
Department of Physics and Astronomy

University of Heidelberg

Master thesis

in Physics

submitted by

Arno Friedrich

born in Dresden

May 2020

Systems Development towards a

Grazing Incidence Helium Atom Sca�ering Experiment

This Master thesis has been carried out by

Arno Friedrich

at the

Physikalisches Institut

Ruprecht-Karls-Universität Heidelberg

under the supervision of

Herrn Priv.-Doz. Maarten DeKieviet

Abstract

The thesis reports on the development of subsystems to facilitate Grazing In-
cidence Helium Atom Scattering (GI-HAS).
As a basis, an experimental set up from Bell Labs, USA had been transported
to CAM, Germany and is in the process of reconstruction and components up-
grade. To that end, a new power control and monitoring system has been de-
signed and implemented. The system is capable of autonomously controlling
the experiment based on sensory input about its state. A sensor simulation
environment was designed to validate the control logic prior to deployment.
In addition, a method has been developed for de�ning a central beam axis,
with respect to which the components of the time-of-�ight detector chamber
have been aligned. The periphery of the experiment, such as cooling, fore-
vacuum distribution and state sensors, were implemented, making the entire
detector chamber ready for operation. The �rst vacuum tests can be carried
out immediately after the lock-down regulations are loosened.
The power management system has been tested for its reliability and func-
tionality.

Zusammenfassung

Die vorliegende Arbeit berichtet über die Entwicklung von Subsystemen für
die Heliumatomstreuung bei streifendem Einfall (GI-HAS).
Als Basis diehnt ein Versuchsaufbau der von Bell Labs, USA, zum CAM, Deutsch-
land transportiert wurde und der im Prozess der Instandsetzung und Aktual-
isierung seine Komponenten ist. Zu diesem Zweck wurde ein neues
Leistungssteuerungs- und Überwachungs-system entwickelt und implemen-
tiert. Das System ist in der Lage, basierend auf sensorischen Eingaben über
dessen Zustand, das Experiment autonom zu steuern. Eine Sensorsimulation-
sumgebung wurde dazu entworfen mit deren Hilfe eine Validierung der Leis-
tungskontrolllogik durchgeführt wurde.
Darüber hinaus wurde ein Verfahren zum De�nieren einer zentralen Strahlachse
entwickelt, bezüglich der die Komponenten der Flugzeitdetektorkammer aus-
gerichtet wurden. Die Peripherie des Experiments, wie Kühlung, Vorvaku-
umverteilung und Zustandssensorik wurden implementiert, und die gesamte
Detektorkammer damit betribesbereit gemacht. Erste Vakuumtests können
somit nach Lockerung des lock-downs sofort erfolgen.
Das Leistungsverwaltungssystem wurde auf seine Zuverlässigkeit und Funk-
tionalität getestet.

I

Contents

1. Motivation 1

2. Context of this Work 3

3. Theory 5
3.1. Helium Atom Scattering . 5

3.1.1. Single-phonon Inelastic Scattering 5
3.1.2. Advantages for Surface Phonon Detection 6

3.2. Time-of-Flight Spectroscopy . 6
3.2.1. From ToF Spectrum to Dispersion Relation 6
3.2.2. Energy Resolution . 9
3.2.3. Grazing Incident Helium Atom Scattering 11
3.2.4. Practical Consideration from Theory 11

4. Implementations 13
4.1. Power Management . 13

4.1.1. General Design and Logic . 13
4.1.2. Implementation of Hardware Components 14
4.1.3. Setup of Manual Control . 18
4.1.4. Testbench for the PLC Program . 24
4.1.5. Control Software Development . 28
4.1.6. Input Reading . 29
4.1.7. Output Control . 31
4.1.8. Input-Output Mapping . 33
4.1.9. Setup and Control . 34
4.1.10. PLC Communication . 37
4.1.11. TCP Communication . 40
4.1.12. GSM Communication . 44
4.1.13. Software Summary . 45

4.2. Time-of-Flight Detector Chamber . 47
4.2.1. General Design . 47
4.2.2. Fore-vacuum Implementation . 49
4.2.3. Cooling System . 52
4.2.4. Alignment of Vacuum Components 53

5. Testing and Current State 63
5.1. Power Management . 63

5.1.1. Test Bench Results . 63
5.1.2. Overview of Finished Power Unit 64

5.2. Time-of-Flight Detector Chamber . 67
5.2.1. Estimation of Cooling Power . 67
5.2.2. Alignment Result . 69
5.2.3. Overview of the Completed ToF Arm 70

6. Summary 73

7. Outlook 75

III

A. Usage Procedures 77
A.1. Programming Pin Layout and Mapping onto PLC 77
A.2. Con�guring Wi-� and Ethernet Connection 78
A.3. Usage of Test Bench . 79

B. Programmable Logic Controler Scripts 81
B.1. Master PLC Script . 81
B.2. Slave PLC Script . 91

C. Raspberry Pi Server Scripts 94
C.1. TCP Server Script . 94
C.2. GSM Handling Module . 96
C.3. Test Program for PLC Logic . 97

D. Circuit Layout of Control Logic 101

Acknowledgment 115

IV

1. Motivation

In 1969 Cabrera, Celli and Manson published a theoretical study which led to the sugges-
tion to utilize helium for the detection of surface phonons (Cabrera et al., 1969). Until,
then the predominant technique for bulk phonon detection was neutron scattering. This
method, however, is of limited use for surface phonons because of the small scattering
cross section of neutrons. Shortly thereafter, Helium Atom Scattering (HAS) was carried
out for the �rst time in Fisher and Bledsoe (1971). While they could not resolve the dis-
persion relation of single surface phonons because of an insu�cient velocity resolution
(∆v

v ≥ 5%), they did however show a clear interaction between helium atoms and surface
phonons (Benedek and Toennies, 2018, p. 36). From then on, many surface phenomena
were discovered and advancements in Helium Atom Scattering Techniques were made -
both of which continue to this day.
Previous experiments revealed, that the atomic structure at a surface di�ers signi�cantly
from not only the bulk material but also the theoretical predictions for an ideal surface. For
example, analysis of metal surfaces exposed an unexpected soft surface phonon branch,
which lies below the longitudinal acoustic branch (Benedek and Toennies, 2018, p. viii).
When comparing the surface plane of a metal with an equivalent plane inside the bulk ma-
terial, one �nds di�erences in the structure of both planes. The redistribution of charges
leads to a change in either the periodicity of the surface (reconstruction) or the interlayer
spacing near the surface (relaxation).
Insulators do not experience the same kind of changes since charge redistribution mostly
does not apply here. However, other variations of the surface structure can still appear.
One example is surface roughening, which can be seen as the 2-D equivalent to amorphous
bulk material. A probing method that is strictly surface sensitive can also be employed for
the study of adsorbates or thin �lms on top of a surface.
Helium Atom Scattering was found to be well equipped for the analysis of exactly these
surface phenomena and dynamics. The downside, however, are the signi�cant technical
challenges associated with creating a helium beam and detecting the scattered atoms.
The longstanding goal of measuring a complete single-phonon inelastic scattering dis-
persion curve was �rst achieved in Brusdeylins et al. (1980). They used a time-of-�ight
measurement technique to calculate the energy exchange between helium beam and sam-
ple surface. The essence of this technique is to evaluate the velocity distribution of the
helium beam before and after scattering by measuring the �ight-time of its atoms.
In DeKieviet et al. (1995) that velocity distribution was measured with a di�erent tech-
nique, called 3He Atomic Beam Spin Echo (ABSE). The fermionic Helium-3 isotope is used
as a probe instead of Helium-4. This makes it possible to use the Lamor pression of the
nuclear spin as an indicator for the time-of-�ight of the beam. The method functions by
spin polarizing the atoms and then manipulating their spin with a speci�c arrangement
of magnetic �elds along the beam line. This leads to an excellent energy resolution of
< 1 neV (DeKieviet et al., 1995).
The goal of our research group is to develop an enhanced (transversal) version of the ABSE
experiment. In addition, we want to combine it with a 4He time-of-�ight scattering setup.
The combination of both techniques will hopefully open the door to new opportunities for
analyzing structure dynamics of disordered surfaces on the smallest scales.

1

2. Context of this Work

The HAS experiment, originally developed and operated at AT&T Bell Labs in Murray Hill,
USA, under the supervision of Prof. Dr. Bruce Doak, acts as the starting point for the com-
bination of GI-HAS and transverse ABSE spectroscopy. After its discontinuation in 2010,
the setup was transported to the Center for Advanced Materials in Heidelberg, Germany.
Both the incompatible power requirements and di�erent measuring conventions between
the two countries pose some great technical challenges.
The overall goal of a combined GI-HAS and transversal ABSE experiment can be broken
down into separate objectives. The �rst objective is to recreate and adapt the HAS ma-
chine as it was employed in the USA at AT&T labs and later on at Arizona State University
Tempe. Subsequently, it is planned to upgrade parts of the experiment, e.g. crystal manip-
ulator and load-lock system, to optimize resolution and e�ciency of the setup. Finally, the
necessary components for a transverse atom spin echo measurement will be implemented
and tested. The start of the reconstruction process of the HAS experiment was reported
in Turczyk (2018).
In this thesis, that endeavor is continued in two areas: The �rst part will cover the de-
velopment and testing of the new power distribution and monitoring system. The second
part describes the alignment of the detector vacuum chambers and the installation of its
peripheral systems.

3

3. Theory

Helium has a number of properties which make it uniquely suited for the detection of long
wavelength surface phonons. In the following, I will give a short overview of the theory
behind helium atom scattering and the time-of-�ight measurement technique.

3.1. Helium Atom Sca�ering

3.1.1. Single-phonon Inelastic Sca�ering

Single-phonon scattering is the method of choice for mapping the dispersion relationω(Q)
over the entire �rst Brillouin zone of a surface. Care must be taken to set up the experi-
mental parameters, such as incident beam energy and surface temperature, in a way that
no multi-phonon interactions appear.

An inelastic scattering process can be described by the conservation of both the total
energy and the momentum parallel to the surface (Benedek and Toennies, 2018, p. 22):

∆E + ~ω(Q) = 0 with ∆E = Ef − Ei =
~2

2m

(
k2
f − k2

i

)
, (1)

∆K +Q+G = 0 with ∆K = Kf −Ki, (2)

where ω(Q) describes the frequency of the scattered phonon in relation to its wave vector
Q parallel to the surface. ∆E denotes the energy that is transferred between helium atom
and phonon. K is the parallel wave vector of the atom, denoted with i or f for either
"initial" (also "incident") and "�nal", respectively. G is the reciprocal lattice vector. In
general, all capital letters describe vectors parallel to the surface plane.
Equations 1 and 2 can be satis�ed by di�erent combinations of wave vectors and ∆E:

• kf > ki ⇐⇒ ∆E > 0: Annihilation of phonon

• kf < ki ⇐⇒ ∆E < 0: Creation of phonon

• Kf > Ki ⇐⇒ G = 0: Creation→ backward travel, Annihilation→ forward

• Kf < Ki ⇐⇒ G 6= 0 : Creation→ forward travel, Annihilation→ backward

This means, we e�ectively have two distinctions for the type of inelastic scattering. The
�rst is the energy transfer. If ∆E is larger then zero, the helium atom gained energy from
the interaction and destroyed a phonon in the process. Whereas if it is smaller than zero,
the atom lost energy and created a new phonon.
The next distinction is the direction in which the phonon travels in relation to Kf . If the
scattering process results in a Kf which falls outside of the �rst Brillouin zone, the re-
ciprocal lattice vector G is applied. This back scattering or "Umklapp" process results in a
phonon wave vector Q which falls back into the �rst Brillouin zone. That is because the
(reciprocal) lattice is by de�nition periodic. Therefore, each point on the K-space can be
mathematically represented as a point in the �rst Brillouin zone by adding or subtracting
G. Physically, ~G is the momentum that the helium atom transfers onto the center of mass
of the target. Depending on the direction ofQ, this leads to a forward or backward motion
(with respect to Kf) of the phonon.

5

3. Theory

Lastly, it is also possible that no energy transfer takes place at all during the atom-surface
interaction (∆E = 0). This is called di�raction and is an elastic scattering process.
Both the inelastic and elastic scattering processes are used to determine di�erent proper-
ties of a surface. All con�gurations of inelastic scattering can provide information about
the dispersion relation ω(Q). Whereas, di�raction is employed to map out the unit cell
structure of a surface.

3.1.2. Advantages for Surface Phonon Detection

Helium atoms o�er signi�cant bene�ts for probing surface phonons in comparison to other
scattering beam particles like neutrons, electrons or photons.

For a successful detection of phonons, the interacting particles should have an simi-
lar momentum and kinetic energy. For example, electrons with Ekin ≈ 200 meV have
enough momentum but the phonon energies, which have to be detected, are in the order
of magnitudes lower with ∆E ≈ 2− 40meV. Thus, it requires an extremely high energy
resolution. In addition, generating electron beams with such a low energy is very di�cult
due to Coulomb repulsion. In other words, at very low kinetic energies it becomes exceed-
ingly hard to generate a focused particle beam because of the repulsive forces between
electrons in the beam.
In contrast, it is possible to generate helium atom beams with a kinetic energy more in
range with that of surface phonons. Most importantly however, the wave vector (which is
proportional to the momentum) of helium k ≈ 2π Å−1, when its kinetic energy is tuned
to approximately 20 meV. This is similar to the inverse of a typical crystal lattice spacing.
Consequently, it is in the same range as the wave vector (and therefore momentum) of a
surface phonon. The similar momentum and energy are the main reasons for the usage of
helium as a surface probe.
It is possible to generate helium beams with a low kinetic energy (E < 70 meV), which
makes its surface interactions entirely non-destructive (Hulpke, 1992, p. 265). Another key
point is its large scattering cross section. Because of this, the classical turning point of he-
lium is approximately 3 Å above any surface. And �nally, HAS can be used to investigate
metals, insulators and semiconductors alike because, it is neutral and inert and does not
cause nor su�er from surface charging (Benedek and Toennies, 2018, p. 17).
Taken together, its momentum, beam energy, scattering cross section and inert nature
makes helium at thermal energies, a clear favorite for the investigation of surface dynamics.̧

3.2. Time-of-Flight Spectroscopy

3.2.1. From ToF Spectrum to Dispersion Relation

The parameters from equation 1 and 2 that are measurable in the experiment are: ∆E and
∆K . For the former, the time-of-�ight spectroscopy is used and the latter is calculated
using ∆E and the scattering angles ϑi and ϑf .
We limit ourselves to planar scattering. In this case, Ki, Kf and the surface normal N lie
in the same plane, which has to be brought to align with a high symmetry direction of the
crystal lattice.
Figure 1 depicts the general experiential set up. The helium source generates an atom
beam with a low velocity spread (∆v

v ≈ 1%). The chopper is a high-frequency rotating

6

3.2. Time-of-Flight Spectroscopy

Figure 1: (Benedek and Toennies, 2018, pr. 23) Visualization of the time-of-�ight spec-
troscopy with helium atoms. The helium source generates an atom beam with
a low velocity spread (∆v

v ≈ 1%). The beam is chopped into discrete packages
and scattered on the target. A mass spectrometer then generates time-of-�ight
spectra by counting the incoming atoms per unit time since they left the chopper.
Intensity peaks from elastic and inelastic scattering are visibly in these spectra.

plate with slits to allow for chopping the beam into discrete packages. The beam then hits
the target at an incident angle ϑi and interacts with the surface. The total scattering angle
ΘT is usually �xed, meaning ΘT = ϑi + ϑf , because of the bulky source and detector
chambers. In this arrangement, only one of the scattering angles can be freely chosen by
rotating the target surface. This is the case for our experiment as well, with the caveat that
we plan to incorporate two beam sources.
The scattered helium atoms are then detected by a mass spectrometer. A timer is started
whenever a beam package leaves the chopper (t0). The detector then counts the num-
ber of received atoms per unit time since t0. This way, a time-of-�ight distribution (or
histogram) is created in which the di�erent scattering processes can be visible. Besides
an intensity peak for elastic scattering, annihilation and creation of phonons will show
pronounced peaks before and after the elastic scattering peak, respectively. This has to
be combined with measurements of the Time-of-Flight (ToF) distribution of the incident
beam to resolve the transferred energy ∆E. The transferred momentum ∆K lies on a so
called "scan curve". This describes all values of ∆K and ∆E, which satisfy the conditions
from equation 1 and 2. For a given incident beam energy Ei and scattering angles this
relation is given by (Benedek and Toennies, 2018, p. 256):

∆E

Ei
+ 1 =

sin2 ϑi

sin2 ϑf

(
1 +

∆K

Ki

)2

. (3)

7

3. Theory

In the case of planar scattering, we can simplify the wave vectors and write ∆K = ∆K
and Ki = Ki. Ki is also the parallel component of ki in relation to the surface plane:

Ki = sin(ϑi) · ki (4)

=⇒ ∆E

Ei
+ 1 =

1

sin2(ϑf)

(
sin(ϑi) +

∆K

ki

)2

. (5)

The relation between energy Ei and wave vector ki follows from:

Ei =
p2

2m
=

~2

2m
ki

2 with p = ~k. (6)

We can therefore calculate the momentum transfer ∆K from the energy transfer ∆E us-
ing only the incident energy Ei and the scattering angles.

The question remains how to determine ∆E and Ei from the time-of-�ight spectrum.
This can be done with the classic kinetic energy function:

E =
m

2
v2. (7)

The method, with which the speed of incident and �nal beam is derived, di�ers between
HAS experiments. In essence, one has to make a precise distance measurement along the
beam line and determine the time it takes for the particles to travel that distance. However,
the exact point within the mass spectrometer at which the helium atoms are detected is
hard to pin down. A precise measurement from that point to the scattering surface is an
experimental and technical challenge
Dr. Bruce Doak’s solution to this is a movable detector, mounted on linear rails in parallel
to the beam axis. Two ToF spectra from the same surface are taken, while the detector is
positioned at di�erent distances from the target. The distance between these positions is
easily and precisely measured using a standard laser interferometer. This way, a distinct
speed value can be assigned to each peak on the ToF spectrum. Using equation 7, the en-
ergy Ef can be uniquely determined for every peak. Since ∆E = Ef − Ei, the incident
beam energy is the last missing parameter.
Specular re�ection as an elastic scattering process where ∆E = 0. This means, we can
expect one intensity peak on the ToF spectrum for which Ei = Ef must hold. Specular
re�ection becomes the most probable scattering process with the highest intensity peak
when: ϑi = ϑf . Consequently, we can adjust the scattering angle by rotating the target
until this condition is ful�lled and obtain the last required parameter Ei.
After this calibration procedure, it is possible to determine the dispersion relation ω(Q),
which is proportional to ∆E(∆K), by measuring the time-of-�ight spectrum of the scat-
tered helium atom beam.

It is important to note that the "scan curves" mentioned above are in reality not precise
lines but rather an envelope of possible values due to kinematic smearing. The atoms in
the helium beam have both a velocity spread and a angular spread. Since velocity and
angle are both used to calculate ki , their uncertainties translate to the values of the scan
curve as well. As it it turns out, these are almost never the limiting factor for the energy
resolution (Hulpke, 1992, p. 12). It is the time spread, described in section 3.2.2, which
usually limits the accuracy of the dispersion curve measurement.

8

3.2. Time-of-Flight Spectroscopy

3.2.2. Energy Resolution

The ability to resolve two distinct peaks in the ToF spectrum depends on the width of those
peaks. The total time spread ∆T of a ToF peak is in�uenced by 4 factors:

• Chopper pulse length

• Dispersion between chopper and target

• Dispersion between target and detector

• Finite length of ionizer within detector

The following calculations for the resulting e�ective energy spread are taken from Hulpke
(1992, pp. 13).
The time spread for the chopper pulse length ∆C describes the time in which an atom can
pass the chopper opening:

∆C =
wsNsfs

2πr
, (8)

where ws is the larger one of either beam diameter or slit width, Ns describes the number
of slits on radius r, and fs is the chopper rotational frequency.
The dispersion of the atom over the distance between chopper and target is explained by:

∆ct =
−xct∆vi
vi2

, (9)

with xct being the distance between chopper and target.
The time dispersion ∆td after scattering and before detection of the atoms is due to the
spread in velocities vf of the atoms:

∆td = −xtd
(

1 +
∆E

Ei

)− 3
2

∆vi, (10)

while xtd is the distance between target and detector. And �nally, the time spread ∆D

caused by the �nite length of the ionizer LD is simply the time it takes an atom to travel
that length with a speed vf . Of course, that velocity again has a certain spread:

∆D =
LD

vf
with vf =

(
1 +

∆E

Ei

) 1
2

(11)

All these contributions can be combined to the total time spread:

∆T =
(
∆C

2 + ∆ct
2 + ∆td

2 + ∆D
2
)1/2

. (12)

This can be put in relation to the e�ective energy width δ(∆E) with:

δ(∆E)

Ei
= −2

(
1 +

∆E

Ei

)3/2 vi
xtd

∆T . (13)

This expression shows that phonon creation events, where ∆E < 0, have a much better
resolution compared to annihilation events with ∆E > 0. This is especially true for high
energy events, where ∆E → ±Ei.

9

3. Theory

Figure 2: (Hulpke, 1992, p. 16) Calculated e�ective width (dark solid lines) of peak in en-
ergy spectra in relation to respective phonon energy. RT and LN2 refer to room
temperature and liquid nitrogen temperature, respectively. Di�erent experimen-
tal improvements to resolution are shown: Lighter solid lines indicate moving
chopper behind scattering target. Dotted-slashed line show descreasing LD and
∆C to 20 % of their previous value. Dotted lines indicate areas where measure-
ments are di�cult due to low speed of scattered helium beam.

However, phonon annihilation is often more relevant. For obvious reasons, no phonon
creation can be triggered for ∆E > Ei. Unfortunately, Ei can not be increased inde�-
nitely, because multi-phonon scattering will overshadow the singe-phonon processes at
some point. Therefore, annihilation becomes the only possibility when measuring high
energy surface phonons in a regime where ∆E > Ei.
In general, the e�ect of the time-of-�ight spread on the energy resolution is also much
greater than the contributions from kinematic smearing, mentioned in section 3.2.1. Equa-
tion 13 is used to visualize these e�ects on the energy resolution for di�erent experimental
parameters (�gure 2). It shows the width of a peak in the energy spectrum plotted against
the phonon energy ∆E for a number of variations of the experimental parameters. RT
and LN2 refer to room temperature and liquid nitrogen temperature of the beam nozzle,
respectively. The most substantial gains in resolution can be achieved by decreasing the
detector length LD and the chopper shutter time spread ∆C . The former has technical
limitations on the minimal size of an ionizer. Whereas the latter is not only dependent
on the chopper parameters, like slit width or chopper frequency, it also depends on the
beam diameter. However, the beam diameter cannot be made arbitrarily small because it
becomes very di�cult to create, guide and detect the beam.
All in all, the time spread of the beam chopper, the length of the ionizer and the velocity
spread of the helium beam require the primary focus, when aiming for an outstanding
energy resolution.

