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1 Neutron Decay In The Context Of Nuclear Physics.

1.1 The Weak Interaction in Nuclei.

According to the Standard Model of particle physics the charged weak current is purely
left-handed, i.e. it is an equal admixture of polar vector (V) and axial vector (A) currents
of quarks and leptons with appropriate relative sign. In nuclear physics vector currents give
rise to Fermi β -transitions with coupling constant GV and spin-parity selection rule for
allowed transitions:

∆I = 0, no parity change (1)

Axial currents give Gamow-Teller β-transitions with coupling constant GA and spin-parity
selection rule for allowed transitions:

∆I = 0, ±1, no 0⇒ 0, no parity change (2)

The β-decay of free neutrons into protons

n⇒ p+ e−+ νe,
1

2

+

⇒
1

2

+

(3)

is allowed by both selection rules and is described as a mixed transition. One can there-
fore observe parity-violating effects in neutron decay associated with vector/axial vector
interference.

1.2 Neutron Decay Parameters.

The principal kinematic parameters which govern neutron decay are:

Σ = (mn +mp)c
2 = 1877.83794MeV ;∆ = (mn −mp)c

2 = 1.29332MeV (4)

Kinetic energy of electrons : 0 ≤ Te ≤ 783 keV (5)

Kinetic energy of protons : 0 ≤ Tp ≤ 751 eV (6)

Recoil parameter : δ = ∆/Σ < 10−3 (7)

Because the recoil parameter δ is so small it follows that the momentum transfer dependence
of all form factors may be neglected. This is also the reason why the neutron lifetime is so
long. The current best value of the neutron lifetime is [1]:

τn = 885.7± 0.8 sec. (8)

This is greater by a factor of ∼ 4.108 than the lifetime of the muon which is the next longest
lived elementary particle.
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1.3 Measurement of the Neutron Lifetime.

Neutron lifetime experiments may be separated into two groups: the classical ’beam’ methods
and the more modern ’bottle’ methods. In beam methods the number of decaying neutrons
in a specified volume of neutron beam is recorded. These methods rely on the relationship:

dN(t)

dt
= −

N(t)

τn
(9)

where N(t) is the number of neutrons in the source volume V at time t. To proceed further
we require two additional relations:

〈dN(t)

dt

〉

= nd
4π

Ωε
(10)

and

〈N(t)〉 = ρnV (11)

where nd is the number of neutron decays recorded per unit time in a detector of known solid
angle Ω and efficiency ε, and ρn is the neutron density. Assuming a 4π collection solid angle,
as in all recent variants of the technique, and unit efficiency ε for recording the number Nd

of decays occurring per second in a known length L of beam, the value of τn is given by

τn =
Nn L

Nd σ0 v0 η
(12)

Here Nn is the number of neutron-nucleus reactions detected per unit time in a neutron
counter, σ0 is the cross section at some standard neutron velocity v0 (usually 2200m./sec.)
and η is the surface density of neutron detector isotope. This result does not depend on the
neutron velocity v, provided σ(v) scales as v−1. Suitable reactions are:

10B(n, α)7Li (σ0 = 3836± 8b.), (13)

6Li(n, α)3H (σ0 = 941± 3b.) (14)

and

3He(n, p)3H (σ0 = 5327± 10b.) (15)

’Bottle’ methods for the determination of τn on the other hand rely on the integrated form
of (9), i.e.

N(t) = N(0) e−t/τn (16)

where N(t) is determined by recording the number of neutrons surviving to time t as a
function of the number N(0) present in a fixed source volume at zero time. This is to be
contrasted with the beam methods where it is the number of neutrons which fail to survive in
a continually replenished source of neutrons which is recorded. Ever since the identification
of a storable ultra-cold component of energy ≤ 2.10−7 eV in the Maxwellian tail of the
thermal flux from a reactor, the bottle methods have been favored since they do not rely
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on the performance of a number of subsidiary experiments,e.g. determination of absolute
cross-sections or the precise isotopic composition of neutron counters.
There are two principal neutron storage methods, magnetic confinement or storage in a

closed vessel made from a material with suitable Fermi pseudo-potential. Magnetic confine-
ment relies on the force

