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Abstract

This thesis presents the determination of the CKM matrix elements |Vub|/|Vcb|
from measuring the ratio of branching fractions of the B0

s meson decays
B0
s → K−µ+νµ with respect to B0

s → D−s µ
+νµ. The analysis is based on proton-

proton collisions corresponding to an integrated luminosity of 2 fb−1 produced
at a center of mass energy of

√
s = 8 TeV provided by the Large Hadron Collider

and collected by the LHCb experiment in 2012. The branching fraction ratio is
measured to be

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ+νµ)

= (6.079± 0.201± 0.476)× 10−3

where the first uncertainty is statistical and the second one systematic. This
experimental measured ratio is combined with theoretical form factor predictions
for B0

s → K−µ+νµ and B0
s → D−s µ

+νµ which results in the determination of
the CKM matrix elements |Vub|/|Vcb| = 0.114 ± 0.005 ± 0.013 where the first
uncertainty is the combined experimental uncertainty and the second one is from
theoretical predictions. This measurement provides an important constraint to
global fits to the unitary triangle of the CKM sector of the SM. The branching
fraction ratio together with theoretical predictions and external input can also
be used to extract the total branching fraction for the signal decay, which is
measured to be B(B0

s → K−µ+νµ) = (1.31± 0.14)× 10−4 for the first time.

Zuammenfassung

In dieser Arbeit wird die Messung der CKM-Matrix Elemente |Vub|/|Vcb|
aus dem Quotient des Verzweigungsverhältnis von den B0

s -Mesonen Zerfällen
B0
s → K−µ+νµ im Vergleich zu B0

s → D−s µ
+νµ vorgestellt. Die Analyse basiert

auf einem Proton-Proton Kollisions-Datensatz der einer integrierten Lumi-
nosität von 2 fb−1 entspricht und bei einer Schwerpunktsenergie von

√
s = 8 TeV

vom Large Hadron Collider produziert und vom LHCb Experiment in 2012
aufgenommen wurde. Der Quotient des Verzweigungsverhältnis wird zu

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ+νµ)

= (6.079± 0.201± 0.476)× 10−3

bestimmt, wobei die erste Unsicherheit statistisch und die zweite systematisch
ist. Dieser experimentell gemessene Quotient wird mit theoretisch vorherge-
sagten Form Faktoren kombiniert, was zur Bestimmung der CKM Matrix Ele-
mente |Vub|/|Vcb| = 0.114±0.005±0.013 führt, hierbei ist die erste Unsicherheit
die kombinierte experimentelle Unsicherheit und die zweite kommt aus theoretis-
chen vorhersagen. Diese Messung gibt eine wichtige Beschränkung für globale
Fits des Unitaritäts Dreiecks vom CKM Sektor im Standardmodell. Der Quo-
tient des Verzweigungsverhältnisses kann auch verwendet werden um das totale
Verzweigungsverhältnisses für den Signal Kanal zu bestimmen, dieser wird zum
ersten Mal zu B(B0

s → K−µ+νµ) = (1.31± 0.14)× 10−4 gemessen.
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1 Introduction

Particle physics has aims to understand our universe at the level of its fundamental
constituents, the elementary particles. These, together with their fundamental
interactions, are embedded into the Standard Model (SM) of particle physics. The
SM is a successful theory describing most of the physical phenomena observed so
far, from the lowest energy scale up to high energy physics of the order of several
TeV center-of-mass energy at the Large Hadron Collider (LHC) at CERN. The
particle content of the SM is complete with the recent discovery of the Higgs
boson [1, 2], but it also has clear shortcomings e.g. the gravitational interaction is
not included.
In the SM the fundamental particles quarks and leptons come in three generations
as doublets of up and down-type quarks or charged leptons and their corresponding
neutrinos. The only difference between those generations are the masses of their
particles generated by their couplings to the Higgs field. The quark (lepton)
masses vary by five (three) orders of magnitude. This hierarchical structure
across generations is still to be understood as well as the origin of exactly three
generations, which are other shortcomings of the SM.
The only way for quarks and leptons to change their flavour within the SM is
through the charged weak interaction mediated by the W± boson, a process
first discovered through the radioactive beta decay of the neutron n → pe−νe,
governed by the weak d → u transition from the neutron (udd) to the proton
(uud). The weak force couples charged leptons to their neutrinos, respectively.
The coupling is universal for all three generations of leptons. In contrast in the
quark sector couplings across generations are possible. Their couplings are flavour
dependent and specified by the elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [3, 4]. This matrix is almost diagonal with the smallest and
least well known matrix element |Vub| of the order of O(0.001) and a fractional
uncertainty of around 9%.
The CKM matrix is unitary, which provides a crucial test of the SM. It can be
parametrised by three real mixing angles and one complex phase. The latter
allowing for CP violation in the SM. However, the observed matter-antimatter
asymmetry in the present universe is nine orders of magnitude smaller than what
can be explained by CP violation in the quark sector. It is therefore important
to determine the parameters of the CKM matrix, such as the magnitudes of the
matrix elements, to test for the unitarity of the CKM matrix and to precisely settle
the amount of CP violation in the quark sector. Specifically when performing
global fits to over-constrain the four parameters of the CKM matrix the large
uncertainty on |Vub| is one of the limiting factors and thus a reduced uncertainty
will lead to a better global precision of unitarity tests of the CKM matrix. Any
deviations from unitarity would be an indication of new physics beyond the SM.

The CKM matrix elements |Vub| and |Vcb| can be determined from inclusive
and exclusive semileptonic B meson decays as well as from purely leptonic decays
of B hadrons. In exclusive measurements a specific meson is reconstructed. For
inclusive decays, B → Xu/c`

−ν`, a sum over all possible hadronic final states is
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performed. Such measurements are performed at e+e− colliders by BaBar and
Belle experiments using B0 and B+ mesons as well as by LEP experiments. A
discrepancy between inclusive and exclusive measurements of approximately three
standard deviations is observed, a long-standing puzzle in flavour physics.
A different approach is used to extract the ratio |Vub|/|Vcb| for the first time at
a hadron collider by LHCb using exclusive semileptonic Λb-baryon decays [5].
This thesis uses a similar approach to extract the ratio |Vub|/|Vcb| from exclusive
semileptonic B0

s decays. The decay B0
s → K−µ+νµ is used which suffers from

much higher background contamination compared to Λb decay sand the main
complication of this analysis comes from the development of tight selection cuts
which suppress this background as much as possible. The branching fraction
ratio of B0

s → K−µ+νµ is measured with respect to the normalisation decay
B0
s → D−s µ

+νµ, where the D−s is reconstructed from K+K−π−. The measurement
is made using pp collision events produced by the Large Hadron Collider (LHC)
which are collected by the LHCb experiment in 2012. This ratio of branching
fractions can be combined with theoretical input from lattice QCD (LQCD) [6]
and light-cone QCD sum rules (LCSR) [7] to precisely determine the ratio of
CKM elements |Vub|/|Vcb| providing an important constraint for global fits testing
the CKM unitarity. In addition a measurement of the branching ratio of the
B0
s → K−µ+νµ decay is provided for the first time.

This thesis is structured as follows. An overview about the theoretical framework
and a motivation of the measurement is given in Chapter 2. Chapter 3 presents
a general description of the experimental setup and data taking conditions. The
measurement strategy is briefly outlined in Chapter 4. The methods and tools used
to perform the analysis such as the corrected mass and neutrino reconstruction
are discussed in Chapter 5. The selection of data for this analysis is given in
Chapter 6, and details of the control channel which is used as a high statistic
channel to correct for simulation and data differences are provided in Chapter 7.
The fit to the normalisation channel B0

s → D−s µ
+νµ is performed in Chapter 8

and that of the B0
s → K−µ+νµ signal decay in Chapter 9. The relative efficiencies

and correction factors to extract the branching fraction ratio are calculated in
Chapter 10 together with the systematic uncertainties. The final results are
presented and discussed in Chapter 11 which leads to the conclusion of this thesis
in Chapter 12.
Besides the analysis presented in this thesis, the author contributed to two other
projects at the beginning of her PhD. One was to work on track monitoring
algorithms for the start-up of Run II at the LHC. During her first one and a half
years she worked on the first Run II data analysis to extract the J/ψ cross section
at 13 TeV, which was the first published LHCb Run II result [8] aiming to test for
its production mechanism and to validate the optimised software trigger concept
introduced in Run II.

The content of this thesis is part of an official LHCb analysis that is ex-
pected to be published within this year. This analysis is documented in detail in
an internal note [9] which is in working group review at the moment. For such
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an complex analysis it is common that a team of several people contribute as a
collaborative effort and not every part of it can be done by a single person. This
is also the case for the analysis presented here which was developed together with
other LHCb collaborators. The author of this thesis contributed to the selection
of the signal channel B0

s → K−µ+νµ, was responsible for the simulation of Monte
Carlo samples, determined the efficiencies and developed the signal fit. It should
be noted that the selection of the signal and the fit evolved during the review
process such that the official analysis note deviates from the thesis and such this
thesis presents an autonomous study. Also the results presented here are obtained
by the author alone, those are not yet approved by the collaboration. In addition
there is an already published PhD thesis from one of the LHCb collaborators
performed on the same analysis which is published in this Reference [10] and based
on an earlier stage of the analysis work including different selection cuts.
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2 Theoretical background

This chapter introduces the basic theoretical concepts needed to extract |Vub|/|Vcb|
from semileptonic B0

s decays. It starts with a brief overview of the Standard Model
of particle physics and continues with a detailed description of Cabibbo-Kobayashi-
Maskawa mechanism. Then a general introduction to semileptonic B-meson decays
is given which puts the decay of interest into perspective. It ends with a description
of the underlying theoretical parametrisations of so-called form factors from both
Lattice QCD and Light-Cone Sum Rules, where the most recent predictions for the
decay rates of interest B0

s → K−µ+νµ and B0
s → D−s µ

+νµ are discussed.

2.1 The Standard Model

In this section a short summary of the Standard Model of particles is given which
is meant only as an overview of the fundamental particles and forces it describes,
a more detailed description can be found for example in Reference [11].
The Standard Model (SM) of particle physics is a theoretical framework, putting
together all elementary particles and their fundamental interactions, namely the
strong, weak and electromagnetic interaction in a framework of a renormalisable
quantum field theory. Only the gravitational force is excluded in the SM, but
compared to the other forces it is very small when dealing with elementary
particles and can therefore be neglected.

The elementary particles which make up the visible matter in our universe are
called fermions with an intrinsic angular momentum or spin of 1/2. Theses are
described in terms of fields and can be further divided into two categories: quarks
and leptons. Quarks interact via the strong interaction whereas leptons do not
interact strongly. They both come in three generations with identical quantum
numbers and increasing mass as shown in Table 1. Each quark generation consists
of a so-called up- (u, c, t) and down-type (d, s, b) quarks, with the elemen-
tary electric charge of +2

3
e and −1

3
e, respectively, as well as one charged lepton

with charge −1e and a corresponding neutral neutrino of different flavours (e, µ, τ).

The SM also describes the fundamental interactions between the pre-
viously introduced elementary particles. These interactions arise from the
gauge invariance of the SM Lagrangian, which is invariant under local gauge
transformations of the symmetry group

SU(3)C × SU(2)L × U(1)Y , (1)

where the subscripts C, L and Y stand for colour, left-handed chirality and weak
hypercharge, respectively. Those are the conserved charges of the respective inter-
action coming from the different symmetries according to Noether’s theorem [13].
The gauge group also uniquely determines the number of gauge bosons as the
generators of the group, which are spin 1 particles. Those carry charges based on
the underlying symmetry and as such only couple to alike particles. Due to that
they mediate the three fundamental interactions, which are the electromagnetic,
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Quarks Leptons

Generation Type Mass El. Charge Type Mass El. Charge

1st
u 2.2 MeV/c2 +2/3 e 511.0 keV/c2 -1

d 4.7 MeV/c2 -1/3 νe <2 eV/c2 0

2nd
c 1.275 GeV/c2 +2/3 µ 106 MeV/c2 -1

s 95 MeV/c2 -1/3 νe <0.19 eV/c2 0

3rd
t 173.5 GeV/c2 +2/3 e 1.777 GeV/c2 -1

b 4.18 GeV/c2 -1/3 νe <18.2 eV/c2 0

Table 1: The fermionic content of the SM. The masses are taken from [12] and the electric
charges are given in units of the elementary charge e.

