as described in section 4.3.3.

When the detector is operated without high voltage only electron measurements are possible
and the setup is similar to an experiment to determine the electron asymmetry A. However,
now no coincidence condition can be exploited to reduce the beam related background. Since
we have changed the background optimized setup of the A-measurement by installing a fifth
orifice closer to the decay volume, and by moving the beamstop towards the detectors, we
face more beam related background that prohibits a determination of the electron asymmetry
A with our setup.

Coincident Background: This background consists of events with a time structure sim-
ilar to the one expected from neutron decay, i.e. a false start “electron” and a false stop
“proton”. Hence it is not possible to get rid of these signals using the coincidence condition,
however, if it does not dependent on the presence of neutrons, it can be subtracted with a
background measurement employing the neutron shutter.

Our coincident background, neglecting the purely statistical accidential coincidences, is mainly
due to the high-voltage applied to the foils. We give some details on this topic in the next
two sections.
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Figure 3.19: Count rate per cycle (2 seconds)
for a measurement without high voltage applied
onto the detector foils. The difference in the count
rate of the detectors is due to different discrim-
inator thresholds. By taking the difference be-
tween the low (background) and the beam count
rate at ≈ 110 counts, we can get the individual
electron count rates and with this the average neu-
tron decay rate above the threshold: r ≈ 79 Hz.
The higher points correspond to the calibration
sources.
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Figure 3.20: Example for a measurement (U =
−18 kV) with stable high voltage background:
Shown is the electron trigger rate per cycle (2
seconds). The different measuring modes shutter,
beam, calibration source are clearly visible. How-
ever, detector 1 is worse than detector 2.
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Figure 3.21: Example for a measurement with
very instable high voltage background: Data was
taken with U = −15 kV on both detector foils.
Whereas detector 2 is stable over the whole mea-
surement, detector 1 is background dominated
and cannot be used for further analysis.

3.5.1 High-Voltage Background

As also seen in the test measurements on the detection system (section 3.4.2), the count rate
gets larger with increasing high voltage applied to the detectors. By comparing figure 3.19,
a measurement with no high voltage (U = 0 kV), with figure 3.20 at U = −18 kV, we can
see that the average background count rate per cycle, corresponding to a measurement of 2
seconds, increases by 270 (2s)−1 and 71 (2s)−1 for detector 1 and 2 respectively. Regarding
high voltage background, detector 1 is much worse than detector 2.

Figure 3.21 shows an extreme but unfortunately not rare example of a measurement with
a very unstable high voltage background; the voltage applied was U = −15 kV: Whereas
detector 2 shows a behaviour similar to figure 3.20 (the lowered rate is due to the smaller
voltage), detector 1 is completely dominated by instable background and cannot be used for
data analysis at all. Although we spent much time and effort to optimize the background
situation on detector 1, we did not succeed and had to face a high background more than
half of the measurement. Only the last three days – the vacuum vessel had been closed four
days before and the high voltage had never been switched off again – detector 1 reached the
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background level shown in figure 3.20. Together with its lower proton efficiency, this yields
a strong imbalance in statistics of the two detectors, since detector 2 worked well during the
whole beamtime.

Background in the measured Spectra: We measured energy dependent count rates
N↑↑(E), N↓↓(E), N↑↓(E), and N↓↑(E), where the first arrow indicates the direction of the
electron with respect to the neutron spin and the second the proton. For simplicity we
omit the energy dependence in the following and focus on the B-measurement in the same
hemisphere. An additional background X must be added to the count rates N ij , hence we
get the following expressions for difference D, sum S, and asymmetry Bsame:

D = (N↓↓ +X)− (N↑↑ +X) = N↓↓ −N↑↑ (3.25)
S = (N↓↓ +X) + (N↑↑ +X) = N↓↓ +N↑↑ + 2X (3.26)

Bsame =
D

S
=

N↓↓ −N↑↑

N↓↓ +N↑↑ + 2X
. (3.27)

These expressions assume a background that is independent of the spinflipper status, as it
was the case for our measurement.

The difference spectrum D should be background-free by definition, hence it can be used
to check the stability of the background level and its independence of the spinflipper status
(since N↑↑ and N↓↓ are measured with the same detector but with the spinflipper switched on
or off). An analysis of the sum spectrum S gives access to the background that is still present
in the data. This decreases the asymmetry Bsame as there is a background contribution 2X
left in the denominator of equation (3.27). Figures 3.23 and 3.24 show the spectra D and S
(corrected for all other effects) for detector 1 and 2 respectively. There is much background
left for detector 1 and a bit for detector 2, but for energies above 240 keV, the spectra can be
very well described by the fit functions that do not account for any background contributions.
All fits have only one free parameter, a normalizing factor that does not change the spectral
shape of the function. Therefore, background is no limitation for the final analysis as long as
the region of interest is chosen correctly.

An important observation for the background interpretation is that most of the coincident
background appears in the same hemisphere: Measurements that look for start and stop in
different hemispheres have almost no background. This is shown for detector 2 detecting the
first signal in figure 3.22: Although the measuring time for both background spectra is equal
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Figure 3.22: Energy distribution of coincident
background, consisting of events that have a start
and a stop signal, similar to the neutron decay
signature. Shown is the energy of the start. The
signal is more than 15 times larger when start and
stop are detected in the same (here: detector 2)
compared to opposite hemispheres. In the latter
case, there is no background left above 250 keV,
whereas the background for the same hemisphere
situation goes up to 400 keV.
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Figure 3.23: Detector 1: Difference spectrum D
(top) and sum spectrum S of all data used for
the analysis of the asymmetry Bsame in the same
hemisphere. There is much background left in the
spectra at low energies, but the spectra can be
well described above 240 keV. The solid part of
the function indicates the fit region.
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Figure 3.24: Detector 2: Difference spectrum D
(top) and sum spectrum S of all data used for the
analysis of Bsame. D is almost background free in
the whole energy range; N can be well described
above 240 keV, i.e. there is no background left for
these energies. Therefore background is no limi-
tation for the analysis.

the signal in the same hemisphere is more than 15 times larger than the other. This effect
has also been observed in the measurement of 2000 [Kre04b].

3.5.2 Simulation of High-Voltage Background

To summarize, we have to deal with a highvoltage related background generating events with
coincident second triggers. Background is much higher when the second signal is detected in
the same hemisphere than the first. The time-of-flight spectra of these signals, i.e. the time
of the coincident stop, show the usual exponential decline superimposed by a characteristic
peak. This occurs approximately 3.0 µs after the start for detector 1, detector 2 peaks a little
later (figure 3.25 shows measured data for detector 1, 3.26 for detector 2).

There are several ideas to explain the nature of the coincident background [Kre04b, Dei05],
e.g. one can assume that atoms of the residual gas are ionized in the high electric fields close
to the thin wires shielding the decay volume creating a free electron and a much heavier ion.

We tried to reconstruct the characteristic peak structure in the TOF spectra using the Monte
Carlo program MoCaAsSiN (Monte Carlo Asymmetry Simulation for Neutron decay) [Dei05]
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Figure 3.25: Simulation of the high voltage back-
ground: The peak in the measured background
TOF-spectrum (black) can be well described by
4He ions (red) generated at the last shielding grid.
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Figure 3.26: Simulation of the high voltage back-
ground: Ionized 14N atoms generated at the last
grid describe the structure in the TOF background
spectrum even better. Both figures from [Dei05].

to simulate the above scenario. The examined ions were H+, He+, N+, and Al+: The first
three are prominent constituents of the air, the last was chosen because almost all of the
detector installation was made out of aluminium. We assumed a very low initial kinetic
energy (Ekin ≈ 25µeV), varied the ion generation position in the region of the grounding
wires, and simulated the drift towards the foil on U = −18 kV.

The simulation results are shown in figures 3.25 and 3.26: Helium and nitrogen can at least
qualitatively describe the measured peaks for both detectors, when the ions are generated in
a region of 1−2 mm width at the outermost grounding grid. The small difference in the peak
position between the two detectors can be simply explained by a slightly asymmetric setup:
Even small spatial differences (≈ 1 mm) in the ions “start”-position would yield the measured
situation. Hydrogen and aluminium ions cannot describe the measured spectra.



Chapter 4

Data Analysis

Data acquisition for the PERKEO IIB measurement, presented in the last chapter, took 50
days of neutron-beamtime and approximately two more weeks for systematic checks that
could be done without neutrons. To analyze this data, first of all, the detector functions,
i.e. the response of the detectors with respect to different input signals, had to be obtained.
Furthermore, we had to develop an approach to deal with events that exhibit more than one
stop signal, and to cope with the sometimes very instable background situation. Not until
this has been done successfully, we can finally generate the electron spectra and analyze the
asymmetries. All these topics are described in the following sections.

4.1 Electron Detector

We introduced the mode of operation of the combined electron-proton detector in chapter
3.4.1. Now, we will present the calibration results of the electron detector, and some correc-
tions that have to be made to account for geometrical effects.

4.1.1 Photomultiplier Calibration

One detector consists of six photomultiplier tubes (PMTs) attached to a large plastic scin-
tillator, i.e. a measured detector signal Sall generated by an electron event of energy E0 is
made up of six single signals Si:

Sall =
6∑

i=1

Si. (4.1)

If the detector would be perfectly homogeneous, Sall would not depend on the impinge position
(y, z) on the scintillator and the signal would always be of the same size1. Needless to say,
that this is not the case for a detector size of 190 × 130 mm2, read out in two lines with three
PMTs each (cf. figure 4.1). The moderate energy resolution of the detector system is also
responsible that an event of energy E0 not always produces the same signal Sall.

1Please remember the coordinate system: The neutrons move in positive z-direction, x is the horizontal
and y the vertical coordinate. The system is right handed.
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To optimize electron detector response, we use a “PMT calibration” method developed by
M. Kreuz [Kre99, Kre04b] whose notation we adopt: A calibration constant γi is assigned to
each PMT such that the mean quadratic deviation δ from E0 is minimized, i.e.

δ =
1
N

N∑

j=1

(
E0 −

6∑

i=1

γiS
j
i

)2

= minimal, (4.2)

where we sum over all N events of energy E0 measured at different positions on the detector.

The two-dimensional calibration scanner described in chapter 3.4.5, equipped with a mo-
noenergetic electron source (207Bi with two peaks), was used for the PMT calibration since it
allows to place the calibration source at arbitrary (y, z) positions in front of the detector. It
was installed in the decay volume center and covered only the detector area that could also
be hit by electrons from neutron decay.

We solve the extremal problem (4.2) by calculating

∂δ

∂γk
=

2
N

N∑

j=1

(
6∑

i=1

γiS
j
i − E0

)
Sj

k = 0, (4.3)

an expression that can be transformed into

6∑

i=1

γi

N∑

j=1

Sj
kS

j
i = E0

N∑

j=1

Sj
k or Mγ = s. (4.4)

The vectors

γ =



γ0
...
γ6


 , s = E0




∑
j S

j
0

...∑
j S

j
6


 , (4.5)

and the 6 × 6 matrix

M =




∑
j S

j
0S

j
0 · · · ∑

j S
j
0S

j
6

...
. . .

...∑
j S

j
6S

j
0 · · · ∑

j S
j
6S

j
6


 (4.6)

were introduced to express the problem in terms of vector equation (4.4), solved by

γ = M−1s. (4.7)

This is evaluated in an iterative way, where convergence is reached after only five iterations.
We obtain the following calibration constants γi for the detectors:

PMT 1 2 3 4 5 6
Detector 1 1.100 0.668 0.972 1.093 0.759 1.406
Detector 2 1.368 0.777 1.118 0.893 0.717 1.127

In general, the recalibration method increases the weight of the outer tubes (1, 3, 4, 6, see
figure 4.1) and decreases that of the two in the center (2, 5). However, the individual size of
the constants γ varies due to the different PMT characteristics.
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Figure 4.1: Sketch of the photomultiplier posi-
tions attached to the light guide. They are in-
stalled in two lines by three tubes each.
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Figure 4.2: Effect of the PMT calibration pro-
cedure on the detector’s energy resolution: The
peak width is cleary smaller afterwards.

Besides improving the detector homogeneity, PMT calibration also enhances the energy reso-
lution, an effect that can be seen in figure 4.2: The width of the upper Bi-peak, a measure of
the energy resolution, has cleary decreased after PMT calibration. Quantitatively, we gain 18
% improvement for electron detector 1 and 15 % for detector 2. The mean deviation of the
peak position for different positions of the calibration source from the average is decreased
by 30 %.

To test the quality of the PMT calibration procedure, we performed it with the data of two
207Bi-scans with approximately 100 (y, z)-positions each. The resulting constants γi agree
within 8 %. Additionally, we checked the procedure by using more points or omitting some
positions, however, the resulting shifts are even smaller. All these differences are much too
small to yield observable effects, therefore, from now on, we will only use data calibrated with
the constants γi given above.

4.1.2 Energy-Channel Relation

When an electron of energy E hits the scintillator, the number of photons produced is pro-
portional to the energy. A certain fraction of the light is guided to the photomultiplier tubes
and generates electrons in a photoeffect reaction in the cathode. These are multiplied and
produce an analogue charge pulse that then is digitized in a charge integrating ADC. Since
all parts in this sequence work linearly we also expect a linear relation between energy E of
the incoming electron and the channel-sum C of all photomultipliers per detector:

E = g · C +Eoff. (4.8)

The calibration carousel (introduced in chapter 3.4.5) was used to obtain gain g and offset
Eoff: It allows to place calibration sources with altogether six monoenergetic electron lines
in front of the detector centers. Since we need the detector response function for the whole
area covered by decay electrons, this necessitates the so-called “area correction” relating the
detector function in the center to the area-average. Details on this topic can be found in
section 4.1.5, the values presented here are already corrected.
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Figure 4.3: Example for a fit of the monoener-
getic conversion electron source 109Cd. The peak
is very low energetic, 78.1 keV, and the trigger
function has to be considered in the fit.
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Figure 4.4: Fit of 139Ce. The peak is located
136.6 keV, hence the trigger function has to be
also included to account for the low energetic part
of the line.
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Figure 4.5: 113Sn with a peak at 371.9 keV. All
shown spectra were measured with detector 2.
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Figure 4.6: 137Cs with a peak at 629.3 keV. It
superimposes two continuous β-spectra.
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Figure 4.7: Fit example of 207Bi. It shows two
peak at 504.7 keV and 997.9 keV that are fitted
separately. All fits to the calibration spectra are
statistically significant, i.e. they have fit probabil-
ities P ≥ 5 %. They are used to determine energy
calibration and energy resolution.
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Figure 4.8: In detector 2, the Auger peak of 113Sn
at 25.4 keV is visible. Due to the very poor energy
resolution at low energies, is is very broad, but
its area agrees with the expection from a linear
extrapolation of a fit to the “normal” Sn-peak.
The trigger function has been considered.
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Fit of the Calibration Sources: The six peaks of the conversion electron sources are
fitted with a function containing the complete description of the electron lines that make up
the peak [Met95]. These lines are broadened using a Gaussian to account for the detector’s
energy resolution and summed up to obtain the shape of the single peak at a discrete energy
E. From the fit, we obtain peak position x with error and a measure of the energy resolution
denoted with σMeV. All fits were statistically significant with χ2 probabilities P ≥ 5 %.
Examples are shown in figures 4.4−4.7.

In reality, the broadening of the individual lines is governed by Poisson statistics, however,
using this gives no difference to the Gaussian case that is much easier to handle. We also
checked the electron’s energy loss in the carbon foil to convert the protons: It is about 0.05
keV for 25 keV electrons and even smaller for higher energies. Hence it is completely negligible
for the calibration.

Energy-Channel Relation: Knowing the channel positions xi and the energies Ei of
the six calibration peaks, we can perform a straight line fit to get gain and offset. However,
the uncertainty acquired from the fits does not account for any systematic error, such as
a slightly displaced sources or detector drifts between the measurements with the different
sources. This gives rise to very poor reduced chi-squared rχ2 = χ2/ndf of the straight line
fit, where ndf denotes the number of degrees of freedom.

Only a fit describing the data points well will yield realistic values for the uncertainty of the
energy-channel relation, thus we scale the individual uncertainties in the peak position ∆xi

with a factor

S =
√
rχ2 (4.9)

to obtain a straight line fit with rχ2 = 1 [PDG06]. Examples for both detectors are shown
in figures 4.9 and 4.10, the scaling factors are S = 3.3 and S = 12.5 for detector 1 and 2
respectively.
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Figure 4.9: Energy-channel relation of
detector 1: The used calibration points are
(with increasing energy) 109Cd, 139Ce, 113Sn,
207Bi lower peak, 137Cs, and 207Bi higher peak.
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Figure 4.10: Energy-channel relation of
detector 2: Obviously, the additional peak at
low energy (the Auger-peak of 113Sn at 25.4 keV)
lies above the expected linear relation.
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Non-linear behaviour at low Energies: As is well known, the peak positions at low
energies are higher than expected, the energy-channel-relation flattens and is no longer linear.
This behaviour starts around 100 keV: The cerium peak at 136.6 keV still fits perfectly to
a linear description, whereas cadmium (78.1 keV) lies systematically too high. The peak at
25.4 keV due to Auger-electrons of tin (cf. figures 4.8 and 4.10) is even higher. Hence we
omit this and cadmium in the fits to obtain gain and offset. Above 100 keV, the detectors
perform well, with a non-linearity2 L below 0.8 %.

