Fakultät für Physik und Astronomie

Ruprecht-Karls-Universität Heidelberg

Diplomarbeit
im Studiengang Physik
vorgelegt von
Christian Vogel
aus Grünstadt

August 2001
Ein Detektorsystem zur Messung der Neutrinoasymmetrie B im Zerfall freier Neutronen

Die Diplomarbeit wurde von
Christian Vogel
ausgeführt am
PHYSIKALISCHEN INSTITUT
HEIDELBERG
unter der Betreuung von
Herrn Priv. Doz. Dr. Hartmut Abele.
Ein Detektorsystem zur Messung der Neutrinoasymmetrie B im Zerfall freier Neutronen

A detector for the measurement of the neutrino asymmetry B in the decay of free neutrons

For a measurement of the neutrino asymmetry, the spectrometer PERKEO II detects electron and proton from the decay of free polarized neutrons in coincidence. To detect the protons and the electrons in the same plastic scintillator, the protons are converted into secondary electrons. The detection of these low energy secondary electrons requires an excellent homogeneity and a low threshold of the electron detector. The challenge of this thesis was to characterize and to optimize this detector. The threshold for 50% efficiency is 58 keV for the electrons and 32 keV for the secondary electrons. The spatial homogeneity is better than 10%. An average energy resolution of 6% at 1 MeV is obtained. The spatial event reconstruction developed in this thesis permits a position resolution of 5 mm at 1 MeV. The properties of the detector allow the running B measurements and open new perspectives for future measurements.
Inhaltsverzeichnis

1 Einleitung 3

2 Theorie 5
 2.1 Zerfall des freien Neutrons 5
 2.1.1 Energiespektrum des Elektrons 5
 2.1.2 Quantenmechanische Beschreibung 6
 2.1.3 Standardmodell 7
 2.2 Observablen 9
 2.2.1 Paritätsverletzung im Neutronzerfall 10
 2.2.2 Der Winkelkorrelationskoeffizient B 10
 2.2.3 Links-rechtssymmetrische Modelle 11

3 Apparatur zur Messung des B-Koeffizienten 13
 3.1 Messung an einem kalten polarisierten Neutronenstrahl 13
 3.1.1 Aufbau 13
 3.1.2 PERKEO II 14
 3.2 Detektoren und experimentelle Asymmetrie 15
 3.3 Im Inneren PERKEOs 16

4 Elektrondetektor 19
 4.1 Räumliche Homogenität 20
 4.1.1 Ursprüngliches Setup 21
 4.1.2 Neues Detektordesign 21
 4.2 Kalibrierung und Eichung 22
 4.2.1 Grobkalibrierung 23
 4.2.2 Messung der Homogenität 23
 4.2.3 Das Nachkalibrieren der Daten 24
 4.3 Schwelle und Triggerfunktion 26
 4.4 Energiauflösung 27
 4.5 Linearität 29
 4.6 Ortsrekonstruktion 30
 4.6.1 Rekonstruktionsmodell 31
 4.6.2 Anwendung der Methode 34
 4.6.3 Diskussion der Ortsrekonstruktion 36

5 Protonendetektor 37
 5.1 Funktionsprinzip 37
 5.2 Effizienz 37
5.3 Flugzeit ... 39
5.4 Untergrund .. 39
5.5 Anteil der zufälligen Koinzidenzen 40
5.6 Energiespektren ... 41
5.7 Beurteilung des Protonendetektors 42

6 Zusammenfassung und Ausblick 43

Abbildungsverzeichnis .. 45

Tabellenverzeichnis .. 46

Literaturverzeichnis ... 48
Kapitel 1

Einleitung

Kapitel 2

Theorie

2.1 Zerfall des freien Neutrons

Das freie Neutron zerfällt in Elektron, Proton und Antineuteletron neutrino gemäß

\[n \rightarrow p + e^- + \bar{\nu}_e. \quad (2.1) \]

Die dabei frei werdende Energie ergibt sich aus der Differenz der Massen der beteiligten Teilchen zu 782.33(7) keV. Diese verteilt sich als kinetische Energie auf die drei Zerfallsprodukte. Das Antineuteletron neutrino wurde hierbei als masselos angenommen.

2.1.1 Energiespektrum des Elektrons

Betrachtet man vereinfachend den Zerfall als Punktwechselwirkung (siehe Abb. 2.1), so ergeben sich bereits aus Kinematik und Statistik gute Näherungen für die Energiespektren der drei Teilchen. Der quantenmechanische Ausdruck für die Wahrscheinlichkeit der Emission eines Elektrons im Impulsintervall \(p \) und \(p + dp \) ist nach Fermis goldener Regel (siehe z.B [Pov97])

\[N_\text{e}(p_e)dp_e = \frac{2\pi}{\hbar} |\langle f|H|i\rangle|^2 dp_e, \quad (2.2) \]

wobei \(M_{fi} := \langle f|H|i\rangle \) das Übergangsmatrixelement und \(dp_e \) die Dichte der möglichen Endzustände in Abhängigkeit von der Elektronenergie ist. Diese Dichte bestimmt maßgeblich die Form des Elektronspektrums und soll im folgenden genauer beschrieben werden. Für eine erste Näherung nimmt man das Matrixelement als energieunabhängig an.

Die Protonmasse ist groß gegenüber der frei werden Energie, der Rückstoß auf das Proton kann also voreinst vernachlässigt werden. Die frei werdende Energie ist vergleichbar mit der Ruhemasse des Elektrons, das Neutrino ist masselos. Die beiden Teilchen müssen relativistisch behandelt werden. Das Energiespektrum des Elektrons ergibt sich aus der Anzahl der möglichen Zustände im Phasenraum gemäß

\[dp_e = \frac{(4\pi)^2}{(2\pi \hbar)^2} E_e \sqrt{E_e^2 - m_e^2 (E_0 - E_e)^2} dE_e, \quad (2.3) \]

wobei \(E_0 \) die maximale Elektronenergie ist. Diese entspricht bei diesen Vereinfachungen gerade der gesamten frei werdenden Energie. Eine Berücksichtigung des Protonimpulses erniedrigt diesen Wert \(E_0 \) auf 781.58(6) keV. Auf die Form des Spektrums hat dies aber keinen merklichen Einfluß.
Korrigiert wird dieses Spektrum noch durch die elektrostatische Anziehung von Elektron und Proton. Durch die zunehmende Entfernung der entgegengesetzten Ladungen voneinander erhöht sich die potentielle Energie des Elektrons. Seine kinetische Energie nimmt also ab. Die Fermifunktion F drückt dies aus. Die Form des theoretischen Betaspektrums ist nun

$$ G(E_e) = F(1, E_e) \rho_e = \frac{(4\pi)^2}{(2\pi\hbar)^6} F(1, E_e) E_e \sqrt{E_e^2 - m_e^2 (E_0 - E_e)^2} \quad (2.4) $$

mit

$$ F(Z, E_e) \approx \frac{2\pi Z^2}{e^{-2Z/\alpha}}, \quad (2.5) $$

wobei Z die Ladung des Kerns, α die Feinstrukturkonstante und v_e die relativistische Geschwindigkeit des Elektrons in Einheiten der Lichtgeschwindigkeit c ist. In Abbildung 2.2 ist dieses Spektrum gezeigt.

Informationen über die Winkelfunktionen der Impulse der Teilchen bezüglich des Spins des Neutrons stecken im Übergangsmatrixelement M_{ji}. Auf dieses wird nun genauer eingegangen.

2.1.2 Quantenmechanische Beschreibung

Eine Formulierung des Hamiltonian ist in der Dirac-Theorie sinnvoll, da mindestens zwei der beteiligten Teilchen relativistisch behandelt werden müssen. Die Rechtfertigung der vereinfachten Annahme einer Punktwechselwirkung erfolgt im nächsten Abschnitt. Da sowohl Teilchen vernichtet als auch erzeugt werden, ist der Hamiltonian in der zweiten Quantisierung anzugeben. Die Spinoren (siehe zum Beispiel [MK70]) Ψ_e, Ψ_ν, Ψ_μ und Ψ_n seien die Felder der vier beteiligten Teilchen. Zur Bildung der Wechselwirkungsoptoraten stehen zunächst 16 linear unabhängige vierreihige Matrizen des Typs γ_μ zur Verfügung. Um den Hamiltonian zu erhalten, bildet man Bilinearformen der Form

$$ (\Psi_e^I O \Psi_\nu)(\Psi_\mu^I O \Psi_n). \quad (2.6) $$

Argumente wie Invarianz unter Lorentztransformation und Linearität schränken die Anzahl der Kopplungsmöglichkeiten ein. Nach Lee und Yang (siehe [LY56]) ist ein resultie-
<table>
<thead>
<tr>
<th>Teilchen</th>
<th>Masse</th>
<th>Ladung</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektron</td>
<td>0.510998902(21) MeV</td>
<td>1 e</td>
<td>1/2</td>
</tr>
<tr>
<td>Proton</td>
<td>938.271998(38) MeV</td>
<td>-1 e</td>
<td>1/2</td>
</tr>
<tr>
<td>Neutron</td>
<td>939.56533(4) MeV</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>Antielektronneutrino</td>
<td>< 3 eV</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>u-Quark</td>
<td>1-5 MeV1</td>
<td>2/3 e</td>
<td>1/2</td>
</tr>
<tr>
<td>d-Quark</td>
<td>3-9 MeV1</td>
<td>-1/3 e</td>
<td>1/2</td>
</tr>
<tr>
<td>W$^-$</td>
<td>80.419(56) GeV</td>
<td>1 e</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Relevante Eigenschaften der am β-Zerfall beteiligten Teilchen [GZ00].