Interaction Particle Spin Mass El. Charge

electromagnetic photon (γ) 1 0 0

weak
W± 1 80.4 GeV/c2 ±1

Z0 1 91.2 GeV/c2 0

strong gluon (g) 1 0 0

Higgs 0 125.18 GeV/c2 0

Table 2: The bosonic content of the SM. The masses are taken from [12] and the electric
charges are given in units of the elementary charge e.

the weak and the strong force.
Quantum Chromo Dynamics (QCD) describes the strong interaction which is
generated by the SU(3)C group and mediated by 8 massless gluons carrying
so-called colour charges. These colours are charges of the strong force and come
in three types red, green and blue as well as their corresponding anti-colours.
Besides gluons also quarks carry colour charges, these are therefore the only two
fundamental particles taking part in the strong interaction. Gluons couple to
quarks via their colour charges as well as to themselves, this self-interaction leads
to a short range of the strong interaction and makes it very hard to calculate. Two
remarkable properties of QCD are asymptotic freedom and confinement. The first
describes the running of the strong coupling constant αs, which is a function of
the transferred four-momentum squared q2 between the interacting particles and
as such dependent on the probed energy scale. The coupling constant increases
with decreasing energy such that pertubative calculations are not possible in this
region, only at high momentum scales above a certain scale of ΛQCD ∼ 200MeV .
There the distance between coloured objects is small and quarks behave as
quasi-free particles without interactions. Confinement comes from the property of
the QCD potential, where the strong force between two coloured objects at large
distances does not decrease but rather stays constant. As a result neither quark
or anti-quark exist as isolated particles, they rather always form colour-neutral
objects which are called hadrons. Traditionally, those can be either categorized
as mesons made of a pair of quark and anti-quark or baryons as a bound system
of three quarks or three anti-quarks. However QCD also allows for more exotic

16



combinations like multi quark states made off four or five quarks where the latter
has been recently observed by LHCb as a pentaquark candidate [14].
The Electroweak interaction unifies the electromagnetic and the weak interaction
and is generated by the SU(2)L × U(1)Y symmetry group. Its corresponding
gauge bosons are three bosons of weak isospin from SU(2), W 1,2,3

µ , and one boson
of weak hypercharge coming from U(1), Bµ. These bosons are massless and the
charges to which they couple are the weak isospin and the hypercharge. Fermions
only carry weak isospin of 1/2 if they are left-handed, right-handed fermions do
not have a weak isopsin and therefore do not couple to the SU(2)L part of the
electroweak interaction. Due to that W 1,2,3

µ bosons couple only to left-handed
particles and right-handed anti-particles. In contrast to that the Bµ boson couples
to all fermions of the SM via the weak hypercharge.
The spontaneous symmetry breaking of the electroweak gauge symmetry is
realised by the Higgs mechanism [15, 16] in the SM. This mechanism generates
fermion masses as well as it mixes the massless gauge bosons of the electroweak
interaction into three massive bosons W+, W− and Z0 of the weak interaction
and the massless photon γ coupling to the electric charge. Since W+ and W−

are a superposition of two W i
µ bosons, they inherit their chirality conditions

and couple only to left-handed particles and right-handed anti-particles. As the
neutral massive gauge boson Z0 is a linear combination of the U(1) gauge boson
Bµ, it couples to all particles independent of chirality. The large masses of the
W± and Z0 boson of around 80 GeV/c2 and 91 GeV/c2, respectively, set a limit
on the range of the weak interaction of 10−18m, whereas there is no limit for the
electromagnetic force due to the massless photon. The Higgs mechanism also
predicts a massive spin-0 particle, the so-called Higgs boson, which was discovered
in 2012 by ATLAS and CMS collaborations [1, 2] and such completes the bosonic
content of the SM as summarised in Table 2.

Beyond the Standard Model

Even though the SM is very successful in describing particle physics, it has some
clear shortcomings and is therefore not considered as the final theory in this field.
It is incomplete in the sense that it can not explain the fundamental physical
concept of gravity as well as the observed neutrino oscillations [17, 18], which
indicates that neutrinos are massive particles and is not included in the SM.
Neutrino oscillations can be described in terms of the mixing matrix in the lepton
sector, the so-called Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [19, 20],
which is similar to the CKM matrix for quarks but the origin of neutrino masses
remains an open question. Heavy right-handed sterile neutrinos have been
postulated as a solution, but they haven’t been observed so far [21]. Those would
not participate in the SM interaction and could also be a possible dark matter
candidate.
Also experimental cosmological observations from weak gravitational lensing [22]
or modified galactic rotation curves [23,24] have shown that the SM explains only
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5% of the energy density of the universe. The remaining part consist of 68% of
so-called dark matter and 27% dark energy. The SM does not provide fundamental
particles which are candidates for either of those. Many extensions of the SM
include suitable candidates which are stable on cosmological time scales and have
very weak couplings to SM particles, the most prominent ones are so-called weakly
interacting massive particles (WIMPS) from supersymmetric (SUSY) models [25].
Another shortcoming of the SM is the observed matter-antimatter asymmetry of
the order of ∼ 10−11 − 10−10 [26, 27] in the universe today can not be explained
by the small CP violating phase included in the SM and requires additional
sources from new physics contributions. The CP violating phase will be explained
in more detail in the next section and CP transformations are simultaneous
transformations of the charge conjugation (C) and parity (P). The former changes
the sign of all particle charges, while the latter transformation flips the signs of
the spatial coordinates of the system (~x → −~x). Many models extending the SM
exist which predict new sources of CP violation, therefore precisely measuring CP
violation in the SM is also a powerful tool to search for new physics.
On the theoretical side an open question of the SM is the so-called hierarchy
problem. Within the SM no symmetry protects the mass of the Higgs boson to
its measured value such that large quantum corrections from virtual particles can
lead to much higher masses. The experimentally observed Higgs boson mass can
only be accommodated with a fine tuning that cancels these quantum corrections.
This level of fine-tuning is considered as unnatural by many theorists and several
models were proposed in order to solve this issue: SUSY [28], little Higgs [29] or
grand unified theories (GUT) [30].
An open question is also why there are exactly three generations of fermions
and what determines the large spread of fermion masses across many orders of
magnitudes. Therefore theorists aim to develop a more fundamental theory that
contains mechanism or symmetries which explain these observations with fewer
input parameters.

Due to all of these shortcomings experimental particle physics is searching
for fundamental particles or interactions which are not part of the SM, so-called
New Physics contributions. There are different approaches to search for particles
beyond the SM.
In direct searches they are searched for in the production of high energy collisions
at particles colliders to explore the energy frontier or they are detected via their
interaction with ordinary baryonic matter in sensitive detectors. The latter method
is explored in dark matter experiments such as the XENON1T experiment [31]
as an example which uses large detector volumes below the surface and try to
detect possible rare interaction of dark matter particles with the target nuclei.
The energy frontier is explored by the ATLAS [32] and CMS [33] experiments
at CERN which are looking for signatures of heavy stable particles which are
produced in high energy proton-proton collisions. Here the maximum mass of a
new particle to be discovered is limited by the available center-of-mass energy of
the pp collision, which is currently 14 TeV.
A complementary approach is the indirect search for new particles which is
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followed by the LHCb experiment. Here indirect means that those new particles
might be too heavy to be produced as real particles but they can enter in quantum
loops as virtual particles. These quantum corrections to SM processes are smaller
the heavier the particles involved are, which is why the key ingredient for this
type of searches is the precision. Those corrections can then either modify existing
SM processes or allow processes which are forbidden in the SM. Therefore in
order to perform an indirect search one needs precise theoretical prediction of
the observable of interest in the context of the SM to be able to compare the
measurement to it as well as an observable that gets sizeable contributions from
these quantum loops which can be precisely measured with the experiment.
Flavour physics uses indirect searches to be able to probe higher new physics
scales by increasing precision of the measurements.

2.2 Flavour in the SM

In the SM quarks and leptons acquire mass through the Yukawa interactions with
the Higgs field after the spontaneous symmetry breaking. The leptonic part of the
Lagrangian will be neglected since it is not relevant for the processes discussed in
this thesis. The Yukawa term for quark fields can be written as:

LquarksY ukawa = − v√
2

(d̄LYddR + ūLYuuR) + h.c., (2)

where left-handed quarks d̄L are coupled to right-handed ones dR by the Yukawa
matrices Yu, Yd as the coupling constants. Here v represents the vacuum ex-
pectation value of the Higgs potential after the electroweak symmetry breaking
and qL,R represents the weak-eigenstates. The Yukawa matrices are 3x3 complex
matrices with non-zero diagonal elements. Therefore the weak eigenstates q are
different from the physical mass eigenstates of the quarks q′. The quark masses
mq can be found through their coupling with the Higgs field mq = Yq

v√
2
, given

in terms of weak eigenstates. In order to write mass terms for the quarks from
the mass eigenstates, the Yukawa matrices need to be diagonalised by a unitary
transformation VA,q which is determined by:

Mu =

 mu 0 0
0 mc 0
0 0 mt

 = diag(mu,mc,mt) =
v√
2
VL,uYuV

†
R,u (3)

,

Md =

 md 0 0
0 ms 0
0 0 mb

 = diag(md,ms,mb) =
v√
2
VL,dYdV

†
R,d (4)

The mass eigenstates can then be obtained from the weak eigenstates using the
same unitarity matrix q′A = VA,qqA with q = u, d, A = L,R and VA,qV

†
A,q = 1. With

that one can rewrite the Yukawa term including the quark masses Md, Mu and
mass eigenstates u′, d′ as

LY ukawa = −d̄′LMdd
′
R + ū′LMuu

′
R + h.c. (5)
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These transformations leave all parts of the SM Lagrangian unchanged, except for
the term describing the charged current weak interaction which connects the up
and down-type quarks. In the basis of weak eigenstates this is given as

LCC = − g√
2

(ūLγ
µW+

µ dL + d̄Lγ
µW−

µ uL) (6)

here g is the SU(2) coupling constant. Rewriting it in terms of mass eigenstates
leads to the following formula

LCC = − g√
2

(ū′Lγ
µW+

µ VL,uV
†
L,d︸ ︷︷ ︸

VCKM

d′L + d̄′Lγ
µW−

µ VL,dV
†
L,u︸ ︷︷ ︸

V †CKM

u′L). (7)

There is a net effect of the basis change since the up-type and down-type Yukawa
matrices cannot be diagonalised simultaneously by the same unitary transforma-
tion, VA,d 6= VA,u. Therefore the charged-current interaction gets a flavour structure
which is encoded in the Cabibbo-Kobayashi-Maskawa (CKM) [34, 35] quark mix-
ing matrix VCKM = VL,uV

†
L,d. Each element of this matrix (VCKM)ij connects the

left-handed up-type quark of the i-th generation with the left-handed down-type
quark of the j-th generation, but it is labelled according to quark flavour instead
to the generation index. Writing out all transition gives

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (8)

As a convention the weak eigenstates and the mass eigenstates for the up-type
quarks are chosen to be equal, whereas the down-type quarks are rotated such that
the weak eigenstates are a mixture of the mass eigenstates

ui = u′i, di = (VCKM)ijd
′
j, (9)

or explicitly  d′

s′

b′

 = VCKM

 d
s
b

 . (10)

Because of the non-diagonal structure of the CKM matrix the weak interaction
allows for transitions between different quark generations through charged current
interactions. Figure 1 shows the Feynman diagram for a b → u transition as
an example. This transition matrix element is proportional to the corresponding
CKM matrix element Vub, whereas the corresponding anti-quark transition b̄ → ū
is proportional to its complex conjugate element V ∗ub.

2.2.1 CKM matrix parametrisations

The CKM matrix is a 3x3 unitary matrix and it consists of 9 complex elements,
satisfying Vij 6= V ∗ij , therefore four free parameters remain. These are three rotation

20



b u

W−

Vub

ūb̄

W+

V ∗
ub

Figure 1: Feynman diagram of a b→ u transition and a b̄→ ū transition.

angles and one phase, the latter one is responsible for CP violation in the SM. There
are different parametrizations for the CKM matrix existing.
One of the standard choices uses the three Euler angles θ23, θ13, θ12 and one Phase
δ [36]:

VCKM =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12s23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(11)

where sij = sin θij, cij = cos θij and δ is the phase responsible for CP violation in
the quark sector.
Alternatively due to its hierarchical structure with smaller contributions away from
the diagonal, the so-called Wolfenstein parametrisation [37] is mainly used as an
approximation up to O(λ4) terms:

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (12)

with λ = 0.225 as the expansion parameter and A, ρ and η are real parameters be-
tween 0.1-1 which do not change the order of the magnitude of the CKM elements.
The two parametrisations are related by

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

|Vcb|
|Vus|

,

s13e
iδ = V ∗ub = Aλ3(ρ+ iη) =

Aλ3(ρ̄+ iη̄)
√

1− A2λ4

√
1− λ2[1− A2λ4(ρ̄+ iη̄)]

,

(13)

which ensures that

ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗cb
(14)

is phase convention independent and the CKM matrix is unitary to all orders of λ.
From the observed structure of the CKM matrix, which will be discussed in Section
2.2.3, one can see that quark transitions within the same generation are preferred
since diagonal elements are of order 1 whereas further away from the diagonal the
transitions are more suppressed. Between the first two generations the transition is
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suppressed by λ, between the second and third by λ2, whereas between the first and
third generation by λ3. This parametrization also shows that the complex compo-
nents up to order λ3 terms are the CKM matrix elements Vub and Vtd, allowing for
CP violation in the SM.

