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Quantum States of Neutrons in the Gravitational Field: We present an ex-
periment performed between February and April 2005 at the Institut Laue Langevin
(ILL) in Grenoble, France. Using neutron detectors of very high spatial resolu-
tion, we measured the height distribution of ultracold neutrons bouncing above a
reflecting glass surface under the effect of gravity. Within the framework of quan-
tum mechanics this distribution is equivalent to the absolute square of the neutron’s
wavefunction in position space.

In a detailed theoretical analysis, we show that the measurement is in good
agreement with the quantum mechanical expectation for a bound state in the Earth’s
gravitational potential. We further demonstrate that the results can neither be
explained within the framework of a classical calculation nor under the assumption
that gravitational effects can be neglected. Thus we conclude that the measurement
manifests strong evidence for quantisation of motion in the gravitational field as is
expected from quantum mechanics and as has already been observed in another type
of measurement using the same experimental setup.

Finally, we study the possibilities of using the mentioned position resolving mea-
surement in order to derive upper limits for additional, short-ranged forces that
would cause deviations from Newtonian gravity at lenght scales below one millime-
ter.

Quantenzustände von Neutronen im Gravitationsfeld Es wird ein Experi-
ment vorgestellt, das von Februar bis April 2005 am Institut Laue Langevin (ILL)
in Grenoble, Frankreich, durchgeführt wurde. Dabei wurde mit Hilfe von Neutro-
nendetektoren mit sehr hoher Ortsauflösung die Höhenverteilung ultrakalter Neu-
tronen gemessen, die unter dem Einfluss der Schwerkraft über einer reflektierenden
Glasoberfläche hüpfen. In der Quantenmechanik entspricht diese Höhenverteilung
dem Betragsquadrat der Ortswellenfunktion eines Neutrons.

Eine genaue Analyse der Messdaten ergibt, dass sich diese in guter Überein-
stimmung mit der quantenmechanischen Erwartung für einen gravitativ gebunde-
nen Zustand befinden. Es wird gezeigt, dass die Messergebnisse weder rein klassisch,
noch unter Vernachlässigung des Schwerepotentials beschreiben werden können. Aus
dieser Tatsache wird geschlossen, dass das Experiment starke Hinweise auf eine
Quantisierung der Bewegung im Gravitationsfeld liefert, wie sie von der Quanten-
mechanik vorhergesagt wird und in systematisch anderen Messungen mit dem selben
experimentellen Aufbau bereits nachgewiesen wurde.

Schließlich wird untersucht, inwiefern aus besagten ortsauflösenden Messungen
Obergrenzen für zusätzliche, kurzreichweitige Kräfte abgeleitet werden können. Sol-
che Kräfte würden – bei Abständen unterhalb eines Millimeters – Abweichungen
vom Newton’schen Gravitationsgesetz bewirken.
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Introduction

What is gravity? In many respects this may be one of the most important questions
ever asked. Answers to it have always been milestones on the way from ancient
natural philosophy to modern science. Every physicist knows the legendary free fall
experiments of Galileo Galilei at the dawn of empiricism, forshadowing Newton’s
later formalism of the attraction of masses, itself the very starting point of modern
physics and science as a whole.

Since then, our comprehension of nature has changed. And paradoxally, the ques-
tion that triggered it all is still one of the most obscure. The Standard Models of
Cosmology and Particle Physics describe our world up to its largest and down to its
smallest scales. Doubtlessly, both of these theories deserve being considered among
the grandest cultural achievements in the history of mankind. Yet, they stand sepa-
rate. The presently adopted view of gravity is provided by Einstein’s General Theory
of Relativity and has been unchallenged for almost a century. During this time, par-
ticle physics has firmly established that the three non-gravitational interactions are
governed by the principles of quantum physics, which are inherently incompatible
to the classical field concept of General Relativity. The latter is therefore expected
to, sooner or later, have to be replaced by a quantised theory of gravity.

Since 1999, an experiment at the Institut Laue Langevin in France is redoing
Galilei’s free fall experiments using as probe mass an elementary particle: the neu-
tron. Although earlier attempts using atoms have been undertaken, this experiment
is the first to have detected quantum states in the gravitational field by observing,
at very high spatial resolutions, the motion of ultracold neutrons under the effect of
gravity [Nesv02]. Its results may be considered as a first timid step on the way to
bridge the gap separating gravitation and quantum physics.

This diploma thesis presents a further measurement performed in 2005 using
the mentioned experiment. By means of position resolving detectors, we directly
imaged the height distribution of neutrons bouncing, under the effect of gravity,
a few tens of micrometers above a reflecting surface. Within the framework of
quantum mechanics, this distribution is equivalent to the absolute square of the
neutron’s wavefunction in position space.
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2 INTRODUCTION

In a first chapter of this text, we develop the basic concepts of quantised motion of
an elementary particle in the field of gravity as they can be derived from quantum
mechanics. Additionally, we provide the fundamentals of neutron physics as far
as they are relevant to our experiment. Special attention is payed to the unique
properties of ultracold neutrons, without which the mentioned measurement would
be impossible to realise. The latter is throughoutly described in chapter 2, where
we give an overview of the experimental techniques put into operation and discuss
the data taking processes.

The main focus of this thesis lies on chapter 3, where we further develop the re-
sults from the first chapter into a detailed theoretical description of the experiment
and the measurement process. Within the framework of quantum mechanics, this
yields a prediction of the density distribution of low-energetic neutrons bouncing
under the effect of gravity. In order to rule out possible misinterpretations of the
data, we subsequently oppose this quantum mechanical expectation to two alterna-
tive ones described in chapter 4: The first neglects the effects of quantum mechanics,
the second those of gravity. All three models are compared to the neutron height
distributions that have actually been measured.

Over the last years, a number of theories have arisen which, in an effort to
derive a quantum description of gravity, predict deviations from the Newtonian
gravitational potential at length scales below one millimeter [Ark98] [Ark99]. Thus,
in a last chapter, we study possible upper limits on such deviations that could be
obtained from the type of measurement we have performed.



Chapter 1

Ultracold Neutrons and Gravity

1.1 The Neutron

Over the last decades the neutron has has become a tool of ever increasing impor-
tance to both the fields of fundamental and applied physics.

With a rest mass m = 939.485(51) MeV/c2, the neutron is the second-lightest
member of the baryon octet. As such, it can in principle be used to probe all four
of the fundamental interactions. While this is not astonishing in itself, there are a
few notable properties that do make the neutron special among all baryons: It is
electrically neutral, easy enough to produce and sufficiently long-lived to be a very
practical probe particle.

Additionnally, neutrons may be cooled down to kinetic energies of less than
1 meV, which are then of the same order of magnitude than the potentials of their
fundamental interactions. At the latter we will have a closer look in the following
subsection.

1.1.1 Fundamental Interactions

Neutrons are electrically neutral. In the valence quark model, the neutron consists
of one up and two down quarks and therefore carries an electric charge equal to 0.
The most precise measurement of the neutron charge was performed by Gähler et
al. by observing the deviation of a neutron beam in an electrostatic field [Gähl89].
The experiment yields

qn = (−0.4± 1.1) · 10−21 e

3



4 CHAPTER 1. ULTRACOLD NEUTRONS AND GRAVITY

with e being the electron charge magnitude. It’s neutrality renders the neutron
immune to otherwise all-overwhelming electromagnetic forces and ensures the possi-
bility to probe other, weaker interactions on low energy scales. It makes the neutron
the particle of choice for low-energy physics [Abe02], in contrast to its charged coun-
terpart the proton, typically used in high-energy experiments which overcome the
dominion of electromagnetism at the expense of enormous energy densities.

This having been said, the neutron does take part in electromagnetic interac-
tions through its magnetic moment ~µn. It’s interaction potential with an external
magnetic field ~B reads

Vmag = −~µn · ~B .

The neutron magnetic moment is proportional to the nuclear magneton ~µN:

~µn = −1.9130427(4) ~µN

itself linked to the proton mass mp

µN = |~µN| = eh̄

2mp
≈ 3.152 · 10−8 eV/T .

Thus a neutron inside an exterior magnetic field has got a potential energy of

Vmag ≈ 60 neV/T.

Weak interaction manifests itself most notably through the fact that the free
neutron is unstable. It decays spontaneously into a proton, an electron and an
anti-electron-neutrino:

n −→ p + e− + ν̄e (+782 keV) . (1.1)

Since the proton is the only baryon with lower rest mass than the neutron and
since the energy release is to low to produce heavy leptons, there are no other decay
channels. The decay being governed by weak interaction, the mean lifetime of a
neutron is still quite long. The world average value as of 2004 is [Pdg04]

τn = (885.7± 0.8) s

This time is long enough to provide the opportunity to use neutrons in low-energy
storage experiments.

Being, alongside with the proton, the constituent of atomic nuclei, the neutron
obviously also takes part in strong interactions. A free neutron may be scattered at or
absorbed into the strong potential of a nucleus. Neutrons coupling only very weakly
to electromagnetic fields, strong scattering is the standard way of manipulating
them. With the help of suitably crafted strong potentials, neutrons may be reflected
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at surfaces, guided along tubes, cooled or heated into predefined kinetic energy
spectra.

Strong interaction is also the key to neutron detection: Particle detectors are
typically sensitive to ionising particles only. The neutron being electrically neutral,
it usually needs to be converted, i.e. absorbed into a nucleus which in turn reacts by
either emission of γ-rays or charged particles. These can then be detected through
their electromagnetic interaction with surrounding matter.

Within the framework of this text, we are mainly interested in gravitational
interaction of neutrons with the Earth. Given its mass m = 1.67495 · 10−27 kg
[Pdg04], a neutron’s potential energy as a function of altitude z evaluates to

V (z) = mgz ≈ 100
neV
m

· z[m]

For a neutron, a kinetic energy of 100 neV corresponds to a velocity v ≈ 2.2 m/s.
This means that slow neutrons may be significantly accelerated or decelerated by
falling or raising in the Earth’s gravitational field. It is noteworthy that gravity can
easily be the strongest long-ranged interaction affecting the neutron. The strong in-
teraction being short-ranged and Vmag being weak and easily controlled by magnetic
shielding, low energetic neutrons are prime candidates for the observation of gravi-
tational effects in systems formed by elementary particles. The quantum mechanics
arising from this will be discussed in quite extensive a manner in section 1.2.

1.1.2 Ultracold Neutron Production

As indicated above, free neutrons have a lifetime of approximately a quarter of an
hour. There is therefore little hope of finding them in large quantities in nature as
is true for protons and electrons which are readily available in the form of hydrogen.
Neutrons naturally only occur tightly packed in degenerate, strongly-interacting
Fermi gases. In such systems it is possible that the β-decay (1.1) would be net
endothermic and therefore cannot take place. Nature manifests two realisations of
this situation: In atomic nuclei both neutrons and protons form degenerate Fermi
gases bound in their common strong potential well. For stable (i.e. non-β-active)
nuclei the energy amount required in order to add a proton to the system is greater
than the 782 keV released by the reaction (1.1), as a result, the decay is thermo-
dynamically prohibited. At sufficiently high matter densities, the strong binding
potential may be replaced by a gravitational one. Inside neutron stars, remnants of
red supergiants, neutrons are subject to gravity fields so intense that the increase in
volume of the system related to neutron decay would require a rise in gravitational
potential energy of more than 782 keV. With diameters of order ten kilometres, such
stars therefore almost exclusively consist of neutrons with no possibility to decay.
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For obvious reasons neutron stars could never be very practical devices for labo-
ratory use. The spectrum of possible neutron sources for experimental ends therefore
reduces to atomic nuclei. There are a number of isotopes (e.g. 252Cf) that produce
free neutrons through spontaneous fission reactions. Such sources are small and easy
to maintain but of low intensity. In order to get high neutron fluxes, one has to turn
towards sources involving induced nuclear reactions. Among these there are two
main types: Spallation sources consist of a particle accelerator ‘firing’ onto a target
made of heavy nuclei. Given a suitable choice of isotopes, the incident particle is
absorbed into the target nucleus which reacts to this excitation by evaporation of
neutrons. Although several spallation sources worldwide are expected to come into
operation in the near future, any powerful neutron sources available today provide
stimulated neutron emission through the use of nuclear fission reactors.

The neutron source of the Institut Laue-Langevin (ILL) located in Grenoble
(France), at which the experiment described hereafter was performed, is of this
latter type. We shall therefore explain the production of neutrons on the basis
of this particular setup depicted in figure 1.1. Independently of the reaction being
spontaneous or induced, neutrons emerging from a nuclear fission process will always
carry high kinetic energies of order 1 MeV. The core of the reactor at the ILL consists
of a highly-enriched uranium fuel element immersed into a heavy water tank. Each
fission reaction produces an average number of 2.4 neutrons. Close to the core the
neutron flux density is of the order of 1015 cm−2s−1. By strong scattering at the
deuterons contained in the heavy water (D2O), these high energetic neutrons are
thermalised, i.e. the temperature of the neutron gas adapts itself to that of the D2O-
moderator which is kept at a constant value of 300 K by heat-exchange with a light
water reservoir.

One part of these thermal neutrons is used up in the production of further fission
reactions in the fuel material, the other part is piped through neutron guides towards
the instrumentation halls surrounding the reactor building. Having energies around
25 meV, corresponding to wavelengths of approximately 2 Å, these neutrons are
mainly used in scattering experiments of solid state physics.

For some types of experiments slower neutrons are needed. In a “cold source”,
another, smaller moderator tank filled with liquid deuterium (D2) cooled down to
25 K, the neutrons are further decelerated to have energies of approximately 2 meV
and are then called cold neutrons.

Experiments like the one to be described in this text rely on neutrons of even
much lower energy: Very cold neutrons (VCN, few µeV) and ultracold neutrons
(UCN, below 0.3 µeV). These cannot be obtained through thermalisation but have
to be selected from the lowest energetic tail of the cold Maxwellian spectrum. This
is done by vertically extracting the neutrons using a curved guide (see figure 1.1).
The curvature ensures that incident angles of neutrons onto the guide’s walls are
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Figure 1.1: The UCN source at the ILL: The illustration shows the
fuel element (1), the D2O-moderator tank (2) itself immersed into
the light water tank (3), the cold source (4) from which cold neu-
trons are vertically extracted and piped through the curved VCN
guide (5) and the turbine (6) feeding UCN experiments. (picture
taken from www.ill.fr)

large. Neutrons with velocities above a threshold vmax are unable to follow the guide
as they will penetrate the wall material rather than be reflected at its surface. At
the exit of the curved guide, located 13 m above the cold source, only very cold and
ultracold neutrons are present.

The particle density in the UCN part of the spectrum is then enhanced by
means of the so-called UCN turbine. The turbine consists of 690 nickel coated
blades revolving inside a vacuum chamber connected to the curved guide in such a
way that they recede from the VCN beam at half the speed of the arriving neutrons.
Upon collision with the blades VCN therefore loose longitudinal momentum in the
laboratory frame and are slowed down into the UCN regime. It should be emphasised
that the turbine cannot enhance the phase space density in the UCN energy interval
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above its value inside the cold source. This is in agreement with Liouville’s theorem:
In a thermodynamically closed system, the phase space density is constant for all
times. The turbine is therefore designed to only repopulate the phase space volume
of UCN that have been lost on their way from the cold source.

1.1.3 Interaction of Ultracold Neutrons with Surfaces

Ultracold neutrons have the faculty of being totally reflected at a wide range of
material surfaces under any incident angle. As this unique feature is of crucial
importance to the experiment discussed hereafter, we want to gain some insight
into the underlying principles. As indicated above, the dominating effect in the
interaction of neutrons with matter is strong scattering between neutrons and atomic
nuclei.

Let us sketch very briefly the mechanism of scattering at a nucleus, a detailed
calculation can be found e.g. in [Gol91]: An ultracold neutron with kinetic energy
E ≤ 100 neV is characterised by a de Broglie wavelength of

λ =
h√

2mE
≥ 90 nm . (1.2)

The strong potential of a nucleus can be approximated by a spherical square well
potential:

Vnuc(r) =
{ −V0 : r ≤ R

0 : r > R
(1.3)

The strong interaction being very short ranged, R is about equal to the radius of
the nucleus of order 1 fm and the depth of the well V0 is approximately 40 MeV. If
we represent the incident neutron by a plane wave, the overall wave function in free
space has got the form

ψ = ei~k·~r + f(θ)
eikr

r
(1.4)

as derived in any standard text on quantum mechanics [Schwa98]. We call θ the
scattering angle and f(θ) the scattering amplitude which contains the matrix ele-
ment of the interaction and thereby depends on the shape of the potential Vnuc(r).
However, because of λ À R, we expect the reflected wave to be of spherical shape
(s-wave scattering), which means that f(θ) will not contain any angular dependence:

f(θ) = −a . (1.5)

We call a the scattering length of the nucleus. It is obvious that a has to have
the dimension of a length as from scattering theory one derives that |f |2 is the
differential cross-section of the process:

dσ

dΩ
= |f(θ)|2
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In our case f is independent of the solid angle and the total scattering cross-section
reads

σtot = 4πa2 .

