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Zusammenfassung:

In dieser Arbeit wird die erwartete Sensitivität für die Messung des Verzwei-
gungsverhältnisses des Lepton-Flavour-verletzenden Zerfalls τ− → µ−µ+µ−

berechnet. Der Zerfall kann im minimal erweiterten Standardmodell der
Teilchenphysik nur durch Neutrinooszillationen mit einem Verzweigungsverhältnis
O (10−55) auftreten. Theorien jenseits des Standardmodells sagen jedoch Werte
bis zu 10−7 voraus. Die vom LHCb-Experiment gemessene Obergrenze liegt bei
B(τ− → µ−µ+µ−) ≤ 4.6 (5.6)×10−8. In dieser Arbeit wird die Messung auf Daten
erweitert, die mithilfe des LHCb-Experiments bei Proton-Proton Kollisionen in
den Jahren 2016 − 2018 bei einer Schwerpunktenergie von

√
s = 13TeV aufgenom-

men wurden und einer integrierten Luminosität von 5.5 fb−1 entsprechen. Eine
multivariate Analysemethode wird genutzt, um Ereignisse als Signal oder Un-
tergrund zu klassifizieren. Dabei werden neue Variablen, die die Isolation der
Myonen quantifizieren, verwendet. Die Analyse wird getrennt für Signalereignisse
mit zwei, beziehungsweise drei identifizierten Myonen und für die drei Datennah-
mejahre optimiert. Der Zerfall D−s → φ(µ−µ+)π− wird als Referenz genutzt,
um die erwartete Sensitivität für die sechs Unterklassen getrennt zu bestimmen.
Mithilfe der CLS-Methode werden die Sensitivitäten kombiniert. Es wird er-
wartet, dass eine Obergrenze von B(τ− → µ−µ+µ−) ≤ 2.96 (3.58)× 10−8 für ein
Konfidenzintervall von 90% (95%) erreicht wird.

Abstract:

In this thesis, the expected sensitivity on the branching fraction of the lepton
flavour violating decay τ− → µ−µ+µ− is estimated using 5.5 fb−1 of data collected
at the LHCb detector in proton-proton collisions at a center-of-mass energy of

√
s

= 13TeV in the years 2016 − 2018. The minimal extended standard model of
particle physics including neutrino oscillation predicts it at a branching fraction
of O (10−55). However, some beyond standard model theories predict branching
fractions up to 10−7. While the previous measurement done by LHCb set an
upper limit of 4.6 (5.6)× 10−8, novel techniques are applied in this work in order
to improve the sensitivity of the measurement. A multivariate classifier using
new muon isolation variables is trained to distinguish signal and background to
enhance the signal sensitivity. For each year, the data is separated into two sub-
samples depending on the number of muon candidates triggered by the LHCb
muon system. The D−s → φ(µ−µ+)π− channel is used as reference channel to
estimate an expected limit for all six sub-samples separately. The CLS method
is applied to combine them and results in B(τ− → µ−µ+µ−) ≤ 2.96 (3.58)× 10−8

at 90% (95%) confidence level.
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1 Introduction

The ultimate goal of all particle physicists is the complete description of the under-
lying rules describing all of our universe and everything that happens within, from
the big bang to the unknown future. While this goal itself might never be reached
completely, huge steps towards it have been taken by the science community during
the past centuries. These results converged ultimately in what is called the Standard
Model of particle physics. This extensive model describes the particle components of
the universe and the interactions between them. Ever since, the objective of particle
physics has been to investigate the Standard Model for weaknesses and extend it for
a better description of nature. So far almost every experiment confirmed the predic-
tions made by the Standard Model. Nevertheless, one of the most recent additions
is the fact that neutrinos possess mass and are able to oscillate between different
states, resulting in the minimal extended Standard Model. This extension adds the
possibility of lepton flavour violating decays, like the decay τ− → µ−µ+µ−, which
is predicted with a very low branching fraction of O (10−55)[1]. At the same time,
many theories beyond the Standard Model allow for this decay with a branching
fraction at the level of O (10−10 − 10−7). Examples are:

• supersymmetric low-scale seesaw models [2]

• Little Higgs models [3]

• the Minimal Supersymmetric Standard Model [4]

The current best experimental limit on the branching fraction is
B(τ− → µ−µ+µ−) < 2.1 × 10−8 at 90% confidence level, observed by the Belle
Collaboration with data from the BELLE detector [5]. The best limit reached by
LHCb (Large Hadron Collider beauty) at CERN is 4.6 × 10−8 at 90% confidence
level [6]. With the new dataset taken by LHCb in the years 2016 − 2018 correspond-
ing to a total integrated luminosity of 5.57 fb−1 [7], a higher sensitivity than that
of BELLE is expected to be reached.
If the decay τ− → µ−µ+µ− can be observed in the LHCb data, this would be an un-
ambiguous sign for new physics phenomena beyond the Standard Model and would
broaden our understanding of physics considerably. On the other hand, if no evi-
dence can be found, a new limit can be set, which would solidify the rules for the
description of nature and put theories beyond the Standard Model to a more strict
test.
The goal of this thesis is to use the power of multivariate analysis techniques in
order to distinct τ− → µ−µ+µ− signal events from background events and compute
signal selection efficiencies for the 2016 − 2018 dataset taken by LHCb to calculate
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the sensitivity of the analysis.
In chapter 2 this thesis gives a short introduction into the Standard Model of physics
and the physics background of the investigated processes, followed by an introduc-
tion to the general setup of the LHCb experiment at CERN in Chapter 3. Further-
more, an overview of the data acquisition process both for data measured by the
LHCb experiment and simulated data is given. Chapter 4 introduces the signal and
reference channel. Chapter 5 describes the analysis strategy and the relevant tools
used in this thesis. In Chapter 6, the preparation of data is explained and subse-
quently in Chapter 7 the use of the multivariate analysis toolkit Tmva to separate
signal and background is described. Chapter 8 presents the final results. Finally, in
Chapter 9, they are summarized and discussed.
The analysis outlined in this thesis is performed within the context of the LHCb
experiment, which is dedicated to the study of b and c hadron decays. The LHCb
collaboration is an international collaboration composed of approximately 1400 sci-
entists from 85 universities and laboratories and 19 countries.
The analysis team working on the τ− → µ−µ+µ− decay consists of F. Archilli1,
M. Calvi2, S. Capelli2, R. Caspary1, M. Chrząszcz3, D. Fazzini2, G. Frau1 and M.
Martinelli2. This thesis relies on work done by other members of this group in a few
instances, specifically in Section 6.3 and 8.3, which will be explicitly honoured at the
beginning of the individual chapters.

1University of Heidelberg, Physikalisches Institut Heidelberg, Germany
2The University of Milano Bicocca, Italy and INFN Milano
3Polish Academy of Sciences, Institute of Nuclear Physics (IFJ PAN) and University of Zürich
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2 Theory

The aim of this thesis is the search for the lepton flavour violating decay τ− →
µ−µ+µ−, which is highly suppressed in the minimal extended Standard Model of
particle physics (SM) including neutrino oscillations. Various theories beyond the
SM allow for the process with a much higher branching fraction, making it an
interesting process to study in order to search for physics phenomena beyond the SM.
In this section, the theoretical background for the τ− → µ−µ+µ− process is given
together with an introduction to the Standard Model of particle physics. The process
of lepton flavour conservation, which is violated in τ− → µ−µ+µ−, is explained.

2.1 Standard Model

The Standard Model (SM) of particle physics is a relativistic, renormalisable quan-
tum field theory describing the fundamental constituents of the universe, the ele-
mentary particles, and the forces, which allow for interactions between them. It
provides a full description of all interactions in nature except for gravity at the most
basic level. It successfully describes the overwhelming majority of the current ex-
perimental data taken in laboratory experiments.
In the SM, all known matter is built up of twelve matter particles and twelve anti-
matter particles. The latter mirror the matter particles by having the exactly op-
posite charges, but the same mass. All elementary matter and anti-matter particles
are fermions of half-integer spin. Responsible for interactions between the particles,
and between each other, are five gauge bosons of spin 1, as well as the Higgs boson
with spin 0. All elementary matter particles can be defined as mass or flavour eigen-
states. For quarks and charged leptons, the mass eigenstate corresponds mostly to
one flavour eigenstate. The particle content of the SM is summarised in Tab. 2.1
for fermions and Tab. 2.2 for bosons with their most important properties. The
convention c = 1 and ~ = 1 is used throughout the thesis.
The twelve fundamental matter particles are divided into six quarks and six lep-
tons. The leptons are the electron, e−, the muon, µ− and the tau, τ−, as well
as their respective neutrinos, the electron-neutrino, νe, the muon-neutrino, νµ, and
the tau-neutrino, ντ . The six quarks are the up-quark, u, the down-quark, d, the
strange-quark, s, the charm-quark, c, the bottom-quark or beauty-quark, b, and
the top-quark or truth-quark, t. All twelve fermions, as well as their anti-matter
counterparts, interact via the weak interaction. The weak interaction implies the
exchange of a W± boson in so-called charged-current (CC) interactions and of a Z
boson in so-called neutral-current (NC) interactions. All electrically charged parti-
cles interact via the electromagnetic (EM) interaction, via an exchange of neutral
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Table 2.1: The fermions of the Standard Model with their individual properties [8].
generation: 1st 2nd 3rd
leptons e− νe µ− νµ τ− ντ

mass1[MeV ] 0.511 < 10−6 105.66 < 10−6 1776.86 < 10−6

electric charge −1 0 −1 0 −1 0
colour charge no no no no no no

spin 1/2 1/2 1/2 1/2 1/2 1/2
lepton number 1 1 1 1 1 1
lepton flavour Le = 1 Le = 1 Lµ = 1 Lµ = 1 Lτ = 1 Lτ = 1

quarks u d s c b d
mass [MeV ] 2.2 4.7 95 1,275 4,180 173,000
electric charge +2/3 −1/3 −1/3 +2/3 −1/3 +2/3
colour charge yes yes yes yes yes yes

spin 1/2 1/2 1/2 1/2 1/2 1/2
baryon number 1/3 1/3 1/3 1/3 1/3 1/3

1 The neutrino flavour eigenstates are highly mixed mass eigenstates so that an
exact mass can not be assigned to a flavour eigenstate. The upper limit of all
three mass eigenstates is 1.1 eV.

photons γ. Quarks carry colour charge and can therefore interact via the strong
interaction by exchanging gluons, g. Gluons also carry colour charge and are thus
the only self-interacting gauge bosons. Quarks usually do not exist individually,
but are bound by gluons in composite particles that are colour-neutral, have integer
charge and are collectively called hadrons. Mesons, like pions or kaons, but also
tetraquarks, consist of an even number of quarks and anti-quarks. Baryons, like the
proton or the neutron, but also pentaquarks, consist of an odd number of quarks
and anti-quarks. The only quark that never hadronises into a composite particle is
the top-quark, as it decays too fast.
In the SM, particles acquire mass through their interaction with the Higgs field.
All massive particles are therefore able to interact with the Higgs boson, H. This
includes all fermions and gauge bosons except for gluons and photons. However, in
the original theoretical representation of the SM, neutrinos are massless, although
experimental evidence shows that they are not [9].

Table 2.2: The bosons of the Standard Model with their individual properties [8].
W Z photon gluon Higgs-boson

symbol W± Z γ g H
rest mass [GeV ] 80.379 91.188 0 0 125.10
electric charge ± 1 0 0 0 0
colour charge no no no yes no

spin 1 1 1 1 0
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2.2 Lepton flavour violation

Symmetries and conservation laws are central to the development of the Standard
Model of particles physics. According to Noether’s theorem, any symmetry of the
Lagrangian is linked to a conserved current [10]. The Lagrangian is a mathematical
function used to describe the dynamics of a quantum field theory. By implication,
any conserved quantity demands the invariance of the Lagrangian under a trans-
formation. For example, energy conservation is linked to time invariance of the
Lagrangian, and momentum conservation to space invariance (translation symme-
try) [11]. The conservation of electrical charge, colour charge and weak isospin is
linked to gauge invariance under a certain symmetry group each. An overview of
conserved quantities and their corresponding symmetries is given in Tab. 2.3.

Table 2.3: Conserved quantities and their corresponding symmetries of the Lagrangian in
particle physics.

conserved quantity symmetry
mass-energy time invariance
linear momentum translation symmetry
angular momentum rotation symmetry
electrical charge U(1) gauge invariance
colour charge SU(3) gauge invariance
weak isospin SU(2)L gauge invariance

There are further discrete symmetries under which the Lagrangian is invariant, which
do not lead to conserved quantities. An example is CPT-invariance, which means
that the Lagrangian is invariant under the product of charge conjugation (C), parity
transformation (P) and time reversal (T).
There are also apparently conserved quantities in the Standard Model that are not
linked to symmetries of the Lagrangian, but purely experimentally established. This
means that no violation has been observed yet. An example is the baryon number
B, which is 1/3 for every quark and −1/3 for every anti-quark. The equivalent
number for leptons is called lepton number L. It is 1 for every lepton and −1
for every anti-lepton. Additionally, there are three lepton flavour numbers, Le,
Lµ, and Lτ . Table 2.4 shows an overview over the lepton flavour numbers of all
leptons. The sum of the three lepton flavour numbers equals the lepton number:
L = Le +Lµ +Lτ . Violation of the lepton flavour number has only been observed in
neutrino oscillations so far. This opens up the possibility of lepton flavour number
violation in any leptonic decay involving neutrinos in higher order diagrams. The
decay discussed in this thesis, τ− → µ−µ+µ−, violates both Lτ and Lµ conservation.
The decay process is shown in Fig. 2.1.1

1For any decay mentioned in this thesis, the charge conjugated process is implied, too.
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Table 2.4: Lepton flavour numbers of the SM leptons.
particle Le Lµ Lτ
e− 1 0 0
e+ -1 0 0
νe 1 0 0
νe -1 0 0
µ− 0 1 0
µ+ 0 -1 0
νµ 0 1 0
νµ 0 -1 0
τ− 0 0 1
τ+ 0 0 -1
ντ 0 0 1
ντ 0 0 -1

Figure 2.1: Violation of lepton flavour number via neutrino osciallation in the decay τ− →
µ−µ+µ−.
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3 Data acquisition

In this thesis, data taken with the LHCb experiment at the LHC accelerator in
the years 2016 − 2018 is analysed and compared to simulated data. This chapter
introduces the LHC accelerator complex and the LHCb experiment with the subde-
tectors relevant for analysing the decay. An overview of the LHCb trigger system
and the simulation of data for LHCb is given. Furthermore, the event selection and
reconstruction mechanisms that both measured and simulated data undergo before
being used for this thesis are detailed.