2.2.2 The unitarity triangle

The unitarity of the CKM matrix

V †CKMVCKM = VCKMV
†
CKM = 1 (15)

⇔

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 V ∗ud V ∗cd V ∗td
V ∗us V ∗cs V ∗ts
V ∗ub V ∗cb V ∗tb

 =

 1 0 0
0 1 0
0 0 1

 (16)

leads to a set of 9 equations. Three of them are unitary relations

VudV
∗
ud + VusV

∗
us + VubV

∗
ub = 1 (17)

VcdV
∗
cd + VcsV

∗
cs + VcbV

∗
cb = 1 (18)

VtdV
∗
td + VtsV

∗
ts + VtbV

∗
tb = 1. (19)

These express the so-called weak universality since the squared sum of the cou-
pling strengths of the u-quark to d, s and b-quarks is equal to the overall charged
coupling of the c-quark and the t-quark. Since all of them add up to 1, there is no
probability remaining to couple to 4-th down-type quark. Those relations need to
be tested experimentally.
The remaining 12 relations are known as orthogonality conditions, where the follow-
ing 6 linear independent equations remain since the other six are only the complex
conjugate version:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (db) (20)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (sb) (21)

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 (ds) (22)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (ut) (23)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
ts = 0 (ct) (24)

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0 (uc), (25)

(26)

where the symbols (db) indicates the row and column whose orthogonality condition
is used. As they are sums of three complex numbers that must yield zero they can
be displayed as a triangle in the complex plane as shown in Figure 2. All of these
unitarity triangles have the same area, the so-called Jarlskog invariant [39] J/2
which is a measure of CP violation of the SM. It is defined as

Im[VijVklV
∗
ilV
∗
kj] = J

∑
mn

εikmεjln, (27)
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Figure 2: A schematic of the six different unitarity triangles of the quark sector, the
magnitudes are not to scale. Figure taken from [38].

Figure 3: A sketch of the unitarity triangle [12].

in terms of CKM parametrisations this corresponds to

J = c12c23c
2
13s12s23s13 sin δ ≈ λ6A2η. (28)

Only two out of the 6 unitarity triangles have all three sides with similar lengths
of the order of λ3, theses are marked as (db) and (ut) triangles in Figure 2. These
two triangles are relevant for B-decays. For historic reasons due to measurements
performed by the B-factories Belle and BaBar the (db) triangle is known as the
unitarity triangle, the analogous triangle of the B0

s system is the (sb) triangle. By
dividing the three sides of the (db) triangle by the best known CKM elements
VcdV

∗
cb yields to the famous unitarity triangle shown in Figure 3 and the relation:

VudV
∗
ub

VcdV ∗cb
+ 1 +

VtdV
∗
tb

VcdV ∗cb
= 0 (29)

In this triangle one side has a unit length and points along the real axis, the
apex is located by definition at (ρ̄, η̄) which was defined already before in Equation
14 .They can also be expressed in terms of Wolfenstein parameters ρ and η as:
ρ̄ = ρ(1− 1/2λ2) +O(λ4), η̄ = η(1− 1/2λ2) +O(λ4).
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The angles of the unitarity triangle are defined as:

α ≡ arg

[
− VtdV

∗
tb

VudV ∗ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗cb

]
. (30)

where β and γ are to first order the phases of Vtd and Vub, respectively, using the
Wolfenstein parametrisation. Those are measured from CP violating observables,
such as CP asymmetries of B decays and are briefly explained in the next section.

2.2.3 Constraining the CKM matrix

One goal of flavour physics is to measure experimentally the four free parame-
ters of the unitarity triangle very precisely in order to verify the Standard Model
description. This is done by overconstraining the triangle from complementary
measurements which are sensitive to the magnitude and phases of the CKM ma-
trix elements and can reveal effects beyond the SM if a disagreement between the
angles of the triangle and the lengths of the sides is found.
In general the CKM matrix elements are fundamental parameters of the SM with
no theory predictions, therefore the precise determination of these parameters is
very important. Magnitudes of CKM matrix elements are usually measured with
semileptonic or fully leptonic decays including charged current quark transitions,
such as the nuclear β decay to extract Vud for example. The measured decay rates of
the respective flavour changing transition is proportional to the coupling strength
|Vij|2. Previous measurements lead to an almost diagonal hierarchical structure
depicted already by the Wolfenstein parametrization [12]:

VCKM =

 0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012
0.22438± 0.00044 0.97359+0.00010

−0.00011 0.04214± 0.00076
0.00896+0.00024

−0.00023 0.04133± 0.00074 0.999105± 0.000032

 .

(31)
The smallest CKM matrix element is |Vub|, it has also the biggest relative
uncertainty and is therefore the least well-known element. Its uncertainty is
the dominant uncertainty on the length of the triangle side opposite to angle
β. Therefore it is important to measure this CKM matrix element with greater
precision.
The matrix elements |Vtb| and |Vtd| are needed to determine the length opposite
to the angle γ, but their combination |VtdV ∗tb| can be extracted more precisely by
measuring the mass difference of B0 meson eigenstates ∆md ∝ |VtdV ∗tb|2. This
quantity is important for B̄0 − B0 oscillations. Due to significant reduced theory
uncertainties the ratio of B0 and B0

s mass differences ∆md/∆ms ∝ |VtdV ∗tb|2/|VtsV ∗tb|
is often used as a better constraint. The dominating uncertainty extracting the
magnitude of CKM matrix elements comes from theoretical uncertainties on
hadronic matrix elements including the QCD nature, which will be explained in
more detail in the next section.

The phases of CKM matrix elements can be determined by measurements
of CP violating observables, especially important are measurements which can
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extract the angles of the unitarity triangle. The angle β = arg(−VcdV ∗cb/VtdV ∗tb)
can be determined from time dependent decay rates of B0 and B̄0 to the same
final state f , here the B0/B̄0 meson can either directly decay to the final state
f or first oscillate B0 − B̄0 into its antiparticle and then decay to f . Since the
two paths have a phase difference (weak and strong phase difference), interference
can occur and results in a time dependent asymmetry. If f is an eigenstate and
amplitudes with one CKM phase dominate the decay, the time-dependent CP
symmetry is given by:

ACP =
Γ(B̄0(t)→ f)− Γ(B0(t)→ f)

Γ(B̄0(t)→ f) + Γ(B0(t)→ f)
= ηf sin(2β) sin(∆mdt), (32)

where ηf is the CP eigenvalue of f . sin(2β) can be measured from b → cc̄s
transitions into the same final state f which is an CP eigenstate, such as
B0 → J/ψK0

S/L, b → cc̄d transitions like B0 → J/ψπ0 and b → cūd transitions as

B0 → D̄0h0 [12].
The angle α = arg(−VtdV ∗tb/VudV ∗ub) is measured using time-dependent CP
asymmetries from b → uūd decay dominated modes such as B → ππ, ρπ and ρρ
decays. Unlike α and β, the angle γ = arg(−VudV ∗ub/VcdV ∗cb) does not depend on
CKM elements involving the top quark and can therefore directly be measured
in tree-level decays. For example it can be measured from the interference of the
B− → D0K− (b → cūs) and B− → D̄0K− (b → uc̄s) decays, where D0 and D̄0

decay into the same final state.
Additional constraints on the CKM sector come from CP violation measure-
ment in the kaon system such as K0 − K̄0 mixing and the CP violating phase
βs = arg(−VtsV ∗tb/VcsV ∗cb) from B0

s → J/ψφ decays.

The parameters of the CKM matrix ρ̄, η̄, A and λ are most precisely deter-
mined using a global fit to all of the available measurements and imposing SM
constraints such as the 3 generation unitarity V 2

ud+V 2
us+V 2

ub = 1 for different rows.
There are two collaborations combining experimental data with theory predictions
for hadronic matrix elements using different approaches: the CKMfitter [40]
uses frequentist statistics and the UTfit [41] collaboration using the Bayesian
approach. Both of them provide similar results and the constraints implied by
unitarity significantly reduce the allowed range for some of the CKM elements [12].
Figure 4 compares the apex of the unitarity triangle from the global fits obtained
by both collaborations. Their results of the global fits are in excellent agreement
with each other and also with SM predictions, no significant deviation of the
SM CKM picture is found up to now. As an example the sensitivity of the
different measurements entering the global fit is shown in Figure 5, where angle
measurements are shown on the left and constraints from all other measurements
on the right.

2.3 Semileptonic B-meson decays

As emphasized in the previous chapter it is important to determine the unitarity
triangle with great precision. Especially the precise determination of |Vub| and
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Figure 6: Effective semileptonic quark transitions.

|Vcb| are central tests of the CKM sector of the SM, as the length of the side of
the unitairy triangle opposite to the angle β is directly proportional to the ratio
|Vub|/|Vcb|. Therefore extracting this quantity precisely is of great importance in
the heavy-flavour physics program and also the aim of this thesis.
Semileptonic b → uµν and b → cµν transitions are well suited to study the CKM
matrix elements as they have large branching fractions of ≈ 10% of all B decays and
provide therefore large yields. Experimentally reconstructing the neutrino in the
final state is challenging as it can not be directly detected such that reconstructing
the decay kinematics is more challenging. Theoretically semileptonic decays are
much simpler to calculate than fully hadronic processes since the leptons in the
final state do not interact strongly, such that the decay can be factorized into a
hadronic and leptonic part . In general there are different strategies to extract
the CKM matrix elemets: either from inclusive, exclusive semi-leptonic or purely
leptonic B-decays. Here the focus lies on exclusive semi-leptonic decays as they
are used for this thesis, its theoretical description will be further discussed in the
following.

Theoretical overview: Weak decays of hadrons

In the SM charged current semi-leptonic decays at quark level are mediated by an
exchange of a W±-boson between the quark and lepton-current. Since the W -boson
is much heavier than the b-quark, one can integrate out the W boson and consider
it to be infinitely heavy:

〈0|T [Wµ(x)W ∗
ν (0)]|0〉 ∼ 1

M2
W

δ4(x). (33)

This leads to an effective 4-point fermion interaction as depicted in Figure 6, with
a semi-leptonic local effective Hamiltonian for the decay of interest of the form:

Heff =
4GF√

2
Vub(ūγµ(1− γ5)d)(µ̄γµ(1− γ5)νµ) (34)

with GF = g2

4
√

2M2
W

is the Fermi coupling constant which is obtained from the

comparison to the full SM calculations. This approximation is correct up to order
m2
b/M

2
W and one can see how the leptonic and hadronic part of a decay factorizes.

Using this the matrix element for a semileptonic decay of a b-hadron to an exclusive
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Figure 7: Feynman diagram for the semi-leptonic decay B0
s → K−µ+νµ.

final state X−q µ
+νmu can be written as

M = −i
〈
Xq(p

′)µ+(k′)νµ(k)|Heff |B(p)
〉

= −iGF√
2
VubHµL

µ,
(35)

where p and k denote the 4-momentum. The leptonic current is given as

Lµ = µγµ(1− γ5)νµ, (36)

and the hadronic matrix element

Hµ = 〈Xq(p
′)|uγµ(1− γ5)b|B(p)〉 . (37)

The latter is not trivial to calculate due to the strong dynamics describing the
bound states of QCD, which at hadronic energy scales of a few MeV to GeV are
non-pertubative and can therefore not be calculated analytically. The hadronic
matrix element can be written in term of vector and axial vector Lorentz sym-
metries and such decomposed into so-called form factors which incorporate QCD
effects. In general form factors describe shape corrections to the approximation
that the scattering object is not point-like. Those form factors can be determined
using non-pertubative methods such as QCD sum rules and Lattice QCD, where
the latter is further explained in the next section.
The Feyman diagram for the decay of interest in this thesis is shown
in Figure 7. Since B0

s → K−µ+νµ is a pseudoscalar meson transition
B0
s (J

P = 0−)→ K−(JP = 0−), the axial-vector component of the matrix element
Hµ is zero due to the Lorentz structure of the initial and final state, which is con-
served in QCD. Therefore only the vector component of Hµ is remaining which can
be written in terms of scalar and vector form factors f0 and f+:

〈
K−(p′)|uγµb|B0

s (p)
〉

= f+(q2)

(
pµ + p′µ −

M2
B0
s
−M2

K

q2
qµ

)
+ f0(q2)

M2
B0
s
−M2

K

q2
qµ,

(38)
where pµ, p′µ are the B0

s and K 4-momenta, MB0
s

and MK are the corresponding
meson masses and qµ = pµ − p′µ is the momentum transfer to the lepton pair.
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This expression above also applies for the form factors of the corresponding b→ c
transition for the decay B0

s → D−s µ
+νµ when substituting the u with the c-quark

and the kaon with the D−s meson mass. The determination of the form factors,
f+(q2) and f0(q2) are discussed in Section 2.4.

