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Abstract
Within the scope of this bachelor thesis a stand alone tracking algorithm for the Transition
Radiation Detector (TRD) in ALICE was implemented using a Kalman filter approach.
For testing and benchmarking purposes a simple Monte Carlo simulation of the TRD
was developed. Different algorithms, including a straight line tracking algorithm and two
Kalman filters with realistic track models were tested and their efficiencies and purities
compared. Based on the experience of the Monte Carlo simulation, a Kalman filter based
stand alone tracking algorithm was developed and applied to real p–Pb data recorded at
?
sNN = 5.02 TeV. The track reconstruction efficiency and transverse momentum resolu-

tion was determined using tracks from the Time Projection Chamber (TPC) in ALICE
which were matched to Kalman filter tracks. The stand alone tracking algorithm was
further used to identify and study photon conversions in front of and within the TRD.
Furthermore, nuclear interactions which happened in front of and within the TRD were
successfully reconstructed by identifying the resulting particle shower.
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Zusammenfassung
Im Rahmen dieser Bachelorarbeit wurde ein unabhängiger Tracking-Algorithmus für den
Transistion Radiation Detector (TRD) von ALICE unter Verwendung eines Kalman-Filter-
Ansatzes implementiert. Zu Test- und Benchmarkingzwecken wurde eine einfache Monte
Carlo Simulation des TRDs erstellt. Verschiedene Algorithmen, darunter ein einfacher
Tracking-Algorithmus und zwei Kalman-Filter mit realistischen Track-Modellen wurden
getestet und ihre Spurrekonstruktionseffizienz und Reinheit verglichen. Basierend auf
den Erfahrungen mit der Monte Carlo Simulation wurde ein eigenständiger Tracking-
Algorithmus basierend auf einem Kalman Filter entwickelt und auf p–Pb-Daten mit ?

sNN =

5.02 TeV angewendet. Die Spurrekonstruktionseffizienz und die transversale Impulsauflö-
sung wurden unter Verwendung von Spuren aus der Time Projection Chamber in ALI-
CE, welche zu Kalman Spuren zugeordnet wurden, bestimmt. Der unabhängige Tracking-
Algorithmus wurde des Weiteren verwendet, um Photonenkonversionen vor und innerhalb
des TRD zu identifizieren und zu untersuchen. Darüber hinaus wurden nukleare Wechsel-
wirkungen, die vor und innerhalb des TRD auftraten, erfolgreich rekonstruiert, indem die
resultierenden Teilchen identifiziert wurden.
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1 Introduction
The quark-gluon plasma (QGP) is a state of matter, which is believed to have been present
shortly after the Big Bang [1]. The QGP has a very high temperature, a high energy den-
sity and the quarks and gluons are in a deconfined state [2]. Deconfinement describes a
state in which quarks (the elementary particles which make up hadrons like protons or neu-
trons) are no longer bound to each other by their strong interaction. Deconfinement only
happens when the nuclear matter experiences extreme temperatures and/or high pressure.
The task of studying the quark-gluon plasma phase was taken up by the researchers at
CERN (Conseil Européen pour la Recherche Nucléaire, European Organisation for Nuclear
Research). The Large Hadron Collider (LHC) is located at CERN, where it is possible to
generate this state of matter by colliding heavy nuclei at relativistic energies. Other places
with suitable hadron colliders include the Relativistic Heavy Ion Collider (RHIC) in New
York. The LHC is the largest, most powerful particle collider of the world (as of 2020).
Alongside the LHC are other particle accelerators at CERN from older experiments like
the Proton Synchrotron (PS) or the Super Proton Synchrotron (SPS) which led to first
evidence of the quark-gluon plasma [3–6]. At the LHC are currently four major detectors
in operation: ATLAS (A Toroidal LHC ApparatuS), the largest detector of the four,
CMS (Compact Muon Solenoid), LHCb (Large Hadron Collider beauty) and the ALICE
(A Large Ion Collider Experiment) detector. A schematic view of the LHC and its major
experiments at CERN can be seen in Fig. 1.1. Those four detectors are used to study dif-
ferent fields of particle and heavy–ion physics with the ALICE detector specifically build
to study the QGP. The LHC is currently in the Long Shutdown 2 in which the detectors
(including ALICE) are repaired and upgraded for the upcoming Run 3 of the LHC. ALICE
is suited for studying the QGP because of its excellent tracking performance even in high-
multiplicity environments and particle identification (PID) capabilities for a large range of
momenta. ALICE records high energy proton–proton collisions for energies up to 13 TeV
and lead–lead collisions with energies up to 5.02 TeV/nucleon. The ALICE experiment
achieves its excellent tracking performance with a range of individual detector systems,
one of them being the Transition Radiation Detector (TRD). The TRD is mainly used
for particle identification and triggering of electrons, jets and light nuclei. The scope of
this work is to improve the tracking capabilities of the ALICE detector by implementing a
stand-alone tracking using a Kalman filter approach for the TRD. A stand-alone tracking
algorithm in the TRD would be beneficial by tracking nuclear interactions of traversing
particles as well as photon conversions within the TRD. Since photons do not interact
strongly, they can grant access to information on the early phases of heavy–ion collisions.
This includes the temperature of the initial QGP and the elliptic flow [7]. The recon-
struction of nuclear interaction allows nuclear interaction cross sections for rare atoms
like 3He to be measured. Also a atand-alone tracking grants the possibility of finding
late decays which happen after the main tracking detectors and the independent tracking
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1 Introduction

algorithm can be used for additional secondary vertex finding and to improve the tracking
overall. The TRD has many properties which make it ideal for reconstructing photon
conversions and nuclear interactions: The TRD has a high material budget compared to
similar detectors which increases the interaction propability for photon conversions and
nuclear interactions, the TRD is a faster detector than the TPC which results in a lower
pile-up and also low pT photon conversions can be reconstructed in the TRD whereas the
efficiency of the TPC is low for low pT particles. In addition the reconstruction algorithm
within this thesis is a new development which grants the full control to make it perfectly
suitable for the physics studies one wants to research and one does not have to rely on
previously existing tracking algorithms. A TRD stand-alone tracking can also be used to
calibrate the TRD drift velocity for the upcoming run of the LHC. This work is struc-
tured in five chapters: In chapter 1 a short introduction to the ALICE detector and the
theoretical foundations of the Kalman filter is given. In chapter 2 the Monte Carlo (MC)
simulation of the TRD and the tracking algorithms implemented for the MC simulation
are described. In chapter 3 the Kalman filter tracking algorithm implemented for real
data and the performance measurements are explained. In chapter 4 the physical results
aquired with the Kalman filter are described and in chapter 5 a conclusion of the thesis
and an outlook on further improvements is given.

Figure 1.1: Schematic drawing of the different particle accelerators and facilities at CERN.
The drawing is taken from [8].
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Figure 1.2: Schematic drawing of the ALICE detector. The central barrel (numbers 1–
10) as well as the muon arm (numbers 11–15) are shown. The central barrel contains
e.g. the Inner Tracking System (ITS), Time Projection Chamer (TPC) and Transition
Radiation Detector (TRD) which were indispensable for this work as well as a Time-Of-
Flight Detector (TOF), several calorimeters and the 0.5 T solenoid. Drawing taken from
[9].

1.1 The ALICE Detector

In this section the ALICE detector setup will be explained in more detail. ALICE (A
Large Ion Collider Experiment) is a general-purpose detector which was built for heavy-
ion experiments at the LHC and optimized for particle identification and tracking even in
high–particle density environments of around 8000 charged particles per pseudorapidity
[10]. The studied collisions with ALICE are lead–lead, proton–lead and proton–proton
collisions. At the standard magentic field strenght of B = 0.5 T a minimum pT of around
200 MeV/c is needed for tracks to reach the outer radius of the TPC. Lower pT tracks
start curling within the active TPC volume but can still be reconstructed down to a few
100 MeV/c [11]. ALICE is capable of performing particle identification of charged particles
with a momentum well over 100 GeV/c [11]. A schematic view of the ALICE detector can
be seen in Fig. 1.2. The setup is not symmetrical along the beamline, so the right side
in figure 1.2 is called the C–side (C stands for clockwise which is related to the direction
of the beam in the LHC) and the left side is called the A–side (anti–clockwise). The
detector occupies a space of 16ˆ16ˆ 26 m3 and weighs about 10 000 t. The detector itself
consists of a setup with several layers of multiple subdetectors, each with a specific purpose
assigned to them. From inside out as can be seen in Fig. 1.2 there is the inner tracking
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system (ITS) which is enclosed by the Time Projection Chamber (TPC) and the Transition
Radiation Detector (TRD). Around the TRD is the Time-Of-Flight detector (TOF). Then
there are the different calorimeters: the Electromagnetic Calorimeter (EMCAL), the Di-
jet Calorimeter (DCAL), the Photon Spectrometer (PHOS) and a Cherenkov detektor
(HMPID, which is an acronym for High Momentum Particle Identification). The detectors
are enclosed in a large solenoid which provides the ALICE detector with a magnetic field
of up to 0.5 T, which is directed along the z-axis. The solenoid marks the end of the
central barrel. In addition there are detectors for particle multiplicity measurements and
on the C-side are more detectors which are used for muon detection. This C-side part
of the detector is called the muon arm and it is not relevant for the implementation of
the Kalman filter. In the following sections the TRD, from which the data the Kalman
Tracking algorithm was implemented for is coming from, as well as the ITS and the TPC
detector, from which the data for the current tracking is coming from and which was used
to measure the accuracy of the algorithm, will be explained further.