Der Ansatz für den Hamiltonoperator1:

$$H = \frac{G_F}{\sqrt{2}} \sum_{i=S,V,A,T,P} \{L_i(\Psi_e^\dagger O_i(1-\gamma_5)\Psi_\nu)(\Psi_\nu^\dagger O_i\Psi_e) + R_i(\Psi_\nu^\dagger O_i(1+\gamma_5)\Psi_\nu)(\Psi_e^\dagger O_i\Psi_\nu)\}$$

mit den verbleibenden Kopplungsoperatoren

- $O_S = 1$ Skalar
- $O_V = \gamma_\mu$ Vektor
- $O_A = -i\gamma_\mu \gamma_5$ Axialvektor
- $O_T = -\frac{i}{2\sqrt{2}}(\gamma_\mu \gamma_\lambda - \gamma_\lambda \gamma_\mu)$ Tensor
- $O_P = \gamma_5$ Pseudoskalar

entsprechend ihres Transformationsverhaltens. G_F ist die Kopplungsstärke der schwachen Wechselwirkung. Der Operator $(1-\gamma_5)$ projiziert auf linkshändige Neutrinos, $(1+\gamma_5)$ auf die rechtshändigen. L_i und R_i sind die zugehörigen Kopplungskonstanten. Diese lassen sich nur experimentell bestimmen.

$$H_{V-A} = g_V(\Psi_e^\dagger \gamma_\mu (1-\gamma_5)\Psi_\nu)(\Psi_\nu^\dagger \gamma_\mu (1-\gamma_5)\Psi_e)$$

mit der Vektorkopplungskonstanten $g_V := G_FL_V$, $\lambda := \frac{2G}{\sqrt{2}} := |g_V|\varepsilon^{\mu\nu\lambda\sigma}$ und der Axialvektorkopplungskonstanten $g_A := -G_FL_A$. Vektor- und Axialvektorkopplung entsprechen dem Fermi-beziehungsweise Gamov-Teller-Übergang.

2.1.3 Standardmodell

chrophysik. Der Zerfall des Neutrons erfolgt über die schwache Wechselwirkung und findet in diesem Bild auf der Quarkebene statt. Eine Übersicht der Teilchen, welche am Zerfall beteiligt sind, gibt Tabelle 2.1. Das Neutron ist zusammengesetzt aus einem up-Quark und zwei down-Quarks. Eines der down-Quarks wird mittels Ankopplung an ein W-Boson, dem Austauschboson der schwachen Wechselwirkung, in ein leichteres up-Quark umgewandelt. Die Kombination \(ud(\text{up, down}) \) entspricht einem Proton. Die Masse des W-Bosons ist sehr viel größer als die beim Neutronzerfall frei werdende Energie. Es kann aufgrund der Heisenbergschen Energie-Zeit-Uncertheit \(\tau < \frac{\hbar}{M_W} \) virtuell entstehen mit einer maximalen Lebensdauer von \(8.2 \times 10^{-27} \) s. Die Reichweite des W-Bosons mit einer maximalen Geschwindigkeit von \(c \) ist auf \(2.5 \times 10^{-3} \) fm beschränkt. Diese Reichweite ist klein gegenüber der Ausdehnung des Kerns. Die Nähерung des Zerfalls als Punktwechselwirkung ist dadurch berechtigt. Das W-Boson koppelt an ein Elektron und ein Antielektronneutrino. Das Quadrat des Übergangsmaßelement ist in dieser Beschreibung

\[
|M_f|^2 = G_F^2(c_V^2 + 3c_A^2). \tag{2.9}
\]

Die im Neutronzerfall effektiv wirksame Kopplungskonstante \(G_\beta \) unterscheidet sich von der universellen Kopplungskonstante \(G_F \) um den Faktor \(V_{ud} \) dem ersten Eintrag der CKM-Matrix. Dies ist die Folge der Quarkmischung in der schwachen Wechselwirkung. Bei der Umwandlung des down-Quarks in ein up-Quark sind nur die schwachen Eigenschaften der Quarks beteiligt, das Übergangsmaßelement ist proportional zu den Masseneigenschaften. Diese sind nicht identisch. Sie sind über die CKM-Matrix gedreht. Damit wird aus Gleichung 2.9

\[
|M_f|^2 = V_{ud}^2 G_F^2(c_V^2 + 3c_A^2) \tag{2.10}
\]

oder mit \(g_V := V_{ud} G_{FCV} \) und \(g_A := V_{ud} G_{FCA} \), den effektiven Kopplungskonstanten im Neutron \(\beta \)-Zerfall²,

\[
|M_f|^2 = (g_V^2 + 3g_A^2). \tag{2.11}
\]

Es wären hier noch weitere Zerfallswege des W-Bosons denkbar, beispielsweise der Zerfall in ein Myon und ein Antimyonneutrino. Diese sind jedoch aufgrund der zu großen Massen der Endzustände (\(m_\mu = 105,66 \text{ MeV} \)) nicht möglich.

Man bezeichnet einen solchen Prozeß als semileptonisch, da das W-Boson sowohl an

²Im Folgenden gelten diese Definitionen für \(g_V \) und \(g_A \).
Leptonen (e und $\bar{\nu}$) als auch an Quarks (u und d) koppelt. Zur Unterscheidung sei hier ein rein leptonischer Prozess, der Zerfall des Myons in ein Myonen-Neutrino, ein Elektron und ein Antielektronneutrino gemäß

$$\mu \rightarrow e^- + \bar{\nu}_e + \nu_\mu$$ \hfill (2.12)

genannt.

2.2 Observablen

Um die Kopplungskonstanten der schwachen Wechselwirkung bestimmen zu können, sind experimentell zugängliche Größen zu finden, welche Informationen über die Kopplungskonstanten g_A und g_V enthalten. Diese sind im Neutronzerfall die Lebensdauer sowie die Winkelkorrelationen der Impulse der Teilchen untereinander und bezüglich des Spins des Neutrons.

$$dW \propto (g_V^2 + 3g_A^2) \left\{ 1 + a \frac{\bar{p}_e \bar{p}_\nu}{E_e E_\nu} + (\bar{\sigma}_n) \left[A \frac{\bar{p}_e}{E_e} + B \frac{\bar{p}_\nu}{E_\nu} + D \frac{\bar{p}_e \times \bar{p}_\nu}{E_e E_\nu} \right] \right\} G(E_\nu) \hfill (2.13)$$

Die Korrelationskoeffizienten lassen sich in der V-A-Theorie als Funktion von g_V und g_A angeben (siehe zum Beispiel [JTJ57]):

$$a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} \hfill (2.14)$$

$$A = -2 \frac{|\lambda|^2 + \text{Re}(\lambda)}{1 + 3|\lambda|^2} \hfill (2.15)$$

$$B = 2 \frac{|\lambda|^2 - \text{Re}(\lambda)}{1 + 3|\lambda|^2} \hfill (2.16)$$

$$D = 2 \frac{\text{Im}(\lambda)}{1 + 3|\lambda|^2}. \hfill (2.17)$$

Diese Koeffizienten hängen von dem relativen Verhältnis λ der Vektor- und Axialvektor-Kopplung ab. Um die Kopplungskonstanten g_A und g_V separat aus NeutronenzerfallsMESSUNGEN zu bestimmen, ist noch eine Observabile nötig, in die g_A und g_V absolut eingehen.
Tabelle 2.2: Werte der Observablen und λ mit Bestimmungsmethode (Werte aus G°00). Eine kritische Würdigung der Ergebnisse findet sich in [Ris98].

2.2.1 Paritätsverletzung im Neutronzerfall

Als Parität bezeichnet man das Verhalten eines Systems unter Raumspiegelung. Spiegelt man im β-Zerfall am Zerfallsort des Neutrons, so kehren sich in Gleichung 2.13 die Vorzeichen der Impulse von Elektron und Neutrino um, der Axialvektor des Neutronenspins bleibt erhalten. Sind A und B ungleich Null, so ist die Parität in diesem System nicht erhalten, da die Skalarprodukte $\langle \sigma^a_n \rangle p_e$ und $\langle \sigma^a_n \rangle p_{\nu}$ ihre Vorzeichen wechseln.

2.2.2 Der Winkelkorrelationskoeffizient B

Das Interesse an B liegt an seiner Sensitivität auf die mögliche Existenz rechtshändiger Ströme, also W-Bosonen, die an rechtshändige Neutinos und linksständige Antineutrinos

\begin{tabular}{|l|l|l|}
\hline
Observable & Methode & Wert2 \\
\hline
τ & Speicherung ultrakalter Neutronen und Strahlexperimente & 885.8(0.9) s \\
\hline
a & Strahl unpolarisierter Neutronen, Protonenspektrum & -0.102(5) \\
\hline
A & Strahl kalter polarisierter Neutronen, Elektronenspektrum & -0.1189(7) \\
\hline
B & Strahl kalter polarisierter Neutronen, e-p Koinzidenz & 0.983(4) \\
\hline
D & Strahl kalter polarisierter Neutronen, e-p Koinzidenz & $-3.1(9.1) \cdot 10^{-1}$ \\
\hline
g & A und τ aus Neutronzerfallsmessung & $1.1470(16) \cdot 10^{-5} (\eta_c) / \text{GeV}^2$ \\
λ & & $-1.4602(8) \cdot 10^{-5} (\eta_c) / \text{GeV}^2$ \\
\hline
\end{tabular}

\begin{equation}
\tau_n = \frac{\eta}{2\pi f} \frac{1}{g_\lambda^2 + 3g_\lambda^2} \quad (2.18)
\end{equation}

mit dem Phasenraumfaktor f

\begin{equation}
f := \int_{m_n}^{E_0} G(E_e) dE_e \quad (2.19)
\end{equation}

und $G(E_e)$ aus Gleichung 2.4.

Diese Observable ist die Lebensdauer τ des Neutrons. Sie ergibt sich aus der differentialen Zerfallswahrscheinlichkeit durch Integration über das Energiespektrum zu (siehe [Pov97])

\begin{align}
\tau_n &= \frac{\eta}{2\pi f} \frac{1}{g_\lambda^2 + 3g_\lambda^2} \quad (2.18) \\

\int_{m_n}^{E_0} G(E_e) dE_e &= (2.19)
\end{align}

2Werte von B bzw. D von [Rei99] bzw. [Sol01].
Bekannte, die Massenzustände der beiden W-Bosonen W_1 und W_2 müssen nicht notwendigerweise den schwachen Eigenzuständen W_L und W_R entsprechen. Sie können (analog zu dem Cabibbo-Winkel der Quarkmischung in der schwachen Wechselwirkung) zu diesen mit einem Winkel ζ gedreht sein (siehe [Abe98]):

$$
\begin{pmatrix}
W_L \\
W_R
\end{pmatrix} =
\begin{pmatrix}
\cos \zeta & \sin \zeta \\
-\sin \zeta & \cos \zeta
\end{pmatrix}
\begin{pmatrix}
W_1 \\
W_2
\end{pmatrix}.
$$

(2.20)

Eine sehr große Masse dieser rechtshändigen Bosonen würde erklären, warum diese in bisherigen Experimenten in der Hochenergiephysik nicht nachgewiesen werden konnten.