The question arises how to link the measurable quantity a to the scattering
potential Vnuc(r). It is in principle not possible to use perturbation theory to describe
the scattering process, as the perturbation V0 is much larger than the neutron energy
E. However, the range of the potential Vnuc(r) is limited to R and we are only
interested in the shape of the wave function at r À R, i.e. well outside the range of
interaction, where the wave function can be assumed to be only lightly disturbed.
In 1936 Fermi found that under these circumstances Vnuc(r) may be replaced by an
effective, delta-shaped potential [Gol91]

UF (r) =
2πh̄2a

m
δ(3)(~r) , (1.6)

where m is the mass of the scattered neutron and a the scattering length. Named
Fermi Potential after it’s creator, UF permits to compute the scattering matrix
elements in the Born approximation.

A slow neutron impinging onto condensed matter will now feel the superposition
of the nuclei’s individual Fermi potentials:

U(~r) =
2πh̄2

m

∑

i

aiδ
(3)(~r − ~ri) . (1.7)

At each ~ri scattering produces a spherical reflected wave. For ultracold neutrons,
the wavelength λ 3 orders of magnitude larger than the distances separating the
nuclei. Interaction will therefore take place through a large number of simultaneous
scattering processes and equation (1.7) can be approximated by a homogeneous
Fermi potential

U(~r) ≈ U =
2πh̄2

m
· ā · n ,

where the sum over the δ-distributions has been replaced by the particle density
n of the material and ā is the averaged scattering length of the nuclei. U may be
regarded as a macroscopic property of the material. In the last step we have thereby
reduced our complicated scattering problem to a very simple and yet quite correct
mathematical description. The normal motion component of a neutron hitting a
smooth material surface can now be described as one dimensional scattering of a
free particle state at a step potential. For a large variety of materials, |U | is larger
than the typical energy of an ultracold neutron (≤ 100 neV). Their surfaces then
correspond to potential barriers impenetrable to the particles.

In the experiment discussed hereafter, neutrons bounce above glass surfaces.
Optical glass essentially consists of silicon dioxide which is characterised by a Fermi
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potential of
Uglass ≈ 100 neV.

Thus ultracold neutrons can safely be assumed to be totally reflected at its surface.

In fact, UCN may even be defined as being those neutrons which are totally
reflected from the inner walls of neutron guides at all angles of incidence.

1.2 Gravity and Quantum Mechanics

The experiment discussed hereafter measures the gravitational free fall of neutrons
over very small length scales. The dynamics of low-energetic elementary particles
being naturally governed by non-relativistic quantum mechanics, we are therefore
facing the problem of solving the Schrödinger equation in the case of a gravitational
potential.

Although we shall later have to refine and generalise the results obtained from the
following treatment and although the problem of a linear potential is throughoutly
discussed in many standard texts on quantum mechanics [Flü99], it is useful to
address it at this early stage as it allows us to develop most of the concepts needed
in the later chapters of this text.

1.2.1 The Schrödinger Equation

Consider a system formed by the Earth and a particle gravitationally bound to
it. Let ME and m be the masses of Earth and particle respectively. According to
Newton’s Law, the potential energy of such a system is

Ṽ (r) = −G
ME m

r
, (1.8)

where r denotes the distance separating the two centres of mass and G the gravi-
tational constant. We are interested in the case where the particle is located at a
height z above the surface of the Earth which is very small compared to the planet’s
radius RE :

r = RE + z with z ¿ RE

Equation (1.8) can then be expanded up to the first order in z:

Ṽ (z) ≈ −G
ME m

RE︸ ︷︷ ︸
=Ṽ (RE)

+G
ME

R2
E︸ ︷︷ ︸

=:g

mz (1.9)
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Dropping the additive constant to the left, we finally write

V (z) = mgz ,

where g is the Earth’s gravitational acceleration at sea level as defined in equation
(1.9). The Hamiltonian of the above system therefore writes

H =
p2

2m
+ mgz .

It may be worth pointing out that in the last step we have identified inertial and
gravitational mass, i.e. we assume that the Weak Equivalence Principle holds for
our system.

This leads to the following time-independent Schrödinger equation for the par-
ticle’s probability amplitude in position space ψ(z):

(
− h̄2

2m

∂2

∂z2
+ mgz

)
ψ(z) = E ψ(z) (1.10)

In order to simplify mathematical expressions, it is useful and quite common to
introduce a scaling factor R given by

R :=
(

h̄2

2m2g

)1/3

(1.11)

and to define the dimensionless quantities

ζ :=
z

R
; ε :=

E

mgR
. (1.12)

Substituting z → ζ and E → ε in equation (1.10) yields
(
− h̄2

2m

1
R2

∂2

∂ζ2
+ mgRζ

)
ψ(ζ) = mgRε ψ(ζ) ,

and according to the definition (1.11) of R this leads to the following dimensionless
eigenvalue equation: (

− ∂2

∂ζ2
+ (ζ − ε)

)
ψ(ζ) = 0 (1.13)

1.2.2 Airy Functions

The differential equation (1.13) is well known in mathematics. Its eigenfunctions
are linear combinations of the Airy Functions Ai and Bi. The Airy Functions are
transcendental mathematical objects which can be expressed in terms of Bessel Func-
tions. For our purposes, we may safely regard them as ‘normal’ real-valued functions
with the two notable properties depicted in figure 1.2:
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Figure 1.2: The Airy Functions Ai and Bi

1. For ζ → −∞ both Ai and Bi manifest a sin(ζ)-like oscillating behaviour.

2. For ζ → +∞ their behaviours are radically different: Ai converges exponen-
tially fast towards 0 while Bi diverges at the same pace.

Armed with this knowledge, we can return to our Schrödinger equation. The most
general solution ψ(ζ) of (1.13) has the form:

ψ(ζ) = cA Ai(ζ − ε) + cB Bi(ζ − ε) (1.14)

As usual in quantum mechanics, the possible values for the coefficients cA and cB

are determined by the boundary conditions of the system at hand. We shall have
to return to this point at a later stage but, for now, let us consider the case of the
particle falling freely above a reflecting floor placed at z = 0. In addition, the wave
function must be normalisable in order to be a Hilbert-vector. Thus we request

ψ(ζ) = 0 (ζ ≤ 0) (1.15)
ψ(ζ) → 0 (ζ → +∞) (1.16)

This system is often referred to as the ‘quantum bouncer’. Because of

lim
ζ→+∞

Bi(ζ − ε) = +∞

the latter condition can only be fulfilled by setting

cB = 0 .
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Together with the boundary at z = 0, this means that eigenstates of our system
have got the form

ψ(ζ) =
{

N−1Ai(ζ − ε) : ζ > 0
0 : ζ ≤ 0

where N−1 is a factor ensuring the normalisation of the functions. Derivability of
the solution at ζ = 0 requires

Ai(−ε) = 0 . (1.17)

Because of the oscillatory nature of Ai, this means that only particular ε ∈ {εn} are
allowed. Recalling that E = mgRε, we see from equation (1.17) that our system is
characterised by a discrete energy spectrum as expected for any quantum mechanical
bound state.

1.2.3 The WKB Approximation

Ai being a transcendental function, solutions to equation (1.17) can be found by
numerical computation alone. However a very good approximation for the εn can be
given using the Wentzel-Kramers-Brillouin (WKB) method. A detailed description
of the procedure can be found e.g. in [Rueß00]. It yields

εWKB
n =

[
3π

2

(
n− 1

4

)]2/3

; n ∈ N∗ (1.18)

The relations (1.12) can be used to express the energy spectrum in physical units

EWKB
n = mgRεWKB

n =: mgzn , (1.19)

where the entity zn = εWKB
n R corresponds to the classical jump height of a pointlike

particle with energy En. The final result for the solutions of the Schrödinger equation
(1.10) with the boundary conditions given by (1.15) and (1.16) reads

ψWKB
n (z) =

{
N−1Ai

(
z
R − εWKB

n

)
: z ≥ 0

0 : z < 0
. (1.20)

Since the WKB method is a semi-classical approximation, one could expect it to
be valid only in the limit of very high quantum numbers n. However the energies
obtained from (1.18) turn out to deviate from the true eigenvalues by no more than
one percent even for the lowest states. In table (1.1) the WKB eigenvalues of the
first eigenstates as given by (1.18) are compared to those obtained from a numerical
solution of equation (1.17).

Both eigenstates and eigenvalues to the Schrödinger equation (1.10) having been
found, the ‘quantum bouncer’ is now solved. Adopting the values

m = 1.67495 · 10−27 kg and g = 9.80665 m/s2
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n Etrue
n [peV] EWKB

n [peV] ∆E/Etrue
n [%]

1 1.4067 1.3960 0.76
2 2.4595 2.4558 0.15
3 3.3215 3.3194 0.06
4 4.0832 4.0819 0.03
5 4.7796 4.7786 0.02

Table 1.1: True eigenvalues compared to their WKB approxima-
tions

for the neutron mass and the gravitational acceleration, equation (1.20) gives the
probability amplitude in position space for the free-falling particle for a given quan-
tum number n. Figure 1.3 depicts the shapes of the wavefunctions for the first three
quantum states.

1.2.4 Remarks

On the Scaling Factor R: In the case of a free falling neutron as described above,
the scaling factor R, defined by equation (1.11), evaluates to

R ≈ 5.87 µm .

It is the characteristic length scale of the system and closely related to the Heisenberg
Uncertainty Principle, as can be seen as follows [Abe05]: The uncertainty relation
for position and momentum reads

∆z∆p ≥ h̄

2
. (1.21)

If we identify the uncertainty of the momentum p with its maximum value and the
uncertainty of the position with the classical jump height of the particle, we can
write

∆p = pmax =
√

2mE =
√

2m2g∆z

Inserting this into (1.21) leads to

∆z3/2
√

2m2g ≥ h̄

2

or

∆z ≥
(

h̄2

8m2g

)1/3

= 4−1/3 R .

Hence, up to a numerical factor of magnitude O(1), R is equal to the position
uncertainty of the bound particle.
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Figure 1.3: The probability amplitudes in position space for the
first three eigenstates ψWKB

n of the ‘quantum bouncer’

On Gravitationally Bound States: In connection with the ‘quantum bouncer’
it is often stated that quantisation of energies arises because the particle is confined
inside a cavity formed by the gravitational potential and the potential barrier of
the reflecting floor which we have taken to be infinitely high. This potential well is
depicted in figure 1.4.

In the above treatment, quantisation indeed arose due to the introduction of
the boundary condition (1.15). However this does not mean that the absence of a
reflecting floor would result in a continuous energy spectrum. The mathematical
need for a confining potential barrier actually arises from the Taylor expansion (1.9)
of the potential Ṽ (r) which is valid for small absolute values of z only:

Ṽ (z) ≈ −G
ME m

RE
+ G

ME m

R2
E

z .

It is perfectly possible to solve the Schrödinger equation without this limitation, by
directly plugging Ṽ (r) from equation (1.8) into it. We would then get the standard
1/r central potential problem well-known from the quantum mechanics of the hy-
drogen atom. With r being the distance separating the centre of the Earth and the
free falling neutron, the particle’s probability amplitude would then be of the form
[Schwa98]

un,l(r) ∼ rl+1e−κrL2l+1
n+1 (2κr) ,

where n and l are the principal and angular momentum quantum numbers and L
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Figure 1.4: The potential well confining the particle and the first
three eigenstates

denotes the Associated Laguerre Polynomials. The case of a particle located close
to RE would then just correspond to a very high value of n. It can be shown that
for large values of n and r, un,l(r) is well approximated by the Airy function Ai we
have found under the assumption of a perfectly linear potential.

In classical mechanics one derives parabolic trajectories for free-falling pointlike
masses. In fact these are correct only in the case of not-too-high falling altitudes,
the general solutions of the problem being Kepler ellipses. In the very same way one
might state that the solutions (1.20) are approximations of bound central potential
states valid in the homogenous field limit (1.9).



Chapter 2

The Experiment

In the preceding chapter we have discussed the behaviour of an elementary particle
subject to a linear gravitational potential as it is expected from quantum mechan-
ics. Since 1999 our experiment at the Institut Laue Langevin (ILL) analyses this
phenomenon empirically by observing the motion of ultracold neutrons falling onto
totally reflecting glass mirrors at very high spatial resolutions of the order of 1 µm.
The following chapter will describe this setup, will provide an overview of the ex-
perimental techniques involved and explain the measurement performed within the
framework of this diploma thesis in 2005.

2.1 Overview of the Installation

The experimental setup is mounted on the UCN instrumentation platform PF2 of the
ILL, located directly above the reactor core as has been described in section 1.1 (see
figure 1.1). In an experiment seeking to observe such faint an effect as quantisation
in gravitationally bound neutron states, some care obviously needs to be taken in
order to protect the setup against mechanical and electromagnetic perturbations
omnipresent inside a research reactor.

As shown in figure 2.1 the setup consists of a vacuum chamber build on top of a
massive granitic stone table. Accurately polished and plane to very high standards,
this stone supports all the critical components of the setup. The system contains two
high precision digital inclinometers normally used in geophysics and rests upon three
piezo elements. The inclinometers provide information about the setup’s current
inclination with respect to the horizon. This data is fed into a computer which in
turn controls the voltage applied to the piezo elements. Working as a closed loop,
this inclination control system can actively correct the pitch of the stone table and

17
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Figure 2.1: Longitudinal section through the installation. Depicted
are the vacuum chamber (1), the granitic stone table (2), the piezo
legs (3), the inclinometers (4), the optical table (5), the magnetic
shielding (6), the end of the neutron guide (7), the aluminium en-
trance window (8) and the actual experimental setup (9). A de-
tailed view of the latter is shown in figure 2.2.

keep it coplanar to the surface of the Earth with a maximum deviation of 10 µrad
or better. However, the active control system can prevent only slow drifts in the
system’s inclination. In order to provide protection against vibrations and sudden
mechanical perturbations the entire installation is based on an optical platform
hovering on top of an air cushion.

From section 1.1 we recall that the potential energy of a neutron in an external
magnetic field is approximately 10−10 eV/mT. In contrast to this we have seen
in section 1.2 that energy eigenvalues of the lowest gravitationally bound states of
a neutron are of the order of 10−12 eV. The setup therefore has to be given some
protection against magnetic fields. This is done by wrapping it up into a box made of
diamagnetic material (µ-metal), which reduces the field intensity inside the vacuum
chamber by many orders of magnitude and ensures that gravity is effectively the
only long-ranged interaction felt by a neutron.

The experiment is mounted in close proximity to the UCN turbine (c.f. sec-
tion 1.1) which provides the necessary supply of ultracold neutrons. The final seg-
ment of the neutron guide is designed in order to change the beam cross-section from
circular to rectangular shape and fits onto an entrance window in the vacuum cham-
ber covered by a 30 µm thick aluminium foil. This entrance window was designed
to be as transparent as possible for neutrons while still being able to withstand the



2.2. THE WAVEGUIDE 19

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������

�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
�������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������

1

2
3

4
5

6

7

Figure 2.2: Detailed view of the interior of the vacuum chamber:
Shown are the UCN guide (1), the collimating blades (2), the static
collimator (3), the waveguide consisting of scatterer (4) and bottom
mirrors (5), the detector (6) and the supporting glass plate (7). Two
possible trajectories of neutrons capable of entering the waveguide
are indicated in red.

atmospheric pressure onto it’s surface. Because of it’s low Fermi potential

UAl ≈ 54 neV

aluminium is the standard material used for neutron windows. Still, UCN with too
small a velocity component normal to the metal surface cannot pass it (c.f. sec-
tion 1.1). If we assume that any neutron with a a kinetic energy of less than UAl

will be totally reflected at the window while those with higher energy will pass, the
threshold normal velocity component for neutrons entering the vacuum chamber is

v⊥ ≈ 3.2 m/s.

Additionally, there is a small gap of approximately 1 cm between the end of the
neutron guide and the entrance window of the vacuum chamber. Although it further
attenuates the beam, this gap is inevitable, as a direct fixation of the guide to the
vacuum chamber would make vibration protection impossible.

Up to now, we have focused on the peripherals of the setup, whose aim is simply
to screen ultracold neutrons inside the vacuum chamber from all external perturba-
tions but the terrestrial field of gravity. Let us now have a look at the interior of
the chamber, where the actual experiment takes place.

2.2 The Waveguide

We want to observe quantum states of ultracold neutrons bouncing above a totally
reflecting floor under the effect of gravity, as discussed in chapter 1.2. Physically,
the reflecting floor is realised by a set of two optical glass mirrors. The glass is
characterised by a positive Fermi potential of around 100 neV. On the other hand
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we know, from our preceding theoretical treatment, that characteristic energies of
vertical motion for the lowest bound states are of the order of a few peV, i.e. 5 orders
of magnitude lower. The potential of the glass may therefore as well be considered
as infinitely high.

The experimental setup is depicted in figure 2.2. Through the use of a collimating
system, neutrons arriving from the left of the picture are guided along ballistic
trajectories onto the surface of the first of the glass mirrors (5), which they hit at
an angle close to zero. The collimating system consists of a static collimator (3)
inside the vacuum chamber as well as of two adjustable titanium blades (2) masking
part of the entrance window. It will be throughoutly discussed in the next chapter.
For the moment we state without proof that the effect of the collimator is that
neutrons reaching the glass surface have got horizontal velocities of 6-7 m/s while
their vertical velocities are of the order of a few cm/s only. Thus only a very narrow
part of the original, isotropic velocity spectrum delivered by the turbine is selected,
which drastically reduces the neutron flux. However this selection is necessary as
even the typical energies around 10 neV of ultracold neutrons are several orders of
magnitude higher than the energies of the lowest gravitationally bound states.