3.1 Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful acceler-
ator to date. Situated at the Conseil européen pour la recherche nucléaire (CERN)
on the border of Switzerland and France, it consists of a 27 kilometre ring of super-
conducting magnets around the beam lines, where two high-energy particle beams
are accelerated in opposite direction close to the speed of light. The LHC works in
ultra-high vacuum and at ultra-low temperatures. It accelerates protons as well as
heavy ions coming from pre-accelerators. They collide in the detectors which are
situated at four collision points and at various other stations around the LHC ring.
The whole accelerator complex can be seen in Fig. 3.1.
This thesis concentrates on proton-proton collisions. The protons are produced by
stripping the electrons from hydrogen atoms. They are then injected into the pro-
ton synchrotron booster from the Linear Accelerator 2 (LINAC2) at an energy of
50MeV. The booster accelerates them to 1.4GeV and feeds them to the Proton
Synchrotron (PS). At an energy of 25GeV they are sent to the Super Proton Syn-
chrotron (SPS) to be accelerated to 450GeV. Finally they are transferred in two
directions into the LHC which accelerates them up to 6.5TeV in a time span of
20 minutes. Under normal conditions, the beams circulate in the LHC beam pipes
for many hours before new beams need to be injected. An overview over the LHC
accelerators and the energy they accelerate the protons to is shown in Table 3.1.
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Figure 3.1: The CERN accelerator complex[12]

Table 3.1: The boost energies of the protons inside the different stages of the CERN ac-
celerator complex [13].

accelerator proton energy
LINAC2 50MeV
booster 1.4GeV
PS 25GeV
SPS 450GeV
LHC 6.5TeV
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The two most important features of an accelerator are its centre-of-mass energy,√
s, and its instantaneous luminosity, L. The luminosity determines the event rates

for a given process. The number of interactions N is the product of the luminosity
integrated over time t and the cross section σ of the collision:

N = σ

∫
L(t)dt (3.1)

The LHC was up to now active in two periods, which are called Run 1 and Run 2.
Run 1 lasted from 2010 − 2012 with an integrated luminosity at LHCb of 3.23 fb−1

and a centre-of-mass energy of 7 and 8TeV. Run 2 lasted from 2015 − 2018 with
an integrated luminosity at LHCb of 5.9 fb−1 and a centre-of-mass energy of 13TeV.
The data for this thesis was taken in the years 2016 − 2018 of Run 2. In these
years the LHC reached a peak luminosity for proton-proton collisions of ≈ 1.2 ×
1034 cm−2 s−1 [13], of which LHCb recorded an integrated luminosity of 5.57 fb−1 [7]
at a centre-of-mass energy of

√
s= 13 TeV. The integrated luminosity corresponding

to the data sets recorded by LHCb in the different years can be found in Fig. 3.2
together with the corresponding beam energies.

Figure 3.2: Integrated recorded luminosity of LHCb for the years 2010 − 2018 [7].

There are seven experiments at the LHC making use of particles produced in the
proton-proton collisions. The four major experiments of the LHC, ATLAS (A
Toroidal LHC ApparatuS), ALICE (A Large Ion Collider Experiment), CMS (Com-
pact Muon Solenoid) and LHCb (LHC beauty) are stationed at the four interaction
points. TOTEM (TOTal Elastic and diffractive cross section Measurement) is spread
across almost half a kilometre around the CMS interaction point. LHCf (LHC for-
ward) is made of two detectors sitting along the LHC beamline on both sides of the
ATLAS collision point. MOEDAL (MOnopole and Exotics Detector At the LHC)
is deployed around the same intersection region as the LHCb detector.
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3.2 LHCb detector

The LHCb experiment [14] is the smallest of the four large experiments at the LHC
and is dedicated to precision measurements of particles containing b and c quarks,
collectively known as B and D hadrons. A cross section of the LHCb detector can be
found in Fig. 3.3. LHCb is a forward detector with the single subdetectors stacked
behind each other, optimised for the detection of B and D hadrons.

Figure 3.3: Cross section of the LHCb detector [15]

Figure 3.4 shows an overview over the coordinate system used in LHCb. The z axis
is defined parallel to the beam axis. The direction along the z axis pointing from
the interaction point towards the muon stations M1 − M5 is called downstream,
while the opposite direction is called upstream [16]. The z direction labels the axis
downstream and parallel to the beam pipe and the y axis points up towards the
surface. The x axis, which lies parallel to the ground and points away from the
centre of the LHC accelerator ring, points out of the figure.
It is sometimes useful to use momentum and energy information only from the
two axes perpendicular to the beam axis, the x and y axis, as due to momentum
conservation the total momentum in the collision in these directions amounts to
zero. Momentum and energy reconstructed from the information in these directions
only are called transverse momentum pT

pT =
√
p2x + p2y (3.2)

and transverse energy ET

E2
T = m2 + p2T =̂ E2 − p2z. (3.3)
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The azimuthal angle in the x-y-plane is called φ. For the horizontal angle θ in the
z-x- or z-y-plane, the pseudorapidity η is introduced:

η = − ln[tan(θ/2)] (3.4)

The distribution of particles is more equal in dependency of η than of θ. The
pseudo-rapidity approximates the rapidity for high energy particles.

Figure 3.4: Overview of the coordinate system used at LHCb.

3.2.1 The HeRSCheL detector

Not labeled in Fig. 3.3 is the subdetector called High Rapidity Shower Counters for
LHCb (HeRSCheL) [17]. It is not located in the LHCb cavern itself, but in the
LHC tunnel on both sides of the interaction point. It consists of twenty square
plastic scintillators just outside the vacuum pipe. Its purpose is to detect activities
corresponding to particles produced with an angle too small to be detected by the
rest of the LHCb detector. The layout is shown in Fig. 3.5.
HeRSCheL was installed for Run 2 to enhance the capabilities of LHCb in diffrac-
tive physics and to increase the sensitivity in high rapidity regions (up to η ≈ 5).
This enables the detection of showers induced by very forward particles that interact
in the beam pipe or in other machine parts.
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Figure 3.5: Layout of the active areas of the HeRSCheL stations around the LHCb de-
tector taken from [17], with HeRSCheL stations magnified by a factor of 20
with respect to the rest of the LHCb detector, and the z axis not to scale.

.

3.2.2 The VELO detector

The next subdetector is the Vertex Locator (VELO) [18]. VELO is built to com-
pletely cover the angular acceptance of detectors downstream. Its main task is to
identify the decay vertex of B and D hadrons. The sensitive detector is only moved
mechanically towards the beam once the beam is stable to prevent it from fatal
radiation damage. The modules of the lower half can be seen in Fig. 3.6.

Figure 3.6: The modules of the lower half of the VELO detector [19]
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By measuring the distance between the collision point of the protons (primary ver-
tex) and the decay point of the B or D hadrons (secondary or decay vertex), the
VELO detector is able to determine the decay length of B and D hadrons within
10µm. This allows for measurements of particle decay times and impact parameters
with high precision. The impact parameter (IP) of a track describes the minimal
distance between the primary vertex and a reconstructed track. This is visualised
in Fig. 3.7. Tracks originating from a secondary vertex have a non-zero impact pa-
rameter. Track segments composed solely of VELO hits are called VELO tracks.

Figure 3.7: Visualisation of the Impact Parameter in the decay of a B meson.

3.2.3 The RICH detector

After the VELO comes the Ring Imaging CHerenkov detector (RICH) [20]. It con-
sists of two detectors built for particle identification. The two detectors, lying on
either side of the magnet, are responsible for identifying a range of different charged
particles by measuring emissions from Cherenkov radiation. Cherenkov radiation
occurs whenever a charged particle passes through a certain medium faster than
light in the same medium. RICH1 is filled with a silica aerogel as well as the dense
gaseous C4F10, while RICH2 is filled with the dense gaseous CF4. The schematic
layout of the RICH1 detector is shown in Fig. 3.8.
Passing through the gas with the refractive index n with a velocity larger than the
speed of light in the gas, c/n, the charged particle emits photons in a cone of aperture
θ around the particles direction of propagation. The velocity of the particle, v = βc.
can be calculated directly from the angle θ using the formula:

cos(θ) =
1

βn
(3.5)

Together with the momentum information from the tracking system, this can be
used to determine the particle mass and therefore identify the particle type.
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Figure 3.8: Schematic layout of the RICH1 detector in the side view taken from [21].

3.2.4 The LHCb magnets

The powerful LHCb magnets [22], responsible for bending the path of charged parti-
cles in order to measure mass and momentum, weigh both 27 tonnes and are mounted
inside a 1,450 tonne steel frame. The magnetic field integrated over the track length
of 10 meters equals

∫
Bdl = 4 Tm. The magnet is responsible for bending the path

of the particles to reconstruct their momentum and mass. The LHCb detector has
two configurations called magnet up (MagUp) and magnet down (MagDown) [23].
They correspond to the dipole magnetic field being along the positive or negative y
axis. The detector configuration regularly swaps between the two polarities in order
to minimise systematic effects on the tracking detector.

3.2.5 The tracking system

The tracking system is responsible for detecting the traces of charged particles in
the detector. It assigns momentum as well as measures the impact parameter with
high resolution. The tracking station upstream of the dipole magnet, called Trigger
Tracker (TT) [24], as well as the central part of each of the three tracking stations
T1 − T3, called Inner Tracker (IT) [25], consist of silicon microstrip detectors. The
main task of the TT is to measure the trajectories of low-momentum particles before
they are bent out of the detector acceptance by the magnets and therefore do not
reach T1 − T3, and to assign transverse momentum information to tracks.
The outer part of the three tracking stations T1 − T3 is called Outer Tracker
(OT) [27]. It is situated further from the beam pipe and made up of thousands
of gas-filled straw tubes. The tracking stations are separated into inner and outer
trackers because the particle flux is much higher closer to the beam pipe. The
tracking stations measure momentum and impact parameter with different resolution
depending on the distance to the beam pipe.
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Figure 3.9: The LHCb tracking system with the silicon tracker in purple and the outer
tracker in cyan [26].

As shown in Fig. 3.10, tracks reconstructed from hits in the entire tracking system
are called LONG tracks, in contrast to VELO tracks reconstructed solely from VELO
hits. An overview of the tracking system can be seen in Fig. 3.9.

Figure 3.10: VELO and LONG tracks in LHCb, together with downstream, upstream and
T tracks.

3.2.6 The calorimeters

The LHCb calorimeter system [28] consists of the Scintillating Pad Detector (SPD),
the PreShower (PS), the Electromagnetic CALorimeter (ECAL) and the Hadronic
CALorimeter (HCAL). Its main responsibility is the identification and measure-
ment of the energy and momentum of hadrons, electrons and photons with high
transverse energy, providing information for online selection. Additionally, it distin-
guishes prompt and secondary photons. Prompt means the particles are produced
directly in the collision, while secondary photons are produced in the decay of other
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particles, like the π0. The separation between photons and electrons at the first
trigger level is made by the SPD and the PS, which are separated by a lead layer.
The charged electrons deposit energy in the scintillator material, while the neutral
photons generally do not interact. After the distinction between photons and elec-
trons is made, the ECAL is employed to measure the energy of both. Neutral and
charged hadrons deposit most of their energy in the HCAL and only a small part of
it in the ECAL.

3.2.7 The muon system

Located at the far end of the detector, the muon system consists of five rectangular
muon stations, M1 - M5 [29]. Each station is filled with a mixture of carbon dioxide,
argon and tetrafluoromethane and connected to wire electrodes to read out the
results of reactions between muons and the gas. The muon system is responsible for
identifying and measuring the path of muons, which are present in the final states of
many B and D hadron decays and therefore vitally important to the LHCb physics
program. The muon detector uses the penetrative power of muons to provide a
robust muon trigger for the online selection.
The muon detector has an angular acceptance of 20 - 306 mrad in the bending and
16 - 258 mrad in the non-bending plane. This provides a geometrical acceptance of
about 20% for muons from B and D hadron decays relative to the full solid angle.

3.3 The LHCb trigger system

The LHCb detector is designed to work with a maximum luminosity of 2×1033 cm−2 s−1.
The expected collision rate at this luminosity is 40MHz. The LHCb trigger sys-
tem [30] consists of two levels. It exploits the fact that b-flavoured hadrons are
relatively heavy and long lived. An overview is shown in Fig. 3.11.
The first level trigger L0 is implemented in hardware. It selects candidates with
high transverse momentum pT or high transverse energy ET . The L0 muon and
dimuon triggers search for muon candidates with a high transverse momentum and
trigger on hits on a straight line through the five muon stations. They allow for up
to eight muon candidates per event. The L0 calorimeter trigger searches for hadron,
electron, photon and neutral pion candidates which deposit energy in the calorime-
ters. For each particle type it chooses only the candidate with the highest transverse
energy measured in the calorimeters. The L0 pile-up system is a component of the
VELO detector. It rejects events with too many proton-proton collisions (primary
vertices). About 10% of events accepted by L0 are triggered by more than one L0
trigger type. The L0 trigger reduces the event rate from 40MHz to around 1MHz.
The next trigger level, the High Level Trigger (HLT), is implemented in software
and consists of a C++ application running on the events accepted by L0. The ap-
plication responsible for running the HLT is called Moore [31]. It is running on
an Event Filter Farm. Its main task is to confirm the hardware trigger decision and
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to fully reconstruct the events.

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

Figure 3.11: The LHCb trigger flow for Run 2 [32].

HLT contains two layers. The first is called HLT1. It reduces the L0 data output
rate of 1MHz to a few tens of kHz. It subjects the events to different sequences of
algorithms, called "trigger lines", dependent on the decision issued by L0. It confirms
the L0 candidates by adding information from either the VELO or the tracking
system and applies cuts on the transverse momentum and the impact parameter.
Sometimes, the HLT1 also looks for extra particles, for example for two muons from
a good vertex.
The next layer is called HLT2. It runs on the output of HLT1. First, it performs
a full pattern recognition on the remaining events. Tracks associated to stable
particles are used to form composite particles. HLT2 selects events which contain
specific resonances likely to be produced in B decays and fully reconstructed B
hadron decays. The HLT2 trigger reduces the data output rate of 1MHz to a rate
of about 12.5 kHz. It stores the information about the trigger decisions.
Once a signal candidate is reconstructed in the offline analysis, two different cases
are distinguished. Trigger On Signal (TOS) means that the particle triggering the
specific trigger decision belongs to the reconstructed signal. Trigger Independent of
Signal (TIS) means that an additional particle not belonging to the reconstructed
decay triggered the decision.

3.4 Monte Carlo simulation

There are multiple reasons why it is helpful to have simulated data. It can be used
to generate an expectation from a model, to compare data with a theory and see
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whether it deviates significantly or to determine strategies how to analyse the data.
The aim of Monte Carlo simulation (MC) is to randomly produce simulated data
which behaves the same way as data taken in the experiment. The simulation of
LHCb MC events is complex and consists of multiple steps. Responsible for the
generation of MC events is the LHCb software package Gauss [33]. In the first
step, proton-proton collisions are simulated using the event generator Pythia [34].
The decay of the resulting unstable particles is then simulated using the EvtGen
library [35]. Subsequently, the simulated events are going through a simulation of
the detector, produced with Geant4 [36]. The detector response to the simulated
events, including the response of the hardware trigger L0, is simulated with Boole
[37]. The output from Boole is then processed by Moore and follows the same
event flow as the detector output from the L0 trigger.

3.5 Event reconstruction

Triggered, raw data and simulated data coming from Moore are reconstructed to
transform the detector hits into objects such as tracks and clusters. This is done
by the Brunel application. The reconstructed events coming from Brunel are
saved into files through a filtering process called stripping. The stripping is done
using the LHCb application DaVinci. Each stripping line applies a series of cuts
on the reconstructed data that removes a large number of candidates which are
uninteresting for the specified process. The output from DaVinci is stored in files
accessible by Root which contain the information of each event. The complete
LHCb data flow is shown in Fig. 3.12.

Figure 3.12: The LHCb data flow taken from [38].
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4 Analysis outline

The aim of this study is the search for the lepton flavour violating decay τ− →
µ−µ+µ−, which is highly suppressed in the minimal extended Standard Model of
particle physics (SM) including neutrino oscillations. Monte Carlo samples are pre-
pared and analysed in order to study the decay characteristics of τ− → µ−µ+µ−.
A more abundant, but kinematically very similar decay, namely D−s → φ(µ−µ+)π−,
is studied in data and in simulation with the objective of checking for potential
differences between the Monte Carlo samples and data taken by the experiment.
This so-called control channel is as well used as reference to derive the limit on the
branching fraction, as will be explained later. In this section, an overview over the
analysis strategy is given and the characteristics of the signal and reference chan-
nel are introduced. The tools used for this analysis are briefly mentioned here and
further explained in the next chapter.