2.2.3 Links-rechtssymmetrische Modelle

In einem Modell, welches von der Existenz rechtshändiger Ströme ausgeht, gibt es mehrere Möglichkeiten, die Paritätsverletzung in der schwachen Wechselwirkung zu erklären. Eine davon wäre ein Unterschied in den Massen von W_L und W_R. Man nennt dies manifest links-rechtssymmetrisches Modell. Neben dem Mischungswinkel ζ ist das Verhältnis der Massenquadrate $\delta := \frac{m_{W_L}^2}{m_{W_R}^2}$ eine weitere Unbekannte in diesem Modell. Die Korrelationskoeffizienten hängen jetzt nicht mehr nur von λ ab. Die Sensitivität der Koeffizienten auf die Parameter ζ und δ ist unterschiedlich stark. Die Beschränkung hin zu großen δ-Werten ist im wesentlichen durch B gegeben. Die Werte für den Mischungswinkel ζ werden durch den A-Koeffizienten eingeschränkt. Mit den heutigen Werten der Koeffizienten läßt sich ein Ausschließungsplot in der λ-ζ-Ebene angeben. Die Voraussagen des Standardmodells $\delta = 0$ und $\zeta = 0$ liegen im erlaubten Bereich.

Abbildung 2.4: Ausschließungsplot in der δ-ζ-Ebene [Abe98].
Kapitel 3

Apparatur zur Messung des B-Koeffizienten

3.1 Messung an einem kalten polarisierten Neutronenstrahl

3.1.1 Aufbau

\(^1\)Zur Zeit Gegenstand der Forschung sind auch Experimente an in Magnetfeldn gespeicherten ultrakalten Neutronen. Erste Ergebnisse zu den Koeffizienten sind noch nicht bekannt.
Abbildung 3.1: Experimenteller Aufbau des PERKEO-Experiments zur Messung von B.

beginnt das PERKEO-Strahlrohr mit der darin angebrachten Kollimation. Die Kolli-
mation besteht aus fünf Blenden (je 5 cm Stärke) mit rechteckigen Aussparungen. Die
dem Reaktor zugewandten Seiten sind jeweils mit 6LiF-Kacheln bündig beklebt. Die
Blendengröße verringert sich von 30 × 36 mm der ersten bis 25 × 32 mm der letzten Blende.
Hinter dem Spektrometer ist in 3.50 m Entfernung ein Lithiumfluorid-Beamstop angebracht.
In diesem werden Neutronen gestoppt, wobei nur jedes 104te Neutron ein Gammaquant erzeugt.
Dies ist hinsichtlich der Untergrundverhältnisse in den Detektoren wichtig, da diese auch Gammaquanten nachweisen. Zwei fahrbare Lithium-Shutter sind
im Strahlverlauf angebracht, um den Strahl hinter möglichen weiteren Untergrundquellen
(Kollimationsblenden, Spinflipper, Alu-Eintrittsfenster) zu stoppen. Genaue Beschrei-
bungen der hier nur kurz genannten Komponenten finden sich in bei [May01], [Mun01]
und [Rei99].

3.1.2 PERKEO II

Das Spektrometer PERKEO II wurde mit Anspruch konzipiert, geladene Zerfallsproduk-
te aus einem Neutronenstrahl auf Detektoren zu leiten, die je nach Messung individuell
angepaßt werden können. Das Leiten der Teilchen wird durch ein bis zu 1 Tesla starkes,
transversal zur Neutronenflugrichtung orientiertes Magnetfeld realisiert. Ein supralei-
tendes Spulenpaar in beinahe Helmholtz-Anordnung2 erzeugt dieses Feld. An den Stirnseiten
des Spektrometers werden an dessen 500 mm-Flanschen Detektoren für den Nachweis der
Zerfallsproduktenden angebracht. Der maximale Gyrationsträger von Elektron und Proton im
Zerfallsvolumen ist nach [Jac82]

$$\rho[\text{cm}] = \frac{p \pm \frac{\text{MeV}}{c}}{3.00 \cdot B[\text{Tesla}]} \quad (3.1)$$

kleiner als 2.6 mm (mit $p \pm < 0.782$ MeV/c). Die Feldstärke fällt in Richtung der Detek-
toren auf 75% (siehe [Rav95]) des maximalen Felds ab. Wäre der Impuls senkrecht zum
Magnetfeld entlang der Gyrationsebene erhalten, würde dies zu einem maximalen Radius
von etwa 3.5 mm führen. Diese senkrechte Impulskomponente wird im inhomogenen
Magnetfeld aber zugunsten der parallelen Komponente kleiner. Diese 3 mm Radius sind
dennach eine obere Grenze.

2Die Spulen liegen im Vergleich zu einem Helmholtz-Spulenpaar näher aneinander. Das Magnetfeld
hat zwischen den Spulen ein Maximum, die gyrrenden Zerfallsprodukte erreichen dadurch schneller den
Detektor, wobei ihr transversaler Impuls in Flugrichtung geklappt wird.

3.2 Detektoren und experimentelle Asymmetrie

Die Größe \(B\) ist in diesem Experiment zugänglich über die koinzidenten Zählwahrscheinlichkeiten der beiden Teilen beziehungsweise des Neutrons. Die beiden Teilen können hierzu koinzident im gleichen Halbraum oder in gegenüberliegenden Halbräumen detektiert werden. Es lassen sich zwei experimentelle Asymmetrien ableiten (siehe [GJL95]).

Mit der Koinzidenzzählwahrscheinlichkeit \(N\) ergibt sich:

\[
\alpha_1 = \frac{N^{\downarrow\downarrow} - N^{\uparrow\uparrow}}{N^{\downarrow\uparrow} + N^{\uparrow\downarrow}}
\]

\[
\alpha_2 = \frac{N^{\downarrow\uparrow} - N^{\uparrow\downarrow}}{N^{\downarrow\downarrow} + N^{\uparrow\uparrow}}
\]

Der erste Pfeil steht für die Projektion des Elektronimpulses auf den Neutronenspin bezüglich des Spins des Neutrons, der zweite für die des Protonimpulses. Der Korrelationskoeficient \(B\) läßt sich bei Kenntnis des zugehörigen Elektronenergiespektums sowohl an 3.2 als auch an 3.3 anfärben. Die Entscheidung zugunsten von 3.2 fiel aufgrund der geringeren Energieabhängigkeit und höherer Sensitivität auf \(B\) (siehe [Rei99]).

Der Koeffizient \(B\) berechnet sich nach [Glü95] als

\[
\alpha_1[r < 1] = \frac{B(1 - \frac{1}{2}r^2) - A\beta(1 - \frac{2}{2\alpha\beta}(\frac{1}{2}r^2 - 1))}{2 - r + \frac{1}{2}\alpha\beta(\frac{1}{2}r^2 - 1)}
\]

\[
\alpha_1[r > 1] = \frac{\frac{2}{3}B - \frac{2}{3}A\beta}{1 - \frac{1}{2}r\alpha\beta}
\]

\(^3\)Es kommen auch andere Detektoren in Frage, mit denen sowohl Elektron als auch Proton nachgewiesen werden können, zum Beispiel Pin-Dioden oder Microchannel-Plates. Nach [Rei99] sind solche Detektoren aber entweder nicht in den erforderlichen Dimensionen erhältlich oder haben eine zu geringe Effizienz für den Nachweis von Elektronen.
Abbildung 3.2: Asymmetrie α_1 in Abhängigkeit von der Elektronenergie

mit dem Verhältnis

$$r = \beta \frac{E_0}{E_\nu} = \frac{p_0}{p_\nu}$$

der Impulse von Elektron und Neutrino, den Korrelationskoeffizienten a, A und B und der relativistischen Elektronengeschwindigkeit β. Die Koeffizienten a und A müssen bekannt sein. Die Abbildungen 3.2 und 3.3 zeigen die beiden Asymmetrien.

Werden nur Ereignisse verwendet, in denen Elektron und Proton in den gleichen Halbraum emittiert werden, so verringert sich die Zählrate, da diese nur ungefähr 3.9% der Ereignisse ausmachen. Zudem sind die Winkel der Impulse der Teilchen zum Neutronenspin bevorzugt nahe $\frac{\pi}{2}$. Gerade dieser Raumwinkelanteil ist am empfindlichsten gegenüber einem Felddurchgriff des elektrischen Feldes in das Zerfallsvolumen und dem magnetischen Spiegeldeffekt.

3.3 Im Inneren PERKEOs

das positiv geladene Proton wird hierbei unabhängig von seiner ursprünglichen Emissionsrichtung in Richtung des abfallenden Potentials abgezogen. Siehe hierzu [Bra00].