The glass mirrors have sizes of 10 · 10 cm2 each and are crafted to the highest
standards achievable in order to have surfaces both microscopically smooth and
macroscopically plane to very high degrees. In 1999, A. Westphal analysed the
surface of a mirror similar to the ones described in this text by means of X-ray
scattering [Wes01] [Wes99]. It was found that the root mean square amplitude of
the surface roughness was

ρmirror = (2.20± 0.01) nm.

This value is perfectly negligible compared to the neutron wavelength of around
100 nm, hence we may safely regard the mirror surfaces as planes in the mathematical
sense and assume that UCN hitting them are reflected in a completely specular
manner. This allows us to decouple the two components of motion: The vertical
motion is expected to show the quantum behavior we have derived in section 1.2. The
horizontal velocity component of the neutrons, i.e. their motion along the mirrors,
is completely unaffected by the setup and corresponds to that of a free particle.

Coplanar to the first bottom mirror, typically placed a few tens of µm above
it, we placed the so-called scatterer (4). In order to observe quantum effects, we
will have to concentrate on the very first few quantum states and it turns out that,
even after the severe velocity selection performed by the collimator, neutrons with
too high a transverse energy are found on top of the mirror. Using a mechanism
known to work but not well understood, the scatterer is supposed to ‘remove’ those
neutrons occupying states too high to be useful to discriminate between classical
and quantum mechanical dynamics. It is made out of the same optical glass as
the bottom mirrors and features the same degree of macroscopic flatness. But, in
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contrast to the mirrors, it has been treated in order to ensure a large microscopic
roughness of it’s surface which is thought to scatter impinging neutrons in a totally
diffuse manner, such that they are effectively lost to the system. In 2001, the surface
of a typical scatterer was imaged by means of an atomic force microscope [Wes01].
The measurement revealed an RMS roughness amplitude of

ρscatterer = (0.76± 0.02) µm.

In contrast to the mirror roughness, this value is larger than the typical neutron
wavelength which corroborates the diffuse scattering hypothesis. The part of the
setup consisting of the two bottom mirrors and the scatterer will hereafter often
be referred to as the ‘waveguide’. This term is however not to be understood in
the sense it is used e.g. in optics, where it commonly denotes a device that trans-
mits all field modes indifferently, without the selection effect that characterises our
scatterer/mirror system.

One important aspect of the waveguide is not visible in figure 2.2: The second
glass mirror is shifted downwards relative to the first one by 13.5 µm. Neutrons
propagating along the mirrors will gain some vertical velocity and thereby energy
by falling down this step. Its effect can be completely understood only within the
framework of a detailed quantum mechanical treatment to follow in the next chapter,
it is however noteworthy that the size of the step has not been chosen randomly:
Recalling equation (1.19), we see that it approximately corresponds to the classical
jump height zn of the first quantum state:

z1 ≈ 13.7 µm

Hence, after passing the step, no neutron will occupy the gravitational ground state,
as all will have energies at least equal to the second eigenvalue. A correct mathe-
matical analysis of the system will show that in this regime, the quantum nature of
the system will be more pronounced and therefore easier to detect.

After having travelled the 20-cm long mirror surface, neutrons impinge onto a
neutron detector (6) mounted directly at the back edge of the second mirror. The
experiment uses two types of detectors, both of which can be used in order to measure
quantisation of the vertical motion component of neutrons passing the waveguide:

1. A 3He proportional counter is used to measure the integral neutron flux trans-
mitted by the setup.

2. High resolution position sensitive detectors directly measure the neutron’s
probability density in position space.

While this work heavily focus on the latter type of measurement, both detectors will
be presented in the following sections.
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2.3 Integral Flux Measurements

One possible way of detecting gravitationally bound quantum states above the mir-
rors is to vary the waveguide width w, i.e. the height of the scatterer above the first
mirror and measure the neutron flux arriving at the end of the second mirror as
a function of it. The first such measurement was performed by V. Nesvizhevsky,
H. Abele et al. in 1999 and has been published in [Nesv02].

The neutron flux was measured using a 3He proportional counter with a thin
aluminium entrance window placed directly at the end of the second mirror. As in-
dicated in the preceding chapter neutrons are lacking electric charge and are consec-
utively incapable of ionising atoms or molecules by interaction with their electronic
shells. ‘Normal’ proportional counters as used in dosimetry of charged particles and
γ-rays are therefore insensitive to neutron radiation. This limitation can however
be overcome by admixture of a neutron converter to the counting gas.

3He is the standard converter for gas proportional counters. A neutron entering
the counting volume is absorbed by a 3He nucleus via a neutron capture reaction:

n + 3He −→ 3H + p (+764 keV)

The released energy is carried by the emerging proton and triton and subsequently
absorbed into ionisation of counting gas particles. From here on the detection process
proceeds as in any proportional counter: The clouds of free charge carriers are
accelerated and amplified by an intense electric field and lead to a discharge inside
the capacitor enclosing the decay volume. The counting tube used in this experiment
was designed by A. Strelkov to have a very low background at a detection efficiency
for ultracold neutrons close to 100%.

Figure 2.3 depicts the flux measurement of 1999: The width of the waveguide
was varied using a piezo levelling system which permitted to adjust the height of
the scatterer above the bottom mirror with an accuracy of about 1 µm. Classically,
one would expect the count rate to rise monotonously as the width of the waveguide
increases. However the data reveals a threshold behavior: At scatterer heights
smaller than

wthres = (13± 2) µm,

the count rate of the detector is constant at background level. It rises noticeably
only at slit sizes w larger than 15 µm. This height precisely corresponds to the
semiclassical turning point of the first quantum state

zWKB
1 ≈ 13.7 µm,

as given by equation (1.19). It was therefore concluded therefore concluded that the
threshold effect in the count rate is due to quantisation of vertical motion within
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Figure 2.3: The integral flux measurement of 1999. The solid red
line represents the flux expected from classical mechanics. (V. Nes-
vizhevsky, H. Abele et al.)

the waveguide. In a simplified view of things one may argue that at slit widths
smaller than zWKB

1 , no quantum state ‘fits’ beneath the scatterer and that as, a
consequence, no neutron can pass the waveguide.

This measurement is generally considered as the first observation of gravitation-
ally bound quantum states worldwide. Details about data taking and analysis can
be found e.g. in [Rueß00] or in [Wes01].

2.4 Position Sensitive Measurements

Although the integral flux measurements have been a tremendous success, they
were always thought of as an interim solution. The final goal of the experiment has
always been the direct observation of quantisation of vertical motion through the use
of position resolving detectors. The idea is to measure the height above the second
mirror for each neutron arriving at its back end. If this can be achieved at sufficiently
high spatial resolution, the measured height distribution should correspond to the
absolute square of the probability amplitude in position space for one neutron as
derived in chapter 1.
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2.4.1 The CR39 Nuclear Track Detector

Over the last years such detectors has been developed and refined, much of this
work having been done by A. Gagarsky, S. Nahrwold et al.. S. Nahrwold devotes a
major part of her diploma thesis [Nahr05] to the position sensitive detector and the
data extraction process and presents some further detail we shall omit for the sake
of clarity.

Nuclear track detectors are devices commonly used in nuclear physics as well as
in medical dosimetry. Their operating principle is very simple: The detector consists
of a homogeneous, transparent material, mostly a glass or, as in our case, a solid
polymer. A high energetic charged particle impacting into the material disrupts any
chemical bonds on its path through the polymer. It thereby leaves a track in the
form of submicroscopic defects in the resin. Subsequently the detector is immersed
into an etching solution such as NaOH(aq). Along the nuclear traces, the polymer
is corroded and dissolved at a faster rate than at the bulk of the material. Thus
the etching corresponds to a development process, which enlarges the molecular
damages left by the passage of charged particles up to a size detectable through
standard optical microscopy.

The detector material we use is known under the brand name of CR39. De-
veloped in the 1940’s by the Columbia Southern Chemical Company, it is today
manufactured under license worldwide, mainly to be used as optical lenses for sun-
glasses. Our detectors are supplied by Intercast Europe S.p.A. (Italy) and come in
the shape of 1.5 mm thick blades of dimensions 1.5 · 12 cm2, i.e. they perfectly suit
the length of the mirror edge. In order to detect neutrons using the CR39 detector,
just as in the case of the proportional counter tube, we have to first convert them
into charged particles. This is achieved by coating the CR39 surface with a thin
convertor layer. Of thickness around 200 nm, this layer can consist of either 235UF4

or 10B, both of which are applied by evaporation and subsequent condensation at
the polymer surface. Through capture reactions similar to that of 3He, neutrons are
converted into charged particles which then leave traces in the detector, as described
above.

10B + n −→
{

α + 7Li + γ (93%)
α + 7Li (7%)

(+2.8 MeV)

235U + n −→ X + Y + a n (+Q)

The latter is the very same fission reaction that takes place within a uranium-fueled
nuclear reactor. The atomic weights of the fission products X and Y are statistically
distributed around 95 and 135. The average number of produced neutrons a is
2.4. In contrast to the boron capture reaction, the energy release Q lies well above
100 MeV, most of which is carried by the heavy fission products which therefore
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Figure 2.4: Photograph of a uranium-coated detector after irra-
diation and etching. The black ‘darts’ are traces left by fission
fragments, unlike the dark spot to the right of the picture which
results from a natural defect in the polymer. The horizontal line at
the top is a scratch on the detector surface. The dimensions of the
picture are approximately 300 · 200 µm2.

essentially fly back-to-back. As stated above, the neutrons emerging from the decay
carry energies around 1 MeV each, as a consequence the probability of a secondary
capture reaction within the thin uranium fluoride coating is negligible. This ensures
that the capture reaction will normally leave only a single, long nuclear trace in the
detector.

Subsequent to irradiation with UCN, the detectors are developed for approxi-
mately one hour in a bath of sodium hydroxide of molarity 1, at a constant tem-
perature of 45◦C. This etching process enlarges the submicroscopic nuclear traces
to small ‘tunnels’ of diameters around 1 µm and of depths of 10 µm or more. They
are then easily visible under an optical microscope. Figure 2.4 shows the typical
appearance of an irradiated detector surface after development.
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detector no. w (approx.) exposure time length read out total counts
6 25 µm 60(1) h 73 mm 1883
7 50 µm 80(1) h 102 mm 13975

Table 2.1: Comparison of neutron exposures for the two detectors

2.4.2 The Measurements

The measurements described in this text were performed in 2005 using 235UF4 coated
detectors. Mounted into a brass holder designed to this end, the detector is placed
directly against the edge of the second bottom mirror (see figure 2.2). Unlike for
flux measurements, the height of the scatterer is now fixed at a chosen value while
neutrons travel the waveguide and impact onto the conversion layer of the detector.
Unfortunately the piezo leveling system which normally allows to adjust the scatterer
height with an accuracy of better than 1 µm was unavailable during this experimental
run. Therefore the width of the waveguide had to be set up using mechanical spacers
placed between bottom mirror and scatterer and is not really a measured quantity.

Two measurements have been made: One detector (‘detector 6’) was irradiated
with a waveguide width w of approximately 25 µm. For the second measurement
(‘detector 7’) we aimed at a width of w = 40 µm, however analysis of the data
shows that a true value of around 50 µm is more likely. Anyway, not having been
determined independently with high enough accuracy, the scatterer height will have
to be considered as a free parameter in any analysis of the data.

As can be seen in figure 2.3, the neutron flux transmitted by the waveguide at
these scatterer heights can be expected to be of orders 0.01 s−1 and 0.1 s−1 for
the 25-µm and 50-µm measurements respectively. In order to collect high enough
statistics, the detectors therefore have to be exposed to the neutron beam for quite
a while. Table 2.1 shows the exposure times for the two measurements. During
measurement, our installation had to share the UCN beam with up to two other
experiments on a turn-by-turn basis. Additionally mechanical perturbations caused
by heavy machinery operating inside the reactor building often made it impossible
to measure during normal working hours. Accumulating the 60 respectively 80 hours
of net irradiation reported in table 2.1 thereby effectively required around a week’s
time for each of the two measurements.

2.4.3 The Data Extraction Process

Once irradiated, the convertor coating was removed from the detectors and the CR39
etched in NaOH(aq) as described above. Then the position of each track found on the
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Figure 2.5: Raw data from the position sensitive detectors. Top:
25-µm measurement, bottom: 50-µm measurement. The effect of
detector deformation is clearly visible.
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detector needed to be recorded. This task is performed with the aid of a standard
optical microscope equipped with a CCD camera. The area of the detector which
was actually hit by neutrons emerging from the waveguide is clearly indicated by
thousands of almost perfectly aligned fission fragment traces. The vertical extension
of this line is approximately equal to the width of the waveguide and fits well inside
the cameras field of view of 300 · 200 µm2 (see figure 2.4). Horizontally on the
other hand, the traces are spread over the entire length of the detector. Using an
automatic translation stage holding the detector we therefore had to take a series
of over 300 pictures along the 10 cm of sensitive detector area for each of the two
measurements.

There have been multiple attempts to write a computer program which would
recognise the nuclear tracks on these photographs and thereby extract the position
information from the detectors in an automated way. Up to now however, none
of these programs works in a reliable manner. Too diverse are the shapes of the
traces, too numerous the defects in the CR39 arising from other causes. This part
of the readout process is therefore entirely manpowered. One by one, the pictures
were visualised on a computer screen and the coordinates of each track recorded. In
principle the accuracy with which the coordinates can be determined is limited by
the resolution of the microscope alone and could be better than 1 µm. However, the
idea that the resolution of the vertical neutron distribution measurement would be
that good is illusory. The reasons for this are manifold:

1. As stated above, the etching process not only enlarges the nuclear tracks, but
also removes material from the bulk of the detector. The entrance point of a
track into the detector after development does therefore not exactly correspond
to that of the original fission fragment.

2. The detector actually does not detect neutrons but fission fragments emerging
from the above conversion reaction. This reaction takes place within the UF4

coating, i.e. up to 200 nm above the CR39 surface. As a result, fragments
impacting at a narrow angle hit the detector relatively far (up to half a µm)
from the location of the actual capture reaction.

3. There is no guarantee that the translation axis of the microscope stage is
parallel to that defined by the mirror edge during irradiation. We therefore
expect the data to manifest an inclination relative to the true horizon.

4. During etching the detector heats up and bends under the effects of thermal
stress. Although care is taken to render this process as gentle as possible, part
of this deformation is irreversible.

In contrast to the first, the latter two resolution lowering effects can be measured
and corrected as will be described in the next subsection. Figure 2.5 shows the raw



2.4. POSITION SENSITIVE MEASUREMENTS 29

0 50 100 150 200

0

10

20

30

co
un

ts
 [µ

m
-1
]

vertical position [µm]

 slice B (5 mm - 10 mm)

Figure 2.6: Track height distribution for a given slice of 5 mm for
the 50-µm measurement. In this example, the onset of the distri-
bution, i.e. the height corresponding to 20%maximal track density,
corresponds to approxiamtely 80 µm.

data recorded from the two detectors. Especially for the 50-µm measurement, which
collected a lot more statistics, curvature and inclination of the data are clearly visi-
ble. The deformation causes approximately 7 µm of vertical deviation per centimeter
detector length.

2.4.4 Data Corrections

For the 50-µm measurement statistics is so high that inclination and curvature
corrections could be determined from the dataset itself. Therefore we considered
vertical slices of lengths 5 mm of the detector and had a look at height distribution
histograms in each of them as shown in figure 2.6. For each of these small subsets of
data the onset of the distribution, i.e. the height corresponding to 20% maximal track
density, was determined. The data points obtained in this way were interpolated
into a polynomial which was then used to correct curvature and inclination of the
original dataset. A limitation of the microscope translation stage prevented taking
datasets longer than 73 mm from the detector in one run. In order to extract all
10 cm of data, a similar procedure was used in order to pile-up three partial datasets.

As one easily sees in figure 2.5, statistics is much lower for the 25-µm measure-
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ment. The curvature of the detector therefore had to be determined in an indepen-
dent way. After the main measurement, the detector was shifted downwards relative
to the mirror edge by 100 µm and the waveguide opened to a very large width w.
This results in a sharp ‘edge’ formed by tens of thousands of nuclear traces on the
detector. Since the mirror is known to be flat to very high standards [Roc05], any
curvature of this edge, which can be determined in a manner similar than presented
for the 50-µm measurement, must be due to detector deformation. The detector
having been shifted in between, the inclination of the edge obviously does not cor-
respond to that of the actual measurement. The data having been corrected for
curvature, the inclination was therefore corrected by minimising the width of the
height distribution of nuclear traces. Due to the lack of statistics it was impossible
to sum up different parts of this detector, hence only a part of 73 mm out of 10 cm
has been taken into account.

Figure 2.7 shows the data from the two detectors after inclination and curvature
corrections have been applied.

The information we are finally interested in is the height distribution of neutrons
impinging onto the detectors. Figure 2.8 presents the height histograms obtained
from the final (corrected) datasets using bin sizes of 1 µm. The errorbars indicated
in the plots are Poisson-statistical standard deviations. It is noteworthy that, at the
onset of the distribution, the track density rises to a maximum value within a few
bins only (see especially the 50-µm measurement). This already indicates that the
achieved detector resolution is as good as very few micrometers.
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Figure 2.7: Data from the 25-µm (top) and 50-µm (bottom) mea-
surements respectively, corrections for detector curvature and incli-
nation having been applied
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respectively.