1.1.1 Inner Tracking System

The Inner Tracking System (ITS) consists of three different types of silicon semiconductor
detectors as can be seen in the inlet of Fig. 1.2. The first is a silicon pixel detector followed
by a silicon drift detector and then a silicon strip detector. In the ITS two successive layers
of each silicon detector is build in, to get a total of six silicon detector layers. The ITS
covers a pseudorapidity range of |η| ă 0.9 and it covers the radii between 39 and 430 mm.
Since the ITS is the detector closest to the interaction point it plays a crucial role in
nearly all measurements performed in the central barrel of the ALICE detector. It is used
to reconstruct the primary vertex with a high resolution, to identify and track particles
with too small energies to reach the TPC. For tracks which are reconstructed with the
TPC it is used to improve the momentum and pointing resolution. It is also build in a way
which minimizes the impact on the particle trajectory by having a small material budget.
A physics purpose of the ITS is to identify D-meson decays which have a decay length of
below 100 µm. For LHC Run 3 the ITS will be replaced by a new detector[12].

1.1.2 Time Projection Chamber

The Time Projection Chamber (TPC) is the main device for tracking and particle iden-
tification in ALICE. It has a radial active coverage from 0.83 to 2.50 m and equally to
the ITS it covers a pseudorapidity range of |η| ă 0.9. It can fully reconstruct charged
particles with a transverse momentum of pT ě 100 MeV/c. The TPC consists of a barrel
filled with a mixture of argon and CO2 gas. Charged particles ionize the gas along their
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trajectory. The TPC consists of 159 pad rows at each end in radial direction which are
used to measure the x–y position of the incoming drifting electrons from the ionization
process. In addition it measures the drift time to reconstruct together with the known drift
velocity the z–position of each ionization cluster. The amount of deposited charge can also
be measured which can then be used to identify the traversing particles in a wide range
of momentum. For this the deposited energy per unit of length is fitted after truncation
with a Bethe function which gives a hypothesis for the true particle species.

1.1.3 Transition Radiation Detector

The Transition Radiation Detector (TRD) is used to provide triggering capabilities of
high momentum electrons, jets and light nuclei and particle identification of electrons
with a transverse momentum of pT ě 1 GeV/c [13]. The TRD consist of 522 individual
readout detector modules as depicted in figure 1.3. The readout modules are placed in
18 supermodules, each consisting of 5 stacks along the beamline direction, and 6 layers
arranged in radial direction (see Fig. 1.3). The TRD covers a pseudorapidity range of
|η| ă 0.84 and the active radius is from 2.90 to 3.68 m. The different detector elements have
an area from 0.90ˆ 1.06 m2 up to 1.13ˆ 1.43 m2 [13]. Each detector element (see Fig. 1.4)
consists of a sandwich radiator with a thickness of 48 mm, a drift section of 30 mm which
is filled with a Xe-CO2 mixture and a multi-wire proportional chamber (MWPC) section
with pad readout (7 mm). The readout pads are supported by a honeycomb sandwich
back panel made of carbon fiber (22 mm) to withstand overpressures of up to 1 mbar. The
electronics mounted on top of the detector is water cooled which increases the thickness of
a single detector layer to a total of 125 mm per detector layer and a total radiation length
of X/X0 = 2.85 % [13]. The TRD pad planes consist of 144 columns and 12 – 16 rows
depending on the size of the chamber.

1.1.3.1 Tracklet Reconstruction & Calibration

In Fig. 1.4 a schematic cross section of a TRD chamber is shown as well as the response
to traversing particles. Charged particles first pass the radiator where electrons with a
Lorentz factor γ ą 800 produce transition radiation (TR) photons which are then absorbed
by the detector gas in the drift region (depicted as a larger red dot). This allows one to
differentiate between electrons and other charged particles like pions. The traversing
particles ionize the Xe-CO2 mixture which produces ionisation electrons and ions. The
electrons then travel through the drift region to the anode wires because of the applied
electric field. Because of the B–field a sideway force is applied to the electrons so they
do not drift directly along the field lines of the electrostatic field but in an angle to the
field lines called the Lorentz angle which is an effect that has to be corrected for during
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Figure 1.3: Schematic drawing of the cross section of the ALICE detector (top) and the
side view of one TRD supermodule (bottom). Figure taken from [13].
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Figure 1.4: Schematic cross section of a TRD chamber in the local x-z plane. To illustrate
the ionization and transition radiation contribution two particle tracks are depicted. The
electron traverses through the radiator creating transition radiation which is absorbed by
the detector gas (depicted by a red dot). Figure taken from [13]

the calibration and reconstruction procedure. The ionized electrons travel along the drift
lines (depicted by the black lines in Fig. 1.4) and are accelerated for short distances on
their way to the anode. On their way they collide with particles in the detector gas which
slows the ionized electrons down and results in a constant drift velocity. Close to the
anode wires they ionize the detector gas and the created electrons then again drift to the
anode and create more ions and electrons on their way. The number of ions produced
increaces exponentially the closer the electrons are to the anode. The effect that a single
produced electron is able to ionize many atoms is called the avalanche effect and and
for the TRD a gas amplification of around 3000 is achieved. The produced ions then
travel to the cathode pads where they induce a signal which is measured. Because the
electrons drift to the anode wires which takes more time the longer the distance is, the
last electron produced by the primary particle gets detected first, while the first electron
produced by the primary particle gets detected last. The raw data of these measurements
consists of the position and ADC values of the hit readout pads for each of 24 time bins
per measurement. To reconstruct the path of a passing particle in one chamber (called a
tracklet), a linear fit is made to the mean positions of hit pads of all time bins. For the

7



1 Introduction

tracklet reconstruction the measured drift time per pad needs to be converted into a drift
length using a calibrated drift velocity. In this calculation the ion tail effect needs to be
considered which is correlating the measured ADC values between several time bins due
to the slow drift of the ions. A new drift velocity calibration procedure is correcting this
effect [14]. The resulting data consists of one offset vector and one direction vector for
each measurement and one measurement marks one tracklet. The uncertainty of the offset
measurement is in the order of 1.1 to 1.2 mm and the uncertainty of the direction vector
is in the order of 3.5° [15]. The information of the measured tracklets is used within this
thesis.

1.2 The Kalman filter

1.2.1 Theoretical Foundation

The Kalman filter is an algorithm for stochastic estimation of a current state in a system
from noisy measurements and finds use in numerous technological applications such as
navigation and control of vehicles like space- or aircraft as well as trajectory optimization
and particle tracking and many more [16–18]. The Kalman filter is named after Rudolf
E. Kálmán who described the algorithm around 1960 [19]. It consists of two repetitive
successive processes with the first being the prediction step and the second the correction
step. During the prediction step the Kalman filter calculates an estimate of the current
state vector based on the last state vector sk|k´1 at a given time tk along with its uncer-
tainties depicted in a covariance matrix Pk|k´1. The index k represents the iteration of
the Kalman filter where one iteration marks one prediction step and one correction step.
Because of the TRD detector geometry a local coordinate system is used for the param-
eterization of the particle tracks, which is explained further in section 1.2.2. The local
coordinate system allows for the local x-coordinate xk to be used as propagation variable
instead of the time. In the correction step the current estimate is updated to the new state
vector sk based on a made measurement mk of the state vector along with its measurement
uncertainty δk. After the correction the algorithm starts again from the prediction with
the new state vector. A scheme of this iterative algorithm along with the used formulas
can be seen in Fig. 1.6. The Kalman filter model presupposes that the state at time tk is
a linear transformation of the state at the plane xk´1 along with a Gaussian distributed
propagation uncertainty ϵk and that the measurement is a linear representation of the
current state vector:

sk = fk(sk´1) + ϵk, (1.1)

mk = Csk + δk, (1.2)
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with fk representing the known propagation function explained further in chapter 1.2.4
and C is the observation model which transforms the state space into the observation
space vector. The Kalman filter is based on the assumption that the uncertainties in the
measurement as well as the state vector uncertainties follow a Gaussian distribution with
a mean of zero.
In Fig. 1.5 the working principle of the Kalman filter is depicted. The figure shows the six
layers of the TRD with a particle traversing these and which results in the measurements
consisting of an offset and a direction vector for each layer. As shown the algorithm starts
with a seed consisting of an initial guess for the state vector and the track covariance
matrix at the outermost layer. One reason for starting at the last layer is because of the
spread of the particle tracks. The detector chambers which are further away from the
collision experience a lower occupancy of primary tracks since the tracks are distributed
over a larger surface area. The closer chambers to the primary vertex have larger amounts
of low energy electrons which increases the noise and makes it harder to do a proper
seeding and tracking. Another reason for starting at the last layer of the TRD is that
particles which split up while they are within the TRD, i.e. photons which split up in a
positron and an electron, are hard to track while going from the inner to the outer layers.
This is the case because the split has to be recognized which requires further selection
criterias, and the two different tracks have to be tracked individually, but operating the
Kalman tracking algorithm in reverse eliminates this problem since the split up tracks are
seperate from the start and can be merged easily after the tracking. The acquisition of
the seed is described in section 1.2.3. In Fig. 1.5 the seed consists of one starting tracklet
from which the first prediction is calculated. During the prediction phase the state vector
and the corresponding covariance matrix are given by

sk|k´1 = fk(sk´1), and (1.3)