Als magnetischen Spiegeldeffekt bezeichnen wir die Reflexion (Impulsumkehr der zum Magnetfeld parallelen Komponente) eines gyrierenden Teilchens am inhomogenen Magnetfeld. Das Teilchen wird daraufhin im gegenüber liegenden Halbraum nachgewiesen und verfälscht so die experimentelle Asymmetrie.
Kapitel 4

Elektronendetektor

Der Elektronendetektor hat zwei Aufgaben. Er weist zum einen Elektronen aus dem β-Zerfall nach und zum anderen die Elektronen, die von Protonen aus der Folie des Protonendetektors ausgelöst werden. Die kinetische Energie der Elektronen aus der Protonenk commence liegt je nach angelegter Hochspannung zwischen 18 und 23 keV. Die obere Grenze der kinetischen Energie der Elektronen aus dem β-Zerfall liegt bei 782 keV. Bereits 5 mm Dicke des Szintillators\(^1\) reichen aus, um die hochenergetischen Elektronen vollständig abzubremsen. Die kinetische Energie der Elektronen ist bei diesem Prozeß proportional zur Anzahl der emittierten Photonen des Szintillators. Das Wellenlängenspektrum dieser Photonen liegt nach Angaben des Herstellers zwischen 400 und 470 nm. Die Photonen werden mittels sechs Photomultipliern nachgewiesen. Die Anordnung der Photomultiplier auf der Rückseite des Plastiksintillators wurde so gewählt, daß die Fläche, die von Elektronen aus dem Zerfallsvolumen erreicht wird, möglichst dicht und homogen mit aktiver Fläche der Photomultiplier bedeckt ist (siehe [Plö00]).

Gerade der Nachweis der niedenergetischen Sekundärelektronen aus der Protonenk commence stellt höhere Ansprüche an einen Elektronendetektor als eine reine Messung der β-Asymmetrie. Die Nachweischwelle des Detektors muß so niedrig sein, daß die Sekundärelektronen mit hinreichender Effizienz (siehe Kapitel 5) nachgewiesen werden können. Verschiedene Parameter beschreiben die Eigenschaften und die Güte eines solchen Detektors. Es sind dies im Einzelnen:

- Räumliche Homogenität: Die räumliche Homogenität bestimmt die über den ganzen Detektor gemittelte Energieauflösung und die Ortsabhängigkeit der Triggerfunktion.
- Triggerfunktion zur Bestimmung der Nachweisschwelle: Eine niedrige Nachweisschwelle ist wichtig für die Effizienz des Nachweises der niedenergetischen Sekundärelektronen aus der Protonenk commence.
- Energieauflösung: Die Asymmetrie ist eine Funktion der Elektronenergie. Die Unsicherheit in der Energie geht dadurch in die Unsicherheit der Asymmetrie ein.
- Ortsauflösung: Eine gute Ortsauflösung hilft bei der Unterdrückung des Untergrunds und bei der Untersuchung systematischer Effekte.

\(^1\)Beim verwendeten Plastiksintillator handelt es sich um das Modell BC400 der Firma Bicron. Die Maße betragen 190 × 130 × 5 mm.
Abbildung 4.2: Summe der ADC-Inhalte bei verschiedenen Positionen der Quelle vor dem Szintillator.

Diese Parameter werden genauer beschrieben und die experimentellen Resultate den Anforderungen gegenübergestellt.

4.1 Räumliche Homogenität

4.1.1 Ursprüngliches Setup

Für das Design des Elektronendetektors wurden hinsichtlich der Homogenität Monte-Carlo-Simulationen durchgeführt, um die am besten geeignete Geometrie der Photomultiplier auf der Rückseite des Szintillators zu ermitteln (siehe [Pl00]). Diesen Simulationen nach war der ursprünglich für die B-Messung geplante Detektor gut genug. Es wurden räumliche Schwankungen der Verstärkung von unter 10% erwartet. Erste Messungen mit einer Eichquelle zeigten jedoch, daß einige Parameter in den Simulationen zu optimistisch waren (siehe hierzu [May01]). Zur Überprüfung der Simulation wurde eine in Neutronenflugrichtung bewegliche Eichquelle (Wismut, siehe Tabelle 4.2) im Zerfallsvolumen angebracht und in Schritten von 5 mm Energiespektren aufgenommen (siehe Abbildung 4.1). Die Elektronen aus der Eichquelle treffen bei Position $X=05$ zwischen Photomultiplier 3 und 5 auf, bei $X=30$ direkt vor Photomultiplier 5. Die Summe aller ADC-Einträge (Analog to Digital Converter) in einer konstanten Meßzeit ist ein Maß für die Verstärkung. In Abhängigkeit vom Auftreffort auf dem Szintillator wurde diese Summe bestimmt. Trifft das Elektron direkt vor einem Photomultiplier auf ($X30$), ist die Verstärkung dieses Signals um einen Faktor zwei größer als bei Auftreffen des Elektrons zwischen zwei Photomultipliern ($X05$, siehe Abbildung 4.2).

4.1.2 Neues Detektdesign

Um das vom Szintillator emittierte Licht besser auf die Photomultiplier zu verteilen, wurde zwischen Szintillator und Photomultipliern eine 2 cm starke und 13 mal 19 cm große Plexiglasplatte eingefügt und mit einem Vakuum-Fett\(^2\) an den Szintillator angekoppelt. Die Stirnseiten wurden mit Hirstaphanfolie bedeckt. Die Positionen der Photomultiplier auf dem Plexiglas entsprachen den Positionen auf der Rückseite des Szintillators im ursprünglichen Setup. Erneute Messungen mit der beweglichen Eichquelle ergaben bereits eine deutlich verbesserte Homogenität und Energieauflösung. Um Lichtverluste am Übergang zwischen Szintillator und Plexiglas zu vermeiden, wurden in einem zweiten Schritt die beiden Komponenten mit einem optischen Zement verklebt\(^3\). Die Stirnseiten

\(^2\)Die optischen Eigenschaften des Glases à vide sind in [Pl00] ausführlich beschrieben.

\(^3\)Optischer Zement: Bicron, BC600.
und Teile der Rückseite4 wurden mit reflektierender Farbe bemalt5, welche die Reflexion der Photonen an den Innenflächen des Detektors und damit die Lichtausbeute erhöhen sollte. Die folgenden Abbildungen 4.3 bzw. 4.4 zeigen das neue Design und das Ergebnis eines dazu durchgeführten Scans, wie er im vorigen Abschnitt beschrieben wurde. Die Startposition X00 liegt zwischen PM3 und PM5, die Endposition X30 vor PM3. Die Schwankungen in der Summe der Ausgangssignale aller Photomultiplier liegen hiernach bei nur 5%. Dieses Ergebnis konnte auch an anderen Stellen des Detektors reproduziert werden. Die Photonen werden sehr viel homogener auf die Photomultiplier verteilt. Auch Photomultiplier, die vom Auftreffort des Elektrons entfernt angekoppelt sind, erhalten noch etwa 25% des Lichts, das der Photomultiplier direkt hinter dem Auftreffort erhält (siehe Vergleich PM3 zu PM6 bei Position X25 in Abbildung 4.4).

Eine mögliche Erklärung der verbesserten Homogenität des neuen Detektors ist der größere Raumwinkel, unter dem die Photonen aus dem Szintillator die aktiven Flächen der Photomultiplier sehen (der Detektor ist 25 mm stark). Im alten Detektor, der nur 5 mm stark ist, benötigen die Photonen mehr Reflexionen an den Innenseiten des Szintillators, bis sie einen Photomultiplier erreichen. Bei einem tatsächlichen Reflexionsgrad, der unter dem bei den Monte-Carlo-Simulationen angenommenen Reflexionsgrad (90\%, siehe [May01]) liegt, gingen dadurch viele Photonen an den Randflächen verloren. Die Dicke der Plexiglasplatte ist demnach ein Parameter, mit dem der Detektor noch weiter optimiert werden kann.

4.2 Kalibrierung und Eichung

Ein Detektor, der von mehreren Photomultipliern ausgelesen wird, muß bei Inbetriebnahme kalibriert werden. Das bedeutet, daß die Verstärkungen der einzelnen Photomultiplier einander angepaßt werden muß. Die hierzu verwendete Methode ist [Kre99] entnommen. Bei einer definierten Energiedeposition E_{dep} eines Elektrons im Szintillator verteilt sich das Licht auf die sechs Photomultiplier und deponiert dort je nach Auftreffort des Elektrons eine Energie $E_i = c_i \cdot E_{\text{dep}}$. Die Photomultiplier verstärken diese Photonen je zu einem Ausgangssignal S_i. Die Kalibrationskonstante γ_i ist definiert als Verhältnis von der Energie E_i, die einem Ausgangssignal S_i zugewiesen wird, zum Ausgangssignal S_i:

$$\gamma_i = \frac{E_i}{S_i}. \quad (4.1)$$

Die gesamte deponierte Energie ergibt sich dann als

$$E_{\text{dep}} = \sum_{i=1}^{6} \gamma_i S_i. \quad (4.2)$$

Dies gilt nur unter der Annahme, daß alle Photonen beliebig oft im Detektor reflektiert werden und dann auf den Photokathoden der Photomultipler nachgewiesen werden. Aufgrund der leichten Unterschiede in der Verstärkung der Photomultipler und der Geometrie des Detektors gilt dies nicht für beliebige Auftrefforte. Seien N Ereignisse über den Szintillator verteilt. Die Konstanten γ_i sind derart zu bestimmen, daß die

4Die Flächen, an denen die Photomultiplier angekoppelt werden, wurden frei gelassen.

5Reflektive Farbe: Bicron, BC620.
Standardabweichung

\[\chi^2 = \frac{1}{N} \sum_{j=1}^{N} \left(\sum_{i=1}^{6} \gamma_i S_i^j - E_{\text{dep}} \right)^2 \]

(4.3)

ein Minimum annimmt\(^6\). Um dieses \(\chi^2\) zu minimieren, wurden zuerst die Verstärkungen der Photomultiplier eingestellt.

4.2.1 Grobkalibrierung

4.2.2 Messung der Homogenität

Die einzelnen Spektren wurden zuvor geglättet\(^7\), um die Bestimmung der Maxima automatisieren zu können. Das Ergebnis dieser Messung ist in Abbildung 4.6 dargestellt. Das

\(^6\)Dieses Verfahren ist für ein möglichst homogenes Verhalten des Gesamtdetektors bei integraler Datenanalyse nötig. Zur Ortsrekonstruktion muß ein anderes Verfahren angewendet werden (siehe Abschnitt 4.6).

\(^7\)Das Spektrum wurde nach der Methode des Adjacent-Averaging geglättet. Hierbei wird der Inhalt eines jeden Kanals zusammen mit den Inhalten der benachbarten Kanäle gemittelt und so neu bestimmt. In diesem Fall wurden sechs benachbarte Kanäle berücksichtigt, also die Inhalte der Kanäle im Intervall \([i-3, i+3]\).
Abbildung 4.6: Ortsabhängige Verstärkung in Detektor 1 nach der Grobkalibrierung. Die Linien in x-Richtung begrenzen die Fläche, die von Zerfallselektronen höchstens erreicht werden kann.