Chapter 3

Quantum Mechanical Analysis

In the preceding chapter we have presented how the probability density distribution
of neutrons bouncing above the mirror surface has been measured. In the following
we will develop a model describing this experiment within the framework of quantum
mechanics. In section 1.2 we already discussed the problem of a particle bouncing
freely above a reflecting surface. Our physical system is however more complicated
than this theoretical toy model. In order to understand all features found in the mea-
surements we will therefore have to generalise and extend our previously obtained
results.

3.1 Observables of the Measurement

The first question to ask is: “What has been measured?” Although it may seem
obvious, the answer to this question is of so crucial an importance to any quan-
tum system that it cannot be stressed enough. As we know from the fundamental
principles of quantum theory [Schwa98], the measurement of a quantity related to a
system can only yield eigenvalues an of the operator A corresponding to this mea-
suring process. an having been measured, the system is projected into the eigenstate
ψn. These three objects are related by the eigenvalue equation of the operator:

Aψn = anψn

Furthermore, if a system’s wavefunction can be written as a superposition of eigen-
functions of A

Ψ =
∑
n

cnψn , (3.1)

it follows from the axioms of quantum mechanics that the absolute square of an
expansion coefficient |cn|2 corresponds to the probability of measuring the associated

33
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eigenvalue an.

In a language more suited to experimental physics, we say that the measurement
of an observable A may yield one out a set of values {an}. The measurement modifies
the system in such a way that from all subsequent measurements of this type we
shall obtain the very same result than from the first one.

3.1.1 Quantum Mechanical Position Measurement

Let us have a look at how this formalism applies to our experiment. The solutions
of a Schrödinger equation like (1.10) are eigenstates of the Hamilton operator H.
The latter corresponds to the observable quantity energy. Thus the ψn we found in
equation (1.14) are eigenstates corresponding to energy eigenvalues:

Hψn = Enψn

However, the position resolving detector does not measure energy. Our observable
is the height z of a neutron above the mirror. There is therefore no reason to expect
the neutron’s wavefunction to be projected into one of the eigenvectors ψn of the
Hamiltonian.

Let Ψ(z) be the overall wavefunction of the neutron subject to the gravitational
potential and the boundaries imposed by the waveguide. Let ζ be the eigenvalues of
the position operator z. Our measurement inherently solves the eigenvalue equation

zψζ(z) = ζψζ(z)

with the obvious solutions
ψζ(z) = δ(z − ζ) .

The ψζ form a continuous spectrum of eigenfunctions of the position operator z,
fulfilling the orthogonality and completeness relations

∫
dz ψ∗ζ (z)ψζ′(z) = δ(ζ − ζ ′) ,

∫
dζ ψ∗ζ (z)ψζ(z′) = δ(z − z′) ,

which permits us to expand the wavefunction Ψ(z) in eigenfunctions of z:

Ψ(z) =
∫

dζ Ψ(ζ)ψζ(z) (3.2)

As we can see, equation (3.2) is the precise counterpart of (3.1) in the case of a
continuous eigenvalue spectrum. Thus (3.2) states that the overall wavefunction
Ψ(z) is a superposition of position eigenstates ψζ(z) with expansion coefficients
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given by Ψ(ζ). As a consequence, |Ψ(ζ)|2 is the probability density of measuring a
position z = ζ. The wavefunction Ψ being identical to it’s position spectrum reflects
the fact that Ψ(z) is derived by solving the Schrödinger equation in position space,
as indeed we have done in section 1.2.

Thus the height measurement z does not imply further restrictions on Ψ as long
as the latter is expressed in position space. The only requirement is that Ψ must be
a solution of the Schrödinger equation, i.e. that it can be expanded into a series of
eigenfunctions ψn:

Ψ =
∑

n

cnψn (3.3)

The height distribution of neutrons above the mirror surface is then directly given
by |Ψ|2.

3.1.2 Time Dependence

Up to now, all of our calculations have been time-independent. However, this pro-
cedure is in principle not correct. If, through an equation like (3.3), we admit that
the wavefunction Ψ may be not a pure but a superposition of eigenstates, we have
to account for potentially arising interference terms. That is, we have to consider
states ψn that are solutions of the time-dependent Schrödinger equation

Hψn(z, t) = ih̄
∂

∂t
ψn(z, t) .

Luckily, the ψn(z, t) can be derived from the time-independent eigenstates ψn(z)
using the time development operator:

ψn(z, t) = ψn(z) exp
(
− i

h̄
Ent

)

As the position operator z does not act on the time-dependent parts of the functions,
all of our above considerations continue to hold. However, we can now rewrite
equation (3.3) emphasising the time dependence of Ψ:

Ψ(z, t) =
∑

n

cnψn(z, t) =
∑
n

cnψn(z) exp
(
− i

h̄
Ent

)
(3.4)

Expansion of this time-dependent Ψ(z, t) analogous to equation (3.2) simply leads
to coefficients which are also time-dependent and given by Ψ(ζ, t):

Ψ(z, t) =
∫

dζ Ψ(ζ, t)ψζ(z)
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This means that, in principle, the height density distribution |Ψ(z, t)|2 is time-
dependent too:

|Ψ(z, t)|2 = Ψ(z, t) ·Ψ∗(z, t)

=

(∑
n

cnψn(z, t)

)
·
(∑

m

cmψm(z, t)

)∗

(3.4)
=

∑
n,m

cnc∗mψnψ∗m exp
[
− i

h̄
(En −Em)t

]

=
∑

n

|cn|2|ψn|2 +
∑

n6=m

cnc∗m ψnψ∗m exp
[
− i

h̄
(En − Em)t

]

=
∑

n

|cn|2|ψn|2 +
1
2

∑

n6=m

2 cnc∗m ψnψ∗m cos
[

t

h̄
(En − Em)

]

The last identity holds since both the eigenstates ψn(z) and the expansion coefficients
cn are real numbers, i.e. because of

cnc∗m ψnψ∗m = cmc∗n ψmψ∗n .

We shall now show that in our experiment the time dependent part of |Ψ(z, t)|2
has an expectation value equal to zero, i.e. that

〈∑

n6=m

cnc∗m ψnψ∗m cos
[

t

h̄
(En − Em)

]〉
= 0 . (3.5)

The reason for this is that the horizontal velocity spectrum of neutrons entering the
waveguide is quite broad. This velocity distribution has been measured in 2002 by
V. Nesvizhevsky et al. using the system’s collimating system. This measurement has
been published in [Nesv05] and yielded an approximately Gaussian velocity spectrum

Pvx(vx) =
1√

2πσvx

exp
(
−1

2
(vx − vx)2

σ2
vx

)
(3.6)

of mean
vx = 6.3 ms−1 (3.7)

and of width
σvx = 1.1 ms−1 .

Over a distance of 10 cm, i.e. over the length of one bottom mirror, this velocity
distribution results in a time-of-flight spectrum of width

∆tToF ≈ 10−2 s ,

as can be seen from figure 3.1. On the other hand, the period τ of the cosine in
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Figure 3.1: The time-of-flight spectrum derived from (3.6) for neu-
trons traveling a horizontal distance of 10 cm, corresponding to the
length of one bottom mirror

equation (3.5) is

τ =
2πh̄

En − Em
=

2πh̄

∆E
.

Recalling from table 1.1 that energy differences in gravitationally bound states can
hardly be smaller than about 1 peV, we can give an upper estimation on τ :

τ =
2πh̄

∆E
≤ 2π · 6.6 · 10−16 eV · s

10−12 eV
≈ 4 · 10−3 s

Thus we have ∆tToF ≥ 2τ , and we expect that the measurement of |Ψ|2 will average
over at least two periods of oscillation of the time-dependent cosine terms. As a
consequence, the latter will cancel each other out. Equation (3.5) is thereby verified
and |Ψ(z, t)|2 reduces to

|Ψ|2 ≡ |Ψ(z)|2 =
∑

n

pn · |ψn(z)|2 , (3.8)

where we have introduced the state populations

pn = |cn|2 .

Equation (3.8) states that the height distribution |Ψ(z)|2 we expect to measure
using a position resolving detector is a purely incoherent superposition of the time-
independent eigenstates ψn of the Hamilton operator. The populations pn reflect
the contributions of the individual eigenstates to the integral probability density.
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3.2 The Quantum Mechanical Waveguide

The results from the preceding section leave us with quite clear an idea about what
is the observed quantity in our experiment. Additionally, we have gained a basic
understanding of how the measured height distributions, as depicted in figure 2.8,
have to be interpreted. Neutron heights above the mirror should be distributed
following |Ψ(z)|2. The latter is, according to equation (3.8), determined by

1. the eigenstates ψn of the time-independent Schrödinger equation and

2. the populations pn of these states.

Thus, in order to come to a quantum mechanical understanding of the measurements,
it is imperative to gain some insight into both of these factors.

3.2.1 Eigenstates

In section 1.2 we already solved the Schrödinger equation for a particle in a linear
gravitational potential. This treatment led us to the eigenstates of the ‘quantum
bouncer’ given by equation (1.20)

ψWKB
n (z) =

{
N−1Ai

(
z
R − εWKB

n

)
: z ≥ 0

0 : z < 0
,

with the reduced energy eigenvalues εWKB
n given by equation (1.18). These solutions

were derived using the boundary conditions (1.15) and (1.16) which read

ψ(z) = 0 (z ≤ 0)
ψ(z) → 0 (z → +∞) .

Let us have a look at the schematic drawing of the waveguide in figure 3.2. As
depicted, we can discern three regions in the setup, defined by the positions of the
mirror step and the edges of the mirrors and scatterer. It is clear that there is only
one region that has boundary conditions similar to (1.15) and (1.16), namely the
7-cm long part of the second mirror (region III) which is not covered by the scatterer.

Eigenstates in Region III

Let us agree that the height z = 0 corresponds to the surface of the first mirror, the
surface of the second mirror is then located at z = −s where

s = (13.5± 0.5) µm
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Figure 3.2: Schematic drawing of the waveguide. We distinguish
three regions (I, II and III) with different boundary conditions.
0 denotes the free space between the collimator blades and the
entrance slit. The waveguide width w and the size of the step s are
expanded in order to be visible in the picture.

is the height of the mirror step, measured using a mechanical comparator (see chap-
ter 2). As a consequence, the boundary conditions in region III are

ψIII(z) = 0 (z ≤ −s)

ψIII(z) → 0 (z → +∞) .

The corresponding eigenstates are therefore of the form given by equation (1.20),
with the origin of heights shifted towards −s:

ψIII
n (z) =

{
N−1Ai

(
z+s
R − εWKB

n

)
: z ≥ −s

0 : z < −s
(3.9)

The reduced energy eigenvalues εWKB
n continue to be given by equation (1.18) and

the factor N−1 ensures normalisation of the states.

Equation (3.9) is a very noteworthy result. As by ‘region III’ we understand
the space directly in front of the detector, the ψIII

n actually are the eigenstates
ψn entering into equation (3.8) describing the height distribution. However, for
reasons to become clear in the following subsection, we need to solve the Schrödinger
equation in regions I and II of the waveguide as well, where, due to the presence of
the scatterer, the boundary condition (1.16) is no longer correct.

Eigenstates in Regions I and II

The scatterer is manufactured out of the same optical glass than the bottom mirrors
and therefore corresponds to a Fermi potential step of equal height

U ≈ 100 neV .
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With its surface placed at a height z = w, the wavefunction will thus have to
vanish at a height close to w. However, in contrast to the mirrors, the scatterer
is characterised by a large surface roughness (see chapter 2). The corresponding
potential step will therefore not be infinitely sharp, but washed out over a length of
about

2ρ = 2ρscatterer ≈ 1.5 µm ,

where ρscatterer is the RMS roughness amplitude as reported in chapter 2. Because
of this relatively smooth rise of the Fermi potential, the wavefunction does not have
to vanish exactly at z = w but may tunnel into the scatterer potential. A detailed
analysis of this behavior can be found in [Wes01]. The penetration depth of the
wavefunction into the scatterer will obviously be related to the roughness amplitude
ρ, thus we assume that it is equal to 2ρ. The waveguide width w having been set up
using spacers placed between mirror and scatterer, we further assume that w is the
location of the lowest tips of the surface roughness. Consequently, the wavefunction
has to vanish at a height h with

h = w + 2ρ . (3.10)

Let us now have a look at region I of the waveguide. Independent of boundary
conditions, we found that solutions of the Schrödinger equation (1.10) are given by
equation (1.14):

ψ(ζ) = cA Ai(ζ − ε) + cB Bi(ζ − ε)

We recall that ζ and ε are the reduced position and energy, related to the physical
quantities z and E by the scaling factor R defined in equation (1.11):

ζ :=
z

R
; ε :=

E

mgR
(3.11)

The boundary conditions in region I read

ψI(ζ) = 0 (ζ ≤ 0) (3.12)

ψI(ζ) = 0 (ζ ≥ h/R) (3.13)

and correspond to the set of linear equations
{

cA Ai(−ε) + cB Bi(−ε) = 0
cA Ai(h/R− ε) + cB Bi(h/R− ε) = 0

.

Thus equation (3.12) states
cA

cB
= −Bi(−ε)

Ai(−ε)
(3.14)

which, together with (3.13), leads to an equation relating ε and the scatterer height1

h:
Ai(h/R− ε) Bi(−ε)−Ai(−ε) Bi(h/R− ε) = 0 (3.15)

1In order to account for the slight but important difference between h and w given by equation
(3.10), we shall in the following name the first ‘scatterer height’ and the latter ‘waveguide width’.
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Figure 3.3: Energy eigenvalues obtained from equation (3.15) for
the first six bound states in region I as a function of the scatterer
height h

Equation (3.15) can be solved numerically. For each scatterer height h it yields
a set of solutions {εn(h)}, where n is again a quantum number. Figure 3.3 depicts
the first six energy eigenvalues as a function of scatterer height h.

We clearly see that, for large scatterer heights, the eigenvalues converge towards
their counterparts reported in table 1.1. This is expected, as in the limit h → ∞
the boundary condition (3.13) becomes equivalent to (1.16). For h → 0 on the
other hand, the gravitational potential becomes more and more insignificant and
the neutron essentially feels a square well potential. Thus we expect the eigenvalues
to behave like En ∼ n2, which is also visible in figure 3.3.

Combining the general solution (1.14) of the Schrödinger equation with (3.14)
and with the εn(h) obtained from (3.15), we obtain the eigenstates of the system in
region I:

ψI
n(z) =

{
N−1

{
Ai

[
z
R − εn(h)

]− Ai[−εn(h)]
Bi[−εn(h)] Bi

[
z
R − εn(h)

]}
: 0 < z < h

0 : else
(3.16)

Again, N−1 is a normalisation factor.

The states in region II differ from those in region I only by the position of the
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3 is largely
unaffected by it.

lower boundary condition. Instead of (3.12) and (3.13) we now have

ψII(ζ) = 0 (ζ ≤ −s/R)

ψII(ζ) = 0 (ζ ≥ h/R) .

Analogous to equation (3.16), we thus find the eigenstates in region II of the wave-
guide:

ψII
n (z) =





N−1
{
Ai

[
z+s
R − εn(h + s)

]

−Ai[−εn(h+s)]
Bi[−εn(h+s)] Bi

[
z+s
R − εn(h + s)

]}
: −s < z < h

0 : else
(3.17)

In contrast to their counterparts in region III, the eigenstates (3.16) and (3.17)
can only be computed numerically as we have no simple approximation formula for
their eigenvalues. Nevertheless we have now solved the Schrödinger equation in all
three of the regions of the waveguide. As an example, figure 3.4 shows an eigenstate
of region I and II respectively.
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3.2.2 Transitions within the Waveguide

Having found eigenstates for the waveguide we now turn towards the problem of
determining the populations pn of these states. As a neutron travels the waveguide
it is represented by a different wavefunction Ψ in each of the three regions indicated
in figure 3.2. At two points, namely at the transitions from region I to II and
from region II to III, the neutron is subject to changes in the binding potential and
the wavefunction has to adapt itself to a new set of boundary conditions. These
perturbations of the wavefunction take place suddenly in the sense that the transit
from one region to another is fast compared to the time it takes the wavefunction
to ‘rearrange’ itself.

Supposed we know the shape of the wavefunction ΨI at the moment it leaves
region I. What will be the shape of the function ΨII in region II after the perturbation
caused by the mirror step?

Each of the wavefunctions can be expanded in a series of eigenstates, which, in
general, may be time dependent:

|ΨI, t〉 =
∑
m

cm|m, t〉 (3.18)

|ΨII, t〉 =
∑

n

dn|n, t〉

In order to simplify mathematical expressions we have switched to bra-ket notation
and introduced the shorthands

|m, t〉 ≡ |ψI
m, t〉

|n, t〉 ≡ |ψII
n , t〉 .