F = −∇{µn.B(r)} (17)

which is exerted on the neutron magnetic moment µn in an inhomogeneous magnetic field
B(r). Since the sense of the force depends on the sign of the spin quantum number only
one sign of the spin can be confined which means that, in principle, neutrons can always be
lost from the source volume by spin-flipping which is a difficult loss mechanism to control.
Alternatively in the case of storage in a material bottle the ideal relation (16) must be
replaced by

N(t) = N(0)e−t(1/τn+1/τw) (18)

where τw(v) represents the lifetime for neutron loss through absorption or inelastic collisions
of ultra-cold neutrons with the walls of the vessel. In general this is given by a relation of
the form

τw(v)
−1 = 〈µ(v)〉v/λ (19)

where 〈µ(v)〉 is the loss rate per bounce averaged over all angles of incidence and the mean
free path λ is a function of the geometry of the containing vessel. A number of techniques
have been developed to estimate τw(v) by using variable geometry and/or counting the
number of up-scattered neutrons.

1.4 Neutron Lifetime and the Big Bang.

The free neutron lifetime is also of significance in big bang cosmology, where it directly
influences the relative abundance of primordial helium synthesized in the early universe.
This is determined by the ratio of the neutron lifetime to the expansion time from that
epoch at which neutrinos decouple from hadronic matter to the onset of nucleosynthesis [2].
The argument goes briefly as follows. At times t < 10−2sec. and temperatures T > 1011K

the populations of neutrons and protons are kept in a state of thermal equilibrium,i.e.

Xn/Xp = e−(mn−mp)c
2/kT (20)

through the weak interactions

n+ e+ ­ p+ νe ; p+ e− ­ n+ νe (21)

At t ' 1 sec. the freeze-out temperature T' 1010K is reached where the leptons decouple
from the hadrons and neutrons begin to decay into protons according to (3). This process
continues until a time t ' 180 sec when the temperature has fallen to a value T'109K
and deuterium formed by the capture of neutrons on protons remains stable in the thermal
radiation field. This is followed by a sequence of strong interactions whose net effect is the
conversion of all free neutrons into helium. Using the current value of the neutron lifetime,
these considerations result in a relative helium abundance in the present day universe of
about 25% in good agreement with observation.
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1.5 Application to Solar Astrophysics.

The main source of solar energy derives from the proton-proton cycle of thermonuclear
reactions, the end-point of which is the fusion of four protons into a helium nucleus with the
release of positrons, photons and neutrinos. In the first step two protons interact weakly to
form deuterium

p+ p⇒2H + e+ + νe (22)

An alternative reaction is the weak p− e− p process which occurs with a branching ration
of approximately 0.25%

p+ e− + p⇒2H + νe (23)

That the timescale is determined by the neutron lifetime stems from the fact that the
governing reaction (22) is just inverse neutron decay with the spectator proton providing
the energy,while the p− e− p interaction (21) is the corresponding electron capture process
[3]. However since the two protons can interact weakly only in the 1S0 state because of the
Pauli principle, and since the deuteron can exist only in the triplet state, it follows that the
vector contribution to the underlying inverse neutron β-decay is forbidden and the weak
capture of protons on protons proceeds at a rate proportional to |GA|

2. To compute this
rate it is therefore necessary to determine individual values for the weak coupling constants
GV and GA.

1.6 Determination of the Weak Coupling Constants.

The neutron lifetime τn = tn/ ln(2), where the half-life tn is commonly employed in nuclear
physics, is given by the formula

ftn =
2π3 ln(2)~3

m5
ec

4
· [|GV |

2 + 3|GA|
2]−1 =

K

|GV |2
· [1 + 3|λ|2]−1 (24)

where K=(8120.271±0.012) · 10−10GeV−4 sec., and

λ = GA/GV (25)

The factor f is the integral of the Fermi Coulomb-corrected phase space function F (Ee)
which, including the outer radiative corrections δR > 0, has the value [4]

f(1 + δR) = 1.71489± 0.00002 (26)