10

3.2. Time-of-Flight Spectroscopy

3.2.3. Grazing Incident Helium Atom Sca�ering

The incident angle ϑi has a substantial e�ect on the entire measurement. By changing
its value, we can adjust the parallel incident momentum Ki, which has implications for
the scattering process. In many experimental set ups, the �nal angle ϑf is also tied to ϑi
through: ΘT = ϑi +ϑf . In the experiment in the Center for Advanced Materials, we plan
to employ two beam source chambers with ΘT = 90° and ΘT = 180°, respectively. The
second source will be used for grazing incident helium atom scattering (GI-HAS).
In section 3.1.1, I showed that only the parallel component of the complete incident wave
vector ki is considered in the momentum conservation. This is quite intuitive since the
wave vectorQ of a two-dimensional surface phonon should not have any component par-
allel to the surface normal (from here on de�ned as Z-direction). In grazing incidence we
minimize the Z component of ki (and thus maximizeKi) because it does not contribute to
the atom-phonon-interaction at all. Since ki,z = ki · cosϑi, we have to move the incident
angle close to 90° and thus "graze" the surface with the atom beam. The closer ϑi gets to
ϑi = 90°,the higher the beam re�ectivity. This is a strict consequence of the fact that the
scattering process is quantum mechanical in nature.
Another point to consider is the larger e�ective surface Aeff , which is probed by the he-
lium beam. Starting from the area of an ellipses: A = πab, and de�ning b as the semi-major
axis parallel to Ki:

b =
rB

sin(90− ϑi)
, a = rB =⇒ Aeff =

πrB
2

sin(90− ϑi)
. (14)

As expected, given a constant beam radius rB ,Aeff increases non-linearly with shallower
incidence. Consequently, the goal is to minimize 90°− ϑi. At some point, however, Aeff

will exceed the size of the sample surface. The disadvantage that a smaller percentage of
helium atoms from the beam will scatter at the surface, is o�set by the fact that the inelas-
tic scattering happens with virtually no Z component of ki. The percentage of scattered
particles at a given angle ϑi can be increased by making the beam as thin as possible.
Furthermore, the analysis of a grazing incident beam simpli�es signi�cantly. Ei can be
derived directly by aiming the atom beam at the detector and measuring its velocity as
described in section 3.2.1. This assumes that the path di�erence between scattered and
unscattered atoms is negligible. Therefore, it is of vital importance to adjust the incident
angle to as close to 90° as possible.
Finally, the scan curve calculated with equation 5 simpli�es to:

∆E

Ei
=

(
∆K

ki

)2

+
∆K

ki
. (15)

3.2.4. Practical Consideration from Theory

From the above section, we summarize some considerations for the actual design of an
HAS experiment:

Vacuum Requirements The aim of the entire experiment is to use a quadropole mass
spectrometer to precisely measure the arrival times of single helium atoms. It is
therefore important to have a low background noise at the detector chamber. Thus,
after they have been measured, any remaining helium atoms pose a problem. The
solution is to employ a pass through detector and collect the particles in a beam

11

3. Theory

dump behind the detector. In addition, a capable system of di�erential pump stages
should be utilized to keep stray helium atoms from entering the detector area, and
thus, creating the required vacuum conditions for precise measurements.

Linear Displacement The measurement principle relies on the fact, that the detector
can be positioned at di�erent distances from the target surface. Consequently, it has
to be mounted on linear rails and care has to be taken to make sure the movement
of the detector in parallel with the beam axis.

Pumping Power The helium beam is generated via free jet expansion. In broad terms,
that means helium moves under high pressure through a nozzle and expands into an
adjacent vacuum area. During the point-wise expansion, the helium’s ambient tem-
perature drops signi�cantly, which leads to the desired sharp velocity distribution
(∆v

v ≈ 1 %) (Benedek and Toennies, 2018, p. 265). However, the pressure di�erence
between nozzle and vacuum area has to be kept stable even though a signi�cant
amount of helium particles is constantly released into the vacuum. Thus, vacuum
pumps with an extremely high throughput are necessary to ensure a continuous free
jet expansion.

12

4. Implementations

In the above sections, I described the general principle of helium atom scattering and out-
lined the ideas behind time-of-�ight measurements. This concluded with the consider-
ations for our HAS implementation recounted above. Those considerations will act as
guides for the design and implementation of power management and detector chambers,
described in this section.

4.1. Power Management

The GIHAS experiment makes extensive use of di�usion pumps. It requires ultra high vac-
uum and particular strong pumping powers in selected areas. As explained in section 3.2.4,
the helium beam is generated via pressure di�erences. That leads to the necessity to re-
move large amounts of excess helium, that is expanded but does not end up in the actual
beam. This is done by powerful di�usion pumps that have a high power consumption.
Therefore, a fail-safe method of distributing power and monitoring all pumps is needed.
The excess heat, primarily produced by the di�usion pumps, is removed via water cooling.
To make sure in case of water leakage none of the electrical equipment gets damaged, an
automatic way for detecting leaks and shutting down the water supply is also required.
The temperature and �ow rate of the cooling water also needs to be tracked. So if any
irregularity occurs all a�ected components can be shut down in a controlled manner.
Lastly in an event in which pumps break down, we want to protect as much of the vac-
uum as possible from being contaminated by the back �ow of air through the fore- and
UHV-pumps.
All together, the system requires:

• Automatic and constant monitoring of temperature, cooling water �ow, possible
leakages and vacuum pressure

• Automatic power up and shutdown of electrical consumers depending on the ob-
served variables

• Optional manual control over all consumers in the experiment

• Easy mapping of observed variables and electrical consumers to facilitate upgrades
of the experiment

• Continuous logging of the systems entire state

• Automatic noti�cation to operators in case a malfunction occurs

4.1.1. General Design and Logic

The basic principle of this power unit is to map digital inputs (temperature sensors, water
�ow sensors, etc.) to digital outputs (relays connected to all power sockets). This mapping
can be represented as a n×m - Matrix. Figure 3 depicts a �ow chart of this normal mode
of operation:
Each input has a rule, which de�nes the state in which the outputs should be if that par-
ticular input registers an error. Error means the input state changes and now di�ers from
the normal operation mode value for this input. From now on this is called a sensor event.

13

4. Implementations

Out
In

On Off Off

On On Off

Off On On

1 2 3

1

2

3

...

...

.
.
.

.
.
.

Power Unit

Experiment

Temperature Sensor 2

Water Flow Sensor 1

Ground Water Sensor 3

Vacuum Valve 2

Diffusion Pump 1

Helium Source

Operator

notify

manual overwrite

Figure 3: Control logic of power unit. A prede�ned matrix decides which outputs are dis-
abled if a certain input registers a value which is di�erent from its expected value.

Therewith, it is possible to de�ne the behavior of all outputs depending on the inputs by
altering the elements of the input/output matrix.
In our current implementation no outputs are ever activated as a response to a sensor
event. This feature could easily be added, but will not be used until the normal power
control has been tested for a substantial period of time.
In addition, the operator can manually override the state of all inputs and outputs. This
ensures that the operator can always interfere in case a sensor or part of the machine
breaks down. It also allows the operator to override the normal operation mode in case of
a system malfunction or if the experiment is in an unexpected state during testing. The
power unit displays both the actual and the automatic status through LEDs on its front
side to the operator. They can then decide whether to allow the planned action or set the
outputs manually. In case no personnel is in the laboratory during a sensor event, a report
is also sent remotely.
In the following I will outline the general hardware setup of the control system.

4.1.2. Implementation of Hardware Components

The hardware for the control unit can be roughly split into high and low voltage com-
ponents. The high voltage elements deal with the supply and distribution of three-phase
and single phase AC current to the power sockets. They have been designed and built in
Paknejad (2017). The low voltage side is responsible for control and monitoring of all input
and output sockets.
Figure 4 shows the main components and the design of their connections. The represen-

14

4.1. Power Management

PLC
Master

PLC
Slave

R
S-

48
5

O
ve

rw
ri

te
 S

w
it

ch
es ...

...

O
ve

rw
ri

te
 S

w
it

ch
es...

...

Sensors

Temp 1

Water Flow 1

Temp 2

Water Leak

Water Flow 2

...

Raspberry
Pi

GSM
Module

Et
he

r-
ne

t

RS-232

Three-phase
Power Source

Voltage
Converter

In: 230 V
(AC single-phase)

Voltage
Converter

Out: 24 V DC

In: 24 V DC
Out: 5 V DC

Po
w

er
C

ir
qu

it
B

re
ak

er
s

R
es

id
ua

l
C

ur
ee

nt
D

ev
ic

es

R
el

ay
s

an
d

C
on

ta
ct

or
s

...

D
iff

-
Pu

m
p

1

H
el

iu
m

 S
ou

rc
e ...

V
ac

uu
m

 V
al

ve
 2

24 V DC (used for digital signals)

three-phase and single-phase high voltage

Power Unit

ULVS

Figure 4: Implementation and connections of hardware components inside power unit.
Some details such as safety fuses and power supply for PLCs and for the override
switches have been omitted for a more concise representation. For the complete
circuit layout please see appendix D.

tation focuses on the low voltage control logic of the power unit.
The power supply for all control elements is drawn from the two voltage converters that
supply 24 V and 5 V. All sensors are powered from a 24 V line that leads out of the power
unit (leftmost red connection). In essence, every sensor controls one relay. Their open-
ing and closing encodes the signal, which feeds back to the power unit and enters either
the master of the slave PLC. The whole mapping system outlined in section 4.1.1 is real-
ized within the master PLC. After the mapping is carried out the PLC controls the power
outputs via relays and contactors. Some implementation details, such as safety fuses are
omitted in the �gure. For a complete circuit diagram please see appendix D.
Apart from the override switches, which are explained in section 4.1.3, each component
and its usage is described below:

High Voltage Components The power supply unit has 60 schuko-sockets of which 12
are secured with a 16 A fuse (blue casing) and the rest of them with a 6 A fuse (black casing).
Furthermore, it is equipped with 18 three-phase sockets, which can put out a maximum
of 16 A at 400 V (Paknejad, 2017, p.29). Two additional three-phase sockets can supply a
maximum current of 35 A at 400 V and are reserved for the large di�usion pumps of the
source chambers.

15

4. Implementations

Each of these outputs is secured with a residual current protective device and a power cir-
cuit breaker to ensure save operation of all electrical devices. All of them can be controlled
via contactors and relays. The details of their implementation can be found in Paknejad
(2017).
All in all, 80 sockets can be operated by the power unit. To run all sockets simultaneously,
the power unit is supplied by a three-phase 128 A at 400 V power line. (Paknejad, 2017,
p. 29).

Programmable Logic Controller (PLC) This component responsible for the actual
implementation of the logic described in section 4.1.1 is aControllinoMega. An ATmega2560
microcontroller is used as a processor unit. The supply voltage is set to 24 V, since the re-
lays managed by the Controllino require that level.
The PLC has 16 inputs ("Analog0" to "Analog15" in �gure 5), which in this case will only
be used as digital inputs. They interpret an incoming potential between 18 V and 26,4 V
as a logical 1 and between 0 V and 7,2 V as a logical 0.
The voltage of the 36 outputs is set to 24 V as well. 16 of these outputs are carried out
as relays that switch a 24 V source on or o� ("Relay0" to "Relay15" in �gure 5). The reset
("Digital0" to "Digital19") are digital outputs. Two Controllinos are employed in the power
unit to have enough input and output terminals available for all sensors and power sock-
ets. They arer set up in a master/slave con�guration. The communication between two
PLCs is possible via RS485. Alternatively, the unit connects via the Ethernet, as well. The
maximum current of each digital output is limited to 2 A to protect against short circuits.
The pins of the internal ATmega2560 are also directly accessible at the top panel and not
shown in �gure 5. This can be used to reboot the PLC by setting a 5 V potential to the
internal ATmega2560 reset pin.

Raspberry Pi A small computer, model: Raspberry Pi 3 B V1.2, is connected to one of
the Controllinos via its Ethernet connection. Its task is to continuously log the state of the
experiments and to notify the operators if a sensor reports an anomaly.
It has multiple USB connections, an Ethernet port, WLAN module, and GPIO connectors.
The same device will be used for a test bench to verify the power units internal logic.

GSM Module The device SIEMENS TC35 connects to the Raspberry Pi via RS232. Pro-
vided it has an activated SIM card attached, it can be used to send Text noti�cations if an
anomaly is logged by the Raspberry Pi.

Temperature Sensor To make sure the pumping system is adequately cooled, temper-
ature sensors are placed on the cooling system. For that purpose, a PT100 sensors together
with digital meters from AOYI Electricity with the model number XMTD-2132 are used.
These types of sensors are resistance temperature detectors. They work by measuring the
resistance of a suitable material with a well-known resistance/temperature relationship -
in this case, platinum with a linear temperature coe�cient of α = 0.003 85 ◦C within the
range from 0 ◦C to 100 ◦C, where:

α =
R100 −R0

100 ◦C ·R100
. (16)

16

4.1. Power Management

Figure 5: Pinout table of a PLC "Controllino Mega" (CONELCOM , 2018).

While R0 and R100 denotes the resistance at 0 and 100 ◦C respectively.
In our case, the sensors only need to give out a noti�cation if the temperature rises above
prede�ned value. For this purpose the digital meter has a build in relay, which opens above
an adjustable threshold. The details and manual for this device can be found in Paggi (2020)
and Willer (2020).

Water Flow Sensor A reliable cooling system is paramount for any long term usage,
since the experiment consumes a substantial amount of power. To make sure each vacuum
pump is su�ciently supplied with water as a coolant, water �ow sensors from PKP, model:
DS52, are installed. They work passively by opening a switch if the water �ow drops below
an adjustable threshold.
They cannot be used to measure the water �ow precisely, since they only have an accuracy
of ± 10 %1. However, they are suited to detect whether ot not su�cient water �ow is
present at all times.

1see datasheet: https://www.pkp.de/images/produkte/pdf_bed/ds52-bed-d.pdf, accessed
on 14.5.2020

17

https://www.pkp.de/images/produkte/pdf_bed/ds52-bed-d.pdf

4. Implementations

Ground Water Sensor To make sure no water spillage remains undetected, ground
water sensors of type: Pollin Wassermelder Version 1.0 and 1.1 are distributed across the
laboratory �oor. They work by measuring the resistance between two contacts. If these
are connected by a body of water the resistance between them drops below a cetrain level.
The sensor opens a relay, which is normally closed as long as the sensor is supplied with
power. Out of the box, its logic is inverted. The relay would close if the resistance drops
but we adapted the sensors wiring to get the inverted behavior.
Two versions of the sensor are used that have slightly di�erent wiring schematics. Distinct
changes were required for both versions. In Figure 6 the schematics for both types with
the necessary adaptations (red) are shown. In both cases, one has to invert the inputs of
one operational ampli�er.
To accommodate multiple sensors within one 19-inch rack, a casing for �ve sensors has
been designed and built by Paggi (2020) and Willer (2020).

Uninterruptible Low Voltage Source (ULVS) In case of a power outage, it is required
to continue recording the state of the experiment and simultaneously notify the respon-
sible operator. The USV-module SITOP 6EP1931-2DC21 from Siemens is used for that pur-
pose. It generates a 24 V DC current. If the normal power fails a backup battery supplies
limited emergency power. This can be used to power the raspberry pi and the GSM mod-
ule.
Unfortunately the current USV-module does not provide enough power to additionally run
all sensors and the PLCs as well. A second USV-module would be necessary to simultane-
ously supply all devices.

Voltage Converters Two voltage converters are used to get the low voltage necessary
for most of the above components. One is the SITOP PSU100S from Siemens, which is
backed up by the uninterruptible low voltage source. It provides 24 V DC with an emitted
active power of 480 W.2
Another voltage transformer from 24 V to 5 V supplies the Raspberry Pi and the GSM
module. We use the model PYB20-Q24-S5-T from CUI Inc. with an emitted active power of
20 W.3

4.1.3. Setup of Manual Control

The manual control is realized with an override switch for every input and output pin. The
connection of those switches are indicated in �gure 4. They are positioned directly before
and after relays and sensors, respectively. In both cases each switch is equipped with two
indicator LEDs. The switch itself is a three-way rotary switch. Its positions and LEDs
have slightly di�erent meaning for input and output. However, the connection layout for
both is similar and shown in �gure 7. The switch consists of two separate two-way-levers.
Both have a normally open (NO), a normally closed (NC) and a contact (C) terminal. Here
"normally" refers to the middle position of the rotary switch. This means that the NC
and C terminal of both levers are connected in that position. To build a three-way switch

2see datasheet: https://cache.industry.siemens.com/dl/files/474/67476474/att_
81235/v1/PSU100S_Handbuch_de-DE.pdf, accessed on 15.5.2020

3see datasheet: https://www.mouser.de/datasheet/2/670/pyb20-t-1312599.pdf, accessed
on 15.5.2020

18

https://cache.industry.siemens.com/dl/files/474/67476474/att_81235/v1/PSU100S_Handbuch_de-DE.pdf
https://cache.industry.siemens.com/dl/files/474/67476474/att_81235/v1/PSU100S_Handbuch_de-DE.pdf
https://www.mouser.de/datasheet/2/670/pyb20-t-1312599.pdf

4.1. Power Management

(a) Schematics for version 1.0

2

3
1IC1A

6

5
7IC1B

8
4

+

(b) Schematics for version 1.1

Figure 6: Circuit diagram for two versions of the ground water sensor. Changes (shown in
red) are necessary to enable the relay K1 to open when water is detected. Circuits
are taken from a print out manual of Pollin ground water sensor. Purchased from:
https://www.pollin.de/p/bausatz-wassermelder-810141, accessed on 14.5.2020

19

4. Implementations

Relay /
PLC Input

PLC Output /
Sensor

24 V DC

NC

NO

C

+ -

Rotary Switch White LED

1 2

Figure 7: Backside connections of the rotary switch. Input and Output schematics are sim-
ilar except for di�erent connections on NC1 and C2. The switch consists of two
separate two-way-levers (labeled with 1 and 2) which are interconnected be-
tween NC and C. The external LED has no prede�ned polarity since it uses a
built-in recti�er.

Figure 8: Front and back view of rotary switch and status LED. Currently in "automatic"
setting. Each component is labeled with a reference from the circuit diagram in
section D.

20

4.1. Power Management

from this set up, the C1 and NC2 terminals were soldered together. Now C2 is connected
with either NO2, NO1 or NC1 depending on the switch position. The connections to those
three terminals were de�ned in such a way that the middle position translated to an "auto-
matic on/o�" mode, counter clock wise �ipping to "manually o�" and clock wise �ipping
to "manually on". The "+" and "-" terminals are the contacts for an internal LED. In contrast
the external LED uses a built-in recti�er and therefore has no de�ned polarity. Figure 8
shows the front and back side of one switch-LED-pair, mounted to the front of the power
unit

After describing the general design of the manual controls I will now focus on the dif-
ferences between the input and output side of the power unit.
The control panel, shown in �gure 8, belongs to the input pin A0. Its wiring schematics is
depicted in Figure 9a. B1 is a socket for an arbitrary sensor plugged into the power unit.
Every sensor is expected to function as a normally closed relay. The settings of the switch
are on, o� and automatic. On and o� means A0 is pulled to 24 V or 0 V, respectively. Auto-
matic indicates that the state of the pin is controlled by the sensor. Two indicator LEDs are
added to provide visual feedback to the operator. LED "17V1.1" shines blue and is built into
the rotary switch itself. It shows the state the sensor is reporting. "17V1.2" is a separate,
white glowing LED. It signals the actual state of the PLC’s input pin at any given moment.
Figure 9b shows the wiring schematics for output pin D0. The three switch settings are
the same as for input but their meanings are slightly di�erent. On and o� refer to closing
and opening the relay (20K4) of the power socket. Automatic means the PLC controls the
relay. 21V1.1 is the integrated, blue LED and indicates whether the PLC would enable the
socket. The separate, white LED (21V1.2) signals the actual state of the power socket. In
general one can think of the blue LED as an indicator for the state in automatic setting
and the white for the actual state of the input pin or output relay.
The schematics also explain why the PLCs and sensors cannot be connected to the emer-
gency power supply described in section 4.1.2. When the automatic setting is chosen all
input LEDs are powered by the incoming connection from the sensors. On the output side
the PLC has to power all LEDs and relays of each socket which is set to automatic. The
power consumption of all those devices combined is too high for the uninterruptible low
voltage source.

The power unit can monitor a maximum of 36 inputs and manage 80 outputs. All those
manual controls have to be placed on the front side of the power unit. To make the controls
more concise and intuitive, a layout has been designed which places most outputs in the
order in which their respective consumers appear in the experiment (�gure 10). The layout
is realized by cutting a hole grid pattern into the front panels. The diameter is chosen as
such that the rotary switches and external LEDs �t exactly. The output controls are divided
into three groups.

Fixed Outputs which have a prede�ned electrical consumer according to �gure 10.

General General purpose outputs controllable by the PLC but for no speci�c consumers.

Uncontrolled Outputs with no speci�c consumer and not controllable by the PLC.

Table 1 concludes this section by indicating the PLC connections, usage parameters and
switch positions for all output sockets.

21

4. Implementations

(a) Input LED-Switch pair schematics. The
LED 17V1.1 shows the state of the sen-
sor output. LED 17V1.2 indicates the ac-
tual state of the corresponding PLC input.
Automatic setting means state of sensor
gets passed on to PLC.

(b) Output LED-Switch pair schematics. The
LED 21V1.1 shows the state of the PLC
output. LED 21V1.2 indicates the actual
state of the corresponding output relay.
Automatic setting means PLC controls
output relay.

Figure 9: Circuit diagram of the manual control for input and output of the PLCs. A three-
way rotary switch is used to choose between on, o� and automatic. Two LEDs
indicate the actual state and the chosen state in automatic setting. B1 is the socket
for an arbitrary sensor. A0 is the input terminal of the PLC A1. 17S2 and 21S1
denote three-way rotary switches. D0 is the output terminal of the PLC A1.

22

4.1. Power Management

Table 1: Connection table for all output sockets. Pos indicates the position of its override
switch on the front, right hand panel of the power unit. The lowest leftmost hole
is de�ned as 1,1. 3-P indicates a three-phase socket.

PLC Terminal Output Socket Intended Use Power Line Pos [x, y]
D0 G20 HS-20, Source 1 30A 3-P 2,6
D1 G19 Roots 1, Source 1 16A 3-P 2,4
D2 G18 Roots 2, Source 1 16A 3-P 2,3
D3 G21 2W Valve, Source 1 6A L1 2,2
D4 G17 Pre-pump, Source 1 16A 3-P 2,1
D5 G63 Varian 0184, Source 1 16A L1 4,6
D6 G22 2W Valve, Chop 1 6A L1 4,2
D7 G23 Pre-pump, Chop 1 6A L2 4,1
D8 G16 HS-20, Source 2 30A 3-P 6,6
D9 G15 Roots 1, Source 2 16A 3-P 6,4
D10 G14 Roots2, Source 2 16A 3-P 6,3
D11 G24 2W Valve, Source 2 6A L2 6,2
D12 G13 Pre-pump, Source 2 16A 3-P 6,1
D13 G65 Varian 0183, Chop 2 16A L2 8,6
D14 G25 2W Valve, Chop 2 6A L3 8,2
D15 G26 Pre-pump, Chop 2 6A L3 8,1
D16 G28 Tubo pump 1, Scatt 6A L1 10,12
D17 G28 Turbo pump 2, Scatt 6A L1 10,11
D18 G66 Ed 100, Scatt 16A L2 10,10
D19 G77 Ed 63, Scatt 16A L2 10,6
R0 G29 2W Valve, Scatt 6A L2 10,2
R1 G30 Pre-pump, Scatt 6A L2 10,1
R2 G31 Turbo pump, Pitot 6A L3 12,7
R3 G67 2xEd 100 1, ToF 16A L3 13,6
R4 G32 2W Valve, ToF 6A L3 16,2
R5 G33 Pre-pump, ToF 6A L2 16,1
R6 G68 2xEd 100 2, ToF 16A L3 17,6
R7 G34 Turbo pump, Det 6A L1 20,7
R8 G64 Ed 63, Det 16A L1 20,3
R9 G35 2W Valve, Det 6A L2 20,2
R10 G36 Pre-pump, Det 6A L2 20,1
R11 G42 - 6A L2 14,29
R12 G43 - 6A L3 14,27
R13 G44 - 6A L3 14,25
R14 G70 - 16A L1 14,23
R15 G80 - 16A L3 14,21
S:D0 G45 - 6A L1 14,19
S:D1 G46 - 6A L1 14,17
S:D2 G47 - 6A L2 14,15
- G39 - 6A L1 20,29
- G40 - 6A L1 20,27
- G41 - 6A L2 20,25
- G37 - 6A L3 20,23
- G38 - 6A L3 20,21
- G69 - 16A L1 20,19
- G78 - 16A L2 20,17
- G79 - 16A L3 20,15

23

4. Implementations

Figure 10: Layout of prede�ned outputs on the front panel of the power unit. The position
of the electrical consumers in this layout corresponds to the position of their
respective LED-switch pairs on the right hand side front panel. Designed by
Tom Turczyk, permission to publish given on 06.05.2020

4.1.4. Testbench for the PLC Program

Since the power unit is in charge of continuously monitoring the experiment with minimal
supervision, it is essential that the logic behind it performs as intended. That is why, a test
bench for the PLCs was build and a test suite developed.
In principle, a Raspberry Pi changes the state of the input pins of the PLCs to simulate
a sensor reporting an anomaly. The PLC is connected via Ethernet to the Raspberry Pi.
The information which is normally send for logging purposes is now evaluated by our
test suite. Each test simulates a certain sensor event and expects a prede�ned response
message from the Controllino. It counts as passed, if the correct response arrives within a
10 s time frame.
Care has been taken to design the test suite in a way that it is easy to incorporate new test
conditions. To archive that, the suite is implemented in Python using the pytest4 library.
For a detailed usage guide please see appendix A.3.