4.1 Analysis strategy

The MC and data samples used in this analysis pass the reconstruction and strip-
ping described in the last chapter. Stripping lines define a number of loose cuts
referring to the wanted decay characteristics. Stripping lines specific for the signal
and control channel are used to obtain data samples, separately for the three years
2016 − 2018. The samples obtained are called signal data sample and control data
sample, and MC signal sample and MC control sample, respectively.
There are different production processes for both the signal and the control chan-
nel. As each of these processes is simulated separately, with the resulting number
of candidates per process not necessarily representing the true ratio expected from
data, it is necessary to correct the production rate of the MC samples.
Then, specific trigger lines corresponding to characteristics of the signal decays are
chosen. Any event not triggered by these trigger lines is removed in every sample.
These events are less likely to stem from the signal decay. In order to further con-
centrate on interesting events, preselection cuts are applied to all samples. These
are chosen mostly equivalent to the previous analysis performed on Run 1 data [6].
The control channel is used to compare Monte Carlo and data distributions in se-
lected variables. As the D−s → φ(µ−µ+)π− channel is kinematically very simi-
lar to the τ− → µ−µ+µ− channel, any difference between Monte Carlo and data
found in this channel is expected to appear similarly in the signal channel. The
D−s → φ(µ−µ+)π− signal distributions in the control data sample are obtained
using the sWeighting procedure, which removes the background on a statistical ba-
sis. A fit to the MC control sample is used to optimise the sWeighting procedure
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on the control data sample. For more information on sWeighting, see Sec. 5.2. The
sWeighted control data distributions are normalised and compared to the normalised
MC control distributions. Weights are applied to the MC control events to match
the control data distributions. These weights are stored in dependency of the se-
lected variables and then applied to the MC signal samples. This is done separately
for all three years, 2016 − 2018. These weights are necessary, because the MC needs
to reproduce the data as good as possible so that the efficiencies of applied cuts can
be calculated using the simulated samples.
The stripping line chosen for the signal channel requires at least two muons to be
identified by the LHCb muon system as good muons. Therefore, the signal data
and MC samples are separated into two sub-samples each, which are called the 2µ
sub-sample and the 3µ sub-sample. They are mutually exclusive and hold all events
where exactly two or three muons are accepted as good muons respectively.
The network is trained separately on the 2µ sub-sample and the 3µ sub-sample as
well as on a merged sample of both. Figure 4.1 shows schematically the preparation
of all samples until they are handed to the multivariate classifier.
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Figure 4.1: Schematic overview over the preparation of the samples used in the multivariate
analysis.
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The best training when applied to the different sub-samples is chosen in the end and
applied to all samples.
The output distributions of this training classifier in the control channel are used
to again compare the control data sample and the MC control sample for all three
years separately. A second set of weights is produced to match the data distributions
to the MC distributions. The weights correct mainly for residual discrepancies and
differences in variable correlations between the MC and the data samples. Again,
these weights are applied to the MC signal samples of all three years.
An additional particle identification cut is placed on the good muons of the signal
samples in order to further reduce background. This particle identification cut is
optimised together with the cut on the multivariate classifier output for the 2µ and
the 3µ sub-samples separately. For the 2µ sub-sample an additional cut on the
particle identification of the third particle, which is not accepted as a good muon
by the muon chambers, is applied. As the classifier is composed out of kinematic
variables, it is uncorrelated with the particle identification variables. The cuts are
optimised separately for each year. The efficiencies of these cuts on the MC signal
samples of all years are calculated separately for the 2µ and the 3µ sub-samples.
A fit through the mass distribution of each of the signal data samples is used to
estimate the expected background in the signal region. The efficiencies are used
together with the expected background to calculate and combine expected upper
limits on the branching fraction for all three years. For this, the D−s → φ(µ−µ+)π−

channel is used as reference channel.

4.2 Signal channel

The signal process τ− → µ−µ+µ− is the decay of a single tau into three muons. No
other particles are expected in the final state. The process is highly suppressed in
the Standard Model, but neutrino oscillations allow for it with a very tiny branching
fraction of O(10−55)[1]. Theories describing phenomena beyond the SM allow for
the process with a much higher branching fraction [2][3][4]. The branching fraction
is mainly limited by the properties of the neutral particle responsible for the lepton
flavour violation, as shown in Fig. 4.2.
In beyond SM theories the neutrino can be replaced by another neutral particle
responsible for the lepton flavour violation, as shown for a yet unknown particle
calledX0 in Fig. 4.3a. This could for example be a heavy neutrino. Another possible
Feynman diagram for the signal process with an extended particle content is shown
in Fig. 4.3b. This includes, additionally to the X0, a new charged particle called
here X−.
There are five B and D hadron decays involving τ− in the final state considered as
dominant τ− production modes in this thesis. The τ− can be produced in the decay
of a D±s , which can be either (i) prompt, or (ii) coming from a B meson. It can
also be produced in the decay of a D±, which can also be either (iii) prompt or (iv)
coming from a B meson. Finally, the τ− can be produced (v) prompt in the decay
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of a B meson. An overview of the branching fractions of these five sub-channels
with their total branching fraction Btot can be found in Tab. 4.1. The ratio Btot is
calculated by multiplying the individual branching fractions for the decay steps and
adding the two branching fractions if there are separate values for both charges. In
case of Bb→D+ no branching fraction has been measured so far, so the shown value
is obtained by multiplying the branching fraction Bb→D+

s
with (|Vcd|2/|Vcs|2), where

Vcd and Vcs are the CKM matrix elements describing the transition c→ d and c→ s
respectively.

(a) photonic penguin (b) Z penguin

(c) box diagram

Figure 4.2: Three possible Feynman diagrams for the signal process involving neutrino
oscillation.

(a) photonic penguin (b) Z penguin

Figure 4.3: Two possible Feynman diagrams for the signal process in beyond Standard
Model theories involving unknown particles X0/−.
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Table 4.1: Branching fractions for the τ production channels [39].
channel Bb→D/Ds [%] Bb/D/Ds→τ [%] Btot [%]

(i) D−s → τ− - 5.48 ± 0.23 5.48 ± 0.23

(ii) b→ D−s → τ−

b→ D+
s → τ+

14.7 ± 2.1
10.1 ± 3.1 5.48 ± 0.23 1.36 ± 0.21

(iii) D− → τ− - 0.12 ± 0.03 0.12 ± 0.03

(iv) b→ D− → τ−

b→ D+ → τ+
22.7 ± 1.6
0.5 ± 0.51 0.12 ± 0.03 0.028 ± 0.006

(v) b→ τ± - 2.41 ± 0.23 2.41 ± 0.23
1 obtained by multiplying Bb→D+

s
with (|Vcd|2/|Vcs|2)
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4.3 Reference and control channel

The process D−s → φ(µ+µ−)π− is used both as reference and as control channel. As
in the signal channel process, three particles are expected in the final state, but only
two of them are muons, while the third one is a charged pion. This process has an
easily identifiable final state with a high branching fraction [8] of

B(D−s → φ(µ+µ−)π−) = B(D−s → φ(K+K−)π−)× B(φ→ µ+µ−)

B(φ→ K+K−)

= (2.24± 0.08)× 10−2 × (2.86± 0.19)× 10−4

(49.2± 0.5)× 10−2

= (1.30± 0.10)× 10−5.

Additionally, the final state is kinematically similar to that of the signal process.
The Feynman diagram of this process can be found in Fig. 4.4.

Figure 4.4: Feynman diagram of the reference and control channel.

There are two possible production channels for the reference process. The D±s can
either be produced promptly in the detector (vi), or it can result from a B meson
(vii). The branching fractions for the D±s production can be found in Tab. 4.2.

Table 4.2: Branching fractions for the D±s production [39].
channel Bb→Ds [%] Btot [%]

(vi) D±s - 1

(vii) b→ D−s
b→ D+

s

14.7 ± 2.1
10.1 ± 3.1 24.8 ± 3.7
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5 Analysis tools

The aim of this thesis is to estimate the sensitivity and give an expected upper
limit on the branching fraction of the decay τ− → µ−µ+µ− using the decay D−s →
φ(µ−µ+)π− as reference channel. The measured and simulated data samples for
both decay channels are preselected by applying a number of trigger conditions and
selection cuts. The simulated sample is weighted to correct for discrepancies between
Monte Carlo and data using the D−s → φ(µ−µ+)π− channel as control channel. For
this, the D−s → φ(µ−µ+)π− signal events must be selected. A multivariate analysis
tool is used to train binary decision trees to distinguish between signal events and
background events. Statistical tools are used to determine the optimal cut on the
output of the multivariate classifier and calculate the expected upper limit from the
efficiency of the resulting cut. The tools used for this process are introduced in this
chapter.

5.1 Root analysis framework

The Root analysis framework [40] is an object oriented framework written specif-
ically for data analysis in high energy particle physics. It is based on the C++

programming language. The first version, version 0.5, was released in 1995, with
version 1.0 being released in 1997. Root can be accessed via a user interface or
the command line. It is especially built to deal with high data quantities and fo-
cuses on saving data in the form of so-called trees or ntuples with the substructures
branches and leaves. Data can then be presented in the form of histograms in one,
two or three dimensions, fitted, evaluated, minimised or manipulated in many dif-
ferent ways, allowing an easy form of visualisation for the properties of huge data
sets.

5.2 sPlot technique

The sPlot technique [41] is a statistical method used to unfold various distributions
from different sources. In this thesis, these sources are the signal decay and the
combinatorial background. A fit to a so-called discriminating variable is used to
statistically separate signal and background. In this case, this variable is the in-
variant mass distribution of the mother particle. The signal can be described by
a Gaussian distribution, while the combinatorial background is described by a de-
clining exponential. The knowledge about the shapes of the distributions in the
discriminating variable is used in the sPlot technique to reconstruct distributions of
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other variables, for which the distributions for the different sources are not known.
These variables are called control variables. In this thesis these are e.g. the number
of tracks, the transverse momentum of the mother particle and muon isolation vari-
ables.
A fit to the mass distribution determines the contribution of signal and background
as function of the mass. Based on this fit, the sPlot technique assigns a weight, the
so-called sWeight, to each event. By weighting the events with the sWeights, the
true distributions of the control variables are reproduced on average.

5.3 TMVA toolkit

The most dominant source of background to the signal channel comes from partially
reconstructed B meson decays. Selection cuts are applied to the signal data sample
in order to remove as much as possible of this background. In order to find the
optimal separation between signal and background events, the correlation between
observables has to be taken into account. Multivariate analysis (MVA) is a technique
performing studies across multiple dimensions and especially taking into account the
relationships between input variables. An MVA is used in this work as a classifica-
tion technique to classify events as either signal or background events. The output
classifier function is trained to optimise simultaneously both signal significance and
background rejection while avoiding overtraining. Overtraining occurs when due to
lack of statistics or an overly complex classifier function the classifier does not only
find a general pattern to identify the signal but trains on fluctuations of a specific
training sample. The classifier is therefore not able to identify signal in a different
data set with the same performance.
The toolkit for multivariate analysis (Tmva) [42] is integrated in the Root frame-
work. It uses a factory to find the optimal classification function. The factory
object is created at the beginning of the program and provides member functions to
specify the training and test data sets, to register the discriminating input and to
book the multivariate methods. It calls for training, testing and the evaluation of
the method and creates output weight files after the training phase for each method.
Background and signal samples are handed to the factory in the form of two Root
trees. The factory then assesses the preliminary properties of the trees by calculat-
ing the correlation coefficients and by ranking the input variables according to their
separation potential. After normalising the input variables, the factory copies both
trees and splits the copies randomly into a training and a test tree. The fraction
of events used for training can be chosen by the user. Then the factory trains on
the training samples. It applies the output weights to the test samples. The perfor-
mances on the training and test samples are monitored to avoid overtraining.
The chosen method for this thesis is the boosted decision tree (BDT). The BDT is
a binary and tree structured classifier for signal and background. For all training
variables the optimal separation cut is determined using the GiniIndex p · (1 − p),
where the purity p gives the ratio of signal events over all events in the node. The
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events are split in two samples using the cut with the maximal increase from the
GiniIndex of the parent node to the sum of the GiniIndices of each of the daugh-
ter nodes weighted by the relative fractions of events. The higher the value of the
option nSteps is set, the smaller steps are taken between different tested cuts, and
the more cuts are therefore tested. A higher value of nSteps can therefore lead to
higher precision, but is also more prone to fluctuations.
The two samples are separated in two so-called nodes, where a new separation crite-
rion is determined for each node and the samples are split again, until the number of
events in a node falls under a certain number that is defined as input option MinN-
odeSize in percentage of the total number of events or until the maximum depth of
the tree, MaxDepth, is reached.
The resulting leaf nodes are then classified as either signal or background with re-
spect to the majority of events in the leaf node. An example for a simple tree is
shown in Fig. 5.1. An event in a signal leaf node is assigned the value +1, while
an event in a background leaf node is assigned the value -1 or 0, depending on the
method.

Figure 5.1: A schematic overview over a simple BDT.

Single trees can easily be visualised, but are unstable with respect to statistical
fluctuations. Therefore a whole forest of slightly different trees is built. Two different
BDT algorithms are tested for this thesis. These two proved generally successful in
previous analyses and are compared to find the better performing one for this specific
analysis.
When the adaptive boost algorithm (AdaBoost) is used, events that were misclassified
during the training of a decision tree are given a higher event weight in the training
of the following tree. Each tree is therefore trained on a modified event sample,
where previously misclassified events are boosted by a common weight α, which is
derived from the misclassification rate rmis of the previous tree:

α = (
1− rmis
rmis

)βAda , (5.1)

The learning rate βAda is a parameter chosen by the user to influence the strength of
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the response to a misclassification. The output value for each event x is calculated
from all output values hi(x) using equation 5.2 and lies between 0 and +1.

yAdaBoost(x) =
1

NTrees

NTrees∑
i=1

ln(αi) · hi(x) (5.2)

With the gradient boost algorithm (GradBoost), the model response, yGradBoost(x),
for each event x is calculated as a weighted sum from the single decision tree response
functions, f(x; ~αj):

yGradBoost(x;P ) =
M∑
j=0

βjf(x; ~αj); P ∈ {βj; ~αj}M0 , (5.3)

where αj are the parameters determining each tree, e.g. the splitting variables and
splitting values, while βj are the weights applied to each tree. Each new tree is
meant to correct for the shortcomings of the previous tree by adjusting the param-
eters P such, that the deviation between the model response yGradBoost(x) and the
true value ytrue(x), which is −1 or +1, is minimised. The robustness of GradBoost
can be enhanced by reducing the learning rate βGrad of the algorithm.
The possibility of overtraining can be reduced by limiting the number of trees,
nTrees, the minimum percentage of events in the leaf nodes, MinNodeSize, the num-
ber of steps to test a variable range for the optimal cut, nSteps, the maximum depth
of the trees, MaxDepth, or by varying the number of events chosen for training,
nTraining. Overtraining is checked via a Kolmogorov-Smirnov test (KS test) on
both background and signal. The KS test is a test of the agreement of two continu-
ous, one-dimensional probability distributions. In this case, the output distributions
of the test and the training sample are compared. The KS test quantifies the dis-
tance between the distributions and gives back a statistical probability, pKS, that
the samples are drawn from the same underlying distribution function. The TMVA
repeats the KS test on a random sub-sample of events 1000 times and reports the
number of times the individual tests are > 0.5. The optimal response of the repeated
KS tests, rKS, is 0.5. However, as this is very hard to reach, it is often enough to
rely on a comparison of the output distributions by eye. The samples should have
a similar output distribution if no overtraining occurs.
The BDT also gives a variable ranking at the end of each training. The importance
is derived by counting how often the variable has been used to split, weighted by
the square of the separation gain the split had achieved and the numbers of events
in the node. The separation gain is the amount by which the GiniIndex increased
from the parent node to the sum of the GiniIndices of each of the daughter nodes
weighted by the relative fractions of events.