If isospin invariance of the strong interactions and conservation of the weak vector current
are assumed, then |GV | may be determined from the ft-values of the sequence of pure Fermi
superallowed 0+ ⇒ 0+nuclear positron emitters through the formula

ft(1− δC)(1 + δR)(0+ ⇒ 0+) = K/|GV |
2 (27)

where each nuclear decay has been individually corrected, incorporating factors (1-δC) ≺ 1
for isospin symmetry-breaking and (1+δR) Â 1 for the nucleus-dependent radiative correc-
tion. It follows that the values of |GV | and |GA| can be determined from a combination of
equations (24) to (27). To determine the relative sign of GV and GA it is necessary to ob-
serve some phenomenon which relies on Fermi/Gamow-Teller interference and this requires
the availability of polarized neutrons. Such phenomena allow the direct determination λ and
thus GV and GA can each be determined in both sign and magnitude from neutron decay
alone, in which case uncertainties associated with nuclear structure effects do not arise.
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2 Neutron Decay In The Context Of Particle Physics

2.1 The Cabibbo-Kobayashi-Maskawa Matrix

The neutron and proton form the components of an isospin doublet and are the lightest
constituents of the lowest SU(3) flavor octet, each of whose sub-multiplets is characterized
by its isospin (I) and its hypercharge (Y). A quantum number alternative to hypercharge
is the strangeness S=Y-B where the baryon number B has the value unity. Flavor SU(3)
symmetry is based on neglect of the difference in mass between the u- and d-quarks on the
one hand, and the s-quark on the other, and is severely broken. Because of the near equality
of the u- and d-quark masses the isospin SU(2) symmetry is much more closely realized,
a result which is derived from a dynamic global gauge symmetry of the QCD Lagrangian
which is expressed in the conservation of the weak vector current.
In increasing order of mass the octet contains an isodoublet {n,p; I=1/2, Y=1}, an isosinglet
{Λ0; I=0, Y = 0}, an isotriplet {Σ−, Σ0, Σ+; I=1, Y = 0} and a heavy isodoublet, the
so-called cascade particles {Ξ−, Ξ0, I=1/2, Y = −1}. The Σ0 decays electromagnetically
into the Λ0 which has the same value of Y and differs only in the value of I which is not
conserved by the electromagnetic interaction. Semi-leptonic weak decays within the octet are
characterized according to whether they are hypercharge conserving (e.g. n⇒ p,Σ− ⇒ Λ0

and Σ+ ⇒ Λ0), or hypercharge violating (e.g. Σ− ⇒ n,Σ+ ⇒ n and Ξ− ⇒ Λ0).
It was Cabibbo’s original insight to note and appreciate the significance of the fact

that the vector coupling constants corresponding to hypercharge conserving weak decays
GV (∆Y = 0),and hypercharge non-conserving weak decays GV (∆Y = 1) satisfied the
empirical relations

GV (∆Y = 0) = GF · cos(θc); GV (∆Y = 1) = GF · sin(θc) (28)

where the Fermi coupling constant GF is determined from the lifetime of the muon and
the Cabibbo angle θc ' 0.23. The result (28) is interpreted to mean that the charged
vector bosonsW± which mediate the weak interaction couple to the mixtures of quark mass
eigenstates

d′ = d · cos(θc) + s · sin(θc) ; s
′ = −d · sin(θc) + s · cos(θc) (29)

rather than to the mass eigenstates of the down (d) and strange (s) quarks themselves.
In the Standard Model of Particle Physics these ideas are extended to three quark gener-

ations where the couplings effective for the weak semi-leptonic decays of quarks are described
by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [5], which rotates the quark mass eigen-
states (d, s, b) to the weak eigenstates(d

′

, s
′

, b
′

):





d
′

s
′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b



 (30)

where

Vud ' Vcs ' cos(θc) ; Vus ' −Vcd ' sin(θc) (31)

Since, assuming that no more than three quark generations exist, the CKM matrix must
be unitary, its nine elements can be expressed in terms of only four real parameters, three of
which can be chosen as real angles and the fourth as a phase. If this phase is not an integral
multiple of π, then CP symmetry is violated. For this to be possible the number of quark
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generations must be at least three. In the present context the unitarity of the CKM matrix
requires that

|Vud|
2 + |Vus|

2 + |Vub|
2 = 1 (32)

and the role of neutron β-decay centers on the determination of the largest matrix element
Vud.