Components:

The Hardware for this test bench is shown in �gure 11. It consists of the following com-
ponents:

2 × Controllino Mega Programmable Logic Controllers which are loaded with the soft-
ware that is to be tested. They have to be con�gured in the same way the PLCs
inside the power unit would be.

4taken from https://docs.pytest.org, accessed on 12.8.2019

24

https://docs.pytest.org

4.1. Power Management

Figure 11: Test bench to simulate inputs for master and slave PLC. From left to right: Power
sources (black), master (upper) and slave (lower) PLC, Raspberry Pi (green), Re-
layboard (blue).

Raspberry Pi Model 3 B Installed with Raspbian Stretch Lite. This component controls
the input states of the PLCs and evaluates their outputs.

SainSmart 16 Channel Relay Board Adjusts the voltage coming from the GPIO pins of
the Raspberry Pi so it can be registered by the Controllinos.

12 Volt DC Power Source Used to power the relay board.

24 Volt DC Power Source Provides power to PLCs and simulated inputs.

Micro-B-USB power connector Power source for Raspberry Pi.

Set Up:

1. Connect GPIO Pin of Raspberry Pi with input side of relay board using the connec-
tions scheme described in table 2 via a ribbon connector

2. Use single core 0.75 mm2 electric wire to connect 24 Volt power supply to middle
terminal of each relay on relay board.

3. Connect relay board channels with PLCs according to table 2. Use the ŗight hand
terminal of each relay and use the same wire as described in the previous step.

4. Connect channel K9 to K16 of relay board with input terminals D0 to D7 of slave
PLC in the same manner as in previous step.

5. Use Cat5 patch cable to connect Ethernet sockets of master PLC and Raspberry Pi.

6. Connect GPIO pin number 21 with reset pin5 of master PLC.
5for exact pin position please see: https://controllino.biz/wp-content/uploads/2018/10/
CONTROLLINO-MEGA-Pinout.pfd, accessed on 02.03.2020

25

https://controllino.biz/wp-content/uploads/2018/10/CONTROLLINO-MEGA-Pinout.pfd
https://controllino.biz/wp-content/uploads/2018/10/CONTROLLINO-MEGA-Pinout.pfd

4. Implementations

Table 2: Connections between the GPIO pins of Raspberry Pi, channel on relay board and
input pins of both PLCs.

(a) Master PLC connections

RPi GPIO Relay Board PLC master

02 K01 A00

03 K02 A01

04 K03 A02

14 K04 A03

15 K05 A04

18 K06 A05

17 K07 A06

27 K08 A07

(b) Slave PLC connections

RPi GPIO Relay Board PLC slave

22 K09 A00

23 K10 A01

24 K11 A02

10 K12 A03

09 K13 A04

25 K14 A05

08 K15 A06

07 K16 A07

7. Use single core 0.75 mm2 electric wire to connect RS-485 interface of master and
slave PLC as shown in �gure 14.

8. Connect relay board with 12 Volt power supply using single core wire with banana
plug.

9. Connect power supply terminals shown in �gure 5 to the same 24 Volt power source
as in step 2 using similar electric wire as in previous step.

10. Connect Micro-USB power supply to Raspberry Pi.

Test Logic:

Figure 12 describes the execution order and tasks of each method of the test program.
The pytest library searches for all tests, which can be recognized by its �le, class and
function name. Each name has to start with "test". Every detected test is then carried
out even if a previous test failed. In addition, pytest has the ability to encapsulate each
test with a setup and tear down method. This means, the test bench is reset to a default
con�guration before each run. Similar functions exist for setup and tear down of an entire
test class. I chose this encapsulated approach to ensure an easy way of implementing new
test scenarios for future expansions of the PLC program. The entire test program can be
found in appendix C.3.

26

4.1. Power Management

Figure 12: Flow chart of the test bench software. Arrows indicate the execution order. The
tasks of each method are listed below its name. The related scripts can be found
in appendix C.

27

4. Implementations

Input-Output
MappingInput Reading Output Control

PLC Communication

TCP Communication

Event Logging GSM Communication

Master PLC

Raspberry Pi

minimal required components optional components

A B A depends on B
for full functionality

implemented on
same hardware

Figure 13: Overview of modules required for a working power unit control.

4.1.5. Control So�ware Development

The two primary goals for building the control software of the power unit were easy us-
age and fast expandability. With that in mind, the control logic is separated into seven
components (see �gure 13):

Input-Output-Mapping Encapsulated in a class named: Machine, this module is respon-
sible for input-output-mapping, power unit start up, and TCP communication.

Input Reading This component is responsible for storing the input states and scanning
each for state changes. Its logic is de�ned in the class: Inputs.

Output Control The module stores all output states and is responsible for setting each
output to its respective state. Its logic is de�ned in the class: Outputs.

PLC Communication The RS-485 serial standard is used along with the Modbus RTU
protocol. This establishes a master - slave communication structure between the
two PLCs.

TCP Communication The TCP/IP software stack is used for communication between
Raspberry Pi and master PLC. It employs a server (Raspberry Pi) - client (master PLC)
architecture. The client will never expect a response from the server to minimize its
dependencies.

GSM Communication The GSM module communicates with the Raspberry Pi via the
RS-232 serial standard.

Event Logging The pylogging6 library is used for recording all information sent from the
master PLC.

6taken from: https://pypi.org/project/pylogging/, version 1.0.2, accessed on 3.5.2019

28

https://pypi.org/project/pylogging/

4.1. Power Management

The minimal required components (shown in red) were developed �rst, establishing a basic
working prototype. From then on, every software component was built via a test-driven
development process. This entailed that the tests for each new component were written
before its actual software, thereby establishing �xed milestones for every software itera-
tion.

In the following sections, I will describe the details of each component. For a more
concise representation, I will omit various parts of the code, such as constructor methods,
and focus on the core functionality of each element. Here, I will assume basic knowledge
of C++ and its usage of classes. For the complete program, please see appendix B.

4.1.6. Input Reading

The Inputs class has 3 main members.: inputData, normalInput and inputRepr.

1 class Inputs {
2 private :
3 Pin inputData[MAX_INPUT_SIZE];
4 byte normalInput[MAX_INPUT_SIZE];
5
6 public:
7 byte inputRepr[MAX_INPUT_SIZE] = {};
8 }

inputData can be seen as the single source of truth. It always represents the current
state of all inputs. For that purpose it consists of elements of a custom structure called Pin.

1 struct Pin {
2 String pinName;
3 byte pinNumber;
4 byte pinState ;
5 }

Here pinNumber refers to the value assigned to that physical pin by the arduino library.
In �gure 5, they can be recognized as the integer values with the blue background.
pinState is the digital state of that pin, which can be either 0 or 1. There are no guards
in place to protect against adding other values for two reasons. Firstly, a user can hardly
input wrong values because the member will only be referred to by methods from this
class. And secondly, it makes it easier to expand this class to analog inputs in the future.
For example, analog inputs could be utilized to analyze values from pressure gauges or
temperature readings without intermediate controllers.
pinName is a name given to that pin. Importantly it has to start with either "M:" or "S:"
to allow di�erentiation between inputs that belong to the master or slave PLC respectively.

normalInput is a byte array which holds the expected values for all inputs. This means,
if a sensor is operating normally it should always transmit this value to the PLC. The order
of normalInput needs to be the same as the order of inputData, since the index is the only
way to refer to one speci�c input.

inputRepr is the public representation of all input states. It can be accessed from outside
of the class and is used to transmit the input state to the Raspberry Pi. It is not strictly

29

4. Implementations

necessary for the normal operation of the program and could be removed if the status re-
ports do not longer rely on it.

The main objective of this class is to read and update all inputs and notify the machine
class of any anomalies. In the following, if an input state deviates from its expected value
it will be called a sensor event.
To archive that goal, multiple member functions are de�ned. At the lowest level stands:
readInput.

1 int readInput (int inputNumber) {
2
3 Pin mpin = inputData[inputNumber];
4 if (mpin.pinName[0] == ’M’) {
5 return digitalRead (inputData[inputNumber].pinNumber);
6 }
7 else if (mpin.pinName[0] == ’S’) {
8 // send request for input value to slave PLC
9 // wait for response and return it

10 }
11 }

This function returns the current value for the input with index inputNumber. Most im-
portantly, it checks whether the input is part of the master or slave PLC. In the latter case,
a request is sent towards the second PLC. The details of this communication are described
below in section 4.1.10.

The core method of this class is getChanges(), which checks whether any input has
changed its state to something other than its expected value. It returns the index of that
input, i.e. its position in inputData, if that is the case. It does so by looping over all elements
of inputData and calling readInput() on each of them.

1 int getChanges() {
2 for (int i =0; i<MAX_INPUT_SIZE; i++) {
3 int tempInput = readInput (i);
4 if (inputData[i]. pinState != tempInput) {
5 delay (200);
6 if (inputData[i]. pinState == readInput (i)){
7 continue;
8 }
9 inputRepr[i] = inputData[i]. pinState = tempInput;

10 if (tempInput!=normalInput[i]) {
11 return i ;
12 }
13 }
14 }
15 return −1;
16 }

The function also makes sure no false readings are mistaken for real ones. When ever it
detects a sensor event, it will wait for 200 ms and reevaluate that input. On Line 11 it will
then return the index of the rechecked input if its state di�ers from the expected value.
This guards against multiple triggering while a sensor is in the process of changing its

30

4.1. Power Management

value. Additionally, it makes it possible to switch between manual and automatic input
mode without inadvertently triggering a sensor event. The details of that switching oper-
ation are described in section 4.1.3.
Lastly, the function returns -1 if no sensor event was detected.

The Inputs class also comprises one method which checks if all sensors report their
expected value.

1 int checknormalInput(){
2 for (int i =0; i<MAX_INPUT_SIZE; i++) {
3 if (readInput (i) != normalInput[i]){
4 return i ;
5 }
6 }
7 return −1;
8 }

This is realized by looping over all elements of inputData in Line 2 and comparing the
readings with their corresponding expected values. I use this function to make sure that
the experiment is in working order before powering up any outputs.

4.1.7. Output Control

The Outputs class is similarly setup as Inputs. Again, it has the three core members:
outputData Represents the state of all outputs. Please �nd details on the Pin structure in

the above section 4.1.6.

normalOutput Byte array of the states of all outputs if no input detects any errors.

outputRepr Public representation of all output states. It is not strictly needed for the
functionality of the PLCs since it is only used for logging purposes.

The main tasks of this class is to write all outputs correctly and check whether an output
state is already set beforehand. To do that at the lowest level, the method writeOutput �nds
out if a requested output is part of the master or the slave PLC and sets its required state.

1 void writeOutput(int outputNumber, byte outputState) {
2 Pin mpin = outputData[outputNumber];
3 if (mpin.pinName[0] == ’M’) {
4 digitalWrite (mpin.pinNumber, outputState);
5 }
6 else if (mpin.pinName[0] == ’S’) {
7 // send request to change output state
8 // wait for response
9 }

10 }

Again the details for communication between master and slave PLC will be explained be-
low in section 4.1.10. As it was the case with input names, we can see here why it is
important to start all names with either "M:" or "S:" for master and slave respectively. Oth-
erwise the setting of that pin will be ignored entirely.

31

4. Implementations

The next method, called setOutput(), is responsible for changing the state of the entire
output array.

1 void setOutput(byte (&con�gArray)[MAX_OUTPUT_SIZE]) {
2 for (int i = 0; i < MAX_OUTPUT_SIZE; i++) {
3 if (con�gArray[i] < 2) {
4 writeOutput(i , con�gArray[i]);
5 outputRepr[i] = outputData[i]. pinState = con�gArray[i];
6 }
7 }
8 // log changing of states
9 }

The input parameter con�gArray is a reference to a byte array with the same length as the
number of outputs. Each element represents the requested state of the output with the
same index in outputData. Therefore their order is important and has to be the same as in
outputData.
It is often desirable to only change some of all outputs. For that purpose one can de�ne 3
values for each element: "0": pulling the output to 0 V, "1": pulling the output to 24 V and
"2": do not change this output at all. In practice, this is realized in Line 3 by ignoring all
values of con�gArray which are higher than 1.

To check whether a certain output state is already in place, the method: isAllreadySet()
can be used.

1 bool isAlreadySet (byte (&toBeChecked)[MAX_OUTPUT_SIZE]) {
2 bool isSet = false ;
3
4 for (int i = 0; i < MAX_OUTPUT_SIZE; i++) {
5 if (toBeChecked[i] == 2) {
6 continue;
7 }
8 if (toBeChecked[i] != outputData[i]. pinState) {
9 return false ;

10 } else {
11 isSet = true;
12 }
13 }
14 return isSet ;
15 }

Similar to the previous function, the parameter toBeChecked is a byte array with the same
length as outputData and has three possible elements: 0, 1 or 2. Here the value 2 means:
do not check the state of that output at all.
This means one always has to insert an array which will be checked against the entire
output list but you can choose to ignore certain outputs. The method returns true if to-
BeChecked is the same as outputData on all positions with values of either 0 or 1. Otherwise
it returns, which also includes the case that toBeChecked only consists of twos.

32

4.1. Power Management

4.1.8. Input-Output Mapping

The main logic of the entire program is wrapped in the Machine class. It decides which
outputs to disable and holds all information about the entire state of the experiment. For
that reason its two primary member variables are input and output. Both are instances of
the Inputs and Outputs classes respectively. Together with a two-dimensional byte array
called mmapping, which holds the mapping matrix, it knows the state of the experiment
at every point in time.

The mapping of input to output states is the core of this power unit. It can be seen as a
matrix multiplication with a unit vector of the Rn space where n is the number of inputs:

~eT1︸︷︷︸
input state

·

1 1 0 · · ·

0 1 1

1 0 2

... . . .

︸ ︷︷ ︸

mapping matrix

=
(

1 1 0 · · ·
)

︸ ︷︷ ︸
output state

.

Here the input state describes a registered state change to something other than the ex-
pected value of one input. With this mapping, it is possibly to register and respond to
single sensor events. That means, the mapping can only be used to change the states of all
outputs if one sensor is triggered.

The main method of this class is runAllMappings(). It uses the methods described in
section 4.1.6 and 4.1.7 to make the required changes to output if a sensor event is detected.

1 void runAllMappings() {
2 int changedIndex = input .getChanges ();
3 if (changedIndex != −1) {
4 if (! output . isAllreadySet (mmapping[changedIndex])){
5 output . setOutput(mmapping[changedIndex]);
6 }
7 // log sensor event and response
8 }
9 }

This function runs inside the main loop of the PLC. Therefore, it continuously checks on
Line 2 and 3 whether a sensor event occurred. Should this be the case, it veri�es that the
required outputs from the mapping matrix are not already set. If so, it sets the new output
states and logs the sensor event and its response.

The next method of the Machine class is responsible for turning on all outputs during
the start up of the power unit and is called checkAndEnableNormalOutput().

1 void checkAndEnableNormalOutput() {
2 int index = input . checknormalInput ();
3 if (index == −1) {
4 output . setNormalOutput();
5 } else {

33

4. Implementations

6 // log startup error and index variable
7 }
8 }

It uses the method checknormalInput() described in section 4.1.6 to test whether all inputs
report their expected values. Tf that is the case, the normal output values can be set. The
method realizing this simply calls setOutput() with the Outputs class variable normalOut-
put as the argument.

Another functionality of this class is to establish an Ethernet connection with the Rasp-
berry Pi. We de�ned the checkConnection() method for that purpose. As the name sug-
gests, it tests whether a connection exists and tries to establish one if that is not the case.
It has a timer variable which can be adjusted to change to rate at which the connectivity
is checked. The details of that communication is explained in section 4.1.11.

4.1.9. Setup and Control

Until now I described three di�erent classes which are needed for operating the power
unit. In the following, I will explain how exactly these classes are initialized and used to
control all aspects of the system.
Since theControllino is based on the Arduino infrastructure, its usage is quite similar to any
other Arduino program. In general, the Arduino library takes care of all low level com-
munication with the central ATmega2650 micro controller. Among others it comprises
methods such as digitalRead(pin) or digitalWrite(pin, value) which we use to read and set
the state of each input or output pin.
The language used for programming is at its core C++. But the Arduino compiler WinAVR
has some convenience additions to make writing code more accessible, for example: au-
tomatic forward declaration of functions. Usually in C++ functions just like variables,
structures or types have to be declared before they are called. The Arduino compiler,
however, automatically inserts the prototype for all top-level functions at the beginning
of a script. This enables the user to call functions which might be de�ned at the very
end of the respective program. The removal of the normally required main() function is
another simpli�cation. It is replaced with setup() and loop(). In the background, these
two functions will be converted to main() but they make the transition into embedded
programming easier. I will explain the details of both function and how they are used be-
low. Again, the following code listings only serve as a simpli�ed visualization. The actual
working program can be found in section B.

setup() This function is run once when the PLC powers on. All initial con�gurations like
enabling communications or setting the modes of all pins correctly is done at this point.
The de�nition of all input and output connections as well as the mapping between them
is also de�ned here. Essentially this means under normal conditions the entire power unit
can be con�gured within this function.

1 void setup () {
2
3 Pin inputPinLayout[] = {
4 {F("M:B01"), CONTROLLINO_A0, 1}, //H2O �ow sensor
5 {F("M:B02"), CONTROLLINO_A1, 1}, //H2O �ow sensor

34

4.1. Power Management

6 {F("M:B03"), CONTROLLINO_A2, 1}, //Temperature sensor
7 {F("M:B04"), CONTROLLINO_A3, 1}, //H2O ground sensor
8 };
9

10 Pin outputPinLayout[] = {
11 {F("M:G31"), CONTROLLINO_R2, 1},
12 {F("M:G67"), CONTROLLINO_R3, 1},
13 {F("M:G32"), CONTROLLINO_R4, 1},
14 {F("M:G33"), CONTROLLINO_R5, 1},
15 {F("M:G68"), CONTROLLINO_R6, 1},
16 };
17
18 byte mapping[MAX_INPUT_SIZE][MAX_OUTPUT_SIZE] = {
19 // R02,R03,R04,R05,R06
20 {0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A0
21 {0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A1
22 {2 , 0 , 2 , 2 , 0}, // CONTROLLINO_A2
23 {0 , 0 , 2 , 2 , 0}, // CONTROLLINO_A3
24 };
25
26 const int interruptPin = CONTROLLINO_IN0;
27 pinMode(interruptPin , INPUT);
28 attachInterrupt (digitalPinToInterrupt (interruptPin),
29 resetWrapper, RISING);
30
31 // start Serial communication for debugging
32
33 // start Ethernet connection
34
35 // enable connection with server over port 4000
36
37 // setup rs485 query and connection
38
39 controller .begin(inputPinLayout, outputPinLayout, mapping);
40
41 controller . checkAndEnableNormalOutput();
42 }

Line 3 to 16 de�ne the input and output layouts. Pin is a structure with three variables,
as it was described in section 4.1.6. In this case, the last variable is used slightly di�erent.
The �rst and second refer to the name and pin number of that particular input or output.
Ih contrast to its previous usage, the last variable describes the values for normalInput and
normalOutput of Inputs and Outputs, respectively. The CONTROLLINO_X notations are
de�ned keywords from the Controllino library. They denote the values which represent
the speci�c pins of the ATmega2560 micro controller.
On Line 18 to 24, the mapping matrix is de�ned. For safety reasons, no outputs will ever
be enabled as a result of a sensor event. That is why matrix elements are only 0 or 2. But
in principle, an automatic start up of systems depending on sensor input is also possible.
It is important to remember that the static variable MAX_INPUT_SIZE and
MAX_OUTPUT_SIZE have to be manually adjusted at the very beginning of the script.
This limitation stems from the fact that adjustable length arrays, i.e. vectors, do not exist
in C++ without the standard library and recreating them would have caused more prob-

35

4. Implementations

lems than it solved.

The next section enables the PLC to rerun checkAndEnableNormalOutput(). This func-
tionality is important if we want to �x an error in the experiment without having to shut
down all electrical devices. In case of a complete shutdown, the Controllino takes about
10 s to reboot. During that time all outputs are disabled. This is not ideal since some out-
puts may have to keep running after a sensor event. Therefore, it was necessary to develop
an option for restarting all outputs without rebooting the PLC. The solution is to de�ne
an interrupt routine. The PLC has dedicated interrupt pins. Their purpose is to imme-
diately stop the main program and run some predetermined function when they register
a signal. I chose the rising �ank of the applied voltage as that signal. But it can also be
de�ned di�erently if required. The interrupt pin is attached to a standard switch which
supplies 24 V to the pin if pressed. The function that runs as a consequence (line 28) is not
as expected checkAndEnableNormalOutput() but resetWrapper(). This is necessary because
interrupt routines have to be static functions without any arguments. But since non-static
class methods, such as checkAndEnableNormalOutput(), always have a pointer, pointing to
its own instance, they cannot be used as interrupts. That is why resetWrapper() is simply
a top-level function which calls checkAndEnableNormalOutput().
In line 31 to 37, the di�erent communication systems are setup. Their details will be ex-
plained in separate sections and therefore are only shortly mentioned here.

In the following command, the Machine instance controller calls its begin() method. This
can be understood as the constructor method for the Machine class. controller has to be a
top-level variable because it stores the state of the experiment. It would be deleted once
the program steps out of setup(), if it were to be initialized within that scope. On the other
hand, an actual constructor method for Machine cannot run outside of setup() because the
mode setting of pins is not allowed there by the Arduino framework. This is why the
method begin() had to be de�ned. It does everything a normal constructor would, but can
be called after initializing an instance. For the same reason Inputs and Outputs also have
this kind of constructor methods.
Lastly, checkAndEnableNormalOutput() is called to start up the necessary outputs if all
sensors are reporting no errors (line 41).

loop() The loop() function holds the main logic of the program. The PLC will contin-
uously execute its body in a loop. It does not have the ability for threading. Therefore,
it is important to avoid extensive blocking of the main thread It is possible, however, to
run multiple functions in a pseudo-parallel mode with the use of timer variables. This is
how the Controllino rechecks for an Ethernet connection with a set frequency without
blocking the sensor readings.

1 void loop () {
2 controller . runAllMappings();
3 controller . checkConnection();
4 }

As one can see, the main loop only calls the Machine class methods: runAllMappings() and
checkConnection(). Both are explained in section 4.1.8.

36

4.1. Power Management

R
S
4
8
5

G
n
d

+

P
L
C

M
a
s
t
e
r

.
.
.

R
S
4
8
5

G
n
d

+

P
L
C

S
l
a
v
e

.
.
.

Figure 14: Wiring schematics for RS-485 connection between two Controllino Mega.

4.1.10. PLC Communication

Since the power unit has more sensor inputs and power outputs than one Controllino can
support a second PLC had to be added. But an input from the �rst PLC might have in
impact on the outputs of the second. That is why they need to communicate with each
other.
To realize this, a master/slave system was chosen. The master PLC handles all commu-
nications, mappings and chooses the entire output state. It can send requests for either
reading or writing to the slave, which continuously listens for them and only replies once
a request has been received.
The Controllino Mega has an RS485 serial interface which we will use for this communi-
cation. Both PLCs are connected to each other using the wiring scheme shown in �gure
14. The ModbusRTU protocol is applied on top of that for the actual packet sending. The
RTU-master sends out a request, which is forwarded to all slaves that are physically con-
nected. Only one slave device is used in this case but the system can easily be expanded if
required. The Modbus request sent out from master consist of 4 parts7:

Adress Static slave address. Always set to 1 for our use case.