4.2.3 Das Nachkalibrieren der Daten

Die Datennahme erfolgt mit dem grobkalibrierten Detektor. Softwareseitig werden Faktoren γ_i eingeführt, mit denen die Ausgangssignale der Photomultiplier so gewichtet werden, daß die Verstärkung über die Fläche des Detektors homogenisiert wird. Um die Kalibrierungsconstanten in Gleichung 4.3 so zu bestimmen, daß χ^2 minimal wird, wird diese Gleichung nach γ abgeleitet und gleich null gesetzt. Es ergibt sich das Gleichungssystem

$$
\sum_{i=1}^{6} \gamma_i \sum_{j=1}^{N} S_k^i S_k^j = E_{dep} \sum_{j=1}^{N} S_k^j ; \quad k \in \{1, \ldots, 6\}.
$$

8Das gilt nur in x-Richtung, da hier die in Abschnitt 3.3 beschriebenen Blenden das Zerfallsvolumen in Neutronenflugrichtung eingeschränken. Der in y-Richtung getroffene Bereich muß noch mit Strahlkarten über die später beschriebene Ortsrekonstruktion bestimmt werden. Dieser Bereich ist kleiner als der in Abbildung 4.6 gezeigte farbige Bereich, der in y-Richtung durch den Folienhalter vorgegeben ist.
Abbildung 4.7: Ortsabhängige Verstärkung unter Verwendung der Kalibrierungskonstan-
ten.

Definiert man nun die Vektoren

\[
\vec{\gamma} := \begin{pmatrix}
\gamma_1 \\
\vdots \\
\gamma_6
\end{pmatrix}; \quad \vec{a} := E_{dep} \begin{pmatrix}
\sum_{j=1}^{N} S_1^j \\
\vdots \\
\sum_{j=1}^{N} S_6^j
\end{pmatrix}
\]

(4.5)

und die Matrix

\[
M = \begin{pmatrix}
\sum_{j=1}^{N} S_1^j \sigma_1^j & \cdots & \sum_{j=1}^{N} S_1^j \sigma_6^j \\
\vdots & \ddots & \vdots \\
\sum_{j=1}^{N} S_6^j \sigma_1^j & \cdots & \sum_{j=1}^{N} S_6^j \sigma_6^j
\end{pmatrix}
\]

(4.6)

so lassen sich die Gleichungen zu einer Vektorgleichung zusammenfassen:

\[
M \vec{\gamma} = \vec{a}.
\]

(4.7)

Die Matrix M und der Vektor \(\vec{a}\) werden mit \(N\) über den Detektor verteilten Ereignissen gleicher Energie gefüllt. Um dies zu erreichen, wurden die Daten aus der im vorigen Abschnitt erklärten Homogenitätsmessung verwendet. Für jeden Meßpunkt wurde das zugehörige Wismutspektrum geglättet. Danach wurde jeweils die Lage des Maximalums und die Breite (in Standardabweichung \(\sigma\)) des Peaks bestimmt. Alle Ereignisse, die in diesem 1-\(\sigma\)-Bereich des Peaks liegen, wurden verwendet. Um die Methode zu überprüfen und um eine Unsicherheit für die Konstanten \(\gamma_i\) angeben zu können, wurden diese auch mit Ereignissen im 2-\(\sigma\) und 3-\(\sigma\)-Bereich bestimmt. Die Schwankungen der Konstanten lagen danach bei etwa einem Prozent. Die so ermittelten Kalibrationskonstanten sind in Tabelle 4.1 zusammengefaßt.

Um den Effekt dieser nachträglichen Homogenisierung zu verdeutlichen, ist in Abbil-
dung 4.7 das Ergebnis des gleichen \(x-y\)-Scans mit nachkalibrierten Daten gezeigt. Die
<table>
<thead>
<tr>
<th>PM Nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>1.12</td>
<td>1.08</td>
<td>0.66</td>
<td>0.79</td>
<td>0.93</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Die Kalibrationskonstanten γ.

4.3 Schwelle und Triggerfunktion

Die Triggerfunktion wurde nach der bei [Rei99] beschriebenen Methode bestimmt. Verwendet werden hierzu Elektronen aus dem β-Zerfall wegen ihres kontinuierlichen Energiespektrums. Für die Triggerfunktion von Detektor 2 betrachtet man alle Ereignisse, bei denen Detektor 1 als erstes getriggert hat ($N_1(C)$). Etwa 3% der Elektronen werden aus dem ersten Detektor rückgestreut und deponieren den Rest ihrer Energie im zweiten Detektor. In Abhängigkeit vom Kanal des 2. Detektors wird nun die Anzahl der Ereignisse bestimmt, in denen auch der 2. Detektor getriggert hat ($N_{1\&2}(C)$). Die Anzahl der Ereignisse, in denen Detektor 2 nicht getriggert hat, ist $N_{1\&2}(C)$. Die Triggerwahrscheinlichkeit als Funktion der Energie in Kanälen ergibt sich dann als:

$$T(C) = \frac{N_{1\&2}(C)}{N_{1\&2}(C) + N_{1\&2}(C)} = \frac{N_{1\&2}(C)}{N_1(C)}.$$ \hspace{1cm} (4.8)

Die Parametrisierung des erwarteten Verlaufs ist nach [Rei99] durch

$$T(C) = 1 - e^{-a(C-b)}$$ \hspace{1cm} (4.9)

gegeben, wobei a und b Fitparameter sind.

Die Triggerfunktionen der beiden Detektoren sind in den Abbildungen 4.8 und 4.9 gezeigt. Demnach werden in Detektor 1 Elektronen mit einer kinetischen Energie von 35 keV mit einer Wahrscheinlichkeit von 10% nachgewiesen. Ereignisse mit 92 keV werden zu 90% nachgewiesen. Für Detektor 2 gelten etwa gleiche Werte. Die Parameter des Fits ergeben sich zu $a_1 = 0.21 \pm 0.07$, $b_1 = 11.8 \pm 0.15$, $a_2 = 0.15 \pm 0.05$ und $b_2 = 10.6 \pm 0.25$.

Diese Schwelle ist im Vergleich zu den Energien der Sekundärelektronen relativ hoch.

9Die Quanteneffizienz gibt an, mit welcher Wahrscheinlichkeit ein die Photokathode treffendes Lichtquant ein Photoelektron auslöst. Für die von uns verwendeten Photomultiplier liegt diese nach [Fle00] bei 22%.

26

4.4 Energieauflösung

Unter der Energieauflösung versteht man den Abstand zweier nahe aneinander liegender Energien, die vom Detektor noch unterschieden werden können. Idealerweise ist die Form des vom Detektor gemessenen Energiespektrums einer monoenergetischen Quelle eine scharfe Deltafunktion. Verschiedene Prozesse führen in einem tatsächlichem Detektor aber immer zu einer Verbreiterung. Diese Verbreiterung als Detektor-Eigenschaft wird beschrieben durch die

\[
\text{Auflösung} = \frac{\Delta E}{E},
\]

wobei \(\Delta E \) wahlweise in \textit{full width at half maximum} oder in \textit{Standardabweichung} \(\sigma \) angegeben wird, mit \(\text{FWHM} = 2,35 \cdot \sigma \). In dieser Arbeit wird die Standardabweichung verwendet.

Bei allen Detektoren, die Teilchen mittels Ionisation und Anregung nachweisen, ist die Anzahl der entstehenden Photonen poissonverteilt (siehe z.B. [Leo94]). Das lineare Ansteigen der Anzahl der Anregungen und Ionisationen mit ansteigender Energie der einfallenden Teilchen führt zu geringeren relativen Fluktuationen. Damit nimmt die Energieauflösung mit der Energie zu\(^{10}\).

Bei einem Nachweis von Elektronen in einem Plastiksziillator spielen die folgenden Effekte ein Rolle:

- Die Anzahl der die Photomultiplier erreichenden Photonen in Abhängigkeit von der kinetischen Energie des einfallenden Elektrons und der Lichtsammlung (\(\Delta E_{\text{kin}} \)).

\(^{10}\) Zu größeren Photonenzahlen hin geht die Poissonverteilung in eine Gaussverteilung über, die statistischen Fluktuationen sind hier proportional zur Wurzel der Anzahl der Photonen.

27
Abb. 4.10: Pedestal Detektor 1, $C_{\text{ped}1} = 14.3 \pm 0.02$, $\sigma_{\text{ped}1} = 1.98 \pm 0.03$.

Abbildung 4.11: Pedestal Detektor 2, $C_{\text{ped}2} = 20.0 \pm 0.06$, $\sigma_{\text{ped}2} = 2.05 \pm 0.05$.

- Die Konversion von Photon in Photoelektron auf der Photokathode (ΔE_{pe}).
- Das Rauschen der Photomultiplier (ΔE_{PM}).
- Das Rauschen der Ausleseelektronik (ΔE_{elektr}).

Nach [Leo94] ergibt sich das Quadrat der gesamten Breite ΔE als Summe der Quadrate der einzelnen Breiten ΔE_i. Die gesamte Breite kann beschrieben werden als:

$$(\Delta E)^2 = (\Delta E_{\text{int}})^2 + (\Delta E_{\text{pe}})^2 + (\Delta E_{\text{PM}})^2 + (\Delta E_{\text{elektr}})^2$$ \hspace{1cm} (4.11)

Das Rauschen der Elektronik erhält man aus der Breite der Pedestal-Kanäle der ADCs. In diese Kanäle wird dann eingetragen, wenn der ADC ein Gate hatte, jedoch kein Signal. Aus den Gauss-Fits an die Pedestal-Kanäle der beiden Detektoren ergibt sich eine Breite von $\sigma_{\text{elektr}} = 1.98 \pm 0.03$ Kanäle für Detektor 1 und $\sigma_{\text{elektr}2} = 2.05 \pm 0.05$ Kanäle für Detektor zwei (siehe Abbildungen 4.10 und 4.11).