We are interested in the question: What is the probability PΨI→n that, upon
transition, an eigenstate |n, t〉 of region II will be populated? For a transition be-
tween bound states, quantum mechanics [Schwa98] tells that this probability is given
by

PΨI→n =
∣∣〈n, t|ΨI〉∣∣2 . (3.19)

As this formula is correct only in the case of quick changes in the binding potential,
it is commonly known as the ‘sudden approximation’. Recall from (3.8) that by a
‘population’ pII

n we understand the probability |dn|2 of finding the neutron in an
eigenstate |n, t〉 of region II. As a consequence, PΨI→n and pII

n are identical:

PΨI→n ≡ |dn|2 = pII
n (3.20)
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Combining equations (3.18), (3.19) and (3.20), we write

PΨI→n = pII
n =

∣∣〈n, t|ΨI〉∣∣2

=

∣∣∣∣∣〈n, t|
∑
m

cm|m, t〉
∣∣∣∣∣
2

=

∣∣∣∣∣
∑
m

cm〈n, t|m, t〉
∣∣∣∣∣
2

=

∣∣∣∣∣
∑
m

cm〈n|m〉 exp[it(En −Em)/h̄]

∣∣∣∣∣
2

=
∑

m,m′
cmc∗m′〈n|m〉〈m′|n〉 exp[it(Em′ − Em)/h̄]

=
∑
m

|cm|2 |〈n|m〉|2 +
∑

m6=m′
cmc∗m′〈n|m〉〈m′|n〉 cos[(Em′ −Em)t/h̄]

︸ ︷︷ ︸
→0

.

For the reasons already discussed in subsection 3.1.2 the time-dependent off-diagonal
terms cancel each other out. Thus we find a direct connection between the state
populations in region I (pI

m) and those in region II (pII
n ):

pII
n =

∑
m

pI
m

∣∣〈ψII
n |ψI

m〉
∣∣2 (3.21)

The quantities 〈ψII
n |ψI

m〉 are called the transition matrix elements and are given by

〈ψII
n |ψI

m〉 =
∫

dz ψI
m(z)ψII∗

n (z) .

In perfect analogy, we can link the populations in region III (pIII
n ) to those in region

II (pII
m) and find

pIII
n =

∑
m

pII
m

∣∣〈ψIII
n |ψII

m〉
∣∣2 . (3.22)

As an example, table 3.1 shows how an initially pure groundstate evolves due
to the perturbations caused by the transitions from one region of the waveguide
to another. The height of the scatterer is taken to be h = 20 µm. As indicated
already in chapter 2, the size of the step s = 13.5 µm is chosen in such a way that
the passage from region I to II causes the groundstate to be heavily suppressed. In
contrast to this, the transition at the edge of the scatterer hardly affects the lowest
states at all. It mainly causes a repopulation in the high quantum numbers which,
as will be shown in the following sections, are suppressed by other factors anyway.
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region p1 p2 p3 p4 p5

I 1 0 0 0 0
II 0.06 0.62 0.31 < 0.01 < 0.01
III 0.06 0.61 0.27 < 0.01 < 0.01

Table 3.1: The evolution of the populations pn of an initially
pure groundstate due to transitions between different regions of
the waveguide. The scatterer height h used in the calculations is
20 µm.

3.2.3 The Scatterer

As a last step, we have to find a quantum mechanical model describing the effect
of the scatterer. As indicated in chapter 2, the scatterer is supposed to ‘remove’
neutrons from the system that carry to high an energy in their vertical motion
component. Such neutrons would occupy high quantum states and, according to
Bohr’s Principle, the system’s dynamics would be dominated by classical mechanics.
Obviously, tracking down quantum effects would be very hard in such a scenario.

This having been said, it should be emphasised that the scatterer does a very
good job at removing high states. In an experiment designed to verify its good
working condition, we placed the scatterer at the bottom of the waveguide and the
mirror above it, i.e. we reversed the geometry of the setup. In this situation, the
scatterer should prevent all neutrons from passing the waveguide, as all will collide
with its surface, regardless of their quantum numbers being high or low. The results
of this measurement are shown in figure 3.5. We see that even at slit widths of half
a millimeter, the count rate measured using the 3He detector does not rise to above
0.3 Hz. See for comparison figure 2.3: Here the same count rate is reached at a slit
width of approximately 70 µm.

There have been multiple attempts to understand the action of the scatterer
from first principles. In the early years of the experiment the scatterer surface was
coated with a gadolinium alloy which was supposed to remove neutrons hitting it
by nuclear capture reactions. Thus the scatterer used to be named ‘absorber’ at
that time. However, a detailed analysis then revealed [Nesv05] that the dominating
factor determining the scatterer’s efficiency is its surface roughness.

The presently adopted view of the removal mechanism is therefore based on
the idea of diffuse neutron scattering: Non specular reflection of neutrons at the
scatterer surface leads to randomly distributed vertical velocities of the order of
several meters per second. Such neutrons then undergo a large number of collisions
with the scatterer and mirrors. At each of these impacts they have a finite probability
of penetrating the Fermi potential barrier, such that their overall probability of
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Figure 3.5: Flux measurement with reversed geometry, i.e. with the
scatterer placed at the bottom of the waveguide.

‘surviving’ the passage through the waveguide is low. Even if they happen not to
be absorbed, they are scattered all over the vacuum chamber and, in the worst case,
cause a diffuse, perfectly homogeneous background that does not disturb the actual
measurement at all.

In order to account for this scattering process in a proper way, A. Westphal
[Wes06] treated it as s-wave scattering of the neutron’s wavefunction at the tips
of the surface roughness. A more recent model [Vor05], developed by A. Voronin,
models the scatterer surface as a potential barrier oscillating in space as the neutron
flies past it, thereby causing a periodic perturbation of the wavefunction. At this
moment however, both of these models still seem to be incapable of predicting the
scatterer efficiency ab initio and have to include free parameters in order to fit
experimental data.

In this situation we may as well adopt a very simple parametrisation of the
scatterer action [Abe05]. In equation (3.10) we have assumed that an eigenstate in
region I or II does not vanish at the height w, corresponding to the slit width, but
may tunnel into the scatterer roughness by up to a depth of 2ρ. It is quite sensible
to assume that the probability Γ for a neutron to be removed through scattering
is proportional to the probability to find it at some location within the surface
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roughness. We hence write

Γn(w) ∼
∫ w+2ρ

w
dz |ψn(z)|2 (3.23)

for the probability per unit time for the eigenstate ψn to be destroyed by interaction
with the scatterer. w is the width of the waveguide and ρ the RMS roughness
amplitude taken to be (c.f. chapter 2)

ρ ≈ 0.75 µm .

For states with low quantum numbers n the value of the integral in (3.23) is close to
zero due to the exponential decrease of the wavefunction at large z. Higher states, on
the other hand, can be linearly approximated around z = w and their probabilities
Γn are correspondingly large. Figure 3.4 provides a good illustration of this property.

From equation (3.23) we immediately derive that the population pn of a given
eigenstate diminishes with time according to an exponential decay law:

pn(t) = pn(0) exp(−Γnt) (3.24)

Let L be the length of the waveguide region in which the state is exposed to the
scatterer and vx the horizontal velocity of the neutron. Then

t =
L

vx

and, using (3.23), we can rewrite (3.24) as

pn(L) = pn(0) exp
(
−β L

∫ w+2ρ

w
dz |ψn(z)|2

)
, (3.25)

where we have introduced the scatterer efficiency per unit length β, which is a free
fit parameter in our model.

3.3 A First Attempt to Fit the Experimental Data

We have now reached a good level of understanding of the quantum mechanics that
govern the neutron’s behavior as it travels the waveguide. Thus we may undertake a
first attempt to fit the theoretical model developed above to our experimental data
shown in figure 2.8.
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3.3.1 The Fit Function

The vertical distribution of neutrons above the second mirror is in principle governed
by equation (3.8):

|Ψ(z)|2 =
∑

n

pn |ψn(z)|2

We want to derive a fit function F (z) from this expression. As we have seen, the
eigenstates ψn(z) are those in region III. Additionally our fit function has to include
free parameters for background, offset and norm of the distribution, i.e.

F (z) = a

(
nmax∑

n=1

pIII
n

∣∣ψIII
n (z − zoff)

∣∣2
)

+ bdet + bscattΘ(z − zoff) . (3.26)

Therein a is the normalisation factor and zoff the offset between the origin of heights
in figure 2.8 and the surface of the second mirror. bdet is the detector background
below the measured distribution, i.e. the density of traces in that part of the detector
that was covered by the mirror during measurement. This background is a measured
quantity, it is equal to the average track density in the left parts of the histograms
in figure 2.8. bscatt is an additional background in the region above the height
of the second mirror surface. This part of the detector was not covered during
measurement and may have been irradiated by scattered neutrons present in the
vacuum chamber. The step function in (3.26) ensures that bscatt is taken into account
in the corresponding data region only.

The state populations pIII
n entering into equation (3.26) are computed according

to the quantum mechanical modeling of the waveguide we have developed throughout
the preceding sections. In principle the series in equation (3.8) is infinite. However,
we know that high quantum states are heavily suppressed by the scatterer, we may
therefore introduce a sufficiently large nmax and ignore eigenstates with higher n.
As they travel the waveguide, the states’ populations will evolve as follows:

1. We assume that at the entrance of the waveguide of width w, all eigenstates
are equally populated:

pI
n(0) ∼ 1 for all n (3.27)

2. While traveling region I, the states are suppressed according to equation (3.25):
pI

n(0) → pI
n(LI = 7 cm). At this point the scatterer efficiency β enters as a

free fit parameter.

3. At the mirror step transitions cause a repopulation suppressing the ground
state in region II: pI

n(LI) → pII
n (0)

4. In the 3-cm long region II the eigenstates decay further following (3.25) due
to the presence of the scatterer: pII

n (0) → pII
n (LII = 3 cm)
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5. At the end of region II, the ‘surviving’ states emerge into region III: pII
n (LII) →

pIII
n .

These pIII
n are finally the populations entering into equation (3.26). They obviously

depend on the scatterer’s efficiency β as well as on the waveguide width w.

As stated in chapter 2, the resolution of the CR39 detectors is finite and de-
termined by number of factors. In order to account for this, the fit function F (z)
has to be convoluted with a Gaussian distribution of width σ equal to the detector
resolution:

F̃ (z) =
1√
2πσ

∫
dz′ F (z′) · exp

[
−1

2

(
z′ − z

σ

)2
]

(3.28)

This expression is used to describe the experimental data. In total our model
thereby contains six free parameters. They are

1. the width of the waveguide w,

2. the efficiency of the scatterer per unit length β,

3. the detector resolution σ,

4. the offset of the measured distribution zoff,

5. the norm of the distribution a

6. and the scattered neutron background bscatt.

3.3.2 Fit Results

As a first test, we fit equation (3.28) to the data from the 50-µm measurement
(‘detector 7’ in figure 2.8) which features by far higher statistics. The number of
eigenstates taken into account is

nmax = 50 .

The detector background bdet is determined from the data points in the height
interval from 26 µm to 81 µm:

bdet.7 = (6.9± 0.3) µm−1

The fit routine takes into account data points in the region 70 µm to 200 µm]. Figure
3.6 depicts the best fit of the model to the data. Corresponding values for the free
parameters are summarised in table 3.2. Needless to say, the fit is bad. Although the
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Figure 3.6: The best fit of the data to a quantum mechanical model
assuming equally populated states at the entrance of the waveguide.
Obviously the model cannot describe the data quantitatively.

parameter best fit value
waveguide width w (52± 2) µm
scatterer efficiency β (2900+800

−500) m−1

detector resolution σ (2.3± 0.4) µm
scattered background bscatt (0± 3) µm−1

norm a (0.0122± 0.0003) µm−1

offset zoff (86.4± 0.4) µm

Table 3.2: Best fit values for the free parameters in a quantum
mechanical model of the experiment assuming equally populated
states at the entrance of the waveguide.



3.3. A FIRST ATTEMPT TO FIT THE EXPERIMENTAL DATA 51

calculation seems to qualitatively reproduce the shape of the measured distribution,
the χ2-test yields

χ2 = 209 at 125 degrees of freedom,

corresponding to a reduced χ2 of

χ̃2 = 1.67 ,

or a probability
P (χ2) < 10−5 .

In plain words, our theory is statistically refuted even on a 1%-basis, which is the
lowest generally accepted rejection threshold.

The reason for this disappointing result is obvious from figure 3.6: At low z, i.e. in
the left part of the measured height distribution, the fit function lies systematically
above the data points. From this fact we can directly conclude that, for the lowest
eigenstates, our theory predicts populations pn that are higher than in reality.

3.3.3 Groundstate Suppression Theories

At many occurrences [Nesv05] [Rueß00] [Wes01], data taken in the experiment could
be modeled only under the assumption that the population of the groundstate was
suppressed by an unknown mechanism. Ideas normally put forward in order to
qualitatively explain such a suppression include microscopic pollutions of the bottom
mirrors that would disturb the wavefunctions as they pass the mirror. Another
ansatz [Nesv05b] involves depopulation of the lowest states due to acoustic vibrations
of the mirrors against which the setup can hardly be protected.

Indeed, if, leaving the rest of fit procedure untouched, we introduce a further
decay law analogous to (3.23), affecting the groundstate alone

p1(t) = p1(0) exp(−γt) , (3.29)

the quality of the fit improves significantly, as shown in figure 3.7.

Of course such a practice of ‘fitting away’ an unwanted effect is highly unsatisfac-
tory. Furthermore, it is not clear why a scattering or absorption mechanism taking
place at the bottom mirror should sharply discriminate between quantum numbers,
or why, upon collision with a vibrating mirror surface, a neutron should gain energy
but never loose some. Within the framework of this text we shall therefore try to
understand the suppression of the lowest states using the completely different ansatz
to be developed in the following section.
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Figure 3.7: The best fit of the data to a model involving uniformly
distributed starting populations, but suppressing the ground state
according to equation (3.29).

3.4 The Starting Population

We have made significant efforts in order to come to an understanding of the quan-
tum mechanics taking place within the waveguide. There is however one process
that we have quite strikingly neglected: the transition of the wavefunction from
free space (‘region 0’ in figure 3.2) into the waveguide. In the preceding section we
have simply assumed through equation (3.27) that, at the beginning of region I, all
eigenstates were equally populated. Obviously, if this assumption turns out to be
unjustified, this could explain why the data fits to equation (3.28) so badly.

3.4.1 Transition into the Waveguide

Let us have a closer look at the wavefunctions’ transition from free space into the
waveguide, i.e. the transition from region 0 to region I.

From figure 2.2 we see that in region 0 the neutron is in fact also subject to
boundary conditions of the ‘quantum bouncer’-type. The only difference is that the
lower boundary is defined by the floor of the vacuum chamber, a few centimeters
below the zero height defined by the surface of the first mirror. Hence, instead of
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the boundary conditions (1.15) and (1.16), we have

ψ0
n(z →∞) = 0

ψ0
n(z ≈ −4 cm) = 0 . (3.30)

Still, the wavefunction Ψ0 has to be a linear combination of quantum bouncer eigen-
states ψWKB

n as given by equation (1.20). Equation (3.30) only means that neutrons
capable of entering the waveguide at z = 0 must have very high quantum num-
bers in region 0. Recall from equation (1.19) that, in the WKB approximation, an
eigenstate ψWKB

n corresponds to a classical turning point height

zn = R εWKB
n ,

where εWKB
n is the WKB approximation of the reduced energy eigenvalues given by

(1.18). Now we need
zn ≈ 4 cm

which, according to equations (1.18) and (1.19) requires

n ≈ 120000 .

At quantum numbers so high, the energy difference between neighboring states be-
comes very small: From equation (1.18) we obtain

∆E120000 = EWKB
120001 − EWKB

120000 ≈ 0.023 peV .

For comparison, we take a look at the energy uncertainty of the bound states in
region I of the waveguide. As can be seen from figure 3.1, a neutron typically needs
the time

t = 16 ms

to travel the first mirror. From Heisenberg’s Principle we therefore derive

dEn ≥ 2πh̄

t
≈ 0.26 peV

for the energy uncertainty dEn of a bound state in region I. Thus the differences of
energy levels in free space are much smaller than the energy uncertainty of states
bound in the waveguide:

dEn À ∆E120000

Hence the energy spectrum in region 0 may as well be regarded as continuous.

This means that the transition from region 0 to region I is fundamentally different
from transitions within the waveguide. Transitions from or into a continuum of states
take place on arbitrarily short time scales [Schwa98]. The transition from region 0
to I can therefore not be calculated in the ‘sudden approximation’ we have used
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in subsection 3.2.2 but has to be treated within the framework of time-dependent
perturbation theory.

Let |n〉 be an eigenstate of region I and |m〉 one of region 0. It follows from time-
dependent perturbation theory [Schwa98] that the probability Pm→n for a transition
|m〉 → |n〉 to take place within the time interval dt is

Pm→n =
2π

h̄
δ(En −Em) |〈n|V |m〉|2 dt . (3.31)

Therein En and Em are the states’ energies in the waveguide and in free space
respectively, and 〈n|V |m〉 is the transition matrix element containing the perturba-
tion potential V . The delta-distribution in (3.31) is to be understood in the sense
that the energies of initial state |m〉 and final state |n〉 have to coincide within the
uncertainty dEn of the bound state.