Function Code Indicates whether the slave device should read or write to a register.

Data Actual information being transmitted. Length depends on function code.

CRC Cyclic Redundancy Check. Used to verify that all data was received correctly.

In the Arduino ModbusRTU 8 library a slave device holds a number of registers as a byte
array. The master device only has access to this array. The function code is used to de�ne
the number of registers to read or write. For this system, I only use value 3 for reading of
a single register and 6 for writing one.
In the Arduino ModbusRTU library the transmission of information works by having a
copy of the slave registers on the master PLC. The master device only accesses its own
copy. It then updates the respective register position when it makes a request and re-
ceives a response. The slave device sends out this response after it received a request (also
called query). The response has the same structure as the request. Below is a step-by-step
description of the entire Modbus communication.

1. De�ne Slave and Master register arrays
7for details please see https://www.modbustools.com/modbus.html, accessed on 25.4.2020
8taken from: https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino, ac-

cessed on 27.8.2019

37

https://www.modbustools.com/modbus.html
https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino

4. Implementations

2. Initialize Modbus master and slave main objects

3. De�ne reverse pin lookup array in master

4. Initialize query object and set static parameters like slave adress

5. Set Baudrate and start communication

6. Use pin lookup array to get slave register index from pin number

7. Set function code, slave register index and pointer to master register array in query

8. For changing output pin state: set value in master register

9. Send query to slave

10. Update or read from slave register when query is received

11. Continuously match pin states and register values

12. Send response with updated register value to master

13. Listen for response in master and update master register

The code in listing 1 and 2 is annotated with these steps at the beginning of each line.
Step 6 requires further explanation. To send out a request for a certain pin the master PLC
has to know at which position that pin stores its values in the slave register array. But the
only information it has, is its pin number (the numbers with blue background in �gure
5). I therefore de�ned a lookup array which links the pin number and the index of the
respective pin in the slave register array. This array is used in reverse, which might ap-
pear counter intuitive at the �rst glance. The pin number is the index of the lookup array,
whereas the positions in the slave register array are its elements. This is done for perfor-
mance reasons. Accessing one element from an array by indexing is faster than looking
for a certain element and returning its index.

A simpli�ed version of the code for the slave PLC is shown below.

Listing 1: Shortend slave PLC logic. The numbers at the beginning of some lines corre-
spond to steps in the list above.

1 (1) uint16_t ModbusSlaveRegisters [4];
2
3 (2) Modbus ControllinoModbusSlave(SlaveModbusAdd, RS485Serial, 0);
4
5 void setup () {
6 pinMode(CONTROLLINO_A0, INPUT);
7 pinMode(CONTROLLINO_A1, INPUT);
8 pinMode(CONTROLLINO_D0, OUTPUT);
9 pinMode(CONTROLLINO_D1, OUTPUT);

10
11 (5) ControllinoModbusSlave.begin (19200);
12 }
13
14 void loop () {

38

4.1. Power Management

15 (10) ControllinoModbusSlave.poll (ModbusSlaveRegisters, 4);
16
17 (11) ModbusSlaveRegisters[0] = digitalRead (CONTROLLINO_A0);
18 (11) ModbusSlaveRegisters[1] = digitalRead (CONTROLLINO_A1);
19 (11) digitalWrite (CONTROLLINO_D0, ModbusSlaveRegisters[2]);
20 (11) digitalWrite (CONTROLLINO_D1, ModbusSlaveRegisters[3]);
21 }

As we can see here, the main tasks are executed by the poll() method from the Modbus
class. It listens for any requests, updates the slave register values if necessary and sends
back a response.

The code for the master PLC is a bit more involved. In the following, only parts of
the program, which directly refer to the modbus communication, are shown. The entire
program can be found in section B.1.

Listing 2: Parts of the master PLC program that refer to the modbus communication. The
numbers at the beginning of some lines correspond to steps in the list above.

1 (1) uint16_t ModbusSlaveRegisters [52];
2 (2) Modbus ControllinoModbusMaster(0, 3, 0);
3 (3) int slavePinLookup[69] = {−1, 16, 17, 18, ... };
4 (4) modbus_t query;
5 (4) query.u8id = 1;
6 (4) query.u16CoilsNo = 1;
7
8 void setup () {
9 (5) ControllinoModbusMaster.begin(19200);

10 ControllinoModbusMaster.setTimeOut(5000);
11 }
12
13 // Inputs class method
14 int readInput (int inputNumber) {
15 if (pin is in slave) {
16 (6) int registerIndex = slavePinLookup[mpin.pinNumber−1];
17 if (registerIndex == −1)
18 // log lookup error and return
19
20 (7) query. u8fct = 3;
21 (7) query.u16RegAdd = registerIndex ;
22 (7) query.au16reg = ModbusSlaveRegisters + registerIndex ;
23 (9) ControllinoModbusMaster.query(query);
24
25 while (communication not idle and timeout not reached)
26 (13) ControllinoModbusMaster.poll ();
27 return ModbusSlaveRegisters[registerIndex];
28 }
29 }
30
31 // Outputs class method
32 void writeOutput(int outputNumber, byte outputState) {
33 if (pin is in slave) {
34 (6) int registerIndex = slavePinLookup[mpin.pinNumber − 1];

39

4. Implementations

35 if (registerIndex == −1)
36 // log lookup error and return
37
38 (7) query. u8fct = 6;
39 (7) query.u16RegAdd = registerIndex ;
40 (8) ModbusSlaveRegisters[registerIndex] = outputState ;
41 (7) query.au16reg = ModbusSlaveRegisters + registerIndex ;
42 (9) ControllinoModbusMaster.query(query);
43
44 while(communication not idle and timeout not reached)
45 (13) ControllinoModbusMaster.poll ();
46 }
47 }

There is a downside to sending a request for each slave pin individually as it is realized
in this project. The sending and receiving takes some time. readInput() is also called most
frequently in the entire program. E�ectively, this means it takes between one and two
seconds to register a sensor event from the slave PLC. However, this is not an issue because
no sensors which require a response within that time frame are utilized.

4.1.11. TCP Communication

The PLC needs to communicate with the Raspberry Pi. This is important for logging and
notifying the operators. The Controllino Mega has an Ethernet connection, which we use
for that purpose.

TCP Protocol We employ the TCP/IP protocol stack to send data packets over the Eth-
ernet connection. It has a client/server architecture. In this project, the PLC is the client
that sends information to the server, which is the Raspberry Pi. The main design goal of
this system is to always prioritize the PLC’s normal working mode and to never interrupt
it by any other operation. It is not ideal if a message is not transmitted but it would be
disastrous if waiting for a response blocks the actual handling of the power outputs. That
is why the PLC never expects a response from the server.
To use this protocol, the arduino library Ethernet9 is imported into the program. The enu-
meration below describes the normal �ow of this communication.

1. Initialize Ethernet client object.

2. De�ne IP and MAC addresses.

3. Initialize Ethernet object with addresses.

4. Establish connection with server over de�ned port.

5. Try to reconnect if connection failed after a prede�ned time span.

6. Server waits for any connection to accept.

7. Server continuously listens for data.

8. Check for an End-of-Line (EOL) character in received data as end of transmission.
9taken from: https://github.com/arduino-libraries/Ethernet, accessed on 23.4.2019

40

https://github.com/arduino-libraries/Ethernet

4.1. Power Management

9. If none are found append next packet to previous one until an EOL character is
present.

10. Log �nished transmission.

This method ensures that the PLC runs normally even if the Raspberry Pi shuts down. The
server can also be rebooted without restarting the PLC because it continuously rechecks
for a new connection if it lost the original one.

The client side implementation is fairly short since it does not have to listen for any
return messages. De�nitions of IP, MAC addresses and EthernetClient object are done at
the beginning of the script. Step 3 and 4 are carried out in setup(). Step 5 is realized as a
Machine class method with the name checkConnection(), which is called inside loop().

1 void checkConnection() {
2 if (! client . connected() && millis () − startTimeReconnect >= waitReconnect) {
3 startTimeReconnect = millis ();
4 client . stop ();
5 client . connect(server , 4000);
6 }
7 }

waitReconnect is the duration the program waits before trying to reconnect in milliseconds.
The usage of millis() as timer has to be handled carefully. millis()) returns an unsigned long
integer value showing the milliseconds passed since the PLC was started. That means the
value will over�ow and move back to zero after approximately 49.7 days. This would lead
to run time errors like failing to reconnect or signi�cantly slowing down the program.
This can be avoided by comparing durations instead of time-stamps. The duration millis()
- startTimeReconnect on line 3 is always a positive integer. It can be seen as a modular
arithmetic operation because both operands are unsigned values. Therefore at worst the
rechecking can start to early while millis() rolls over.
The same approach is used in section 4.1.10 while the master PLC waits for a response
from the slave PLC. It is even more important in this case that the execution is never in-
terrupted when the timer function rolls over.

Step 6 to 10 in the above enumeration describes the server side of the TCP communica-
tion. I chose the programming language Python for the server logic because of its ease of
use and wide range of available libraries. The entire script can be found in section C.1.
The server logic is encapsulated inside the Handler class. In the following, I will give a
short overview over each of its methods.

__init__(server, port, log_file_path, sms_sender_func = None)
This is a python-speci�c method. It is automatically called during instantiation of
an object of the given class. Its usage here is to setup the logging logic and de-
�ne a socket. The socket acts as the communication end point for the TCP proto-
col. The two most important member variables which are de�ned by this method
are: root_log and sock. The former logs messages and can be used in the following:
self.root_log.info(msg). The latter can be bound to the Raspberry Pi’s server IP ad-
dress and its open port. Its task is to listen for incoming connections. The function
arguments have the following meanings:

41

4. Implementations

server : the ip address of the Raspberry Pi
port: the port which should be used for communication, e.g.: 4000
log_�le_path: the full path of the �le for all log messages,
sms_sender_func: a function which will be executed whenever a message of the
type: sensorEvent is received. The message is also passed to that function as an
argument so it can be send out via SMS. Per default an empty �ller method is
called here.

__call__(connection)
This is another python-speci�c method. When a class contains this function, their
instances can be called as if they were normal functions and this method is executed
instead. In this class, it starts to continuously listen for incoming messages from a
speci�ed connection. It also logs all received messages. They then get passed to the
SMS sender function, which was set during __init__().

bind_socket()
This function binds socket and IP address together. It retries the binding for 20
seconds, if that operation fails. This makes starting up the power unit more robust
because the binding only works if the PLC is powered on. Therefore, the server has
to wait until this is achieved. The function is called within __init__().

get_connection()
When this method is called, the socket starts listening for any incoming connection.
Once a connection is found, it accepts it and returns a connection object, which
enables us to read and write to the client. Importantly, the connection is expected to
stay active inde�nitely. If it drops for any reason the server script has to be restarted.
Normally, a server would ask its client periodically whether it is still alive. But that
option could not be used here because one design goal was to never expect any
messages from the server.

To actually run the server logic the Handler class has to be instantiated. This is done at
the top-level of the rpi_server.py script from section C.1. One has to de�ne the proper
parameters for __init__(). Then the script tries to �nd a connection and starts listening for
messages from it. All failed attempts at connecting, binding and translating a message are
logged.
The entire logic is intentionally kept simple and short to minimize the error potential. But
this also implies that it is not foolproof against all edge cases and exceptions. At some point
during normal operation, one will likely have to access the Raspberry Pi for maintenance.
That is why one should make sure to follow the instructions in section A.2 for a wireless
connection.

JSON Data Format The actual data packets are sent in the form of Json documents. This
makes them equally readable to humans and machines. I use the ArduinoJson10 package,
version 5.13.2, for this purpose. Generally, Json documents are similarly structured as
dictionaries. An arbitrary amount of key value pairs can be added to the documents. The
key "type" is always present in our transmissions. The server uses it to determine the type
10taken from https://github.com/bblanchon/ArduinoJson, version: 5.13.2, accessed on 13.12.2018

42

https://github.com/bblanchon/ArduinoJson

4.1. Power Management

Type Added Keys Meaning

setAllOutputs changedOut A number of outputs have been changed. changedOut
holds array of required output changes

startupError changedIn Sensor event during checkAndEnableNormalOutput()
detected. changedIn gives the index of the triggered
input.

sensorEvent changedIn,
totalOut

Sensor event during normal operation detected and
output was changed accordingly.

error errorMessage Critical error in program execution. errorMessage de-
cribes details.

Table 4: Meaning of all de�ned message types the PLC sends to the server. "type" key is
always present in transmitted json document.

to which the message belongs to. Its options are explained in table 4.

The PLC program has three top-level functions to build, manipulate and send the Json
documents. The method jsonBuild() is used to instantiate a Json object:

1 const size_t capacity = 650;
2 JsonObject & jsonBuild (String type){
3 StaticJsonBu�er <capacity> jsonBu�er ;
4 JsonObject& root = jsonBu�er . createObject ();
5 root["type"] = type;
6 return root ;
7 }

The capacity parameter on line 2 is just big enough to hold a message of type: "sen-
sorEvent" with 72 outputs. This is the largest message the system sends out. The Json
document does not know its required size when it is created. That is why, it can always
hold the largest possible message and I took care to make that message as small as possi-
ble. In general, space is one of the main constraints on the Controllino Mega. Thus, if a
new message type is de�ned, one has to make sure the Json document has enough space
to hold it and that is does not exceed the PLC’s capacity.
The function then creates and returns root. This is the Json object to which key value pairs
can be added. The �rst pair is always the type. It is already added inside jsonBuild() on
line 5.
The next function, named jsonAddArray() is used to add a byte array of arbitrary length to
the Json object.

1 template <size_t N> void jsonAddArray(
2 JsonObject & someRoot, String name, byte (&ar)[N]) {
3 JsonArray& someArray = someRoot.createNestedArray(name);
4 for (int i =0; i<N; i++) {
5 someArray.add(ar[i]);
6 }
7 }

43

4. Implementations

Command Response Meaning

AT+CMGF=1 OK Set human readable SMS text mode.

AT+CPMS="SM","SM","SM" OK Set SIM card as primary storage space.

AT+CMGS="[number]" > Prepare sending of SMS to phone number.

\x1a +CMGS [Ref] Signify end of SMS message.

Table 5: AT commands necessary for sending message as SMS using the GSM module. Re-
sponse describes the expected return value if the operation was successful. Mes-
sage has to be transmitted after third command.

Importantly, the function header of any top-level method has to stand on a single line.
This also includes any template instructions. Otherwise, the Arduino compiler parses it
incorrectly. In above listing it is separated for better visibility.
The �nal Json method sends the message over Ethernet to the server. It is called jsonSend()
and takes the prepared Json document as its only parameter. After sending the actual mes-
sage it also transmits an EOL character to signal the end of that data packet.
All in all, a message is sent by creating the Json document with buildJson(), append an
arbitrary amount of key value paris to it and send it along using sendJson(). The used Json
object have to be destroy successfully afterwards to avoid a potential memory leak. Th this
end, these objects always have to exist in the scope of a function. Thus, they are destroyed
once the program steps out of that function scope. This does not apply to loop() since its
function body is never escaped.

4.1.12. GSM Communication

The main advantage of transmitting all important events the PLC encounters to the Rasp-
berry Pi is the ability to send out SMS warnings in case of an experiment malfunction. This
is achieved using the GSM module Siemens TC35. It utilizes a RS-232 connection, which
can either be accessed via USB-RS-232-Adapter or directly with the GPIO pins of the Rasp-
berry Pi. I favored this adapter approach a direct one because the GPIO pins operate at
3.3 V but the GSM module uses 5 V.
The TC35 accepts commands via the Hayes Command Set. This is a set of strings which
can be sent through the serial connections to instruct the GSM module. In this script, only
a small subset of these commands are needed to facilitate the sending of SMS messages.
These commands and their meaning are explained in table 5.
The logic for this communication is realized as a Python module. The details of which can
be found in section C.2. I will give a step-by-step description of this logic below.

Done once after start up of GSM module:

1. Open serial port to GSM module and choose its timeout.

2. Set human readable SMS text mode.

3. De�ne the SIM card as primary storage device for SMS

44

4.1. Power Management

Done with each SMS sending:

4. Send phone number of receiver to module and prepare for SMS sending.

5. Transmit message.

6. Send [Ctrl + Z] to indicate end of message

7. Listen for successful response

Step 5 to 8 are realized within one function. Its argument is the message to be transmitted.
This method can be passed to the Handler class explained in section 4.1.11.

4.1.13. So�ware Summary

In the sections above, I described the details of implementing and testing the control logic
for the power unit. Figure 15 summarizes the normal control �ow for the entire program.
The �gure omits the TCP or RS-485 communication but focuses one the calling structure
for mapping in- and outputs. Solid arrows indicate that the function calls the following
function. Dotted arrows show the order in which functions are executed when they are
called in the same scope. Conditions may be written on these arrows which have to be
ful�lled for the execution to take place.
Taken together, the current software implementation fully meets the requirements, pro-
vided in section 4.1.1. Through testing in section 5.1.1 I could verify that continuous mon-
itoring of all inputs is possible and the mapping of output state to changes of those inputs
performs correctly. The communication with a Raspberry Pi is realized through the TCP
protocol and messages are transmitted as JSON documents. This ensures a reliable way
of logging all actions the power unit takes. The GSM module, which is connected to the
Raspberry Pi, allows the immediate noti�cation of the operator in case of a major mal-
function of the power unit.
The control logic does have some disadvantageous, however, with the major one regard-
ing its memory usage. The program in its current state uses almost the complete storage
space the Controllino Mega o�ers. In particular, the static JSON object, which is created
for every message, always takes up 650 Bytes of the approximately 8 KB because the pro-
gram does not know how large the message is going to be beforehand. If longer messages
are added to the program or memory is used in other ways, one will have to keep track of
the remaining space on the PLC.
Another downside of this implementation is its speed. Since none of the responses (i.e. the
shutdown of elctrical consumers) require a reaction time below one second, the program
was not written with a focus on execution speed. The more inputs are checked by the
PLC the slower it will run. The read out of the maximum number of 72 inputs from both
Controllinos takes roughly 4 seconds. That means a response to some sensor event can
require similarly up to 4 seconds. The main reason for this is the communication between
master and slave PLC. As explained in section 4.1.10, each slave pin is queried individually,
which is a simple yet time-ine�cient solution. The combined pin query requires a more
complex implementation, which exceeds the scope of this project. If the need for a higher
execution speed arises in the future, I suggest to focus on improvements of the RS-485
communication.

45

4. Implementations

setup()

loop()

Machine::begin(
 inputLayout,
 outputLayout,
 mapping)

Machine::checkAndEnableNormalOutput()

Input::begin(inputLayout)

Output::begin(outputLayout)

Input::checkNormalInput() Output::setNormalOutput()

send startupError message

Output::setOutput(
 normalOutput)

Machine::runAllMappings() Input::getChanges()

Input::readInput(inputIndex)

Input::readInput(inputIndex)

loop over all input indizes

Output::isAlreadySet(
 mapping[inputIndex])

Output::setOutput(
 mapping[inputIndex])

Output::writeOutput(
 outputIndex,
 outputState)

loop over all output indizes

sensorEvent = True

sensorEvent = True

True

False

False Legend:

A B A calls B

A executes before B
in same scope

B executes if condition
returned from A applies

A B

A B
condition

Loop

Figure 15: Call and execution structure of the mapping logic within the master PLC. Log-
ging and communication function calls are omitted.

46

4.2. Time-of-Flight Detector Chamber

1 2

3

4 5 6

7
8
9

10
11

12

13

14
15 16

17

18

19

20 21

1

3

2 4 5
6

7

8

9

10 11

12

13

14 15 16

17

18

19

20 21

Top View

Side View

Legend

support structurevacuum elementspumps

X
Y

Y
Z

Figure 16: Time-of-Flight detector chamber. The scattering chamber connects to the left
hand side. A telescope (black) is used to de�ne and align the beam axis. Anno-
tations can be found in table 6.

4.2. Time-of-Flight Detector Chamber

The second part of the thesis deals with the alignment and set up of the time-of-�ight
detector chamber. Because of its elongated appearance it will also be called ToF arm, in
the following. A multitude of pumping techniques and di�erential pump stages are applied
to make sure the lowest pressures can be reached directly at the detector.

4.2.1. General Design

In section 3.2.1, it was mentioned that the time-of-�ight measurement works by calculat-
ing the speed and therefore kinetic energy of the helium particles before and after collision
with the target. This calculation is realized by measuring the time the atom beam takes to
travel di�erent distances from source to detector, hence the name Time-of-Flight measure-
ment. In this particular machine, the distance between detector and source is adjustable
during operation. The entire detector chamber is therefore placed on linear rails.
Figure 16 shows an overview of the detector vacuum chamber on those rails. The anno-
tated components are described in table 6 and explained further below.

manual shut-o� valve When no measurements are running and no atom beam is present
the valve will be closed o�. This ensured that in case of a malfunction only the ToF
arm can be shut down without a�ecting the other vacuum chambers.

47

4. Implementations

Table 6: Time-of-Flight detector chamber components. Numbers referenced in �gure 16.

Num Description Num Description

1 manual shut-of valve 12 detector molecular turbo pump

2 six-way cross junction 13 fore-vacuum di�usion pump

3 molecular turbo pump 14 quadrupole mass spectrometer

4 two-way adjustable aperture 15 manual shut-o� valve

5 bellow 16 beam dump cross junction

6 di�erential pump stage 17 beam dump di�usion pump

7 di�usion pump for back chamber 18 telescope

8 di�usion pump for middle chamber 19 adjustable mount for 18

9 di�usion pump for front chamber 20 fore-vacuum pump

10 four-way adjustable aperture 21 fore-vacuum pump

11 six-way cross junction

cross junctions All cross junctions are used as connection points and di�erential pump-
ing stages and house vacuum gauges and the detector parts.

molecular turbo pump This pump regulates the vacuum pressure in 2. A higher num-
ber of particles are scattered into this area, because of the following aperture (Num:
4).

adjustable apertures As opposed to photon beams, atom beam have an angular diver-
gence. Therefore, Component 4 in conjunction with component 10 are used to de-
crease the beam cross section.

bellow Since the detector has to travel along a linear rail during operation a �exible bel-
low is used.

di�erential pump stage This component has 3 vacuum areas which are connected only
through narrow apertures of �xed width. The goal is to ensure the lowest possible
pressure levels directly at the detector. Each vacuum area is individually evacuated
with a separate di�usion pump (Num: 7, 8, 9).

detector molecular turbo pump This pump is responsible for evacuating the detector
area. It has to supply the lowest pressure levels of the entire ToF detector chamber.

fore-vacuum di�usion pump Because of the strict pressure requirements for the above
turbo pump (Num: 12), its fore-vacuum is generated by a separate di�usion pump.

quadrupole mass spectrometer The core of the ToF arm. The mass spectrometer will
be tuned to detect helium particles and register each particle along with its timing.
The helium atoms are not stopped when they are detected.

48

4.2. Time-of-Flight Detector Chamber

3

13

17

20 21

3

7

8

9

12

13

17

20 21

Top View

Side View

9 12

Legend

vacuum elements
pumps

manual shut-off valve
pilot operated pneumatic valve

connection to pump

junction

Exhaust

Exhaust

Figure 17: Fore-vacuum con�guration for all ToF arm vacuum pumps. Support structure
is not shown for conciseness. Annotations can be found in table 6.

beam dump di�usion pump Component 16 and 17 are used to capture and dispose the
helium particle beam after the measurement.

telescope The alignment of all components for the Time-of-Flight measurement is done
using a telescope. Its view axis de�nes the beam path.

adjustable mount By changing the position and orientation of the telescope its view
axis can be adjusted to be parallel with the linear rails.

for-vacuum pumps Component 21 and 21 are connected with each UHV pump through
a system of bellows. The for-vacuum has to be established before the UHV pumps
can be started.