The non-linear detector function at low energies could also be the reason that the straight
line fits do not cross the origin (with the pedestal signal of E = 0 keV at channel 0) but show
an offset (“energy loss”) of 35−40 keV. If the detector would respond perfectly linearly all
electrons with lower energies would be lost. Obviously, this is not the case: We can identify
the peak at 25.4 keV, and we also detect secondary electrons generated by protons hitting
the carbon foil: They have energies of 12−18 keV. However, the energy resolution of the
detector gets very poor at low energies. An ansatz to describe the effect could be that the
trigger function cuts away the lowest part of an extremly broadened electron peak, leading
to a higher peak barycenter.

We account for backscattered events by summing up the energy content of both detectors. If
one of the signals is very low, the non-linearity leads thus to a wrong detector sum. However,
this effect is not crucial, since the backscattered events are considered in the calibration, and
therefore only yield a slightly decreased energy resolution.

Results: Calibration measurements were performed regularly during the expriment.
Therefore each “measurement”, a period of 20 min to 15 hours data acquisition, can be cali-
brated on its own to account for drifts. However, to study the general influence of calibration,
we are also interested in the average values for both detectors:

Gain g ∆g/g Offset Eoff ∆Eoff/Eoff

Detector 1 1.0415 0.3 % 37.7 keV 5.8 %
Detector 2 1.0370 0.6 % 40.4 keV 10.7 %

We obtain the mean uncertainty of gain g and offset Eoff by averaging the errors of the
individual calibration measurements. They are used to determine the effect of the imperfect
energy calibration on the asymmetries.

The table shows that the gain is known much more precisely than the offset, and that calibra-
tion of detector 1 is superior. The reason for this is not known, however, it is not important for
the determination of the neutrino asymmetry in the same hemisphere, since the asymmetry
is almost flat. For the opposite hemispheres and the proton asymmetry, detector calibration
yields large uncertainties.

2The non-linearity L is defined via

L =

∣∣∣ ∆C

Cmax

∣∣∣ ,

where Cmax is the maximal measured channel and ∆C is the maximum deviation from the linear fit [Leo94].
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4.1.3 Energy Resolution

The energy resolution σE is governed by the number of photo-electrons N generated in the
photomultiplier tubes. This process obeys Poisson statistics, thus ∆N =

√
N , and since N

is proportional to the energy E of the electron we obtain

σE

E
=
√
N

N
=

1√
N

(4.10)

or

σE = σE0

√
E

E0
, (4.11)

where E0 is a reference energy: The energy resolution is proportional to the square-root of
the energy.

We use E0 = 1 MeV and rewrite equation (4.11) introducing σMeV, the energy resolution at
1 MeV:

σE = σMeV

√
E[MeV]
1 MeV

. (4.12)

This expression is used as standard deviation of a Gauss-curve to broaden the lines in the
calibration fits3, where σMeV is a free parameter to be determined. The averaged values and
uncertainties are:

σMeV ∆σMeV/σMeV PE/MeV
Detector 1 64.2 keV 1.0 % 243(5)
Detector 2 62.9 keV 0.7 % 253(4)

In the last column, we have used σMeV and equation (4.10) to calculate the number of photo-
electrons (PE) per MeV. If we define the energy resolution δE via

δE =
∆E
E

=
FWHM
E

=
2.35 σ
E

(4.13)

[Leo94], we obtain δE = 15.1 % and δE = 14.8 % at 1 MeV for detector 1 and 2 respectively.

4.1.4 Detector Drifts

Detector calibration was done regularly during the asymmetry measurements, thus we are
able to identify drifts of the data acquisition system. Figure 4.11 shows the position of the
upper Bi-peak in all calibration measurements during three weeks of data taking: At the
beginning, the peak positions – which is a measure of the gain drift – show a large spread.
But the installation of an additional external cooling device4 for data acquisition electronics
(vertical line) stabilized the drift on small time scales immediately.

3All fits describing measured data use σMeV to broaden the electron spectrum to account for energy reso-
lution.

4The experiment was performed from June to August 2004, with temperatures of up to 30◦ C in the
experimental hall ILL7.
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Figure 4.11: Evolution of the upper Bi-peak po-
sition in time: Shown are all calibration mea-
surements that have been performed; the x-scale
ranges over more than three weeks, but the scale
is not linear during the first measurements. The
vertical line represents the installation of an addi-
tional external cooling system for data aquisition
electronics, and the sharp peaks indicate when the
vacuum system was closed right before. No mea-
surements were performed directly after vacuum
closing. The wiggles on the right are due to a
day-night gain drift of about 0.5 %.

The high peaks in the figure occur when the vacuum system was closed right before the
measurements. They show an increase of 4−5 %, and drop off to the usual level in about five
hours. This is irrelevant for the asymmetry measurements since these need high voltage on
the detector foils which was applied not earlier than several hours after closing the vacuum
vessel.

The remaining drift at the percent level over several days is negligible since calibration mea-
surements were performed every 20−30 minutes. On this time scale the drift is irrelevant.
This also holds for the small day-night effect of 0.5 % causing the wiggles superimposed on
the overall drift in the right part of figure 4.11: The maximum arises at about 12:00 hours
and the minimum around midnight.

Although the detector drift was quite high before installation of the cooling device, data is
not lost completely. Analysis shows that it can be used to obtain the asymmetry Bsame in
the same hemisphere, which is almost independent of detector calibration (cf. chapter 4.6).

4.1.5 Detector Homogeneity and Area Correction

In this chapter, we want to give details on the “area correction”, that was shortly mentioned
in section 4.1.2. It accounts for the fact that the energy calibration measurements were
performed in front of the detector center, whereas the gain can be different at other positions.

Detector Homogeneity: If the detector would be perfectly homogenious, i.e. its gain
would be constant over the whole area (corresponding to an unchanged peak position), the
area correction would be unity. However, this is not the case, what can be analyzed using
calibration data obtained with the two-dimensional scanner (figure 4.12).

If we define the inhomogeneity ∆m to be the quadratic deviation of a peak pi obtained at a
scanner position i from the detector average p,

∆m =

√∑
wi(pi − p)2∑

wi
, (4.14)

where the weights wi are determined by the neutron density at the vertical yi-position (cf.
figure 3.13, page 41), we obtain ∆m(Det 1) = 3.7 % and ∆m(Det 2) = 4.6 %. Weighting
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Figure 4.12: Peak position of the higher Bi-peak
measured with detector 1. The source was placed
at different positions (y, z) in front of the detec-
tors. The corresponding plot for detector 2 is com-
parable.

Measurement
1 2 3 4 5

C
or

re
ct

io
n 

[%
]

1.6

1.8

2.0

2.2

2.4

2.6
 / ndf 

2χ  4.414 / 4

Prob   0.3529

 / ndf 
2χ  4.414 / 4

Prob   0.3529

 / ndf 
2χ   4.97 / 4

Prob   0.2904

 / ndf 
2χ   4.97 / 4

Prob   0.2904

 = 1.10, P = 35.3 %2χDetector 1: r

 = 1.24, P = 29.0 %2χDetector 2: r

Figure 4.13: Area correction to be applied to
the gain of the energy-channel relations: The val-
ues are obtained from five individual peaks (1:
Bilow,Scan1, 2: Bihigh,Scan1, 3: Bilow,Scan2, 4:
Bihigh,Scan2, 5: Ce) and show nice agreement.

with the neutron beam is important since we have to know the detector performance for a
measurement of charged products from neutron decay.

Area correction: Now, we compare the peak position pc of a calibration source placed
in front of the detector center with the average over the whole detector area pmean which is
again weighted with the vertical neutron density. The quantity

farea =
pc − pmean

pc
(4.15)

is the relative area correction factor: The gain g obtained from a calibration fit has to be
divided by (1− farea), the offset Eoff stays unchanged.

Altogether three detector scans have been performed: Two using a 207Bi-source with two
peaks and one with 139Ce. Thus we can altogether use five peaks to obtain farea that should
not depend on the scan and the used calibration source. The decay volume was scanned at
96 positions, however, some measurements had to be omitted because of a too large position-
ing uncertainty. We reconstructed the missing positions with linear extrapolation from the
neighboring points.

The results are presented in figure 4.13: The factors determined from different peaks/scans
agree very well, therefore we can calculate the average and yield farea = 1.97(8) % and
farea = 1.99(10) % for detector 1 and 2 respectively. It is not surprising that two factors
coincide, since the detectors are constructed exactly the same way using the same materials.

4.1.6 Trigger Function

The trigger function T (E) gives the probability that an electron of energy E generates a
trigger in the data acquisition system. Here, we face the problem that the energy-channel
relation is not linear at low energies where the trigger probability is smaller than unity.
Therefore a conversion of channels C into energy E is not possible here.
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Figure 4.14: Trigger functions for both detectors:
Due to the non-linear behaviour of the energy-
channel relations at low energies, a conversion
of ADC-channels to energy is not possible be-
low 100 keV. However, to get an impression of
the trigger probability, we plotted vertical lines
at 100 keV and 150 keV for both detectors: It is
certainly unity above 200 keV (third line).

Anyhow, we can gain some information from the trigger function: It can be obtained by
analyzing backscattering events, i.e. events that depose energy in both detectors, and is
defined (here for detector 1) by

TDet1(C) =
h1(C)

h1(C) + h2(C)
, (4.16)

where h1(C) and h2(C) are energy-histograms of detector 1: h1 contains all events where
both detectors have triggered (i.e. at least two out of six PMT signals per detector have
passed the disciminator threshold), and h2 contains all events where detector 2 has triggered
and detector 1 not. Figure 4.14 shows the resulting histogram T (C) for both detectors. The
trigger probabilities are given here:

90 % 100 %
Detector 1 104 keV 170 keV
Detector 2 94 keV 160 keV

Above 200 keV, the trigger function is certainly unity, but it has to be taken into account at
lower energies, e.g. for the fits of the cadmium and cerium calibration peaks; it cancels in the
asymmetry spectra.

Due to the instable low energetic background in detector 1 we did not decrease the discrimi-
nator threshold as low as possible, resulting in a slightly worse trigger function. This is the
reason that the Auger-peak of tin (cf. fig. 4.10) is only visible in detector 2. Both trigger
functions are independent of the high voltage applied, and – within the poor statistics of the
scanner measurements – independent of the impinging point on the detector.

4.1.7 Electron Backscattering and Time Resolution

Compared to solid state detectors5, plastic scintillators have the lowest backscattering (BS)
probabilities in electron spectroscopy due to their low average atomic number Z. But with
pBS ≈ 8% [Leo94] this probability is still quite high (pBS ≈ 4% for normal incident). In our
setup, the magnetic field of PERKEO II lowers this value considerably due to the magnetic
mirror effect (cf. section 3.3.3), where an electron moving in an increasing magnetic field can

5NaI-Scintillators have backscattering probabilities up to 80 % [Leo94].
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Figure 4.15: Timing measurement of 2-trigger
backscattering. The plot shows the TDC dif-
ference between detectors 1 and 2, hence events
where detector 1 triggered first are in the left peak.
The peaks are well separated.
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Figure 4.16: Measurement of the probability that
a backscattering event deposits a particular frac-
tion of its energy in the primary detector. It shows
a strong preference to depose more energy in the
primary detector.

be reflected. This happens to many electrons scattered out of the detector, and returns them
to the scintillator where they depose their remaining energy.

We study backscattering in an integral way and do not distinguish between different angles
of incidence θ on the detector. The maximal angle θmax is around 45◦ (measured to the
detector normal) as the decreasing magnetic field transfers the electron momentum into the
component parallel to the field lines. Most electrons hit the detector at these angles (cf. also
figure 4.56 on page 99). The influence of the magnetic field reduces the overall backscattering
probability to below 5 %.

2-Trigger Backscattering: Whenever a trigger signal occurs, the ADCs of both detectors
are read out simultaneously. With 180 ns, the integration is time much higher than the average
time the backscattered electrons need to cover the distance beween the detectors (800 mm),
and we always obtain the full energy information of the event. 2-trigger backscattering occurs
when an event generates a trigger in the primary and the second detector. This allows to
determine the chronological order of the two triggers by using the timing information of the
TDC. If its resolution is smaller than the minimal flight time between the detectors, this
assignment can be done without any uncertainty.

Figure 4.15 shows the timing measurements of 2-trigger backscattering: The well separated
peaks correspond to events where detector 1 (left) or detector 2 (right) was hit first, the
separation is a measure of the system’s time resolution: It is given by the TDC-channel width
of 0.8 ns. In between the peaks, where no first detector can be assigned properly, there are
less than 0.2 % of the events. Combined with the backscatter probability of below 5 %, this
fraction – omitted in the analysis – is negligible. The energy of the backscattered electrons
is not distributed uniformly into primary and secondary detector (figure 4.16): Independent
of the overall signal size, it shows a strong preference to depose more energy in the first.

Unrecognized Backscattering: To analyze the effects of unrecognized backscattering,
i.e. backscattering where we do not have two triggers and therefore cannot proceed as de-
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Figure 4.17: Backscattering decision tree: The 4th and the 5th case from top are important for
unrecognized backscattering, but only the 5th case influences the asymmetry measurements.

scribed above, we have to take a look at the decision tree shown in figure 4.17, considering an
electron hitting detector 1: If no backscattering occurs it is not important whether detector
1 triggers or not. In the first case, we have the usual electron detection and in the second
nothing happens at all – but this case is limited to very small energies and is described by
the trigger function.

Now consider the case with backscattering. When detector 1 and detector 2 record a trigger
we have 2-trigger backscattering as described above. For small energies it is possible that
both detectors do not trigger and the event gets lost. When detector 1 triggers and detector
2 does not, we have unrecognized backscattering, but the event is assigned to the correct de-
tector. Crucial is only the case where the primary detector does not trigger but the secondary
does. Here the event is assigned to the wrong detector – imposing a systematic error to the
asymmetry measurement that depends on the correct determination of the initial momentum
direction.

As the energy information is always available for both detectors, we can analyze the ADC
content of the second: If the primary detector has triggered and the ADC of the secondary
contains a signal above the pedestal threshold6, we have identified an unrecognized backscatter
event. This is shown in figure 4.18: Histogram H1 shows the energy content of detector 2,
when detector 1 has created the primary and detector 2 the secondary trigger. H2 includes
events where detector 1 has triggered first and the ADC content of the second is above the
pedestal threshold. For energies high enough to generate a second trigger, the curves coincide.
For low energies, the second spectrum shows additional unrecognized backscattering, where
detector 2 has not triggered.

It is important to notice that the experimental signature of

Detector 1 (trigger) → Detector 2 (no trigger)
Detector 2 (no trigger) → Detector 1 (trigger)

is the same (the arrow indicates the chronological order) whereas the signals belong to different
“primary” detectors. Hence we have to discriminate between these cases (cf. also figure 4.17).

6The ADC signal without any energy deposition, corresponding to 0 keV.
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Figure 4.18: Low energy part of the energy spec-
trum of the second detector under the condition
that detector 1 has triggered first (Det1First). H1

includes all events with two triggers. The differ-
ence between H2 and H3 are the events wrongly
assigned to detector 1. (cf. text).
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Figure 4.19: Total energy of the wrongly assigned
events that are detected as “detector 1 first” but
really detector 2 was hit before without generat-
ing a trigger. The plot shows that unrecognized
backscattering is a low energy effect. Note that
the energy scale is invalid below 100 keV.

We recall, that the trigger function gives the probability Td(E) that an electron of energy
E generates a trigger signal in detector d. If this probability would be unity for the whole
energy range, we would not have any unrecognized backscattering. Thus we correct the
2-trigger spectrum H1 in figure 4.18 to obtain a trigger probability

T2(E) = 1 for all E (4.17)

by dividing it by the trigger function of detector 2. The resulting spectrum H3 contains
all events where detector 1 has triggered first and the backscattered electron has reached
detector 2.

The difference between the spectra H2 and H3 is the fraction of wrongly assigned events.
Here, the experimental signature suggests that the events belong to detector 1, wheras in
reality the electron hit detector 2 first – without deposing enough energy to create a trigger.7

Fraction and Spectrum of wrongly assigned Events: In this paragraph, we will show
that the influence of wrongly assigned events is negligible in our measurement. In order to
analyze unrecognized backscattering quantitatively, it is necessary to extrapolate to lower
ADC channels, as it is not possible to evaluate the spectra below a certain channel due to
the pedestal threshold8. We have chosen two extreme extrapolation cases for the histograms
H2 and H3 in figure 4.18: In the first, we assume that no entries are in the lowest bins, in the
second we set them to the value of the last correctly determined channel.

7It is also possible to obtain the number of wrongly assigned events by looking at the energy spectrum of
detector 1, where detector 1 triggered first and detector 2 generated a second trigger [Bae96]. This spectrum
can be divided by the trigger function of detector 1. The difference of the spectra gives again the number of
events assigned to the wrong detector. However it is not possible to determine all branches in the decision tree
(fig. 4.17) with this method.

8Below a certain energy, the pedestal prevents a correct identification of backscattering events, and the
histogram H2 diverges.
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2-trigger “true” backscattering wrong assignment
Detector 1 First 4.23(1) % 4.9(2) % 0.12(1) %
Detector 2 First 3.57(1) % 4.4(2) % 0.20(2) %

Table 4.1: Results of the general amount of backscattering and of the fraction assigned to the wrong
detector. Since detector 1 had a slightly worse trigger function and an higher pedestal threshold, its
number of wrong assigned events is higher.