2.4 Lattice QCD

As explained before the form factors incorporating the QCD effects of the semilep-
tonic decay have to be calculated in order to be able to extract the CKM matrix
elements of interest. Theoretical input from non-pertubative methods is needed,
such as QCD sum rules [42] or Lattice QCD (LQCD) which are used for form factor
predictions.
LQCD is a non-pertubative method where the QCD action

SQCD =

∫
LQCDd4x (39)

can be calculated numerically by discretising space-time on a lattice [6, 43, 44].
When considering a quantum mechanical path x(t) of a particle at the time t with
the boundary positions x(0) and x(tf ), the path integral formalism of quantum me-
chanic gives each path a probability proportional to exp(−

∫
dtL). The expectation

value of an operator combination is given by the correlation function

〈O(x(t1)x(t2))〉 =

∫
Dx(t)O(x(t1)x(t2))e−

∫
Ldt∫

Dx(t)e−
∫
Ldt (40)

where Dx(t) is an integral over all possible paths x(t).
This expectation value can be solved numerically using a one dimensional lattice in
time with spacing a. This needs Hybrid Monte Carlo methods [45] to generate large
ensembles of lattice configurations Nconf , where each configuration corresponds to a
different path along the lattice traversed by the particle. The probability of finding
a given configuration within the ensemble is proportional to exp(−

∫
dtL). Then

the computation of the correlation function in Equation 39 simplifies to an average
of the correlation function for each of the configurations

〈O(x(t1)x(t2))〉 =
1

Nconf

Nconf∑
n=1

O(x(t1)x(t2)). (41)

Its corresponding statistical uncertainty can be calculated using the standard
deviation of the sample which is proportional to 1/

√
Nconf . This concept of using

a lattice to numerically calculate the correlation function using the path integral
can be extended to QCD, where the quark field can be represented at point in
a 4-dimensional lattice. Using this approach of the lattice calculation leads to
several sources of systematic errors, which have to be evaluated:

• Continuum limit: the computation of the action on the lattice is only exact
in the limit of a → 0, so for an extrapolation of the lattice spacing to the
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continuum. This is computationally not possible such that lattice results are
usually computed for a range of lattice spacings.

• Finite volume: Lattice QCD calculations cover only a finite volume in space
and time where the action is integrated over, while in quantum mechanic an
integral over an infinite volume of space time is done. This results in a shift
of physical quantities computed on the lattice with respect to the true value.

• Chiral extrapolation: The predicted pion mass varies between different
lattice configurations such that an extrapolation of the results to the physical
pion mass is required. This extrapolation is done based on models or effective
field theories.

• Operator matching: Operators which are defined in terms of the lattice
scheme must be matched to their continuum version under the appropriate
renormalisation. This requires non-pertubative techniques which come with
their own systematic uncertainties.

• Quark masses: LQCD simulations use light quark masses above the true
masses and heavy quarks below their true value to be IR and UV safe, oth-
erwise it would require tiny lattice spacings smaller than the inverse mass
of the heavy quark, so below 0.04fm for the b-quark and very large lattices.
Therefore extrapolations to the true values are needed.

In addition it is very difficult to simulate objects with large momenta on the lattice.
Therefore form factors for decays of heavy mesons cannot be computed in regions
where the outgoing meson has large momentum in the rest frame of the decaying
meson [46]. Rather lattice form factor simulations are restricted to regions of
maximum momentum transfer to the leptons.

2.5 Theoretical form factors predictions

For the decay of interest B0
s → K−µ+νµ there are different calculations of form

factors available from either LQCD and light-cone sum rules (LCSR). The two
calculation methods provide predictions which are complimentary in phase space:
LQCD calculations are restricted to high values of q2 whereas LCSR calculations
are restricted to low values of q2. Therefore two different q2 regions are used for
the signal decay in this thesis. Requirements on unitarity and analyticity can then
be used to extrapolate results to the full available q2 region of the decay of interest
leading to additional uncertainties. The decay B0

s → K−µ+νµ is normalised to the
decay B0

s → D−s µ
+νµ for which form factor calculations from LQCD are available.

The form factor calculations for B0
s → D−s µ

+νµ needs no restriction to only the
high momentum transfer region as they have been precisely determined in [47] for
the first time for the full q2 spectrum.

30



2.5.1 Form factor calculations for B0
s → K−µ+νµ

From the hadronic matrix element defined in Equation 38 of Section 2.3 the differ-
ential decay rate for B0

s → K−µ+νµ in the B0
s rest frame can be written as

dΓ(B0
s → K−µ+νµ)

dq2
=
G2
F |Vub|2
24π3

(q2 −m2
µ)2
√
E2
K −M2

K

q4M2
B0
s

×[(
1 +

m2
µ

2q2

)
M2

B0
s
(E2

K −M2
K)|f+(q2)|2 +

3m2
µ

8q2
(M2

B0
s
−M2

K)2|f0(q2)|2
]
,

(42)

where EK =
M2
B0
s

+M2
K−q

2

2M
B0
s

is the energy of the kaon and q2 is the momentum transfer

and |f+(q2)| and |f0(q2)| as the vector and scalar form factors, respectively. The
form factors are calculated on the lattice using 3-point correlation functions from
simulated data at large q2, which is typically above 17 GeV2. In order to extrapo-
late the form factors to the whole kinematically allowed region a model-independent
parametrisation is used, the so-called z-expansion. It is based on the analyticity
and unitarity of the form factors. There are different extrapolation parametrisa-
tions existing, most commonly the parametrisation from Bourrely, Caprini, and
Lellouch [48] (BCL) is used, where the q2 variable is mapped to a new variable z
according to

z = (q2, t0) =

√
1− q2/t+ −

√
1− t0/t+√

1− q2/t+ +
√

1− t0/t+
. (43)

Here t± ≡ (MB0
s
±MK)2 and t0 = topt ≡ (MB0

s
+ MK)(

√
MB0

s
− √MK)2. This

transformation maps the semileptonic kinematic region 0 < q2 < (MB0
s
−MK)2

onto a unit circle in the complex z-plane. The form factors can then be expanded
as a power series in z:

f+(q2) =
1

1− q2/M+2

K−1∑
k=0

b
(k)
+

[
zk − (−1)k−K

k

K
zK
]
,

f0(q2) =
1

1− q2/M2
0

K−1∑
k=0

b
(k)
0 zk,

(44)

where different poles are included at around M+ = 5.325 GeV and M0 = 5.68 GeV.
Different lattice collaborations use different truncation values of K to end the power
series, usually values of 2 or 3 are chosen. The exact values of the coefficients
b

(k)
+ and b

(k)
0 and their correlations for the different lattice results are specified in

Appendix A.
The vector and scalar form factors are related through the kinematic constraint:

f0(q2 = 0) = f+(q2 = 0). (45)

Four different calculations of form factors are used for the B0
s → K−µ+νµ signal

decay. Lattice QCD predictions provide a precise determination of the form factors
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Figure 8: The form factor predictions for B0
s → K−µ+νµ calculated from LCSR [52] (left)

and lattice QCD (right) from references [49–51]. In the right Figure the distribution of
the scalar form factor f0 is the lower component of the plot. Figure modified from [9].

at low recoil or high momentum transfer q2 and are provided by the HPQCD [49],
RBC-UKQCD [50] and Fermilab/MILC [51] collaboration. Calculations from
light-cone sum rules are most precise at large hadronic recoil or low q2, they are
provided by Khodjamirian et al. [52]. Their results are compared in the following.

The predicted vector and scalar form factors as a function of q2 are shown
in Figure 8, as the q2 dependence of the form factors is parametrization indepen-
dent which is not the case as a function of z since different groups use different
thresholds for the z-expansion. The left plot shows the predictions from LCSR
from Khodjamirian et al. and the right plot shows the comparison of the the
different LQCD collaborations. In the latter one can see how the different predic-
tions agree at high q2 where lattice QCD is most precise, but they differ at low q2.
Whereas the results from the RBC-UKQCD and Fermilab/MILC collaborations
are consistent, the predicted form factors from HPQCD are higher at low q2

which is better visible in Figure 9 made by the Fermilab/MILC collaboration.
The Fermilab/MILC collaboration estimated the tension with respect to the the
HPQCD result to be 2.3σ at q2 = 0 [51] and noted that the HPQCD collaboration
uses a so-called modified z-expansion which may effect the shape of the form
factors. A more detailed discussion can be found in their paper or Appendix
A.5 of the FLAG Review 2019 [53] which suggests underestimated systematic
uncertainties for the modified expansion. Further lattice calculations might clarify
this difference which are both expected in the near future from the Fermilab/MILC
and RBC-UKQCD collaboration using improved lattice simulations.

The differential decay rate according to Equation 42 in the B0
s rest frame

can then be calculated using the scalar and vector form factor predictions from
LCSR and LQCD. The predicted decay rate is shown in Figure 10 as a function
of q2. It differs significantly at low q2 coming from the form factor calculations as
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Figure 9: The comparison of form factor predictions for B0
s → K−µ+νµ calculated from

lattice QCD for the full q2 range (left) from references [49–51, 54] and a comparison
at q2 = 0 for predictions from LCSR [52, 55], Lattice QCD [49–51], NLO pertubative
QCD [56] (pQCD) and relativistic quark model [57] (RQM) on the right. Figures are
taken from [51].

explained above. Predictions from LCSR are much larger here which is consistent
with predictions from HPQCD within their large errors but not with the other
lattice results from the RBC-UKQCD and Fermilab/MILC collaborations. The
results of the form factor calculations are given at the end of this section.

2.5.2 Form factor calculations for B0
s → D−

s µ
+νµ

The B0
s → D−s µ

+νµ differential decay rate is similar to Equation 42 and given by

dΓ(B0
s → D−s µ

+νµ)

dq2
=
G2
F |Vcb|2
24π3

(q2 −m2
µ)2
√
E2
Ds
−M2

Ds

q4M2
B0
s

×[(
1 +

m2
µ

2q2

)
M2

B0
s
(E2

Ds −M2
Ds)|f+(q2)|2 +

3m2
µ

8q2
(M2

B0
s
−M2

Ds)
2|f0(q2)|2

]
,

(46)

where EDs =
M2
B0
s

+M2
K−q

2

2M
B0
s

is the energy of the Ds meson. There are also different

versions existing in the literature [58, 59] which express it in terms of a different

variable ω which can be related to q2 by ω(q2) = 1 + q2max−q2
2m

B0
s
mDs

. Here the discussion

follows the latest paper from McLean et al. [47], as it can be related to the
B0
s → K−µ+νµ signal channel very easily.

The form factor f+(q2) and f0(q2) are again expressed in terms of the new
variable z according to Equation 43 where t± = (mB0

s
± mDs)

2 is now defined in
terms of the Ds meson and t0 = 0. The form factors are parametrised using the
BCL parametrisation introduced in Equation 44 with parameters a

(k)
+/0 and the

pole masses M+ = 6.329 GeV and M0 = 6.704 GeV.
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Figure 10: The predicted differential decay rates for B0
s → K−µ+νµ calculated using

QCD sum rules (left) and lattice QCD (right) from references [49–52]. Figure modified
from [9].