2.2 Neutron Decay in the Standard Model.

In the Standard Model the weak interaction responsible for neutron decay is given as the con-
traction of a leptonic current J l

µ(x) and a hadronic current J
h
µ (x), where, in the convention

that the operator (1-γ5)/2 projects out the left-handed field components,

J l
µ(x) = eγµ(1− γ5)νe ; J

h
µ (x) = d · Vudγµ(1− γ5)u (33)

Since the leptons have no strong interactions the matrix element of the weak leptonic current
is relatively simple, i.e.

〈e−νe|J
l
µ(0)|0〉 = 〈ue|γµ(1− γ5)|uνe

〉 (34)

where ue and uνe
are Dirac spinors describing electron and neutrino respectively. However

since the quarks are strongly interacting particles confined in nucleons the hadronic matrix
elements are in principle limited only by the requirements of Lorentz invariance and maximal
parity violation. Thus we find for the matrix element of the vector current

〈p|Jh,V
µ (0)|n〉 = 〈vp|gV (q)γµ − i

~

2mpc
gWM (q)σµνqν +

~

2mpc
gS(q)qµ|vn〉 (35)

where vn and vp are neutron and proton spinors respectively, qµ is the 4-momentum transfer
and gi(i = V, WM, S) represent form factors corresponding to the bare vector, induced weak
magnetism and induced scalar interactions respectively. As noted in section 1.2, for neutron
decay all form factors may be evaluated at q = 0. Conservation of the vector current then
requires that

gV (0) = 1, gWM (0) = κp − κn = 3.70, gS(0) = 0. (36)

where κp = 1.79,and κn = −1.91, are the anomalous magnetic moments of neutron and
proton respectively, expressed in units of the nuclear magneton. Since weak magnetism is a
term of recoil order it makes only a very small correction to the vector matrix element in
neutron decay and is totally absent in pure Fermi decays. An alternative test of the conserved
weak vector current theorem in action outside the regime of baryon decays is the pure Fermi
0− ⇒ 0− β-decay π+ ⇒ π0 + e+ + νe. The induced scalar interaction is also ruled out on
the separate grounds that, having the wrong transformation properties under the G-parity
transformation, it is second class and therefore does not contribute to β−decays within an
isospin multiplet [6].
The corresponding axial matrix element is

〈

p |Jh,A
µ (0)|n

〉

=

〈

vp|gA(q)γµγ5 − i
~

2mpc
gT (q)σµνqνγ5 +

~

2mpc
gP (q)qµγ5|vn

〉

(37)

The axial current is not conserved which means that the form factor gA(0) is nucleon struc-
ture dependent and has to be determined experimentally. Since the induced tensor form
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factor gT (0) is also ruled out as second class, and the operator qµγ5 does not contribute
to allowed decay between nuclear states of the same parity, it follows that the axial matrix
element depends only on the single constant gA(0) which, given that gV (0) = 1, becomes
identical with the empirical constant λ introduced in (23).

3 The Correlation Coefficients In Neutron Decay.

3.1 Polarized Neutron Decay.

In a pure Fermi transition nuclear polarization is not possible and in a pure Gamow-Teller
transition only the M=±1 lepton magnetic substates contribute to the correlation between
the nuclear spin and the lepton momenta. This is the origin of the parity violation phe-
nomenon first observed in the decay of 60Co. However, in a mixed transition such as in
neutron decay, interference can arise between the singlet and triplet magnetic substates
with M=0. As a consequence, depending on the sign of λ, either the electron or the antineu-
trino asymmetry will be enhanced as compared with pure Gamow-Teller decay, the other
being reduced in proportion.
Experimental study of the angular and polarization coefficients which characterizes the

decay of unpolarized and polarized neutrons offers an alternative route to the determination
of λ. These involve carrying out measurements of the neutron spin polarization σn, and per-
haps the electron polarization σe, together with some combination of the energies Ee, Eν̄ , Ep

and momenta pe,pν̄ , pp of the three particles in the final state. The transition rate for a
polarized neutron can then be written [7]:

dW (σ,pe,pν̄) ∝ F (Ee)dΩedΩν̄{1 + a
pe .pν̄
EeEν̄

+
bme

Ee
+

+〈σn〉(A
pe

Ee
+B

pν̄

Eν̄
+D

pe × pν̄
EeEν̄

+R
σe × pe

Ee
+ . . .)} (38)

where the neutron polarization σn has been averaged over all wavelengths and positions
within the neutron beam and some less significant correlations have been omitted. The three
correlation coefficients a,A and B, which have finite values within the Standard Model, are
given in lowest order by the relations:

a =
1− |λ|2

1 + 3|λ|2
, A = −2

|λ|2 + Re(λ)