We average over both extrapolation cases to obtain a value for the wrongly assigned backscat-
tering, and choose the difference between average and extrapolation to be the 2 σ error. This
is a reasonable decision to account for the statistical errors, the extrapolation, and the non-
linearity of the detector in this energy region. Table 4.1 shows the results: Integration of H1

yields the 2-trigger backscattering, the integral of H3 (extrapolated as described above) gives
the number of “true” backscattering events, where the correct detector has triggered first,
and the difference H2 −H3 gives the fraction of wrongly assiged events. These are less than
5 % of all backscattering events.

For the analysis of a low-energy experiment it is important to know the energy of the events
assigned to the wrong detector to check their influence. Figure 4.19 shows their spectrum:
Within the errors, there are no events above 240 keV, whereas, in general this result depends
on the trigger thresholds of the detectors.

The energy spectrum can also be modeled: We start with the normalized distribution PE∗(E)
(figure 4.16) giving the probability that a backscattered electron of total energy E∗ deposes
a certain energy E in the primary detector. A low energy threshold (a step-function at x0

= 39, 47, and 55 keV) is introduced to account for the trigger function of the first detector.
The distribution is integrated for different electron energies E∗ from 0 to x0 to determine the
fraction of events not triggering the first detector. This is then multiplied with the phase space
factor F ′(E∗) of the Fermi-spectrum (cf. equation (2.30)) to obtain an energy distribution
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Figure 4.20: Modeled energy spectrum of the
events wrongly assigned to the first detector for
different trigger thresholds. The shape is similar
to the experimental data, figure 4.19.
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similar to the experimental situation. The model yields the spectrum s(E∗):

s(E∗) = F ′(E∗)
∫ x0

0
PE∗(E) dE. (4.18)

The trigger function of the secondary detector is neglected.

The model, figure 4.20, agrees well with the measurement, figure 4.19, and integration allows
to estimate the fraction of wrongly assigned events in the spectra: If the region of interest
starts above 240 keV, the model predicts less than 6 % (x0 = 55 keV) of wrongly assigned
events to have higher energies. With overall 0.2 % wrongly assigned events (table 4.1), this
yields a maximal correction in the order of 0.01 % which is completely negligible. This result
is consistent with the measurement shown in figure 4.19 with no wrongly assigned events
above 240 keV within the errors9. However, when the low energetic part of the spectrum
shall be used as well, the effect of wrongly assigned events may be critically.

4.1.8 Summary

Here, we give a brief summary on the properties of the electron detector:

• Above 100 keV, the electron detector shows a linear energy-channel relation with a
non-linearity well below 1 %. At smaller energies, the linear relation is no longer valid.

• Whereas the gain g of the energy-channel relation is known with a rather small uncer-
tainty, the offset Eoff can only be determined with an relative error of ≈ 10 %.

• The energy resolution (FWHM) at 1 MeV is about 15 %. Detector homogeneity and
energy resolution were optimized in a PMT calibration procedure.

• Detector drifts on the percent level are irrelevant since calibration measurements were
performed on a much smaller time scale.

• Since the calibration sources were positioned in front of the detector center, an area
correction of ≈ 2% accounting for the full detector area has to be performed.

• Electron backscattering is reduced by PERKEO’s strong magnetic field and detected
with a fast TDC. Unrecognized backscattering can be deduced from measured data: Its
influence is negligible above a threshold of 240 keV.

4.2 Proton Detector

The proton spectra are also measured with the electron detector, however, when we say
“proton detector”, we consider the signals of the secondary electrons generated in the carbon
foil, detected in the proton part of the data acquisition system. That means that one “start”
signal (due to an electron) must have been occurred in advance.

9For our experiment, we even expect a fraction lower than 6 %, since the low energy electron spectrum
is greater than the Fermi spectrum used in the model due to additional background. This yields an increase
of events assigned to the wrong detector below 200 keV, whereas the overall size of the effect, determined as
described above, is not changed.
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Proton ADC Channel
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Figure 4.22: Energy-spectrum of the first stop
(“proton”) of detector 2: Neutron decay related
signal and background look very similar and are
low energetic. In this range a conversion to en-
ergy is not reasonable due to the non-linear detec-
tor behaviour below 100 keV. This corresponds to
channel 250, 250 keV to channel 940.
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Calibration: The energy-channel relation of the secondary electron (proton) detector is
also determined with the six electron sources. However, since two events with a time difference
smaller than 80 µs are needed for the first stop, three within this window for the second etc.,
calibration statistics decreases rapidly from stop 1 to 4, and only a crude calibration can
be obtained for the proton energy spectra. Furthermore, the largest part of the spectra lies
below 100 keV where the relation is no longer linear. Therefore no precise energy information
is available for the secondary electron spectra, they can be only analyzed qualitatively.

Secondary Electron Spectrum of first Proton-Stop: Figure 4.22 shows the secondary
electron energy spectrum of the first proton of detector 2 (detector 1 looks similar with the
peak slightly shifted to lower energies): The neutron related spectrum is not well separated
from the background that even extends to higher energies. Thus, we cannot use the energy
spectrum for discrimination between neutron related and background events, but can only
compare the overall spectral shape.

The similarity of the spectra also gives a hint on the background nature: The signal is most
likely also generated in the carbon foil on high voltage, but the average secondary electron
yield is somewhat higher than for protons. This is what we would expect for ions produced
at the grounding grids and accelerated onto the foil, since they are heavier than protons.

Proton Efficiency: The fraction of protons detected per neutron decay is refered to
as proton efficiency. It increases with larger foil-voltage and with decreasing discriminator
threshold. During data acquisition, we varied both to improve background conditions, and to
increase the proton efficiency. The overall neutron decay rate r (with electron energies above
the discriminator threshold) can be derived from a measurement without high voltage, e.g.
figure 3.19 (page 51): It is r = 79 Hz. The proton efficiencies for different detectors, high
voltages, and discriminator thresholds, normalized to this decay rate are given in figure 4.23:
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We were able to identify the first proton signals at −12 kV, and achieved a maximal proton
efficiency of 17.3 % for the last five measurements with detector 2, where the threshold was
as low as possible. Compared to detector 2, the efficiency of detector 1 was always lower with
a maximum of 13.0 %.

4.3 Coincidence Measurement

As we cannot detect the neutrino itself, we have to reconstruct it from a coincident mea-
surement of electron and proton. Due to the rather low count rates, in principle, we would
expect a clean event signature with an electron as “start” and a proton (“stop”) following
some microseconds later. However, high voltage background and accidental coincidences alter
the measurement and have to be accounted for.

Time-of-Flight Spectra: In order to analyze the coincidence measurement we study the
time-of-flight (TOF) of the stop, i.e. the time difference between the starting electron and
the proton (or background). The TOF spectra for the case where electron and proton are
detected in the same hemisphere are given in figure 4.24, for the opposite hemisphere in figure
4.25. The protons need a certain time to drift from the decay vertex towards the detectors,
before they are accelerated by the high voltage. This drift time is slightly higher for events
in the same hemisphere due to the initial momentum distribution of the protons.

We use the time-of-flight spectrum to discriminate between events. For example, if a stop
would occur at 0.4 µs, this is too fast for a proton, and the event is due to background. When
several stops arise, the TOF information is also used to decide how to proceed. This will be
described in the following sections.
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Figure 4.24: Time-of-flight measurement of the
spectra Q++ and Q−−, where electron and proton
are detected in the same hemisphere. The minimal
drift time is ≈ 0.8 µs. Background is subtracted.
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Figure 4.25: Time-of-flight measurement of the
Q-spectra in opposite hemispheres. The spectra
start a little earlier at about 0.65 µs. Both figures
are scaled equally.
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Figure 4.26: Monte Carlo simulation of the time-
of-flight spectra for the B measurement in the
same hemisphere. The histograms show measured
data, the solid lines the simulations.
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Figure 4.27: TOF-Simulation of the spectra in
opposite hemispheres. The spectra are normalized
equally to figure 4.26, the count rate difference is
a real property of neutron decay.

4.3.1 Monte Carlo Simulations

In chapter 3.5.2 we have already introduced the Monte Carlo simulation program MoCAsSiN
[Dei05] that has been developed to simulate neutron decay in the experimental setup of
PERKEO II. It accounts for the real neutron beam shape and the realized detector geometry,
and allows to obtain the following spectra:

• All relevant electron (and proton) energy spectra such as Qij , difference D, sum S, and
the asymmetry itself. From these, simulated including systematic effects, the correction
spectra can be obtained (cf. chapter 4.5).

• Time-of-flight spectra of protons.

• Time-of-flight spectra of ions for background studies.

Simulation of proton time-of-flight is performed in a phenomenological way instead of solving
the exact equation of motion in a combined electric and magnetic field. This means, that the
proton motion consisting of an initial drift, followed by acceleration in an increasing electric
field (due to the grounding grids) and in the full high voltage potential at last, is separated in
only two parts: A drift region where the motion is governed by the proton momentum p and
the magnetic field turning p in forward direction. In the second region, the simulated proton
is accelerated by the full electric field. The borderline between the two is adjusted using real
data from the measurement; the simulation results describe the stop spectra of the functions
Q++, Q−− (figure 4.26) and Q+−, Q−+ (figure 4.27) quite well.

We used the simulation for a quantitative analysis: Figure 4.28 shows the fraction of protons
arising in a certain time interval after the electron, the last bin includes a linear extrapolation
to larger times. Integration of this spectrum from a lower border t0 to 40 µs yields the proton
fraction that is still missing at time t0. This is shown in figure 4.29: The fraction of “missed”
protons is smaller than 0.02 % for all four Q-spectra. However, the following small corrections
∆t have to be applied to the asymmetries as a consequence of the finite coincidence window
length of 40 µs:
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Figure 4.28: Simulation of the fraction of pro-
tons in the TOF-spectrum for different time in-
tervals. The last bin is a linear extrapolation to
larger times.
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Figure 4.29: Integral of figure 4.28: The fraction
of “missing” protons for times t > 40µs is smaller
than 0.02 % for all four spectra, and the influence
on the asymmetries is very small.

ν-Asymmetry Bsame ν-Asymmetry Bopp p-Asymmetry C
Correction ∆t −5(3) · 10−4 −1.6(8) · 10−3 +3(2) · 10−4

The asymmetry fit regions were chosen according to the final analysis. Compared to the other
corrections and uncertainties, this effect is almost negligible, even if we assume a (certainly
overestimated) error of 50 %.

4.3.2 Multi-Stop Measurements

Ideally, a valid event consists of a start-signal (electron) and one single stop (proton). How-
ever, sometimes much more stops are detected due to background and accidental coincidences;
we measured up to 32 stops per event to account for this. The usual number of stops is much
lower as can be seen in this table, where background and accidental coincidences (cf. chapter
4.3.3) already have been subtracted (the numbers are given for start and stop arising in the
same detector):

Detector 1 Detector 2
1 Stop 100.0(2.3) % 100.00(25) %
2 Stops 1.1(1.5) % 3.22(12) %
3 Stops −0.6(1.0) % 0.00(8) %

No information on neutron decay is left in the 2- and 3-stop events of detector 1, and in the
3-stop events of detector 2 since the stop fraction is compatible with zero. Only in detector
2, there are also neutron related signals in the 2-stop case, however, most of the second stops
arise correlated to the first (cf. section 4.3.4). The size of the statistical errors is greater
for detector 1 due to its lower proton efficiency and since fewer measurements could be used
because of the instable background. For measurements in opposite hemispheres, the same
conclusion holds when the stop is detected in the detector given in the table above: Protons
are still present in the 2 stop spectrum when detector 1 recognizes the start and detector 2
the stops.
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Several stops (besides electron backscattering) occurring in different detectors were not found
in the data in a significant amount.

Restriction to 1-Stop Events: In the following analysis of the asymmetries, we restrict
ourselves to events with a single stop in the coincidence window. A look at the table given
above shows that this case is a restriction only for detector 2 since there are no 2-stop events
with proton information in detector 1.

We expect only one proton and hence only one single stop signal (the number of accidental
coincidences is quite low due to the small count rate), therefore the additional stops are most
likely due to additional background. Thus the restricion to one stop event is a quite appealing
possibility to further discriminate between signal and background, especially as the number
of 2-stop events is small and does not contribute to the available statistics.

The influence of 2-stop events on the overall result would by tiny anyway: If one analyzes
only same hemisphere events with exactly two stops, one finds that the resulting asymmetry
B is significantly lower than expected from previous measurements: B2 Stops = 0.895(33).
All spectra, however, can be well described by the fit functions. We conclude that most of
the events are due to neutrons accompanied by a second stop, but a certain fraction is due
to background only. Unfortunately, this part cannot be separated from the rest of the data,
and it is the systematically cleaner way to omit the two stop events completely. However,
if we average the asymmetries from 1- and 2-stop events, it is only shifted by less than
0.25 σ to lower values10 compared to the 1-stop case. The same holds for the asymmetry
Bopp in opposite hemispheres, where the effect is approximately twice as high, however, the
uncertainties are also much larger.

4.3.3 Accidental Coincidences

Accidental coincidences are due to particles from another decay or background occurring
within the coincidence window. As they are not related to the start signal, they do not show
the usual time-of-flight distribution, but have an equal probability at any time t. Of course,
the last statement is only valid, if they are not suppressed by preceding events, as in the
measurement of 2000, where only the first stop signal was registered. In the new experiment,
suppression did not longer exist since data acquisition was able to deal with many stops.

We measured the accidental coincidences with the delayed coincidence method: 40 µs after the
start signal, less than 0.02 % of all protons have not been arrived at the detector (cf. fig. 4.29),
a fraction that can be totally neglected. Hence, all stops arising in the delayed window from
42 to 82 µs are due to background (that can be fully subtracted by a measurement without
neutrons) and accidental coincidences. The spectrum of accidental coincidences obtained in
the delayed window is now used to correct the asymmetry spectrum measured with a stop in
the coincidence window from 0.8−40.8 µs.

It is important to ensure that the condition for the events in the delayed window is exactly
the same as in the “normal” coincidence window: An arbitrary number of stops before the
window is allowed, besides in the 0.8 µs directly preceding the delayed window: Here no stop

10The asymmetry Bsame is lowered due to the remaining background in the 2-stop events that cannot be
removed from the data set.
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Figure 4.30: Time-of-flight spectrum of the ac-
cidental coincidences in the delayed coincidence
window of detector 2. The spectrum is flat as ex-
pected from a purely random process.
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Figure 4.31: Energy spectrum of the accidental
coincidences: The delayed window was separated
into four intervals whose spectra coincide within
the errors.

must occur, analogous to the minimal TOF required for a valid proton. Within the delayed
window exactly the number of stops that we are looking for (usually one) has to arise, the
number afterwards is again arbitrary.

Systematic Checks: Several checks have been performed to ensure that the accidental
coincidences are determined correctly.

• If we denote the probability that one stop occurs in the delayed window with p(A1),
the probability for two accidental is approximately p(A1)2 and for three p(A1)3.
The measurement (same hemisphere) of exactly one accidental coincidence yields
M1 = p(A1) = 0.06093, where the number of events with one single stop in the co-
incidence windows was normalized to unity. The measurements Mi and the expected
probabilities are shown in the following table:

Stops i Measurement Probability
1 M1 = 0.06093(64) p(A1) = 0.06093(64)
2 M2 = 0.00354(22) p(A1)2 = 0.00371(8)
3 M3 = 0.00046(13) p(A1)3 = 0.00023(1)

The 2-stop case shows excellent agreement, and the numbers agree within 1.6 σ for
three stops.

• The probability that an accidental coincidence signal occurs at a certain time is constant,
hence we expect the TOF spectrum of the accidentals to be flat. The measurement,
figure 4.30, confirms this. Fitting a straight line to the data yields a slope compatible
with zero.

• We splitted the 40 µs delayed window into four equally sized intervals and determined
the energy spectrum of the accidentals. All four show the same shape (figure 4.31), the
differences agree with zero, and we conclude that the effect of accidental coincidences



76 CHAPTER 4. DATA ANALYSIS

on the asymmetries is independent of length (if correctly scaled) and temporal position
of the delayed window.

For the final asymmetry analysis, we used a coincidence window from 0.8−40.8 µs and a
delayed window from 42−82 µs for the same hemisphere measurements, and a coincidence
window starting 140 ns earlier to account for the shorter proton drift times in the opposite
case. The delayed window was not changed.

Accidentals and the “1-Stop” Condition: When we restrict the analysis to one-stop
events only, we have to consider the following systematic effect: In the coincidence window,
we find “real” stop events and accidental coincidences; in the delayed window, we have only
the latter. If the combination stop-signal plus accidental coincidence arises in the coincidence
window, it is not included in the analysis since it is a 2-stop event. However, it actually
should be considered to subtract the accidental coincidences correctly, as otherwise too much
accidentals are removed from the data, and their influence gets overrated.

Therefore we have to scale down the spectrum of accidental coincidences according to the
number of 2-stop events that are due to the combination mentioned above. The scaling factors
can be obtained from the measurement itself since we have recorded the overall number of
stops of each event. To reduce the influence of the low energy background, we only consider
events with electron energies in the interval used for the asymmetry fit.