Three different sets of lattice QCD form factor calculations are used for
B0
s → D−s µ

+νµ, one from the Fermilab/MILC collaboration [58] and two more
recent papers from the HPQCD collaboration [47,59]. The calculated form factors
and differential decay rates are plotted in Figure 11. One can see that the updated
measurement from HPQCD [47] is much more precise then the previous two
predictions and in general the predictions agree much better then the ones from
B0
s → K−µ+νµ. The coefficients a

(k)
+,0 used for all models discussed in this section

are given in Appendix A together with their correlation matrix.

2.5.3 Form factor results

The predicted decay widths for B0
s → K−µ+νµ are calculated from the different

form factor predictions [49–52] by integrating Equation 42 over q2. Different
ranges of q2 are used in this thesis: q2 < 7 GeV2 (low q2), q2 > 7 GeV2 (high q2)
and the full available q2 range which is M2

µ < q2 < (MB0
s
−MK)2 up to ≈ 24 GeV2.

The choice to measure the decay in different bins of q2 is motivated by the fact
that the LQCD form factor predictions are evaluated at high q2 (q2 ≥ 17 GeV2)
and as such most precise in that region, whereas the LCSR predictions are valid
at low or intermediate q2 range at 0 < q2 < 12 GeV2. The calculated decay widths
of B0

s → K−µ+νµ are summarised in Table 3. They differ widely between the used
predictions due to the large differences in the estimated form factors given by
LQCD and LCSR as discussed before.
Table 3 also gives the estimated branching fractions for B0

s → K−µ+νµ from
the different theory predictions which can be obtained from the decay width
by multiplying with B0

s lifetime taken from the Heavy Flavor Averaging Group
(HFLAV) [60] and the PDG average [12] of exclusive |Vub|2. Here the predictions
vary between a large range of branching fractions from as low as 0.88 × 10−4 to
2.29× 10−4.
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Figure 11: The form factor predictions (left) and differential decay rates (right) for
B0
s → D−s µ

+νµ calculated using lattice QCD from references [47, 58, 59]. In the left
Figure the distribution of the scalar form factor f0 is the lower component of the plot.
Figure modified from [9].

Γ|Vub|−2[ps−1] Γ|Vub|−2[ps−1] Γ|Vub|−2[ps−1] B(B0
s → K−µ+νµ)

full q2 low q2 high q2 [10−4]
RBC-UKQCD 4.54± 1.35 1.18± 0.67 3.37± 0.70 (0.94± 0.27)
HPQCD 7.75± 1.57 3.29± 0.99 4.47± 0.61 (1.60± 0.32)
Fermilab/MILC 4.26± 0.92 0.94± 0.48 3.32± 0.46 (0.88± 0.20)
LCSR 11.07± 1.13 4.14± 0.40 6.94± 1.02 (2.29± 0.23)

Table 3: The predicted decay widths and branching fractions of B0
s → K−µ+νµ are

calculated from the form factor predictions given in References [49–52] for the full q2

region as well as the high and low q2 bins.

The predicted decay widths for B0
s → D−s µ

+νµ are calculated using the form
factor predictions from References [47, 58, 59] and are compared in Table 4. Here
the full available q2 range is used which is smaller due to the heavier Ds mass, it
covers the region of M2

µ < q2 < (MB0
s
−MDs)

2 up to around 12 GeV2. In addition
the estimated branching fractions for B0

s → D−s µ
+νµ are calculated from Lattice

QCD predictions using the PDG average [12] of exclusive |Vcb|2. In general the
predicted decay width as well as branching fractions have a better agreement with
each other.
These predictions can be compared to the recent LHCb paper [61] which measured
the branching fraction of B0

s → D−s µ
+νµ to be

B(B0
s → D−s µ

+νµ) = (2.49± 0.12(stat)± 0.14(syst)± 0.16(ext))× 10−2. (47)

This measurement is very compatible with the prediction from Reference [47] and
consistent within errors with respect to Reference [59]. The older HPQCD predic-
tion from Reference [58] predicts a significantly lower branching fraction.
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Γ|Vcb|−2[ps−1] B(B0
s → D−s µ

+νµ) [10−2]
HPQCD 8.98± 0.73 2.38± 0.20
Fermilab/MILC 8.17± 0.24 2.15± 0.06
HPQCD 2019 9.16± 0.37 2.43± 0.09

Table 4: The predicted decay widths and branching fractions of B0
s → D−s µ

+νµ are
determined using the form factor predictions given in References [47,58,59].
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3 The LHCb Experiment

This chapter gives an overview of the LHCb experiment at the Large Hadron
Collider. It is not meant as an review of all component of the experiment but rather
to briefly introduce the components which are relevant for the analysis presented in
this thesis. This chapter starts with a short description of the accelerator complex,
then discusses the LHCb experiment and ends with the used data and simulated
samples for this thesis.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is operated by the European Organization for
Nuclear Research (CERN) and located near Geneva, Switzerland. It has a circum-
ference of about 27 km and is the most powerful particle accelerator built up-to-
now [62]. The LHC consists of two circular storage rings where mainly protons but
also heavy ions are accelerated in opposite directions up to energies of 7 TeV. It
serves only as the last step of a complex pre-accelerator system consisting of linear
(LINACs) and circular accelerators (PS, SPS). They use as input ionised hydrogen
atoms and increase the beam energy up to 450 GeV before the proton beams get
injected to the LHC rings. The beams are accelerated by sixteen radiofrequency
cavities, 1232 superconducting dipole magnets with a magnetic field of 8 Tesla keep
them in their circular trajectory and quadrupole magnets help to focus the beam.
Each proton beams consist of up to 2808 bunches of approximately 1011 protons
which are spaced 25 or 50ns apart. Those bunches are brought to collision at four
interaction points with a collision rate of up to 40 MHz, there the main detectors
are located: ALICE [63], ATLAS [32], CMS [33] and LHCb [64] which are built to
investigate these collisions.
The LHC started operating in 2010 with symmetric proton-proton collisions at a
center-of-mass energy of 7 TeV and went up to 8 TeV in 2012. This run period be-
tween 2010-2012 is referred to as Run I and was followed by a long shutdown period
(LS1) of two years, where dipole magnets were upgraded to increase the center-
of-mass energy of the LHC. This allowed for a center-of-mass energy of 13 TeV in
the data taking period from 2015-2018, also referred to as Run II. Currently a
second long shutdown phase (LS2) is taking place in order to upgrade the LHC
to the maximum design center-of mass energy of 14 TeV as well as to prepare the
detectors to run at higher luminosities. The LHC will finally resume operation in
2021.

3.2 The LHCb Experiment

The Large Hadron Collider beauty (LHCb) is one of the four large detectors at the
LHC, but has in comparison with ATLAS and CMS as symmetric multi-purpose
detectors around the interaction point a unique detector geometry: it is a single-
arm forward spectrometer covering an angle between 10 to 300 mrad with respect
to the beam axis. The LHCb experiment is shown in left of Figure 12. This design
was chosen to study heavy hadrons containing bottom or charm quarks which are
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Figure 12: Schematic view of the LHCb detector [65] [66] on the left and the angular
distribution between the produced bb̄ pairs with respect to the beam axis for simulated
proton-proton collisions [67] is shown on the right. Here the red marked region corre-
sponds to the angular acceptance of the LHCb detector.

mainly produced as qq̄ pairs in the forward region at the LHC as detailed in the
right of Figure 12. Here forward means the direction along the beam pipe, which
is denoted by the positive z-axis in the Figure. In this region heavy hadrons have a
large boost which leads to a measurable distance from the interaction point before
they decay, so that they can be reconstructed by the LHCb detector.
In order to do so, LHCb uses a large dipole magnet to deflect charged particles and
measure their momentum. To reconstruct the decays of heavy flavoured hadrons,
the primary pp interaction point and the decay vertex of unstable heavy particles
has to be precisely measured, as well as an excellent momentum resolution and
ability to identify the type of particle are needed. The following chapter discusses
the technical aspects and sub-detectors which are necessary to study heavy hadrons
in detail.

3.2.1 Tracking system

The tracking system of LHCb consists of different detectors: the Vertex Locator
(VELO) [69,70] surrounding the primary pp interaction point, two tracking stations
in front of (Trigger Tracker or TT) and three tracking stations (T1-T3) [71, 72]
behind the dipole magnet [73] as displayed before in Figure 12.

The VELO is reconstructing the primary vertex of pp collisions as well as
secondary vertices from precise measurements of reconstructed particle trajecto-
ries (track) coordinates close to the interaction point. It consists of 21 stations
along the beam direction, each of them made of two semi-circular shaped halves of
silicon-strip detectors as shown in Figure 13. The R-type sensor provides a radial
measurement whereas the φ-type measures the azimuthal angle, the z-position is
obtained from the different sensor stations along the beam line. When charged
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Figure 13: Schematic view of the VELO subdetector [68]. The arrangement of the
different station is shown on top as well the two sensor types and their locations for the
different positions is displayed in the bottom.

particles are passing through the semi-conductive silicon sensors they create
electron-hole pairs which are measurable as pulses at the electrodes. The two
detector halves are movable and have a minimal radial distance of 7 mm to the
LHC beam only when stable beams are declared. During the injection phase of the
LHC the VELO is moved out of its nominal position to protect the detector. As
shown in Figue 13 there are additional sensors placed in the negative z-direction
which are used to veto events with a very large number of produced tracks. The
VELO performance depends on the number of reconstructed tracks and their
corresponding momenta [70]. As a baseline for a vertex with 25 reconstructed
tracks the primary pp interaction point, the so-called primary vertex, can be
reconstructed with a resolution of 13µm in the transverse plane and 71 µm along
the z-axis. In order to reconstruct decay vertices the so-called impact parameter
(IP) is used, it refers to the minimal distance of a charged track with respect to
the PV. Therefore selecting tracks with a large IP identifies them to come from
a secondary vertex. The IP can be reconstructed with a resolution of less than
35 µm for particles with a transverse momentum greater than 1 GeV/c. The
angular acceptance of the detector is determined by the solid angle of at least
three hits in the sensors 1.6 < |η| < 4.9, which is given in terms of pseudo-rapidity
η = − ln tan θ/2, where θ is the spherical angle with respect to the beam axis.

The magnet is needed to measure the momenta of the charged particles
via the curvature of a particle trajectory inside the magnetic field. In LHCb a
dipole magnet is used which is aligned with the y-axis as shown in Figure 12
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Figure 14: Schematic illustration of the main B-filed component By as a function of the
z position as the beam line. This is compared to the position of tracking detectors in the
bottom together with the various track types: long, upstream, downstream, VELO and
T tracks [64].

such that the magnetic field is along this axis. The magnet polarity is regularly
reversed in order to control systematic effects from potential detector response
asymmetries. Figure 14 shows the magnetic field of the dipole as a function of
z. Particles traversing the whole detector feel an integrated magnetic field up to
4Tm. Because the magnetic field inside the VELO is negligible, no momentum
measurement can be extracted from the VELO hits. Therefore additional tracking
stations are located in front of and behind the magnet, as shown as well in
Figure 14, those will be described in more detail in the following.

The tracking stations before the magnet, the TT, consist of four layers of
silicon micro-strip detectors which are arranged in two stations TTa and TTb as
displayed in Figure 15 on the left. The strips of the inner layers are tilted by ±5◦ in
opposite direction around the z-axis to obtain a more precise position measurement
along the y-axis, whereas the outer ones are aligned with the y-axis. It has a strip
pitch of 183µm which gives a spatial hit resolution in x of around 50µm. The TT
is used to measure very low momentum tracks of about 2 GeV/c which are bent out
of the detector due to the magnetic field or tracks of long-living neutral hadrons
decaying outside the VELO volume such as K0

s -mesons or Λ0-baryons. The TT
detector covers the full angular acceptance and its measurements help improving
the momentum resolution of the LHCb detector by further constraining the slope
of the particle trajectories before the magnet.
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Figure 15: Schematic view of the four TT layers [74] on the left as well as one IT layer
on the right [75].

The three main tracking stations T1-T3 are installed directly after the
magnet, where each station consists of four layers which are made of two different
technologies. The inner detector area of 120 x 40 cm gets the highest particle
flux and is also made of a silicon strip detector with a similar technology as the
TT. It is the so-called Inner Tracker (IT) with the same high spatial resolution
of 50µm and is shown on the right of Figure 15. The outer region is covered
by the so-called Outer Tracker (OT) with much smaller particle multiplicities
and therefore coarser granularity. It is a gaseous detector made of straw tubes
with 4.9 mm diameter which operate as proportionality counters. When charged
particles are passing through the tubes they ionize the gas atoms within, the
resulting electrons drift towards the anode where a measurable signal is collected.
The three stations of the OT consist of 4 layers each, whereas a layer is made
of two rows of straw tubes each as shown in Figure 16. The inner layers
are tilted by ±5◦ around the z-axis as for the TT in order to determine the
y-position. The layers have a pitch of 5.25 mm and a resolution of less than 200
µm is achieved perpendicular to the tubes. The OT covers an area of 5 x 6 m2

and is together with the IT crucial for a precise momentum measurements of tracks.