Pk|k´1 = FkPk´1FT
k + Qk, (1.4)

with Fk =
Bfk

Bsk´1
. (1.5)

Fk is a Jacobian matrix with entries calculated from the derivatives of the propagation
function of the state vector entries (see section 1.2.4) and Qk is the prediction uncertainty
covariance matrix. The predicted position and direction of the state vector at the next
lower layer is depicted in green in Fig. 1.5. The next step is the search for a fitting
tracklet for the track to be used as next measurement. If the next tracklet in the track is
not already known, which would be the case if the next measurement is given by the seed
(see 1.2.3), a χ2 selection criterion is used to select a fitting tracklet. To accept or reject
TRD tracklets as new measurements for the path the predicted χ2-increment is calculated

9
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by

χ2
k|k´1 = (rk|k´1)

T (Rk|k´1)
´1(rk|k´1), (1.6)

with rk|k´1 = mk ´ Csk|k´1, (1.7)

and Rk|k´1 = V + CPk|k´1CT . (1.8)

Here V is the covariance matrix of the measurement. Should the predicted χ2-increment of
a tracklet be lower than a certain threshold and also lower than the χ2-increment of every
other tracklet then it gets selected as the next measurement in the tracks path. After
a tracklet is selected the corrected estimate and track covariance matrix is calculated
with

sk = sk|k´1 + Kk(mk ´ Csk|k´1), and (1.9)

Pk = Pk|k´1(1 ´ KkC), (1.10)

with Kk = Pk|k´1C(V + CPk|k´1CT )´1. (1.11)

Kk represents the Kalman gain matrix which is used to minimize the residual uncertainty.
In Fig. 1.5 the corrected state vectors are depicted as red arrows. After the optimal
estimate got calculated the χ2-increment at the new estimate is determined by

χ2
k = (rk)

T (Rk)
´1(rk), (1.12)

with rk = mk ´ Csk, (1.13)

and Rk = V + CPkCT . (1.14)

1.2.2 Local Coordinate System of the TRD

The TRD data consists of every tracklet measured in the event and for each tracklet the
offset position and the direction vector is saved in global coordinates additionally to the
detector chamber in which it was detected. The global coordinate system has its origin
at the center of the TRD. It is a right-handed cartesian coordinate system with the z–
axis along the beam axis, the x–axis pointing at the gap between supermodules 17 and
0 and the y–axis pointing at the center of supermodule 4. The measured tracklets only
have their location and direction saved but not their momentum or the time of detection.
Theoretically the time of detection would have been used in the Kalman filter to calculate
the estimated position at a given time and then search at the propagated position for new
tracklets to assign to the track but instead the radial distance to the interaction point is
used as an equivalent to the time, since the information about the time of detection is
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Figure 1.5: Schematic drawing of the Kalman filter in use. The particle track (depicted in
blue) represents the real track of the passing particle. The measurements corresponding to
the particle track are shown in orange. The Kalman filter algorithm starts at the outermost
layer going inwards with a seed from which position and direction of the first prediction of
the new state vector is calculated (green arrows). On the basis of the predicted state vector
the next measurement is selected and with this the corrected estimates are calculated
(shown as red arrows). The uncertainties of the measurements are exaggerated.

not given by the detector. The current position of a particle along with its orientation in
dependency of the radial distance to the interaction point is called the state vector. The
state vector has to have all variables which are needed to fully describe the particle track
with exception to the propagation constant (the radial distance) which is stored separately.
In this case the state vector consists of six variables: three entries are needed to describe
the current position, two for the direction and one used to describe the curvature since the
particles trajectories follow a helical path through the detector based on their momentum
and their charge. To reduce the computational complexity of the Kalman propagation,
it is advised to have a state vector with as less variables as possible. Since the x and y

coordinates are connected to each other by the current radius of the particle, one of them
can be omitted. To do this the Kalman filter is not using the global coordinate system but
instead uses a local coordinate system for each supermodule. For this the global coordinate
system and all tracklet positions and directions of the supermodule are rotated along the
z-axis such that the x-axis always points to the center of the supermodule and represents
the radial distance. The local coordinate system can be seen in Fig. 1.7. Now the state
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Starting parameters:
s0 and P0

Prediction:
sk|k´1 = fk(sk´1),
Pk|k´1 = FkPk´1FT

k + Qk,

with Fk =
Bfk

Bsk´1
.

Correction:
sk = sk|k´1 + Kk(mk ´ Csk|k´1),
Pk = Pk|k´1(1 ´ KkC),

with Kk = Pk|k´1C(Vk + CPk|k´1CT )´1.

Variables:
sk = state vector at time k,

sk|k´1 = state vector at time k given k-1,
mk = measurement vector at time k,
fk() = propagation function,

Pk = covariance matrix at time k,
Fk = transport matrix at time k,
Kk = Kalman gain matrix at time k,
C = projection matrix,

Qk = prediction uncertainty matrix,
Vk = measurement uncertainty matrix.

Figure 1.6: Scheme of the Kalman filter iterative algorithm.

vector can be expressed by only five variables:

s = (y, z, sinϕ, tanλ, q/pT )
T , (1.15)

where y and z describe the offset position, ϕ describes the azimuthal angle, λ describes
the polar angle and q/pT describes the charge divided by the transverse momentum of
the particle which gives information about the curvature of the particle track. After
completion of the track reconstruction, the helix parameters are returned in the global
coordinate system.

1.2.3 Seeding

As mentioned in section 1.2.1 a tracking algorithm using the Kalman filter technique
requires a starting point which can not be acquired by the Kalman filter itself. This
starting point is called the ”seed” and its acquisition is described in the following. The
purpose of the seeding algorithm is to find two tracklets which fulfill a series of requirements
to be considered for a possible track. For the seeding a straight line track is assumed and
one tracklet has to fit to another tracklet within two layers below it. Every tracklet of every
layer which has not already been associated with a track gets checked whether in the two
detectors below it is one tracklet that satisfies the criteria on position and direction. For
that the directions of the tracklets, as well as the positions of both have to match within a
defined range. A search through multiple layers is necessary for the seeding algorithm to
increase the possibility of finding a seed despite of missing tracklets and turned off TRD
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Figure 1.7: Schematic view of a particle passing though the detector together with the
definition of important variables used for the TRD Kalman tracking. The global coordinate
system (X,Y,Z) is rotated into the local coordinate system (x,y,z) by the angle α. The
particle is propagated from one layer of the TRD to the next with a given step length.
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chambers (layers). To match two individual tracklets for the Kalman filter on real data,
the angle between their direction vectors has to be below 15°, the distance in y direction
has to be below 7 cm and in z direction below 20 cm. The difference in x direction is always
0 cm since the outer tracklet gets propagated linearly to the right x plane. The range for
a matching pair is set as large as possible to cope with the measurement uncertainties
and the linear propagation. The parameters of the seeding algorithm were selected by
arbitrarily setting the values and iteratively increasing the uncertainties until a correct
seed was found for almost all tracks from the TPC detector. The parameters are set in
this way to achieve a high efficiency of the Kalman filter with fewer regards to purity. The
outer tracklet gets defined as the seed for the Kalman filter and the inner tracklet is the
first measurement for the correction phase of the Kalman filter. The principle is described
in more detail in section 2.1.