We denote the probability to obtain one “real” stop in the coincidence window with pS ,
and the probability to obtain one accidental stop signal with pA. The latter is equal for
the coincidence and the delayed window, whereas pS = 0 in the delayed window. Measured
signals are one (S1) or two (S2) stops in the coincidence window and in the delayed window
(A1 and A2). The corresponding probabilities p, extracted from the data, can be expressed
in terms of pS and pA, where we neglect terms to the third power due to their smallness:

p(S1) = pS + pA − pSpA − p2
A (4.19)

p(A1) = pA − p2
A (4.20)

p(S2) = pSpA + p2
A (4.21)

p(A2) = p2
A. (4.22)

Using these relations we can determine the probabilities pS and pA. One can clearly see that
the 1-stop accidental coincidences p(A1) do not include a term corresponding to −pSpA in
equation (4.19). Therefore too much accidentals are subtracted. The size of the effect is given
by pSpA corresponding to a certain percentage ε of accidental coincidences. Accordingly, the
spectrum has to be scaled with κ = 1 − ε, derived independently for beam and background
measurements, to eliminate the effect. In the following table, we list the corrections to the
neutrino asymmetry B for the different measuring schemes and detectors:

Detector 1 Detector 2
Same Opposite Same Opposite

Correction [%] −0.24(6) −0.67(3) −0.13(3) −0.62(9)
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The uncertainties are governed by statistical count rate errors imposing errors on the prob-
abilities pi. Since the number of accidentals is different for the hemispheres and since they
depend on electron trigger rate and proton efficiency, the four factors are not equal.

After having obtained the probalilities pS , pA from equations (4.19) and (4.20), one can use
equations (4.21) and (4.22) for cross checks of the results.

4.3.4 Events with correlated second Stop

Although we do not consider events with more than one stop, we want to give some comments
on events with two stops in this section. Especially, we will focus on two stop events in detector
2, where the second stop comes coincident with the first – after a particular time difference
∆t – in almost all cases.

Correlations between Events: Whenever an event occurred, we measured the time
within the measuring cycle with the low resolution TDC, introduced in section 3.4.4. From
this we can obtain the time difference between two events. All checked subsets (all events,
only 1-stop events, only 2-stop events, etc.) show the expected exponential behaviour for the
time difference disctribution and we have not found any correlations between events.

Correlation within Events: Since we recorded many stops within an event, we can also
check for correlations here, and find that the second stop in detector 2 appears correlated
to the first in almost all 2-stop cases. The time difference ∆t between the stops is shown in
figure 4.32, it has a sharp peak at 170 ns with a FWHM of 9 ns. The coincident second signal
arises only in detector 2 (D2), but in all possible stop combinations, e.g:

Start D2 - Coincident Stop D2
Start D2 - Stop D2 - Coincident 2nd Stop D2
Start D1 - Stop D2 - Coincident 2nd Stop D2
Start D2 - Stop D2 - Coincident 2nd Stop D2 - arbitrary 3rd Stop D2.

Many systematic tests to obtain the characteristics of this signal were performed yielding the
following results:

• The coincident second stop is correlated with the presence of protons: It occurs only
in measurements with opened neutron beam and is not present in background and
calibration measurements, as well as in measurements without high voltage.

• Approximately 85 % of all two-stop events show the correlated second stop.

• The signal is independent of the spinflipper status.

• It is independent of the electron trigger-rate.

• One cannot use the energy spectrum of the stops to distinguish between the two signals
since the energy distribution is equal.
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Figure 4.32: Example for the correlated second
stop in detector 2. Shown is a same hemisphere
measurement, i.e. start and two stop signals in
detector 2. The time difference between first and
second stop peaks sharply at 170 ns. Almost all
signals appear in the peak.
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Figure 4.33: Electron (start) spectrum of the two
stop signals from figure 4.32. Since it is the sum
of both spinflipper states, we try to describe the
spectrum with the sum spectrum S for same hemi-
sphere data, what fits very well. Hence, there is
no energy cut in the two-stop events.

• The electron energy spectrum of events with a coincident second stop can be perfectly
described with a fit of the sum-spectrum S (that has to be chosen according to the
hemispheres in which start and stops are detected: same or opposite). An example is
shown in figure 4.33.

• The time-of-flight spectrum of the 2-stop events, which is a measure of the angular
distribution of the particles generating the stop, has the same shape as the 1-stop case.
Only for opposite hemispheres, a small difference appears at the steep rising slope of
the spectrum.

• The second stop cannot be explained by a proton crossing the carbon foil a second time
(“swing-through”) generating additional secondary electrons. The time scale of such an
event would be around 10 ns only [Bra00].

Unfortunately, we cannot explain the origin of this signal. Its occurrence at only one detector
and the rather sharp peak would indicate an electronics problem, however, it only appears in
one particular kind of measurement and seems to be related to protons. Therefore we decided
to omit this data in the final analysis what can be justified by the following arguments:

• The occurence of events with several stops is most probably related to additional back-
ground since a single decay only generates a single proton. The combination signal plus
accidental coincidence only accounts for 25 % of the cases.

• The electron spectrum can be well described by a fit of the corresponding sum-function,
and the time-of-flight spectrum – a measure for the angular distribution of the decay
products – agrees with the one-stop case11. This indicates that we have neither energy
nor angular cuts associated with the coincident second stops.

11For opposite hemispheres, one can see a declining ratio at the rising edge of the TOF spectrum
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• The 2-stop events cause a shift of the asymmetry Bsame that is smaller than 0.25 σ.
This is completely irrelevant (cf. chapter 4.3.2).

4.4 Background and Data Reduction

The background difficulties associated with high voltage effects have already been mentioned
at different places, and conclusions have been made on its origin. In this chapter, we describe
how we dealt with the background and present a data reduction scheme allowing to obtain
a data set with reduced background. In the final analysis of this data, background is even
further reduced by requiring a coincident stop for valid events.

4.4.1 Formalism of Data Reduction

We recall, that a measurement is a longer period (0.3−15 h), where data acquisition was
not interrupted and no external settings (high voltage, thresholds) were changed. With
a length of 2 seconds, a cycle is the shortest subset in a measurement, corresponding to
a particular shutter, spinflipper, calibration source combination. In figure 4.34, one data
point corresponds to one cycle. To extract the correlation coefficients in neutron decay, we
only use measurements performed at high voltages of at least −14 keV in order to have
reasonable proton efficiencies. Additionally, they must have been stable in terms of high
voltage background. In many cases, however, it is sufficient to remove only the cycles with
sparkovers etc. from the data set, instead of rejecting the whole measurement.

To determine whether a cycle should be used or removed, the following data reduction proce-
dure was developed. It assigns a number to each cycle indicating its deviation from the mean
count number. This number is not constant in time but drifts slightly up and down, what
has to be taken into account. The procedure includes five steps:

1. All cycles of similar type (e.g. neutron beam on and spinflipper off) are merged into up
to 80 consecutive packages.

2. In each package, we determine the median12 to avoid that single count number mavericks
get too much weight.

3. To account for drifts, a polynomial of 4th order is used to describe the evolution of the
median in time. All cycles with count numbers N differing more than 3 σ = 3

√
N from

this function are ignored for the moment.

4. From the remaining cycles, the mean value is calculated in each package. Again a
polynomial of 4th order is used to describe the evolution of the mean.

5. In a final step, we determine the deviation from the mean for every cycle in the data
set. This number (again given in σ, the square root of the count number) is assigned
to each cycle and can be used to reject cycles in a reasoned manner.

12The median of n numbers xi is the value xm where half of the numbers xi is smaller than xm, and half is
larger.
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Figure 4.34: Data reduction of detector 1: Shown
is the count rate for all cycles (2 s) and for the
cycles with a deviation smaller than 2 σ from the
mean. The sudden count rate jumps had to be
considered separately.
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Figure 4.35: Data reduction of detector 2: It is
more stable than detector 1, there are no sudden
count rate jumps. Data reduction is done sep-
arately for beam and background measurements
and flipper status.

The polynomials used are just phenomenological descriptions of the long time drift and not
based on an underlying theory. Linear drifts on smaller time scales are automatically com-
pensated by the spinflipper scheme applied in the measurement,

On Off Off On Off On On Off,

where On or Off indicate the flipper state of one cycle. This scheme was also used to switch
between beam and background measurements.

Examples for this procedure are given in figures 4.34 and 4.35 for detector 1 and 2 respectively:
The black points indicate the whole data set, whereas the red ones are the cycles remaining
if all cycles with deviations larger than 2 σ are rejected. Please note that σ is not one fixed
number but changes with the number of counts per cycle. For detector 2, this procedure
works very well since the drift is continuous. In detector 1, we sometimes face sudden steps
in the count rate that cannot be described by a polynomial. These cases had to be removed
by hand to ensure that the automatic procedure works.

Determination of the Rejection Threshold: We determined the asymmetries Bsame

and Bopp with different rejection thresholds to check their influence on the result. Due to the
smaller proton efficiency and very instable high voltage background, most of the measure-
ments where detector 1 serves as proton detector cannot be used for analysis. The remaining
combinations are Bsame where detector 2 measured electron and proton, and Bopp with the
electron identified in detector 1 and the proton in detector 2. Anyhow, we use the thresholds
given below also for the other two cases.

For the asymmetry Bopp, no effect of the rejection threshold σ can be seen if the fit region
is chosen to start at energies high enough. The asymmetries for the data sets 0 − 2 σ and
2− 10 σ coincide within the statistical errors (rχ2 = 1.15, P = 58 %). Therefore we use the
10 σ threshold in this case; this includes almost all data besides a few cycles with extreme
sparkovers.
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Figure 4.36: Deviation from the mean beam
count rate obtained with the data reduction
method described in the text. On the low count
rate side, it can be described by a Gauss fuction,
but for higher rates more deviations exist due to
high voltage effects that can only increase the rate.

]σDeviation [
-4 -3 -2 -1 0 1 2 3 4 5 6

R
el

at
iv

e 
D

ev
ia

tio
n 

[%
]

-40

-20

0

20

40

60

80

100

Figure 4.37: Relative deviation between data and
Gauss curve of fig. 4.36: There is no significant
difference up to 2σ, then the deviation begins to
grow due to increased background. This is the
reason for the reduction (≈ 0.5 stat. standard de-
viations) of the asymmetry Bsame starting at 2σ.

However, when we perform this analysis for the same hemisphere, we find that Bsame for the
disjunct data sets 0 − 2 σ and 2 − 10 σ differs by more than three sigma (statistical error).
Further analysis shows that the asymmetry stays constant from 0 − 2 σ, but a sudden step
to a lower asymmetry occurs at 2 σ, which then stays again constant with increasing σ.

Most likely this step is due to background entering the data set only for σ > 2. This can be
explained by figure 4.36: The histogram shows the number of cycles with a given deviation
from the mean value. If the measurement process would be purely statistical, we would
expect a Gaussian distribution around zero. However, we operated a system with high voltage
inducing additional background. This can only increase the count rate and never lower it.
Therefore, we fit a Gauss function from low to medium count rates to the data and yield
a statistically satisfactory fit-result. Higher deviation values cannot be described by the
Gaussian, there is a small but significant fraction of additional background above 2 σ (figure
4.37) lowering Bsame by about 0.5 statistical standard deviations. Because of this, we set
the rejection threshold for the same hemisphere to 2 σ. Please remember that background
is much smaller in opposite hemispheres (cf. chapter 3.5) allowing us to use the much larger
threshold of 10 σ as mentioned above.

If the description of the mean count rate’s temporal evolution with the polynomial works
satisfactory, we expect the center of the Gauss function to be at 0 σ. The fit from figure 4.36
gives exactly this result.

4.4.2 Systematic Background Checks

Systematic checks on the background have been performed to ensure that it behaves as
expected, and that no systematic errors due to background alter the measurement:

• The spectra of background and calibration sources are independent of the spinflipper
status in the whole energy range, when the cycles are chosen according to the scheme
described above. This also holds if one only analyzes the fit region.
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• The energy content of difference D = Q−− − Q++ and sum S = Q−− + Q++ spectra
should be zero above the endpoint energy of the β-spectrum. To account for the rather
low energy resolution of the plastic scintillator we checked a region from 970−1110 keV:
The fit of a constant agrees with zero, no background is left.

• The difference of two Q++ spectra, for example, measured at two different times is zero.
This is expected when background drifts are handled correctly.

• When the “background free” difference D, and the sum spectrum S are fitted, we have
only one free parameter, a normalizing factorN . This factor should be the same for both
spectra if no additional background is present in S. This was proven in the analysis,
ND and NS agree within the errors, where the fit was performed in the region of the
Bsame analysis. However, the conclusion from this analysis – no background in the sum
spectrum – is only valid within the precision of the fit results. These are statistically
limited to 0.25 %.

4.5 Corrections and Systematic Effects

PERKEO II provides a setup where systematic corrections to be applied to the measured value
are very small; they are in the order of 1.0 %. Compared to previous precise measurements of
the neutrino asymmetry B, where the quoted corrections were quite large (≈ 33 % in [Kuz95],
≈ 5 % in [Ser98]), this is one of the big advantages of this experiment.

In this chapter, we will briefly introduce the corrections and make some remarks on how they
can be determined. If necessary, the electron energy-dependent correction functions were
directly included into the fit routines.

4.5.1 Theoretical Corrections

These corrections are the same for all neutron decay experiments, since they have to be applied
to the Fermi spectrum, the basic expression to describe the measurements analytically. It is
the phase-space factor in the decay probability (2.30),

F ′(E) = (E0 − (E +me))2
√

(E +me)2 −m2
e (E +me) (4.23)

and gives the electron energy distribution of unpolarized neutron decay. E is the electron’s
kinetic energy, E0 the endpoint energy, and me its mass. However, effects inherent to the
decay process change the spectral shape and the spectrum has to be corrected. It now reads

F (E) = F ′(E) (1 + δR(E)) (1 +R(E)) FC(E), (4.24)

with the Coulomb correction FC(E), recoil correction R(E), and outer radiative corrections
δR(E). All contributions are very small and have almost no effect on the asymmetries.
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Coulomb Correction: To account for the attractive electromagnetic force between proton
and electron, Fermi introduced the correction function

FC(E) =
2παβ−1

1− exp(−2παβ−1)
, with α =

e2

h̄c
, and β =

v

c
. (4.25)

It is a classical approximation better than 5 · 10−4 for E > 5 keV [Bae96] which is sufficient
for our purpose.

Recoil Correction: The equations given in the introductory chapter are derived assuming
an infinitely heavy proton. Although the proton is 2000 times heavier than the electron, it
has a finite mass, and proton recoil effects have to be taken into account. The correction
was calculated by [Wil82], here we present only a shortened expression where constants have
already been inserted. Mass and energy are given in keV:

R(E) = 0.001
(
−3.57− 722

E +me
+ 0.00766 (E +me)

)
. (4.26)

Outer Radiative Corrections: In the most simple picture, neutron decay is just medi-
ated by a single W -boson exchange. However, there are processes of higher order that have to
be considered, e.g. the emission of a bremsstrahlung photon from the electron or corrections
to the vertex. These radiative corrections can be separated in an outer part, that is model
independent and mainly due to QED effects, and an inner part that strongly depends on the
structure of the weak and strong interaction. Only the outer radiative corrections, given by
[Sir67], change the shape of the Fermi spectrum:

δR(E) =
α

2π
· (t1 + t2 + t3 + t4) (4.27)

with

t1 = 3 log(
mp

me
)− 3

4
(4.28)

t2 = 4 (
atanh(β)

β
− 1) ·

(
E0 − (E +me)

3(E +me)
− 3

2
+ log(

2(E0 − (E +me))
me

)
)

t3 =
4
β
· L(

2 β
1 + β

)

t4 =
atanh(β)

β
·
(

2 (1 + β2) +
(E0 − (E +me))2

6(E +me)2
− 4 atanh(β)

)

and the Spence-Function

L(z) =
∫ z

0

log(1− x)
x

dx. (4.29)

The model dependent inner radiative corrections ∆R are of the order of 2 % (see e.g. [Glu03]),
do not change the spectrum, and can be absorbed into the coupling constants. They do not
have to be considered here.

In agreement with the calculations of Sirlin [Sir67], Glück [Glu98, Glu03] concludes that the
effect of the model-independent outer radiative corrections δR can be completely neglected in
the asymmetry measurements. New calculations using effective field theories confirm these
results [And04]. However, we also want to mention that there is a suggestion that δR should
be much larger [Bun06].
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Figure 4.38: Correction functions for the Q-
spectra to account for the magnetic mirror ef-
fect. The correction is applied by multiplying
the fit function with the functions given here.
Whereas the spectra measured in opposite hemi-
spheres (Q+−, Q−+) are hardly affected, the cor-
rections forQ++ andQ−− get very large for higher
energies, imposing an upper limit for a reasonable
fit region.

4.5.2 Magnetic Mirror Effect

The magnetic mirror effect [Jac02], i.e. the possibility of a momentum turn in an increasing
magnetic field, was already described in chapter 3.3.3. It is the only systematic effect arising
due to the magnetic field, since Stern-Gerlach-effects are much too small to be relevant here
[Kre04b].

We obtained the correction functions for the general magnetic mirror effect13, and for various
displacements ∆ between neutron beam and magnetic field maximum from a Monte Carlo
simulation [Dei05]. It features

• the real PERKEO magnetic field,

• the neutron beam profile,

• and the electron’s momentum turn of the magnetic field.