The hits from the tracking sub-detectors are combined to tracks by using
different algorithms, as further explained in [77]. There are different track types
according to which sub-detector finds hits, as shown before in Figure 14. For
this analysis only so-called long tracks are used, which traverse the full tracking
system. They consist of at least hits in the VELO and the tracking stations
behind the magnet and optionally also in the TT. Long tracks have the highest
momentum resolution with δp/p of 0.5% for low momentum (20 GeV/c) to 0.8% at
200 GeV/c [77]. The average number of reconstructed tracks depends on the run
condition but is of order of 100 tracks per event where 1.5-1.7 PVs are on average
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Figure 16: Schematic view of the cross section of a single OT layer (a) compared to the
OT straw tube modules arranged in three stations (b). [76].

reconstructed per proton bunch crossing. In general reconstruction artefacts can
lead to so-called ghost tracks if unrelated hits are combined or to so-called clones
if two tracks share more than 70% of their hits. In order to select good-quality
tracks, information from the tracking system is combined to compute a per track
ghost probability (Track GhostProb) and a track fit χ2 per degrees of freedom
(Track χ2/n.d.f. ) which are then usable in the offline analysis.

3.2.2 Particle identification

It is important in flavour physics to discriminate between the different particle
species. Especially for semileptonic decays which are not fully reconstructed it is
essential to identify the different particle types of the decay products precisely and
to suppress decays with similar kinematic or topology as much as possible. The
LHCb detector has a dedicated particle identification (PID) system that allows to
distinguish between kaons, muons, charged pions, protons, electrons and photons.
Information from several sub-detectors are combined into this PID system which
will be further discussed in the following.

Two Ring-Imaging Cherenkov detetctors (RICH1 and RICH2) [78]
are used to identify charged hadrons. They are based on Cherenkov radiation
which occurs when a charged particle traverses a material with a velocity greater
than the speed of light in that medium. Photons are emitted in form of a cone
with a specific angle depending on the velocity β of the particle and the refractive
index of the material n given by cos θ = 1/βn. From measuring the angle θ the
velocity of the particle can be determined and by matching the RICH signal to a
track, the momentum estimate can be related to its mass such that the particle
species can be identified. The left of Figure 17 shows the Cherenkov angle as a
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Figure 17: The measured Cherenkov angle θ as a function of the particle momenta [78]
on the left and the schematic view of the RICH1 detector [64] on the right.

function of the particle momentum for isolated tracks where the different particles
appear as distinct bands.
The two RICH detectors are placed before and after the magnet, both have
a similar setup consisting of a radiator material, a mirror system and photon
detectors. The radiator material has a different refractive index, which leads to
a large momentum range covered. The RICH1 uses aerogel and C4F10 radiators
which cover low momentum particles in the range between 2 and 50 GeV/c. The
RICH2 detector located after the magnet contains the gas CF4 which allows to
discriminate charged hadrons up to 100 GeV/c in momentum. The mirrors guide
the Cherenkov light away from the beampipe to photon detectors placed outside
the detector acceptance which detect the positions of the light rings. The right of
Figure 17 shows the different components of the RICH1 detector.
In practise there are many overlapping rings in the RICH detectors which have to
be matched to the traversing tracks and identified. In order to do so a likelihood
for the measured rings is constructed by assigning the observed patterns different
mass hypotheses. Differences between the likelihood for the respective particle
are then used to discriminate between the particle types, where as a reference the
likelihood of the pion hypothesis is used. Figure 18 shows the kaon identification
efficiency compared to the kaon-pion misidentification rates as a function of
momentum using different selection criteria of the logarithmic likelihood difference
(∆LL) at 8 TeV.

The main task of the Calorimeter system [82] is to measure the energy
of charged and neutral particles. The LHCb Calorimeter system consists of four
sub-systems as shown in Figure 19, which allow to discriminate light hadrons,
electrons and photons. The calorimeters are constructed as sampling calorimeters
where absorber layers and scintillating material are alternating each other. The
absorber material is needed to induce electromagnetic or hadronic showers while
the scintillators detect those. Since the number of produced particles in a shower
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Figure 18: Kaon identification performance as a function of momentum for two different
cuts in the log-likelihood of the RICH [79].

Figure 19: Schematic view of the calorimeter system [80] on the left and the muon
system [81] on the right.
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is proportional to the energy of the primary particle those sampling calorimeters
provide an energy measurement with a resolution of ∆E/E ∝ 1/

√
E.

A Scintillating Pad Detector (SPD) and a Pre-Shower (PS) detector are separated
by a lead plate from the Electromagnetic Calorimeter (ECAL). The SPD only
produces signal for charged particles and such can distinguish between electro-
magnetic showers created by electrons and photons. The PS detector can separate
electrons from light hadrons from their different shower shape inside the lead
layer. The ECAL measures the energy of electrons and photons as they loose
their energy via electromagnetic showers which are fully absorbed. It can be also
used to reconstruct neutral pions. The Hadronic Calorimeter (HCAL) is located
behind the ECAL, inside hadronic showers of neutral and charged hadrons are
created and detected. The calorimeters play a crucial role for the online selection
of events in the trigger as they can be read out at the maximum LHC collision
rate of 40 MHz and can be used to select final states with high energetic electrons,
photons or hadrons.

The Muon system [81, 83] consists of five stations M1-M5 as shown in
Figure 19, those are used to identify muons. At LHC energies muons are minimum
ionizing particles and as such can traverse the whole detector in contrast to other
particle species. Therefore the muon stations are placed behind the calorimeters
which is about 15m away from the interaction point, where mostly all other
particles are already stopped by interactions with the detector material. The
muon stations are made of multi-wire proportional chambers where the passing
muon ionises gas atoms in the chamber producing charges which are amplified
and collected. In between the muon stations M2-M5 there are 80 cm thick layers
of iron stopping high energy hadrons which passed the calorimeter system. The
muon chambers identify high energy muons with a large efficiency, together with
their fast readout at 40 MHz they are also used as an important ingredient for
the trigger system. Especially the muon station M1 which is placed in front of the
calorimeter is helpful for extrapolating trajectories back to the PV and it largely
improves the transverse momentum resolution in the trigger.

As briefly described for the RICH detectors, every sub-detector used for
particle identification calculates per-track likelihoods for different particle hypoth-
esis. Particle identification algorithms then combine these information in order
to provide the optimal discrimination between particles. In general the change in
logarithmic likelihood between two different mass hypotheses X and Y for a given
particle is denoted as

∆logLXY = logL(X)− logL(Y ) (48)

and can be used to discriminate between the two hypotheses. Those differences are
then linearly combined by particle identification algorithms. Global identification
variables are defined for every particle species in order to provide the optimal
discrimination between different particles [77]. In order to identify muons a simple
algorithm [84] is used which tries to match reconstructed tracks in the tracking
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stations to hits in the muon stations. If this was successful a binary flag, the
so-called isMuon variable, is set which is a powerful criteria to select muons.

3.2.3 Trigger system and data flow

As mentioned earlier the LHC collides proton bunches at a rate of 40 MHz. The
LHCb detector can not be fully read out and collect the information from all
sub-detectors at this rate so far, this will change for the coming upgrade. Not all
of these events are of interest as approximately only in one out of 1000 pp collisions
a bb̄ quark pair is produced inside the LHCb acceptance. Those events must be
identified and separated from other non-interesting events as well as recorded, all
these tasks are done by the LHCb trigger system [85–87].
The trigger system of LHCb is made of three consecutive steps, at each step
the output rate is reduced while more sub-detector information is used. This
allows for a more complex selection criteria at each step. As explained earlier in
this section, weakly decaying heavy mesons have similar signatures with a well
separated secondary vertex and a corresponding large impact parameter (IP) due
to their finite lifetime. Those district topologies are used as a discriminant in the
trigger.
At the first trigger level, the so-called level zero or L0, hardware information based
on the calorimeter and muon system is used, as they are the only sub-detectors
which can be read out at 40 MHz. This L0 hardware trigger searches for a high
transversal energy component (ET ) deposited in the caloriemeters or for high
transverse momentum (pT) signatures in the muon stations. Typical calorimeter
threshold for the HCAL are ET > 30 GeV, while thresholds for electrons and
photons are lower ET > 2 GeV. For muon triggers the threshold are pT > 1.2 GeV/c
for single muons while

√
p1
Tp

2
T > 1.1 GeV/c for a pair of muons. Those selections

reduce the total rate to about 1MHz, only events passing the L0 trigger step are
send further to the second step of the trigger.
The first stage of the software based high level trigger, the so-called HLT1, uses
information from the tracking system to reconstruct primary vertices (PV) and
tracks. This allows to identify high momentum or transverse momentum particles
with a large IP which are likely to come from a relatively long-living B or charm
hadron. Also events containing two muons forming a good quality vertex with a
high invariant mass are selected. The HLT1 reduces the event rate to 80 kHz.
The second stage of the high level trigger, the so-called HLT2, is able to
perform a full event reconstruction based on the information of all sub-detectors.
Two different trigger categories are used: inclusive and exclusive signatures
of multi-body B- and charm-hadron decays. Inclusive sequences select generic
topological properties of two-, three- and four-body decays from displaced B
hadrons, based on a large IP of tracks with a good-quality secondary vertex as
well as loose requirements on individual and combined masses and momenta.
Exclusive selections are designed for a specific final states, where the complete
reconstruction of decay chains is performed. The HLT2 output rate is 5kHz and
all events passing HLT2 are written to disk and stored permanently. In order to
make optimal use of the available resources, HLT1 was running asynchronously
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Figure 20: Schematic Layout of the LHCb trigger strategy in Run I [88].

with the pp collisions in 2012. Therefore during this data taking 20% of the L0
output was temporarily buffered to disk to be processed by the HLT1 when the
LHC was not providing stable beam as shown in Figure 20. A more detailed
discussion of the trigger strategy used this thesis is described later in Section 6.1.

After this online processing step provided by the trigger, there is an offline
processing step of the data. The following offline step is needed to achieve the
best reconstruction quality of the online-selected data for data analysis. In HLT2
the reconstruction algorithms have to be simplified in some cases to meet the
necessary timing requirements, but in general those algorithms are close to the
offline reconstruction. In order to do so all information from the sub-detectors is
saved to be able to do a separate offline reconstruction, which is done centrally
by the LHCb computing team performed with the Brunel software package [89]
based on the Gaudi framework [90]. During that reconstruction measured hits
of the tracking stations are used to reconstruct charged tracks and particle
identification information from the PID system is added. As a second step of the
online processing a standardised selection sequence is performed using the so-called
DaVinci software package [91]. It is also used as the physics analysis software
to combine reconstructed tracks to secondary vertices as well as to fit those. Also
combined objects such as charm or B hadron candidates are constructed and
based on geometric and kinematic variables specific decay topologies of interest
are selected. This step of the offline processing is also run centrally as it is
computational expensive and the analysts are provided with preselected data sets
where specified selection requirements were applied using the so-called stripping
selections. The output of the stripping is a file containing events passing these
selections with a much reduced size. Those can then be processed by individual
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analysts applying final selection cuts to obtain the decay of interest. The stripping
lines used in this thesis as well as the specific selection cuts applied are further
discussed in Section 6.2.