1 + 3|λ|2
, B = 2

|λ|2 − Re(λ)

1 + 3|λ|2
(39)

where the possibility has been left open that the coupling constant ratio λ might be com-
plex signalling a break-down of time reversal invariance in the weak interaction. Each of
these coefficients has to be corrected by inclusion of radiative corrections plus additional
terms of recoil order including weak magnetism. However certain linear combinations of
these coefficients exist which are independent of radiative corrections to lowest order in the
fine structure constant α omitting cross terms of order αq or α(Ee/mp) ln(mp/Ee). These
relations are [8]:

f1 = 1 +A−B − a = 0; f2 = aB −A2 −−A = 0 (40)

The possibility of a breakdown in T-invariance is tested in a measurement of the T-odd,
P-even triple correlation coefficient D which is given by the expression
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D =
2Im(λ)

1 + 3|λ|2
(41)

In order to establish a violation of T-invariance it is necessary to identify some feature of
the decay which changes sign under reversal of the time but not under inversion of the
coordinate system. The term σn · (pe × pν̄) possesses the desired property.

3.2 Non-Standard Model Contributions to the Correlation Coefficients

The leading coefficients a,A and B are each sensitive to right-handed contributions to the
weak interaction irrespective of any possible contribution from scalar or tensor couplings.
For example in left-right symmetric models the coefficient A takes the form[9]

A = −2
|λ|2(1 + y2) + Re(λ)(1− xy) + T1
1 + x2 + 3|λ|2(1 + y2) + T2

(42)

where T1and T2 are small terms of recoil order, x ' δ − ζ, y ' δ + ζ, δ is the square of the
ratio of the mass of the light W-boson which couples to left-handed currents to the mass of
the postulated heavy W-boson coupling to right handed currents and ζ is the mixing angle.
In these models D is linear in ζ and is particularly sensitive to a T-violating coupling of a
left-handed lepton to a right-handed quark.
When the possibility is allowed for contributions from scalar and tensor couplings then

both the Fierz interference coefficient b and the T-violating coefficient R receive finite con-
tributions. Specifically

b = bF + bGT ∝ Re(GV G∗S +G′V G′ ∗S )− 3Re(GAG∗T +G′AG′ ∗T ) (43)

and

R = RF +RGT ∝ −Im(G′AG∗S +GAG ∗

S)+

+Im(3Re(GAG∗T +G′AG′ ∗T ) +G′V G∗T +GV G′ ∗T ) (44)

where in this case it is necessary quite generally to distinguish between coupling constants
which are P-conserving (e.g. GV ) and P-non-conserving (e.g. G

′
V ). The Fermi coefficients bF

and RF are particularly sensitive to the scalar coupling of a right-handed lepton to any quark
while the Gamow-Teller coefficients are sensitive to the tensor coupling of a right-handed
lepton to a left-handed quark [10].

4 Measurement Of The Correlation Coefficients.

4.1 The Electron-Antineutrino Angular Correlation Coefficient a.

Since the electron spectrum in allowed β-decay is determined by the Fermi phase space
factor F(Ee) alone, it is insensitive to the details of the weak interaction. Thus, up to the
discovery of parity violation, the correlation coefficient a was the only parameter available
to provide such information. Also since the operator pe .pν̄ commutes with the total angular
momentum of the leptons, and therefore does not mix singlet and triplet operators, it follows
that the correlation coefficient
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a =
1− |λ|2

1 + 3|λ|2
;