We now assume that the matrix elements in (3.31) are approximately equal for
all initial states. Then the probability PΨ0→n for a given eigenstate |n〉 of region I
to be populated by whatever free state |m〉 is the sum over all possible transitions
(3.31):

PΨ0→n =
∑
m

Pm→n =
∫

dEm ρ(Em)Pm→n = ρ(En)
2π

h̄
|〈n|V |m〉|2dt (3.32)

ρ(En) is the density of states in the continuum in the energy interval dEn around
En. Equation (3.32) was derived in 1928 by Pauli and is generally known as ‘Fermi’s
Golden Rule’.

As in subsection 3.2.2, the overall transition probability into an eigenstate is
equal to the population of that state. As stated above, we neglect a possible depen-
dence of the matrix elements on the quantum numbers and write

pI
n(0) ∼ ρ(En) . (3.33)

In plain words, the starting population pI
n(0) of an eigenstate ψI

n depends only on
the density of continuum states at that state’s energy En.

We could now try to derive the density of states in region 0 from a quantum
mechanical calculation. However, this would be quite laborious a process, as, unlike
for states in the waveguide, time-dependence of the wavefunction does matter for
neutrons in region 0. Hence we follow another path. As we have seen, quantum
numbers in region 0 have to be very high. Thus we hope that, according to Bohr’s
Principle, the system will behave classically and that it will be sufficient to derive the
energy spectrum at the entrance of the waveguide from classical statistical mechanics.
In order to do so, we first need to have a careful look at the collimating system
already briefly described in chapter 2.
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Figure 3.8: Schematic view of the collimating system. The geome-
try of the setup is completely determined by the three parameters
∆zh, ∆zl and ∆x.

3.4.2 The Collimating System

Look at figure 2.2 for an illustration of the collimator. In section 2.2 we have stated
without proof that the waveguide selects neutrons from the UCN gas delivered by
the turbine in such a way that vertical velocities vz at the entrance of the waveguide
are of the order of a few cm/s only. In the following we are going to demonstrate
and quantify this statement.

As can be seen in figure 3.8, the geometry of of the collimator can be completely
described by three parameters: Again, let z = 0 be the height of the first mirror. We
call ∆x the horizontal distance between the collimating blades (outside the vacuum
chamber) and the entrance of the waveguide. We further denote by ∆zh and ∆zl the
vertical height differences between the waveguide entrance at z = 0 and the edges
of the upper and lower collimating blade respectively. These lengths have not been
measured, however they can be taken to have orders of magnitude of one millimeter
for the vertical distances and ten centimeters for ∆x.

From subsection 3.1.2 we know that the spectrum of horizontal velocities vx is a
Gaussian of mean vx = 6.3 m/s and of width σvx = 1.1 m/s. Furthermore, due to
the small height of the entrance window, it is safe to assume that the beam intensity
is constant inside the collimator. This means that the horizontal velocities vx and
the starting heights z0 of neutrons at the blades are distributed according to

Pvx(vx) =
1√

2πσvx

exp
(
−1

2
(vx − vx)2

σ2
vx

)
(3.34)
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Pz0(z0) =
{

1/(∆zl −∆zh) : −∆zl ≤ z0 ≤ −∆zh

0 : else
. (3.35)

We are only interested in neutrons on trajectories leading into the waveguide,
all others are lost to the system. Such trajectories must fulfill the conditions

vxt
!= ∆x

−1
2
gt2 + vz0t + z0

!= 0 ,

where t is the time elapsed since the neutron’s passage between the collimating
blades at x = 0. Hence we obtain the following requirement on the starting velocity
vz0:

vz0
!=

1
2

∆x

vx
g − z0

vx

∆x

The corresponding vertical velocity vz at the entrance of the waveguide is then

vz(vx, z0) = −gt + vz0

= −1
2

∆x

vx
g − z0

vx

∆x
.

Since, from (3.34) and (3.35), we know the probability distributions of vx and z0,
we can derive that of the vertical velocities vz in the waveguide:

P̃vz(vz) =
∫∫

dz0 dvx Pvx(vx)Pz0(z0) δ

(
vz +

1
2

∆x

vx
g + z0

vx

∆x

)

Finally, after integration of the delta-distribution, we are left with

P̃vz(vz) =
∫

dvx
∆x

vx
Pvx(vx)Pz0

(
∆x

vx
vz − 1

2

(
∆x

vx

)2
)

. (3.36)

Equation (3.36) is the probability distribution of vertical velocities vz at the entrance
of the waveguide. Since the horizontal velocity distribution is known, it depends only
on the geometric parameters indicated in figure 3.8. Figure 3.9 presents plots of the
vz-distribution (3.36) for various combinations of the parameters ∆zl, ∆zh and ∆x.
We observe two notable properties of the function:

1. Independent of the parameters, the vz-distribution can always be well approx-
imated by a normal distribution.

2. Both the width and the mean of this approximate Gaussian depend on the
setup geometry. However this dependence is not very strong; the width of the
vz-spectrum is of the order of a few cm/s for any setup imaginable.
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Figure 3.9: Plots of the vz-distribution (3.36) for different combi-
nations of the geometric parameters ∆zh, ∆zl and ∆x.

As mentioned above, the parameters describing the setup geometry have unfor-
tunately not been measured during the experiment. On the other hand we do not
want to add as much as three additional free parameters to our waveguide model.
We therefore assume that the vz-distribution is centered at zero. Although this
may seem a random assumption, it is not: While preparing the the installation for
measurement, the correct collimator setting is found by observing the integral flux
through the waveguide using the 3He detector and maximising it. As the scatterer
is known to primarily remove neutrons with high absolute values of vz, this flux
should be maximal precisely in the situation where the vertical velocity distribution
is centered at zero.

The width of the vz-spectrum, on the other hand, cannot be fixed by such a simple
argumentation. It is therefore a new free parameter which we call σvz. Hence, we
finally adopt the expression

P̃vz(vz) ≈ Pvz(vz) =
1√

2πσvz

exp

[
−1

2

(
vz

σvz

)2
]

(3.37)

for the distribution of vertical velocities at the entrance of the waveguide and take
note that reasonable values for σvz have to be of the order of a few cm/s.
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3.4.3 The Energy Spectrum

Having understood the effect of the collimator, we are now able to deduce the classi-
cal distribution of energies at the entrance of the waveguide. Thereby we understand
the distribution of the total energy carried by arriving neutrons in their vertical mo-
tion component

E = T + V .

We denote by T the kinetic and by V the potential energy of a neutron. Obviously,
T is related to the vertical velocity spectrum we have just derived. Its probability
density PT is linked to Pvz by

PT (T ) =
∫

dvz Pvz(vz) δ

(
T − 1

2
mv2

z

)
.

Integrating the delta-function yields

PT (T ) =
1√

πmTσvz

exp
(
− T

mσvz

)
. (3.38)

Correspondingly, the distribution of V is governed by that of the starting heights
z of arriving neutrons above the mirror surface. Again, as the scatterer height h
is very small compared to the dimensions of the collimating system, we may safely
take these to be uniformly distributed:

Pz(z) =
{

1/h : 0 ≤ z ≤ h
0 : else

(3.39)

From this we derive the probability density for the potential energies

PV (V ) =
∫

dz Pz(z) δ(V −mgz)

with the final result

PV (V ) =
{

1/mgh : 0 ≤ V ≤ mgh
0 : else

. (3.40)

Kinetic and potential energy may now sum up to a given total energy E in
arbitrary constellations. Thus the probability distribution of the latter is given by

PE(E) =
∫∫

dTdV PT (T )PV (V ) δ(E − T − V )

=
∫

dV PT (E − V )PV (V )

Some attention now has to be paid to the integration limits in the last expression.
From equation (3.40) we see that V can never be greater than mgh. On the other
hand, V may also not be greater than a given total energy E, thus we distinguish
two cases:
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1. Let E ≤ mgh. In this situation we integrate over V from 0 to E. Inserting
(3.38) and (3.40) yields

PE,1(E) =
∫ E

0
dV

1√
πm(E − V )σvz

exp
(
−E − V

mσ2
vz

)
1

mgh

= erf

(√
E

mσ2
vz

)
1

mgh
.

2. Let E > mgh. The integration now goes from 0 to mgh and we get

PE,2(E) =
∫ mgh

0
dV

1√
πm(E − V )σvz

exp
(
−E − V

mσ2
vz

)
1

mgh

=

[
erf

(√
E

mσ2
vz

)
− erf

(√
E −mgh

mσ2
vz

)]
1

mgh
.

Hence we obtain the following final expression for the probability distribution of
total energies at the entrance of the waveguide:

PE(E) =





1
mgh erf

(√
E

mσ2
vz

)
: E ≤ mgh

1
mgh

[
erf

(√
E

mσ2
vz

)
− erf

(√
E−mgh
mσ2

vz

)]
: E > mgh

. (3.41)

As we can see, PE(E) depends on two parameters: The scatterer height h and the
width of the vertical velocity spectrum σvz. Figure 3.10 shows the energy distribution
PE(E) for h = 50 µm and various values of σvz. Obviously, the spectrum is far from
being uniform. PE(E) rises monotonously up to E = mgh which corresponds to the
potential energy at the height of the scatterer, then it decreases more or less rapidly
depending on the value of σvz. The larger is σvz, the broader is the corresponding
energy spectrum.

3.4.4 Starting Populations

Recall from (3.33) that, upon transition from free space into the waveguide, we
expect the eigenstates ψI

n of region I to be populated according to the density of
states in the continuum ρ(E). In a semi-classical approximation we expect the latter
to be equivalent to the classical total energy distribution we have just derived:

PE(E) ∼ ρ(E) (3.42)

Both the classical and the quantum mechanical distributions are essentially phase
space factors which contain information about how frequently a given energy E
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Figure 3.10: The probability distribution for the total energy PE(E)
at the entrance of the waveguide for various values of σvz. The
dashed line corresponds to the potential energy at the scatterer
height mgh.

occurs in the continuum. In the given regime of high quantum numbers (see sub-
section 3.4.1) these two informations are virtually identical and we rewrite (3.33)
as

pI
n(0) ∼ PE(En) . (3.43)

From figure 3.10 we see that doing so naturally results in a non-uniform starting
population. States ψI

n with energies En close to mgh are favored by the transition
while their counterparts with lower or higher energies receive lower populations.

3.5 Fit to the Experimental Data

We now repeat the procedure of fitting the datasets obtained from the CR39 de-
tectors to our quantum mechanical model as described in section 3.3. This time
however, we are not assuming equal starting populations in region I, but we popu-
late the eigenstates following equations (3.43) and (3.41) respectively.

The remaining of the procedure is the same as in section 3.3. Thus we now have
seven free parameters:
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1. The width of the waveguide w,

2. the efficiency of the scatterer per unit length β,

3. the detector resolution σ,

4. the width of the vertical velocity distribution at the waveguide entrance σvz,

5. the offset of the measured distribution zoff,

6. the norm of the distribution a

7. and the scattered neutron background bscatt.

As we see from figure 3.10 high quantum states are heavily suppressed already by
the phase space factor PE(E), hence we can now restrict the number of eigenstates
taken into account in computations to

nmax = 25 .

3.5.1 The 50-µm Measurement (Detector 7)

Let us first look at the measurement with waveguide width w ≈ 50 µm which we
already tried to fit in section 3.3. Again the detector background is taken to be the
average track density in the height interval from 26 µm to 80 µm:

bdet.7 = (6.9± 0.3) µm

and the data points to fit to equation (3.28) are taken from the region between
70 µm and 200 µm.

The best fit of the model to the data can be seen in figure 3.11. The improvement
relative to figure 3.6 is outstanding. The χ2-test now yields

χ2 = 138 at 124 degrees of freedom (3.44)

or
χ̃2 = 1.11

which corresponds to a probability

P (χ2) ≈ 19% .

We can therefore conclude that, with the additional phase space factor PE(E),
the data is now accurately described by the quantum mechanical model we developed
throughout this chapter. Table 3.3 summarises the best fit values for the seven free
parameters. It is noteworthy that σvz fits at

σvz = (4.0± 2.5) cm/s

which lies exactly in the range we estimated in section 3.4.2.
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Figure 3.11: The best fit of the data from the 50-µm measurement
to the complete quantum mechanical model of the waveguide

parameter best fit value
waveguide width w (51± 2) µm
scatterer efficiency β (3100+1200

−800 ) m−1

detector resolution σ (2.1± 0.4) µm
width of velocity spectrum σvz (4.0± 2.5) cm/s
scattered background bscatt (4± 2) µm−1

norm a (0.0118± 0.0004) µm−1

offset zoff (86.2± 0.5) µm

Table 3.3: Best values for the free parameters upon fit of the data
from the 50-µm measurement (detector 7) to the complete quantum
mechanical model of the waveguide.
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3.5.2 The 25-µm Measurement (Detector 6)

As we have seen, statistics on the second detector (‘detector 6’ in figure 2.8) is
very low. Obviously, it should have been irradiated longer in order to deliver useful
information. Nevertheless, our model should be able to describe the data within it’s
uncertainties. Unfortunately it turns out that with all seven of the above parameters
set free, the fitting routine is unable to localise χ2-minima for the detector resolution
σ and the width of the velocity spectrum σvz. It seems that the amount information
contained in the dataset is just too low for such faint effects to be observable. We
therefore fix these two parameters at the best fitting values found from detector 7,
as none of them should depend on the waveguide width:

σ = 2.1 µm

σvz = 4 cm/s

This leaves us with five free parameters for this measurement. The detector
background is determined by the data in the region from 20 µm to 70 µm to :

bdet.6 = (5.4± 0.3) µm−1

and the fit takes data points in the region from 80 µm to 160 µm] into account. The
fit is depicted in figure 3.12 and the values of the five free parameters summarised
in table 3.4. The most notable among these is, in this case, the waveguide width w.
The fit yields

w = (24+5
−4) µm

which, at this instance, is in good agreement with the value of 25 µm we aimed at.
The statistical test yields

χ2 = 92 at 76 degrees of freedom,

corresponding to
χ̃2 = 1.21

or a probability
P (χ2) ≈ 10% ,

which means that, although the data is to weak to be conclusive, there is no dis-
agreement with our quantum mechanical description.
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Figure 3.12: The best fit of the data obtained from the 25 µm
measurement to the complete quantum mechanical model of the
waveguide. The detector resolution σ and the width of the vertical
velocity spectrum σvz are fixed to the values obtained from the
50-µm measurement.

parameter best fit value
waveguide width w (24+5

−4) µm
scatterer efficiency β (500+900

−400) m−1

scattered background bscatt (1± 2) µm−1

norm a (0.0008± 0.0001) µm−1

offset zoff (86± 1) µm

Table 3.4: Best values for the free parameters fitting the data from
the 25-µm measurement (detector 6) to the complete quantum me-
chanical model of the waveguide.



Chapter 4

Alternative Interpretations

In the preceding chapter we have developed a quantum mechanical model describing
the vertical position measurement of gravitationally bound neutrons. As we have
verified, this model is in good agreement with the data obtained from the experiment,
itself laid out in chapter 2. Even though this is a very encouraging result, it still
does not permit us to claim having observed quantum effects in the gravitational
potential. For this it is necessary to rule out possible alternative interpretations of
the measurements. In particular, there are two aspects that must be checked:

1. We must verify that we indeed observe a quantum phenomenon, i.e. that the
data cannot be explained within the framework of classical mechanics.

2. There is in principle the possibility that we do face a quantum system but
that it is dominated by factors other than the gravitational potential. This
scenario also has to be ruled out.

4.1 Classical View of the Experiment

Let us first look at the classical hypothesis. Within such a framework, the neutrons’
motion through the waveguide is governed by Newtonian mechanics for point masses
alone. We have to check whether the measured height distributions (see figure 2.8)
can be explained under such an assumption or not.

In [Rueß00], F. Rueß analytically derives a classical prediction for the distribution
of neutron heights in a simplified model of the waveguide. Under the assumption of
a ‘perfect’ scatterer, i.e. one that instantly removes every neutron that reaches its
surface, and neglecting the effect of the mirror step he arrives at a neutron height

65
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density distribution Pclass(z) given by

Pclass(z) ∼
√

h− z , (4.1)

where z is the neutron height above the mirror surface at z = 0 and h the scatterer
position.

However, we are confronted with a setup including a step of height

s ≈ 13.5 µm

between the first and the second bottom mirror, as described in section 2. Ad-
ditionally, our quantum theory accounts for the scatterer action by including an
‘efficiency’ parameter β which is free and finite. In the classical analogy, this means
that a neutron’s probability to ‘survive’ a collision with the scatterer surface may
be small, but not equal to zero.

In order to permit a fair comparison between classical and quantum mechanical
predictions, equation (4.1) would have to be extended in order to account for these
two effects. Paradoxally, this is more complicated to achieve in a classical framework
than in the quantum mechanical one.

We will therefore not try to derive an analytical expression for the classical height
distribution, but simulate it numerically. This can be done with the aid of a simple
Monte-Carlo simulation of the neutrons’ motion trough the waveguide.

4.1.1 Classical Simulation of the Waveguide

A Monte-Carlo simulation has to provide a numerical model for each elementary
process taking place within the system. Let us have a look at figure 4.1 showing a
schematic view of the waveguide and illustrating possible processes in the behaviour
of classical neutrons as they travel it.