1.2.4 Track Model

As described in section 1.2.1 a propagation function is needed to get from one state vector
to the next (see Equation (1.1)). The use of a local coordinate system (see chapter 1.2.3)
allows the x-coordinate as propagation variable and a 5D state vector to be used (see
Equation (1.15)). The five variables of the state vector along with the information about
the current propagation variable xk is enough to completely describe the helical path of
the particles in the ALICE detector. For each of these state variables the new position
needs to be calculated, for which the difference to the new position ∆s is added to the
last position:

sk+1 = sk +∆s. (1.16)

The different entries of ∆s need to be calculated individually and are given by the following
equations which were taken from [20]:

∆y = yk+1 ´ yk = RH

(
b

1 ´ sin (ϕk)
2

´

b

1 ´ sin (ϕk+1)
2

)
(1.17a)

∆z = zk+1 ´ zk = RH tan (λ) ¨ θ

= RH tan (λ) sin
(

sin (ϕk+1)

b

1 ´ sin (ϕk)
2

´ sin (ϕk)

b

1 ´ sin (ϕk+1)
2

)´1

(1.17b)

∆ sin (ϕ) = cos (θk) ´ cos (θk+1) =
∆x

RH
, (1.17c)

where ∆x represents the propagated distance in x direction and RH represents the radius
of the helical path. The physical properties of tanλ and q/pT are assumed to be constant
during the propagation since energy loss of the traversing particle is omitted. Instead of
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RH , the curvature C = 1/RH is used since the corresponding uncertainties are assumed
to follow a Gaussian distribution. The curvature of the helix can be calculated from the
state vector variable q/pT by

C =
1

RH
=

(
q

pT

)
¨ κBz. (1.18)

Bz represents the homogenous magnetic field of the ALICE detector in z direction in Tesla
and κ is a proportionality factor. As described in Equation (1.4) the transport matrix of
the helix needs to be calculated which is given by Equation (1.5). By using the Equations
(1.17a) to (1.17c) the entries of the transportation matrix can be determined. The results
for the entries of the transport matrix were taken from [20]. Because of correspondence
with the algorithm where matrix indices start at zero by default, the indices in this work
will also start with zero for the first element. The non-zero entries of the transport matrix
are given by:

(Fk)i,i =
B(fk)i

B(sk´1)i
= 1 (1.19a)

(Fk)0,2 =
Byk+1

B sin (ϕk)
=

∆x

r31
(1.19b)

(Fk)0,4 =
Byk+1

B (q/pT )
=

(∆x)2

2 ¨ r31
¨ κBz (1.19c)

(Fk)1,2 =
Bzk+1

B sin (ϕk)
=

∆x ¨ tan (λ) ¨ sin (ϕk)

r31
(1.19d)

(Fk)1,3 =
Bzk+1

B tan (λk)
=

∆x

r1
(1.19e)

(Fk)1,4 =
Bzk+1

B (q/pT )
=

(∆x)2 ¨ tan (λ) ¨ sin (ϕk)

2 ¨ r31
¨ κBz (1.19f)

(Fk)2,4 =
B sin (ϕk)

B (q/pT )
= ∆x ¨ κBz (1.19g)

with r1 =

b

1 ´ sin (ϕk)
2. (1.19h)

The default class used to describe particle tracks is the AliHelix class [21] of AliROOT.
Thus the calculated paths are transformed into the AliHelix class to further analyze the
found tracks (see Appendix 5). The implementation of the Kalman filter is published on
GitHub [22] and publicly available.
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2 Two Dimensional Monte Carlo Simulation
A suitable test environment in form of a 2D Monte Carlo (MC) simulation was developed
before the Kalman filter was implemented for real data. For that the data analysis envi-
ronment ROOT [23] was used and the simulation consists of only one stack of detector
modules. To simplify the simulation further the trapezoidal shape of the stack was not
taken into account, i.e. the simulated detector has a rectangular shape. An example pic-
ture of this simulation can be seen in Fig. 2.1.
The blue rectangles represent the detector, the green tracklets represent random noise
tracklets and all red tracklets together form the simulated particle track. The simulated
detector uses a local coordinate system with its center at the lower left corner, the y–axis
along the bottom of the detector plane and the x–axis orthogonal to the y–axis with the
positive x-axis in the direction of the layers further away from the primary vertex. This
coordinate system is equivalent to the one later used for real data. The noise tracklets are
created with a random number generator (RNG) already included in ROOT with which
the position, the layer and the direction of the tracklets are determined. The total number
of tracklets and the maximal angle of which each tracklet can deviate from the x–axis can
be adjusted. For the purpose to adjust the variable parameters faster a graphical user in-
terface (GUI) was written which can be seen in Fig. 2.2. To set the total number of noise
tracklets the variable lines_nbr and to change the maximum angle the variable max_deg
can be modified. The RNG takes a seed which is used to calculate the output number so
that the same initial seed creates the same output series of numbers which then translates
to the same event being created. This random seed gets set with the variable rand_seed
which increases after every event so that a new event gets produced every time but this
also allows a specific event to be recreated and reevaluated.

The particle track itself gets created by randomly choosing a first hit point within the
first layer of the detector and randomly picking the transverse momentum of the particle
within a given range. The range can be adjusted with the parameters min_p and max_p
in units of GeV/c. With the momentum the radius of the helix the particle would follow
can be calculated by

r =

(
pT
B ¨ q

)
, (2.1)

with pT the transverse momentum of the particle in GeV/c, B the magnetic field in Tesla
and q the charge in units of elementary charge e. The particle charge q gets set by the
variable part_charge. Then the helical path, starting from the primary vertex, which is
always set at the ideal interaction point, and going through the first detector layer, is
calculated and the positions of the interaction points with the outer layers as well as their
direction is calculated. Lastly random uncertainties to the position and the direction are
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Figure 2.1: Single event of the ROOT/C++ Monte Carlo Simulation. The blue rectangles
represent the different detector layers, the green tracklets the noise and the red tracklets
the particle track.

added to simulate tracking and calibration uncertainties. The range of the uncertainties
can be defined by the variable max_track_pos for the location uncertainty in mm and
max_track_deg for the uncertainty on the angle of the direction in degrees. The detector
inefficiency defines the probability that a tracklet does not get detected which can be
set with the variable layer_ineff. Additionally the position of the last tracklet has to be
within the borders of the detector to get approved as a valid track, otherwise a new track
is generated.

2.1 Simple Tracking Algorithm

With the Monte Carlo Simulation in place a simple tracking algorithm was implemented
which then later found its use as part of the seeding for the Kalman filter. The tracking
starts at the innermost layer moving outwards where a comparison of offset and direction
between the last found tracklet and each tracklet in the upper layers is done to find the
next fitting tracklet. To propagate from one layer to the next, a linear estimation with
direction of the last is made. The new position can be calculated by

ÝÑx2 = ÝÑx1 + ÝÑv1 ¨
x2 ´ x1

|vx1|
, (2.2)

where ÝÑvi represents the direction vector, ÝÑxi represents the offset vector and xi represents
the x coordinate of tracklet i. If the tracklets are within a certain range of location, defined
with the parameter loc_unc as percentile of the detector length (0.015 correspond to 1.5 %
of the detector length), and within a certain range of the direction angle, defined with the
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Figure 2.2: GUI of the Monte Carlo Simulation using ROOT. Draw_next creates a new
simulation using the left parameters, Find_track starts a simple tracking algorithm for
the current event using the right parameters. Exit closes the simulation.

parameter deg_unc as percentile of the half circle (0.025 correspond to 2.5 % of 180°), the
new tracklet gets assigned to the track and set as last found tracklet and so on. The result
of this algorithm for one event is depicted in Fig. 2.3. The tracklets defined as a track by
the algorithm are connected with a purple line.

y

layers -this work-

x

Figure 2.3: Single event of the ROOT/C++ Monte Carlo simulation after tracking. The
blue rectangles represent the different detector layers, the green tracklets the noise and
the red tracklets the particle track. The purple line shows which tracklets the algorithm
considers as a track.
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Figure 2.4: Single event of the Python Monte Carlo simulation after tracking. The green
tracklets represent the noise and the red tracklets the true particle track. Which tracklets
are part of the track is indicated by the purple line below the blue line which connects all
tracklets corresponing to the found track. The overlapping blue line depicts the propagated
y positions of the track at each x position.

2.2 Kalman filter implementation for simulated Events

A Kalman filter tracking approach in 2D for Monte Carlo data was implemented in addition
to the simple tracking as discussed above. For this the simulation and simple tracking
algorithm was rewritten in the programming language Python. The use of a GUI and the
graphical representation of the detector were left out. The rewriting of the code was part
of a rapid prototyping process which also allowed for interconnectivity to similar ongoing
projects [24] since they were also developed in Python. An example representation for the
simulation is shown in Fig. 2.4.