Der bestimmende Prozeß bei der Verbreiterung der Signale ist der statistische Prozeß der Umwandlung der Photonen aus dem Szintillatoren in Photoelektronen (siehe [Plo00]). Der Zusammenhang zwischen Energieauflösung und Photoelektronenzahl $N(E)$ ist gegeben durch:

$$\frac{\Delta E}{E} = \frac{1}{\sqrt{N(E)}}$$ \hspace{1cm} (4.12)

Somit läßt sich anhand der Auflösung die Anzahl der Photoelektronen bestimmen (siehe nächster Abschnitt). Dadurch läßt sich abschätzen, wie hoch die Verluste an Photonen im Detektor sind.

Verstärkung

Ausgelesen wird der Detektor mittels Photomultipliern, über deren Strompulse in ADCs (Analog to Digital Converter) integriert wird und deren Pulse in Kanalnummern überetzt werden. Unter der Annahme, daß alle beteiligten Prozesse linear zur Energiedeposition des Elektrons sind, gibt folgende Beziehung den Zusammenhang zwischen der Anzahl der Photoelektronen und dem Kanal des ADC an:

$$C = g_{\text{PE}} \cdot N(E) + C_{\text{ped}},$$ \hspace{1cm} (4.13)
wobei \(C \) der Kanal des ADC, \(g_{PE} \) die Verstärkung in Einheiten Kanal pro Photoelektron und \(N \) die Anzahl der Photoelektronen pro MeV ist. Der Pedestal-Kanal \(C_{ped} \) ist ein am ADC einzustellender Offset. Der mittlere Pedestal-Kanal des Detektor 1 liegt bei \(14.38 \pm 0.02 \), der des Detektor 2 bei \(20.0 \pm 0.06 \) (siehe Abbildungen 4.10 und 4.11). Die Anzahl der Photoelektronen bei 1 MeV wurde aus der Breite des oberen Peaks von über den Detektor verteilt und gemittelten Eichspektren mit \(^{207}\text{Bi} \) bestimmt. Danach ergibt sich für Detektor 1 \(N_1(1 \text{ MeV})=280.6 \pm 0.2 \) und für Detektor 2 \(N_2(1 \text{ MeV})=238.0 \pm 0.2 \). Die Werte der Verstärkungsfaktoren ergeben sich zu \(g_{PE1} = 0.963 \pm 0.003 \), \(g_{PE2} = 1.073 \pm 0.004 \). Die beiden Eichspektren, aus denen diese Werte ermittelt wurden, zeigt Abbildung 4.12. Diese wurden an einer festen Position der Eichquelle aufgenommen. Die Energieauflösung bei einer Elektronenergie von 1 MeV beträgt (nach Gleichung 4.12) 6% für den Detektor 1 und 6.5% für den Detektor 2. In *fwhm* ausgedrückt bedeutet das eine Auflösung von 14% für Detektor 1 und 15.4% für Detektor 2.

4.5 Linearität

Mit dem kalibrierten Detektor wird nun dessen Linearität überprüft. Dazu werden verschiedene Eichquellen verwendet, welche Konversionselektronen im Bereich des \(\beta \)-Spektrums emittieren. Diese Energien sind diskret. Die Kanalnummer des ADC-Eintrags gegen die Energie der Konversionselektronen gibt Auskunft über die Energie linearität des Detektors. Die hierzu verwendeten Eichpréparate sind \(^{207}\text{Bi} \), \(^{139}\text{Ce} \) und \(^{113}\text{Sn} \). Tabelle 4.2 zeigt die Energien der jeweiligen Konversionselektronen.

Der \(^{113}\text{Sn} \)-Peak liegt deutlich unter dem linearen Fit an die Lage der Maxima. Das liegt wahrscheinlich daran, daß die Quelle nicht an der gleichen Stelle vor dem Detektor stand wie die beiden anderen Préparate. Die Elektronen treffen dann an einem Ort geringerer Verstärkung auf den Szintillator. Der Auftreffort der Konversionselektronen aus der Quelle läßt sich nicht rekonstruieren (siehe nächster Abschnitt), da nur Summenspektren aufgenommen wurden, die Information aller sechs Photomultiplier zu jedem Ereignis also.
Abbildung 4.13: Cer: (a) Detektor 1, (b) Detektor 2.

Abbildung 4.14: Wismut: (a) Detektor 1, (b) Detektor 2.

fehlt. Zudem war die 133Sn-Quelle verunreinigt. Sie wurde deshalb nicht berücksichtigt.

4.6 Ortsrekonstruktion

Abbildung 4.15: Maxima der Energiespektren der Eichpréparate in Abhängigkeit der Energie.

<table>
<thead>
<tr>
<th>Mutternuklid</th>
<th>Energie der Konversionselektronen</th>
<th>Emissionswahrscheinlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>207Bi</td>
<td>481 keV</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>975 keV</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>1047 keV</td>
<td>2%</td>
</tr>
<tr>
<td>115Sn</td>
<td>364 keV</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>388 keV</td>
<td>6%</td>
</tr>
<tr>
<td>139Ce</td>
<td>127 keV</td>
<td>25%</td>
</tr>
</tbody>
</table>

4.6.1 Rekonstruktionsmodell

\(^{11}\)Bei den beiden Methoden handelt es sich um ein Schwerpunktsverfahren und eine Methode mit einer Modell-Datenbank.
Abbildung 4.16: Abhängigkeit des mittleren ADC-Kanals der Photomultiplier 1-6 vom Auftreffort des 1MeV-Elektrons.
Abbildung 4.17: Funktion f für PM2 in x-Richtung. Die angegebenen Fehler entsprechen der 1σ-Breite der zugehörigen ADC-Spektren.

Photonmultiplier fällt der mittlere ADC-Kanal vom Ort des Photomultipliers in guter Nähe rung radial-symmetrisch ab. Ein entsprechender Ansatz zur Beschreibung dieses Zusammenhangs ist:

$$ C_i = E_{dep} \cdot f_i(|\vec{x}_i - \vec{x}|) $$

Sie ist durch eine Gaussfunktion sehr gut beschreibbar. Mit dem Ansatz

$$ f_i(|\vec{x}_i - \vec{x}|) = f_{0,i} + \frac{A_i}{\sigma_i \sqrt{2\pi}} e^{-\frac{(\vec{x}_i - \vec{x})^2}{2\sigma_i^2}} $$

wird aus Gleichung 4.14

$$ C_i = E_{dep} \cdot \left(f_{0,i} + \frac{A_i}{\sigma_i \sqrt{2\pi}} e^{-\frac{(\vec{x}_i - \vec{x})^2}{2\sigma_i^2}} \right). $$

Bei einem Ereignis mit beliebiger Energie-Deposition enthält diese Gleichung die drei Unbekannten E_{dep}, x und y. Die Parameter σ_i, $f_{0,i}$ und A_i werden mit Hilfe der Daten aus dem x-y-Scan für jeden Photomultiplier bestimmt. Es zeigt sich, daß diese Parameter für die Photomultiplier 2, 3 und 4 in etwa übereinstimmen beziehungsweise durch angepaßte Kalkülirungskonstanten in Übereinstimmung gebracht werden können (siehe Tabelle 4.3). Insbesondere sollte hierzu die Verstärkung aller Photomultiplier gleich sein, im Gegensatz zu Abschnitt 4.2, in dem die am Rand liegenden Photomultiplier stärker gemessen wurden, um den Detektor zu homogenisieren.
Tabelle 4.3: Die Parameter der Gaussfits an die experimentell ermittelten Funktionen \(f_i \) für die Photomultiplier 2, 3 und 4.

Um diese drei Unbekannten \(x, y \) und \(E_{\text{dep}} \) zu bestimmen, benötigt man drei Gleichungen, also drei Photomultipliersignale. Da der relative Fehler eines solchen Signals mit der Signalhöhe kleiner wird, werden jeweils die Photomultiplier mit dem höchsten ADC-Eintrag verwendet. Wird in den Photomultipliern 2, 3 und 4 der größte Teil des Szintillatorlichts deponiert, hängen (bei identischen Parametern \(A_i \) und \(\sigma_i \)) \(x \) und \(y \) wie folgt von den Kanaleinträgen der zugehörigen ADCs ab:

\[
x = \frac{(x_2 - x_3) \cdot K_{23} - (x_2 - x_4)K_{23}}{(x_2 - x_3) \cdot (y_2 - y_4) - (x_2 - x_4) \cdot (y_2 - y_3)}
\]

\[
y = \frac{-(y_2 - y_3) \cdot K_{23} + (y_2 - y_4) \cdot K_{23}}{(x_2 - x_3) \cdot (y_2 - y_4) - (x_2 - x_4) \cdot (y_2 - y_3)}
\]

mit den Ortskoordinaten \((x_i, y_i)\) der Photomultiplier und den Abkürzungen \(K_{ij} \)

\[
K_{23} = \frac{1}{2} \cdot (x_2^2 + y_2^2 - x_3^2 - y_3^2) + \sigma^2 \cdot \ln \frac{C_2 - f_{0,2} \cdot E_{\text{dep}}}{C_3 - f_{0,3} \cdot E_{\text{dep}}}
\]

\[
K_{21} = \frac{1}{2} \cdot (x_2^2 + y_2^2 - x_4^2 - y_4^2) + \sigma^2 \cdot \ln \frac{C_2 - f_{0,2} \cdot E_{\text{dep}}}{C_4 - f_{0,4} \cdot E_{\text{dep}}}
\]

Bei unbekannter Energie Deposition ist \(E_{\text{dep}} \) nicht eliminierbar, da es sich um transzendentle Gleichungen handelt. Mit einer iterativen Prozedur lassen sich aber alle drei Unbekannten annähern. Die Summe aller sechs Photomultiplier ist bereits ein guter Startwert für \(E_{\text{dep}} \). Die Koordinaten \(x \) und \(y \) können damit berechnet werden. Mit diesen Werten läßt sich mit Gleichung 4.16 ein neuer Wert \(E_{\text{dep}} \) berechnen. Dieses Verfahren wird dann so oft wiederholt, bis ein vorher definiertes Konvergenzkriterium erfüllt ist.