4.2.2. Fore-vacuum Implementation

All pumps necessary for the vacuum generation inside the ToF arm require a fore-vacuum
to function. Two pumps (20 and 21 in �gure 16) are used for that purpose. They can gener-
ate a vacuum pressure between 10−3 and 10−4 mbar. Figure 17 describes the connection
layout between those two and all UHV pumps.
When choosing the connection scheme, an e�ort was made to ensure that two UHV pumps

49

4. Implementations

(a) Pump: Edwards E2M28 (20 of table 6) (b) Pump: Trivac D4B 112 45 (21 of table 6)

Figure 18: fore-vacuum pumps for ToF arm.

with signi�cantly di�erent mass �ow rates should not be connected to the same fore-
vacuum pump. Here, the mass �ow rate is proportional to the throughput at constant
temperature. As can be seen in �gure 10, it was originally intended to connect detector
pump 13 with the beam dump pump 17. However, the beam dump has to remove all re-
maining helium atoms which passed the detector. The mass spectrometer detector has
a low ionization e�cacy of approximately 10−6. Therefore, the beam dump has to col-
lect and remove almost the entire helium beam. In contrast, the detector di�usion pump
should have a relatively low throughput. For this reason we decided to connect pump 17
with pump 7 instead. Di�usion pump 7 evacuates the area directly in front of aperture
10, which has with 50 µm the smallest diameter of the entire ToF arm. It can therefore be
expected, that a signi�cant portion of the helium atoms will be re�ected here. Those atoms
are removed by pump 7 making its throughput better comparable with that of pump 17.
In addition, both pumps are electrical connected in series (Turczyk, 2018, p.22), since they
were the only pumps, that could not be modi�ed from a 110 V to a 230 V power system.
Hence, they can only ever work in union.
All remaining UHV pumps are connected to fore-vacuum pump 20. We presume that
these vacuum areas require a higher throughput because of the numerous apertures en-
closed in them. In consequence pump 20 was chosen, because it has the higher pumping
speed. However, since both pumps are encapsulated with shut-o� valves, it will be trivial
to switch them if the throughput of the UHV pumps di�ers by too much.

Pumps and A�achments The two pump models in use are: Edwards E2M28 and Trivac
D4B 112 45 (�gure 18a and 18b respectively). The former can reach an ultimate nominal
pressure of 10−3 mbar with a nominal pumping speed of 28 m2 h−1.11 While the later can
supply a ultimate nominal pressure of 10−4 mbar but has a nominal pumping speed of only

11see data sheet: https://www.idealvac.com/files/ManualsII/Edwards_E2M28_to_E2M30_
Users_Instruction_Manual.pdf, accessed on 10.5.2020

50

https://www.idealvac.com/files/ManualsII/Edwards_E2M28_to_E2M30_Users_Instruction_Manual.pdf
https://www.idealvac.com/files/ManualsII/Edwards_E2M28_to_E2M30_Users_Instruction_Manual.pdf

4.2. Time-of-Flight Detector Chamber

4.8 m2 h−1.12 A residue oil catch connect on top of each pump. This simply consists of a
cylindrical area �lled with steel wool. A medium pressure gauge and a ventilation valve
are attached to the oil catch of pump 20. Pump 21 is equipped with neither. Consequently,
the entire ToF detector chamber is vented using the valve from pump 20. As long as both
adjustable apertures are opened to their maximum size, this should not give rise to major
pressure di�erences and thus avoids damages while venting.

Valves I a�xed one pilot operated pneumatic valve above each fore-vacuum pump.
They are in a normally-closed con�guration. Hence, they close automatically in case of
a power outage. The power unit controls both. Depending on whether the fore-vacuum
pumps should continue to work during a malfunction, the valve are closed or left open to
preserve the fore-vacuum pressure as much as possible. The working �uid is compressed
air, which is generated by the institute’s compressor. A reservoir was added as a bu�er, to
take over the air supply, in case the compressor fails. Its distribution system was built in
cooperation with Marko Kohler (Kohler , 2020) and Tom Turczyk.
In addition to the pilot operated valves, I installed a number of manual shut-o� valves
at strategic locations (see �gure 17). Some of them may seem redundant but they were
included for future maintenance purposes and because they would have been left over
otherwise. For example, by closing o� the manual valve adjacent to pump 17, one could
replace the pneumatic valve without having to vent the entire ToF arm.

Bellows and Connections The connection and distribution between the fore-vacuum
pumps and all other UHV pumps was done using �exible bellows. The have the advantage
to be malleable. This is important because the vacuum elements have to change their
position by approximately 40 cm during operation while pump 20 and 21 are stationary.
That is also the reason why the bellows leading away from them feature a pronounced S
shape.
The entire fore-vacuum system is connected with KF �anges.

Pressure Gauges All UHV pumps of the ToF arm can only be started below a certain
fore-vacuum pressure. For this reason, it is especially important to have a good under-
standing of the current pressure level. Consequently, I installed a pressure gauge of type
Granville-Phillips Convectron Vacuum Gauge Series 27513 directly adjacent to each UHV
pump (seen on the left in blue in �gure 18a). Since most of these gauges have been in use
for some time, they should be inspected, calibrated and their reading compared to each
other before relying on them as indicators.
The UHV vacuum can be monitored using ionization gauges.

Gauge Controllers The fore-vacuum pressure gauges connect to Granville-Phillps con-
trollers, series 375B532 via RS-232 cables. Two Controllers are places inside a 19 inch rack,
dedicated for sensor and turbo pump electronics. In addition, two Delock 4 port RS-232
multiplexer were built in Kohler (2020). This allows us to connect all fore-vacuum gauges
simultaneously and cycle through them as needed.
12see data sheet: https://www.leyboldproducts.de/media/pdf/e3/be/64/171_83_01_

TRIVAC_B_DE.pdf, accessed on 10.5.2020
13see datasheet: https://www.idealvac.com/files/ManualsII/GP275_DigitalManual.pdf,

accessed on 10.5.2020

51

https://www.leyboldproducts.de/media/pdf/e3/be/64/171_83_01_TRIVAC_B_DE.pdf
https://www.leyboldproducts.de/media/pdf/e3/be/64/171_83_01_TRIVAC_B_DE.pdf
https://www.idealvac.com/files/ManualsII/GP275_DigitalManual.pdf

4. Implementations

manual pressure regulator

solenoid valve

manual shut-off valve

check valve

usion pump

molecular turbo pump

volume flow meter

diff

Time-of-Flight
Chamber

Scaering
Chamber

Source
Chamber

Inlet

Outlet

Figure 19: Schematics of the cooling system for GI-HAS experiment. Initial concept was
designed by Schko Sabir as part of his master thesis but was not published there.
Solenoid valves are operated by power unit. The three joint in and outlets of
the chambers come down from the laboratory ceiling.

The UHV ionization gauges can be controlled by four Granville-Phillips, series 350 ioniza-
tion gauge controllers installed in the same rack.

All in all, the fore-vacuum system as it stands is ready to use and awaits initial tests and
validation of pressure levels. Due to the unfortunate nationwide lab closing in March and
April of 2020, these tests could not be carried out as of yet.

4.2.3. Cooling System

Besides fore-vacuum pressure and a power connection, each UHV pump also requires suf-
�cient cooling. This is especially important for the di�usion pumps. They rely on a cooled
outer shell in their working principle and overheat quickly without it.
The initial design of the cooling system had been done by Schko Sabir as part of his master
thesis but was not published there. I altered that design slightly to �t our updated require-
ments (�gure 19) and installed it at the 3 main components of the experiment with support
from Marko Kohler as part of his bachelor thesis. All but one UHV pump of the ToF arm
have a dedicated cooling supply with a manual shut-o� valve at the in- and outlet. The
molecular turbo pump 3 from table 6 only requires a cooling fan. Figure 20 shows that
cooling system. The pressure regulator, solenoid valves, and check valves are not seen
here and attach near the main water inlet at the ceiling. The upper pipe is connected to
the main inlet and the lower pipe attached to the main outlet. While joining the twelve in-

52

4.2. Time-of-Flight Detector Chamber

Figure 20: Cooling system for the ToF arm. Inlet is connected to the upper pipe and the
outlet a�xed to the lower pipe. Solenoid and check valves as well as pressure
regulator are attached at the ceiling and not pictured here.

dividual in- and out-lets, I paid special attention to the pump connections. Since the entire
vacuum area has to travel a signi�cant distance on its support structure, the connections
have to be both �exible and long enough. Otherwise they could entangle themselves in
the support frames. In addition I attached a water �ow sensor at the outlet of each pump.
Their working principle has been described in section 4.1.2.

The cooling system for the other two main components of the experiment can be seen
in �gure 21. As with the ToF cooling system the pressure regulator, solenoid and check
valves are a�xed near the ceiling. As of this writing, both subsystems have not been tested
because the chambers are not yet placed at their �nal positions and could therefore not be
connected to the main inlet.

4.2.4. Alignment of Vacuum Components

The helium particle beam has to travel uninterrupted from the target to the detector. For
that purpose, each vacuum element is made individually adjustable in X and Z direction
(direction reference in �gure 16) on the ToF arm. Before they can be aligned however,
the general beam axis has to be chosen. The entire measurement principle hinges on the
fact that the detector can be placed at di�erent distances from the target during operation.
For that reason all vacuum components of the ToF arm are placed on a linear rail. This
includes apertures down to a diameter of 74 µm. Therefore, the chosen beam axis has to
be precisely parallel to the linear rail. Otherwise the central axis of the detector would
move away from the previously de�ned beam line when its position on the linear rail is
changed. Figure 22 illustrates this issue.
As a result of this the �rst task is to choose an appropriate beam axis. In general, the
alignment is done by placing a telescope at the end of the ToF arm and a light source at
the front. The back of the beam dump cross junction has a window, which allows us to
use the view axis of the telescope as our de�ned beam axis. This means, the telescope has
to be positioned in such a way that its view axis is parallel to the motion of the detector.
It also requires an appropriate X-Z-Position since the entire experiment, including source

53

4. Implementations

(a) (b)

Figure 21: Cooling system for source chamber (a) and scattering chamber (b). System for
source chamber was built in ?. The main connections for in- and outlets are not
attached.

Position: 1 2 1 2

Figure 22: Illustration of alignment issue. The chosen beam line has to be parallel to the
movement of the detector. The vacuum components are aligned to the view
axis of the telescope (black box) in position 1. Their central axis moves away
from the previously de�ned beam line, if it is not parallel to the linear rail. For
conciseness only the �rst and last vacuum component is shown. Not to scale.

54

4.2. Time-of-Flight Detector Chamber

Figure 23: Target for aligning telescope view axis in parallel to linear rails. Green protru-
sions at the middle and end are the contact points for the linear rails. The target
center can be adjusted with a movable aperture seen in the lower left corner.

and scattering chamber, will be aligned to its axis.
In Turczyk (2018) the support structure and linear rails were put in place. The upper linear
rail was adjusted to be horizontal within an uncertainty of 10 µm and the distance between
upper and lower rail set to be constant within 50 µm (Turczyk, 2018, p. 18f.).
In the following sections vacuum components will be denoted with their respective num-
ber in table 6.

Definition of Beam Axis

In order to set the beam line and therefore view axis of the telescope in parallel to the
linear rails, a movable target was constructed14 (�gure 23). It can be placed on the linear
rails in a similar manner to the vacuum supports structures. It features an aperture with
adjustable diameter which can be moved in the X-Z-plane.
The telescope itself is secured to its movable mount via clamps (see �gure 25a). The goal
is to �nd the correct orientation and position of said telescope. In �gure 24 step 10 to 16
of the following description are visually represented:

Material:

A Telescope, type: Brunson Instruments Model Number: 81-1

B Movable target described above (�gure 23)

C Spirit level

D Feeler gauge blades

Procedure:

1. Secure telescope on mount as shown in �gure 25a.
14developed and built by Tom Turczyk, permission to publish given on 06.05.2020

55

4. Implementations

α1 α2 α3

x2 x3

Target
Position:

1

2

α1

α2

α3

x1

x2

x1

Initial
Position

x3

1. Translation
1. Rotation

2. Translation

2. Rotation

3. Tranlation

3. Rotation

Figure 24: Representation of step 10 to 16 of alignment of the telescope axis to the detec-
tor translation rails axis. The enumeration on the right shows the necessary
movement order. The translation x3 shows the slight overshoot necessary to
perfectly center the view axis in the last orientation change α3.

2. Adjust azimuth so A is roughly in line with central axis of vacuum elements.

3. Use spirit level and feeler gauge blades to adjust telescope horizontally.
a) Place C on top of A.
b) Add D between front of telescope bracket and mount (see �gure 25a).
c) When set up is horizontal: Secure bracket with clamps onto mount.

Note: Tightening the clamps leads to a slight change in inclination which has
to be accounted for.

4. Make sure all vacuum elements can be su�ciently adjusted in the X-Z-plane. If not
move all elements until that is the case.

5. Open all shut-o� valves of the TOo arm.

6. Set both apertures in ToF arm to the largest possible diameter.
Note: Do not use the "window" option of aperture 10 and 4 from �gure 16 as that
places a glass window into the beam line which distortes the view due to light di�rac-
tion.

7. Make sure you can see through the entire length of the ToF arm with the telescope:
a) Place any object in front of last vacuum element (Num: 1 in �gure 16) e.g. some

string or paper.
b) Change the focal length of the telescope gradually until you can see that object.
c) If it does not appear change X and Z position of telescope mount until it does.
d) If not successful use the guide in subsection below to adjust the vacuum ele-

ments until it is fully visible.

8. Place B as close as possible to the telescope as shown in �gure 25b (in the following
called position 1).

9. Adjust diameter of aperture so it aligns with circular marks in telescope.

56

4.2. Time-of-Flight Detector Chamber

Position of
Feeler Gauges

Horizontal
Control

Vertical
Control

Spirit Level

Hold-down
Clamps

(a) Telescope mount and positioning (b) Alignment target in position 1

(c) Placement of light source in front of opened
valve (component 1).

Orientation Screws

(d) Detector with 4 orientation screws. Placed
point symmetrical around view axis.

X positioning screws

Z positioning screws

Z locking screws

(e) Z and X positioning screws. Each frame has two adjustable mount points.

Figure 25: Illustrations of equipment placement for aligning beam axis and centering vac-
uum elements.

57

4. Implementations

10. Adjust the X and Z position of the target’s aperture until it is in line with the view
axis of A.
Important: This will de�ne the height of the entire beam line so make sure the
source and scattering chambers can be positioned at that height as well.

11. Place B furthest away from A (in the following called position 2).

12. Change focal length until you can clearly see B again.

13. Change orientation of A until target is again centered on view axis:
Note: Inclination should be fairly close to optimal. Focus on azimuth �rst.

a) Lightly decrease pressure of hold down clamps of A.
b) Use a mallet to lightly tab the back of telescope bracket for a precise adjustment

to the azimuth.
c) If precision is not high enough balance tightness of clamps and strength of

tabs.
d) If vacuum elements obstruct view on target move all elements until it is fully

visible using steps described in the subsection below.
Note: No �ne tuning is required here. The target should only be visible and
not precisely centered.

e) In case inclination is not yet optimal change pressure of hold down clamps for
adjustment.

f) If no centering can be archieved this way change number of feeler gauge blades
beneath telescope bracket and restart from step 13a.
Note: Keeping the view axis horizontal is not important anymore and was
only used to have an initial inclination.

14. Reset B to position 1 and refocus A to B.

15. Adjust position of A until view axis is again centered on target.

16. Jump back to step 11 and repeat the process until the target is centered in both posi-
tions without adjustments. A representation of this process can be seen in �gure 24
Note: For a perfect alignment, it is necessary to "overshoot" the transversal position
change of the last repetition slightly. The last movement x3 in �gure 24 illustrates
this. However, it can also cause an overcompensation into the opposite direction.

Alignment of Vacuum Components

After setting the view axis parallel to the linear rails and to the appropriate X and Z po-
sition, all components of the ToF arm have to be centered onto that axis. Each of the six
support frames shown in �gure 16 have positioning screws for the X-Z-pane (labeled in
�gure 25e). Component 5 and 15 from �gure 16 both have �exible bellows. In contrast
component 6, 10, 11 and 14 are rigidly connected via CF �anges. It follows that these four
elements, which are positioned on three di�erent support frames, have to be aligned to-
gether. The other two can be aligned separately. The smallest and therefore most crucial
apertures of the three rigidly connected components are two openings inside the di�eren-
tial pump stage and the adjustable aperture (component 10). Those three apertures de�ne

58

4.2. Time-of-Flight Detector Chamber

(a) Component 4 set to smallest diameter (b) Second �xed aperture of component 6

(c) Component 10 in "window" con�guration (d) Component 15 illuminated from back side

Figure 26: Views through the telescope with focal length adjusted to each element in view.

the orientation and position of the detector components. Since the opening diameter of
component 10 is adjustable, the �rst focus is to align the di�erential pump stage with the
view axis.

Material:

A Telescope, type Brunson Instruments 81-1, aligned via description in subsection 4.2.4

B Light source

C ToF arm, in a state in which procedure from above subsection was just completed

Procedure:

1. Place B in front of opening of component 1 as shown in �gure 25c.

2. Switch component 10 to "window" option

3. Starting from the shortest focal length of A adjust focus until you make out the
outlines of the second �xed aperture of the di�erential pump stage.
Note: It has two �xed apertures in short succession. Those have to be centered �rst.

a) Increase the focal length until the window of component 10 is sharply focused
(see �gure 26c).
Note:It is easily recognizable because vacuum oil is deposited on it.

59

4. Implementations

b) Slowly increase focal length.
c) After the �rst �xed aperture comes in and out of focus, stop when rounded

edge of second aperture is sharply visible (see �gure 26b).

4. Loosen all securing screws from all vacuum components.

5. Use front and rear positioning screws of component 6 for X direction, shown in
�gure 25e, to center second �xed aperture laterally.
Note: Make sure all other lateral positioning screws of component 6, 11 and 14 are
loose initially. Lightly tighten X direction screws of component 11 and 14 as well to
follow movement of component 6.

6. Center second aperture longitudinally onto view axis. Use all positioning screws of
component 6, 11 and 14 somewhat simultaneously.

7. Move focus back to �rst �xed aperture.

8. Laterally center that aperture.
a) Try to use X direction screws of component 11 and 14 more than of component

6 to minimize misalignment of second �xed aperture.
b) Periodically check alignment of both apertures while doing this.

9. Longitudinally center �rst aperture. Minimize usage of front X direction screws of
component 6 while doing so.

10. Decrease adjustable aperture diameter of component 10 by one step.

11. Decrease focal length of A to focus aperture of component 10.

12. Repeat alignment of �rst lateral and then longitudinal position while making sure
not to misalign the previous apertures.
Note: Component 6, 11 and 14 together have 12 positioning screws for the X and
Z direction each. At this point every adjustment has to be done using all 12 posi-
tioning screws in unison. This is necessary to avoid misaligning one aperture while
centering the other. Due to the number of screws with varying reachability working
on this procedure with two people saves a lot of time.

13. Lower aperture diameter of component 10.

14. Repeat step 12 until smallest diameter is reached.

15. Decrease focal length of A to focus inner elements of component 14.
Note: Those reach into component 11 but are not attached to it.

16. Use orientation screws shown in �gure 25d to center detector elements.

17. Follow movement of detector with front and back positioning screws to distribute
loads evenly on support frames.

18. Verify by decreasing the vocal length further that the view axis has su�cient dis-
tance from all vacuum walls.

60

4.2. Time-of-Flight Detector Chamber

19. Use positioning screws on component 16 to increase distance from view axis where
necessary. Perfect alignment is not needed here.
Note: Closing the shut-o� valve of component 15 by half provides a good visual
reference for all edges found in the adjacent vacuum area (see �gure 26d).

20. Focus aperture of component 4.

21. Close aperture to smalles possible diameter (see �gure 26a).

22. Center aperture to view axis using the positioning screws of component 2.

With that the ToF detector chamber should be fully aligned with the linear rails and
all components to each other. When the telescope is now moved in the Y direction no
aperture should make any apparent movement away from the view axis of the telescope.

61

5. Testing and Current State

In this section, the implemented components from section 4 will be tested. In addition, an
overview of their completed state will be presented.

5.1. Power Management

5.1.1. Test Bench Results

The software described in the previous sections was examined using the test bench de-
scribed in section 4.1.4. A detailed description on how to use the test bench is provided in
section A.3.
Various mapping con�gurations have been tested during development of the control logic.
In particular, mappings which rely on the communication between master and slave PLC
have been evaluated on their reliability. As of this writing, no mapping variation could be
found which led to a test failing or any unexpected behavior.
The �nal evaluated mapping is explained in table 7. It is intended for the initial vacuum
testing of the �ight detector chamber. The table also describes the potential consequences
of each sensor event and the general response of the power unit.
The underlying idea of the speci�c responses to the two types of sensors is evident: In
case of the water �ow sensor, the pump which lost cooling has to be disabled to avoid
irreparable damage. That leads to pollution build up inside the a�ected pump. This con-
tamination would be spread into the adjacent vacuum chamber by the other connected
pumps. Therefore, all pumps attached to the a�ected vacuum area always have to shut
down in unison.
If a ground water sensor triggers an alarm, one can expect a signi�cant leak in the cool-
ing water distribution. This requires the main water valve to be disabled. Because of that
and the aforementioned reason, all pumps which lost cooling and are a�xed to the same
vacuum area have to be shut down. However, the fore-vacuum pumps should stay online
in an e�ort to minimize the contamination and heating of the entire vacuum chamber.
After successfully testing this response con�guration on the test bench, it was subse-
quently programmed onto the �nished power unit using the procedure described in sec-
tion A.1.

All in all, the current implementation of the PLC logic passes all tests without errors.
This shows that the program can reliably be employed to monitor and saveguard the ex-
periment.
The main strength of this test bench, however, is its possibility for continuous testing.
Whenever a new mapping is implemented into the PLCs, its correct behavior can be tested
beforehand. Also if new features are added to the program one can easily test if the orig-
inal mappings still work as intended. For each new iteration of the program new tests
can be appended to evaluate the new features. At the same time, one can be sure the old
behavior still works as long as the respective tests still pass.
A potential improvement of the testing procedure is an automatic logging of the actual
state of the PLCs’ pins. It relies in its current state on the accuracy of the reported output
via the TCP connection. The user can additionally check the actual state by visual inspec-
tion. For each output pin an LED is built into the top cover of both PLC, which lights up
as soon as 24 V is applied to the corresponding pin. When a test runs one can check if the

63

5. Testing and Current State

Table 7: Mapping con�guration for initial vacuum testing of detector chamber. Tempera-
ture sensors were not yet activated.

Sensor Input Consequences Response

H2O Flow Sensor 1 B1 Break down of the cooling
water �ow leads to
overheating and damage
to the pumps and
contamination of the
entire vacuum by
evaporating oil used in
di�usion pump.

Shut down all pumps
connected to same
vacuum as a�ected pump
and close valves adjacent
to pre pumps.

H2O Flow Sensor 2 B2

H2O Flow Sensor 3 B3

H2O Flow Sensor 4 B4

H2O Flow Sensor 5 B5

H2O Flow Sensor 6 B6

Ground H2O Sensor 1 B7 Signi�cant amounts of
water on �oor lead to
obvious dangers for
electrical equipment and
personnel.

Shut o� main cooling
water valves. Power down
pumps which lost cooling.
Keep prepumps running
and their valves open.

Ground H2O Sensor 2 B8

expected output LEDs light up. Yet, this is clearly not a fail-save method of testing. That is
why extra care should be taken whenever the logic responsible for setting outputs states
inside the Outputs class is altered.