The first Kalman approach was still in two dimensions and also using a straight line instead
of a helix as track model. Because of the linear model, the state vector s only has two
entries:

s = (y, tanϕ)T , (2.3)

and the propagation function is also fairly simple:

∆y = tanϕ ¨ ∆x, (2.4)

∆ tanϕ = 0, (2.5)
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and the entries of the transport matrix are:

(Fk)i,i =
B(fk)i

B(sk´1)i
= 1, (2.6)

(Fk)0,1 =
Byk+1

B tan (ϕk)
= ∆x, (2.7)

(Fk)1,0 =
B tan (ϕk+1)

Byk
= 0. (2.8)

(2.9)

Contrary to the Kalman filter implemented on real data, the Kalman filter on the MC data
starts at the innermost layer and propagates outward and the seeding for the MC Kalman
filter is only done in the first two layers of the simulated TRD. After the propagation the
algorithm will search for fitting tracklets at each layer in which no tracklet is assigned
to the track. For the selection of new tracklets the uncertainties on the individual state
variables are used which are acquired by taking the square root of the diagonal elements
from the covariance matrix. If the new tracklet exceeds a factor three of the uncertainties it
is not selected for the track. If more than one tracklet fulfills this requirement, all tracklets
will be investigated further as separate tracks to keep the opportunity of tracking particles
which split up inside the TRD. Particle tracks which split up within the TRD come from
i.e. photon conversions within or in front of the TRD where the inner layers have only
one tracklet for the electon and positron path and in the outer layers the two paths are
detected as seperate tracks.
In addition to the Kalman filter with the linear model, a Kalman filter with a helical
track model was implemented which was then compared to the linear model. The two
dimensional helical track model consists of a three dimensional state vektor

s = (y, sinϕ, q/pT )
T , (2.10)

the propagation function used consists of the Equations (1.17a) and (1.17c) with the
transport matrix entries consisting of the Equations (1.19a) to (1.19c) and (1.19g). The
criteria for the tracklet selection are equal to the linear model. Both Kalman filters use
the same seeding algorithm which is the algorithm described in section 2.1 with the only
difference, that the seeding algorithm only operates in the first two layers. The used
uncertainty ranges for the seeding algorithm can be seen in Table 2.1. The efficiency
and the purity of both Kalman filters (linear and helical track model) were determined
using the MC simulation and compared. For the efficiency only the found track with the
most matches to the simulated true track is considered and the efficiency is calculated by
dividing the number of matched tracklets by the total number of tracklets which are part
of the MC track. For the purity the number of found correct tracks is divided by the
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(a) Track reconstruction efficiency. (b) Track reconstruction purity.

Figure 2.5: Efficiency (a) and purity (b) for the MC simulation. The measurements were
done for 1000 events with a helical model and simulated tracks with pT = 0.5 GeV/c
.

number of total found tracks. A correct track is defined by correctly finding at least half
of the tracklets which are in the MC track. The condition for a correct track was set in
this way because a sufficient tracking can be achieved even without finding every tracklet
of the track. Those two values are calculated for 1000 different events per value of pT and
are shown in Fig. 2.5 for the helical tracking model and a track transverse momentum of
0.5 GeV/c. The parameters used for the simulation are listed in Table 2.1. The number
of noise tracklets seems to be realistic for p–Pb data and the used uncertainties seem to
be underestimated compared to the tracks of p–Pb data. As shown in the histograms, in
over 75 % of the cases the algorithm has a perfect efficiency and purity even for particle
momenta as low as 0.5 GeV/c. For more than 80 % of the MC tracks every tracklet
corresponding to the track was found and in over 75 % of the events the MC track is
also the only track that was found. In 19 % of the cases one noise track was found. The
accuracy and purity increases for higher pT values. To demonstrate this and to compare
the two track models the mean of those histograms were taken for different values of pT
and plotted in Fig. 2.6.

It can be seen that the efficiency and purity for high pT tracks are very similar for both
track models. For high pT the track curvature is close to zero so a linear estimation is
reasonable but for low pT the curvature increases so a linear estimation does not represent
the particle track sufficiently well. This can be seen in figure 2.6 when looking at the
values for low pT . While the efficiency and purity for the Kalman filter with the linear
track model is decreasing rapidly, both values stay constant for the Kalman filter with
the helical track model until a pT value of around 0.5 GeV/c. The efficiency of the helical
Kalman track model is close to one for whole pT ą0.5 GeV/c but the purity saturates at
a value of around 0.85. The reason is that with 40 noise tracklets there is a reasonable
chance that for three or more noise tracklets to align well enough to get detected as a track.
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Figure 2.6: Efficiencies and purities for the helical and the linear track model in dependance
of the transverse momentum for 40 noise tracklets per event.

The measurements were retaken for 120 and 200 noise tracklets (see Appendix 5). The
measurements showed that the purity decreases significantly for both track models due
to the increased possibility of randomly aligned tracklets and the eficiency for the helical
track model decreases as well. For lower pT tracks the efficiency and purity for the helical
track model is still better than for the linear track model. As a result this measurement
shows that the helical model is superior for the reconstruction of particle tracks at a lower
pT , so only the Kalman filter with the helical track model will be developed further to be
used for real ALICE TRD data.

Variable Value
lines_nbr 40
max_deg 20°

max_track_pos 2 mm
max_track_deg 2°

part_charge ´1
layer_ineff 10 %

loc_unc 3°
deg_unc 2.5°

Table 2.1: Variables for the MC simulation and the simple tracking algorithm. The vari-
ables are explained in chapter 2.
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3 Kalman filter Tracking
3.1 Kalman filter implementation for real data

After the successful test with the MC simulation in two dimensions, the simulation was
expanded to three dimensions, the track model was adjusted corresponding to Equations
(1.17a) to (1.17c) and the transport matrix was updated in accordance to Equations (1.19a)
to (1.19g). This simulation proved that the algorithm is working, so the Kalman filter
could be applied to the real data. The real data consists of around 700.000 events from
proton–lead collisions with an energy of 5.02 TeV per nucleon pair which were recorded
with the ALICE detector in 2016. One example event is shown in a 3D display in Fig.
3.1. Depicted in blue are the propagated TPC tracks and the different chambers of the
TRD are in different colours indicating their functionality. Turquoise chambers are fully
operational, red chambers were turned off and the other colours indicate exactly what
part of the chamber was not working, e.g. low drift high voltage. The functionality of
the detector chambers are not taken into account during the Kalman filter algorithm. For
the tracklets (depicted in white and yellow) a new calibration scheme was applied which
was never used before and which made the direction measurement of the tracklets more
precise. The new calibration is described in chapter 1.1.3.1. A few key features of the
tracking algorithm were reworked during the process of implementing it on the real data.
In contrary to the MC Kalman filter which searches its tracklets from the innermost layer
going outwards, the Kalman filter implemented on the real data goes from the outer layers
inwards. This has the advantage that tracks of particles which split up inside the TRD
can be better reconstructed and also the occupancy of primary and secondary tracks is
lower in the outer layers. Now each time a new tracklet needs to be selected as the next
part of the new track, only one possible tracklet is chosen which creates the need for a
more extensive selection algorithm which has to reliably select the best fitting tracklet
in accordance to the uncertainties of the current state and the measurement. For this
reason a χ² criterion for the selection of new measurements was implement according to
the Equation (1.6). To get selected as a new measurement for the track the new tracklet
has to have the lowest predicted χ² value of all tracklets and this value also has to be below
a certain threshold. The speed of the algorithm was measured with the use of the build
in c++ time library <chono>. For 2000 p–Pb events a computation time of 19.95 s were
required on a laptop with 16 GB RAM and an Intel®CoreTM i7 processor with 8 cores and
a clock frequency of 1.8 GHz.
In addition a matching between the tracklets found by the Kalman filter and TRD tracklets
which were matched with TPC tracks is made to be able to determine which Kalman track
corresponds to which TPC track. For this matching each tracklet of the event gets assigned
an index number to unambiguously identify each tracklet and during the matching process
each TPC track is compared with each track found by the Kalman filter. The Kalman
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track with the most matching tracklets is then the one which finally is matched with
the TPC track. In Fig. 3.2a the propagated helical paths of matched TPC and Kalman
tracks are depicted. With less than 70 cm of fitting range numerous propagated Kalman
tracks overlap with the TPC tracks all the way to the primary vertex which is about 3 m
away from the TRD but some of the propagated tracks diverge significantly from the TPC
tracks. Reasons for that are that some of the Kalman tracks might not have a tracklet
in every layer of the TRD because of some turned off detector chambers. Additionally
the calibration of the tracklets is brand new and was done for only two of the used 13

runs for the measurements. For completeness the Kalman tracking was done for the same
events but also including the primary vertex as an additional constrain of the track and
as depicted in Fig. 3.2b all Kalman tracks are now nearly perfectly fitting the TPC tracks.