Another simulation of the setup was performed by F. Glück [Glu05]. The results agree within
0.2 %, what is a sufficient agreement if one takes into account that the overall magnetic mirror
correction to the spectra has a size in the percent range.

The correction functions for the four different Q-spectra are shown in figure 4.38: Whereas
the opposite hemisphere spectra are hardly affected, the magnetic mirror effect gets quite
large for Q++ and Q−−.

4.5.3 Displacement between Neutron Beam and Magnetic Field

In general, the displacement ∆ between neutron beam and magnetic field maximum consti-
tutes no problem, since it cancels when one averages the asymmetries Bsame of both detectors
(cf. chapter 3.3.3). However, we have to deal with the situation that only detector 2 worked
quite stable and provides much more data than the other. Therefore, the two asymmetries
Bsame are statistically not comparable and we would spoil the statistical precision reached
with detector 2 by simple averaging. For Bopp and the proton asymmetry C this is not crucial
since the mirror effect is almost negligible.

13This means the effect with a displacement ∆ = 0 mm.
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In this section, we will show that it is possible to determine the displacement ∆ very precisely,
which decreases its influence on Bsame quite remarkable. We have developed procedures to
obtain ∆ from the data itself. The basic idea for both methods presented below is that the
experiment was performed with a particular displacement, and we can identify it by analyzing
its effects on the spectra. To do so, we used the magnetic mirror correction spectra, computed
for different displacements.

χ2-Minimization: The displacement ∆ changes the electron energy distribution in the
different spectra. We found that the difference spectrum Dsame = Q++−Q−− has the highest
sensitivity on ∆. If we now describe measured data with the function D, a function without
free parameters besides a normalizing factor, we expect to obtain the best fit result when we
have applied the correction function for the real displacement. An example is shown in figure
4.39: The fit region starts well above the low energetic background and extends to quite high
energies to increase sensitivity on magnetic mirror effect and displacement.

The χ2 of the fits performed with different ∆ were recorded, see figure 4.40. A quadratic
equation is used to describe the curve, and we obtain the best value for the displacement
from the minimum χ2

min; the one standard deviation error corresponds to the positions with
χ2

min + 1.

The same procedure can also be employed to analyze detector 1, however, its sensitivity on
∆ is much smaller due to low statistics. We get the following results:

∆1 = (0.35± 0.55) mm for detector 2, and (4.30)
∆2 = (0.11± 1.69) mm for detector 1. (4.31)

The method requires the spectra not to be affected by imprecise implementations of the other
corrections, namely edge and grid effect (cf. chapters 4.5.5, 4.5.6). Their influence has been
checked quantitatively: A linear distortion of 5 %, corresponding to the addition of a straight
line to the edge and grid effect correction functions, yields a maximal displacement shift of
0.05 mm, what is much smaller than the quoted error.
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Figure 4.39: Example for a fit of the difference
spectrum Dsame of detector 2 to obtain informa-
tion on the displacement ∆ between neutron beam
and magnetic field.
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Figure 4.41: Electron asymmetry A for both de-
tectors with a fit to detector 1. The difference in
the asymmetries can be used to extract the dis-
placement ∆ from measured data.

 [mm]∆Displacement 
-3 -2 -1 0 1 2 3

A
sy

m
m

et
ry

 A
 (

un
co

rr
ec

te
d)

-0.120

-0.115

-0.110

-0.105

-0.100

-0.095 Detector 1

Detector 2

Mean Value

Figure 4.42: Averaging the electron asymmetry
fit results with different displacements ∆ yields a
constant. The results of the detectors coincide at
the “real” displacement: ∆ = (−0.25± 0.54) mm.

∆1 and ∆2 from the χ2-minimization show nice agreement with the result of the direct
measurement,

∆3 = (1.0± 1.4) mm, (4.32)

however, the uncertainty of ∆1 is much smaller.

Electron Asymmetry A: The spectra associated with the asymmetryBopp from opposite
hemispheres cannot be used to obtain further information on the displacement since they are
almost independent of the magnetic mirror effect. Alternatively, we can use measurements
performed without proton detection: Whenever the vacuum was not good enough to apply
high voltage onto the detector foils, or extreme background conditions forced us to turn off the
voltage, we acquired pure electron spectra anyway. In principle, these could be analyzed to
extract the electron asymmetry A, however, now the coincidence condition cannot be applied,
and the large beam related background does not allow to obtain precise absolute A-values14.

On the other hand, without high voltage we have two electron detectors of the same quality,
providing results with the same statistical error. The relative difference between the A values
of both detectors (figure 4.41) is only caused by ∆, the asymmetric positioning of the neutron
beam relative to the magnetic field, assuming an equal beam-related background on both
detectors. This is a realistic assumption, since the PERKEO IIB-setup was highly symmetric
(with the “background source” beamline as symmetry axis), and we chose a fit region starting
at very high energies (E > 350 keV). Here beam-related background is strongly suppressed
since it arizes mainly below 200 keV [Mun06].

The asymmetry spectra were fitted employing different displacement correction functions,
cf. figure 4.42. Averaging the values with equal ∆ yields a constant, and the results of
both detectors coincide at the “real” displacement ∆. The uncertainty is determined by the
projection of the error ellipse (i.e. the contour with χ2 = χ2

min + 1) onto the ∆-axis, leading
to the result:

∆4 = (−0.25± 0.54) mm. (4.33)
14Statistics would also be much too low to get a result for the asymmetry A competitive to the current best

measurements [Abe02, Mun06].
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Figure 4.43: The figure shows the results for the
four individual determinations of the displacement
∆ between neutron beam and magnetic field max-
imum: The first two values were obtained from the
difference Dsame. Details on the direct measure-
ment can be found in chapter 3.3.3. The last point
stems from a comparison of the electron asymme-
tries of both detectors. The values show excellent
agreement, the average is ∆ = (0.11 ± 0.36) mm,
where the positive sign indicates a displacement
towards detector 2.

Final Displacement Result: The four independent values ∆1 − ∆4 from independent
data sets are presented in figure 4.43. They show excellent agreement. Averaging yields a
mean value

∆ = (0.11± 0.36) mm, (4.34)

where the positive sign indicates a shift towards detector 2.

Compared to the direct measurement, the methods introduced above allow to reduce the
uncertainty of the displacement considerably, however, it is still the largest systematic error
in the determination of the neutrino asymmetry B from same hemispheres.

4.5.4 Electric Mirror Effect

Since the proton-to-electron converter foil is on negative potential U we have to consider its
repulsive effect on the decay electrons. Detailed studies can be found in [Dei05], here, we
only give a short summary: The electrons pass the electrostatic barrier if their kinetic energy
parallel to the electric field lines is larger than E‖ = eU . However, the parallel component
increases in a decreasing magnetic field due to the momentum turning in flight direction. To
cover the worst case, we have to calculate the minimal kinetic energy Emin of an electron
emitted perpendicular to the electric (and magnetic) field lines, i.e. with an initial energy
E‖(0) = 0, neccessary to overcome the potential barrier. For the realized PERKEO II setup,
this energy is Emin = 84 keV.

Electrons with higher energies are not affected by the electric field at all, since decay volume
and scintillator are both on ground potential. Electrons with lower energies may be repelled
by the foil, however, this is not crucial since we use fit regions starting at much higher energies
to obtain the asymmetries. We can therefore totally neglect the electric mirror effect.

4.5.5 Edge Effect

Since we measure with a continous neutron beam we have to confine the decay volume length
along the beam direction to establish well defined border conditions15. Now, some of the

15An alternative would be a measurement with a chopped neutron beam and a data acquisition system that
is only active when the neutron cloud is located within the decay volume. This, however, is not realizable with
PERKEO II since the effective count rate would be much too low [Bre03].
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Figure 4.44: Edge effect correction spectra: This
effect is due to the finite lenght l=90 mm of the
decay volume that is limited by thick aluminium
baffles.
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Figure 4.45: Correction functions to account for
the grid effect. It arises because of the thin wires
between decay volume and high voltage foil to pre-
vent electrical reach-through.

charged particles hit the aluminium baffles installed for this purpose and get absorbed; this
gives rise to the edge effect.

Electrons and protons gyrate around the magnetic field lines. If they are created in a region
close to the ends of the decay volume, they may hit the baffles depending on their gyration
radius rg. Please note, that the radii of electron and proton are coupled in a coincidence
measurement, what has to be taken into account in the simulation of the effect. We use
“thick” baffles, i.e. they have a length of 30 mm along the particles flight direction, assuring
that the baffles get hit at least two times. This way, particles that were only scattered first
may get absorbed the second time, increasing the overall absorption probability close to unity.

The correction spectra (figure 4.44) were also obtained in two independent Monte Carlo
simulations [Dei05, Glu05] for cross check reasons. Again, there was no significant difference
in the result.

4.5.6 Grid Effect

Four grids made out of thin aluminium wires were placed between high voltage foil and
decay volume to avoid changes in the initial flight direction of the charged particles due to
the electric field. However, the wires disturb the trajectories of some electrons and protons
respectivley and cause a slightly energy dependent grid effect.

Whereas protons are absorbed in the wires, electrons may be scattered or absorbed. The effect
on the spectra was studied by F. Glück [Glu05] using the Monte Carlo program PENELOPE
[Bar95] that allows to simulate the motion of particles in different materials. The resulting
correction spectra are shown in figure 4.45: Although corrections are of the order of 2−3 %,
the functions are very similar for the two same hemisphere spectra and the two other as well.
This yields small overall corrections to the asymmetries since the effects cancel.

The exact size of all corrections mentioned here depends on the fit regions chosen for the
analysis, the final numbers for the asymmetries Bsame, Bopp, and the proton asymmetry C
can be found in the tables 4.2, 4.3, and 4.4 respectively.
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4.6 Neutrino Asymmetry B – Same Hemispheres

Now, we have prepared everything to finally extract the asymmetries B and C. We will start
with the analysis of the neutrino asymmetry Bsame consisting of same hemisphere events.
The very first section, however, will introduce the general expressions und uncertainties used
for all correlation coefficients.

4.6.1 Spectra and Errors

To extract correlation coefficients from data, we have to generate several spectra with different
spinflipper states. The two spinflipper states (on/off) are used to obtain the asymmetries from
one detector; this avoids effects due to different detector functions. Starting point for all cases,
i.e. same and opposite hemisphere measurements, are the following spectra

• Non, Noff: measurements with neutron beam, spinflipper on/off

• Nbg: background measurement, both flipper states

• Na
on, Na

off: accidental coincidences when beam is off, spinflipper on/off

• Na
bg: accidental coincidence, background,

with the uncertainties dNon, dNoff, dNbg, etc. given by the square-root of counts. The
spectra are obtained from the data applying conditions (e.g. start and stop in detector 2)
and cuts (e.g. only 2 σ data). We have to scale all spectra to count rate [s−1] since the
particular number of usable cycles for one spectrum certainly differs from the others. The
accidental coincidence spectra have to be multiplied with the scaling factor κ, determined in
chapter 4.3.3, to account for the suppression of regular stops due to the “1-stop” condition.

First of all, we have to generate the background subtracted spectra Qon and Qoff correspond-
ing to one of the Qij functions (depending on neutron spin orientation, and where electron
and proton are detected):

Qon = Non −Nbg −Na
on +Na

bg (4.35)
Qoff = Noff −Nbg −Na

off +Na
bg. (4.36)

From this, differenceD and sum S can be constructed and the errors dD, dS can be calculated:

D = Qoff −Qon = Noff −Non −Na
off +Na

on (4.37)

dD =
√

dN2
off + dN2

on + dNa
off

2 + dNa
on

2 (4.38)

S = Qoff +Qon = Noff +Non − 2Nbg −Na
off −Na

on + 2Na
bg (4.39)

dS =
√

4dN2
bg + dN2

off + dN2
on + 4dNa

bg
2 + dNa

off
2 + dNa

on
2. (4.40)

The asymmetry B reads:

B =
D

S
(4.41)
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dB = 2
[{

dN2
on

(
Nbg −Noff −Na

bg +Na
off

)2
+ dNa

on
2

(
Nbg −Noff −Na

bg +Na
off

)2

+dN2
off

(
Nbg −Non −Na

bg +Na
on

)2
+ dNa

off
2

(
Nbg −Non −Na

bg +Na
on

)2

+dN2
bg (Noff −Non −Na

off +Na
on)2 + dNa

bg
2 (Noff −Non −Na

off +Na
on)2

}

×
{
2Nbg −Noff −Non − 2Na

bg +Na
off +Na

on

}−4]1/2
(4.42)

Now we have five spectra for each set of hemisphere combination and detector: Two Q-
spectra, difference D, sum S, and asymmetry B. Although the correlation coefficient is only
obtained from the asymmetry, the others are important to check systematics. We want to
emphasize that there is only one free parameter in all fits, either the correlation coefficient
itself, or a normalizing factor. All other neccessary parameters like gain, energy offset, energy
resolution, polarization, etc. were determined in other measurements.

4.6.2 Analysis

We use all data with high voltages above U = −14 kV for the analysis of Bsame measured
with detector 2. Due to the sometimes very instable high voltage and higher discriminator
thresholds, much less measurements can be used for detector 1. Additionally, its proton
efficiency is smaller, hence we have two detectors that are not comparable in terms of statistics.
As explained in the previous sections of this chapter, we use 2 σ data and consider only events
that have exactly one stop in the coincidence or the delayed window.

Fit Region: The fit region is chosen on order to get the smallest combined statistical and
systematical error. Additionally, it has to fulfill several conditions: First of all, the obtained
asymmetry must be independent of small changes in the fit region. Secondly, the region must
not be extended to too low energies, since there is still some background left that would
influence the result. At the high energy side, the fit interval should be limited to decrease
the influence of the magnetic mirror effect, but one has to balance this with the increasing
statistical error. For detector 2, this is shown in figure 4.49. At last, we require that all
relevant spectra used to generate the asymmetry, i.e. Q++, Q−−, difference D, and sum
S, can be described with fit probabilities P > 5 % in the fit interval or in a larger region
including it (cf. figure 4.46). This is the common limit to define if the disagreement beween
observed and expected distribution is significant [Tay97], a larger probability thus indicates
that the measurement can be statistically described by the fit.

The fit intervals that were finally chosen (cf. figures 4.47 and 4.48) for the analysis are:

Detector 1 Detector 2
Fit Region [keV] 245−455 250−455

Differences in the conversion from channels to energies exhibit the slight difference in the
detector calibration.



4.6. NEUTRINO ASYMMETRY B – SAME HEMISPHERES 91

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.000

0.005

0.010

0.015

0.020

0.025
 = 1.21, P = 12 %2χ:  rQ++

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09  = 1.07, P = 32 %2χ:  rQ--

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07  = 1.03, P = 41 %2χ:  rDifference

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
 = 1.06, P = 35 %2χ:  rSum

Figure 4.46: The spectra Q++ (top left) and Q−− (bottom left) of detector 2 for the asymmetry
Bsame. Difference (top) and sum (below) are shown on the right side; all spectra can be well described
in large fit regions from 230−760 keV; a displacement ∆ = 0.11 mm was used for the fits. Please note
that the only free parameter in all these fits is a normalizing factor. No trigger function is considered,
thus the fits cannot describe the low energetic part of the spectra.
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Figure 4.47: Check of the fit region to extract
Bsame from detector 1: On the left, the region
starts according to the value on the axis and stops
at channel 420; on the right the start channel is
fixed to 210. A fit region from channel 200−400
corresponding to 245−455 keV is used.
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Figure 4.48: Fit region as a function of chan-
nels to extract Bsame from detector 2: We use a
fit region of channels 200−400 corresponding to
250−455 keV. The error bars indicate the statis-
tical uncertainty of the fit which is much smaller
for the second detector.
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Figure 4.49: With increasing upper border of the
asymmetry fit region, the statistical uncertainty
gets smaller. At the same time the influence of the
imprecisely known displacement between neutron
beam and magnetic field grows, since the magnetic
mirror correction increases with energy. The plot
shows both errors and the error sum for detector
2; fit region starts at channel 200. The minimum
of the combined error is at channel 400.
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Figure 4.50: Results from Bsame-fits of the indi-
vidual measurements of detector 2. They are di-
vided into three groups according to the status of
the experimental environment (high voltage sta-
bility etc.) during the time the measurement was
performed. There is no difference in the mean
value of the three groups, and no trend is visible.
The errors are only statistical, whereas all correc-
tions already have been applied.

Effects of Drifts and Calibration: Bsame is almost independent from energy calibration
and thus not influenced by gain drifts. This is shown in figure 4.50 where all B-values
of detector 2 are presented. The size of the statistical errors varies since measuring time
differed from 30 minutes to 15 hours. We have divided them in three groups according to
the experimental circumstances they were measured in (e.g. high voltage background, trigger
thresholds, etc.): “First choice” indicates measurements with very stable conditions, “second
choice” measurements were performed with a less perfect setup, and “no cooling” denotes
the early measurements without external cooling where the gain was quite unstable. The
three groups coincide perfectly, and no trend is visible. Data can be described better with a
constant than a straight line; the gradient of the latter is equal to zero within the errors.

Correction and Errors: We obtain the size of corrections and errors directly from a fit
of the Bsame spectrum that contains all data, by including the respective correction or not,
or by varying the constants within their errors. The largest systematic uncertainty is due to
the imperfect knowledge of the displacement ∆ between neutron beam and magnetic field.