5.1.2. Overview of Finished Power Unit

Control Logic Figure 27 and 28 show the complete implementation of the power unit
with its main components annotated. In the following, I will shortly go through each ele-
ment in the order they are used when an error is detected.
Sensors are connected via a two-phase cable with the sockets shown in �gure 28a. If, by
any reason, the sensor opens its relay, the applied voltage on the input socket drops to 0 V.
Subsequently, the manual control annotated with 1 in �gure 27 is used to decide whether
the signal should be overwritten. If the automatic mode is chosen, the signal is transmitted
to the input pin of component 8, the PLCs. They are powered by the uninterruptible low
voltage source, denoted with 7, which in turn is connected to the 230 V to 24 V converter,
with index 6. The master PLC queries the slave PLC and uses its prede�ned mapping to
decide if any outputs have to be turned o�. At the same time, it noti�es component 9, the
Raspberry Pi, about the sensor event. It in turn logs that message and prompts the GSM
module, labeled with 10, to send the noti�cation to a prede�ned cell phone number. Both
the Raspberry Pi and the GSM module are powered by element 5, which is the 24 V to 5
V converter. If the master PLC decides certain outputs have to be shut down, it pulls their
respective pins to low. The output controls in component 3 and 4 can be used to overwrite
that decision. Next, the relays and contactors in 11 and 12 are opened depending on the
outputs that are chosen to be disabled. This leads the sockets on the back side, shown in
�gure 28b, to loose connection to a power source, which in the end turns o� their respec-
tive electrical consumers.

64

5.1. Power Management

1

2

4

3

5

6 7 8 9

10

11

12

Figure 27: Complete view of power unit with main components annotated. 1: input over-
write switches, 2: uncontrolled output switches, 3: general output switches, 4:
�xed output switches, 5: 24 V to 5 V converter, 6: 230 V to 24 V converter, 7:
uninterruptible low voltage source, 8: master and slave PLC, 9: Raspberry Pi, 10:
GSM module, 11: single phase high voltage breakers and relays, 12: three-phase
high voltage breakers and relays. The high voltage site was designed and build
in Paknejad (2017).

(a) Input sensor sockets. (b) Power sockets.

Figure 28: Side and back panel of the power unit.

65

5. Testing and Current State

Inputs

General
Outputs

Uncontrolled
Outputs

Fixed
Outputs

Figure 29: Front cover of the power unit. Each rotary switch has an internal blue LED
indicating the state if automatic mode was chosen. White external LED shows
the actual state. Horizontal position means: o�, diagonal: automatic, vertical:
on.

Manual Control The �nished manual control possibilities are shown in �gure 29. All
input controls are placed on the left side. The inputs are consecutively numbered by col-
umn. It starts with B1 at the top left, continues to B8 at the bottom left and �nishes with
B32 at the bottom right.
On the other side of the front cover, three groups of output controls can be seen. "Fixed
Outputs" are the controls for all main electrical consumers of the experiment. All of them
can be autonomously managed by the PLC. They are ordered according to the layout from
�gure 10. "General Outputs" describe 8 control switches which have an automatic set-
ting but are not assigned to any speci�c consumer. They are intended for smaller devices,
which have to be monitored nevertheless, such as various water and vacuum valves. "Un-
controlled Outputs" represent the last group of controllers which do not have an "auto-
matic" mode. They are not connected to the PLCs and can only be manually controlled.
Their intended purpose is for control and measurement equipment, which should not be
depended on any sensory input of the power unit.
One might notice that the total number of outputs is not 80 but only 47. The unaccounted
outputs are intended for the planned combination of ToF GI-HAS and transverse ABSE
experiments. Since the exact layout (and implementation) of the new components are not
determined yet, it was reasonable to omit these output switches at the current state of the
experiment.

66

5.2. Time-of-Flight Detector Chamber

Usage The practical application of this power unit is intended to be as straightforward as
possible. Sensors can be plugged into any input socket. In principle, an electrical consumer
which has to be monitored could be connected to any output from table 1 as well. However,
the manual switches were designed and set up with particular electrical consumers in
mind. Therefore, it makes sense to adhere to the intended use cases described in table 1.
The suggested con�guration and start up of the power unit is done as follows:

1. Shut down power unit via main connector located on the wall behind it.

2. Connect any desired sensors and outputs.

3. Program master PLC using the guide provided in section A.1.

4. For immediate start up set input overwrite switches according to their expected
input states.

5. Switch on power circuit breakers of all used sockets.

6. Switch on central circuit breaker (15F1) for low voltage components.

7. Switch on main power connector of power unit.

8. Verify that all sensors show normal values.

9. Switch on outputs in an appropriate order.

10. After startup of the entire experiment switch inputs and outputs over to automatic
control.

5.2. Time-of-Flight Detector Chamber

The second part of the thesis dealt with the con�guration of one of the main vacuum
components of the experiment. Multiple support systems for the ToF arm were build: a
fore-vacuum system, cooling water distribution, pressurized air distribution, as well as
various sensors and its controls. Lastly, an appropriate beam line was de�ned and all
vacuum elements were aligned to that axis.

5.2.1. Estimation of Cooling Power

The multitude of di�usion pumps employed in the experiment require an extensive cool-
ing system, which I described in section 4.2.3. Now, the cooling power available to the ToF
arm will be approximated to make sure the system is capable of dissipating the generated
heat.

The water �ow rateQ for each UHV pump of the ToF arm was individually estimated to
validate no obstructions exist within their cooling channels. This was done by measuring
the weight of the water �own through one pump within a certain time frame. A scale with
an accuracy of ≈ 2 % was used for this.15 The water running from the pump outlet was
funneled into a container placed onto the scale. The chosen time frame was 3 min and was
measured with a manual stop watch. The water density is taken to be 1 Kg/m3.
15see datasheet: fig:water_tof, accessed on 05.05.2020

67

fig:water_tof

5. Testing and Current State

Table 8: Estimate of water �ow rate through ToF pumps. Measurement time was 3 min.
Pump 1 refers to pump connected to leftmost cooling valves in �gure 20 and
pump 6 to rightmost. The water pressure changed between measurements and
was therefore recorded. Accuracy of both P and Q is estimated to be ±10 %.
Sources of error are: human reaction time, inaccurate pressure gauge with analog
scale, time delay between closing valve and actual stop of water �ow.

Pump 1 Pump 2 Pump 3 Pump 4 Pump 5 Pump 6

P [bar] 3.9 3.6 3.8 3.6 3.6 3.6

Q [l
min] 3.5 2.9 2.8 3.2 3.4 3.0

Q2bar [l
min] 1.8 1.6 1.5 1.8 1.9 1.7

All in all, this is a rough estimation of the general cooling water �ow and should not
be taken as a precise measurement. The intention of this measurement is to understand
whether the cooling system exceeds its requirements by a margin of at least 2. This is
necessary because the institute-wide water pressure can �uctuate. These �uctuation ∆P
should not pose any risks to the experiments due to insu�cient water �ow and a large
margin of error should be incorporated into these results. Therefore, a rough estimation
of the cooling power is adequate for this use case.
Table 8 summarizes the results. A contributing factor to the accuracy of these results,
apart from the scale precision, is that the water �ow cannot be started and stopped imme-
diately but with a time delay of up to 3 seconds. I will forgo a precise error propagation at
this point and estimate the combined error from scale accuracy and time delay for ±5 %.
This is warranted, since ∆P has a much larger e�ect on the accuracy than all other error
sources.
If we assume laminar �ow then Q is proportional depended on P . Taking this into ac-
count, the values were normalized for P = 2 bar, which is roughly the pressure that the
institute wide cooling water system can supply. This can lead to issues with the �ow sen-
sors, because then Q ≈ 1.7 l

min , which is on the lowest end of detectable values.
In fact, their nominal operating range has a minimum of 2 l

min .16 However, the sensor
threshold can be adjusted to be lower than that and in consequence they can still be used
as intended. But this fact should be kept in mind if, for what ever reason, the water pres-
sure drops even lower.

Using the measured �ow rate, we can also put an upper limit on the cooling power
the system can provide. I assume the water is at room temperature initially and should
not heat up above 50 ◦C. Since the water pipes run unprotected across the experiment,
higher temperatures would be dangerous to equipment and personnel. The speci�c heat c
of water is 4.187 kJ

kg K . The power P which could be dissipated by the cooling water within
those bounds is thereby:

P = Q · c ·∆T =
1.7 kg

60 s
· 4.187 kJ

kg K
· 25 K ≈ 2.97

[
kJ

s
= kW

]
16see datasheet: https://pkp.de/images/produkte/pdf_dat/ds52-d.pdf, accessed at 25.4.2020

68

https://pkp.de/images/produkte/pdf_dat/ds52-d.pdf

5.2. Time-of-Flight Detector Chamber

Turczyk (2018, p. 22) states that the biggest di�usion pumps (type Edwards 100) on the ToF
arm require 0.65 kW to operate. Obviously far less then the 2.97 kW calculated above.
Even accounting for the fact that the heat �ux within the pumps is probably the limiting
factor, the power circuit breakers will have already engaged before any kind of over heat-
ing would be possible.
However, the biggest di�usion pumps of the experiment which are attached to the source
chamber have a nominal power consumption of 11 kW (Turczyk, 2018, p. 22). Their cool-
ing pipes have a larger diameter and thus Q will be higher. Yet one can expect that the
cooling water will heat up signi�cantly more in these pumps. That is why, their water �ow
rate should be individually measured before any long duration tests are conducted. This
will validate whether the system meets the cooling requirements for the source chamber
as well.

Focusing again on the ToF arm, we can also ask what the maximum temperature change
of its cooling system will be:

∆T =
P

Q · e
=

0.65 kW
1.7 kg
60 s ·

4.187 kJ
kg K

≈ 5.5 K

We can therefore expect the heating to be no higher than 5.5 K. As of this writing, the
temperature sensors are not yet installed on the cooling pipes. Once they are however,
this value in addition to an uncertainty of approximately±15% can be used as a threshold
for their sensitivity. Sources of errors are: measurement accuracy of Q, actual power con-
sumption of pumps and precision of the employed PT100 temperature gauges. Of course,
tests with the sensors attached will have to verify this, because changes in the actual room
temperature may also have an e�ect.
All in all, I expect the time-of-�ight chamber to be su�ciently cooled and ready for its �rst
vacuum tests.

5.2.2. Alignment Result

In section 4.2.4, the alignment of the beam axis and subsequently of the vacuum com-
ponents with respect to the beam axis was described. Figure 30 shows the result of that
alignment.
What can be seen is a view through the telescope focused on aperture 10 (from table 6)
set to a diameter of 74 µm. This is the smallest opening of the ToF arm and therefore well
suited to validate the alignment. A camera was placed �at against the view port of the
telescope with its maximum zoom level chosen and the same settings con�gured for both
pictures.
Figure 30a shows a view with the detector positioned at a maximum distance from the scat-
tering chamber. Whereas, �gure 30b shows the detector placed as close to the scattering
chamber as possible. In both �gures, an enlarged version of the central area is presented in
the lower right-hand corner. The path di�erence between the two positions was approxi-
mately 32 cm.
The exact position of the telescope center can not be seen due to over saturation of the
camera. However, from the cross hair we can determine, that the center lies within the
aperture area in both detector positions. The helium beam has a minimum diameter larger
than the aperture diameter. Consequently, the aperture will be fully covered by the helium

69

5. Testing and Current State

≈74 μm

(a) Detector placed at maximum distance
from scattering chamber.

≈74 μm

(b) Detector placed at minimum distance to scat-
tering chamber.

Figure 30: View through telescope focused on smallest aperture (component 10), set to a di-
ameter of 74 µm, at di�erent positions of ToF detector. Path di�erence between
positions is approximately 32 cm. Lower right corner shows an enlargement of
the center. As a reference, the approximate size of the aperture has been in-
scribed. The center of the view axis shows no recognizable drift in respect to
the aperture.

beam irregardless of detector position, as long as the helium source chamber is correctly
aligned with the view axis. We can thus summarize, the alignment was successful and a
helium atom packet will be detectable irregardless of the motion of the mass spectrometer
in Y direction.

5.2.3. Overview of the Completed ToF Arm

Figure 31 shows the �nished ToF Arm. The components are annotated in the same man-
ner as in �gure 16. In the following, I will give an overview the central components in the
order in which they interact with the helium atom beam.
If a measurement is conducted, valve 1 is opened. Otherwise it is left shut to separate and
protect the vacuum areas. Aperture 4 is used to remove any cross scattered particles. It
has 2 aperture positions: handle in: 3.175 mm, hadle out: glass window. To evacuated
that area the molecular turbo pump 3 is attached. Since the aperture has a relatively large
diameter compared to the helium beam, I do not expect a signi�cant throughput at this
point. Consequently, the smallest pump of the entire ToF arm is used here.
Bellow 5 is necessary to linear movement the detector. Together with the travel of a bellow
attached to the scattering chamber, a path di�erence of approximately 40 cm is possible.
Next, the helium atoms travel through the di�erential pump stage 6. Its goal is to ensure
a high quality vacuum at the detector. For the same reason aperture 10 can be adjusted to
the smallest diameter of the entire experiment. It has 4 con�gurations: 1: 9.53 mm (handle
fully in), 2: 74 µm, 3: 3.175 mm, 4: glass window.
The beam then reaches the quadrupole mass spectrometer (14). This has to be a �ow-
through detector as otherwise the background levels of helium within the detector area
would be too high. Lastly, that makes it necessary to incorporate a beam dump (17) at the
end of the beam line to collect and remove the measured helium atom packets.
Through the entire UHV area there are multiple ionization pressure gauges attached (com-

70

5.2. Time-of-Flight Detector Chamber

1 4

3

2 5 6 10 11 14 15 16 18

1978
9 12

13

17

20 21

22

22

22

22

23
23

23

23

Figure 31: time-of-�ight detector chamber in its completed state. Enumerations refer to
table 6. In addition, label 22 annotates ionization pressure gauges and label 23
indicates fore-vacuum pressure gauges.

ponents 22). All of those have to be handles with care since they only work below pressure
levels of approximately 10−3 mbar. In addition sensors for measuring the fore-vacuum
pressure (23), the cooling water �ow rate and ground water detectors (both on backside of
support frame) are installed and connected to the power unit for monitoring.

As it stands the time-of-�ight detector chamber is completed, has all periphery systems
connected and awaits its �rst vacuum tests.

71

6. Summary

(a) Initial state at the start of this thesis. (b) Final state at the end of this thesis.

Figure 32: Power control unit for the GI-HAS experiment. Initial state (a) was built in
Paknejad (2017). Addition of outer shell, connection to main power supply, in-
tegration of control hardware and override switches, set up of input sensors, and
programming of control logic was done to arrive at the �nished power control
unit (b).

In this thesis, I reported on the progress of two di�erent parts of the HAS experiment.
In the �rst part, the development of a power management system for the GI-HAS exper-
iment was presented. I designed and implemented an automated control system, which
enables the continuous, secure operation and monitoring of an ultra high vacuum ex-
periment with minimal operator interaction. The comparison in �gure 32 portrays the
progress that was made during this process. Using the initial design for the high voltage,
high current part from Paknejad (2017) as a starting point (�gure 32a), the development
concluded with the �nished power distribution and monitoring system (�gure 32b). The
control hardware, along with the outer shell of the power unit, including the required state
sensors, was built and installed as described in section 4.1.2. The main challenge was the
development of a reliable and above all user-friendly control software. That was achieved
using a test-driven design process on which I reported in section 4.1.5. For this purpose,
I created and employed a test bench for the development of each software component. It

73

6. Summary

(a) Initial state at the start of this thesis. (b) Result of this thesis.

Figure 33: Time-of-�ight detector chamber of the GI-HAS experiment. Figure 33a taken
from Turczyk (2018, p. 16). The addition of: pump cooling system, fore-vacuum
distribution, compressed air reservoir, water �ow, ground water and pressure
sensors, controller for all pumps and sensors, along with the de�nition of a
central beam axis, and alignment of detector components led to the completed
ToF arm (b).

features an extendable design, so it may be used in the future to validate di�erent input-
output-mappings or new control systems prior to deployment on the power unit.
Considering the power management implementation, all initial requirements, as outlined
in section 4.1, have been ful�lled. I demonstrated a robust automatic mapping of sen-
sory inputs to power outputs. All input and output sockets can be overruled manually as
described in section 4.1.3. These override switches as well as the entire software have a
modular design. In the future, this will be bene�cial for the transverse spin echo experi-
ment.
Finally, the use of a logging server and GSM module allows for continuous tracking of
the state of the experiment and for immediate noti�cations in case of an emergency. This
will ensure a faster response to malfunctions and will help us �nding the cause of it more
readily.

The second part of this thesis focused on the set up and alignment of the time-of-�ight
detector chamber.
Starting from the general placement of the ToF arm from Turczyk (2018) (�gure 33a), mul-
tiple auxiliary systems were developed to ensure stable UHV conditions at the mass spec-
trometer. This included a fore-vacuum distribution system as reported in section 4.2.2. In
addition, I implemented a cooling system for the entire GI-HAS experiment. The maxi-
mum cooling power for the detector chamber pumps was evaluated to be ≈ 3kW, which
exceeds the requirements. However, the cooling capability for the source chamber will
have to be tested in the future.
A key requirement for the measurement of helium atom scattering is the accurate align-

74

ment of the movable mass spectrometer along the beam axis. To that end, I developed a
system for positioning a central view axis parallel to the linear motion of the detector in
section 4.2.4. Subsequently, all components of the ToF arm were centered with respect
to that axis. In section 5.2.2, it was shown that detection of a scattered helium beam will
be possible at every detector position. The developments in this part culminated in the
aligned time-of-�ight detector chamber with all of its periphery systems connected and
ready for operation (�gure 31).

7. Outlook

At the end of this thesis the setup of the ToF detector chamber is completed and ready for
vacuum operation. It was my intention to conclude this thesis with actual measurement
and evaluation of the vacuum levels achieved at the detector. The measured pressure val-
ues could be used to estimate the background noise expected theoretically. Unfortunately,
the university-wide lab closings in March and April of 2020 made it impossible to real-
ize these measurements. Therefore, the immediate next steps will be the testing of fore-
vacuum and, subsequently, ultra high vacuum in the detector arm.

In addition, several further systems have to be installed before �rst time-of-�ight spec-
tra can be measured. In the following, I will describe the most important and still missing
components in the order in which they will interact with the helium beam.
The source chamber has already been positioned in line with the de�ned beam axis. Its
fore-vacuum system, along with the needed pressure and temperature sensors have yet
to be installed. In addition, the helium nozzle and chopper have to be a�xed at their re-
spective positions in the source chamber. The control electronics for the chopper and the
quadropole mass spectrometer detector have to be put in place, and the electronic logics
connecting them have to be installed.
The scattering chamber requires a fore-vacuum system, along with new sensors and an
updated compressed air distribution for operating its various vacuum shut-o� valves. Fur-
thermore, it has to be aligned with the beam axis and connected to both the source and
detector chamber.
The sample manipulator is the last missing piece before HAS experiments can begin. Its
purpose is to handle the precise positioning of the target surface in relation to the helium
beam inside the scattering chamber. The existing manipulator has to be repaired to regain
its motion in all degrees of freedom. Finally, after positioning the manipulator in the scat-
tering chamber, the experiment is ready for initial energy calibrations of the helium beam.

In section 2, I outlined the necessary steps to realize the combination of ToF GI-HAS and
transverse ABSE spectroscopy at the Center for Advanced Materials in Heidelberg. The
transverse ABSE extension is actively being worked on in parallel and reported in multiple
theses such as Lang (2019), Willer (2020) and Carvalho (2020), whereas the considerable
progress towards time-of-�ight GI-HAS spectroscopy was described in this thesis.

75

A. Usage Procedures

A.1. Programming Pin Layout and Mapping onto PLC

Material

A PC with Arduino IDE version 1.8.0 or later installed.

B Master PLC program from section B.1

C USB A-to-B cable

Method

Done once during initial con�guration of A:

1. Power up A

2. Download or clone git repository to your preferred directory from:
https://github.com/ArnossArnossi/GIHAS_control. Two options exist:

a) Using git: Open Terminal, navigate to any preferred directory and enter:
"git clone
https://github.com/ArnossArnossi/GIHAS_control.git"

b) Download zip package directly from mentioned website and extract it.

3. Open Arduino IDE on A.

4. Go to File→ Preferences.

5. Change "Sketchbook location" to root directory of downloaded git repository.

6. Enter the following in "Additional Boards Manager URLs":
"https://raw.githubusercontent.com/CONTROLLINO-PLC/
CONTROLLINO_Library/master/Boards/
package_ControllinoHardware_index.json"

7. Go to Tools→ Board→ Boards Manager

8. Search for "Controllino".

9. Install "CONTROLLINO Boards", version 3.1.0.

10. Open �le: "power_management.ino" and click on "Verify" to check whether every-
thing is set up correctly.
Note: If the necessary libraries cannot be found try to manually install them again
under Sketch→ Include Library→Manage Libraries.

Done for every reprogramming of the master PLC:

1. Open B with Arduino IDE on A.

2. Disable outputs of power unit using the overwrite switches.
Note: Unless special circumstances require otherwise the entire power unit should
also be shut down.

77

https://github.com/ArnossArnossi/GIHAS_control

A. Usage Procedures

3. Connect A to master PLC inside power unit using C.

4. Go to Tools→ Board and choose "CONTROLLINO MEGA".

5. Go to Tools→ Port and choose correct port.
Note: The naming varies depending on PC but the port is usually easily recogniz-
able.

6. Go to top-level function named setup() in B. The entire con�guration is done within
this method.

7. Setup input pin layout correctly:
• First of three parameter is name of input. Can be freely chosen but has to start

with "M:" or "S:" to denote master or slave PLC.
• Input sockets B1 to B16 connect to master PLC input A_0 to A_15 and sockets

B17 to B36 connect to slave PLC in the same manner.
• Second parameter refers to input pin of arduino depending on chosen input

socket.
• Third parameter is expected state of that input. A sensor event is triggered if

the measured state deviates from it.

8. Setup output pin layout accordingly:
• First parameter has same meaning and conditions as for input.
• Choose output pin of arduino as second parameter according to table 1.
• Third parameter refers to state of output socket under normal conditions: 1 for

on, 0 for o�.

9. Update number of inputs and outputs with the variables MAX_INPUT_SIZE
and MAX_OUTPUT_SIZE, respectively, at beginning of this script.

10. Setup mapping matrix:
• Rows corresponds to inputs. Columns correspond to outputs. Eg: If input with

index 1 in inputLayout registers a sensor event, the output states in row 1 from
mapping get applied to the output pins.

=⇒ Order of inputLayout has to correspond to mapping rows. Order of out-
putLayout has to correspond to mapping columns.

• Permissible elements are: 0 for disable output, 1 for enable output, 2 for do not
change output.

11. Click upload button on upper left corner in Arduino IDE to program script onto
master PLC.
Note: Slave PLC should not have to be reprogrammed unless changes to the slave
logic from section B.2 were made.

A.2. Configuring Wi-fi and Ethernet Connection

Static IP addresses for the Raspberry Pi server and PLC have to be set for establishing TCP
communication. Furthermore, the WLAN module should be used to gain remote access to
the Raspberry Pi for maintenance and testing.

78

A.3. Usage of Test Bench

Material

A Raspberry Pi 3 Model B with Raspbian Stretch Lite installed

B Micro-B-USB power connector

C HDMI capable monitor

D USB-A connectable keyboard

Method

1. Connect C and D to A.

2. Connect A to standard power outlet using B. =⇒ A powers up.

3. Login to account. Default user is pi and default password is raspberry.

4. Enter: "sudo raspi-config"

5. Go to: Network Options→Wi-�.

6. Enter your Wi� Name and password.

7. Go to: Interfacing Options→ SSH and choose "Yes".

8. Exit con�g editor by choosing "Finish".

9. Enter: "sudo vim /etc/dhcpcd.conf" or use any text editor of your liking.

10. Append the following lines to that �le and save it:

1 interface eth0
2 static ip_address =192.168.2.10/24
3 interface wlan0
4 static ip_address=[local free ip address e .g. 192.168.0.11/24]
5 static routers=[ip address of your router]
6 static damain_name_servers=[usually same as above line]

Note: Do not use IP Address 192.168.0.10. It is already given to master PLC.