3.2 Reconstruction efficiency

With the TPC tracks that are matched with Kalman filter tracks, the Kalman filter re-
construction efficiency can be calculated. For that only TPC tracks are used which have
at least four matched TRD tracklets because the Kalman filter only considers tracks with
at least four tracklets. Over half of the tracklets corresponding to the TPC track need
to be part of the Kalman filter track which is matched with the TPC track to be consid-
ered as successfully reconstructed. Every TPC track with at least four tracklets without
a matched Kalman filter track or a matched Kalman filter track which has less or equal
than 50 % in common with the TPC track is counted as not reconstructed. The result of
the efficiency measurements can be seen in Fig. 3.3.
For comparison the track reconstruction efficiency of the Kalman filter implemented for
the Monte Carlo simulation is also plotted. The efficiency of the real data has a peak at a
pT value of around 2 GeV/c with an efficiency value of around 0.9. The reconstruction ef-
ficiency decreases rapidly for pT ă 1 GeV/c. This might be related to the fact, that tracks
with a higher curvature have a higher possibility of passing through multiple supermodules
of the TRD and the currently implemented Kalman filter is not able to search through
multiple sectors. This circumstance will be changed in the near future. Another reason
for the drop in efficiency might be because the current seeding algorithm propagates in a
linear manner so tracks with a high curvature have a higher possibility to not get selected.
The reconstruction efficiency decreases linearly for pT ą 2 GeV/c from an efficiency of 0.9
for 2 GeV/c to an efficiency value close to 0.8 for a pT value of 10 GeV/c. The reason for
that is currently unknown and requires further studies.
The efficiency for the real data follows a similar trend as the one for the MC simulation
but the efficiency value for the MC simulation is higher than the one for the real data
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Figure 3.1: 3D view of one example p–Pb event. The TPC tracks are depicted in blue
and the TRD tracklets in white and yellow, where the yellow tracklets are associated to
a Kalman track. The colours of the TRD chambers mark different grades of functionality
where turquoise chambers are fully operational and red ones turned off.

-this work-

(a)

-this work-

(b)

Figure 3.2: 2D view of the same event as in 3.1 with matched Kalman and TPC tracks.
The TPC tracks are depicted in blue and the Kalman tracks in green. On the left the
Kalman tracks are propagated without and on the right with the primary vertex used as
additional measurement during the Kalman filter algorithm.
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with an average value of around 0.96. The reasons for the difference in the efficiencies can
be accounted to the uncertainties of the tracklets in the MC simulation being most likely
underestimated, the measurement in the MC simulation being made in 2D, which results
in two less parameters that have to fit and the fact that the calibration of the events was
only done for two runs but applied to all 13 events so there might be some inconsistencies
in the calibration. Also whether a layer is working or not is defined randomly in the MC
simulation so the possibility of two subsequent layers missing is low compared to the real
data which results in a lower efficiency for the Kalman filter on real data. The efficiency
measurements were used to determine the values for the χ² threshold and the uncertain-
ties on the measured tracklets which are needed for the measurement matrix. This was
done by iteratively adjusting the parameters on efficiency measurements made for a few
example events. The measurement matrix which was used in the Kalman filter consists
of the squared uncertainties on the corresponding measured variables (y, z, sinϕ, tanλ)
which are written in the diagonal elements. The used values of the different parameters
are shown in Table 3.1.

3.3 Transverse momentum resolution of the Kalman filter

To determine the TRD stand alone Kalman filter transverse momentum resolution, cor-
relation plots between the q/pT measured by the TPC and the q/pT determined by the
Kalman filter were made for the Kalman tracks which were matched with the TPC tracks.
These correlation plots were made for the tracking with and without the constraint to the
primary vertex and are depicted in Fig. 3.4. The left plot shows the correlation between
the TPC and the Kalman q/pT without the use of the primary vertex. The tracks are
separated by positive and negative particle charge and the different colours are a measure
of the number of tracks in a certain area. The plot shows a decreased width of the distri-
bution for higher q/pT (which correlates to smaller pT ) and a broader distribution for low
q/pT . Most particles in the TRD have surpassed their minimum ionizing particle point
when they reach a momentum below 0.5 GeV/c so the energy loss per traveled distance is
increased. The increased energy loss results in a strong decrease of transverse momentum
relative to the original transverse momentum. This might be the reason for the asymme-
try at high q/pT on the left side of Fig. 3.4, where the q/pT from the Kalman filter is
systematically higher than the TPC q/pT . Numerous Kalman tracks can be seen to have
the opposite charge of the TPC tracks. Reasons for the wrongly assigned particle charge
are outliers in the measured tracklets of the tracks and missing measurements in some
layers of the TRD which results in a helix of opposite charge to be fitted. On the right
side of Fig. 3.4 the correlation plot with the use of the primary vertex is depicted. The
plot shows a strong correlation for the whole range of TPC momenta and only few tracks

26



3 Kalman filter Tracking

-this work-

Figure 3.3: Track reconstruction efficiency for TPC matched tracks to Kalman filter tracks
(black). The uncertainties of the measurements show the standard deviation from the mean.
For comparison the track reconstruction efficiency of the Kalman filter implemented for
the Monte Carlo simulation is plotted in red.

with an opposite charge. As expected, the correlation increases significantly by including
the primary vertex. To determine the pT resolution, projections of the 2D plots to the
Kalman filter q/pT axis are performed for each TPC q/pT bin. A Gaussian function is
fitted to the projected histograms of the Kalman filter q/pT values. A selection of these
plots is depicted in Fig. 3.5. The Gaussian fits are made twice to increase the fit to the
data. The standard deviation σ, the mean µ and the maximum of the histograms in Fig.
3.5 are calculated and used as start parameters for the first Gaussian fit. The first fit is
performed in a range of two standard deviations around the mean. The resulting values
of the amplitude, µ and σ from the first fit are used as the starting parameters for the
second fit and the fit is done for a range of 1.2σ around the mean.

From the Gaussian fits the standard deviation is taken and divided by the q/pT value taken
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Figure 3.4: Correlation plots between TPC and Kalman q/pT without (left) and with
(right) the use of the primary vertex (PV).

from the TPC to obtain the q/pT resolution for the Kalman filter. The transverse mo-
mentum resolution in percent is depicted as a function of the TPC transverse momentum
measurement in Fig. 3.6.

The figure shows that for high q/pT tracks with six tracklets (corresponding to low pT )
and the use of the primary vertex a resolution of below 2.5 % is achieved which goes up
to 8 to 9 % for lower q/pT . Without the use of the primary vertex a resolution of 10 to
11 % is achieved for the high q/pT tracks which goes up to over 30 % for low q/pT . The
q/pT resolution is not symmetrical. Positively–charged particles overall have a worse pT

resolution than negatively–charged particles and the reasons for this are currently unknown
and require further studies. The q/pT resolution measurements were used to determine the
uncertainties on the fifth variable of the state vector q/pT . This was done by iteratively
adjusting the uncertainty and reviewing the impact on the resolution. The uncertainties
on the state vector are used for the initial estimate of the covariance matrix where the
squared uncertainties are written on the diagonal elements of the matrix. The initial value
of the q/pT has a great impact on how significant the influence of a new measurement is on
the value of q/pT during the correction. For the uncertainties of the other state variables,
the uncertainties on the measured tracklets were used. The used values of the different
parameters are shown in Table 3.1.
Additionally q ¨ pT correlation plots were made and the corresponding pT resolution with
and without the primary vertex constraint were calculated. The different plots can be
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Figure 3.5: Kalman filter pT distributions for different TPC pT with a Gaussian fit. The
bin width is 0.005 GeV/c. R represents the calculated pT resolution.

Parameter Value
χ² threshold 18.5
y uncertainty 0.45 cm
z uncertainty 2 cm

sinϕ uncertainty sin 7°
tanλ uncertainty sin 18°
q/pT uncertainty 18 c/GV

Table 3.1: Initial parameters of the Kalman filter for real data.

seen in the Appendix 5. Contrary to the q/pT resolution, the pT resolution does not follow
a Gaussian distribution.
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Figure 3.6: TRD momentum resolution as a function of the matched TPC q/pT . Red
markers correspond to 6, grey ones to 5 and blue ones to 4 tracklets per track. The
measurements where only the TRD was used are depicted by hollow markers and full
markers are used for resolutions which were acquired by using the TRD and the primary
vertex constraint.
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4 Reconstruction of Photon Conversions and Nuclear
Interactions

The implemented Kalman filters functionality has been confirmed so it can be used to
perform some physics analyses. At first the Kalman filter was used to search for photon
conversions happening in or close in front of the TRD. For that a secondary vertex finder
was implemented which is using the calculated helical particle paths from the Kalman filter
to search for intersections or close encounters of these paths. The goal of the secondary
vertex finder is to find the point of closest approach between two helices. The algorithm
works by numerically minimizing the distance between two points on these two helices
which is time consuming. To improve the performance of the algorithm two additional
steps before the numerical optimization were implemented. A two dimensional analytical
calculation of intersection points and an analytical estimate of the closest points of these
two helices in three dimensions. Only when the estimated points are less than 15 cm away
from each other, then those estimates are used to calculate the numerical points with
closest distance to each other. Two helices are considered to share a common secondary
vertex if the distance of closest approach is below 5 cm. Within the scope of this work
the 2D calculation of circular interaction points/closest point was implemented as well as
a function for calculating the path of the helix at a given radius, which will be described
further. For the 2D calculation the radii of both circles r1 and r2 as well as their center
positions in a 2D plane x1, x2, y1, y2 are used to calculate either the interaction points
if both circles overlap or the point halfway in between both circles if they do not overlap.
The calculations for the 2D interaction points are done in a local coordinate system in
which both circle centers are on the local x-axis. Then the following equations are valid
at the interaction points:

x2loc + y2loc = r21 (4.1)

(d ´ x2loc) + y2loc = r22 (4.2)

with d =
a

(x1 ´ x2)² + (y1 ´ y2)² (4.3)

the distance between the circle centers.

xloc and yloc describe the coordinates of the interaction points in the local coordinate
system. Now the values of xloc and yloc can be calculated:

xloc =
d² ´ r²2 + r21

2d
(4.4)

yloc1/2 = ˘

b

r21 ´ x2loc (4.5)

with yloc1being the positive and yloc2 the negative solution.
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and in the global coordinate system the intersection points are given by

xglob1/2 = x1 + xloc ¨
x2 ´ x1

d
´ yloc1/2 ¨

y2 ´ y1
d

(4.6)

yglob1/2 = y1 + xloc ¨
y2 ´ y1

d
+ yloc1/2 ¨

x2 ´ x1
d

(4.7)

with d =
a

(x1 ´ x2)² + (y1 ´ y2)² (4.8)

the distance between the circle centers.