5.4 CLS technique

The aim of this thesis is to calculate the expected limit on the branching fraction
of the decay τ− → µ−µ+µ−. The CLS method is used to calculate this limit. This
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section introduces the procedure used to calculate and combine the limits. It follows
the outline of [43].
The expected number of τ− → µ−µ+µ− decays, Nexp(τ

− → µ−µ+µ−), can be com-
puted via

Nexp(τ
− → µ−µ+µ−) = B(τ− → µ−µ+µ−)×Ntot(τ

−), (5.4)

whereNtot(τ
−) is the total number of τ− decays and B(τ− → µ−µ+µ−) the branching

fraction of the decay.
Not all of these events are observed, as each experiment is subjected to an efficiency,
ε:

Nexp,obs(τ
− → µ−µ+µ−) = ε×Nexp(τ

− → µ−µ+µ−) (5.5)

The observed number of events can therefore be used to estimate the branching
fraction, if the efficiency and the total number Ntot(τ

−) are known:

Best(τ− → µ−µ+µ−) =
Nobs(τ

− → µ−µ+µ−)

ε×Ntot(τ−)
(5.6)

If no signal events are observed, an upper limit (UL) can be set on the branching
fraction:

B(τ− → µ−µ+µ−) <
UL(τ− → µ−µ+µ−)

ε×Ntot(τ−)
= α× UL(τ− → µ−µ+µ−) (5.7)

The proportionality factor α is called normalisation factor of single event sensitivity.
However, even if no signal events are expected to be measured, the expectation of
observed events in the signal region is not zero. The expected number of background
events, B, has to be taken into account.
The task of the observer is now to distinguish whether the measured data is com-
patible with the null hypothesis H0, that there is no signal and only background
is measured (B(τ− → µ−µ+µ−) = 0), or an alternative hypothesis Hn, that signal
appears additionally to the background with a branching fraction depending on the
parameter n (Bn(τ− → µ−µ+µ−) ≥ 0). The best way to distinct between an alter-
native hypothesis Hn and the null hypothesis H0 is the computation of the likelihood
ratio:

λ(Nobs) =
LHn(Nobs)

LH0(Nobs)
(5.8)

The likelihood LHn(Nobs) gives the probability that Nobs events are observed if the
alternative hypothesis Hn is true. Equivalently, the likelihood LH0(Nobs) gives the
probability that Nobs events are observed if the null hypothesis H0 is true. In the
case of counting experiments, the Poisson probability is used:

LHn(Nobs) = p(Nobs|Hn) =
(B + Sn)Nobs

Nobs!
× e−(B+Sn)

LH0(Nobs) = p(Nobs|H0) =
BNobs

Nobs!
× e−B
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whereB is the expected number of background events and Sn = Bn(τ− → µ−µ+µ−)/α
the number of signal events expected to be observed given the hypothesis. As the
likelihood ratio is used in order to distinguish between the signal and the null hy-
pothesis after the measurement, it is called the test statistics Q.
In case the observation is done in more than one sample, for example separately for
each year, the combined test statistics is the product of the likelihood ratio in each
sample i:

Q( ~Nobs) =

nsamples∏
i=1

Qi =

nsamples∏
i=1

LHn(Nobs,i)

LH0(Nobs,i)
(5.9)

In case of the Poissonian likelihood, this can be simplified to:

Q( ~Nobs) =

nsamples∏
i=1

e−Sn,i(1 +
Sn,i
Bi

)Nobs,i (5.10)

If the observed test statistics Qobs is bigger than a critical value Qcrit, the alternative
hypothesis Hn is rejected. If it is smaller, the null hypothesis H0 is rejected. As
shown in Fig. 5.2, the critical value Qcrit is chosen such, that the probability to reject
Hn when it is indeed true, is 1 - c, where c is the confidence level. It is usually set
to 90% or 95%.
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Figure 5.2: Determination of the significance and confidence level depending on the critical
value Qcrit.

Alternatively to the likelihood ratio, the CLS value can be used as critical value.
This is calculated using the confidence levels CLS+B and CLB. The probability to
observe Qobs or an even larger value for Q if the alternative hypothesis Hn is true is
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called CLS+B:
CLS+B = P (Q ≤ Qobs|Hn) (5.11)

If not an observed limit is determined, but an expected limit, the expected test
statistics, Qexp, will be used instead of the observed one, Qobs. This is defined as the
median of the distribution of the test statistics given the null hypothesis, P (Q|H0):

0.5 = P (Q ≤ Qexp|H0) (5.12)

The confidence level CLS+B equals the probability that Hn is incorrectly rejected,
even though it is true:

CLS+B = P (Q ≤ Qexp|Hn) (5.13)

It can be determined by producing the expected distribution of the test statistics
assuming Hn is true, as shown in Fig. 5.3.
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Figure 5.3: Determination of the confidence levels depending on the expected test statistics
Qexp.

At the same time, the probability to observe Qexp or an even larger value for Q if
the null hypothesis H0 is true is called 1 - CLB:

1− CLB = P (Q ≥ Qexp|H0) (5.14)

In case of an expected limit, this value is equal to 0.5, as Qexp is determined as the
median of the test statistics distribution assuming H0 is true.
If the experiment is not sensitive enough to distinguish between H0 and Hn, this
procedure leads to a high rejection rate for Hn. Instead, CLS is defined as:

CLS =
CLS+B
CLB

(5.15)
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The alternative hypothesis Hn is now rejected, if CLS ≤ 1 − c.
In the case of this thesis, instead of testing a single alternative hypothesis, a limit on
the branching fraction is supposed to be determined. The limit is set equal to the
smallest branching fraction that can be rejected with the desired confidence level
using the CLS method.
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6 Data preselection

For the measurement of the lepton flavour violating decay τ− → µ−µ+µ−, the kine-
matically similar channel D−s → φ(µ−µ+)π− is used as control channel to correct
discrepancies between the data sample and the Monte Carlo sample. This chapter
gives an overview of the variables relevant for this analysis. It describes the pro-
duction rate correction for the Monte Carlo samples, which relies on work done by
other members of this group. Furthermore, this chapter gives an overview of the
trigger requirements and preselection cuts applied to both the control and the sig-
nal channel. The signal data and Monte Carlo samples are each separated into two
sub-samples according to their number of muons identified by the muon system.

6.1 Selection variables

The trigger and reconstruction algorithms provide a number of variables which can
be used to select and categorise events. The relevant variables are shortly described
here.
The invariant mass of the three daughter tracks of the signal and control candi-
dates is computed as follows:

m2
reco = (

∑
i

Ei)
2 − (

∑
i

~pi)
2 = (

∑
i

(

√
m2
i + ~pi

2))2 − (
∑
i

~pi)
2, (6.1)

where ~pi is the reconstructed momentum of each track and mi the mass of the as-
sociated particle, in this case a muon or a pion.
If the assumptions on the identity of the daughter particles are correct and the
momentum is fully reconstructed, the resulting reconstructed mass of the mother
particle, mreco, will be close to the mass of the τ− or D−s , depending on the channel.
However, if the assumption is incorrect, the reconstructed mass will be shifted in
first approximation by the mass difference between the assumed particle and the
actual daughter particle. The reconstructed invariant mass of the mother particle is
called mτ for the signal channel and mDs for the control and reference channel. In a
similar way, the invariant mass of each pair of particles can be reconstructed. The
invariant mass of two tracks matched to muons is called mµ+µ− if the muons are of
opposite charge or mµ+µ+ if they are of the same charge, regardless of whether this
charge is positive or negative.
For the particle identification (PID), three variables are used. These are ProbNN ,
RichDLL and isMuon. ProbNN and RichDLL make the assumption that a track
corresponds to a certain particle, for example a muon or a pion
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An artifical neural network is used to determine whether a track corresponds to a cer-
tain particle with a probability between 0 and 1. This variable is called ProbNN [44].
As null hypothesis for it the track is identified with a pion, so that ProbNNparticle

gives the probability that the track corresponds to a certain particle with respect to
it corresponding to a pion.
The data from the RICH subdetector is processed using the global likelihood ap-
proach [45], by comparing various particle type hypotheses for each of the tracks.
By calculating the differences in the log-likelihood values for a given particle type
hypothesis and a pion hypothesis, the RichDLL variable for the given particle type
or ghost is computed.

RichDLLparticle = ∆(ln(L)) = ln(Lparticle)− ln(Lπ) = ln(Lparticle/Lπ) (6.2)

To identify a track to be a muon requires signals in a subset of muon stations. The
higher the momentum is, the more muon stations are required by the algorithm.
The requirements are listed in Tab. 6.1. Any track fulfilling these requirements is
labeled as isMuon = 1. For more information on the isMuon variable, see [46].

Table 6.1: Required stations with hits for isMuon depending on the track momentum [46].
p [GeV ] required stations
p < 3 always false

3 < p < 6 M2 & M3
6 < p < 10 M2 & M3 & (M4 or M5)
p > 10 M2 & M3 & M4 & M5

Additionally to identifying the type of particle corresponding to a track, the ProbNN
and RichDLL variables can also be used to identify so-called ghost tracks. This means
that random hits are matched by the algorithm as a track although they are not
caused by a particle.
The kinematic variables of a track are the track momentum p and transverse
momentum pT , the pseudo-rapidity η, the energy E and the decay length λdecay.
The decay length is the distance between the primary vertex and the decay vertex
or end vertex . It can also be used to estimate the lifetime τ = λdecay/c, where
c corresponds to the velocity of light in vacuum. Additional useful variables are
the Distance Of Clostest Approach (DOCA) and cos(α). The DOCA measures the
minimal distance of two reconstructed tracks. This can be very useful to identify
whether they stem from the same vertex. The angle α is the angle between the
momentum ~p of a particle and the vector connecting the primary vertex and the
decay vertex ~xdecay−~xprimary. For well reconstructed candidates, the angle α should
be small, thus cosα should be close to one.
The total number of all tracks in an event is called nTracks. The tracks belonging
to the selected decay, which are therefore associated with the daughter particles,
are called selected tracks. Any other tracks coming from the secondary vertex but
not involved in the reconstruction of the mother particle are called non-isolating

39



tracks. Further tracks in the event that come from different secondary vertices are
called isolating tracks. For the correct reconstruction of the event it is necessary
to distinguish isolating tracks from non-isolating tracks. There are three different
isolation variables used in this thesis. These are the track isolation, the cone
isolation and the muon isolation.
Each track has an assigned track isolation value. It is defined as the number of
LONG tracks close to the muon, where close is specified by a set of cuts on five
track-specific variables. The sum of the track isolation variables of the three daughter
tracks of a candidate is the track isolation of the candidate [47].
The cone isolation of a track is defined as:

pT (track)− pT (cone)

pT (track) + pT (cone)
(6.3)

where pT (track) is the sum of the transverse momenta of all daughter tracks of
the chosen track or the transverse momentum of the track itself, and pT (cone) the
sum of the transverse momenta of all tracks within a cone around the reconstructed
track.
Inspired by the track isolation variable, muon isolation variables as described in [47]
are used, which are either based on LONG tracks or VELO tracks. The variables are
the output of a multivariate classifier using a BDT to train bb→ µ+µ−X background
against Bs → µ+µ− signal. For each reconstructed muon, the isolation with regard
to the closest track that is not a daughter of the signal candidate is calculated.
Several criteria for isolation are used, resulting in three different variables for LONG
and VELO each. The muon isolation variables based on LONG tracks are called
LONGMAX1, LONGMAX2 and LONGMAX3 while the muon isolation variables
based on VELO tracks are called VELOMAX1, VELOMAX2 and VELOMAX3.
Each of these six muon isolation variables exists for any of the three reconstructed
muons in the event. It is possible to combine the muon isolation variables for all
three muons to get an isolation variable for a signal candidate. Alternatively, one
can use the isolation variable of one of the three muons, as the isolations of the three
tracks are strongly correlated. This can be seen in Fig. 6.1.
There are three variables corresponding to the quality of the track reconstruction
and particle matching. These are called track quality, vertexχ2 and IPχ2. The track
quality is determined from the track fit. The track quality of a signal candidate
equals the maximum track χ2 of the daughter tracks. The quality of the vertex fit
is called vertexχ2 and gives the statistical significance of the vertex fit. Similarly,
the statistical significance of the impact parameter IP is given by the variable IPχ2.
Sometimes, these variables are divided by the number of degrees of freedom ndf of
the fit.
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Figure 6.1: Correlation of the muon isolation of two muons of the MC signal candidate.

6.2 Stripping line selection

The reconstructed events coming from the Brunel application are saved into files
through a filtering process called stripping. The stripping is done using the LHCb
application DaVinci. Each stripping line applies a series of cuts on the recon-
structed candidates that removes a large number of events that are uninteresting for
the specified process.

Table 6.2: Cuts applied by the stripping lines [48], [49].
control channel signal channel

µ±∑
isMuon 2 ≥ 2
µ±, π±

pT > 300 MeV > 300 MeV
track ghost probability < 0.45 < 0.45

track χ2/ndf < 3 < 3
IP χ2/ndf > 9 > 9

mother (D±
s or τ±)

mmother 1968.34 ± 250MeV 1776.86 ± 200MeV
Vertex χ2 < 15 < 15
IP χ2 < 225 < 225
λdecay > 100µm > 100µm

The stripping lines place a cut on the number of identified muons for both samples.
For the control channel, exactly two muons are required, while for the signal channel
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two or three muons are accepted. This looser requirement allows also for a muon
candidate which is not detected as such, as it might be out of the acceptance of the
muon system.
A wide signal window around the expected mother particle mass is defined. The
window has a width of 500MeV for the control channel and a width of 400MeV for
the signal channel. It cuts away events that are widely out of range.
A minimal requirement is placed on the transverse momentum of the daughter parti-
cles. The quality of the track is ensured by requiring a small track ghost probability.
Cuts are placed on the χ2 of both the track reconstruction and the impact parameter,
as well as on the χ2 of the mother vertex reconstruction and the impact parameter
of the reconstructed mother. The decay time is also restricted. These cuts ensure
a good reconstruction of the event. An overview over the set of cuts applied by the
stripping lines can be found in Tab. 6.2.

6.3 Production rates

As was explained in Section 4.2, both the signal and the control channel have dif-
ferent production processes. Each of these processes is simulated separately, with
the resulting number of candidates per process not necessarily representing the true
ratio expected for data. Therefore, it is necessary to weight the candidates in a
way that the ratio of candidates from each of these sub-channels corresponds to the
production ratio in the experiment.
To calculate the fraction of events which come from each sub-channel, fi, it is nec-
essary to know the total production cross section of each sub-channel. The D and
Ds samples used for this analysis contain only D mesons in the detector acceptance,
thus the measured event rates need to be corrected for this. The final values for σtot
are given in Tab. 6.3.