The errors of the systematical corrections (0.05 %) are conservative estimations based on the
Monte Carlo results, taking into account the uncertainty of the magnetic field parametri-
sation [Rav95]. In a cross-check, the correction functions were varied by 5 %, resulting in
asymmetry shifts smaller than 0.05 % for all corrections. We expect the description of the
effects to be much better, since some of them have been determined independently with two
simulations, and the results agree better than 0.5 %. However, since these errors do not limit
the measurement, they can be overestimated without consequences to be on the safe side. The
influence of the theoretical corrections, i.e. Coulomb, recoil, and outer radiative correction,
can be completely neglected here.
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Figure 4.51: Fit of the asymmetry Bsame to the
combined data of detector 1. Low energies cannot
be described by the fit due to the high voltage
background.
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Figure 4.52: Fit of Bsame to all detector 2 data.
The statistical uncertainties are much smaller for
this detector; the figures are drawn with the same
scale. The solid curve indicates the fit region.

Detector 1 Detector 2

Fit Region [keV] 245-455 250-455

Effect Corr. [%] Err. [%] Corr. [%] Err. [%]
Polarization

Polarization +0.3 0.1 +0.3 0.1
Flip Efficiency 0.1 0.1

Data Set
Statistics 1.22 0.36
Proton Window −0.05 0.03 −0.05 0.03
1 Stop Condition −0.24 0.06 −0.13 0.03

Detector Function
Gain 0.01 0.01
Offset 0.02 0.02
Resolution 0.00 0.00

Systematic Effects
Edge Effect −0.16 0.05 −0.16 0.05
Mirror Effect

Correction +0.44 0.05 +0.44 0.05
Displacement −0.10 0.32 +0.10 0.32

Grid Effect +0.03 0.05 +0.03 0.05
Correlation Coefficients
A 0.03 0.03
a 0.06 0.06

Sum +0.22 1.28 +0.53 0.52

Table 4.2: Correction and errors of the neutrino asymmetry B obtained from events where electron
and proton were emitted in the same hemisphere.
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4.6.3 Result

Figures 4.51 and 4.52 show the asymmetry Bsame for the two detectors, generated from all
usable measurements. One can clearly see that the statistical significance of detector 2 is
superior. A detailed summary of all corrections and uncertainties can be found in table
4.2. It emphazises the smallness of the neccessary corrections allowing systematically very
clean measurements. The influence of the accidental coincidences on the error is not stated
separately; it is included in the statistical error, where it contributes to approximately 10 %.

The neutrino asymmetry results are

BDet1 = 0.9845(126) = 0.9845(120)stat(36)syst (4.43)
BDet2 = 0.9798(51) = 0.9798(36)stat(36)syst (4.44)

for detector 1 and detector 2 respectively. Both values agree very well. Since most systematic
errors are correlated, only the statistical uncertainties can be averaged to obtain the final
result for the same hemisphere measurement:

Bsame = 0.9802(50) = 0.9802(34)stat(36)syst. (4.45)

4.7 Neutrino Asymmetry B – Opposite Hemispheres

We will now focus on the analysis of the neutrino asymmetry Bopp generated from events
with electron and proton emitted in opposite hemispheres. The majority of all events belongs
to this group (78 %), however, the statistical sensitivity is quite low. Additionally, it strongly
depends on detector calibration.

4.7.1 Analysis and Result

Once again, we have big differences between both detectors regarding the number of mea-
surements that can be used for analysis: Much more data is available when the electron is
detected in detector 1 and the proton in detector 2 (we call this Bopp measured in detector
1) than in the other case, again due to high voltage instabilities and the different proton effi-
ciencies. We use a rejection threshold of 10 σ corresponding to nearly all cycles, only extreme
mavericks are not considered.

Fit Region: Both asymmetries have rather large statistical errors, and the individual
points of the measured spectra are widely spread. Because of this, the B values are shifted
considerably when the fit region is only changed a bit, however, the shifts are maximally in the
order of 0.5 statistical standard deviations – the overall error including systematics is much
larger. We therefore use the same approach as for the same hemispheres, and require that
all four spectra used to generate the asymmetry must be well described in the asymmetry fit
region. For detector 1, this is shown in figure 4.53, the resulting regions are:

Detector 1 Detector 2
Fit Region [keV] 260−610 200−550
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Due to the last requirement, the fit regions differ by 60 keV, however, both of them are chosen
high enough to be not affected by background and unrecognized backscattering effects.

Detector Drifts: We divide the 30 measurements used for detector 1 into three subgroups
according to their measurement conditions: (Please note that these do not coincide with the
groups introduced for Bsame.)

1. Partly different detector settings, e.g. some photomultipliers have higher discriminator
thresholds etc.

2. Different high voltages applied to the foils (maximal difference ∆U = 2 kV).

3. “Good” measurements with stable conditions on detector 1.

The groups have almost the same statistical weight and the asymmetries obtained from each
subset can be averaged: For detector 1, they show excellent agreement, whereas there is
an obvious drift to lower values in the case of detector 2: Despite of the large errors the
three asymmetries are not consistent. Therefore, we have to restrict analysis to the “good”
measurements of group 3, with the best background conditions on the proton detector. Of
course, this limits statistics dramatically.

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16  = 1.28, P = 8.2 %2χ:  rQ+-

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.00

0.02

0.04

0.06

0.08

0.10

0.12  = 1.33, P = 6.7 %2χ:  rQ-+

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
 = 1.23, P = 11 %2χ:  rDifference

Energy [keV]
0 100 200 300 400 500 600 700 800

C
ou

nt
s 

[a
.u

.]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 = 1.33, P = 6.3 %2χ:  rSum

Figure 4.53: The spectra Q+− (top left) and Q−+ (bottom left) for the asymmetry Bopp in opposite
hemispheres; the electron was observed in detector 1. Difference (top) and sum (bottom) are shown
on the right hand side; all spectra can be well described within the fit region of 260−610 keV and
larger. Please note that the only free parameter in all these fits is a normalizing factor. No trigger
function is considered, thus the fits cannot describe the low energetic part of the spectra.
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Figure 4.54: Fit of the neutrino asymmetry Bopp
to all data of detector 1, i.e. the electron was
observed in detector 1 the proton in the “good”
proton detector 2.
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Figure 4.55: Fit of the Bopp to all data used
for the detector 2 analysis. The error bars are
larger compared to detector 1 since less measure-
ment could be considered.

Effects of Detector Calibration: Energy calibration is the most important error contri-
bution for Bopp. Especially the energy offset Eoff of the energy-channel relation is only known
very poorly, and therefore constitutes the largest uncertainty of the measurement. The exact
determination of the gain is also essential, only the effects of the energy resolution are small.

Now, we generate the asymmetry specta and obtain the asymmetries B from the fits (cf.
figures 4.54, 4.55). After application of all relevant corrections we get:

BDet1 = 1.017(17) (4.46)
BDet2 = 1.029(31). (4.47)

The detailed error analysis is presented in table 4.3. At a first glance, the high values are
quite astonishing, since asymmetries greater than unity would imply that more than 100 %
of particles are emitted into one hemisphere, what is obviously not possible. However, if we
consider the full uncertainty, statistical and systematical, we find that the asymmetries for
detector 1 and detector 2 differ from the Particle Data Group value only by 1.9 σ and 1.4 σ
respectively. Deviations of this size are too small to be taken seriously.

However, since both asymmetries are shifted in the same direction, we may have a systematic
effect in the detector calibration that changes the energy offset to higher values. An offset
Eoff lowered by just 2−3 σ would allow to describe the Bopp spectrum with the Standard
Model B value. A possible explanation for this could be the additional γ-radiation emitted
from the calibration sources. In measurements of the electron asymmetry A performed with
PERKEO II, the γ-contribution was determined in a procedure including calibration C and
background X measurements with (B) and without (0) magnetic field. Combining these
spectra in the following way (“4-difference”) [Mue96],

S4 = CB −XB − C0 +X0, (4.48)

yields the pure electron spectrum if the detector gain is independent of the magnetic field
(cf. e.g. [Bae96]). Unfortunately, this condition cannot be fulfilled when the photomultiplier
tubes are installed as for the B-measurement, since the detector gain differs significantly
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Detector 1 Detector 2

Fit Region [keV] 260-610 200-550

Effect Corr. [%] Err. [%] Corr. [%] Err. [%]
Polarization

Polarization +0.16 0.06 +0.20 0.07
Flip Efficiency 0.07 0.06

Data Set
Statistics 0.93 1.63
Proton Window −0.16 0.08 −0.16 0.08
1 Stop Condition −0.67 0.03 −0.62 0.09

Detector Function
Gain 0.50 0.91
Offset 1.13 2.29
Resolution 0.05 0.01

Systematic Effects
Edge Effect +0.72 0.05 +0.32 0.05
Mirror Effect

Correction −0.02 0.05 −0.01 0.05
Displacement −0.02 0.02 −0.01 0.01

Grid Effect −0.85 0.05 −0.74 0.05
Correlation Coefficients

Theory Corrections −0.02 −0.02
A 0.47 0.35
a 0.01 0.01

Sum −0.86 1.62 −1.04 2.98

Table 4.3: Correction and errors of the neutrino asymmetry B obtained from events with electron
and proton measured in opposite hemispheres.

for measurements with and without magnetic field. This prevents to exploit the 4-difference
method which relys on constant signal amplification, and we have to get by with the additional
γ-radiation in the calibration spectra.

Analysis of calibration data obtained in an electron asymmetry setup [Sch04, Mun06] indi-
cates indeed that the energy offset is shifted to lower values when the spectra S4 are used
for calibration, resulting in a smaller Bopp. For the other asymmetries, Bsame and C, the
exact knowledge of the energy channel relation is much less important, therefore a “simple”
calibration using only measurements with magnetic field is completely sufficient.

Final Result: When one looks at the detailed summary of all corrections and errors, table
4.3, it is obvious that a determination of B in opposite hemispheres cannot be regarded as a
precision measurement. Therefore we do not average these values with the same hemisphere
results, but rather consider them as cross checks.
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For detector 1, the final result for the asymmetry in opposite hemispheres is

BDet1 = 1.017(17) = 1.017(10)stat(14)syst, (4.49)

and for detector 2 we obtain

BDet2 = 1.029(31) = 1.029(17)stat(26)syst. (4.50)

Both values show statistical agreement with the world average, the χ2 probabilities are P=5 %
and P=14 % for detector 1 and 2 respectively.

4.7.2 Systematic Checks

Although the results are statistically compatible with the expecations, we performed tests
with measured data and with Monte Carlo simulations to check if something went wrong or
if the result could be caused by unknown systematical effects, since both Bopp values are
shifted to rather high values.

All checks and simulations that will be presented below indicate that the high asymmetry
values are neither caused by wrong considerations in the generation of the spectra nor by cuts
into angular or time-of-flight distribution of the particles. The results (4.49) and (4.49) are
correct. Nevertheless, we will present the checks in some detail, since they give interesting
insights into the analysis of the opposite hemisphere asymmetry.

4.7.2.1 Checks with Data

These systematic test were performed with real data, we changed conditions, cuts, and correc-
tions to study their influence on the result. An error in the implementation of the fit functions
can be excluded since they were verified with Monte Carlo data. Besides other basic tests,
we investigated the following:

• If we generate the asymmetry from 10 σ data with background subtraction, but ignore
the contribution from accidental coincidences, we get a reasonable Bopp value below
unity. The sum spectrum, however, cannot be described by a fit. Only the restriction
of the stop to the coincidence window (40 µs) and the correct subtraction of accidental
coincidences leads to a realistic sum spectrum; but then the asymmetry is increased to
values above unity again.

• Regarding more than one stop in the time windows has almost no effect, besides that
now the spectra Q+−, Q−+, D, and S cannot be described with statistically acceptable
fit probabilities due to increased background.

• The asymmetry cannot be shifted to lower values by changing timing conditions: Neither
reducing the backscattering window16, nor the limitation of the coincidence window has
a considerable effect. The same holds when the start of the coincidence window is
shifted to smaller times.

16When a stop occurs in the backscattering window (0−200 ns) it is regarded as backscattered electron and
not as a decay proton. However, we do not expect a proton in the backscattering window due its much larger
drift times.



4.7. NEUTRINO ASYMMETRY B – OPPOSITE HEMISPHERES 99

• We did not find anything unusual in the energy spectrum of the stop signals. However,
as already mentioned in chapter 4.2, the spectrum of the background signals is very
similar to the proton stops.

• When we exclude backscattering events from the data, we obtain an asymmetry
Bopp ≈ 1. Analysis of the spectra generated from backscattering data only yields a
very high asymmetry BBS ≈ 1.4, the sum spectrum S can be well described, what is
not the case for the difference D.

However, the high value for the backscattering data is due to a cut in the angular
distribution of the particles, what will be explained in the following section.

To summarize, we can state that no systematic errors have been made in the generation of
the spectra.

4.7.2.2 Monte Carlo Simulations

Additionally, we studied the neutrino asymmetry Bopp with Monte Carlo (MC) simulations.
All fits to simulated spectra were performed using the same fit region as for the real data
(detector 1).

Cuts in the angular Distribution: When electrons of particular incident angles on the
detector have smaller trigger probabilities than others, i.e. if there are cuts in the angular
distribution, we expect changes in the asymmetries. Figure 4.56 shows the distribution of the
angle between neutron spin and electron momentum. This corresponds to the incident angle
on the detector, since the spin is aligned perpendicular to the detectors: Initially, all angles
from 0 to π appear, however, the decreasing magnetic field turns the momenta in forward
direction to steeper angles.

We tried different cut conditions on the angular distribution to reproduce the observed sit-
uation for the asymmetries: Bsame according to the Standard Model prediction and Bopp

larger than unity. This is only fulfilled by a cut at steep angles (θ ≈ 0, π), where the electron
spectrum can still be described by a Fermi function.
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Figure 4.56: Distribution of the angle between
neutron spin s and electron momentum pe ob-
tained from a Monte Carlo Simulation. An angle
of 0 indicates pe parallel to s, π is the anti-parallel
case. The smooth distributions generated in the
decay get shifted to steeper angles of incidence at
the detectors due to the momentum turn in the de-
creasing magnetic field. The flattest angles at the
detectors are 0.29 π and 0.71 π, where the distri-
butions almost show their maximum. Obviously,
the opposite hemisphere events hit the detectors
much more often at steep incident angles.
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However, this scenario cannot be motivated physically: The detection efficiency is maximal at
incident angles close to the normal since backscattering effect are vanishing [Mar03], therefore
we have to reject this cut as explanation for the high asymmetries. Instead it is most likely
the reason for the extremely high asymmetry value of the backscattered events alone, since
the steep angles are missing in this data set.

Another argument against angular cuts is the spectral shape of the observed asymmetry Bopp.
It shows no distortion within the statistical errors, whereas we expect that changes in the
angular distribution would alter the energy dependence.

Stops generated by Background events: A second simulation was used to examine
the influence of background events: With probability P , the electron energy of a simulated
event was replaced by a background signal, that was randomly obtained from a spectrum
measured without coincidence condition. Again, this leaves Bsame unaffected and leads to
high values for Bopp. At the same time, however, the resulting spectra get strongly distorted
at low energies what is not the observed case, and we would need rather high probabilities
P = 15% to reconstruct Bopp ≈ 1.015. This is much too high for the almost background free
events in opposite hemispheres.

Events where a background stop occurs before the proton arrives represent cuts in the time-
of-flight spectrum and lead to increased Bopp values. This was the situation in the previous
experiment [Kre04b], where only one stop per event could be detected. We now have a
completely different situation, since we were able to identify many stops: No event with more
than one signal in the coincidence window is considered, regardless if the “false” stop occurred
before or after the proton signal. Hence we do not cut into the TOF-spectrum.

Summary: We performed Monte Carlo simulations to reproduce the observations, and
actually found some scenarios that yield an increased asymmetry in opposite hemispheres.
However, these are not sufficient to describe the results since all bring up physical objections.

4.7.2.3 Analysis via Proton Asymmetry

The last systematical test performed involves the proton asymmetry introduced in chapter
2.3.3. From the spectra

ρ↑ = Q++ +Q−+ and ρ↓ = Q−− +Q+−, (4.51)

using detector 2 (Q++ and Q−−, same hemisphere) and detector 1 data (Q+− and Q−+,
opposite hemispheres), the experimental proton asymmetry spectrum

Cexp =
ρ↑ − ρ↓

ρ↑ + ρ↓
(4.52)

can be constructed. Since the Q-spectra depend on B, a fit to Cexp can be also used to obtain
the neutrino asymmetry, that we will denote Bp in this case (cf. figure 4.57).

When we use the usual fit region of 260−610 keV, we get

Bp = 0.981(15), (4.53)
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Figure 4.57: Fit of the neutrino asymmetry Bp

to the experimental proton asymmetry spectrum
Cexp. Although it is mainly generated from the
Q+− and Q−+ spectra, one yields a reasonable
asymmetry that is below unity. However, it is not
possible to give a detailed error analysis for this
case, since Cexp consists of data of both detectors
and the detector functions get mixed.

where the error is estimated using only the dominating factors statistics, gain, and energy
offset. A detailed error analysis would be quite difficult, since contributions of both detectors
get mixed in Cexp. The Bp-value is lower than unity, although Cexp was constructed mainly
from the opposite hemisphere spectra since these are kinematically favoured by 78 %. Possible
influences of additional γ-background in the calibration spectra are reduced here, since the
spectrum Cexp is less steep in the fit region, i.e. less energy dependent, than Bopp.