4.6.2 Anwendung der Methode

Das Verfahren wurde an Daten aus dem \(x-y \)-Scan überprüft. Die Photomultiplier 2, 3 und 4 wurden zur Rekonstruktion des Auffreßortes verwendet. Die Werte der Parameter für je einen Schnitt in \(x \)- und in \(y \)-Richtung sind für angepasste Kalibrierungskonstanten \((\gamma_2 = 1.0, \gamma_3 = 0.96 \text{ und } \gamma_4 = 0.95)\) in Tabelle 4.3 angegeben.

Die Parameter \(\sigma \) sind hier in den Einheiten des \(x-y \)-Scans angegeben, \(f_{0,i} \) in Kanälen des ADC. Die Mittelpunkte der Photomultiplier ergeben sich ebenfalls aus den Gaussfits an die Schnitte. Nacheinander wurden bei verschiedenen Position der Quelle die Auffreßorte der Ereignisse gemäß den Gleichungen 4.17 und 4.18 berechnet. In einem ersten Schritt wurden hierfür nur Ereignisse im 1 MeV Peak verwendet, da für diese der Fehler der \(C_i \) am kleinsten sein sollte. Die deponierte Energie ist dadurch festgelegt. Mit den berechneten Orten wurden Ortshistogramme gefüllt. Die Abbildungen 4.18 und 4.19
Abbildung 4.18: Rekonstruierte Auftrefforte bei Quellenposition (50,55).

Abbildung 4.19: Rekonstruierte Auftrefforte bei Quellenposition (70,70).

zeigen diese Orts Histogramme für die Positionen (50,55) und (70,70).
Um Aussagen über das Auflösungsvermögen der Rekonstruktion machen zu können, muß das Koordinatensystem in den Einheiten des x-y-Scans in ein Koordinatensystem in mm auf dem Szintillator umgewandelt werden. Dies ist über den Vergleich der Positionen der Mittelpunkte der Photomultiplier möglich. Die Umrechnungsfaktoren ergeben sich zu $1.52\pm0.04\text{mm/mm}$ in x-Richtung und $1.34\pm0.05\text{mm/mm}$ in y-Richtung. Der Parameter σ wird durch Umklammerung angepaßt. Das Ergebnis der Ortsrekonstruktion in mm zeigt Abbildung 4.20. Ein Schnitt über das Maximum dieser Ortsverteilung läßt sich anfitten (siehe Abbildung 4.21), die Breite dieser Verteilung ergibt sich zu $5\pm0.5\text{ mm}$. Diese Breite Δ_{gesamt} setzt sich zusammen aus der Ortsauflösung der Rekonstruktion Δ_{auf} und der Streuung der Orte Δ_{streu} der Ereignisse (räumliche Ausdehnung der Eichquelle und Gyrationsradius für 1 MeV Elektronen). Die Ortsauflösung der Methode ergibt sich für 1 MeV Elektronen als

$$\Delta_{\text{auf}}^2 = \Delta_{\text{gesamt}}^2 - \Delta_{\text{streu}}^2 \quad (4.21)$$

Die Streuung der Ereignisse läßt sich über den Gyrationradius und die Ausdehnung der Eichquelle mit $3\pm1\text{ mm}$ abschätzen. Dies führt zu einer Ortsauflösung des Verfahrens von $4\pm1.4\text{ mm}$.

Abbildung 4.20: Rekonstruierte Auftrefforte im Koordinatensystem des Szintillators bei Quellenposition (50,55).

Abbildung 4.21: Schnitt bei $x = 90\text{ mm}$ mit Fit.
4.6.3 Diskussion der Ortsrekonstruktion

Auch das Verfahren selbst kann verbessert werden. Es wurden bislang nur die drei Photomultiplier mit den höchsten ADC-Einträgen verwendet. Diese müssen aber nicht die am besten geeigneten Photomultiplier sein. Trifft beispielsweise ein Elektron direkt vor einem Photomultiplier auf, so ist dessen ADC-Eintrag der höchste, seine Sensitivität auf den Ort ist aber sehr gering. Die Funktion f zeigt hier eine sehr geringe Änderung des ADC-Eintrags mit dem Abstand des Ereignisses auf. Am sensitivsten auf den Ort ist diese Methode, wenn das Ereignis im Bereich der größten Steigung der Funktion f liegt. Nach diesem Kriterium sollten also die drei Photomultiplier zur Ortsrekonstruktion gewählt werden.

Auch könnte versucht werden, die Einträge aller sechs Photomultiplier zu verwenden. Das Gleichungssystem für x und y ist dann überbestimmt, die rekonstruierten Orte können direkt verglichen werden.
Kapitel 5

Protonendetektor

5.1 Funktionsprinzip

5.2 Effizienz

Die Effizienz des Protonnachweises ergibt sich als das Produkt der Effizienzen zweier Prozesse. Zum einen ist dies die Erzeugung von Sekundärelektronen in der Folie, zum anderen der Nachweis dieser Elektronen im Elektronendetektor.

Die Anzahl der Sekundärelektronen ist poissonverteilt, der Mittelwert abhängig von

\(^1\)Bei [Rei99] ist die Wahrscheinlichkeit der Sekundärelektronenemission bei Auftreffen eines Protons für verschiedene Materialien zusammengefaßt. Dennoch liegt diese Wahrscheinlichkeit bei einer MgO-Schicht 3-15 mal höher als bei einer Kohlenstoff-Folie.
der kinetischen Energie des Protons. Von [Rei99] wurde aus dem Energiespektrum der Sekundärelektronen die Poissonverteilung bestimmt. Die Folie (Kohlenstoff mit MgO-Schicht) lag hierbei auf einem Potential von 29 kV beziehungsweise 22 kV gegenüber Protonenquelle und Elektronendetektor. Als mittlere Anzahl der Sekundärelektronen ergab sich 4.2 bei 22 kV und 4.9 bei 29 kV.

Bei der Poissonverteilung um den Wert 4.2 liegt die Wahrscheinlichkeit dafür, daß kein Elektron emittiert wird, bei 1.5%. Die Effizienz der Proton-Elektron Konversion liegt dann bei 98.5%.

Die Wahrscheinlichkeit für den Nachweis der Sekundärelektronen im Elektronendetektor hängt im wesentlichen von drei Parametern ab. Es sind dies die kinetische Energie der Elektronen, die Totschicht des Szintillators und die Triggerfunktion des Elektronendetektors. Die kinetische Energie der Elektronen aus der Folie ist bestimmt durch das Potential zwischen Folie und Szintillator. Die gesamte Energie eines Ereignisses von Konversionselektronen ist

\[E_{\text{kon}} = n \cdot e \cdot U_{\text{Folie}} \]

mit der Anzahl \(n \) Elektronen. Jedes dieser Elektronen durchdringt die Totschicht des Detektors und verliert hierbei im Mittel einige keV. Die im Szintillator deponierte Energie ergibt sich als

\[E_{\text{dep}} = n \cdot (e \cdot U_{\text{Folie}} - E_{\text{tot}}). \]

Die Wahrscheinlichkeit für das Auftreten von \(n \) Elektronen wird mit der Nachweiswahrscheinlichkeit der resultierenden Energie gewichtet. Die Effizienz \(\eta \) des Nachweises von Protonen ergibt sich also zu

\[\eta_p = \sum_{n=1}^{\infty} P(n, U) \cdot T(n \cdot (e \cdot U_{\text{Folie}} - E_{\text{tot}})), \]

wobei \(P \) die diskrete Poissonverteilung um den Mittelwert \(\lambda \)

\[P(n) = \frac{\lambda^n}{n!} e^{-\lambda} \]

und \(T \) die Triggerwahrscheinlichkeit für Sekundärelektronen ist. Diese Triggerfunktion (siehe Abbildungen 5.1 und 5.2) unterscheidet sich von der für Zerfallselektronen, weil für Sekundärelektronen das Triggern nur eines Photomultipliers ausreicht (siehe Abschnitt 4.3). Dadurch konnten die Triggerschwellen auf 26 keV (10% Nachweis-effizienz) und 48 keV (90%) für Detektor 1 bzw. auf 25 keV (10%) und 46 keV (90%) gesenkt werden.

Eine Bestimmung der Effizienz über den Vergleich von Elektron- und Protonzählzahlen läßt also bei Kenntnis der Parameter wie Totschicht und Triggerwahrscheinlichkeit Aussagen über die Verteilung der Sekundärelektronen zu. Aus den laufenden Meßdaten läßt sich die Protoneffizienz grob abschätzen. Bei einer Messung mit geblendetem Strahl beträgt die Zählrate 125 ±0.8 Hz. Diese Untergrundzählrate ist eine Folge der Hochspannung. Die Rate der Untergrundkoinzidenzen beträgt 32 ±0.4 Hz. Mit Strahl erhöht sich die Zählrate auf 212 ±1 Hz, die der Koinzidenzen auf 86 ±0.7 Hz. Die Elektronzählrate läßt sich durch die Differenz der Zählraten mit etwa 90 Hz abschätzen, die Protonzählrate mit etwa 50 Hz. Die resultierende Proton-effizienz liegt in dieser vereinfachten Betrachtung über 50%.
Abbildung 5.1: $T(C)$ für Sekundärelektronen Detektor 1.

Abbildung 5.2: $T(C)$ für Sekundärelektronen Detektor 2.

5.3 Flugzeit

Die Flugzeit eines Protons vom Neutronzerfall bis zum Nachweis ist abhängig von seiner Impulskomponente in Richtung des Protonendetektors\(^2\). Das Proton gyriert (abhängig von der Impulskomponente senkrecht zum Magnetfeld) auf die Erdungsgitter zu und wird dann mit einsetzendem Potentialgradienten zwischen den Gittern auf die Folie beschleunigt. Der gemessene Verlauf der Protonflugzeit ist in Abbildung 5.3 gezeigt. Die Flugzeitspektren zu den beiden Spinstellungen des Neutrons unterscheiden sich. Protonen, die parallel zum Spin des Neutrons emittiert werden, erreichen den Detektor im Mittel früher. Das Zeitfenster ist so gewählt (30μs), daß die daraus resultierende relative Verschiebung der Größe B kleiner als 0.1\% ist.