Table 6.3: Prompt charm cross section within the range 1<p [GeV/c] < 8 and 2 < y < 4.5
for Ds and D in acceptance and corrected [50] and total b cross section [51].

channel σacceptance [µb ] σtot [µb ]
Ds 353 ± 76 1732 ± 373
D 834 ± 78 4054 ± 379
b - 495 ± 52

Multiplying σtot with the branching fraction Btot,i from Tab. 4.1 and Tab. 4.2, the
cross section of each production channel can be calculated. The relative production
fraction fprod,i is calculated as follows:

fprod,i =
σtoti × Btot,i∑
i(σ

tot
i × Btot,i)

(6.4)
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Table 6.4: Branching fraction, cross sections and production fractions in 4π for the signal
and control channel.
channel σtot[µb ] Btot [%] σtot × Btot [µb ] fprod
signal

(i) D−s → τ− 1732 ± 373 5.48 ± 0.23 94.9 ± 20.8 69.09 ± 3.74

(ii) b→ D−s → τ−

b→ D+
s → τ+

990 ± 104 1.36 ± 0.21 13.5 ± 2.5 9.80 ± 0.53

(iii) D− → τ− 4054 ± 379 0.12 ± 0.03 4.86 ± 1.2 3.54 ± 0.19

(iv) b→ D− → τ−

b→ D+ → τ+
990 ± 104 0.028 ± 0.007 0.6 ± 0.1 0.20 ± 0.01

(v) b→ τ−

b→ τ+
990 ± 104 2.41 ± 0.23 23.9 ± 3.4 17.37 ± 0.94

control
(vi) D−s 1732 ± 373 1 1732 ± 373 87.8 ± 2.70

(vii) b→ D−s
b→ D+

s

990 ± 104 24.8 ± 3.74 245.52 ± 45.16 12.42 ± 0.38

An overview over the values can be found in Tab. 6.4.
At the simulation level, a number of acceptance cuts is applied to the events. Their
efficiency, εCUT , is obtained by comparing the number of all generated events with
those which pass the cuts. The relative event fraction fi can be then computed in
the following way:

fi =
εCUT,i × fprod,i∑
i(εCUT,i × fprod,i)

(6.5)

The resulting values are shown in Tab. 6.5.

Table 6.5: Production fractions, cut efficiencies and relative fractions for all production
modes.

channel fprod [%] εCUT [%] fi [%]
signal

(i) D−s → τ− 69.09 ± 3.74 11.1 ± 0.3 71.85 ± 1.16
(ii) b→ D−s → τ− 9.80 ± 0.532 9.5 ± 0.4 8.72 ± 0.14
(iii) D− → τ− 3.54 ± 0.19 11.2 ± 0.3 3.80 ± 0.06
(iv) b→ D− → τ− 0.20 ± 0.01 9.8 ± 0.4 0.18 ± 0.003
(v) b→ τ± 17.37 ± 0.94 9.6 ± 0.4 15.55 ± 0.25

control
(vi) D−s 87.8 ± 2.70 12.2 ± 0.4 88.51 ± 0.60
(vii) b→ D±s 12.42 ± 0.38 11.2 ± 0.5 11.49 ± 0.08

In order to make sure that each sub-channel is represented in the correct fraction,
the candidates are weighted with fractions weights. These are calculated for each
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magnet polarity and year. The ratio Ni/fi, where Ni is the number of candidates
in a specific sub-channel and fi its expected fraction, is normalised to the channel
with the smallest ratio Nmin/fmin. Thus the weight is obtained:

wfraction,i =
fi
fmin

× Nmin

Ni

(6.6)

6.4 Trigger requirements and event preselection

In order to cancel the systematic uncertainties coming from the trigger selection,
candidates from both the signal and the control channel have to satisfy similar
trigger requirements and preselection cuts. Selection requirements are applied at all
three stages of the trigger system. The trigger is expected to be fired on the signal.
This means that the signal candidate or its daughters must have triggered them.
The relevant hardware trigger lines are called L0Muon and L0DiMuon. The L0
muon trigger searches for straight-line tracks in the five muon stations. The track
direction is used to estimate the transverse momentum of a muon candidate. For the
L0Muon trigger the muon candidate with the largest pT must be above the L0Muon
threshold, while for the L0DiMuon trigger the product of the largest and second
largest pT values of two muon candidates must be above the L0DiMuon threshold.
These thresholds differ for the different years, and can also slightly vary over the year.
An overview over the thresholds that are used for MC events is shown in Tab. 6.6.
For data events, the thresholds are similar, but can vary over time. Additionally, a
maximum number of SPD hits is required in the L0 trigger lines.

Table 6.6: L0 trigger thresholds. [30]
L0 trigger pT threshold SPD threshold

2016 2017 2018
Muon >1.8GeV >1.35GeV >1.75GeV < 450

DiMuon > 2.25GeV 2 >1.69GeV 2 >3.24GeV 2 < 900

The HLT1 trigger lines are called DiMuonLowMass and TrackMuon. Both require
the event to be triggered by either L0Muon or L0DiMuon. Other requirements of
the two trigger lines are shown in Tab. 6.7.
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Table 6.7: HLT1 trigger requirements.
DiMuonLowMass TrackMuon

p(µ) > 3GeV > 6GeV
pT (µ) > 0GeV > 1.1GeV
χ2/ndf < 4 < 3

ProbNNghost < 0.2 < 0.2
IPχ2 > 4 > 35

isMuon true true
other opposite charge VELO track

or compatible with hits
mµ+µ+ > 220MeV in muon stations

While the trigger requirements for L0 and HLT1 are the same for both the signal and
the control channel, the HLT2 trigger requirements depend on the number of muons
that are accepted as good muons in the event. As can be seen in Tab. 6.2, exactly
two daughters need to be identified as muons by the muon system for the control
channel, while the signal channel demands two or three daughters to be identified as
muons. In events with exactly three muons identified by the muon system, the only
HLT2 trigger requirement is the TriMuonTau23Mu line. In events with exactly two
muons identified by the muon system, there are two possible trigger lines. They are
called DiMuonDetached and TopoMuMu2Body. They are not mutually exclusive.
The TopoMuMu2Body trigger line relies on the output of a binary decision tree.
The cuts of the HLT2 trigger lines can be found inTab. 6.8.

Table 6.8: HLT2 trigger requirements.
DiMuonDetached pT > 600MeV

vertexχ2 < 9
pT (at least one µ) > 300MeV
decay length χ2 > 7
IPχ2 > 9

TopoMuMu2Body BDT classifier > 0.99
TriMuonTau23Mu vertex χ2 < 25

λdecay > 45µm
|mτ −mτ,pdg| ≤ 225MeV
mµµ > 2×mµ,pdg + 14MeV

The trigger requirements for both channels are shown in Tab. 6.9. They are applied
to all samples. As the HLT2DiMuonDetached trigger line does not exist for the
year 2016, events with exactly two good muons from these years always have to pass
the TopoMuMu2Body trigger requirement. This concerns the signal channel events
with exactly two muons identified by the muon system, as well as all control channel
events for 2016. Table 6.10 shows the efficiencies of the trigger cuts for each year
and both signal and control channel.
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Table 6.9: Trigger requirements for all samples.
L0 Muon (TOS) or DiMuon (TOS)

HLT1 DiMuonLowMass (TOS) or TrackMuon (TOS)∑
isMuon = 2:
HLT2 DiMuonDetached (TOS) or TopoMuMu2Body (TOS)∑

isMuon = 3:
HLT2 TriMuonTau23Mu (TOS)

Table 6.10: Trigger cut efficiencies for the signal channel dependent on the number of good
muons, and for the control channel.

number of
good muons 2016 2017 2018

signal channel
2 0.07 ± (1.02× 10−3) 0.22 ± (1.70× 10−3) 0.19 ± (1.58× 10−3)
3 0.59 ± (1.29× 10−3) 0.67 ± (1.24× 10−3) 0.58 ± (1.28× 10−3)

control channel
2 0.15 ± (8.93× 10−3) 0.32 ± (1.14× 10−3) 0.28 ± (1.17× 10−3)

In order to further remove background, a set of preselection cuts is applied to both
samples. These cuts are chosen in accordance with the analysis of Run 1 [6]. They
are rather loose cuts to remove as much background as possible without removing
possible signal candidates. For better comparability, similar cuts are applied on the
signal and on the control channel. They are shown in Tab. 6.11.

Table 6.11: Preselection cuts applied to the signal channel.
variable cut reason
mµ+µ− > 450 MeV remove D−s → η(µµγ)µνµ
mµ+µ+ > 250 MeV remove clone tracks

‖mµ+µ− − 1020MeV ‖ > 20 MeV remove φ(1020)
cos(α) > 0.99 avoid bad reconstruction

decay time > -0.01 && < 0.025 ns avoid bad reconstruction
mτ 6= 1776.86± 20 MeV blind signal region

(data only)

Cuts are applied on the invariant mass of each pair of oppositely charged muons
in order to remove background from the φ(1020) resonance and from the decay
Ds → η(µµγ)µνµ. The effect can be seen for all three years in Fig. 6.2. A cut on the
invariant mass of the pair of same charged muons is meant to remove clone tracks
that are caused by one particle, but interpreted as two tracks. Cuts on cos(α) and
the decay time are meant to remove badly reconstructed events. The efficiencies of
the preselection cuts on the signal and on the control channel are shown in Tab. 6.12.
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Figure 6.2: Distribution of the invariant mass of the first two muons of opposite charge for
the simulated signal candidates of all three years.

Table 6.12: Preselection cut efficiencies for the signal channel dependent on the number of
good muons.

number of
good muons 2016 2017 2018

2 0.22 ± (5.56× 10−4) 0.22 ± (5.23× 10−4) 0.22 ± (5.66× 10−4)
3 0.54 ± (9.53× 10−4) 0.54 ± (9.61× 10−4) 0.53 ± (9.44× 10−4)

Additionally, a cut is applied on the signal data sample around the τ± mass in order
to blind the region during the analysis process. This is done in order to avoid any
bias stemming from premature knowledge. Overall, the data is separated into three
regions: the blinded signal region, the inner sidebands, which are used for training
the boosted decision tree, and the outer sidebands, which are used for determining
the efficiency of the cuts. The three regions are shown in Tab. 6.13.
.

Table 6.13: Regions of the signal channel data.

region range [MeV ]
left outer sidebands 1600 - 1747.18
left inner sideband 1747.18 - 1756.86

signal region 1756.86 - 1796.86
right inner sideband 1796.86 - 1807.18
right outer sideband 1807.18 - 1950
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For the control channel, some cuts on cos(α) and on the decay time are applied. The
invariant mass of the two oppositely charged muons is requested to be consistent
with the φ resonance and the invariant mass of all three tracks to be consistent with
the Ds. Particle identification cuts using the ProbNN variable are applied on all
three daughter particles in order to reduce background. The preselection cuts of the
control channel are shown in Tab. 6.14. Their cut efficiencies are shown in Tab. 6.15.

Table 6.14: Preselection cuts applied to the control channel.
variable cut
mDs 1968.34 ± 50 MeV

ProbNNmu(µ) > 0.2
ProbNNpi(π) > 0.2

mµ+µ− 1020 ± 20 MeV
cos(α) > 0.99

decay time > -0.01 && < 0.025 ns

Table 6.15: Preselection efficiencies for the control channel sample, with the mass cut and
the particle identification cut calulated separately from the rest of the prese-
lection cuts.

2016 2017 2018
εpresel 0.92 ± (6.46× 10−4) 0.92 ± (6.27× 10−4) 0.92 ± (6.71× 10−4)
εmass 0.99 ± (7.31× 10−4) 0.99 ± (4.92× 10−4) 0.99 ± (5.58× 10−4)
εID 0.97 ± (1.13× 10−3) 0.96 ± (8.51× 10−4) 0.96 ± (9.58× 10−4)

Furthermore, some cuts are applied on the MC samples only. Badly reconstructed
candidates are rejected exploiting matching of the reconstructed MC tracks to gen-
erated MC tracks. Events where the daughter tracks or the reconstructed mother
are matched to the wrong particle are excluded. Also excluded are events where the
mother particle decay has not been fully reconstructed and thus the reconstructed
mass of the mother particle is shifted by more than 100MeV from the true mass.

6.5 Monte Carlo correction

The simulation is often not ideally reproducing certain variables. An example is
the number of tracks per event, nTracks, which is often underestimated. This has
multiple causes, the most relevant of which is that diffraction is not well described
in the simulation [34]. The comparison of data and simulation of the control channel
is used to correct the simulation of the signal channel. It is necessary for the Monte
Carlo simulation to give the best possible representation of the data, in order to be
used to correctly evaluate efficiencies. The control channel has a very similar kine-
matic distribution to the signal channel and is therefore expected to have the same
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systematic discrepancies. Any correction depending on kinematic variables should
therefore be very similar for signal and control channel.
Since the control data sample also contains background events, the statistical pro-
cedure of sWeighting [41] is used to compare the relevant variable distributions of
the D−s → φ(µ−µ+)π− candidates in simulated samples and data samples for each
of the three years. The control data is fitted in the full mass range as defined in
Tab. 6.14 with an exponential background distribution and a Double Crystal Ball
(DCB) signal distribution [52]. As starting values for the signal distribution, a fit
to the Monte Carlo sample is used. The results of the fits for all three years can be
found in Fig. 6.3.
The fits are used to assign an sWeight to each event, which can be used to obtain
the signal distribution of any variable by weighting the events with it. For more
information on the sWeighting procedure, see Sec. 5.2.
The data distributions of relevant variables weighted with the sWeights produced
from the fit are compared with the simulated distributions weighted with the frac-
tions weights of the same variables for each year.
Especially relevant here are the muon isolation variables, which are meant to heavily
feature in the separation of background and signal. As these are defined for three
muons in the signal channel, but only for two muons in the control channel, it is at-
tempted to achieve correction in the muon isolation variables by correcting in other
variables.
The distributions are compared bin-by-bin. This is first done in bins of the track
multiplicity, nTracks, and then in three-dimensional bins of the mother particle mo-
mentum, p, transverse momentum, pT , and the natural logarithm of the χ2 of its
impact parameter, ln(IPχ2). Weights are calculated for each candidate depending
on these variables such that the weighted MC sample distributions and the sWeighted
data sample distributions of the control channel agree in these variables.
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Figure 6.3: Invariant mass of simulated candidates with the signal model (red) and the
background model (dotted blue line) overlaid for simulation (left) and data
(right) for the years 2016 (top), 2017 (middle) and 2018 (bottom).
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As is shown exemplary for 2018 in Fig. 6.4, good agreement is achieved in all pre-
sented variables.
The weights calculated for the MC control sample can now be stored depending on
the values of nTracks, p, pT and ln(IPχ2) for each year and applied to the MC
signal samples. They are called correction weights. Any residual discrepancy is later
reduced with a second MC correction depending on the classifier output value of the
boosted decision tree training.
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Figure 6.4: Corrected and uncorrected 2018 MC control sample distribution together with
the sWeighted 2018 control data sample distribution for different variables of
the mother particle associated with Ds, the track multiplicity of the event and
the muon isolation variables LONGMAX1 and VELOMAX1 for one muon.

6.6 Signal channel preparation

As can be seen in Tab. 6.2, the stripping line for the signal channel requires only
two muons to be isMuon, which are called good muons from now on. Any muon not
fulfilling the isMuon = 1 requirement in the signal channel is called non-good muon.
The signal channel sample can now be split into two mutually exclusive samples.
The 2µ sub-sample contains all candidates which have exactly two good muons and
one non-good muon, while the 3µ sub-sample contains all candidates which have
exactly three good muons. The additional sample adds statistics to the analysis and
can therefore improve the significance of the measurement. In order to have similar
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treatment for both samples, only information of two good muons can be used for
both samples. This leads to better comparability with the control and reference
channel, which requires exactly two good muons.
Figure 6.5 shows the momentum distribution of muons and non-good muons of the
MC signal 2µ sub-sample in comparison. As can be seen, the momentum of non-good
muons is distributed with a much lower peak than that of the good muons. About
13% of non-good muons do not pass the requirement of a minimum momentum of
3GeV in the muon detector. As can be seen in Tab. 6.1, the remaining muons must
not have left hits in enough muon chambers to be identified as good muons. Also
shown in Fig. 6.5 is the acceptance of good muons and non-good muons in the muon
system. As can be seen, about 70% of non-good muons are outside of the geometrical
acceptance region of the muon system and could therefore not be identified as good
muons. The 2µ sub-sample is taken into account as an independent sub-sample from
the 3µ sub-sample. Efficiencies are calculated for both samples separately.
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Figure 6.5: Distribution of momentum (left) and detector acceptance (right) for good
muons and non-good muons of the signal channel MC 2µ sub-sample

After all preselection and trigger cuts are applied to the signal channel, the correction
weights that are calculated using the MC control sample are stored for each MC
signal sample candidate. It is used to weight the events in all future dealings together
with the fraction weights.
The multivariate classifier trains to distinguish signal events from background events.
For the training, the background is taken from the inner sidebands of the 2018 signal
data sample, while the signal is taken from the MC signal sample from the years
2016 − 2018 in order to have more statistics. This is not optimal for training with
the 2µ sub-sample, as there is some difference in the distributions of the Monte
Carlo samples for the year 2016 and the years 2017/18, as can be seen in the top
row of Fig. 6.6. This is caused by the missing trigger line for the year 2016, leading
to stricter trigger requirements. However, a classifier trained with these samples still
provides significant separation power for signal and background. Additionally, it has
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a similar performance when applied to all three years, leading to less dependency
on the specific sample and more robustness. This is verified later.
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Figure 6.6: ln(IPχ2), the LONGMAX1 muon isolation variable and the momentum, p,
in comparison for 2µ (top) and 3µ (bottom) MC sub-sample for the different
years.