The closest point between the two circles is calculated as

xglob = x1 +

(
r1 +

d ´ (r1 + r2)

2

)
¨
x2 ´ x1

d
(4.9)

yglob = y1 +

(
r1 +

d ´ (r1 + r2)

2

)
¨
y2 ´ y1

d
. (4.10)

After the closest points between the two circles are calculated, the paths of the helices at
the radii of these closest points in relation to the center is calculated analytically. The
performed calculations were taken from [25] where the function is described in detail. The
path is then used to calculate an estimate on the closest points on the helices and only
if those are close enough (15 cm) the real closest points are numerically calculated and
then it gets decided whether or not a secondary vertex is present. A secondary vertex
is present if the numerically calculated distance of closest approach is below 5 cm. The
calculated secondary vertices can then be used to identify and examine several particle
interactions.

4.1 Photon Conversions

Photons can convert into an e++e´ pair once they come into the vicinity of a nucleus. Due
to the zero mass of the photon the decay opening angle in the lab frame is close to zero, so
both particles are emitted parallel to each other. The particle tracks seperate from each
other due to the applied magnetic field. To identify photon conversions from secondary
vertices several selection criteria on Armenteros-Podolanski variables [26] were applied. An
Armenteros-Podolanski (AP) plot is used to identify decayed particles in dependance of
the resulting particle momenta without exactly knowing the daughter PIDs. The original
particles direction ÝÑq is calculated by adding the momentum vectors ÝÑp i of the resulting
particles at the position of the secondary vertex and normalizing the resulting vector. On
the y–axis of the AP plot the transverse momentum of the decay products qT in relation
to the momentum of the original particle is plotted against the longitudinal momentum
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asymmetry α which is calculated by

α =
q+L ´ q´

L

q+L + q´
L

, (4.11)

where q+L represents the longitudinal momentum of the positively-charged decay product
and q´

L represents the longitudinal momentum of the negatively-charged decay product.
The longitudinal momentum is calculated by

qiL = ÝÑq ¨ ÝÑp i, (4.12)

and the transverse momentum qT is calculated by

qT =
b

(qiL)
2 ¨ |ÝÑp i|2. (4.13)

The transverse momentum relative to the original particle is the same for the resulting
electron and positron:

qT = q+T = q´
T . (4.14)

From the two values qT and α of a decaying particle and therefore its position on the AP
plot the type of the particle is determined. Based on the AP variables, several selection
criteria are applied to identify candidates of photon conversions. For two found tracks with
a shared secondary vertex to be identified as photon conversion candidates, the transverse
momentum in the labratory system pT of each of the tracks has to be between 40 and
500 MeV/c and the tracks need to have opposite charge. The transverse momentum in
the center of mass system qT of the incoming photon has to be between 0 and 20 MeV/c

and the longitudinal momentum asymmetry α has to be between a value of ´0.2 and 0.2.
Additionally no TPC track can be present within 10 cm of the secondary vertex and the
direction of the photon has to point to the primary vertex. For this the scalar product
of the normalized direction vector of the photon and the normalized offset vector of the
secondary vertex has to be above a value of 0.9.
Additional selection criteria are applied which only allowed certain constellations of shared
and independent tracklets between the two reconstructed Kalman tracks. These selection
criteria are made in a way that they require a certain number of tracklets in certain layers
which are unique for each track and a number of tracklets in certain layers which are shared
among both tracks. The cuts are listed in Table 4.1. The first cut for example specifies that
both tracks have to have at least two shared tracklets in the first three layers and at least
two independent tracklets in the last three layers. An example of such a photon conversion
candidate can be seen in Fig. 4.1a. Pictures of photon candidates which are used in other
cuts can be seen in Fig. 4.1. In Fig. 4.1b a photon conversion can be seen which satisfies
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Cut No. No. shared Layers No. indep. Layers
1 ě 2 0,1,2 ě 2 3,4,5
2 ě 3 0,1,2,3 ě 1 3,4,5
3 ě 1 0,1,2 ě 3 2,3,4,5
4 ě 1 0,1 ě 3 1,2,3,4,5
5 = 0 0,1,2 ě 4 0,1,2,3,4,5

Table 4.1: Table of used selection criteria for the plot of radial distances of secondary
vertices for photon conversion candidates (see Fig. 4.2 ). The table shows the number
of required tracklets with a certain label (shared or independent) and the layers in which
those requirements have to be fulfilled.

cut 5 where no shared tracklets are present and the secondary vertex is found in front of
the TRD. In Fig. 4.1c a photon conversion is depicted with one shared tracklet in the first
layer which fulfills cut number 3 and 4 and in Fig. 4.1d there are two individual photon
conversions with the right one fulfilling cut 2 and the left one fulfilling cut 1. The position
and direction of the two photon conversions indicates that they possibly originate from a
shared secondary vertex and therefore from a possible π0 decay. The radii of the secondary
vertices (depicted as red points in Fig. 4.1) which are found are plotted in a histogram
depicting the radial distribution of the secondary vertices. This histogram is shown in Fig.
4.2. It shows only photon candidates which fulfill the previously mentioned cuts and are
depicted by which cut they pass. The distribution shows that the most secondary vertices
are found between the different layers instead of the center of these layers and that almost
all recorded secondary vertices are found in front of layer 3. The most secondary vertices
are found between the second and third layer. The distributions of the cuts 1,3 and 4

have peaks between the first and second layer as well as between the second and third
layer of the TRD and almost no found secondary vertices after the third layer. Of these
three cuts, cut 1 has the most found photon candidates. Cut 2 has an additional peak
between the third and fourth layer because the cut searches for shared tracklets up to the
fourth layer. Cut 5 is responsible for almost all of the found photon conversion candidates
with secondary vertices below a radius of 280 cm where the conversion happens so far
in front of the TRD that no tracklets are shared by both reconstructed tracks. Further
studies are required to identify wheter the observed peaks between the different layers of
the TRD have a physical background or rather are artifacts from the secondary vertex
finder algorithm.
For the photon conversion candidates the uncorrected pT distribution is depicted in Fig.
4.3. The 1

slope value of the exponential fit lies in the magnitude of around 140 MeV. The
plot also demonstrates that the Kalman filter is able to find photon conversion candidates
for pT as low as 0.2 GeV/c.
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(a) The candidate has 2 shared tracklets in
the first two layers and 3 or 4 independent
tracklets in the upper 4 layers. This
candidate fulfills the cuts 1,3 and 4 (see
Table 4.1).

-this work-

(b) The candidate has no shared tracklets
in any layers but 6 or 4 independent
tracklets and a shared secondary vertex.
This candidate fulfills cut 5 (see Table 4.1).
_

(c) The candidate has 1 shared tracklet in
the first layer and 4 independent tracklets
in the upper 5 layers. This candidate fulfills
cuts 3 and 4 (see Table 4.1).

(d) Two candidates were found which might
have a shared secondary vertex. The left
candidate fulfills cut 1 and the right
candidate fulfills cut 2 (see Table 4.1).