Reflection at a Bottom Mirror: In a purely classical model, neutrons in the
gravitational field move along parabolic trajectories, i.e. their equations of motion
are given by

x(t) = vxt + x0 (4.2)

z(t) = −1
2
gt2 + vz0t + z0 , (4.3)

where x and z are the horizontal and vertical spatial coordinates respectively and t
is the time elapsed since the passage at x = x0 and z = z0.
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Figure 4.1: Schematic section through the waveguide. Three pos-
sible trajectories for classical, point like neutrons are indicated in
blue.

Just as in our quantum mechanical analysis, we assume that the mirrors are
perfectly plane, totally reflecting surfaces. Suppose a neutron hits the mirror surface
placed at z = zmir at a time t = tmir. According to (4.3) it has, at that moment, a
vertical velocity

vz(t−mir) =
∂z(t)
∂t t→t−mir

= −gtmir + vz0 .

Upon reflection at the mirror, the vertical velocity is changed into its opposite, while
the motion along the x direction is unaffected:

vz(t+mir) = −vz(t−mir) (4.4)

Thus, introducing
v′z0 = vz(t+mir) = gtmir − vz0

and
x′0 = vxtmir + x0 ,

we can describe the neutron’s motion after the mirror collision by the set of equations

x(t) = vxt′ + x′0 (4.5)

z(t) = −1
2
gt′2 + v′z0t

′ + zmir . (4.6)

This is exactly the same form than equations (4.2) and (4.3). t′ now denotes the
time since the last mirror collision.

Thus it is clear how to simulate a neutron bouncing above a reflecting surface:
Given a neutron on a trajectory of the form (4.2) and (4.3), the simulation has to
solve the equation

z(tmir) = zmir , (4.7)
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where, due to the step, the coordinate of the mirror surface is itself a function of x.
The solution tmir yields new starting values for the horizontal and vertical motion
components: x′0, v′z0 and zmir. From these a new set of equations (4.5) and (4.6) is
constructed, which in turn yields the coordinates of the next mirror collision, and
so forth.

Interaction with the Scatterer Surface: As is already familiar to us, part of
the waveguide is covered by the scatterer. Interaction of neutrons with its surface
can be simulated in the following way:

1. Upon each collision with the scatterer, a neutron has a probability Pscat to be
‘removed’ from the system.

2. If the neutron happens to survive the collision (with probability 1− Pscatt), it
is specularly reflected at the surface of the scatterer just as if it was a mirror.

This parametrisation is in analogy to the quantum mechanical description from
chapter 3: The wavefunctions ψI

n and ψII
n from equations (3.16) and (3.17) were

derived as if the scatterer was a perfectly flat, reflecting boundary at z = h. In
equation (3.25), we then parametrised the ‘removal’ mechanism by a scattering
probability per unit time β which depends on the quantum number n. In the above
classical view, we have a scattering probability per collision Pscatt, thus the higher is
the number of collisions, the lower are the neutron’s chances to pass the waveguide.

Simulation Procedure: Hence, a program simulating a swarm of classical, point
like neutrons moving along the waveguide should basically proceed in the following
way:

1. At the waveguide entrance at x = 0, arbitrary starting values for a neutron’s
height z0 above the first mirror as well as for the vertical and horizontal veloc-
ities vz0 and vx and are chosen using a random number generator. We know
from chapter 3 that the z0 are uniformly distributed, while the vertical and
horizontal velocities have Gaussian distributions:

Pz0(z0) =
{

1/h : 0 ≤ z0 ≤ h
0 : else

(3.39)

Pvz(vz0) ≈ 1√
2πσvz

exp

[
−1

2

(
vz0

σvz

)2
]

(3.37)

Pvx(vx) =
1√

2πσvx

exp
(
−1

2
(vx − vx)2

σ2
vx

)
. (3.34)



4.1. CLASSICAL VIEW OF THE EXPERIMENT 69

2. From these starting values, a set of equations of motion as given by (4.2) and
(4.3) is constructed.

3. By solving these solutions, the simulation has to determine whether the next
collision will take place at the scatterer or at the bottom mirror:

(a) If the neutron hits the bottom mirror, the solution yields a new set of
starting parameters x′0, v′z0 and z′0, hence new equations of motion (4.5)
and (4.6). With these the simulation repeats step 3.

(b) If the neutron hits the scatterer, a random number generator decides
wether it will be destroyed (with probability Pscatt) or survive (with prob-
ability 1 − Pscatt). If it survives, it is reflected just as in the case of a
mirror collision. If it is scattered, it is lost to the system and the simula-
tion continues at step 1 with another neutron.

4. If a neutron reaches the detector, i.e. if x = xdet, its height z above the mirror
at that point is registered and the simulation restarts at step 1 with a new
particle.

Thus, by repeating the above procedure with a large number of neutrons, we obtain
a classical height distribution P̃class(z) analogous to (4.1) but with the effects of the
mirror step and of the finite scatterer efficiency correctly taken into account.

Within the framework of this thesis such a simulation (‘PingPong’) has been
written. Thus we can now test if the measured data as depicted in figure 2.8 can be
reproduced by the purely classical model laid out above.

4.1.2 Classical Fit to the 50-µm Measurement

As we have seen while fitting the quantum mechanical model to the data, the in-
formation contained in the 25-µm measurement (detector 6) is not very conclusive.
We shall therefore restrict ourselves to the data from the measurement with 50 µm
waveguide width which is by far superior in terms of statistics.

It is clear that the classical simulation of the waveguide, and thereby P̃class(z),
directly depends on three parameters: the height of the scatterer above the first
mirror h, the classical scatterer efficiency Pscatt and the width of the vertical velocity
spectrum σvz. Additionally, just as in the case of quantum mechanical fits, the fit
function must include parameters for norm, offset and background:

Fclass(z) = a P̃class(z − zoff) + bdet + bscattΘ(z − zoff) (4.8)

Again, bdet and bscatt are the detector and scattered background respectively, zoff is
the offset between the theoretical and measured distributions and a the normalisa-
tion factor.
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Convolution with the Gaussian corresponding to the detector resolution yields
the final distribution to be fitted to the data:

F̃class(z) =
1√
2πσ

∫
dz′ Fclass(z′) · exp

[
−1

2

(
z′ − z

σ

)2
]

(4.9)

Hence, the classical model describing the experiment also includes seven free
parameters:

1. the height of the scatterer h,

2. the classical scattering probability Pscatt,

3. the width of the vertical velocity distribution σvz,

4. the detector resolution σ,

5. the scattered neutron background bscatt,

6. the offset of the height distribution zoff

7. and the norm of the height distribution a.

Comparing this with the fit model from section 3.5, we see that all of these param-
eters have got their equivalents in the quantum mechanical calculation.

Upon fitting it turned out, that the fit routine could not find an upper limit
to σvz. This behaviour was however expected, as the classical model is over-
parametrised in the sense that a broader velocity spectrum can be compensated
by a correspondingly high value for the scattering probability Pscatt. We therefore
fixed σvz at a set of values between 2 cm/s and 10 cm/s and let the remaining six
parameters adapt themselves accordingly. As in section 3.5, the detector background
is measured to

bdet.7 = (6.9± 0.3) µm

and the fit region goes from 70 µm to 200 µm.

Figure 4.2 shows how the minimum value of χ2 evolves as the width of the
vertical velocity spectrum changes. As we can see, the fit improves rapidly, down to
χ2 ≈ 215, for σvz going from 2 cm/s to 4 cm/s. For larger values of σvz, χ2 does not
decrease further nor does the fit worsen again. This is the reason why, as mentioned
above, a simultaneous fit of all seven parameters cannot find a minimum χ2.

In section 3.4.2 we estimated that physically meaningful values for the width of
the velocity spectrum must be of the order of a few cm/s. There is thus little point
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Figure 4.2: The minimum χ2 of a classical fit to the data of the
50-µm measurement as a function of the width of the vertical ve-
locity distribution σvz. The red curve approximates the dependence
χ2(σvz) using an exponential decrease.

in sampling at values higher than σvz = 10 cm/s and from figure 4.2 it is clear that
the statistical test cannot yield a value better than

χ2 ≈ 215 at 125 degrees of freedom,

corresponding to a reduced χ2 of

χ̃2 ≈ 1.72

or a probability
P (χ2) < 10−5.

Thus we conclude that the classical model fits to the data badly. Figure 4.3
shows the best fit of the classical prediction to the data for a value of σvz = 4 cm/s.
Corresponding best fit values for the remaining six parameters are summarised in
table 4.1. It is worth pointing out that the classical model agrees with its quantum
mechanical counterpart about the width of the waveguide, which fits at approxi-
mately 50 µm for both of them.

We conclude with the observation that, given an equivalent set of free parameters,
the classical prediction is statistically refuted by the measurement. As is visible
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Figure 4.3: The best fit of the data from the 50-µm measurement
to the classical model of the waveguide for σvz = 4 cm/s.

parameter best fit value
scatterer height h (52.2± 1.0) µm
scattering probability Pscatt (32± 3)%
detector resolution σ (1.9± 0.6) µm
scattered background bscatt (2± 2) µm−1

norm a (0.0120± 0.0003) µm−1

offset zoff (86.8± 0.4) µm

Table 4.1: Best values for the free parameters fitting the data of
the 50-µm measurement (detector 7) to the purely classical model
of the waveguide. The width of the vertical velocity distribution is
fixed at σvz = 4 cm/s.
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in figure 4.3, it seems to be unable to reproduce the shape of the left part of the
measured height distribution which corresponds to neutrons with low energy in their
vertical motion component, thus occupying low quantum numbers. This is indeed
the part of the dataset where we expect quantum effects to be most dominating. In
this sense the measurement of the neutron height distribution yields an analogous
result than that of the integral flux (see figure 2.3): In the regime of high energies
the system behaves classically while in the limit of low quantum numbers, close to
the ground state, the classical prediction fails.

4.2 The Gravityless View

In the time of integral flux measurements a critique put forward about our experi-
ment was the hypothesis that the measurements were ambiguous in the sense that
it was not clear that the effect observed in the neutron count rate was indeed grav-
itationally induced. In [Han02] and [Han03], J. Hansson et al. tried to deduce
the threshold effect in the count rate (see section 2.3) from a quantum mechanical
model taking into account geometric boundary conditions only, i.e. neglecting the
gravitational potential inside the waveguide. These arguments have already been
addressed by V. Nesvizhevsky et al. in [Nesv03].

Now that we can directly image the neutrons’ probability density in position
space, we may be in able to refute the gravityless hypothesis in a much more direct
way. In this section we are going to develop a quantum mechanical model of the
waveguide neglecting gravity and will show that the height distribution measured
using the CR39 detector cannot be explained within this framework.

4.2.1 The Waveguide without Gravity

Let us have another look at the schematic drawing of the waveguide in figure 3.2:
Once more we have to solve the Schrödinger equation in each of the three regions
I, II and III. Additionally, we need to address the problem of transitions from on
region to another. Thanks to our detailed treatment from chapter 3 much of this
work has already been done as we are able to reuse some of our previously obtained
results.

Regions I and II

Regions I and II of the waveguide can be treated in complete analogy to chapter 3.
Neglecting the gravitational potential simply means that a neutron confined between
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bottom mirror and scatterer corresponds to a particle bound in an infinitely high
square well potential.

This problem is treated in any text on one-dimensional quantum mechanics
[Schwa98]: Consider an eigenstate ψ̃I

n of region I, i.e. confined between the mir-
ror surface at z = 0 and the scatterer at z = h, but not subject to any other
potential. The well-known solution to this problem is

ψ̃I
n(z) =

{ √
2
h sin

(
nπz
h

)
: 0 < z < h

0 : else
. (4.10)

Correspondingly, an eigenstate ψ̃II
n of region II which is limited by the second mirror

at z = −s and the scatterer at z = h is given by

ψ̃II
n (z) =

{ √
2

h+s sin
(

nπ(z+s)
h+s

)
: −s < z < h

0 : else
. (4.11)

In region I or II, the neutrons wavefunction will thus be a linear combination
of eigenstates ψ̃I

n or ψ̃II
n respectively, given by equations (4.10) and (4.11). The

populations pI
n and pII

n of these eigenstates are governed by the mechanisms we
already know from chapter 3:

1. Within one region the states decay due to the scatterer action according to
equation (3.25)

pn(L) = pn(0) exp
(
−β L

∫ w+2ρ

w
dz

∣∣∣ψ̃n(z)
∣∣∣
2
)

,

where only the bound states in the gravitational potential are to be replaced
by their counterparts from equations (4.10) and (4.11).

2. The repopulation caused by the transition from region I to region II is calcu-
lated in the ‘sudden approximation’, i.e. given by equation (3.21):

pII
n =

∑
m

pI
m

∣∣∣〈ψ̃II
n |ψ̃I

m〉
∣∣∣
2

3. As for the starting populations, the phase space factor derived in chapter 3
cannot be reused as it is true only in the case of neutrons falling in gravity. As
we know that the effect of the starting population on the height distribution is
relatively small, we will, in a first order approximation, neglect it and assume
that at the entrance of the wave guide, all eigenstates are equally populated:

pI
n ∼ 1 for all n.
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Region III

The neutrons behaviour in region III is not obvious anymore. As the gravitational
potential is now gone, there simply are no bound states in region III. The wave-
function is well limited by the bottom mirror, but free to propagate in the positive
z direction.

In this situation it is reasonable to switch to a new coordinate system, where the
origin of heights is located at the middle of the waveguide exit:

z −→ z′ = z − a

2
, (4.12)

where
a = h + s (4.13)

is the total width of the waveguide exit in region II.

Thus we are facing a time dependent problem. In absence of any potential, the
neutron’s wavefunction in region III is a linear combination of free-particle states.
Its most general form is [Schwa98]

ψIII(z′, t) =
1√
2π

∫
dk A(k) exp[i(kz′ − ωt)] , (4.14)

where k is the wave number, linked to the frequency ω by the dispersion relation

ω =
h̄k2

2m
. (4.15)

The shape of the wave packet (4.14) is defined by the spectral function A(k). We
want to know how an eigenstate ψ̃II

n evolves after leaving region II at the time t = 0.
Hence, we know that, at t = 0, the wavefunction (4.14) is equal to ψ̃II

n :

ψIII(z′, 0) ≡ ψ̃II
n (z′) =

1√
2π

∫
dk A(k) exp(ikz′) (4.16)

Thus we see that the spectral function A(k) is equal to the Fourier transform (FT )
of ψ̃II

n (z′). In our new coordinate system, centred on the waveguide exit, the latter
reads

ψ̃II
n (z′) =

{ √
2
a sin

(
nπ(z′−a/2)

a

)
: −a/2 < z′ < a/2

0 : else
.

Inserting this into equation (4.16) we find

A(k) =
1
aπ

∫ a/2

−a/2
dz′ sin

(
nπ(z′ − a/2)

a

)
exp(−ikz′)

=
1√
aπ

anπ exp(−ika/2) [1− exp(iak) cos(nπ)]
a2k2 − π2n2

=: An(k) .
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Figure 4.4: Schematic view of the reflection of a partial wave at
the bottom mirror in a reference frame centred on the waveguide
exit. For any given z′, the distance covered by the reflected wave
is z′ + a. Upon reflection, the wave is phase-shifted by an angle π.

In other words, the spectral function An(k) depends on the quantum number n
of the original state ψ̃II

n :

An(k) = FT
[
ψ̃II

n (z′)
]

(4.17)

Thus every eigenstate ψ̃II
n emerging from region II leads to a wave packet in region

III given by

ψIII
n (z′, t) =

1√
2π

∫
dk An(k) exp

(
ikz′ − i

h̄k2

2m
t

)
. (4.18)

Now we need to account for the presence of the bottom mirror, which in the new
coordinate system is located at z′ = −a/2. Upon reflection at the mirror surface a
partial wave with wave number k inverts its propagation direction. Look at figure
4.4 for an illustration of this process: We see that at any given coordinate z′, the
reflected wave has traveled a distance a + z′. Additionally, reflection at the mirror
has shifted its phase by an angle π. The complete wavefunction in region III is, at
each space coordinate z′, the superposition of incident and reflected waves. Thus we
have to modify (4.18) into:

ψ̃III
n (z′, t) =





1√
2π

∫
dk An(k) [exp(ikz′) + exp(−ik(a + z′) + iπ)]

· exp
(
−i h̄k2

2m t
)

: z′ > −a
2

0 : z′ ≤ −a
2

(4.19)

The corresponding expression ψ̃III
n (z, t) in our familiar coordinate system centred

at the mirror surface can be obtained using the coordinate transformation (4.12) and
equation (4.13).
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of the waveguide for an initial bound state with quantum number
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Together with (4.17), equation (4.19) describes the evolution of an eigenstate ψ̃II
n

after it has left region II at the time t = 0. Figure 4.5 provides an illustration of
this process, taking the third eigenstate as an example.

4.2.2 Gravityless Fit to the 50-µm Measurement

We want to know if the gravityless description of the waveguide we just developed can
describe the measured neutron height distributions. For this we need to construct
a fit function from the quantum theory of region III laid out above.

In analogy to chapter 3 we assume that a neutron’s position probability density
in region III is an incoherent superposition of the wave packets given by equation
(4.19): ∣∣∣Ψ̃III(z, t)

∣∣∣
2

=
∑

n

pII
n (LII)

∣∣∣ψ̃III
n (z, t)

∣∣∣
2

As usual, the populations pII
n (LII) depend on the scatterer height and efficiency

in regions I and II. We see that, although there are no interference terms, the
probability density |Ψ̃III(z, t)|2 is time-dependent. This reflects the fact that we are
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Figure 4.6: Time-of-flight spectrum for neutrons arriving at the
detector after having left region II of the waveguide at t = 0.

now dealing with running wave packets in region III whose shapes depend on time
(c.f. figure 4.5).