δ|λ|

|λ|
' 0.27

δa

a
' 1% (45)

contains no Fermi/Gamow-Teller interference terms apart from small terms of recoil order.
It is, of course, impracticable to measure the correlation between the electron and an-

tineutrino momenta directly, since efficient detectors of antineutrinos do not exist. In practice
therefore only two indirect methods have been have been employed. These are (a) measur-
ing the momentum spectrum of electrons emitted into a given range of angles referred to
the proton momentum and (b) measuring the proton spectrum [11]. The experimenter is
therefore presented with a choice between electron spectroscopy and proton spectroscopy
and both methods have been explored...
It turns out that, up to the present, the measurement of the proton spectrum has proved

the more fruitful and two studies of this nature have been completed. These have used
(a) proton magnetic spectroscopy and (b) a Penning trap with adiabatic focusing.Both
experiments have required the addition of post acceleration of the protons to energies of
order 20-30 keV and have each reached precisions on a at the level of 5%. Because this
correlation measures the anomaly in |λ| rather than |λ| itself the resultant error in |λ| is
reduced to '1.4%.
Angular correlation measurements have the great advantage that it is not necessary that

the neutrons be polarized and this route to the determination of |λ| has yet to achieve its
true potential.

4.2 The Electron-Neutron Spin Asymmetry Coefficient A.

The correlation coefficient

A = −2
|λ|2 + Re(λ)

1 + 3|λ|2
;

δλ|

λ
' 0.24

δA

A
' 0.23% (46)

has been subjected to an enormous amount of experimental study going back to the 1950’s.
It has provided the most precise value for the parameter λ both in magnitude and sign,
and therefore for the CKM matrix element Vud based on neutron decay alone [12]. This
information has been largely derived from studies over the past '15 years at the ILL,
Grenoble using the electron spectrometer PERKEO in its various forms. The current world
average value for λ is [1]:

λ = −1.2670± 0.0030 (47)

Like the a-coefficient, the A-coefficient has the great advantage the it measures the
anomaly in λ. However it relies critically on '1 MeV electron spectroscopy, and, although
this is in general easier to perform than ' 1 keV proton spectroscopy, it has not proved
possible to extend the electron spectrum down to the lowest energies. However the measure-
ment of A suffers from the great disadvantage that the neutrons must be polarized and the
neutron polarization must be measured to an accuracy ≥ 99% and this is not easy. Fortu-
nately discrepancies between the values of the polarization derived using polarizer/analyser
combinations based on supermirrors and 3He filters appear to have been satisfactorily re-
solved.

4.3 The Antineutrino-Neutron Spin Asymmetry Coefficient B

The correlation
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B = 2
|λ|2 − Re(λ)

1 + 3|λ|2
;

δλ

λ
' 2.0

δB

B
(48)

is quite insensitive to the value of λ. Its measurement has the disadvantages that it requires
both that the neutrons be polarized and that proton spectroscopy be performed. For both
these reasons it has tended to be neglected as a topic for study. However, for the same reason
that it is insensitive to the precise value of λ, it is very sensitive to contributions from
right-handed bosons and recent measurements have succeeded in setting a limit mBR >
284.3GeV/c2 for the mass of the heavy W-boson which is postulated to couple to right-
handed currents [13].
A recent encouraging development has been the simultaneous measurement of A and B

whose ratio is therefore independent of neutron polarization [14].

4.4 The Triple Correlation Coefficient D.

This coefficient

D =
2Im(λ)

1 + 3|λ|2
(49)

is measured by counting coincidences between electrons and protons detected in counters
set at appropriately selected angles for a given sign of the neutron spin. The spin is then
reversed and the relevant counting rate asymmetry is recorded.
The D-coefficient is of second order in the T-violating phase in the CKM matrix and is

expected to be vanishingly small. Currently it is known to vanish at a level of about 0.1%
from neutron decay, and to marginally better precision from the decay of 19Ne. However,
since the T-symmetry is non-unitary and is generated by a non-linear operator, a violation
can be mimicked by final state electromagnetic interactions which in this instance appear
at a level of about 0.001%.

5 Additional Experimental Possibilities.

5.1 The Proton-Neutron Spin Asymmetry Coefficient α.

The individual coefficients A and B each have terms in |λ|2 deriving from the axial vec-
tor interaction, in addition to terms in Re(λ) generated through polar vector/axial vector
interference. Suppose, instead, one were to measure the correlation ασn · pp by detecting
the complete range of proton energies but without recording electron coincidences. Then,
since this is a parity-violating term and no lepton is detected, it satisfies the conditions of
Weinberg’s interference theorem [15], and is therefore proportional to Re(λ) with no term
in |λ|2. The corresponding expression for the coefficient α is given by [16]:

α = C.
4λ

1 + 3|λ|2
, C = 0.27484,

δλ

λ
' 1.5

δα

α
(50)

where the kinematic constant C comes from the double integral over electron and proton
energies, and includes Coulomb, recoil order and radiative corrections. Since in lowest order
the correlation α is proportional to (A+B) it is also relatively insensitive to the value of λ.
The principle of an experiment is quite straightforward. Recoil protons from the decay

of longitudinally polarized neutrons are collected in a magnetic field of order 5T, where the
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maximum radius of the cyclotron orbit is ≺ 1mm. If N+(N−) denote the numbers of protons
with momenta parallel (anti-parallel) to the neutron spin, then N± = N0{1±α〈σn〉/2} and
the appropriate counting rate asymmetry can be computed.
To measure N±, set the orientation of the neutron spin parallel to the magnetic field and

reflect the protons from a '1kV electrostatic potential barrier so that protons of both senses
of momentum enter the detector which is maintained at about −30 kV . Thus the counting
rate is given by

C1 = N+ +N− + b (51)

where b is the background. When the reflecting potential barrier is removed the new counting
rate is

C2 = N+ + βN− + b (52)

where β ¿ 1 represents that fraction of protons initially moving away from the detector
which is reflected back into the detector by magnetic mirror action. The procedure is now
repeated with the neutron spin direction reversed giving corresponding counting rates C

′

1, C
′

2

and background b′. The counting rate asymmetry is then given by

(C
′

1 − C
′

2)− (C1 − C2)

(C
′

1 − C
′

2) + (C1 − C2)
= α〈σn〉 (53)

The experiment only works on the assumption that the proton counter background in
the energy range ≤ 30 keV is weak in comparison to the signal strength which is certainly
not true in the case that the neutrons are polarized using a supermirror.

5.2 Two-Body Decay of the Neutron and Right-Handed Currents

When a neutron undergoes β−decay there is a small branching ratio '4.10−6 that the final
state should contain an antineutrino and a hydrogen atom i.e.

n⇒ H+ νe, (54)

where the hydrogen atom is created in an S-state. Since this is a two-body decay, momentum
conservation ensures that antineutrino and hydrogen atom each carry off unique energies
with

pν̄ + pH = 0, Eν̄ = 783 keV, TH = 352 eV (55)

Although the higher S-levels decay spontaneously, hydrogen atoms created in the
metastable 2S state can exist in one of four decoupled hyperfine levels |Me,Mp〉 with pop-
ulations Wi(i = 1− 4), where nH = pH/pH and

∣

∣

∣

∣

1

2
,
1

2

〉

; W1 = 2(1 + |λ|
2){1 + σn.nH} ' 0.57% when σn.nH = 0 (56)
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−
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2
,
1

2

〉

; W2 = 8|λ|
2{1− σn.nH} ' 55.13% when σn.nH = 0 (57)
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〉

; W3 = 2(1− |λ|
2){1− σn.nH} ' 44.28% when σn.nH = 0 (58)
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∣
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−
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2
,−
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〉

; W4 = 2(1 + |λ|
2){1 + σn. nH} ≡ 0 (59)
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The populationW4 vanishes identically in the case that the weak interaction is purely left-
handed, and this is a result which depends on conservation of angular momentum only. Thus
exploiting the neutron polarization to suppress the populations W2 and W3, observation of
a finite population W4 6= 0 would provide an unambiguous signature for the existence of
right-handed currents [17].

5.3 Radiative Neutron Decay.

Radiative decay of the free neutron

n⇒ p+ e−+ νe +γ, (60)

also described as inner bremsstrahlung, has a branching ratio at the level of 0.1%. The matrix
element for the process consists of two terms; a term describing electron photon emission and
a term describing proton photon emission. Both terms contain infra-red divergences which
cancel. However because |λ| 6= 1, contrary to the situation in the case of the muon which
has no strong interactions, the total radiative correction depends on the ultra-violet cut-off
parameter Λ. Thus the simplest experiments designed to detect the inner bremsstrahlung
provide a measure of the outer radiative correction only.
Experiments designed to measure the branching ratio for radiative neutron decay by

detecting triple coincidences between electron, proton and gamma are currently under way
at the ILL Grenoble [18].
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