Figure 4.1: Pictures of photon candidates seen in the XY -plane. Tracklets are depicted in
yellow. The calculated particle tracks are shown in red (for positively–charged particles)
or green (for negatively–charged particles). The secondary vertex is depicted as a red dot
and the purple line depicts the direction of the incoming photon.
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Figure 4.2: Radial distribution of secondary vertices for photon conversion candidates. On
each photon candidate which is selected via criteria of an AP plot additional selection
criterias are applied and the results are shown in this histogram. The selection criteria
are described in Table 4.1. The black arrows show the mean radius of the readout pads
of each layer.

uncorrected

-this work-

Figure 4.3: Uncorrected pT distribution for photon conversion candidates with exponential
fit.
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4.2 Nuclear Interactions

Nuclear interactions take place, when incoming particles interact with nuclei within the
TRD and produce a shower of multiple other particles. The expected nuclear interactions
consist of an incoming particle track reconstructed by the TPC which produces a shower
of new particles within the TRD. The reconstructed multiple particle tracks should share a
secondary vertex with the incoming particle track. The secondary vertex finder was used
to find candidates for nuclear interactions which happen inside the TRD. For that the
nuclear interactions had to fulfill two criteria: First at least three individual tracks need
to contribute to the found secondary vertex and second the found secondary vertex had
to be within 3 cm of a TPC track. A selection of found nuclear interactions can be seen
in Fig. 4.4. In Fig. 4.4a a simple nuclear interaction candidate is depicted where three
participating Kalman tracks were found. In Fig. 4.4b two nuclear interaction candidates
were found where one interaction is decaying outward of the detector and one interaction
is decaying inwards. The inward decay might be caused by one decay product of the
outward decay. In Fig. 4.4c and 4.4d two nuclear interaction candidates are depicted
with multiple contributing tracks and a cascade like shower. As well as for the photon
candidates in Fig. 4.2 the radial distribution of the secondary vertices is plotted for the
nuclear candidates and is depicted in Fig. 4.5. The radial distribution of the nuclear
interaction points is depicted as a function of the number of tracks which contribute to
the secondary vertex. The course of the distributions are similar for the different numbers
of allowed tracks. All distributions have peaks at the centers of the first, second and third
layer of the TRD with the second layer having the most interactions, followed by the first
layer and then the third layer. A fourth peak can be seen between the first and second
layer of the TRD. A possible reason for the peaks at the center of the detection chambers
might be the large radiation length of the readout pads (X/X0 = 0.77 % [27]) and the
electronics right behind them (X/X0 = 1.18 % [27]) but further studies are required. The
information about independent and shared tracklets is gathered and a selection criterion
was made which forced at least four independent tracklets in each of the upper three
layers. This selection criterion did not change the course of the radial distributions but
significantly decreased the number of found nuclear interaction candidates. The effect of
different selection criteria applied to the nuclear interactions will require further studies.
Additionally the BE

Bx distribution of the TPC tracks which were matched with the nuclear
candidates found in the TRD is plotted in Fig. 4.6. The results show that most of the
recorded nuclear interactions are caused by pions.
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(a) Nuclear interaction candidate with
three contributing tracks.
_
_

-this work-

(b) Two nuclear interaction candidates.
The right nuclear candidates decays
outward while the other is decaying inwards
to the detector.

(c) Nuclear interaction candidate with a
cascade-like shower.

(d) Nuclear interaction candidate with a
cascade-like shower.

Figure 4.4: Pictures of nuclear interaction candidates. Tracklets are depicted in yellow.
The incoming TPC track is shown in blue. The nuclear interaction point is depicted as
a blue dot and the red and green lines depict the different tracks contributing to the
interaction. The green line was used to identify the first found track of the interaction.
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Figure 4.5: Radial distribution of secondary vertices of nuclear interaction candidates. The
radial distribution is plotted as a function of the number of contributing tracks. The black
arrows indicate the mean radius of the readout pads of each layer.

-this work-

Figure 4.6: BE
Bx distribution of TPC tracks matched with nuclear interaction candidates

found in the TRD.
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5 Conclusion and Outlook
During this bachelor thesis a Kalman filter tracking algorithm was implemented for the
Transition Radiation Detector in ALICE. To test the algorithm a 2D Monte Carlo sim-
ulation with a simple tracking algorithm, a Kalman filter tracking algorithm with linear
track model, and a Kalman filter tracking algorithm with a helical track model was de-
veloped. The purity and efficiency of the Kalman filter was determined. It showed that
the helical track model has a higher tracking purity and efficiency, especially for particles
with pT ă 1 GeV/c. For the 3D simulation a Kalman filter with a helical track model
was implemented for the proof of concept. For data from p–Pb collisions at ?

sNN =

5.02 TeV a Kalman filter with a helical track model was implemented. The efficiency of
reconstructing to TPC tracks matched tracks was determined to be between 0.8 and 0.9

for transverse momenta between 0.5 GeV/c and 10 GeV/c. In addition the pT resolution
was determined with and without a primary vertex constraint for Kalman filter tracks
matched to TPC tracks. The q/pT resolution with the use of a primary vertex is between
2.5 % for high q/pT tracks and 9 % for low q/pT . Without the use of the primary vertex
the q/pT resolution for 6 tracklets is around 9 % for high and over 30 % for low q/pT .
A pre-existing secondary vertex finder was optimized and used to reconstruct candidates
for nuclear interactions and photon conversions in front of or within the TRD. The found
photon candidates were selected by selection criteria based on Armenteros-Podolanski
variables and further topological selection criteria. Close to 190000 photon conversions
were identified out of around 700000 p–Pb events. The calculated radial distribution of
secondary vertices showed that most of the secondary vertices were between the different
active TRD layers. For the nuclear interaction candidates, cuts were made on the number
of found tracks contributing to the nuclear interaction. During the analysis around 69000

nuclear interactions with a matched corresponding TPC track were identified. The ra-
dial distribution of nuclear interaction points showed that the nuclear interactions happen
within the TRD layers where the readout pads are placed and a made BE

Bx plot demon-
strated that most found nuclear interactions originate from pions. As a result of this
bachelor thesis a working tracking algorithm based on a Kalman filter approach was de-
veloped, implemented and shown to be a reliable tool with a high efficiency and purity
for identifying nuclear interactions and photon conversions in front of and within the TRD.

In the future additional improvements to the implemented Kalman filter could be applied.
Those include the implementation of an additional fit to the found tracks to increase the
pT resolution, the introduction of χ² cut to the found tracks based on the number of
tracklets to improve the purity of the Kalman filter and reworking of the algorithm to
search for particle tracks in multiple sectors and stacks of the TRD. In addition to that
measurement uncertainties based on the multiplicity of the detector could be implemented
and the seeding algorithm improved. The speed of the algorithm could be increased and
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additionally reworked so that the secondary vertex finder and the photon conversion /
nuclear interaction criteria could allow for more conversions/ interactions to be identified
with a higher efficiency and purity. These improvements along with the repairs of the
TRD for Run 3 and an improved calibration of the TRD data based on the TRD stand
alone tracking developed during this thesis can significantly improve the functionality of
the Kalman filter.
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Appendix
Calculations for the Alihelix class

The result of the Kalman filter for an individual track is the state vector

s = (y, z, sinϕ, tanλ, q/pT )
T , (5.1)

at the propagation variable x. The Alihelix class needs eight parameters to fully describe
the helix and the state vector needs to be transformed into these parameters. To aquire
these parameters, the offset and momentum vector of the particle is first calculated and
then rotated into the global coordinate system. The offset vector in the local coordinate
system is given by the propagation variable of the Kalman filter (x), the first (y) and the
second (z) variable of the state vector. The momentum vector is calculated by assuming
the charge of the particle to be either 1 e or ´1 e, so the transverse momentum and charge
are given by:

pT =
1

|(q/pT )|
, (5.2)

q = (q/pT ) ¨ pT . (5.3)

The momentum vector is then given by:

px = pT ¨
a

1 ´ sin (ϕ)2, (5.4)

py = pT ¨ sin (ϕ), (5.5)

pz = pT ¨ tanλ. (5.6)

The offset and momentum vector are then rotated into the global coordinate system
(X,Y,Z) and the curvature C is calculated with Equation (1.18). Then the individual
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variables of the AliHelix are given by:

AliHelix[0] = Y +
1

C
¨
pX
pT

, (5.7)

AliHelix[1] = Z, (5.8)

AliHelix[2] = arcsin
(
pX
pT

)
, (5.9)

AliHelix[3] =
pZ
pT

, (5.10)

AliHelix[4] = C, (5.11)

AliHelix[5] = X ´
1

C
¨
pY
pT

, (5.12)

AliHelix[6] = pT , (5.13)

AliHelix[7] = pZ . (5.14)

(5.15)

The parameters in the AliHelix format are then used to further analyze the found particle
tracks.
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Efficiency and purity of the Kalman filters in the Monte Carlo
simulation
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Figure 5.1: Efficiencies and purities for the helical and the linear track model in dependance
of the transverse momentum for 120 noise tracklets per event.
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Figure 5.2: Efficiencies and purities for the helical and the linear track model in dependance
of the transverse momentum for 200 noise tracklets per event.
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pT resolution of the Kalman Filter
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Figure 5.3: Correlation plots between TPC and Kalman pT without (left) and with (right)
the use of the primary vertex (PV).
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Figure 5.4: Kalman filter pT distributions for different TPC pT with a Gaussian fit. The
bin width is 0.005 GeV/c. R represents the calculated pT resolution.

45



5 Conclusion and Outlook

-this work-

Figure 5.5: TRD momentum resolution as a function of the matched TPC pT . Red markers
correspond to 6, grey ones to 5 and blue ones to 4 tracklets per track. The measurements
where only the TRD was used are depicted by hollow markers and full markers are used
for resolutions which were acquired by using the TRD and the primary vertex constraint.
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