Thus, in order to obtain the time-independent height distribution, |Ψ̃III(z, t)|2
has to be convoluted with the neutron’s time-of-flight spectrum PToF(t) when cov-
ering the distance LIII = 7 cm. The latter is shown in figure 4.6.

With the usual free parameters for detector and scattered neutron background
bdet and bscatt, for the norm a and for the offset zoff of the distribution, we construct
the fit function for a gravityless setup:

FnoG(z) = a

(∫
dt PToF(t)

∣∣∣Ψ̃III(z − zoff, t)
∣∣∣
2
)

+ bdet + bscattΘ(z − zoff) (4.20)

Convolution with the detector resolution σ yields

F̃noG(z) =
1√
2πσ

∫
dz′ FnoG(z′) · exp

[
−1

2

(
z′ − z

σ

)2
]

, (4.21)

which is the final function to be fitted to the data.

Again, we want to fit the model to the data from the 50-µm measurement (‘de-
tector 7’). Upon doing so it quickly turns out that the gravityless model fits the
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data very badly. In order to allow the fitting program to work at all, several of the
parameters had to be held constant:

1. The detector resolution σ was set to a value of σ = 2.1 µm obtained from the
previous fits to the data.

2. The scattered neutron background had to be neglected completely by setting
bscatt = 0 µm−1.

3. The scatterer efficiency β seemed to be constantly running towards arbitrar-
ily high values. Following the same procedure than for the classical fits, we
therefore sampled different values of β and had the fit routine search for the
corresponding minimum χ2.

The remaining free parameters are thus:

1. The waveguide width w,

2. the offset of the height distribution zoff and

3. the norm of the distribution a.

As usual the detector background is measured to be

bdet = (6.9± 0.3) µm−1 .

The data points taken into account in the fit range from 60 µm to 200 µm.

Figure 4.7 summarises the best values of χ2 for different values of the scatterer
efficiency β. It is worth mentioning that, in figure, the scatterer efficiency has been
sampled up to unreasonably high values: The computation shows that, for a value
of β = 5 · 106, the state populations at the exit of region II are

pII
n (LII) ≈ 10−41

which means that the overall transmission probability for a neutron would practically
be zero, in disagreement with the finite neutron flux that has been measured.

It is therefore quite obvious from figure 4.7 that at any reasonable values of β,
χ2 will never drop beneath a value of

χ2 ≈ 850 at 137 degrees of freedom

corresponding to a reduced χ2 of

χ̃2 ≈ 6.2
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or a probability
P (χ2) < 10−100 .

Confronted to such devastating a result, we may safely conclude that predictions
from a gravityless theory of the experiment are in contradiction with the measured
height distributions. Figure 4.8 shows the best ‘fits’ to the data for two different
values of β. Unlike the classical model, which can at least describe the high energetic
part of the dataset, the quantum theory we derived neglecting gravity is unable to
reproduce the shape of the neutron height distribution even on the largest scale.
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Chapter 5

Gravity at Small Length Scales

Over the last decade a number of theories aiming at a quantum field description of
gravity have arisen which predict deviations from Newtonian gravity at small but
experimentally accessible length scales. As a consequence, there is today a renewed
interest in experimental probes of the gravitational potential at distances below
1 mm.

Our experiment observes gravitationally bound quantum systems of characteris-
tic sizes around 10 µm, thus in principle it probes the gravitational potential (1.8)
at distances of this order of magnitude or below. Upper limits on the deviations
from Newtonian gravity have already been derived from integral flux measurements
performed with our experiment and are reported in [Abe03] and [Nesv04].

Within the framework of this thesis, we want to determine if such upper limits can
also be obtained from the measurements of neutron height distributions described
in this text.

5.1 Deviations from Newtonian Gravity

The most accurate model of gravity available today is provided by the General The-
ory of Relativity. It describes the attraction of masses from cosmological length and
energy scales down to everyday phenomena. Newton’s law of gravitation (1.8) which
we have used all through the preceding chapters is no more than the non-relativistic
limit of Einstein’s field equations. Yet, General Relativity being a classical field
theory, it is expected to fail on the scale of elementary particles, whose dynamics is
known to be governed by quantum physics.

The views of the universe inherent to Quantum Theory and General Relativity

83
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are so radically different that this antagonism is commonly regarded as one of the
most challenging physical problems of our time. For decades, theoreticians have
sought to bridge this gap between gravity and the three other fundamental interac-
tions. The most promising models aiming in this direction have become known under
the collective name of ‘String Theories’. Therein the fundamental constituents of
matter and the field bosons are seen as excitations of underlying one-dimensional
objects called ‘strings’. The mathematics of these theories requires that the strings
themselves ‘live’ in an eleven-dimensional space-time. However, General Relativity,
Quantum Field Theory, and eventually everyday experience tell us that our world
is effectively characterised by a four-dimensional space-time. For the three non-
gravitational interactions, high energy physics has established that this effective
four-dimensionality holds down to the length scale of quarks and leptons.

String theories account for this by assuming that seven of the spatial dimensions
present on the string scale bend back into themselves. These extra-dimensions are
thereby compactified, usually down to the Planck length scale of 10−35 m, such that
no interaction between particles can be mediated through them at larger distances.
This ensures that such theories are not in contradiction to present experimental
results but it also leaves little hope of probing their predictions in the not-too-distant
future.

However, a few years ago it was shown [Ark98] [Ark99] that it is also possible to
construct frameworks in which the three non-gravitational interactions are confined
to four space-time dimensions while gravity could, in addition, propagate through
one or more large extra-dimensions. The latter might then have compactification
radii of up to one millimeter, such that deviations from Einsteinian gravity could be
observable at these length scales.

It can be shown [Ark98] that such admixture of large extra-dimensions mediating
gravity would lead to an additional short-ranged term in the gravitational potential
V (r) for two masses m1 and m2 separated by the distance r:

V (r) = −G
m1m2

r

[
1− α exp

(
− r

λ

)]
(5.1)

A detailed calculation can also be found in [Wes01]. The left part of equation
(5.1) is the usual Newtonian gravitational potential as in equation (1.8), while the
exponential Yukawa-like term contains the additional interaction at short distances
due to large extra dimensions. The latter is often referred to as the ‘fifth force’.
λ corresponds to the range of the additional interaction while α parametrises its
strength in units of the gravitational constant G. It can be shown [Wes01] that, in
contrast to ‘normal’ gravity, this short ranged potential can be both attractive or
repulsive, i.e. α may be positive or negative.

A good summary of present experimental limits on the fifth force parameters α
and λ is provided by figure 5.1 which is taken from [Hoy04]. The constraints on |α|
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Figure 5.1: Current experimental constraints on a hypothetic short-
ranged admixture to the gravitational potential as given by equa-
tion (5.1). The excluded region is marked in yellow. The picture is
taken from [Hoy04]. For an explanation of annotations see [Hoy04]
and references therein.

are very restrictive for ranges λ of 1 mm and up. At smaller length scales however,
the precision of the mechanical experiments normally used to probe gravity worsens
considerably, and below 3 µm |α| might be as large as 1010.

A few micrometers is precisely the length scale of the gravitationally bound
quantum states we observe in our experiment. From the integral flux measurement
of 1999 (c.f. figure 2.3) H. Abele et al. derived an upper limit [Abe03]

|α|max ≈ 1012 , (5.2)

corresponding to a 90% confidence interval, for values of λ between 1 µm and 10 µm.
In [Nahr05] S. Nahrwold confirmed this limit using data from another integral flux
measurement of 2002.

Within the framework of this thesis we want to elucidate the question if such
limits can also be obtained from the height distribution measurements presented in
chapter 2. This means that we have to extend the quantum mechanical description
developed in chapter 3 in such a way that it incorporates the fifth force strength
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and range, α and λ, as two additional parameters.

5.2 A Model of the Experiment including Fifth Forces

In principle the effect of a hypothetic non-Newtonian gravity can easily be included
in our quantum mechanical calculations. We are interested in small values of λ
only, thus a neutron inside the waveguide will be subject only to fifth force admix-
tures caused by the mirrors and scatterer. As for its gravitational interaction with
the Earth or even with other elements of the experimental setup, the effect of the
Yukawa-like term in (5.1) is negligible due to its exponential decrease.

Hence we derive from equation (5.1) that a neutron located at a height z above
the mirror of mass density ρm has a gravitational potential energy

Umir(z) = mgz + 2πmρmGαλ2 exp
(
− z

λ

)
, (5.3)

where we have taken the mirror to have infinite volume and integrated r over the
corresponding half-sphere of infinite radius. A detailed calculation can be found
e.g. in [Wes01].

A neutron located between a mirror and the scatterer placed at z = h feels an
additional short ranged force from the scatterer surface:

U ′(z) = mgz + 2πmρmGαλ2

[
exp

(
− z

λ

)
+ exp

(
−h− z

λ

)]
(5.4)

However, the scatterer surface is not flat but characterised by a roughness of ampli-
tude ρ ≈ 0.75 µm. This leads [Wes04] to a small correction that has to be applied
to (5.4) and yields

Umir/sca(z) = mgz + 2πmρmGαλ2

[
exp

(
− z

λ

)
+ exp

(
−h− z

λ

)
C(ρ, λ)

]
, (5.5)

with

C(ρ, λ) = 1 +
exp(2ρ/λ)(2ρ− λ) + λ

2ρ
.

From figure 3.2 we see that, in regions I, II and III of the waveguide, a neutron is
subject to gravitational potentials of the forms (5.5) or (5.3) respectively, where the
origin of heights z = 0 has to be adapted according to the mirror step. Figure 5.2
depicts the shape of the gravitational potential in region III of the waveguide for
λ = 2 µm and three different values of α. Just as in chapter 3 we need to find
eigenstates of the Schrödinger equation for every region of the waveguide.
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The potentials (5.3) and (5.5) are too complicated to allow any analytic treat-
ment, hence, eigenstates and eigenvalues have to be computed numerically for each
couple of values α and λ. Given the large number – 25 – of states we want to include
in our fits, this is quite laborious a task even for a fast personal computer, yet there
are no fundamental difficulties in this procedure. As an example, figure 5.3 shows
the second eigenstate of region III of the waveguide for different Yukawa admixtures.
It is clearly visible how a positive value of α repells the wavefunction from the mirror
surface, while a negative one attracts it.

5.2.1 Fitting the Experimental Data

The eigenstates derived from (5.3) and (5.5) can easily be inserted into our quan-
tum mechanical theory of the waveguide from chapter 3: They just replace their
counterparts from equations (3.16), (3.17) and (3.9), the principles of the model
remain untouched: The starting populations of the states are governed by the phase
space factor (3.41), the states’ decay due to the scatterer is parametrised by equa-
tion (3.25), and repopulations at mirror step and scatterer edge are computed in the
sudden approximation.

However, in order to reduce the amount of numerical computation required, we
have to make two restrictions:

1. We fix the waveguide width w at the value obtained from the ‘normal’ quantum
mechanical fit:

w = (52.6± 2.0) µm

This effectively reduces the number of eigenstates to be numerically computed
by a factor of ten. Without this limitation, the overall computation time would
have been forbiddingly long (several weeks) which we cannot afford within the
timeframe of this diploma work. However, since the waveguide width has not
been measured independently, this means that the analysis to follow cannot
yield experimental limits on α. It should rather be regarded as a feasibility
study, telling us what constraints on the fifth force could be obtained from our
experiment had the scatterer height been precisely measured.

2. We restrict ourselves to two values of the fifth force range λ, namely λ = 2 µm
and λ = 4 µm.

Within these restrictions, we fit the model to the data obtained from the 50-µm
measurement shown in figure 2.8. For the two values of λ we sample α in the range
from −1014 to 1014 and let the remaining six parameters, described section 3.5,
adapt themselves accordingly. By taking note of every corresponding best fit value
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of χ2, we obtain the functional dependences

χ2(α)

for both given values of λ. These are shown in figure 5.4, the sampled values of
χ2(α) have been interpolated into fourth-order polynomials plotted in red. The
intersections of the latter with the dashed vertical lines correspond to 90% confidence
limits of the best fit values of α.

5.2.2 Discussion of the Fit Results

For the given values of λ, the fit yields best values of α of

α = (−3.8+2.5
−2.3) · 1013 for λ = 2 µm

and
α = (−4.5+2.9

−2.8) · 1012 for λ = 4 µm.

The corresponding 90% confidence limits can be seen in figure 5.4. Although not
centred at zero, they are in rough agreement with α = 0, thus not indicating evidence
for deviations from Newtonian gravity within the framework of this feasibility study.

In our interpretation, the most likely source of misunderstood systematics is the
scatterer, whose neutron ‘removal’ mechanism we have modeled in a very heuristic
way. Although the parametrisation (3.25) describes the process well enough to
obtain good fits in the realistic situation of normal, Newtonian gravity, fits of α and
λ seem to overstress it. Additionally, considering the scatterer efficiency β a free
parameter in principle contradicts physical reality: the efficiency should be a pure
surface property of the scatterer, independent of α and λ. However, as mentioned
in chapter 3, work aiming at a quantum mechanical understanding ab initio of
the scattering mechanism is underway [Vor05] [Wes06]. Such a complete theory of
the scatterer should eventually allow to derive the efficiency of the scatterer from
measured quantities.

Within the feasibility study the present analysis is, we can simulate this situ-
ation by repeating the above fitting process with the efficiency parameter β held
constant at the value obtained under the assumption of non-existent fifth forces. In
an analogous way than laid out above we then obtain 90% confidence regions for α
of

αmin = −1.2 · 1013, αmax = 0.8 · 1013 for λ = 2 µm

and
αmin = −2.6 · 1012, αmax = 1.0 · 1012 for λ = 4 µm
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Figure 5.4: χ2 minima upon fitting the quantum mechanical model
including fifth forces to the data from the 50-µm measurement. The
red curves are fourth-order polynomials approximating the sampled
values of χ2(α). Their intersections with the dashed lines delimit
the 90% confidence intervals for the best fit value of α.
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Hence, we can gain approximately half an order of magnitude. These limits
on α are in the same order of magnitude than those derived from integral flux
measurements [Nahr05]. Thus we have to conclude that, in the present situation of
not well understood scatterer action and statistics limited by the very low UCN flux
density, position sensitive measurements of a neutron’s probability density above a
mirror cannot be used to derive upper limits on fifth forces more competitive than
those we already have.
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Summary

Within the framework of this diploma thesis we have carried out an experiment at the
Institut Laue Langevin to detect bound quantum states of ultracold neutrons in the
Earth’s gravitational potential. Operating the existing experimental installation, we
have used position resolving neutron detectors in order to directly image the height
distribution of neutrons bouncing in gravity above a totally reflecting glass mirror.
Already from the raw data it was clear that the spatial resolution achieved in the
detection and data correction process was as good as a few micrometers, quantitative
analysis then revealed a resolution as good as approximately 2 µm.

Two measurements of this kind have been made, but one of them contains so
low a number of neutron counts that it is practically useless when it comes to
interpretation of the experiment, as the uncertainties on the measured distribution
are too large to allow any conclusive analysis regarding its shape. However, the
other detector contained much higher statistics and a very valuable dataset could
be extracted from it.

We have developed a complete quantum mechanical model of the waveguide
and presented a new way of computing the starting populations of the eigenstates.
The latter takes in account the density of states at the location of the waveguide
entrance and leads to a phase space factor which causes the eigenstates to have
unequal starting populations. With this effect taken into account, the model yields
a prediction for the neutron height distribution above the mirror surface which is in
good agreement with the measurement.

In order to rule out a possible misinterpretation of the dataset, we have developed
two alternative theoretical models of the measurement. The first assumes that the
neutrons propagate along the waveguide as point like particles governed by the
laws of classical mechanics. It has been realised using a Monte-Carlo simulation.
The second consists of a quantum mechanical description in which the gravitational
potential is neglected, i.e. in which the eigenstates of neutrons in the waveguide
correspond to those of free particles.

It was found that the gravityless view cannot describe the measured height dis-
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tribution in even a qualitative way and that it can be rejected without any doubt.
Fitting of the classical prediction showed that it is able to qualitatively describe the
higher energetic part of the dataset, while it fails at heights above the mirror of less
than about 20 µm. In a quantum mechanical view, this behaviour is expected, as for
large quantum numbers the system should, according to Bohr’s Principle, behave
semi-classically.

Although the classical description fits the data better than the gravityless one,
only the complete quantum mechanical model – including gravity – can pass a
quantitative statistical test. Thus we conclude that the measurement provides strong
evidence for quantised motion of neutrons in the Earth’s field of gravity, as has
already been observed via integral flux measurements using our setup [Nesv02].

We have studied the possibility of deriving upper limits on short-ranged Yukawa
type admixtures to the linear gravitational potential. Such deviations are predicted
by a number of theories aiming at a quantum description of gravity [Ark98] [Ark99].
The analysis yields that, in the present situation, the limits derived from neutron
height distribution measurements can only be as good than those already obtained
through integral flux measurements.
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