3.2.4 Simulation and data samples

Simulated data samples of the decay processes of interest as well as their detector
response are crucial ingredients to be able to perform an analysis of experimental
data. Those Monte Carlo (MC) data sets are invaluable to test analysis strate-
gies as well as to study and understand detection efficiencies and asses systematic
uncertainties, which are key aspects of an analysis. Due to their importance it is
indispensable that the generated MC samples emulate the real data as much as pos-
sible. The full MC simulation is built on the Gaudi framework, simulated events
are generated using the Gauss [92] software package. The generation process of
MC data sets are split into two parts, in the first proton-proton collisions are simu-
lated with the event generator Pythia [93] with a LHCb [94] specific configuration,
subsequent decays of hadronic particles are performed via the EvtGen [95] library
in which final-state radiation is generated using Photos [96]. The second step is
more time consuming as it involves the interaction of the generated particles with
the LHCb detector as well as its response. This is realised using the Geant4 4 [97]
toolkit which is further described in Ref. [98]. The output of the detector response
is then digitized by the Boole [99] software package and the trigger emulation is
performed using the Moore [100] package in the LHCb software. The simulated
samples are generated under the same run conditions and processed in the same
way as the real data collected by the LHCb experiment.
In this thesis simulated samples are mainly used to estimate the reconstruction and
selection efficiencies as well as to extract the line shape of the distributions used to
fit the data. The generated MC sampled of signal and possible background used
for this thesis are summarised in Table 5. The analysis performed in this thesis
is using part of Run I data recorded in 2012 by LHCb, which corresponds to an
integrated luminosity of 2 fb−1 of data.
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Decay Type Size
Samples for signal fit
B0
s → K+µ−ν Signal 6M

B0
s → K∗+(→ K+π0)µν Background 4M

B0
s → K∗+2 (1430)(→ K+π0)µν Background 4M

B0
s → K∗+0 (1430)(→ K+π0)µν Background 4M

B0 → J/ψ (→ µµ)K∗0(K+π−) Background 10M
B+ → J/ψ (→ µµ)K+ Background 20M
B+ → J/ψ (→ µµ)K∗+(K+π0) Background 20M
B+ → J/ψ (→ µµ)φ Background 120M
B+ → cc̄(→ µµ)K+X Background 2M(filtered)
B0 → πµν Background 4M
B0 → ρ+(π+π0)µ−ν Background 4M
B+ → ρµ+ν Background 5M
Λ0
b → pµν Background 5M (FF from LQCD)

Λ0
b → pµν Background 10M (FF from LCSR)

inclusive b→ c decays
Hb → Hc(→ K+µ−X)X ′ Background 144k (filtered)
Hb → K+µ+X Background 120k (filtered)
Hb → Hc(→ K+X)µ−X ′ Background 4.96 M (filtered)
Samples for normalisation fit
B0
s → D+

s µνµX cocktail Normalisation 6M
B+ → D∗+s D∗ Background 5M
B0
s → D∗+s D∗+s Background 5M

B0
s → DD Background 5M

Table 5: Summary of simulated samples used for this thesis.
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4 The Analysis strategy

This chapter describes the strategy followed in this thesis to measure |Vub|/|Vcb|
with LHCb and explains why the particular decays of B0

s → K−µ+νµ and
B0
s → D−s µ

+νµ were chosen for this measurement.

As outlined before |Vub| and |Vcb| can be determined from either exclusive
or inclusive decays of B-hadrons. Here the exclusive approach is employed due
to the large background contamination from many different particles produced at
the same time at a hadron machine in contrast to the relatively clean environment
at e+e−-machines from B-factory experiments BaBar and Belle. Due to their
B hadron production from mostly Υ(4S) decays the beam energy and initial
state is precisely known and the fully hermetic detector can be used to constrain
the kinematic of decays to perform inclusive measurements by summing over all
possible hadronic final states. Inclusive determinations of |Vub| in particular are
not feasible at LHCb due to the large background from |Vcb| decays which can be
only separated from b → u transitions at the kinematic endpoint of the lepton
energy spectrum reconstructed with a high precision by the B-factories.

The advantage of the hadron machine is the higher production cross-section
of bb̄-pairs compared to e+e−-machines, which leads to a larger data sample and
thus allows to study such small b→ u transition of the order of 10−4. In addition
all different kind of B-hadrons can be produced at a hadron collider due to the
sizable fragmentation fraction of b-quarks into B0

s -mesons and Λb-baryons [101].
Therefore other exclusive decays can be explored to measure |Vub| and |Vcb| as
already performed in Λb → pµν decays for the first time at a hadron collider
in Reference [5] and in this thesis using B0

s -decays. These provide important
complementary input to the long-standing tension between exclusive and inclusive
|Vub| and |Vcb| measurements performed by the B-factories measured from B0 and
B+ decays.

For a precise exclusive determination of |Vub| and |Vcb| small form factor un-
certainties from either Lattice QCD or LCSR are necessary, thus ground state
hadrons in the final state are preferred. Since the ’golden’ channel B̄0 → π+l−ν̄ for
the B-factories suffers from a high pion background at the LHC, Λb → pµν decays
were used for the first |Vub|/|Vcb| measurement where the proton makes experimen-
tally a much more distinctive final state which less background contributing [102].
In contrast to that the decay of interest in this thesis B0

s → K−µ+νµ suffers
from higher background contamination since final state kaons can be produced
in decays from many more B hadrons. In addition B0

s mesons have a smaller
production fraction than Λb baryons, such that they are more abundant at the
LHC [101]. Theoretically semileptonic B0

s decays are more advantageous then
B0 or B+ mesons due to the larger mass of the valence s-quark which makes
LQCD calculations of form factors less computationally expensive and thus more
precise [50, 103,104]. Therefore possible allowing for a more precise determination
of |Vub| and |Vcb|. Taking into account the large data sample collected by LHCb

51



in 2012 with over 200 billion bb̄-pairs together with fragmentation fraction into
B0
s -mesons of around 8% and the expected rate of the b→ u transition of the order

of 10−4 it is therefore possible to reconstruct a large number of B0
s → K−µ+νµ

candidates and to extract |Vub| from it.

To precisely determine |Vub| alone from the B0
s → K−µ+νµ branching frac-

tion would require a precise measurement of the bb̄ cross-section and the B0
s

fragmentation fraction at the LHC as well as the precise measurement of the
integrated luminosity. The current precision of these measurements is not enough
to perform a competitive extraction of |Vub|, therefore the decay of interest
has to be normalised. The decay B0

s → D−s µ
+νµ is chosen as a normalisation

channel as it is very similar to the signal channel, thus many experimental
uncertainties cancel in the ratio and in particular the total production rate of B0

s

mesons. A measurement of the ratio of branching fraction of B0
s → K−µ+νµ and

B0
s → D−s µ

+νµ is performed in different regions of q2 of the B0
s → K−µ+νµ decay

as explained in Section 2.5 due to the different form factor predictions from LQCD
and LCSR. In contrast for the normalisation channel B0

s → D−s µ
+νµ the total

available q2 range is used as the form factor predictions were precisely determined
for the full q2 spectrum from Lattice QCD recently. Experimentally the ratio of
branching fractions is measured as

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
=

N(B0
s → K−µ+νµ)

N(B0
s → D−s (→ K+K−π−)µ+νµ)

× εrel

× B(D−s → K+K−π−),

(49)

where N(B0
s → K−µ+νµ) and N(B0

s → D−s (→ K+K−π−)µ+νµ) are the measured
yields for the respective signal and normalisation decay. Those are determined
from fitting the corrected mass distribution after all selection cuts are applied to
the selected K+µ− and D−s µ

+ candidates in the corresponding q2 bin.
The relative efficiency for selecting the two modes εrel is given as

εrel =
ε(B0

s → D−s µ
+νµ)

ε(B0
s → K−µ+νµ)

. (50)

It is determined from simulated events after data driven corrections are applied
to correct for possible differences between simulation and data. In addition the
branching fraction of the decay D−s → K+K−π− is taken from the PDG [12] to be
B(D−s → K+K−π−) = (5.45± 0.17)%, which includes measurements from BaBar,
Belle and CLEO.

Combining this measurement with form factor predictions from Lattice QCD and
LCSR thus allows to directly determine |Vub|2/|Vcb|2 following this formula

|Vub|
|Vcb|

=

(B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
×RFF

) 1
2

, (51)

where B stands for the corresponding branching fraction. RFF is the ratio of form
factors which is obtained from integrating the form factor dependent predicted
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decay width using Equations 42 and 46,

RFF =

∫ q′2max
0

dΓ(B0
s→D

−
s µ

+νµ)

dq2
/|Vcb|2dq2∫ q2max

0

dΓ(B0
s→K−µ+νµ)

dq2
/|Vub|2dq2

, (52)

for different ranges of q2 corresponding to the kinematic of the decay.

The total branching fraction of B0
s → K−µ+νµ can be measured by extrap-

olating the measured branching fraction ratio to the full q2 region using the
following formula

B(B0
s → K−µ+νµ) =τB0

s
× B(B0

s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
× |Vcb|2

×
∫ q′2max

0 GeV/c2

dΓ(B0
s → D−s µ

+νµ)

dq2
/|Vcb|2dq2.

(53)
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Figure 21: Sketch of the decay topology of B0
s → K−µ+νµ signal decays. The flight

distance of the B0
s is indicated together with the impact parameter of the K+ meson

with respect to the primary vertex. The polar angle of the flight vector θflight with
respect to the z-axis is also defined.

5 Methods and kinematics

The decays of interest B0
s → K−µ+νµ for the signal and B0

s → D−s µ
+νµ for the

normalisation channel are both semileptonic B0
s decays, which can only be partially

reconstructed due to the missing neutrino. Thus the invariant mass of the B0
s meson

cannot be reconstructed from the four momentum of its decay products. This
presents a big challenge at a hadron collider compared to the e+e− B-factories Belle
and BaBar. The kinematic of the B meson is not determined by the beam energy
and can thus not be used to kinematically constrain the neutrino. Different methods
and techniques were developed to overcome this problem which are explained in
the following section. Section 5.1 discusses the kinematic of semileptonic decays
using the so-called corrected mass and 5.2 explains the tools used to reconstruct
the missing neutrino. Other methods exploited by this analysis such as the sPlot
technique and Boosted Decision Trees are introduced in Section 5.3 and Section 5.4.

5.1 Corrected mass

LHCb has a very good precision of the vertex reconstruction as explained in Sec-
tion 3 which allows to distinguish the production and decay vertex of the B0

s meson.
The B0

s signal decay vertex as the secondary vertex (SV) can be reconstructed from
its charged decay products, the kaon and muon. From the pp interaction point as
the B0

s production vertex or primary vertex (PV) and its decay vertex the B0
s

flight direction can be determined. Figure 21 shows a sketch of the resulting decay
topology. From the symmetry of the decay the transverse momentum of the miss-
ing neutrino can be reconstructed as shown in Figure 22, where the event is rotated
such that the B0

s flight direction is in z-direction. Exploiting the symmetry of the
decay the transverse momentum of the neutrino perpendicular to the B0

s flight di-
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Figure 22: The neutrino p⊥ component determined from momentum conservation with
respect to the B0

s flight direction for either the signal or the normalisation channel. Figure
taken from [9].

rection must balance the sum of the transverse momenta of the reconstructed B0
s

daughters:
~p⊥(Xµ) = − ~p⊥(νµ), p⊥ ≡ | ~p⊥(Xµ)| (54)

where X is either the kaon for the signal or D+
s for the normalisation channel. The

neutrino momentum parallel to the B0
s flight direction remains unknown and will

be further discussed in Section 5.2. With that a lower limit of the mass of the B0
s

meson can be calculated, the so-called corrected mass. It is defined as

mcorr =
√
m2
Xµ + p2

⊥ + p⊥, (55)

here m2
Xµ is the invariant mass of the reconstructed B0

s daughters. If a neutrino is
the only missing particle the corrected mass peaks at the B0

s mass, which can be
seen from the following derivation. In the rest frame of the B0

s , its mass can be
written as:

mB0
s

= Evis + Emiss

=
√
M2

vis + p2
⊥,vis + p2

‖,vis +
√
M2

miss + p2
⊥,miss + p2

‖,miss,
(56)

where the index vis denotes the visible, reconstructed particles and miss stands
for missing particles. If the missing particle is massless and using by Equation 54
of the perpendicular momentum balance and that in the B0

s rest frame p‖,vis =
p‖,miss = p‖, the B0

s mass becomes

mB0
s

=
√
M2

vis + p2
⊥ + p2

‖ +
√
p2
⊥ + p2

‖. (57)

Neglecting the longitudinal component in B0
s rest frame gives the corrected mass

mcorr as an approximation for the invariant B0
s mass. Therefore the corrected B0

s

mass lies around its invariant mass of mB0
s

= 5366.88 ± 0.17 MeV [12] if only a
neutrino is missing.
The corrected mass is lower for decays where massive particles are missing. Fig-
ure 23 shows the corrected mass distribution of the signal together with the nor-
malisation channel reconstructed only through the K+µ− pair. This shows how
powerful this variable is to distinguish B0

s → K−µ+νµ from partially reconstructed
background.