5.4 Untergrund

Eine Koinzidenzmessung ist im allgemeinen unempfindlich gegen statistischen Untergrund. Sei N die Untergrundrate, dann ist νdt (mit $\nu = \frac{1}{N}$) die Wahrscheinlichkeit dafür, daß bei einem Ereignis zu $t = 0$ im Intervall $[t,t+dt]$ ein anderes Ereignis stattfindet. Dieses ν ist bei unkorrelierten Signalen nicht abhängig von der Zeit t. Bei der Messung von Flugzeiten startet ein Untergrundereignis, das nächste Ereignis stoppt die Messung. Die Wahrscheinlichkeit Wdt für das Auftreten des zeitlichen Abstands t führt zu Переходу
Abbildung 5.3: Gemessenes Flugzeitspektrum von Protonen bei Spin up und Spin down der Neutronen. In den Spektern ist nicht abzählbarer Untergrund enthalten.

zwischen zwei direkt aufeinanderfolgenden Signalen ist das Produkt der Wahrscheinlichkeiten, daß im Intervall \([t, t+dt]\) gestoppt und daß im Intervall \([0,t]\) nicht gestoppt wird. Für \(W(t)\) ergibt sich dann folgende Exponentialfunktion (siehe zB. \([\text{Leo94}]\)):

\[
W(t) = w \cdot e^{-\omega t}.
\]

5.5 Anteil der zufälligen Koinzidenzen

Die Anzahl der zufälligen Koinzidenzen bei einer Zählerate von \(N\) und einem Koinzidenzfenster von \(\tau\) ist in linearer Näherung

\[
N = N^2 \cdot \tau.
\]

Sei \(N_0\) die Anzahl der Zerfälle im Zerfallsvolumen. Der Anteil von Ereignissen, in denen Elektron und Proton in den gleichen Halbraum emittiert werden liegt nach Monte
Abbildung 5.4: Energiespektrum der Protonen

Carlo Simulationen bei \(x = 3.9\% \) (siehe [Rei99]). Die Anzahl echter Koinzidenzen liegt
hiernach bei \(N_{\text{echt}} = x \cdot N_0 \). Bei einer Messung von \(B \) ist die erwartete Gesamtzählrate \(N \) in einem Detektor (bei Neutronspin in Richtung des Detektors) die Summe aus den Einzelzählraten für Elektronen, Protonen und dem Untergrund

\[
N_{\text{ges}} = N_e + N_p + N_{\text{ug}} = f \cdot N_0 + N_{\text{ug}},
\]

wobei \(f = 0.86 \) der Anteil der Zerfälle ist, in denen Elektron oder Proton parallel zum Neutronenspin emittiert werden. Dies wurde ebenfalls in [Rei99] durch Simulationen bestimmt. In dieser Betrachtung sind die Effizienzen des Nachweises unberücksichtigt. Der Anteil \(R \) der zufälligen Koinzidenzen zu echten Koinzidenzen ergibt sich dann als

\[
R = \frac{N_{\text{zuf}}}{N_{\text{echt}}} = \frac{(f \cdot N_0 + N_{\text{ug}})^2 \tau}{x \cdot N_0}.
\]

Bei einem Zeitfenster \(\tau \) von 30\(\mu \)s und bei der erwarteten Zerfallsrate von 100 Hz und einem in diesem Experiment üblichen Untergrund von 150 Hz ergibt sich ein Anteil von 0.43 zufälliger Koinzidenzen je echter Koinzidenz. In dieser Betrachtung ist der Untergrund statistisch verteilt. Dies trifft in den bisherigen Messungen nicht zu. Der von uns gemessene hochspannungsinduzierte Untergrund zeigt eine zeitliche Korrelation, der noch genauer untersucht werden muß.

5.6 Energiespektren

Mit den koinzidenten Ereignissen werden zusätzlich zu dem Flugzeitspektrum zwei Energiespektren gefüllt. Es sind dies das Elektronenspektrum mit den Energien der Startsignale und das Energiespektrum der Sekundärelektronen aus der Folie als Stoppsignale. Letztere werden Protonenspektren genannt, wobei hier kein Zusammenhang zur kinetischen Energie des Zerfallsprotons besteht. Mit Hilfe dieser beiden Spektren läßt sich der Untergrund im Zeitspektrum weiter eingrenzen. Die Abbildung 5.6 zeigt ein gemessenes Protonenspektrum.
5.7 Beurteilung des Protonendetektors

Kapitel 6

Zusammenfassung und Ausblick

Die in dieser Arbeit beschriebenen Ergebnisse zur Ortsrekonstruktion von Ereignissen geben bereits erste Hinweise darauf, daß zumindest die Rekonstruktion von hochenergetischen Elektronen (1 MeV) mit einer Genauigkeit von unter einem cm möglich ist. Untersuchungen zur Rekonstruktion bei Ereignissen im Bereich der Energie der Elektronen aus dem \(\beta \)-Zerfall ist Aufgabe meiner Nachfolger.

Die Ergebnisse dieser Arbeit erlauben qualitativ neue Messungen mit PERKEO. Die \(\beta \)-Asymmetrie \(A \) kann aufgrund der jetzt möglichen Ortsrekonstruktion ohne Korrekturen im Detektorbereich gemessen werden. Der schwache Magnetismus, eine Korrektur der Energieabhängigkeit der Asymmetrie \(A \), ist eine weitere Herausforderung.

Abbildungsverzeichnis

2.1 Feynmaugraph des Neutronzerfalls als Punktwechselwirkung 6
2.2 Energiespektrum des Elektrons .. 6
2.3 Feynman-Diagramm des Neutron β-Zerfalls im Standardmodell 8
2.4 Ausschließungsplot in der δ-E-Ebene [Abe98] .. 11
3.1 Experimenteller Aufbau des PERKEO-Experiments zur Messung von B. 14
3.2 Asymmetrie $\alpha 1$ in Abhängigkeit von der Elektronenergie 16
3.3 Asymmetrie $\alpha 1$ in Abhängigkeit von der Elektronenergie 16
3.4 Das Spektrometer .. 17
4.1 Ursprüngliches Setup mit Angabe der Positionen des Scans 20
4.2 Summe der ADC-Inhalte bei verschiedenen Positionen der Quelle vor dem
 Szintillator .. 20
4.3 Verbesserter Detektor ... 21
4.4 ADC-Inhalte der sechs Photomultiplier und deren Summe 21
4.5 x-y-Eichquellen ... 23
4.6 Ortsabhängigkeit der Verstärkung nach der Grokkalibrierung 24
4.7 Ortsabhängige Verstärkung unter Verwendung der Kalibrierungskonstan-
 ten ... 25
4.8 $T(C)$ Detektor 1 .. 27
4.9 $T(C)$ Detektor 2 .. 27
4.10 Pedestal Detektor 1 .. 28
4.11 Pedestal Detektor 2 .. 28
4.12 Wisnuspektren zur Bestimmung der Photoelektronenzahl 29
4.13 Cer: (a) Detektor 1, (b) Detektor 2 ... 30
4.14 Wisn: (a) Detektor 1, (b) Detektor 2 ... 30
4.15 Maxima der Energiespektren der Eichprozesse in Abhängigkeit der Energie. 31
4.16 Abhängigkeit des mittleren ADC-Kanals der Photomultiplier 1-6 vom Auf-
 treffort des 1MeV-Elektrons ... 32
4.17 Funktion f für Photomultiplier 2 .. 33
4.18 Rekonstruierte Auftrefforte bei Quellenposition (50,55) 35
4.19 Rekonstruierte Auftrefforte bei Quellenposition (70,70) 35
4.20 Rekonstruierte Auftrefforte bei (50,55) ... 35
4.21 Auflösungsvermögen der Rekonstruktion ... 35
5.1 $T(C)$ für Sekundärelektronen Detektor 1 ... 39
5.2 $T(C)$ für Sekundärelektronen Detektor 2 ... 39
5.3 Proton-Flugzeitspektrum ... 40
5.4 Energiespektrum der Protonen .. 41
Tabellenverzeichnis

2.1 Am Neutron β-Zerfall beteiligte Teilchen 7
2.2 Die Observablen im Neutronzerfall .. 10

4.1 Die Kalibrationskonstanten γ_i .. 26
4.2 Konversionselektronen der Eichpräparate 31
4.3 Die Parameter der Gaussfunktionen f_i 34
Literaturverzeichnis

Danksagung

Mit dem Experiment PERKEO bot sich mir die Gelegenheit, ein Jahr lang am Institut Laue Langevin in Grenoble die Wirklichkeit der Arbeit in der Experimentalphysik kennenzulernen. Ich danke allen, die meine Zeit hier und die meines Studiums zu einer interessanten und auch aufregenden Erfahrung gemacht haben. Mein besonderer Dank gilt:

- Michael Kreuz für seinen herzlichen Umgang mit mir, seinem sicher bisher anstrengsten Diplomanten.

- Michael Schneider und Uli Mayer, die von Mitdiplomanten zu guten Freunden wurden.

- Dr. Torsten Soldner, der mich vor vorübergehender Obdachlosigkeit bewahrt und in der Zeit des Zusammenschreibens einen großen Teil meiner Betreuung übernommen hat.

- meinem Mitstudenten und langjährigen Freund Jan Kleinert, ohne den mein Studium sicher nicht annähernd so schnell und erfolgreich verlaufen wäre.

- Viola Schmidt-Schäffer, deren Umgang mit ihren Mitmenschen immer ein Vorbild für mich sein wird.

- Didier Bertruyer, der mir einen besonderen Einblick in die französische Sprache bot und mir meine Mobilität bewahrt hat.

- meinen Eltern für die finanzielle Unterstützung und ihr Vertrauen darin, daß die fünf Jahre Studium von mir nicht ungenutzt bleiben würden.
Erklärung:

Ich versichere, daß ich diese Arbeit selbständig verfaßt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den