4.8 Proton Asymmetry C

The proton asymmetry C cannot be obtained from a fit to a measured spectrum (not even
from a fit to Cexp, equation (4.52)), as it is the case for the asymmetries A, Bsame, and Bopp,
since there is no theoretical description of neutron decay based on C. However, the four
Qij-spectra contain the information in which hemisphere the proton was emitted, and we can
determine C by integrating these spectra:

C =
∫
ρ↑(E)dE − ∫

ρ↓(E)dE∫
ρ↑(E)dE +

∫
ρ↓(E)dE

, (4.54)

where ρ↑ and ρ↓ are defined as

ρ↑(E) = Q++(E) +Q−+(E) (4.55)
ρ↓(E) = Q−−(E) +Q+−(E). (4.56)

Since low and high energy range of the spectra cannot be measured with a reasonable precision
we have to get the area below the Q-functions from a fit at medium energies, and extrapolate
to the whole spectrum before integration. When we want to evaluate C in a particular
detector (what is important to be independent of the proton efficiency), we have to consider
(electron) Q-spectra from different detectors. In case of the “good” proton detector 2, Q++

and Q−− are measured in detector 2, Q+− and Q−+ in detector 1. Only this combination
allows to determine a precise C-value.

4.8.1 Analysis

We use the same data as in the analysis of the neutrino asymmetries: 2 σ is the rejection
threshold for the same hemisphere spectra, 10 σ for the opposite case. Background and
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Figure 4.58: Determination of the proton asymmetry C for proton detector 2: The same hemisphere
electron spectra Q++ (top left) and Q−− (bottom left) of detector 2 are fitted in the usual fit region
indicated in the plots. Then the functions are extrapolated to cover the whole energy range and finally
integrated. The figures on the right show Q+− (top) and Q−+ of detector 1. Using the integrals, one
can calculate the asymmetry C.

accidental coincidences are subtracted as usual, and only 1-stop events are considered. Ad-
ditionally, we reuse the fit regions 250−455 keV and 260−610 keV for same and opposite
data respectively. This is reasonable, since the effects limiting the result also stay the same:
At low energies, the spectra are affected by unrecognized backscattering and high-voltage
background, at high energies, the influence of mirror- and edge-effect becomes large.

Extrapolation: After summing up all data and scaling the Q-spectra to equal measuring
times, we perform fits with the corresponding theoretical Q-function in the regions given
above. Please note that we have again only one free fit parameter, a normalizing factor N .
All other input values are taken from calibration measurements. Now, the fit-functions are
extrapolated to higher and lower energies and integrated. Since we have to consider the
energy resolution of the detectors, we integrate from 0−850 keV, i.e. beyond the theoretical
maximum electron energy of E0 = 781.6 keV. A further extension to 900 keV yields changes
in the order of 0.01 % and is completely negligible. The fits and extrapolations for proton
detector 2 are shown in figure 4.58.

Corrections and Uncertainties: The size of errors and corrections is obtained by vari-
ation of the respective parameters in fits of all four spectra, followed by extrapolation and
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integration. The statistical error is determined by changing the normalizing factor N to
N + ∆N , where ∆N is its statistical uncertainty from a “normal” fit. Now this function is
evaluated; the deviation from the fit above is the uncertainty due to statistics.

It is the characteristic feature of this analysis method that we have to extrapolate considerably
to energies, where no precise information on the asymmetry is accessible experimentally.
However, we do not give an individual error on the extrapolation since it is already included
in the uncertainties of statistics, gain, and energy offset: These change the spectral shape in
the fit region resulting in different fits, extrapolations, and integrals.

Alternative Analysis: Instead of fitting and extrapolating the four Q-functions as
demonstrated above, one could also think of using the spectra ρ↑ and ρ↓ directly (cf. fig-
ure 2.15, page 23). We do not follow this approach, since each of the two consists of data
from both detectors, what makes error analysis very difficult because detector calibrations
get mixed. Q- and ρ-spectra consist of exactly the same data, therefore the asymmetry itself
should be the same.

4.8.2 Result

The final result for the proton asymmetry C,

CDet2 = −0.2377(36), (4.57)

is limited by the calibration of the electron detectors, its influence is comparable to the
Bopp analysis. Especially the value of the energy offset Eoff should be known much more
precisely. This shows that we cannot get to much more precise C-values using this setup
without significant improvements on detector calibration. A detailed summary of all errors
and uncertainties can be found in table 4.4.

When we determine C from the inferior proton detector 1 we obtain

CDet1 = −0.245(12). (4.58)

The error of 4.8 % is only estimated, using the dominating factors statistics, gain, and energy
loss. Both values, CDet2 and CDet1, agree very well, however, due to the large systematic
uncertainties of the latter we will only use it as cross check and do not average the results.
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Effect Corr [%] Err [%]
Polarization

Polarization +0.30 0.10
Fip Efficiency 0.10

Data Set
Statistics 0.44
Extrapolation −47.37
Proton Window 0.03 0.01
1 Stop Condition −0.84 0.15

Detector Function
Gain 0.38
Offset 1.36
Resolution 0.12

Systematic Effects
Edge Effect −0.26 0.05
Mirror Effect

Correction −0.02 0.05
Displacement 0.02 0.03

Grid Effect −0.08 0.05
Correlation Coefficients

Theory Corrections −0.46
A 0.01
B 0.07
a 0.02

Sum −48.68 1.50

Table 4.4: Correction and errors of the proton asymmetry C. The extrapolation uncertainty con-
tributes to the statistical and detector calibration errors.



Chapter 5

Results and Standard Model Tests

Having obtained values, corrections, and uncertainties of the neutrino asymmetry B and the
proton asymmetry C in the preceding chapter, we will now compare the results to previous
measurements and expectations, and will calculate new world mean values. At last, we want
to examine the implications of the newly measured correlation coefficients on searches for
“Physics beyond the Standard Model”.

5.1 Final Results

The final neutrino asymmetry result of the PERKEO IIB measurements is

Neutrino Asymmetry B = 0.9802(50). (5.1)

Corrections to this value are below 1 %, details on the uncertainty of altogether 0.51 % can
be found in table 4.2. Additionally, we performed the first precise measurement of the proton
asymmetry at all:

Proton Asymmetry C = −0.2377(36). (5.2)

The neccessary extrapolation corrections are quite large, however, a total error of 1.5 %,
dominated by the uncertainty of detector calibration, is a very good result.

5.2 Neutrino Asymmetry and right-handed Currents

Figure 5.1 shows all measurements of the neutrino asymmetry that have been done so far
and includes our new result. Although we almost had to fully abandon the second detec-
tor, resulting in a 50 % loss in statistics and a large systematical uncertainty (displacement
∆), it has almost the same precision as the last measurement by Serebrov et al. [Ser98],
B1998 = 0.9801(46). We were even able to perform an experiment with considerably smaller
systematical corrections, as our result had to be corrected by 0.53 % only (1.21 % if the
absolute values of all contributions are added up), compared to at least1 3.5 % correction for
the measurement of 1998.

1This is only the correction due to polarization and spinflipper efficiency, the size of all other contributions
(solid angle determination with Monte Carlo simultions, etc.) is not given in the publication.

105
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Figure 5.1: The figure compares the new neutrino
asymmetry B (2007) with the results from earlier
experiments [PDG06]. All values agree very well
(rχ2=0.56, P=73%), and our result confirms the
old world average. The uncertainty of the new
average Bmean = 0.9807(30) is reduced by 25 %.

All other previous measurements are confirmed as well. In particular, we also agree with the
preceding PERKEO II measurement (2005, [Kre04b]), however, we managed to reduce the
overall uncertainty by a factor of 2.4.

The calculation of a new world average, including all six results given in figure 5.1, yields

Bmean = 0.9807(30). (5.3)

Compared to the last mean value, B2006 = 0.981(4), published by the Particle Data Group
(PDG) [PDG06], the uncertainty is reduced by 25 %.

Right-handed Currents: The main motivation for measuring the neutrino asymmetry
is its sensitivity to the neutrino helicity and therefore to possible right-handed contribu-
tions to the weak interaction. In the exclusion plots presented below, we exploit equations
(2.73)−(2.76) to get limits on the mixing angle ζ and δ = m2

1

m2
2
, the mass ratio of the bosons

W1, W2 (cf. section 2.3.5). However, since the eν-correlation a is only known with a precision
of 4 %, we will only include the correlation coefficients A and B, and the lifetime τn in the
analysis. In the year 2004, when we started this thesis, the status regarding right-handed
admixtures was as shown in figure 2.4 (page 15).

In the last years, neutron lifetime measurements have achieved higher and higher precision:
The current world mean value given by the PDG [PDG06], τPDG = 885.7(8) s, is dominated
by the measurement of Arzumanov et al. [Arz00], that has an absolute uncertainty of 1.0
seconds. However, in 2005, Serebrov et al. [Ser05] published the lifetime τSer = 878.5(8) s,
which differs by 6.5 standard deviations σ from τPDG and by 5.6 σ from Arzumanov’s result.
Obviously, averaging these values is not reasonable, and we face the situation that we have to
deal with two different neutron lifetimes at the moment. Therefore, we calculate constraints
on left-right symmetry for both values.

Besides the two lifetimes given above, we use the following input values: The new neutrino
asymmetry average Bmean = 0.9807(30), the Particle Data Group value for the electron
asymmetry APDG = −0.1173(13), and the average of all A-values measured with PERKEO II
APII = −0.1193(4). Here, the latest experiment [Mun06] is not published yet. The precision
of the combined PERKEO II measurements is significantly higher than the PDG value, since
the error of the latter is scaled with a factor 2.3 to include older measurements. However,
these had to be corrected by 15−29 %, where the corrections of the three PERKEO II values
only range from 3.9−0.4 %.
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Figure 5.2: Exclusion plot on admixtures of
right-handed currents generated with the input
values APDG, Bmean, and τPDG.

Figure 5.3: This exclusion plot employs the pa-
rameters APDG, Bmean, and the neutron lifetime
from the Serebrov measurement (2005): τSer.

Figure 5.4: Input: APII, Bmean, τPDG. Figure 5.5: Input: APII, Bmean, τSer.

The exclusion plots 5.2−5.5 were generated by calculating

χ2 =

(
A(λ′, ζ, δ)−Aexp

dAexp

)2

+

(
B(λ′, ζ, δ)−Bexp

dBexp

)2

+

(
τ(λ′, ζ, δ)− τexp

dτexp

)2

(5.4)

for every point λ′, ζ, and δ. It is the quadratic deviation of the coefficient X(λ′, ζ, δ) com-
puted in the left-right symmetric model from the experimental input Xexp. dXexp is the
experimental uncertainty. χ2 < 1.39 defines the 50 %, χ2 < 4.61 the 90 %, and χ2 < 5.99 the
95 % confidence level (CL). The resulting three-dimensional contours are mapped along the
λ′-axis onto the ζδ-plane to generate the two-dimensional exlusion plots.

In the following, we present the global χ2 minimum (λ′min, ζmin, δmin), and limits on λ′, ζ, and
δ – corresponding to a constraint on the mass m2 – for the different parameter sets considered.
Additionally, we give δ(0) for a mixing angle ζ=0:

1. APDG, Bmean, τPDG (figure 5.2): If one compares this plot with figure 2.4 that uses the
same A and τn inputs, one can clearly see the sensitivity of the neutrino asymmetry B
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on right-handed contributions. Taking into account the new value does not yield much
improved limits for ζ and δ,

λ′min = −1.2711 90% CL: − 1.3077 < λ′ < −1.2678
ζmin = −0.0046 90% CL: − 0.1978 < ζ < 0.04170
δmin = 0.061 90% CL: δ < 0.088 ⇒ m2 > 271 GeV,

90% CL: δ(0) < 0.080 ⇒ m2 > 284 GeV,

but now, the Standard Model prediction ζ = δ = 0 is not included in the 90 % confidence
level contour anymore.

2. APDG, Bmean, τSer (figure 5.3): With the lower lifetime given by Serebrov, the input
parameter set is not compatible with the Standard Model anymore. The constraints
are:

λ′min = −1.2897 90% CL: − 1.3092 < λ′ < −1.2726
ζmin = −0.123 90% CL: − 0.188<ζ1<−0.013, −0.011<ζ2<0.070
δmin = 0.045 90% CL: δ = δ(0) < 0.079 ⇒ m2 > 287 GeV,

3. APII, Bmean, τPDG (figure 5.4): This combination also excludes the Standard Model
and predicts an upper mass limit for the right-handed boson W2. However, this limit
has been excluded by other experiments (cf. section 2.2.3 and [Bab06]):

λ′min = −1.2915 90% CL: − 1.3104 < λ′ < −1.2726
ζmin = −0.136 90% CL: − 0.2008 < ζ < −0.0144
δmin = 0.067 90% CL: 0.037 < δ < 0.093

⇒ 264 GeV < m2 < 421 GeV.

4. APII, Bmean, τSer (figure 5.5): Combining the lower lifetime with the higher electron
asymmetry almost restores the Standard Model at 95 % CL and yields:

λ′min = −1.2933 90% CL: − 1.3119 < λ′ < −1.2753
ζmin = −0.127 90% CL: − 0.192<ζ1<−0.017, −0.013<ζ2<0.035
δmin = 0.055 90% CL: δ < 0.084 ⇒ m2 > 278 GeV,

90% CL: δ(0) < 0.076 ⇒ m2 > 293 GeV.

Summary: The existence of two lifetime values and two possibilities for Amakes it difficult
to give a “final” result. We suggest to use the electron asymmetry APII, since it only includes
the values with corrections smaller than 4 %. However, we do not want to make a decision
which is the “correct” lifetime value, and therefore scale the individual errors dτi such that the
values agree statistically2. Figure 5.6 shows the current status of right-handed contributions
in neutron decay (90 % CL) obtained with APII, Bmean, and τmean = 882.0(1.4) s:

−1.3113 < λ′ < −1.2735 δ < 0.089 ⇒ m2 > 271 GeV
−0.1968 < ζ < 0.0040 δ(0) < 0.062 ⇒ m2 > 322 GeV.

(5.5)

2The procedure was introduced in section 4.1.2 on page 59.



5.3. PROTON ASYMMETRY AND λ 109

Figure 5.6: Exclusion plot for the existence of
right-handed currents based on the neutron decay
parameters APII, Bmean, and τmean = 882.0(1.4)
s. The lifetime uncertainty has been scaled by 2.5
to account for the unclear experimental situation
when all measurements are considered. The Stan-
dard Model prediction ζ = δ = 0 is included in
the 95 % confidence region.

It is interesting to note that the Standard Model is not covered by the 90 % CL contour of
any of the studied cases. This shows, that even if the best limits on m2 will never be reached
by analyzing neutron decay data, it still provides a unique opportunity to detect new physics
since it is simultaneously sensitive to the mixing angle. However, at the moment we do not
consider the deviations to be significant.

5.3 Proton Asymmetry and λ

During the B-beamtime of 2001, the PERKEO II collaboration managed to verify the proton
asymmetry with a rather large uncertainty of 4.7 % [Kre04b, Abe05]:

C2001 = −0.233(11). (5.6)

The result from the experiment presented in this thesis, C = −0.2377(36), confirms the
previous value but is significantly more precise. With an uncertainty of 1.5 % this constitutes
the first precision measurement of the proton asymmetry. Its relative error is even smaller
than the error of the electron-neutrino correlation a (3.9 %).

With the world average value of λ = gA
gV

= −1.2695(29) [PDG06] one can calculate an “ex-
pected” proton asymmetry using the equation (cf. section 2.3.1)

C = xC
4 λ

1 + 3λ2
, (5.7)

where xC = 0.27484 is a kinematical factor. Our result is in full agreement with the expecta-
tion, CPDG = 0.2392(4). On the other hand, equation (5.7) can also be used to obtain a new
λ-value from the proton asymmetry. Our result

λC = −1.282(29) (5.8)

is fully consistent with other experiments, but has only a low precision of 2.3 % and is thus
not competitive. However, compared to electron asymmetry measurements, the “standard”
procedure to get λ, it is a quite interesting method since it employs the different systematics
of a coincidence measurement.
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Within the Standard Model, A, B, and C are coupled by the relation

C = xC(A+B). (5.9)

This can be exploited to test the theory which was impossible so far due to the missing
precise proton asymmetry measurement. Now, both sides of the equation agree within the
experimental uncertainties,

−0.2377(36) = −0.2374(12),

if we insert the average values for A and B [PDG06], and the newly measured C. The relation
remains true if we replace B by Bmean, equation (5.3), or the electron asymmetry by the mean
value APII that only includes PERKEO II results.

5.4 Limits on Scalar and Tensor Interactions

In section 2.1, we have given the most general Lagrangian, equation (2.16), for the weak
interaction, including scalar (S), pseudo-scalar (P ), vector (V ), axial-vector (A), and tensor
contributions (T ). The existence of the (in general complex) coupling constants gi, g′i is
related to the partity transformation of the current: Parity invariance holds if one of the
constants gi, g′i is zero, it is violated if gi 6= 0 and g′i 6= 0. Maximal parity violation – as
realized in the Standard Model – corresponds to |gi| = |g′i|. The pseudo-scalar contributions
(gP , g′P ) can be omitted, since one can show that the pseudo-scalar hadronic current pγ5n
in equation (2.16) vanishes [Sev06]. Therefore the general description allows altogether eight
complex coupling constants, whereas the Standard Model only uses two real ones gA, gV

(assuming time reversal invariance).