The same problem does not persist with the 3µ sub-sample, as can be seen in
the bottom row of Fig. 6.6. Here, the distributions for all three years prove to be
sufficiently similar, even though there are some minimal differences.
The classifier trained on 2018 data against 2016 − 2018 MC events is applied to all
samples. The calculation of efficiencies and estimation of expected background for
the final limit is done for all three years and both sub-sample separately, so that
expected limits are calculated in total in six bins. These limits are then combined
into one expected limit.
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7 Multivariate classifier training and
application

For the optimal separation of the signal decay τ− → µ−µ+µ− from combinatorial
background, a multivariate analysis classifier is trained on a chosen set of variables.
The preselected signal and control samples are weighted to achieve the correct frac-
tions from the different production channels and to correct for discrepancies between
data and simulation. The signal sample is separated into two sub-samples. The so-
called 2µ sub-sample contains all events with exactly two muons identified by the
muon system, while the so-called 3µ sub-sample contains all events with exactly
three muons identified by the muon system. The multivariate classifier is trained
on distinguishing signal and background in both samples separately, as well as on a
merged sample. The best training result is applied to all samples, as well as to the
preselected and weighted control samples from the decay D−s → φ(µ−µ+)π−. The
output distributions of the control data and MC samples are compared and used
to determine a third set of weights, correcting for residual discrepancies between
data and MC distributions. This chapter describes the training of the multivariate
classifier, as well as the application of the results and the calculation of the third
set of weights for the MC samples.

7.1 Variable selection

The main source of background to the τ− → µ−µ+µ− decay is combinatorial back-
ground. That means, that tracks in an event coming from different decays are
mismatched as belonging to the signal decay, as they coincidentally share many
characteristics with the signal decay τ− → µ−µ+µ−. For the optimal separation of
the signal decay τ− → µ−µ+µ− from combinatorial background, a boosted decision
tree (BDT) algorithm is trained. It produces a variable classifying events as either
signal-like or background-like. This classifier output can then be cut upon in order
to reduce the combinatorial background. The TMVA toolkit is used for the training.
A selection of variables is given to the training algorithm.
For better comparability with the control channel D−s → φ(µ−µ+)π−, which only
contains two muons, two muons are chosen in each event of the signal channel
τ− → µ−µ+µ−. They are referred to as chosen muons. Variables referring to these
two muons are compared to the same variables of the control channel muons, while
the variables referring to the third muon are compared to the pion variables from
the control channel.
In events with exactly two good muons, which are identified as muons by the muon
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system, the two good muons are the chosen muons. They do not necessarily have
to be of opposite charge. It is shown later that candidates with two good muons
of the same charge in the 2µ sub-sample do not lower the efficiency of the training
mechanism. In events with exactly three good muons, a pair of oppositely charged
muons is chosen. This leads to better comparability with the control channel again,
where the two muons are always of opposite charge. Of the two muons with the same
charge in the event, the muon with higher transverse momentum, pT , is chosen, as
muons with a higher transverse momentum are expected to be more isolated. This
way, the isolation variables can more easily be used as distinguishing variables.
The training is done separately in the 2µ sub-sample and the 3µ sub-sample. Ad-
ditionally, training is done on a merged sample of both. For comparison with the
Run 1 analysis, the 3µ sub-sample is trained additionally using the full information
from all three muons. Therefore, four different training setups are used:

• for comparison with the Run 1 analysis, the 3µ sub-sample is trained using the
full information from all three muons. The muon isolation information from
all three muons is summed to obtain a final muon isolation variable. This
setup is called the 3µ3µ setup.

• the 3µ sub-sample is trained using two oppositely charged muons as chosen
muons. Of the two muons with the same charge, the one with higher trans-
verse momentum is chosen. The muon isolation information from one of these
muons is used as isolation variable, as it is highly correlated with the isolation
information from the other muon, as seen in Fig. 6.1. This setup is called the
3µ2µ setup.

• the 2µ sub-sample is trained using the two good muons as chosen muons. The
muon isolation information from one of these muons is used as muon isolation
variable. This setup is called the 2µ2µ setup.

• a merged sample with all signal channel candidates is trained. In events with
two good muons, those are used as chosen muons, while in events with three
good muons, a pair of opposite charge is chosen, with the one with higher
transverse momentum of the two same-charged muons included. The muon
isolation information from one of the chosen muons is used as muon isolation
variable. This setup is called the (2 + 3)µ2µ setup.

The best training setup is chosen and applied to all samples.
Table 7.1 provides an overview over the number of candidates that passed the trigger
requirements and preselection cuts in the 2µ and 3µ sub-samples and are used in
training. In order to distinguish signal and background, the BDT is given the
simulated MC events from each sub-sample as signal and the data events of the
inner sidebands from each sub-sample as background. The BDT signal sample and
the BDT background sample for each training are both separated randomly in a BDT
signal/background training sample and a BDT signal/background testing sample.
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Table 7.1: Number of candidates in all data and Monte Carlo sub-samples used in training.
data (2018) MC (2016 − 18)

2µ 1,154,162 39,670
3µ 164,073 361,190

The training is done on the BDT signal and background training samples. The
BDT signal and background testing samples are used to test the performance of
the training algorithm. As can be seen, the 3µ sub-sample has almost ten times
the amount of MC candidates as the 2µ sample, while it has only around a seventh
the amount of data candidates. This is not surprising, as events where two muons
are identified as good muons are more likely to happen in the detector, while the
generated MC sample contains only events with three muons.
After a series of tests, where training parameters like the maximum depth of the tree
and the number of training events are varied, 15 variables are chosen that are most
often identified as variables with the best separation power by the TMVA algorithm.
These 15 variables are used for the training. Table 7.2 gives an overview over the
chosen variables. These include two muon isolation variables, called LONGMAX1
and VELOMAX1. The chosen muons are called µ1 and µ2, while the third muon is
called µnot. In case of the 3µ3µ setup, no choice was made and the three muons are
called µ1, µ2 and µ3.

Table 7.2: Variables given to the TMVA algorithm for training.
IPχ2

LONGMAX1
µ1 track quality
µ2 track quality

µ3/µnot track quality
endvertex χ2

µ3/µnot cone isolation
µ1 cone isolation
µ2 cone isolation

µ1 pT
µ2 pT

µ3/µnot pT
τ pT

VELOMAX1
λdecay

To adjust for the correct relative production rates, the MC events are weighted by
the fraction weights. Additionally, they are weighted by the correction weights to
compensate for discrepancies between data and simulation.
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7.2 Training optimisation

In order to achieve the best separation between signal and background, two kinds
of boosted decision trees are trained. These are the gradient boosted decision tree
(GradBoost) and the adaptive boosted decision tree (AdaBoost). More information
on them can be found in Chapter 5. The training settings for both are varied in
order to achieve the best results. At the same time, the number of candidates
used for the training, nTraining, is varied, while the rest of the candidates, the test
sample, is used to test the training and evaluate the performance. The number
of candidates used for the training is the same for background and signal sample.
The performance is measured on the test sample by integrating over the Receiver
Operating Characteristic (ROC) curve, which plots the signal efficiency εS over the
background rejection 1 − εB for different values of the cut on the classifier output.
The goal is to achieve the highest possible value for the integral over the ROC
curve. At the same time, the Kolmogorov-Smirnov test is used on both signal and
background to check that no overtraining occurs.

Table 7.3: Optimised training settings for all setups with the best performance for each
setup marked in light grey.

setting 3µ3µ 3µ2µ 2µ2µ (2 + 3)µ2µ

AdaBoost
nTraining 30,700 30,700 25,230 149,430
MaxDepth 5 4 5 4

MinNodeSize [%] 7 10 7 6
nSteps 15 9 38 26∫
ROC 0.962 0.949 0.937 0.941

rKS (signal) 0.152 0.690 0.017 0.226
rKS (background) 0.048 0.914 0.576 0.453
GradientBoost

nTraining 30,700 30,700 25,230 149,430
MaxDepth 5 5 7 5

MinNodeSize [%] 9 9 5 6
nSteps 16 10 20 27∫
ROC 0.959 0.951 0.938 0.940

rKS (signal) 0.210 0.142 0.037 0.227
rKS (background) 0.621 0.546 0.799 0.661

The parameters optimised to achieve the best training setting are the maximum
depth allowed for the tree, MaxDepth, the minimum size allowed for the leaf nodes
in percentage of the total amount of candidates, MinNodeSize, and the number
of steps to test a variables range for the optimal cut, nSteps. An overview over
the optimised values together with the achieved ROC integral values,

∫
ROC, and

Kolmogorov-Smirnov values, rKS, can be found in Tab. 7.3. Other settings that
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are the same for all training samples can be found in Tab. 7.4. The variables are
normalised before training as this leads to slightly better results and guarantees that
the algorithm can optimise over the whole variable range. For more information on
training settings, see [42].

Table 7.4: Other training settings that were the same for all training setups. [42]
setting value explanation
nTrees 300 number of trees trained
βAda 0.3 learning rate for the AdaBoost algorithm

(AdaBoost only)
βGrad 0.06 learning rate for the GradBoost algorithm

(GradBoost only)

The output distributions of the TMVA training algorithm for all training setups can
be seen in Fig. 7.2 , where the distributions for training and testing are compared
and the Kolmogorov-Smirnov values as calculated by the algorithm are shown.
The ROC curves for the better performing of the two boosted decision trees for each
optimised training setup in comparison can be seen in Fig. 7.1.
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Figure 7.1: Signal efficiency against background rejection (ROC curve) in comparison for
all four training setups.
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Figure 7.2: Training and test distributions for signal (blue) and background (red) for each
training setup for the training with AdaBoost (left) and GradBoost (right).
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As can be seen, the best result is achieved with the 3µ3µ training setup. This
is achieved using the AdaBoost algorithm. The best result using only the BDT
isolation information of two muons is given by the GradBoost algorithm with the
3µ2µ training setup. A comparison between the ROC curves achieved by this analysis
and the ROC curves achieved by the different training methods of the same analysis
with Run 1 data can be found in Fig. 7.3. Various training algorithms were used
and compared in Run 1. More information on them can be found in [6]. Figure 7.3
shows that there is already an improvement of about 10% with respect to the best
algorithm of Run 1, even though the comparison is done at the same level of selection.
The higher performance of the Run 2 classifier is mainly caused by the influence of
the muon isolation variables, which strongly shape the optimised classifier.
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Figure 7.3: Signal efficiency against background rejection (ROC curve) for the published
Run 1 dataset [6] and this in comparison. Various training algorithms that
were used in the Run 1 analysis are shown in comparison.

In order to determine whether it is a problem to use candidates where both good
muons have the same charge for the 2µ sub-sample, a training is performed with
the 2µ2µ setup using only candidates with oppositely charged muons. These are
83.60% of the 2µ MC sub-sample candidates, and 95.32% of the 2µ sub-sample data
candidates. The performance of this training when applied to the 3µ sub-sample is
compared to the training with the 2µ2µ setup using all candidates, including those
where both chosen muons have the same charge. Except for the number of can-
didates used for training, which is reduced to 13,260 candidates given the reduced
number of total candidates, the same training settings are used as in the 2µ2µ setup.
Figure 7.4 shows the results of applying the 2µ2µ training setup to the 3µ sam-
ple. The training performance using only oppositely charged muon candidates is
shown, as well as the performance using all candidates. As can be seen, the addi-
tion of candidates where both good muons are of the same charge does not lower
the performance and no relevant difference can be seen in the output distributions.
Therefore, all 2µ sub-sample candidates can be used in training.
In order to find out which training setup should be used to determine the classifier
output which is cut upon for removing background, the classifiers are applied to
both the 2µ and the 3µ sub-sample.
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Figure 7.4: ROC curves and classifier output distributions for applying the GradBoost 2µ2µ
training done with all candidates (right) or only with events with oppositely
charged muons (left) to the 3µ sub-sample.
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7.3 Application of the results

The classifiers of the three training setups with two chosen muons are applied to
the 2µ and the 3µ sub-sample. The performance is again checked by integrating
over the ROC curve. The results can be found in Tab. 7.5. It has to be taken into
account that a slight bias might appear as the candidates used for the training itself
are now also taken into account when applying the training results.

Table 7.5: Performances (integral over ROC curve) when applying the classifiers of different
training setups to the 2µ and 3µ sub-samples.

2µ 3µ
2µ2µ AdaBoost 0.918 0.913
2µ2µ GradBoost 0.919 0.915
3µ2µ AdaBoost 0.878 0.923
3µ2µ GradBoost 0.881 0.927

(2 + 3)µ2µ AdaBoost 0.892 0.919
(2 + 3)µ2µ GradBoost 0.892 0.917

As can be seen, the 2µ2µ setup with GradBoost shows better results when applied to
the 2µ sample than both the 3µ2µ and the (2 + 3)µ2µ setup. The improvement that
can be gained with the other training setups in the application to the 3µ sample is
negligible in comparison. The 2µ2µ setup with the GradBoost algorithm is therefore
chosen to be used to produce the classifier output, as it shows the best performance.
This classifier output is used to correct the MC a second time. A cut on the classifier
output is later determined in order to optimally separate signal and background.
The variables for this setup can be found in Tab. 7.6, ordered by their importance
as determined by the TMVA algorithm. The output distributions when applying the
2µ2µ setup to the 2µ sub-sample, to the 3µ sub-sample and to the control channel
D−s → φ(µ−µ+)π− can be found in Fig. 7.5. The control data sample events are
weighted with sWeights again, in order to extract the signal distribution statistically.