11. Make sure the chosen wlan0 IP address is available in your router and will not be
assigned di�erently. Or assign static IP address for wlan0 inside your router.

12. Enter: "sudo reboot now" in console to reboot the Raspberry Pi.

A.3. Usage of Test Bench

The test bench described in section 4.1.4 should be able to test all current mapping vari-
ations for the power unit. Moreover, because of its extendable framework it will be easy
to implement new test variations when the power unit gains more features. In the follow-
ing a step-by-step explanation is given to run the test procedure when the current control
software is used but a di�erent mapping should be tested. However, the usage of the test
bench should remain roughly the same, even if new features and therefore new tests are
added.

79

A. Usage Procedures

Material

A Test bench as described in section 4.1.4

B Computer with connection to local router. In this case using unix based Fedora 31
as operating system. Any OS will be su�cent but precise commands will vary on
non-unix systems.

C Test script from section C.3

D Micro-USB-B power supply

Method

1. Enable router connection of Raspberry Pi and setup LAN connection to PLC by fol-
lowing instructions in section A.2.

2. Connect D to Raspberry Pi =⇒ Wait for power up

3. Gain ssh access to Raspberry Pi by entering the following in the terminal: "ssh
pi@[RPi IP address, e.g. 192.168.0.11]"

4. With connection to internet install pytest. Enter: "sudo pip3 install pytest"

5. Open D in text editor of your liking on B. Alternatively adapt test script directly on
Raspberry Pi an skip step 8 and 3.

6. Copy mapping which is to be tested from PLC control software into D. Replace
thereby the parameter called mapping in D.

7. Make sure order of parameter: sim_inputs is the same as in mapping parameter. I.e.:
The correst simulated inputs refer to the correct expected mapping of outputs.

8. Copy adapted test script to Raspberry Pi:

a) Open Terminal on B

b) Navigate to directory of test script.

c) Enter: "scp ./test_mapping.py pi@[RPi IP Address]:
/home/pi/test_mapping.py"

9. Copy server script: rpi_server.py from section C.1 to the same directory as test script

10. Access Raspberry Pi again using SSH as in step 3

11. Enter: "pytest" to start the testing protocol.
Note: Always issue this command in the same directory as the test script

80

B. Programmable Logic Controler Scripts

The main logic of the power unit can be found in these scripts. They are written in a varia-
tion of C++. The main logic resides in a single �le for the master and slave device each and
is not built into a separate library. The strategy ensures a usage that is as easy as possible.
The required third-party libraries are: Controllino, version:1.1.2,ArduinoJson, version: 15.3.2,
ModbusRtu, version: initial upload, Ethernet, version: 2.0.0.
All �les including the necessary library versions are bundled in a git repository and can
be downloaded at:
https://github.com/ArnossArnossi/GIHAS_control.

B.1. Master PLC Script

1 #include " Controllino .h"
2 #include "ArduinoJson.h"
3 #include "ModbusRtu.h"
4 #include <Ethernet.h>
5
6
7 const int MAX_INPUT_SIZE = 16; // number of input elements
8 const int MAX_OUTPUT_SIZE = 10; // number of outputs elements
9

10
11 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; // MAC address for controllino .
12 IPAddress ip (192, 168, 2, 5) ; // the static IP address of controllino
13 IPAddress server (192,168,2,10) ; // numeric IP of the server i . e . rpi
14 EthernetClient client ; // start ethernet client
15
16
17 // array in which the digital states of all inputs and outputs of the slave

controllino are stored
18 // Modbus sends and receives any data to the slave only from this array
19 uint16_t ModbusSlaveRegisters [52];
20 Modbus ControllinoModbusMaster(0, 3, 0) ;
21 modbus_t query;
22 // receiving (slave) adress
23 query.u8id = 1;
24 // always only read one register at a time
25 query.u16CoilsNo = 1;
26
27 // lookup array for index of pin in slave .
28 int slavePinLookup[69] = {−1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, −1,

−1, −1, −1, −1, −1, −1,
29 −1, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, −1, −1, −1,
30 −1, 28, 29, 30, 31, 32, 33, 34, 35, −1, −1, −1, −1, 0,

1, 2, 3, 4, 5, 6,
31 7, 8, 9, 10, 11, 12, 13, 14, 15
32 };
33
34
35 // enough for 72 bytes from output array with

81

https://github.com/ArnossArnossi/GIHAS_control

B. Programmable Logic Controler Scripts

36 // "changedIndex ":4 and "Type ": " sensorevent " but not for totalIn
37 const size_t capacity = 650;
38 JsonObject & jsonBuild (String type) {
39 // the returned object should never live in the global scope
40 // or else it wont be destroyed by garbage collection => memory leak
41 // Parameter : type of json message
42 // Return : JSON Object where data can be appended to
43
44 StaticJsonBu�er <capacity> jsonBu�er ;
45 JsonObject& root = jsonBu�er . createObject () ;
46 root["type"] = type;
47 return root ;
48 }
49
50
51 void jsonSend(JsonObject & root) {
52 // if the JSONbu�er is to small the program hangs at printTo ()
53 root . printTo (client) ;
54 client . println () ;
55 }
56
57
58 template <size_t N> void jsonAddArray(JsonObject & someRoot, String name, byte (&ar)

[N]) {
59 // Add an int array to a json object .
60 // Parameters : someRoot, json object
61 // name, name of the array
62 // ar , reference to in array to be stored
63 JsonArray& someArray = someRoot.createNestedArray(name);
64 for (int i =0; i<N; i++) {
65 someArray.add(ar[i]) ;
66 }
67 }
68
69
70 struct Pin {
71 String pinName;
72 byte pinNumber;
73 byte pinState ;
74 };
75
76
77 class Inputs {
78
79 private :
80 Pin inputData[MAX_INPUT_SIZE];
81 // Timeout for waiting for an answer from slave
82 int slaveInputTimeout = 1000;
83 // expected values for input . Will be set at initiation of Input
84 byte normalInput[MAX_INPUT_SIZE];
85
86
87 public:

82

B.1. Master PLC Script

88 // should be initialized to array of zeros .
89 byte inputRepr[MAX_INPUT_SIZE] = {};
90
91
92 Inputs () {}
93
94
95 void begin(Pin pinLayout[]) {
96 // constructor method with di�erent name to call in setup ()
97 for (int i = 0; i < MAX_INPUT_SIZE; i++) {
98 if (pinLayout[i]. pinName[0] == ’M’) {
99 pinMode(pinLayout[i].pinNumber, INPUT);

100 }
101 inputData[i] = pinLayout[i];
102 normalInput[i] = pinLayout[i]. pinState ;
103 inputRepr[i] = inputData[i]. pinState ;
104 }
105 }
106
107
108 int readInput (int inputNumber) {
109 // Read state of input at postion inputNumber in inputLayout ,
110 // check if request has to be send via rs485 �rst
111 // Return −1 if error is detected .
112 Pin mpin = inputData[inputNumber];
113 if (mpin.pinName[0] == ’M’) {
114 return digitalRead (inputData[inputNumber].pinNumber);
115 }
116 else if (mpin.pinName[0] == ’S’) {
117 int registerIndex = slavePinLookup[mpin.pinNumber − 1];
118
119 if (registerIndex == −1) {
120 String errorMessage = F("Slave has no pin with this pin number. Ignoring

this input . ") ;
121 JsonObject & root = jsonBuild (F(" error ")) ;
122 root[F(" error ")] = errorMessage;
123 root[F("pinNumber")] = mpin.pinNumber;
124 jsonSend(root) ;
125 return −1;
126 }
127
128 query. u8fct = 3;
129 query.u16RegAdd = registerIndex ;
130 query.au16reg = ModbusSlaveRegisters + registerIndex ;
131
132 ControllinoModbusMaster.query(query);
133
134 unsigned long startTime = millis () ;
135 while (ControllinoModbusMaster.getState () != COM_IDLE && millis() −

startTime < slaveInputTimeout) {
136 ControllinoModbusMaster.poll () ;
137 }
138 return ModbusSlaveRegisters[registerIndex];

83

B. Programmable Logic Controler Scripts

139 }
140 else {
141 String errorMessage = F("Name not starting with M or S. Ignoring this

input") ;
142 JsonObject & root = jsonBuild (F(" error ")) ;
143 root[F(" error ")] = errorMessage;
144 root[F("pinNumber")] = mpin.pinName;
145 jsonSend(root) ;
146 return −1;
147 }
148 }
149
150
151 void update () {
152 // Update the states of all pins in inputData to current value .
153
154 for (int i = 0; i < MAX_INPUT_SIZE; i++) {
155 inputRepr[i] = inputData[i]. pinState = readInput (i) ;
156 }
157 }
158
159
160 int getChanges() {
161 // Check if any input state has changed to something di�erent than the
162 // expected input . If so return the index of that input pin
163 // if input changed: wait x ms and recheck the reading . If it changed again ,

Dont do anything
164 // this allows for �ipping of the switches from manual to auto without

triggering something
165
166 // Returns : int , index of changed input pin or −1 if no input has changed.
167
168 for (int i =0; i<MAX_INPUT_SIZE; i++) {
169 int tempInput = readInput (i) ;
170 if (inputData[i]. pinState != tempInput) {
171 delay (200) ;
172 if (inputData[i]. pinState == readInput (i)) {
173 continue;
174 }
175 inputRepr[i] = inputData[i]. pinState = tempInput;
176 if (tempInput!=normalInput[i]) {
177 return i ;
178 }
179 }
180 }
181 return −1;
182 }
183
184
185 int checknormalInput() {
186 // Check if input is the same as normalInput de�ned in setup ()
187 // if any input is not as expected send index of that input otherwise send −1
188

84

B.1. Master PLC Script

189 for (int i =0; i<MAX_INPUT_SIZE; i++) {
190 if (readInput (i) != normalInput[i]) {
191 return i ;
192 }
193 }
194 return −1;
195 }
196 };
197
198
199 class Outputs {
200
201 private :
202 Pin outputData[MAX_OUTPUT_SIZE];
203 byte normalOutput[MAX_OUTPUT_SIZE];
204 // timeout length before response from slave is ignored
205 int slaveOutputTimeout = 1000;
206
207
208 public:
209 // should be initialized to array of zeros .
210 byte outputRepr[MAX_OUTPUT_SIZE] = {};
211
212
213 Outputs() {}
214
215
216 void begin(Pin pinLayout[]) {
217 // constructor method with di�erent name to call at a later time
218 for (int i = 0; i < MAX_OUTPUT_SIZE; i++) {
219 outputData[i] = pinLayout[i];
220 normalOutput[i] = pinLayout[i]. pinState ;
221
222
223 outputRepr[i] = outputData[i]. pinState = 0; // make sure all outputs are o�

initially
224 if (pinLayout[i]. pinName[0] == ’M’) {
225 pinMode(pinLayout[i].pinNumber, OUTPUT);
226 digitalWrite (outputData[i]. pinNumber, 0);
227 }
228 }
229 }
230
231
232 void writeOutput(int outputNumber, byte outputState) {
233 // Check if output on postion outputnumber in outputPinLayout
234 // is in master or slave , write data or send query accordingly
235 Pin mpin = outputData[outputNumber];
236 if (mpin.pinName[0] == ’M’) {
237 digitalWrite (mpin.pinNumber, outputState) ;
238 }
239 else if (mpin.pinName[0] == ’S’) {
240 int registerIndex = slavePinLookup[mpin.pinNumber − 1];

85

B. Programmable Logic Controler Scripts

241
242 if (registerIndex == −1) {
243 String errorMessage = "Slave has no pin with pin number: " + String (mpin.

pinNumber)
244 + "Ignoring this query. " ;
245 JsonObject & root = jsonBuild (" error ") ;
246 root[" error "] = errorMessage;
247 jsonSend(root) ;
248 return;
249 }
250
251 query. u8fct = 6;
252 query.u16RegAdd = registerIndex ;
253 ModbusSlaveRegisters[registerIndex] = outputState ;
254 query.au16reg = ModbusSlaveRegisters + registerIndex ;
255
256 ControllinoModbusMaster.query(query);
257
258 unsigned long startTime = millis () ;
259 while(ControllinoModbusMaster.getState () != COM_IDLE && millis() −

startTime < slaveOutputTimeout) {
260 ControllinoModbusMaster.poll () ;
261 }
262 }
263 else {
264 String errorMessage = F("Name not starting with M or S. Ignoring this input"

) ;
265 JsonObject & root = jsonBuild (F(" error ")) ;
266 root[F(" error ")] = errorMessage;
267 root[F("pinNumber")] = mpin.pinName;
268 jsonSend(root) ;
269 return;
270 }
271 }
272
273
274 void setOutput(byte (&con�gArray)[MAX_OUTPUT_SIZE]) {
275 // Allow setting the entire output state with one array .
276 // Must have same size AND ORDER as outputPinLayout.
277 // Elements can be 0: set outputpin with same index to 0
278 // 1: set outputpin with same index to 1
279 // 2: dont do anything with that pin
280 // Parameters : con�gArray : reference to int array with
281 // MAX_OUTPUT_SIZE as size
282
283 for (int i = 0; i < MAX_OUTPUT_SIZE; i++) {
284 if (con�gArray[i] < 2) {
285 writeOutput(i , con�gArray[i]) ;
286 outputData[i]. pinState = con�gArray[i];
287 outputRepr[i] = con�gArray[i];
288 }
289 }
290 JsonObject & root = jsonBuild (" setAllOutputs ") ;

86

B.1. Master PLC Script

291 jsonAddArray(root, "changedOut", con�gArray) ;
292 jsonSend(root) ;
293 }
294
295
296 void setNormalOutput() {
297 setOutput(normalOutput);
298 }
299
300
301 bool isAlreadySet (byte (&toBeChecked)[MAX_OUTPUT_SIZE]) {
302 // Check if the desired output array "toBeChecked" is allready
303 // set in the current output .
304 // Parameters : toBeChecked: ref to int array of MAX_OUTPUT_SIZE in length
305 // can only have elements : 0: pin set to 0
306 // 1: pin set to 1
307 // 2: do not check this pin
308 // Returns : false : if output is di�erent or if only 2s are in toBeChecked
309 // true : if output is same at positions with 0s and 1s ,
310
311 bool isSet = false ;
312
313 for (int i = 0; i < MAX_OUTPUT_SIZE; i++) {
314 if (toBeChecked[i] == 2) {
315 continue;
316 }
317 if (toBeChecked[i] != outputData[i]. pinState) {
318 return false ;
319 } else {
320 isSet = true;
321 }
322 }
323 return isSet ;
324 }
325 };
326
327 class Machine {
328
329 private :
330 Inputs input ;
331 Outputs output ;
332 byte mmapping[MAX_INPUT_SIZE][MAX_OUTPUT_SIZE];
333
334
335 public:
336 // timing start for rechecking of ethernet connection in milliseconds
337 unsigned long startTimeReconnect = 0;
338 // time between recheckings of ethernet connection in milliseconds
339 int waitReconnect = 20000;
340
341
342 Machine() {}
343

87

B. Programmable Logic Controler Scripts

344
345 void begin(Pin inputPinLayout [],
346 Pin outputPinLayout [],
347 byte mapping[MAX_INPUT_SIZE][MAX_OUTPUT_SIZE]) {
348 // constructor method with di�erent name to call in setup ()
349 input .begin(inputPinLayout) ;
350 output .begin(outputPinLayout) ;
351
352 for (int i =0; i<MAX_INPUT_SIZE; i++) {
353 for (int j =0; j<MAX_OUTPUT_SIZE; j++) {
354 mmapping[i][j] = mapping[i][j];
355 }
356 }
357 }
358
359
360 void checkAndEnableNormalOutput() {
361 // Check if input is di�erent from normalInput , i . e . the expected input

states .
362 int index = input . checknormalInput() ;
363 if (index == −1) {
364 output . setNormalOutput();
365 } else {
366 JsonObject & root = jsonBuild (F(" startupError ")) ;
367 root[F("changedIn")] = index ;
368 jsonSend(root) ;
369 }
370 }
371
372
373 void runAllMappings() {
374 // Check if input has changed. If so set output to de�ned output in mapping.
375 int changedIndex = input .getChanges() ;
376 if (changedIndex != −1) {
377 if (! output . isAlreadySet (mmapping[changedIndex])){
378 output . setOutput(mmapping[changedIndex]);
379 }
380
381 Serial . println ("sensorEvent on Pin: " + changedIndex);
382 JsonObject & root = jsonBuild (F("sensorEvent")) ;
383 root[F("changedIn")] = changedIndex;
384 jsonAddArray(root,F(" totalOut ") , output .outputRepr) ;
385 jsonSend(root) ;
386 }
387 }
388
389
390 void checkConnection() {
391 // Check if ethernet is connected .
392 // If not and timer for retry has run down: try to reconnect
393
394 if (! client . connected() && millis () − startTimeReconnect >= waitReconnect) {
395 startTimeReconnect = millis () ;

88

B.1. Master PLC Script

396 Serial . println (F("Trying to reconnect ... ")) ;
397 client . stop () ;
398 client . connect(server , 4000) ;
399 Serial . print (F("Connectionstatus : ")) ;
400 Serial . println (client . connected()) ;
401 }
402 }
403 };
404
405
406 Machine controller ;
407
408
409 void resetWrapper() {
410 // for some reason non static member function cannot be used as interrupt routines
411 controller . checkAndEnableNormalOutput();
412 }
413
414
415 void setup () {
416
417 // Setup the whole machine. All pin con�gurations go here !
418
419 // The in /out−putPinLayout describes the normal (i . e . expected) input and output

state
420 // Remember to set MAX_INPUT_SIZE and MAX_OUTPUT_SIZE at the beginning of this
421 // script correctly , i . e . length of input and output layout respectively .
422 // Pin Name has to start with M or S depending on master or slave device
423 // or pin will be ignored otherwise .
424 Pin inputPinLayout[] = {
425 {F("M:B01"), CONTROLLINO_A0, 0},
426 {F("M:B02"), CONTROLLINO_A1, 0},
427 {F("M:B03"), CONTROLLINO_A2, 0},
428 {F("M:B04"), CONTROLLINO_A3, 0},
429 {F("M:B05"), CONTROLLINO_A4, 0},
430 {F("M:B06"), CONTROLLINO_A5, 0},
431 {F("M:B07"), CONTROLLINO_A6, 0},
432 {F("M:B07"), CONTROLLINO_A7, 0},
433 {F("S:B17") , CONTROLLINO_A0, 0},
434 {F("S:B18") , CONTROLLINO_A1, 0},
435 {F("S:B19") , CONTROLLINO_A2, 0},
436 {F("S:B20") , CONTROLLINO_A3, 0},
437 {F("S:B21") , CONTROLLINO_A4, 0},
438 {F("S:B22") , CONTROLLINO_A5, 0},
439 {F("S:B23") , CONTROLLINO_A6, 0},
440 {F("S:B24") , CONTROLLINO_A7, 0},
441 };
442
443 Pin outputPinLayout[] = {
444 {F("M:G31"), CONTROLLINO_R2, 1},
445 {F("M:G67"), CONTROLLINO_R3, 1},
446 {F("M:G32"), CONTROLLINO_R4, 1},
447 {F("M:G33"), CONTROLLINO_R5, 1},

89

B. Programmable Logic Controler Scripts

448 {F("M:G68"), CONTROLLINO_R6, 1},
449 {F("M:G34"), CONTROLLINO_R7, 1},
450 {F("M:G64"), CONTROLLINO_R8, 1},
451 {F("M:G35"), CONTROLLINO_R9, 1},
452 {F("M:G36"), CONTROLLINO_R10, 1},
453 {F("M:G42"), CONTROLLINO_R11, 1},
454 };
455
456 // Each row coresponds to input with same index in inputLayout .
457 // And order of Elements in one row has to be the same as outputLayout .
458 // Note : Remember to update MAX_INPUT_SIZE and MAX_OUTPUT_SIZE at BEGINNING

of script
459 byte mapping[MAX_INPUT_SIZE][MAX_OUTPUT_SIZE] = {
460 // Input \Output :R02,R03,R04,R05,R06,R07,R08,R09,R10,R11
461 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A0,
462 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A1,
463 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A2,
464 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A3,
465 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A4,
466 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A5,
467 {0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0}, // CONTROLLINO_A6,
468 {0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0}, // CONTROLLINO_A7,
469 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A0, slave

inputs
470 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A1,
471 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A2,
472 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A3,
473 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A4,
474 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2}, // CONTROLLINO_A5,
475 {0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0}, // CONTROLLINO_A6,
476 {0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0}, // CONTROLLINO_A7,
477 };
478
479
480 // interrupt routine for restarting all outputs after sensorevent has been �xed
481 const int interruptPin = CONTROLLINO_IN0;
482 pinMode(interruptPin , INPUT);
483 attachInterrupt (digitalPinToInterrupt (interruptPin) , resetWrapper, RISING);
484
485
486 // start Serial and check if its connected correctly
487 Serial .begin (9600) ;
488 int startTime = millis () ;
489 while(! Serial) {
490 if (millis () − startTime >= 5000) {
491 break;
492 }
493 }
494
495
496 // start the Ethernet connection
497 Ethernet .begin(mac, ip) ;
498 // give the Ethernet a second to initialize

90

B.2. Slave PLC Script

499 delay (1000) ;
500
501
502 // setup rs485 query and connection
503 ControllinoModbusMaster.begin(19200) ; // baud−rate at 19200
504 ControllinoModbusMaster.setTimeOut(5000);
505
506
507 // enable connection with server (rpi) over port 4000
508 Serial . println (F(" Start connecting with ethernet ... ")) ;
509 if (client . connect(server , 4000)) {
510 // TODO: change this to log message
511 Serial . println (F("Connected.")) ;
512 } else {
513 Serial . println (F("Connection failed . ")) ;
514 controller . startTimeReconnect = millis () ;
515 }
516
517
518 // initilize controller with input and output pins
519 // set inputs to expected inputs tempoarily , set outputs to 0
520 controller .begin(inputPinLayout, outputPinLayout, mapping);
521 // Wait a bit . seems to be needed to set everything up correctly
522 delay (500) ;
523
524 // Check if inputs do not show an error before enableing normal operation
525 controller . checkAndEnableNormalOutput();
526 }
527
528
529 void loop () {
530
531 controller . runAllMappings();
532
533 controller . checkConnection();
534
535 }

B.2. Slave PLC Script

1 #include <Controllino .h>
2 #include "ModbusRtu.h"
3
4 #de�ne SlaveModbusAdd 1
5
6 #de�ne RS485Serial 3
7
8 Modbus ControllinoModbusSlave(SlaveModbusAdd, RS485Serial, 0);
9

10 // Speci�ed internal registers in the Modbus slave device .
11 // Only these particular internal registers are available for Modbus master.
12 uint16_t ModbusSlaveRegisters [52];
13