Right-handed Scalar and Tensor Model: We have enough experimental data available
to search for limits on non Standard Model contributions, namely additionally scalar and
tensor currents. To restrict the number of parameters, we consider a standard right-handed
scalar and tensor model [Ero91, Sev06] that establishes the following relations between the
coupling constants:

g′V
gV

= 1,
g′A
gA

= 1,
g′S
gV

= − gS

gV
, and

g′T
gA

= −gT

gA
. (5.10)

This corresponds to left-handed couplings for the Standard Model currents and right-handed
couplings for possible scalar and tensor admixtures. Starting from the general expressions
given in [Glu95], we can calculate the correlation coefficients A, B, a, C3, and the rate
function Rft defined in equation (2.72), in terms of gV , gA, gS , gT . Here we further assume
the constants to be real and that the Fierz interference term b vanishes in equation (2.72):

A = −2
g2
A + gAgV + gSgT + g2

T

gV + 2g2
A + gS + 3g2

T

= −2
λ2 + λ+ λxy + λ2y2

1 + 3λ2 + x2 + 3λ2y2
(5.11)

B = 2
g2
A − gAgV + gSgT − g2

T

gV + 2g2
A + gS + 3g2

T

= 2
λ2 − λ+ λxy − λ2y2

1 + 3λ2 + x2 + 3λ2y2
(5.12)

3The expression for the proton asymmetry C was derived using a relation between A and B (valid in a
general VAST-model allowing arbitrary couplings, equation (4.31) in [Glu95]) and a Fierz-term b = 0.
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a =
g2
V − g2

A − g2
S + g2

T

gV + 2g2
A + gS + 3g2

T

=
1− λ2 − x2 + λ2y2

1 + 3λ2 + x2 + 3λ2y2
(5.13)

C = 4xC
gAgV + g2

T

gV + 2g2
A + gS + 3g2

T

= 4xC
λ+ λ2y2

1 + 3λ2 + x2 + 3λ2y2
(5.14)

Rft = 2
g2
V + g2

S

gV + 2g2
A + gS + 3g2

T

= 2
1 + x2

1 + 3λ2 + x2 + 3λ2y2
, (5.15)

with xC = 0.27484. For the absence of scalar and tensor couplings (gS = gT = 0) we get back
the V −A equations (2.33). Using relations (5.10), the observables can be described in terms
of three free parameters, where λ may be different from the Standard Model value:

λ =
gA

gV
, x =

gS

gV
, and y =

gT

gA
. (5.16)

Limits on Scalar and Tensor Contributions: Since we are interested in the three
parameters λ, x = gS

gV
, and y = gT

gA
, we need at least three measured quantitites as input

parameters and studied the following combinations:

1. Electron Asymmetry A, neutrino asymmetry B, and lifetime τn, where the latter is
related to Rft using equation (2.72) with ft0+→0+ = 3072.7(8) [Har05] and fR =
1.71335(15) [Wil82, Abe04]. The situation of 2004, when we started working on this
subject, is shown in figure 5.7, the three input parameters are taken from [PDG04].

2. Electron Asymmetry A, neutrino asymmetry B, and proton asymmetry C. For the first
time, this data set allows to give constraints based on observables measured with one
single instrument: PERKEO II.

3. Electron Asymmetry A, neutrino asymmetry B, and eν-correlation a.

The exclusion plots are again generated as described in section 5.2, with the contours mapped
along the λ-axis onto the xy-plane.

We consider altogether six combinations of input parameters, to take into account the
two incompatible lifetimes τPDG = 885.7(8) s and τSer = 878.5(8) s, and the two elec-
tron asymmetry A values: The first is the one suggested by the Particle Data Group,

Figure 5.7: Limits on scalar and tensor contri-
butions to the weak interaction, calculated with
the average parameters A, B, τn of the year
2004 [PDG04], when the work on this thesis
was started. Comparison with figure 5.8 directly
shows the influence of the newly measured neu-
trino asymmetry B and its sensitivity to find
“new physics”. The Standard Model case with
gS = gT = 0 corresponds to the plot center.
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Figure 5.8: Constraints on scalar and tensor con-
tributions to the weak interaction, derived from
APDG, Bmean, τPDG.

Figure 5.9: Exclusion plot using APDG, Bmean,
and the newly measured neutron lifetime from
Serebrov τSer, which was published 2005.

Figure 5.10: Input: APII, Bmean, τPDG. Figure 5.11: Input: APII, Bmean, τSer.

Figure 5.12: Only PERKEO II measurements:
APII, B, and the new proton asymmetry C.

Figure 5.13: Input values: APDG, Bmean, and
a. Please note the different scales of the plots.
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APDG = −0.1173(13), the second only considers PERKEO II measurements with very small
corrections: APII = −0.1193(4). The corresponding exclusion plots are shown in figures
5.8−5.13 (please note the varying scales), the resulting χ2-minima and the 90 % confidence
level (CL) limits are given below:

1. APDG, Bmean, τPDG (figure 5.8): The plot is very similar to the result published by
[Sev06]4, whose limit on gA/gV and gT /gA is only slightly lower. On the other hand,
their constraint on scalar contributions is much better (|gS/gV | < 0.067). Our result is:

(gA/gV )min = −1.2705 90% CL: − 1.2822 < gA/gV < −1.2648
(gS/gV )min = 0.0596 90% CL: − 0.1444 < gS/gV < 0.1444
(gT /gA)min = 0.0588 90% CL: − 0.0924 < gT /gA < 0.0924.

The Standard Model case gT = gS = 0 is excluded by the 90 % contour in our analysis,
wheras it is included in [Sev06]; the positions of minimum χ2 agree. Since all plots
are point symmetric they sometimes show several global minima, but we only give the
coordinates of one position.

2. APDG, Bmean, τSer (figure 5.9): This result, employing the lower neutron lifetime τSer,
fully excludes the Standard Model and predicts the following limits:

(gA/gV )min = −1.2765 90% CL: − 1.2786 < gA/gV < −1.2732
(gS/gV )min = 0.0564 90% CL: − 0.0796 < gS/gV < 0.0796
(gT /gA)min = 0.0564 90% CL: − 0.0676 < gT /gA < 0.0676.

The positions of the global minima almost agree with case 1.

3. APII, Bmean, τPDG (figure 5.10): Here, we employ the mean A-value of all PERKEO
II measurements, which is much more precise than APDG. At the same time, however,
it is significantly higher:

(gA/gV )min = −1.2672 90% CL: − 1.2834 < gA/gV < −1.2639
(gS/gV )min = 0.0148 90% CL: − 0.1500 < gS/gV < 0.1500
(gT /gA)min = −0.0732 90% CL: − 0.0988 < gT /gA < 0.0988.

Again, the Standard Model is excluded.

4. APII, Bmean, τSer (figure 5.11): This parameter set uses the PERKEO II A-average,
the new mean value for B, and the neutron lifetime of Serebrov. The limits do not
include the Standard Model:

(gA/gV )min = −1.2762 90% CL: − 1.2795 < gA/gV < −1.2735
(gS/gV )min = 0.0564 90% CL: − 0.0940 < gS/gV < 0.0940
(gT /gA)min = 0.0564 90% CL: − 0.0772 < gT /gA < 0.0772.

4The authors use more experimental input values from neutron and nuclear decays, whereas we restrict
ourselves to neutron decay data only. Please note that they give limits obtained with constant χ2

min + 4,
whereas we use the usual 90 % CL limits: χ2

min + 4.61
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5. APII, B, C (figure 5.12): All values of this set have been measured by the PERKEO II
collaboration using the same instrument. For the first time, we can now give limits on
scalar and tensor currents using the proton asymmetry C, since this was previously not
known. The results

(gA/gV )min = −1.263 90% CL: − 1.287 < gA/gV < −1.217
(gS/gV )min = 0.052 90% CL: − 0.366 < gS/gV < 0.366
(gT /gA)min = 0.080 90% CL: − 0.136 < gT /gA < 0.136

agree with the Standard Model and with the absence of scalar and tensor contributions.

6. APDG, Bmean, a (figure 5.13): In a final step, we examine the sensitivity of the electron-
neutrino correlation a = −0.103(4) [PDG06] on gS and gT . The Standard Model is again
only included at 95 % confidence level, but the constraints are not very precise:

(gA/gV )min = −1.2462 90% CL: − 1.2789 < gA/gV < −1.2243
(gS/gV )min = 0.216 90% CL: − 0.312 < gS/gV < 0.312
(gT /gA)min = −0.076 90% CL: − 0.108 < gT /gA < 0.108.

Summary: Due to the unclear situation regarding the neutron lifetime, the current situ-
ation in neutron decay is best described by figure 5.14 showing the confidence levels for the
following input parameter set: τmean = 882.0(1.4) s, APII = −0.1193(4), Bmean = 0.9807(30),
C = −0.2377(36), a = −0.103(4), where the lifetime error was scaled by 2.5. The limits are:

(gA/gV )min = −1.2711 90% CL: − 1.2816 < gA/gV < −1.2663
(gS/gV )min = −0.0188 90% CL: − 0.1300 < gS/gV < 0.1300
(gT /gA)min = −0.0660 90% CL: − 0.0948 < gT /gA < 0.0948.

The Standard Model case, gS = gT = 0, is included in the 90 % confidence region, however,
even more precise input data is needed to make stronger statements. Especially the solution
of the neutron lifetime puzzle is very urgent.

The neutron decay results for tensor interactions are almost as precise as the best limits so far
[Sev06]. For scalar couplings, our constraints are much less stringent. However, the existence
of scalar currents seems to be almost ruled out by an analysis of ft values from several
superallowed β-decays: Assuming CVC hypothesis, the limit is |gS/gV | ≤ 0.0013 [Har05b].

Figure 5.14: Exclusion plot based on the neu-
tron decay parameters APII, Bmean, C, a, and
τmean. The uncertainty of the lifetime τ has been
scaled by 2.5 to account for the unclear experi-
mental situation when all measurements are con-
sidered. The Standard Model gS = gT = 0 is
included in the 90 % confidence region.



Chapter 6

Summary and Outlook

Correlation coefficients (or asymmetries) in the decay of polarized neutrons relate neutron spin
and momenta of the decay products. Their determination with high precision is important
to check the Standard Model of Particle Physics and to search for possible hints on “new
physics”.

Within the framework of this thesis, we have measured the neutrino asymmetry B, the corre-
lation between neutron spin and neutrino momentum, and the proton asymmetry C relating
neutron spin and proton momentum. For this purpose, the electron spectrometer PERKEO II
was installed at the high flux reactor of the Institut Laue-Langevin (ILL) in Grenoble, France.
It was equipped with a sophisticated combined electron-proton detector that allows to mea-
sure both particles with the same detector, regardless of their energy difference of three orders
of magnitude. The coincident detection of electron and proton is neccessary to determine the
neutrino momentum direction which cannot be detected directly in our setup.

Both quantities were measured successfully. The resulting uncertainty of the neutrino asym-
metry B is similar to the most precise measurement. Corrections to the value are small, what
is an important feature of the PERKEO II spectrometer. In case of the proton asymmetry,
we performed the first precision measurement at all. All values agree with previous measure-
ments or Standard Model expectations, and the new results lower the uncertainties of the
mean values considerably: The neutrino asymmetry error decreases by 25 %, and the proton
asymmetry precision was improved by more than a factor of 3.

Standard Model tests were performed with the new average values: In particular, we examined
experimental neutron decay data in order to obtain limits on right-handed admixtures to the
weak interaction and on additional scalar and tensor couplings. Due to the unclear situation
regarding neutron lifetime, where two incompatible values exist, it is very difficult to give
final constraints, since the different values change the results considerably. In all studied cases
within the manifest left-right-symmetric model, the Standard Model case is not included in
the 90 % confidence level contour, however, we do not consider this deviation to be significant.
Future evaluations based on even more precise data with low corrections will have to show if
this might be a trace of new physics.

The same holds for limits on possible scalar and tensor couplings: Depending on the parame-
ters used, the results change significantly, and again more precise and consistent observables
from neutron decay experiments are needed to clarify the situation. Currently, the general
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trend also does not include the Standard Model case within 90 % confidence level, except
when only results measured with PERKEO II are used. With the new C-value, a Stan-
dard Model test was performed that was not possible before: We can now give constraints on
scalar and tensor contributions derived from observables measured with one single instrument,
PERKEO II.

6.1 Statistical and systematical Limits

The experiment to measure the asymmetries was limited by several factors. Some of them are
“intrinsic”, i.e. they arise due to setup, method, or components chosen for the measurement.
However, we also had to face “unforeseen” limits: These were not expected and still cannot
be fully explained, but they contribute significantly to the overall precision. In this section,
we want to summarize the limiting factors:

• The most severe systematic limit on Bsame, generated from events where electron and
proton are measured in the same detector, is the uncertainty due to the imprecisely
known displacement between neutron beam and magnetic field maximum. It results
in an asymmetry shift, since the magnetic mirror effect is then different for the two
detectors. This limit was unforeseen: It only occured because the detectors did not
obtain results of the same statistical significance. Normally, the effect cancels when the
asymmetries of both detectors are averaged.

The virtual loss of the second detector was probably due to the quality of the thin carbon
foil on high voltage used to accelerate the protons to detectable energies. However, the
exact reason is still unknown, although many tests to improve its performance have been
performed during the experiment. Therefore, we cannot conclude that this limit should
be absent in another experiment of this type. Possibly, one could replace the carbon
foils by ultrathin polyimide to improve the stability of the proton detector [Hoe06].

• Bsame is still limited by statistics, however, improving this should be no problem since
statistics was decreased to minimize the displacement effect. If a second detector is
available, statistics is doubled anyway.

• The neutrino asymmetry Bopp, where electron and proton are measured in opposite
detectors, sufferes from electron detector calibration. Solely the detetcor gain could
be measured to a quite high accuracy (0.5 %), the energy offset was only known on
the 5−10 % level, imposing uncertainties in the percent range on Bopp. Bsame does
virtually not depend on energy calibration, whereas the proton asymmetry uncertainty
is dominated by detector calibration as well.

We made an effort to obtain calibration as precisely as possible. No preceding PERKEO
experiment examined the detector response function to this extend: We used six conver-
sion electron peaks for calibration and additionally made three two-dimensional detector
scans with a high spatial resolution. Anyhow, we are still limited by detector calibra-
tion. Using an electron gun to analyze the low energetic part of the spectrum could
possibly improve the situation.
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• Statistics is the second large contribution to the error of Bopp, whose statistical sen-
sitivity is highest at small energies. However, this region cannot be used for fits since
it shows a non-linear detector calibration, and high voltage induced background effects
occur. Whereas these effects might be improved, undetected electron backscattering
changing the asymmetries will always be present below 200 keV as long as standard
plastic scintillators are used.

These are the main sources of uncertainty for the present measurement. Accidential coin-
cidences and coincident after pulses from single photomultipliers that limited the previous
B-measurement with PERKEO II [Kre04b, Kre05b] are not important anymore. They were
suppressed by detecting many stops in the coincidence window, and by requiring a signal of
at least two photomultipliers to generate a trigger.

6.2 The Future: PERKEO III and new Instruments

PERKEO IIB, the experiment presented in this thesis, was the last using the electron spec-
trometer PERKEO II. In almost 12 years, altogether five measurements were performed,
three on the electron asymmetry, and two to obtain neutrino and proton asymmetry in a
coincidence setup.

The new instrument of the collaboration, PERKEO III, is shown in figure 6.1. It is much
larger than its predecessor – the decay volume has a length of about 2.5 m – to gain statistics
and to make measurements with a chopped neutron beam possible. This further reduces

Figure 6.1: Illustration of the new instrument PERKEO III: With an overall length of almost 8 m
and a decay volume of 2.5 m, it is much larger compared to PERKEO II. In this way, statistics is
increased by two orders of magnitude. However, coincidence measurements are not longer possible
due to the much longer proton drift times. Longitudally polarized neutrons enter the spectrometer
through beam tubes attached to the lower part. The magnetic field of the central solenoid housing
the decay volume defines two hemispheres in and against flight direction. The detectors are placed at
the ends of the higher part.
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the beam related background, one of the limiting factors in A-measurements so far. The
dramatically increased decay rate of about 30 kHz allows direct access to small induced
terms and corrections in neutron decay for the first time. An example for such a quantity
is the weak magnetism (“induced tensor”) form factor f2. Its existence is predicted by the
conserved vector current hypothesis (CVC) but has never been verified in neutron decay. The
first measurement with PERKEO III will be done to obtain a value for f2 [Mae06].

Within the time scale of a couple of years, the next child of the PERKEO family shall be
developed and built. It is planned that it will use a neutron guide as decay volume and
deliver decay products instead of neutrons to the experiment [Dub07]. With this approach,
even higher count rates can be achieved allowing to measure quantities like correlations with
the spin of the decay electrons.

However, both new instruments have something in common: It will not be possible to make
coincidence measurements, since event rate and proton drift times are much too high to
permit a proper assignment of a proton to an electron. Therefore, the measurement of the
neutrino asymmetry B, presented in this thesis, was the last coincidence measurement of the
PERKEO collaboration for the next years.
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