Table 7.6: Variable ordering for the chosen 2µ2µ setup with the GradBoost algorithm.
rank variable rank variable rank variable
1 IPχ2 6 µ2 track quality 11 µ1 pT
2 LONGMAX1 7 µnot pT 12 λdecay
3 µ1 cone isolation 8 µnot track quality 13 µ2 pT
4 µ1 track quality 9 µ2 cone isolation 14 τ pT
5 endvertexχ2 10 µnot cone isolation 15 VELOMAX1
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Figure 7.5: Output distributions of applying the 2µ2µ GradBoost training to the 2µ and
the 3µ sub-samples of the signal channel (above) and the 2018 control sample
(below).
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7.4 Correction in classifier output

After weighting the Monte Carlo events with correction weights, as described in
Sec. 6.5, the distributions of Monte Carlo variables are adapted better to the data
distributions. This is necessary, as the Monte Carlo events are used to calcu-
late the necessary efficiencies for the final limit on the branching fraction of the
τ− → µ−µ+µ− decay.
However, while the distributions are adapted in some of the most important vari-
ables, minor residual discrepancies remain. As can be seen in Fig. 7.5, the classifier
output distribution is not yet the same for Monte Carlo and data. As a cut is ap-
plied on the classifier output later and the efficiency of this cut needs to be correctly
predicted by the MC, it is necessary to remove this discrepancy. This is done by cal-
culating another set of weights, called BDT correction weights, using the differences
between the Monte Carlo distribution and the data distribution of the classifier out-
put.
The strategy to correct for this discrepancy is the same as used in Sec. 6.5. The
control channel D−s → φ(µ−µ+)π− is used to compare the distributions. The data
events are weighted with the sWeights obtained in the fit as seen in Fig. 6.3 in order
to obtain the signal distribution. This signal distribution is then compared bin-by-
bin to the distribution of the Monte Carlo, weighted with the fraction weights and
correction weights. In each bin, BDT correction weights are calculated such, that
the Monte Carlo distribution weighted with all three sets of weights approaches the
data distribution. This can be seen in Fig. 7.6.
The weights are calculated and stored for all three years separately and applied to
the MC signal sample.
To make sure other variable distributions are not influenced negatively by these
weights, the five most important training variables as well as the VELOMAX1 muon
isolation variable are plotted before and after the weighting with the BDT correc-
tion weights exemplary for the 2018 control samples. It is shown in Fig. 7.7 that
the BDT correction weights only minimally influence the most important variables.
While the distributions of the muon cone isolation and track quality are respectively
under- and overestimated by the MC, the BDT correction weights do not notice-
ably change that. The only variable where a noticeable change can be seen when
weighting with the BDT correction weights is the variable which is most important
for the classifier, ln(IPχ2). The weighting boosts events with a higher IPχ2. As
events with a low classifier output are boosted, that means that MC events with a
high IPχ2 are sorted more often as background than data events. This is, however,
not a big deviation and therefore not problematic.
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Figure 7.6: Classifier output distributions of control MC with and without BDT correction
weights in comparison with sWeighted control data for 2016 (upper left), 2017
(upper right) and 2018 (bottom)

The BDT correction weights affect not only the variables themselves, but also slightly
the correlation between them. This is visible in Fig. 7.8, which shows the correlation
of 2018 MC control sample events between ln(IPχ2) and the LONGMAX1 isolation
variable, as well as the correlation between the LONGMAX1 isolation variable and
the µ1 track quality.
By comparing the correlation before and after applying the BDT correction weights,
as shown in the top (before) and the middle (after), it can be seen, that the cor-
relation between the variables decreases slightly. This is further visualised in the
bottom plots, which show the difference in correlation before and after applying the
BDT correction weights.
With the fraction weights, the correction weights and the BDT correction weights
stored for the signal channel and the classifier output from the 2µ2µ setup with
GradBoost training stored for each signal candidate, it is now possible to search for
the optimal cut on the classifier output to separate signal and background.
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Figure 7.7: The distributions of the five most important training variables and the VELO-
MAX1 muon isolation variable for the 2018 MC control samples before (purple)
and after (light blue) weighting with the BDT correction weights in comparison
to the same distributions of the sWeighted 2018 control data samples (orange).
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Figure 7.8: Correlation between ln(IPχ2) and LONGMAX1 (left) as well as between
LONGMAX1 and µ1 track quality (right) before (top) and after (middle)
weighting with the BDT correction weights, as well as the difference between
the histograms before and after (bottom).
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7.5 Classifier performance validation

The final expected limit is calculated in six bins. These are the 2µ and 3µ sub-
samples for each of the three years, separately. The efficiencies for the calculation of
the limit are estimated on the weighted Monte Carlo samples for each bin separately,
while the expected background is estimated by fitting the outer sidebands of the
signal channel data in each of the six bins.
The classifier is applied to the final samples and the weights used on the Monte Carlo
events. The performance, measured by the integral over the ROC curve, is used to
confirm that the classifier is not overly biased towards a certain year or sub-sample,
despite being trained on 2016 − 2018 signal against 2018 background.
The low number of Monte Carlo events for the 2µ sub-sample leads to fluctuations
in the performance of this sub-sample. Nevertheless, Tab. 7.7 shows the robustness
of the classifier for the different samples, years and magnet polarities.

Table 7.7: Performance (integral over the ROC curve) of the final classifier on each year,
sample and magnet polarity.

year magnet polarity 2µ 3µ
2018 down 0.913 0.916
2018 up 0.912 0.915
2017 down 0.908 0.916
2017 up 0.911 0.915
2016 down 0.901 0.912
2016 up 0.915 0.914
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8 Expected limit

The aim of this thesis is to estimate an expected limit on the branching fraction of
the decay τ− → µ−µ+µ−. The kinematically similar channel D−s → φ(µ−µ+)π− is
used as control channel to correct discrepancies in the Monte Carlo. Both channels
have to pass a set of trigger requirements and are pre-selected to remove background.
A multivariate analysis classifier is trained to obtain the optimal separation variable
between the τ− → µ−µ+µ− signal and combinatorial background. This is done
separately on two sub-samples, called 2µ and 3µ sub-sample. They are defined by
the number of daughter candidates that are identified as muons by the muon system
in the event and are mutually exclusive. The final optimised classifier is applied to all
signal samples. This chapter describes the determination of the optimal separation
cut on the classifier output and the calculation of its efficiency. The efficiency is used
as input to calculate the single event sensitivity, α, which gives the proportionality
factor between the measured number of events and the branching fraction. The
single event sensitivity is used to determine an expected limit under the assumption
that no signal event is measured. The acceptance, retention rate and reconstruction
efficiency needed to compute α are calculated by other members of the group. The
previous measurement limit, based only on Run 1 data, is extrapolated to the current
statistics and compared to the estimation.

8.1 Punzi Figure of Merit

The multivariate analysis training on the 2µ sub-sample of the signal channel pro-
duces a classifier that is applied to all signal and control samples. The aim is to
find the optimal cut on the classifier output, which leads to the highest sensitivity
of the analysis. The Punzi Figure of Merit is used to determine the optimal cut in
six bins, namely two sub-samples and three years each.
The Punzi Figure of Merit is calculated using the following equation:

P =
εS

a/2 +
√
B
, (8.1)

where εS = Ncut/Ntot is the signal efficiency. Of Ntot signal candidates before the
cut, Ncut pass the cut. B is the number of background candidates left after applying
the cut. All these yields are determined in the signal region of the signal channel.
The variable a, corresponding to the aimed significance of the observation, is set to
three.
While the signal efficiency can be determined from Monte Carlo, it is more diffi-
cult to obtain the number of expected background events in the signal region for
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a certain cut, as the signal region of the signal data sample is still blinded. It is
obtained by fitting the outer sidebands of the signal data samples and extrapolating
the number of expected background candidates from the fit. In order to have a
smooth distribution to fit, it is necessary to apply particle identification conditions
on the daughter particles. For all good muons, a minimum value for the particle
identification variable ProbNNmu is required. As this is not defined for non-good
muons, a minimum requirement for the RichDLLmu variable of the non-good muons
is set. This only concerns the 2µ sub-sample, as all muons in the 3µ sub-sample are
good muons. The distribution of the ProbNNmu and RichDLLmu variable for good
and non-good muons are shown in Fig. 8.1.
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Figure 8.1: Monte Carlo distribution of the ProbNNmu and RichDLLmu variables for the
2µ sample muons. The ProbNNmu distribution for the non-good muon is not
shown, as it is not defined.

Figure 8.2 shows the effect of the ProbNNmu cut exemplary on the 2018 3µ sub-
sample. As can be seen, the cut effectively reduces background and removes a bump
at the right end of the left outer sideband. This bump is most likely a peak produced
by D± → K±µ+µ− decays where one K is misidentified as a µ, moving the peak by
the mass difference of ≈ 390MeV. Additionally, the background, which before has
an upwards slope, is much flatter after the cut. The raising background is caused
by misidentified candidates from semileptonic D±s → µ±X decays, where X can be
any possible combination of particles.
The effect of the particle identification cut on the 2018 2µ sub-sample can be seen
exemplary in Fig. 8.3. It has a similar effect as the particle identification cut on the
3µ sub-sample. The main difference is the overwhelming surplus of data background
before the cut, prompting a much stricter cut on the RichDLLmu variable of the
non-good muon.
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Figure 8.2: 2018 Monte Carlo and outer sidebands data distribution before (left) and after
(right) the ProbNNmu cut is applied to the 2018 3µ sub-sample.
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Figure 8.3: 2018 Monte Carlo and outer sidebands data distribution before (left) and after
(after) the ProbNNmu and RichDLLmu cut is applied to the 2018 2µ sub-
sample.
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Together with the particle identification cut, a cut is also applied on the classifier
output of the GradBoost 2µ2µ training setting. For the 3µ sub-sample, this cut is
optimised for each year two-dimensionally together with the ProbNNmu cut. As
the result proves a very low correlation between the ProbNNmu variable and the
classifier output, for the 2µ sub-sample the ProbNNmu cut on the two good muons
is optimised first. Subsequently, the RichDLLmu cut on the non-good muons is
optimised two-dimensionally together with the cut on the classifier output. All cuts
are optimised by maximising the Punzi Figure of Merit. The distribution of the
Punzi Figure of Merit for the two-dimensional cut optimisations can be found in
Fig. 8.4. Table 8.1 shows the optimised cuts for all six bins.

Table 8.1: Optimised particle identification and classifier output cuts for all six bins.
2µ 3µ

2016 2017 2018 2016 2017 2018
µ ProbNNmu > 0.6 0.7 0.7 0.75 0.8 0.75
µnot RichDLLmu > 26 32 30 − − −
classifier output > 0.65 0.4 0.75 0.5 0.5 0.5

A sum of two exponentials is fitted to the outer sidebands of the signal data in order
to determine the expected background in the signal region. The effect of the cut
on the outer sidebands and the resulting fits can be found in Fig. 8.5. These ex-
ponentials are meant to model the combinatorial background, resulting in a falling
exponential curve, and the tail of a Gaussian distribution resulting from leftover
misidentified semileptonic D±s → µ±X decays. The expected background is deter-
mined in the blinded signal window of (1756.86 − 1796.86)MeV. The estimated
expected background yields, Bexp, in each bin together with the particle identifica-
tion and classifier output cut efficiency, εID,BDT , as well as the efficiency of the mass
cut to the signal window, εmass are given in Tab. 8.2.

Table 8.2: Particle identification cut efficiencies and classifier output cut efficiency,
εID,BDT , mass cut efficiency, εmass, and expected background, Bexp, for each of
the six bins.

2µ
2016 2017 2018

εmass 0.93 ± ( 3.63× 10−3) 0.93 ± ( 2.22× 10−3) 0.93 ± ( 2.37× 10−3)
εID,BDT 0.03 ± ( 2.56× 10−3) 0.12 ± ( 2.60× 10−3) 0.09 ± ( 2.45× 10−3)
Bexp 2.02 ± 1.42 14.34 ± 3.79 6.21 ± 2.49

3µ
2016 2017 2018

εmass 0.92 ± ( 6.99× 10−4) 0.93 ± ( 7.01× 10−4) 0.92 ± ( 7.62× 10−4)
εID,BDT 0.33 ± ( 1.26× 10−3) 0.31 ± ( 1.29× 10−3) 0.35 ± ( 1.41× 10−3)
Bexp 181.02 ± 13.45 154.73 ± 12.44 201.95 ± 14.21
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Figure 8.4: Distribution of the Punzi Figure of Merit for optimising the RichDLLmu cut
together with the classifier output cut for the 2µ sub-sample (left) and for
optimising the ProbNNmu cut together with the classifier output cut for the
3µ sub-sample (right) for 2016 (top), 2017 (middle) and 2018 (bottom).
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Figure 8.5: Fit to the outer sidebands of the signal data samples to estimate the expected
background in the signal range for all six bins: 2µ sub-sample (left) and 3µ
sub-sample (right) in the years 2016 (top), 2017 (middle) and 2018 (bottom).
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8.2 Limit extrapolation

Using the signal efficiencies of the optimised cuts, the single event sensitivity, α, can
be determined. It can be used to estimate an expected limit for the case of no events
observed in the signal region. The complete formula for the calculation of α can be
found in eq. 8.6. The upper limit (UL) that was expected for the Run 1 dataset is
at

ULRun1 = 5.0 (6.1)× 10−8 90% (95%) [6] (8.2)

The final limit was slightly better than that, as less background than expected was
measured.
This expected limit of Run 1 is extrapolated to the current statistics, to get an
estimation of what value can be expected from the current statistics. This value is
then compared to the expected limit calculated from the single event sensitivity.
The branching fraction B is proportional to Nsig

Nnorm
, where Nsig is the number of ob-

served signal events in the signal region of the signal channel, while Nnorm is the
number of observed signal events in the signal region of the reference channel. As
reference channel, the D−s → φ(µ−µ+)π− decay channel is used. The MC control
and data samples used for the correction of the Monte Carlo are used with the same
trigger requirements, weights and preselection cuts as reference MC and data sam-
ples.
The 90% or 95% confidence level defines the upper limit (UL) to the interval around
the assumed branching fraction of the null hypothesis, B = 0, such that the inte-
grated probability for the true value to lie within this interval is 90% or 95%. This
means that the probability for the true branching fraction to be higher than the
limit is only 10% or 5%. The limit on the branching fraction is proportional to
NUL
sig

Nnorm
, where NUL

sig is the upper limit on the number of observed signal events. It is
proportional to the uncertainty on the number of expected background events, Bexp,
as a higher uncertainty on the number of expected background events means the
limit on the observed events that could be signal must be set higher. As a Poissonian
distributed variable, the uncertainty on the number of expected background events
is its square root,

√
Bexp. Therefore, the upper limit UL is proportional to:

UL ∝
√
Bexp

Nnorm

(8.3)

The number of both the expected number of background events in the signal chan-
nel and the expected number of signal events in the reference channel are directly
proportional to the integrated luminosity and the production cross section of the
relevant mother particles. It is assumed that the cross sections for the combinato-
rial background processes, σcomb bkg, scale with the same factor as the cross section
for the reference channel, σDs , as the main combinatorial background comes from
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semileptonic Ds decays, so that σDs can be used:

UL ∝

√∫
Run
Ldt · σcomb bkg∫

Run
Ldt · σDs

≈

√∫
Run
Ldt · σDs∫

Run
Ldt · σDs

=
1√∫

Run
Ldt · σDs

(8.4)

As all other values for the calculation of the limit are independent from luminosity
and energy and therefore the same for both runs, it is possible to extrapolate the
obtained limit for Run 1 to the luminosity and energy of Run 2 :

ULRun2,extrapolated = ULRun1 ×
√
Nnorm,Run1√
Nnorm,Run2

= ULRun1 ×

√∫
Run1
Ldt · σRun1√∫

Run2
Ldt · σRun2

= ULRun1 ×

√∫
2011
Ldt · σ2011 +

∫
2012
Ldt · σ2012√∫

Run2
Ldt · σRun2

Table 8.3: Ds production cross sections and luminosities for Run 1 and Run 2. The Ds

cross section at 8TeV is scaled from the cross section at 7TeV using a factor of
8/7, equivalent to [6].

2011 2012 2016 - 2018∫
Ldt 1.11 fb−1 2.08 fb−1 5.57 fb−1

σDs 197 ± 31µb [53] 225 ± 46µb 353 ± 76µb [54]

Using the values in Tab. 8.3, an expected limit for Run 2 given the circumstances
of Run 1 can be extrapolated to:

ULRun 2, extrapolated = 2.95 (3.60)× 10−8 90% (95%)

8.3 Single event sensitivity

To estimate the branching fraction B for a decay for which Nsig signal events are
observed, the single event sensitivity, α, is needed. It represents the proportion-
ality factor between the number of observed signal events, Nsig, and the branch-
ing fraction,B.