91

B. Programmable Logic Controler Scripts

14
15 void setup ()
16 {
17 Serial .begin (9600) ;
18
19 // Inputs (index 0 to 15)
20 pinMode(CONTROLLINO_A0, INPUT);
21 pinMode(CONTROLLINO_A1, INPUT);
22 pinMode(CONTROLLINO_A2, INPUT);
23 pinMode(CONTROLLINO_A3, INPUT);
24 pinMode(CONTROLLINO_A4, INPUT);
25 pinMode(CONTROLLINO_A5, INPUT);
26 pinMode(CONTROLLINO_A6, INPUT);
27 pinMode(CONTROLLINO_A7, INPUT);
28 pinMode(CONTROLLINO_A8, INPUT);
29 pinMode(CONTROLLINO_A9, INPUT);
30 pinMode(CONTROLLINO_A10, INPUT);
31 pinMode(CONTROLLINO_A11, INPUT);
32 pinMode(CONTROLLINO_A12, INPUT);
33 pinMode(CONTROLLINO_A13, INPUT);
34 pinMode(CONTROLLINO_A14, INPUT);
35 pinMode(CONTROLLINO_A15, INPUT);
36
37
38 // Outputs (index 16 to 51, �rst relay index is 36)
39 pinMode(CONTROLLINO_D0, OUTPUT);
40 pinMode(CONTROLLINO_D1, OUTPUT);
41 pinMode(CONTROLLINO_D2, OUTPUT);
42 pinMode(CONTROLLINO_D3, OUTPUT);
43 pinMode(CONTROLLINO_D4, OUTPUT);
44 pinMode(CONTROLLINO_D5, OUTPUT);
45 pinMode(CONTROLLINO_D6, OUTPUT);
46 pinMode(CONTROLLINO_D7, OUTPUT);
47 pinMode(CONTROLLINO_D8, OUTPUT);
48 pinMode(CONTROLLINO_D9, OUTPUT);
49 pinMode(CONTROLLINO_D10, OUTPUT);
50 pinMode(CONTROLLINO_D11, OUTPUT);
51 pinMode(CONTROLLINO_D12, OUTPUT);
52 pinMode(CONTROLLINO_D13, OUTPUT);
53 pinMode(CONTROLLINO_D14, OUTPUT);
54 pinMode(CONTROLLINO_D15, OUTPUT);
55 pinMode(CONTROLLINO_D16, OUTPUT);
56 pinMode(CONTROLLINO_D17, OUTPUT);
57 pinMode(CONTROLLINO_D18, OUTPUT);
58 pinMode(CONTROLLINO_D19, OUTPUT);
59 pinMode(CONTROLLINO_R0, OUTPUT);
60 pinMode(CONTROLLINO_R1, OUTPUT);
61 pinMode(CONTROLLINO_R2, OUTPUT);
62 pinMode(CONTROLLINO_R3, OUTPUT);
63 pinMode(CONTROLLINO_R4, OUTPUT);
64 pinMode(CONTROLLINO_R5, OUTPUT);
65 pinMode(CONTROLLINO_R6, OUTPUT);
66 pinMode(CONTROLLINO_R7, OUTPUT);

92

B.2. Slave PLC Script

67 pinMode(CONTROLLINO_R8, OUTPUT);
68 pinMode(CONTROLLINO_R9, OUTPUT);
69 pinMode(CONTROLLINO_R10, OUTPUT);
70 pinMode(CONTROLLINO_R11, OUTPUT);
71 pinMode(CONTROLLINO_R12, OUTPUT);
72 pinMode(CONTROLLINO_R13, OUTPUT);
73 pinMode(CONTROLLINO_R14, OUTPUT);
74 pinMode(CONTROLLINO_R15, OUTPUT);
75
76
77 ControllinoModbusSlave.begin(19200) ;
78 }
79
80 void loop ()
81 {
82 // checks for incomming data
83 // if received frame is ok, write or read values from ModbusSlaveRegisters
84 ControllinoModbusSlave.poll (ModbusSlaveRegisters, 52) ;
85
86 // Used for debugging purposes
87 for (int i = 0; i <52; i++) {
88 Serial . print (ModbusSlaveRegisters[i]) ;
89 Serial . print (" ") ;
90 }
91 Serial . println () ;
92
93 ModbusSlaveRegisters[0] = digitalRead (CONTROLLINO_A0);
94 ModbusSlaveRegisters[1] = digitalRead (CONTROLLINO_A1);
95 ModbusSlaveRegisters[2] = digitalRead (CONTROLLINO_A2);
96 ModbusSlaveRegisters[3] = digitalRead (CONTROLLINO_A3);
97 ModbusSlaveRegisters[4] = digitalRead (CONTROLLINO_A4);
98 ModbusSlaveRegisters[5] = digitalRead (CONTROLLINO_A5);
99 ModbusSlaveRegisters[6] = digitalRead (CONTROLLINO_A6);

100 ModbusSlaveRegisters[7] = digitalRead (CONTROLLINO_A7);
101 ModbusSlaveRegisters[8] = digitalRead (CONTROLLINO_A8);
102 ModbusSlaveRegisters[9] = digitalRead (CONTROLLINO_A9);
103 ModbusSlaveRegisters[10] = digitalRead (CONTROLLINO_A10);
104 ModbusSlaveRegisters[11] = digitalRead (CONTROLLINO_A11);
105 ModbusSlaveRegisters[12] = digitalRead (CONTROLLINO_A12);
106 ModbusSlaveRegisters[13] = digitalRead (CONTROLLINO_A13);
107 ModbusSlaveRegisters[14] = digitalRead (CONTROLLINO_A14);
108 ModbusSlaveRegisters[15] = digitalRead (CONTROLLINO_A15);
109 digitalWrite (CONTROLLINO_D0, ModbusSlaveRegisters[16]);
110 digitalWrite (CONTROLLINO_D1, ModbusSlaveRegisters[17]);
111 digitalWrite (CONTROLLINO_D2, ModbusSlaveRegisters[18]);
112 digitalWrite (CONTROLLINO_D3, ModbusSlaveRegisters[19]);
113 digitalWrite (CONTROLLINO_D4, ModbusSlaveRegisters[20]);
114 digitalWrite (CONTROLLINO_D5, ModbusSlaveRegisters[21]);
115 digitalWrite (CONTROLLINO_D6, ModbusSlaveRegisters[22]);
116 digitalWrite (CONTROLLINO_D7, ModbusSlaveRegisters[23]);
117 digitalWrite (CONTROLLINO_D8, ModbusSlaveRegisters[24]);
118 digitalWrite (CONTROLLINO_D9, ModbusSlaveRegisters[25]);
119 digitalWrite (CONTROLLINO_D10, ModbusSlaveRegisters[26]);

93

C. Raspberry Pi Server Scripts

120 digitalWrite (CONTROLLINO_D11, ModbusSlaveRegisters[27]);
121 digitalWrite (CONTROLLINO_D12, ModbusSlaveRegisters[28]);
122 digitalWrite (CONTROLLINO_D13, ModbusSlaveRegisters[29]);
123 digitalWrite (CONTROLLINO_D14, ModbusSlaveRegisters[30]);
124 digitalWrite (CONTROLLINO_D15, ModbusSlaveRegisters[31]);
125 digitalWrite (CONTROLLINO_D16, ModbusSlaveRegisters[32]);
126 digitalWrite (CONTROLLINO_D17, ModbusSlaveRegisters[33]);
127 digitalWrite (CONTROLLINO_D18, ModbusSlaveRegisters[34]);
128 digitalWrite (CONTROLLINO_D19, ModbusSlaveRegisters[35]);
129
130 digitalWrite (CONTROLLINO_R0, ModbusSlaveRegisters[36]);
131 digitalWrite (CONTROLLINO_R1, ModbusSlaveRegisters[37]);
132 digitalWrite (CONTROLLINO_R2, ModbusSlaveRegisters[38]);
133 digitalWrite (CONTROLLINO_R3, ModbusSlaveRegisters[39]);
134 digitalWrite (CONTROLLINO_R4, ModbusSlaveRegisters[40]);
135 digitalWrite (CONTROLLINO_R5, ModbusSlaveRegisters[41]);
136 digitalWrite (CONTROLLINO_R6, ModbusSlaveRegisters[42]);
137 digitalWrite (CONTROLLINO_R7, ModbusSlaveRegisters[43]);
138 digitalWrite (CONTROLLINO_R8, ModbusSlaveRegisters[44]);
139 digitalWrite (CONTROLLINO_R9, ModbusSlaveRegisters[45]);
140 digitalWrite (CONTROLLINO_R10, ModbusSlaveRegisters[46]);
141 digitalWrite (CONTROLLINO_R11, ModbusSlaveRegisters[47]);
142 digitalWrite (CONTROLLINO_R12, ModbusSlaveRegisters[48]);
143 digitalWrite (CONTROLLINO_R13, ModbusSlaveRegisters[49]);
144 digitalWrite (CONTROLLINO_R14, ModbusSlaveRegisters[50]);
145 digitalWrite (CONTROLLINO_R15, ModbusSlaveRegisters[51]);
146 }

C. Raspberry Pi Server Scripts

The server logic has to be run using Python version 3.0 or above. C.1 and C.2 have to
reside in the same directory.

C.1. TCP Server Script

Python Script for Raspberry Pi server named: rpi_server.py.

1 import json
2 import socket
3 import sys
4 import time
5 import logging as lo
6 from gsm_handler import GSM
7
8
9 class Handler(object):

10
11 def __init__ (
12 self , server , port , log_�le_path ,
13 sms_sender_func = None,
14 binding_timeout = 20):
15
16 # init logging

94

C.1. TCP Server Script

17 self . root_log = lo .getLogger ()
18 formatter = lo .Formatter("%(asctime)s %(levelname)s %(message)s")
19 # logging to �le
20 �le_handler = lo . FileHandler (log_�le_path)
21 �le_handler . setFormatter (formatter)
22 self . root_log .addHandler(�le_handler)
23 # logging to stdout
24 console_handler = lo .StreamHandler()
25 console_handler . setFormatter (formatter)
26 self . root_log .addHandler(console_handler)
27 # set log level
28 self . root_log . setLevel (lo . INFO)
29 self . root_log . info (" Initialized logging . ")
30
31 self .binding_timeout = binding_timeout
32 self . server = server
33 self . port = port
34 self . sock = socket . socket (socket .AF_INET, socket.SOCK_STREAM)
35 self . bind_socket ()
36
37 if sms_sender_func is not None:
38 self . sms_func = sms_sender_func
39 else :
40 self . sms_func = self . default_sms_func
41
42 def __call__ (self , conn):
43 with conn.make�le (mode="r") as f :
44 while True:
45 line = f . readline (). strip ()
46 self . root_log . info (line)
47 try :
48 msg = json . loads (line)
49 except (ValueError):
50 self . root_log .warn("Could not translate message \
51 to json . Message: {} " .format(line))
52 msg = None
53 if msg is not None and msg["type"] == "sensorEvent" :
54 success = self . sms_func(line) # send entire json as sms
55 self . root_log . info ("Tried to send SMS. \
56 Success : {} " .format(success))
57
58 def default_sms_func(self , message):
59 pass
60
61 def bind_socket(self):
62 self . sock. setsockopt (socket .SOL_SOCKET, socket.SO_REUSEADDR, 1)
63 self . root_log . info ("Trying to bind socket ... ")
64 for i in range(self . binding_timeout + 1):
65 try :
66 self . sock.bind ((self . server , self . port))
67 self . root_log . info ("Socket binding successfull with address : \
68 {} on port {} " .format(self . server , self . port))
69 break

95

C. Raspberry Pi Server Scripts

70 except OSError:
71 time. sleep (1)
72 if i==self .binding_timeout:
73 self . root_log .warn("Socket binding to adress : {} \
74 on port {} failed . Exiting programm..."
75 .format(self . server , self . port))
76 sys . exit ()
77
78 def get_connection(self):
79 self . sock. listen (1)
80 self . root_log . info ("Waiting for incoming connection ... ")
81 self . sock. settimeout (40)
82 conn, addr = self . sock. accept ()
83 self . root_log . info ("Connected address is : {} " .format(addr))
84 self . sock. settimeout (None)
85 return conn
86
87
88 if __name__=="__main__":
89
90 gsm_handler= GSM("/dev/ttyAMA0", "+4917256187925")
91 gihas_handler = Handler(
92 " 192.168.2.10 " , 4000,
93 " /home/pi/gihas_control . log" ,
94 sms_sender_func=gsm_handler.send_sms)
95
96 try :
97 conn = gihas_handler . get_connection ()
98 except socket . timeout:
99 gihas_handler . root_log .warn("Could not �nd connection with client \

100 after {} seconds. Exiting program ... " .format(
101 gihas_handler . sock.gettimeout ()))
102 sys . exit ()
103
104 with conn:
105 gihas_handler (conn)

C.2. GSM Handling Module

Module for sending SMS messages. File is called: gsm_handler.py. Its class is used within
rpi_server.py

1 import serial
2 import time
3
4
5 class GSM:
6 def __init__ (
7 self , port_path , receiving_number,
8 baud_rate=9600, timeout=5):
9 """

10 Parameters :
11 port_path : (string) full �le path to active

96

C.3. Test Program for PLC Logic

12 serial connection , e .g .: "/ dev/ttyAMA0"
13 receiving_number : (string) number to send to
14 in international format , e . g .: +4917212312312
15 baud_rate : (int) baudrate of gsm module
16 timeout : (int) time (in seconds) handler waits for a response
17 """
18
19 self . ser = serial . Serial (
20 port_path , baudrate = baud_rate ,
21 timeout=timeout)
22 time. sleep (1)
23 self . receiving_number = receiving_number
24
25 # set gsm module to sms text mode
26 self . write (’AT+CMGF=1’)
27
28 # choose sim card as primary sms storage space
29 self . write (’AT+CPMS="SM","SM","SM"’)
30
31 def read_response(self):
32 """
33 Listen for response from GSM module.
34 Only expect one response per given command.
35 readline () is a blocking call .
36 readline timeout is set during __init__ .
37 Returns "" if timeout was reached .
38 """
39 return self . ser . readline ()
40
41 def write (self , command):
42 self . ser . write (bytes (command, "utf−8") + b’ \ r ’)
43 # wait for module to process command
44 time. sleep (3)
45
46 def send_sms(self , message):
47 """
48 Send message to prede�ned number as sms.
49 Returns true if successfull , false otherwise .
50 """
51 # prepare sms
52 self . write (’AT+CMGS="{}"’.format(self.receiving_number))
53 self . write (message)
54 # end sms
55 self . ser . write (b’ \x1a’)
56 return self . read_response (). startswith ("+CMGS")

C.3. Test Program for PLC Logic

Test script used to verify the logic of the PLC. It is called: test_mapping.py. Its name has to
start with "test" so that the pytest library can recognize it. rpi_server.py script from section
C.1 and this one have to reside in the same directory.

1 from . rpi_server import Handler

97

C. Raspberry Pi Server Scripts

2 import gpiozero as go
3 import pytest
4 import socket
5 import sys
6 import time
7 import json
8 import signal
9

10
11 # setup timeout for test loop
12 class TimeoutException(Exception):
13 pass
14
15 def timeout_handler(signum, frame): # Custom signal handler
16 raise TimeoutException
17
18 signal . signal (signal .SIGALRM, timeout_handler)
19
20
21 sim_inputs = [
22 # GPIO pin numbers of RPi
23 # order of elements correpsonds to
24 # order of inputs in mapping matrix
25 2, # M0
26 3, # M1
27 4, # M2
28 14, # M3
29 15, # M4
30 18, # M5
31 17, # M6
32 27, # M7
33 22, # S0
34 23, # S1
35 24, # S2
36 10, # S3
37 9, # S4
38 25, # S5
39 8, # S6
40 7 # S7
41]
42
43 mapping = [
44 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A0
45 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A1
46 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A2
47 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A3
48 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A4
49 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A5
50 [0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0], # CONTROLLINO_A6
51 [0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0], # CONTROLLINO_A7
52 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A0,
53 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A1
54 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A2

98

C.3. Test Program for PLC Logic

55 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A3
56 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A4
57 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2], # CONTROLLINO_A5
58 [0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0], # CONTROLLINO_A6
59 [0 , 0 , 2 , 2 , 0 , 0 , 0 , 2 , 2 , 0], # CONTROLLINO_A7
60]
61
62 reset_pin = go.DigitalOutputDevice (21, active_high=False)
63
64 def init_outputs ():
65 for i , val in enumerate(sim_inputs):
66 sim_inputs[i] = go.DigitalOutputDevice (val , active_high=False)
67
68 def disable_outputs ():
69 for val in sim_inputs :
70 val . o� ()
71
72 def close_outputs ():
73 for val in sim_inputs :
74 val . close ()
75
76 def reset_plc ():
77 reset_pin .on()
78 time. sleep (.5)
79 reset_pin . o� ()
80
81
82 class TestMapping(object):
83
84 def setup_class (self):
85 init_outputs ()
86 self . handler = Handler(
87 " 192.168.2.10 " , 4000,
88 " /home/pi/ testing_plc . log")
89 self .msg_timeout = 10
90
91 def teardown_class(self):
92 close_outputs ()
93
94 def setup_method(self):
95 self . test_success = False
96 reset_plc ()
97 try :
98 self . conn = self . handler . get_connection ()
99 except socket . timeout:

100 self . handler . root_log .warn("Could not �nd connection with \
101 client after {} seconds. Exiting test ... " .format(
102 self . handler . sock.gettimeout ()))
103 sys . exit ()
104 # wait for plc to �nish starting up
105 time. sleep (5)
106
107 def teardown_method(self):

99

C. Raspberry Pi Server Scripts

108 disable_outputs ()
109 self . conn.close ()
110
111 @pytest.mark.parametrize("sensor_index , expected_output" , [
112 (0, mapping[0]),
113 (1, mapping[1]),
114 (2, mapping[2]),
115 (3, mapping[3]),
116 (4, mapping[4]),
117 (5, mapping[5]),
118 (6, mapping[6]),
119 (7, mapping[7]),
120 (8, mapping[8]),
121 (9, mapping[9]),
122 (10, mapping[10]),
123 (11, mapping[11]),
124 (12, mapping[12]),
125 (13, mapping[13]),
126 (14, mapping[14]),
127 (15, mapping[15]),
128])
129 def test_map(self , sensor_index , expected_output):
130 sim_inputs[sensor_index]. on()
131 with pytest . raises (TimeoutException):
132 with self . conn.make�le (mode="r") as f :
133 signal . alarm(self .msg_timeout)
134 while True:
135
136 try :
137 line = f . readline (). strip ()
138 self . handler . root_log . info (line)
139 except TimeoutException:
140 if self . test_success :
141 raise TimeoutException
142 else :
143 raise AssertionError ("No message type:sensorError \
144 received from PLC after {} sec . " .format(self .msg_timeout))
145
146 try :
147 msg = json . loads (line)
148 except (ValueError):
149 self . handler . root_log .warn("Could not translate message \
150 to json for sensor : {}, message: {} " .format(sensor_index, line))
151
152 if msg["type"] == "sensorEvent" :
153 # the actual testing
154 assert msg["changedIn"] == sensor_index , "Wrong input \
155 has been triggered : {} " .format(msg["changedIn"])
156 for i , val in enumerate(expected_output):
157 if val != 2:
158 assert val == msg["totalOut"][i], "Wrong output \
159 state on index : {} " .format(i)
160 self . test_success = True

100

D. Circuit Layout of Control Logic

In this section, the circuit diagram for the entire low voltage side of the power unit is
shown. It starts at page 15. The previous pages describe the high voltage side and can be
found in Paknejad (2017). Page 15 and 16 have been modifed but their original design was
taken from Paknejad (2017) as well. The last two page have a slightly di�erent formating
and naming convention. That is because I had to use a di�erent version of the program
SeeElectrical. It was used to design the high voltage circuit in Paknejad (2017) but the used
educational version has a maximum amount of allowed pages, which I had to exceeded in
this project.

101

Inp_1

Inp_2

6
6

6
6

6
6

4

2
4

V
_

O
u

tp
_

1

2
4

V
_

O
u

tp
_

2

2
4

V
_

O
u

tp
_

1

2
4

V
_

O
u

tp
_

2

References

Benedek, G., and J. P. Toennies, Atomic Scale Dynamics at Surfaces, Springer-Verlag Berlin
Heidelberg, 2018.

Brusdeylins, G., R. Doak, and J. Toennies, Phys. Rev. Lett., 44, 1417, 1980.

Cabrera, N., V. Celli, and J. Manson, Phys. Rev. Lett., 22, 346, 1969.

Carvalho, M. M., Bau und vermessung einer neuartigen trasversal-spineche-spule, Bache-
lor thesis (German), University of Heidelberg, 2020.

CONELCOM, Controllino mega pinout v1.1, https://www.controllino.biz/wp-content/
uploads/2018/10/CONTROLLINO-MEGA-Pinout.pdf, accessed on 10.5.2020, 2018.

DeKieviet, M., D. Dubbers, C. Schmidt, D. Scholz, and U. Spinola, Phys. Rev. Lett., 75, 1919,
1995.

Fisher, S., and J. Bledsoe, J. Vac. Sci. Technol., 9, 814, 1971.

Hulpke, E., Helium Atom Scattering from Surfaces, Springer-Verlag Berlin Heidelberg, 1992.

Kohler, M., Onging bachelor thesis, Bachelor thesis (German), University of Heidelberg,
2020.

Lang, K., Design und planung zum bau der transversalen spinecho-spule für das gihas-
experiment, Bachelor thesis (German), University of Heidelberg, 2019.

Paggi, S., Simulation of trajectories and cross sections of the 3he-abse, Bachelor thesis
(German), University of Heidelberg, 2020.

Paknejad, A., Elektromagnetische symmetrie und eine gesicherte leistungsverteilung als
programmierbare Überwachung für das ABSE-experiment, Bachelor thesis (German),
University of Heidelberg, 2017.

Turczyk, T., Wiederaufbau einer maschine für heliumatomstreuung unter streifendem ein-
fall (GIHAS) und die bewertung von spulen für die spätere erweiterung auf transversales
spinecho, Diploma thesis (German), University of Heidelberg, 2018.

Willer, P., Entwicklung eines transfersystems for den probenwechsel im ultrahochvakuum,
Bachelor thesis (German), University of Heidelberg, 2020.

114

https://www.controllino.biz/wp-content/uploads/2018/10/CONTROLLINO-MEGA-Pinout.pdf
https://www.controllino.biz/wp-content/uploads/2018/10/CONTROLLINO-MEGA-Pinout.pdf

Acknowledgment

First and foremost, I would like to thank Dr. Maarten DeKieviet for the opportunity to
write this thesis. I am not only grateful for the tireless proof reading, but also for the con-
tinuous support over the entire time. The fact that his door was always open to me was
an unexpected and an invaluable help.
My thanks goes out to my fellow former students Richard, Schko and Kevin (Let’s go to
Rewe!) for the fun times and great atmosphere. The same goes for Tom, Pascal, Marcia,
Stefano and Marko with the addition of my huge appreciation for all the support in build-
ing the CAM experiment.
A big thank you to Nils and Manu for spotting and correcting an endless amount of mis-
takes in my drafts. My great appriciaction goes to my girlfriend Katrin as well, for not
only proof reading but also for keeping my spirits high, in particular during the last weeks
of writing.
I am extremly grateful to my parents Netti and Artur, for all the �nancial support but es-
pecially for each relaxing and fun day whenever I’m home or we’re on vacation.

Most importantly, I would like to thank my sister Ulrike. Not just for correcting vast
parts of this thesis, but more so for being there for me whenever I needed it.
Without you, this thesis would not have been possible.

115

Erklärung:

I hereby declare that I wrote the submitted thesis independently and I did not use any but
the acknowledged sources and aids.

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 25.5.2020
. .

116

	Motivation
	Context of this Work
	Theory
	Helium Atom Scattering
	Single-phonon Inelastic Scattering
	Advantages for Surface Phonon Detection

	Time-of-Flight Spectroscopy
	From ToF Spectrum to Dispersion Relation
	Energy Resolution
	Grazing Incident Helium Atom Scattering
	Practical Consideration from Theory

	Implementations
	Power Management
	General Design and Logic
	Implementation of Hardware Components
	Setup of Manual Control
	Testbench for the PLC Program
	Control Software Development
	Input Reading
	Output Control
	Input-Output Mapping
	Setup and Control
	PLC Communication
	TCP Communication
	GSM Communication
	Software Summary

	Time-of-Flight Detector Chamber
	General Design
	Fore-vacuum Implementation
	Cooling System
	Alignment of Vacuum Components

	Testing and Current State
	Power Management
	Test Bench Results
	Overview of Finished Power Unit

	Time-of-Flight Detector Chamber
	Estimation of Cooling Power
	Alignment Result
	Overview of the Completed ToF Arm

	Summary
	Outlook
	Usage Procedures
	Programming Pin Layout and Mapping onto PLC
	Configuring Wi-fi and Ethernet Connection
	Usage of Test Bench

	Programmable Logic Controler Scripts
	Master PLC Script
	Slave PLC Script

	Raspberry Pi Server Scripts
	TCP Server Script
	GSM Handling Module
	Test Program for PLC Logic

	Circuit Layout of Control Logic
	Acknowledgment