Bsig = α×Nsig (8.5)

The single event sensitivity can be determined using equation 8.6, where:

B(τ− → µ+µ−µ+) = B(D−s → φ(µ+µ−)π−)×
f τDs

B(D−s → τ−ν̄τ )
× εDs

ετ
× Nsig

Nnorm

= α×Nsig (8.6)
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• B(D−s → φ(µ+µ−)π−) = (1.30 ± 0.10) × 10−5 (see Sec. 4.3) is the branching
fraction for the reference channel

• f τDs = (78.88± 3.77)% is the fraction of all produced τ± that originated in the
decay of a Ds. It equals the sum of fprod from channel (i) and (ii) in Tab. 6.4.

• B(D−s → τ−ν̄τ ) = (5.48 ± 0.23)% [8] is the branching fraction of Ds into τ
with the production of a neutrino

• εDs is the overall efficiency for reference channel signal events

• ετ is the overall efficiency for the signal channel signal events, including the
efficiencies εmass and εID,BDT given in Tab. 8.2

• Nnorm is the number of observed reference channel events in the signal region
of mDs±50MeV around the Ds mass, mDs = 1776.86MeV, from the reference
data sample, determined from the fits in Fig. 6.3

The overall efficiencies of both signal channel sub-samples and of the control chan-
nel are an important input parameter for the calculation of α. They determine
the fraction of events that are detected within the LHCb acceptance and pass all
requirements for the channel of interest. A higher efficiency means more sensitiv-
ity of the experiment. As efficiencies are calculated on MC events, it is important
that the MC is correctly simulating the data. Different efficiencies are included in
the calculation of the overall efficiencies. An overview over them can be found in
Tab. 8.4.
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Table 8.4: Efficiencies for the 2µ and 3µ sub-sample of the signal channel and for the refer-
ence channel. The acceptance, εacc, the retention rate, εret, and the reconstruc-
tion efficiency, εreco, are calculated by other members of the group. The trigger
efficiency, εtrig, is taken from Tab. 6.10. The preselection efficiency, εpresel, for
the signal channel is taken from Tab. 6.12. The preselection efficiency, εpresel,
the particle identification efficiency, εID, and the mass cut efficiency, εmass, for
the reference channel are taken from Tab. 6.15. The particle identification and
classifier output cut efficiencies εID,BDT , as well as the mass cut efficiency, εmass,
for the signal channel are taken from Tab. 8.2.

2µ
2016 2017 2018

εacc 0.11 ± (4.30× 10−3) 0.11 ± (4.30× 10−3) 0.11 ± (4.30× 10−3)
εret 0.57 ± (3.64× 10−4) 0.57 ± (3.64× 10−4) 0.57 ± (3.66× 10−4)
εreco 0.40 ± (4.76× 10−4) 0.40 ± (4.76× 10−4) 0.40 ± (4.79× 10−4)
εpresel 0.22 ± (5.56× 10−4) 0.22 ± (5.23× 10−4) 0.22 ± (5.66× 10−4)
εtrig 0.07 ± (1.02× 10−3) 0.22 ± (1.70× 10−3) 0.19 ± (1.58× 10−3)
εmass 0.93 ± (3.63× 10−3) 0.93 ± (2.22× 10−3) 0.93 ± (2.37× 10−3)

εID,BDT 0.03 ± (2.56× 10−3) 0.12 ± (2.60× 10−3) 0.09 ± (2.45× 10−3)
ετ (1.17 ± 0.25)× 10−5 (1.31 ± 0.27)× 10−4 (8.40 ± 1.71)× 10−5

3µ
2016 2017 2018

εacc 0.11 ± (4.30× 10−3) 0.11 ± (4.30× 10−3) 0.11 ± (4.30× 10−3)
εret 0.57 ± (3.64× 10−4) 0.57 ± (3.64× 10−4) 0.57 ± (3.66× 10−4)
εreco 0.40 ± (4.76× 10−4) 0.40 ± (4.76× 10−4) 0.40 ± (4.79× 10−4)
εpresel 0.54 ± (9.53× 10−4) 0.54 ± (9.61× 10−4) 0.53 ± (9.44× 10−4)
εtrig 0.59 ± (1.29× 10−3) 0.67 ± (1.24× 10−3) 0.58 ± (1.28× 10−3)
εmass 0.92 ± (6.99× 10−4) 0.93 ± (7.01× 10−4) 0.92 ± (7.62× 10−4)

εID,BDT 0.33 ± (1.26× 10−3) 0.31 ± (1.29× 10−3) 0.35 ± (1.41× 10−3)
ετ (2.29 ± 0.46)× 10−3 (2.52 ± 0.51)× 10−3 (2.39 ± 0.48)× 10−3

reference
2016 2017 2018

εacc 0.12 ± (3.31× 10−3) 0.12 ± (3.31× 10−3) 0.12 ± (3.31× 10−3)
εret 0.48 ± (3.25× 10−4) 0.48 ± (3.18× 10−4) 0.47 ± (3.38× 10−4)
εreco 0.17 ± (3.54× 10−4) 0.17 ± (3.47× 10−4) 0.17 ± (3.70× 10−4)
εpresel 0.92 ± (6.46× 10−4) 0.92 ± (6.27× 10−4) 0.92 ± (6.71× 10−4)
εtrig 0.15 ± (8.93× 10−3) 0.32 ± (1.14× 10−3) 0.28 ± (1.17× 10−3)
εmass 0.99 ± (7.31× 10−4) 0.99 ± (4.92× 10−4) 0.99 ± (5.58× 10−4)
εID 0.97 ± (1.13× 10−3) 0.96 ± (8.51× 10−4) 0.96 ± (9.58× 10−4)
εDs (1.27 ± 0.33)× 10−3 (2.72 ± 0.70)× 10−3 (2.36 ± 0.60)× 10−3
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The combined efficiencies are shown in Tab. 8.5 for each signal channel bin and in
Tab. 8.6 for each year of the reference channel.

Table 8.5: The final efficiencies ετ for each of the six bins.
2016 2017 2018

2µ (1.17 ± 0.25)× 10−5 (1.31 ± 0.27)× 10−4 (8.40 ± 1.71)× 10−5

3µ (2.29 ± 0.46)× 10−3 (2.52 ± 0.51)× 10−3 (2.39 ± 0.48)× 10−3

Table 8.6: The final efficiencies εDs for the reference channel.
2016 2017 2018

(1.27 ± 0.33)× 10−3 (2.72 ± 0.70)× 10−3 (2.36 ± 0.60)× 10−3

The ratio εDs
ετ

needs to be corrected by a correction factor stemming from the track
reconstruction efficiency, which is also calculated by other members of the group.
The corrected efficiency ratios are given in Tab. 8.7.

Table 8.7: The final corrected efficiency ratios εDs/ετ for each of the six bins.
2016 2017 2018

2µ 109.52 ± 36.69 (20.73 ± 6.78 28.08 ± 9.19
3µ 0.56 ± 0.18 1.08 ± 0.35 0.99 ± 0.32

Table 8.8: Number of observed reference channel events for each year using the fit in
Fig. 6.3.

2016 2017 2018
35909 ± 250 80289 ± 352 98070 ± 391

Table 8.8 shows the number of observed reference channel events for each year. To-
gether with the constants given below Eq. 8.6 and the efficiency ratios from Tab. 8.7,
the single event sensitivity α can now be determined for each bin.
The final single event sensitivities are given in Tab. 8.9.

Table 8.9: The final single event sensitivities α for each of the six bins.
2016 2017 2018

2µ (5.72 ± 0.78)× 10−7 (4.84 ± 0.55)× 10−8 (5.37 ± 0.62)× 10−8

3µ (2.91 ± 0.33)× 10−9 (2.52 ± 0.28)× 10−9 (1.88 ± 0.21)× 10−9

Assuming the measured number of events in the signal region equals exactly the
expected background given in Tab. 8.2, the CLS method can be used to set an up-
per limit on the branching fraction for each bin. These limits are shown in Tab. 8.10.
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Table 8.10: Upper limit on the number of signal events and the limit on the branching
fraction at 90% and 95% confidence level assuming Nexp events are observed
in the signal region.

2µ
2016 2017 2018

Nexp 3 14 6
90%: B(τ− → µ−µ+µ−) ≤ 2.19× 10−6 3.81× 10−7 3.24× 10−7

95%: B(τ− → µ−µ+µ−) ≤ 3.00× 10−6 4.75× 10−7 4.02× 10−7

3µ
2016 2017 2018

Nexp 181 155 202
90%: B(τ− → µ−µ+µ−) ≤ 6.65× 10−8 5.29× 10−8 4.55× 10−8

95%: B(τ− → µ−µ+µ−) ≤ 8.09× 10−8 6.51× 10−8 5.49× 10−8

The CLS method can also be used to combine the information from all six bins in
one combined expected limit for Run 2 :

B(τ− → µ−µ+µ−) ≤ 2.96 (3.58)× 10−8 90% (95%)

The likelihood distributions used for the calculation of the confidence levels for
these branching fractions are shown for the background-only and for the back-
ground+signal hypothesis in Fig. 8.6.
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Figure 8.6: Likelihood distributions used for the calculation of the 90% (left) and 95%
(right) confidence level.
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8.4 Results

The upper limit set on the τ− → µ−µ+µ− decay in Run 1, was at

ULRun 1, observed = 4.6 (5.6)× 10−8 90% (95%).

Due to fluctuations, this already presented a slight improvement to the expected
limit calculated for Run 1, which was at:

ULRun 1, expected = 5.0 (6.1)× 10−8 90% (95%)

Using only the naive extrapolation of the increased luminosity and cross section, the
expected limit for Run 2 should be at

ULRun 2, extrapolated = 2.95 (3.60)× 10−8 90% (95%)

The expected limit calculated in this thesis is already very close to this limit, even
exceeding it at 95% confidence level.

ULRun 2, expected = 2.96 (3.58)× 10−8 90% (95%)

This happens despite the fact that during Run 1, the analysis was done in more than
30 bins of the particle identification variable ProbNNmu and the classifier output,
leading to an improvement of the combined limit of almost 20% [43]. Despite not
using this binning, the expected limit could be reached with this analysis thanks to
the addition of the 2µ sub-sample and a noticeable improvement of the classifier of
about 10%, in part through the new muon isolation variables used in this thesis.
With a much higher luminosity of 33.2 fb−1, the CMS detector observed a signifi-
cantly less tight limit on the 2016 dataset produced by the LHC of:

ULCMS, 2016 = 8.0× 10−8 90%[55]

With the binning method applied to this analysis together with further corrections to
the single event sensitivity and some possible improvements on the output classifier
for the 3µ sub-sample, as well as the combination of the Run 1 limit with the Run
2 limit, an improvement of at least 30% upon the expected limit calculated in this
thesis can be expected to be observed in this analysis. This is expected to lead to
an observed limit tighter than the current worldwide best limit calculated by the
BELLE experiment:

ULbest limit (BELLE) = 2.1× 10−8 90%
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9 Conclusion and Outlook

This thesis estimates an expected limit on the branching fraction of the decay
τ− → µ−µ+µ− using data collected by the LHCb experiment in proton-proton
collisions at the LHC accelerator at CERN from the years 2016 − 2018 at a center-
of-mass energy of

√
s = 13TeV and a total integrated luminosity of 5.57 fb−1. The

decay τ− → µ−µ+µ− violates lepton flavour conservation and is only predicted
in the extended Standard Model of particle physics including neutrino oscillations
with a very low branching fraction of O (10−55). However, many theories beyond
the Standard Model allow for this decay with a branching fraction at the level of
O (10−10 − 10−7), making it an interesting decay to probe for new physics.
In this thesis, it is outlined how data and simulated Monte Carlo samples of both the
τ− → µ−µ+µ− signal channel and the D−s → φ(µ−µ+)π− control channel are pre-
pared and pre-selected. The signal channel samples are split into two samples called
the 2µ and the 3µ sub-sample depending on the number of muon candidates trig-
gered by the LHCb muon system. The control channel is used to correct the Monte
Carlo sample in four kinematic variables. The Monte Carlo events are weighted
such, that their variable distributions approximate the data sample distributions in
these variables. The 2µ and 3µ sub-samples are then used to train binary decision
trees to determine a separation variable. This variable classifies events in a range
between −1 and 1, where −1 means background-like and 1 means signal-like. The
control channel is again used to correct the Monte Carlo sample. Weights are added
to the Monte Carlo events such that the classifier output distributions of the Monte
Carlo sample approach those of the data sample. A figure of merit is used to deter-
mine the most sensitive cut on particle identification for the muon candidates and
the classifier output of the event for each year and sub-sample separately.
The D−s → φ(µ−µ+)π− channel is used as reference channel for calculating a limit
on the branching fraction for the signal channel decay τ− → µ−µ+µ−. Using the
observed number of D−s → φ(µ−µ+)π− signal events and the estimated efficiencies
for both the reference and the signal sub-samples for each year, the single event
sensitivity α for all three years and both sub-samples can be calculated. They are
given in Tab. 9.1.

Table 9.1: The final single event sensitivities α for each of the six samples.
2016 2017 2018

2µ (5.72 ± 2.40)× 10−7 (4.84 ± 2.00)× 10−8 (5.37 ± 2.22)× 10−8

3µ (2.91 ± 1.20)× 10−9 (2.52 ± 1.04)× 10−9 (1.88 ± 0.78)× 10−9

The single event sensitivity gives the proportionality factor between the branching
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fraction and the number of observed signal events:

B(τ− → µ−µ+µ−) = α×Nsig, (9.1)

where an upper limit on the number of observed signal events can be determined
from the number of observed events in the signal region, Nobs, given the number of
expected background events, Bexp. The number of expected background events is
determined by fitting the distribution of the signal data sample outside of the signal
range. Assuming the branching fraction to be zero, the number of observed events
is expected to be equal to the expected background. For this expectation, a limit on
the branching fraction can be calculated for all three years and both sub-samples.
These values are given in Tab. 9.2.

Table 9.2: Upper limit on the number of signal events and the limit on the branching
fraction at 90% and 95% confidence level assuming Nexp events are observed in
the signal region.

2µ
2016 2017 2018

Nexp 3 14 6
90%: B(τ− → µ−µ+µ−) ≤ 2.19× 10−6 3.81× 10−7 3.24× 10−7

95%: B(τ− → µ−µ+µ−) ≤ 3.00× 10−6 4.75× 10−7 4.02× 10−7

3µ
2016 2017 2018

Nexp 181 155 202
90%: B(τ− → µ−µ+µ−) ≤ 6.65× 10−8 5.29× 10−8 4.55× 10−8

95%: B(τ− → µ−µ+µ−) ≤ 8.09× 10−8 6.51× 10−8 5.49× 10−8

A combined expected upper limit can be set to:

B(τ− → µ−µ+µ−) ≤ 2.96 (3.58)× 10−8 90% (95%)

This is very close to the expected limit extrapolated from the expected limit calcu-
lated during Run 1 [6] taking the increased luminosity and centre-of-mass energy in
account:

ULRun 2, extrapolated = 2.95 (3.60)× 10−8 90% (95%)

The expected limit is significantly better than the limit reached during Run 1 :

ULRun 1, observed = 4.6 (5.6)× 10−8 90% (95%)

As during Run 1 an additional binning in particle identification and classifier output
variables improved the limit by about 20%, a similar improvement is expected for this
dataset with the introduction of binning. Additionally, the final analysis will provide
further corrections to the single event sensitivity and improve upon the output
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classifier. So far, the presented measurement represents a limit on the branching
fraction tighter than from the previous measurement, but still above the current
worldwide best limit, reached by the BELLE experiment:

ULbest limit (BELLE) = 2.1× 10−8 90%

With further improvements on the classifier and combination with the limit reached
in Run 1, it will be possible to improve upon the limit set before by the BELLE
experiment. This result will further challenge theories beyond the Standard Model
and provide knowledge about the elementary rules of the universe.
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