Even though the corrected mass is highly discriminating, there is a substantial
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Figure 23: The B0
s corrected mass for B0

s → K−µ+νµ in compared to the B0
s → D−s µ

+νµ
normalisation channel reconstructed as signal through K+µ−.
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Figure 24: The corrected mass uncertainty for signal decays.

uncertainty associated with its reconstruction which results in a less prominent
peaking structure for the signal. This can be seen from the tail towards lower cor-
rected masses and gives a greater leakage of background into the signal region. The
overlap with partially reconstructed backgrounds with only one additional missing
massive particle is largest, therefore these backgrounds are the most dangerous
ones. The uncertainty on the measurement of the B0

s flight direction results in a
tail of the corrected mass above the B0

s mass. The uncertainty on the corrected
mass gets contributions from an uncertainty of the visible mass measurement as
well as from the uncertainty to determine p⊥. Since the mass uncertainty is very
small with respect to the latter one it is neglected in the following discussion,
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Figure 25: The corrected mass for signal decays and SS data selected with small and
large corrected mass uncertainty.

therefore the uncertainty on the corrected mass is given by

σmcorr =

 p⊥√
m2
Xµ + p2

⊥

+ 1

σp⊥ . (58)

For the total uncertainty of p⊥ several uncertainties contribute, the four momenta
of the visible pµ pair and the imperfect knowledge of theB0

s flight direction. The
latter one is dominant and results in a large uncertainty on the perpendicular
momentum of the neutrino σp⊥ . It comes from the uncertainty on the positions
of the primary and secondary vertex, which must be propagated through to the
uncertainty in p⊥. The propagation of uncertainties to σp⊥ is not trivial, its full
derivation can be found in Reference [102] which shows that uncertainties due to
the four momenta can also be safely neglected. The distribution of the corrected
mass uncertainty for the signal can be seen in Figure 24.
The resolution on the corrected mass can be improved by rejecting events with large
corrected mass uncertainties. Figure 25 shows the signal corrected mass distribu-
tion compared to SS data selected with small and large corrected mass uncertainty.
The SS sample consists of K+µ+ data events including combinatorial, misidentified
particles as well as CKM favoured |Vcb| decays. The selection improves the separa-
tion between signal and SS data, as it removes the combinatorial component and
signal events passing the selection have a significant sharper peak. The additional
selection power gained by this selection results in a reduced systematic uncertainty
in the fit to the corrected mass, which is further studied in Section 6.4.4.

5.2 Neutrino reconstruction

As detailed in Section 4 the |Vub|/|Vcb| measurement will be performed in two bins
of q2, where q2 is defined as the four momentum squared of the muon and neutrino
combination m2

µν . Therefore the neutrino 4-momentum needs to be reconstructed.
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As explained in the previous section (5.1), the transverse component of the neutrino
with respect to the B0

s flight direction p⊥ can be determined form the transverse
momenta of the visible K−µ+ pair. The neutrino momentum parallel to the B0

s

flight direction p‖ can be determined up to two-fold ambiguity using the B0
s mass

constraint:
(pν + pXµ)2 = m2

B0
s

(59)

where X = K,D+
s stands for the signal or normalisation channel and

pν =
(√

p2
‖ + p2

⊥, 0,−p⊥, p‖
)

pXµ =
(√

p2
‖(Xµ) + p2

⊥(Xµ) +m2
Xµ, 0, p⊥, p‖(Xµ)

)
.

(60)

Here mXµ is the visible mass of the Xµ system and p‖(Xµ) the parallel momentum
component with respect to the B0

s flight direction of the Xµ pair. Inserting the
four-momenta into Equation 59 and solving for the unknown p‖ leads to a quadratic
solution for the parallel neutrino momentum:

p‖ =
−b±

√
b2 − 4ac

2a
, (61)

in which the parameters a, b and c are defined as

a = p2
⊥ +m2

Xµ,

b = p2
‖(Xµ)(m2

miss − 2p2
⊥)2,

c = 4p⊥(p2
‖(Xµ) +m2

B0
s
)− |m2

miss|2,
m2
miss = m2

B0
s
−m2

Xµ.

(62)

After the preselection cuts are applied as described in detail in Section 6, around
20% of simulated B0

s → K−µ+νµ candidates have an unphysical solution for p‖
(b2 < 4ac). This is due to detector resolution effects. These unphysical events
correspond to a corrected mass region above the physical B0

s mass. In the previ-
ous Vub analysis performed on Λ0

b → pµ−νµ decays [5] these unphysical events were
rejected. For this analysis those events are kept as they are needed to determine
the shape for the combinatorial background for the signal fit which will be fur-
ther explained in Section 9. Those unphysical events were further studied to test
that they have the same q2 resolution as the physical events and that they are
evenly distributed along the selected q2 bins. Therefore for those events the term√
b2 − 4ac is set to zero, leading to a unique q2 solution.

Using Equation 61 the q2 variable can now be reconstructed up to a two fold am-
biguity [105,106]. A choice has to be made which of the two solutions is picked as
the right one for this analysis and it is important to resolve this ambiguity without
introducing a bias on q2. The easiest approach would be to pick randomly one
solution, which is unbiased but also has a poor resolution in q2. Another approach
is to use a linear regression to predict the B0

s momentum and then select the so-
lution closest to the output of the regression. The regression method improves the
resolution in q2 as shown in Reference [107] and will be further discussed in the
next section.
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Figure 26: True q2 compared to different reconstructed q2 values (left) and q2 resolution
for different methods selecting q2 (right).

Solution RMS
Correct 1.55 GeV2

Best regression 2.43 GeV2

Random 2.99 GeV2

Worst regression 2.99 GeV2

Table 6: RMS of q2 resolution with different methods selecting the reconstructed q2.

5.2.1 Linear regression and q2

In general the linear regression analysis is a statistical method to predict the value
of a response variable based on its relationship with a set of independent variables.
More specific for this analysis, Reference [107] infers the B0

s momenta from B0
s

flight information variables such as the flight length |~F | and the polar angle θflight

as defined in Figure 21. The B0
s momentum can be inferred from these quantities as

p = M |~F |/t or p = p̄T/sinθflight, where t is the decay time and p̄T is the average of
the transverse momentum. Using a least squares linear regression algorithm [108]
the regression gives a B0

s momentum estimate with a resolution of 60% which leads
to the correct solution for the quadratic equation in around 70% of the cases and
is thus better than random picking a solution with a success rate of 50% [107].
The predicted B0

s momentum is then compared to the two solutions derived from
Equation 61 and the solution closest to the regression value, q2

Best, is chosen. Figure
26 (left) compares the different reconstructed q2 values to the true q2 value which is
derived from exploiting MC truth information, where q2

Worst refers to the solution
opposite to the regression value. Using the regression method to select a solution
of the reconstructed q2 improves its resolution, as shown in right of Figure 26.
Quantitatively this can also be seen from the RMS of the q2 distribution given in
Table 6. Using a linear regression to chose the reconstructed q2 solution improves
the resolution by 23% compared to the random picking.
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5.3 sPlot technique

The so-called sPlot technique [109] is a statistical method used to unfold the contri-
butions of different sources in a data sample in a specific variable. In this variable
the background candidates can be statistically subtracted in order to obtain the
distribution of a pure signal sample. This technique is used in this analysis to
obtain pure B+ →J/ψK+ and D−s → K+K−π− data samples as control channels
to be able to compare them with MC distributions and obtain corrections for the
simulation, as further explained in Section 7.
The sPlot technique will be further explained.Consider a data set with entries N
consisting of signal and background samples, having each values for two uncorre-
lated variables x and y. Here the distributions are known in the control variable y
and the aim is to get an estimate of the signal distribution in x without knowing
the underlying distribution in this variable. This allows to statistically subtract
the background sample from the x-distribution, which can either be done through
a sideband subtraction or the sPlot technique.
The latter assigns each event of the data set a weight wi in such a way that the
weighted distribution re-samples the background-subtracted distribution. If Nk is
the number of events of the signal sample, fk(y) is the known distribution of the
signal in the control variable y and Vnj is the corresponding covariance matrix, the
weights to obtain the background subtracted sample are given by:

wni (y) =

∑Ns
j=1 Vnjfj(y)∑Ns
k=1 Nkfk(y)

, (63)

where the yield Nk and the covariance matrix can be obtained from an extended
maximum likelihood fit to the control variable y.
In this analysis the sPlot technique is used to distinguish signal and background-like
events based on the invariant mass variable. The sidebands of the mass peak in the
invariant mass distribution contains pure background, whereas the signal region is
a mix of signal and background. A likelihood fit is performed on the data sample
to determine the yields of both sources. From the invariant mass signal weights are
calculated which subtract the background as a sidebands subtraction and returns
the unfolded signal distribution. As an illustration the maximum likelihood fit
to the D−s → K+K−π− invariant mass distribution in data is shown in Figure 27
together with the calculated sweights. This fit is used to obtain a pure Ds sample
for the normalisation channel B0

s → D−s µ
+νµ.

5.4 Boosted Decision Tree

Different techniques exist to classify observations into classes, such as to separate
data into categories like signal or background. Multivariate analysis methods are
especially effective for separation since they allow to combine several discriminat-
ing variables into one final discriminator. This analysis uses a so-called Boosted
Decision Tree (BDT) classifiers to distinguish signal from background in the data
sample collected by the LHCb experiment. A schematic view of a decision tree
is shown in Figure 28, where a consecutive set of questions cN are asked on the
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chosen variables xN representing the data with a binary outcome at each node. At
each stage selection cuts are chosen to give the greatest separation between signal
and background, a common metric for separation gain is the so-called Gini-Index
defined as p(1 − p) where p is the signal purity. The separation gain between the
nodes is recursively maximised to optimise the node structure of the classifier. The
final response is then classified as a signal or background leaf.
The decision tree has to be trained on a data set which already provides the out-
come, such as pure signal and background samples from MC simulation. Even
though decision trees are easy to interpret and fast to train, a single tree does not
have a strong separation power. Therefore a BDT uses an ensemble of different
trees, where the outcome of all trees are combined for its final decision. This is also
known as random forest with the idea that the sum of many weak learners results
in a stronger classifier. A typical tree contains several hundred weak decision trees
with a maximum depth depending on the critical number of events per node.
There are different methods to train a random forest, for this analysis a boosting
technique is used which gives mis-classified events a higher weight after each itera-
tion. This method shifts the focus on the mis-classified samples over the correctly
assigned events for the training of the following tree. For this analysis the AdaBoost
method [110] (adaptive boosting) is used which assigns a boost weight derived from
the misclassification rate, err, of the previous tree

w = (1− err)/err. (64)

The weights of the whole event sample are renormalised so that the sum of weights
remains constant. If hi(~x) is the result of an individual classifier with ~x the input
variables and hi(~x) = +1 and -1 for signal and background, the final BDT output
is then:

hBDT (~x) =
1

Ntree

Ntree∑
i

ln(wi)hi(~x) (65)

where Ntree is the number of trained decision trees.
BDT classifiers can suffer from over-training, where the BDT makes decisions due
to statistical fluctuations rather then real differences in data. This would lead to
a bigger separating power of the classifier on the training sample with respect to
what is truly achieved. Therefore the data sample is split into training and testing
samples and the performance of the training samples should not be better than the
test sample. In addition one can approach this issue by using k-fold cross valida-
tions [111], where the training data is divided into k subsamples and the classifier
is trained k times using k − 1 subsamples. Then the classifier is tested on the
subsamples which are independent of the training samples.
Differences between the data used in training and classification can lead to a biased
BDT outcome. This is the case if there are fundamental differences between MC
and data which can be picked up by the algorithm and then wrongly classified.
Therefore possible differences need to be corrected for, which is explained in more
detail in Section 7.
The performance of a classifier can be illustrated by the Receiver Operating Char-
acteristic (ROC) curve. This curve shows the background rejection with respect
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to the signal efficiency of the remaining sample. The area under curve (AUC) is
largest for the best classifier. BDTs are frequently used in this analysis to sep-
arate signal from background events as much as possible as explained further in
Section 6.
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6 Analysis selection

In the proton-proton collisions many different particles are produced at the inter-
action point, where most of them are pions or other light particles. Only a small
fraction of these events contains the B0

s meson required for this analysis. Especially
the decay of interest as a b → u transition is very suppressed compared to large
background contributions from |Vcb|-decays. In order to find the decay we are inter-
ested in, it has to pass several stages of selection criteria which are outlined in this
chapter. First the data passes the general event reconstruction of the online and
offline processing steps, as explained in Section 3. The specific trigger and strip-
ping line used in this analysis are introduced in Section 6.1 and 6.2 respectively. In
general the selections are applied to maximise the signal efficiency and reject back-
ground as much as possible by exploiting differences in the topology of signal and
background events. Signal events consist of long lived particles originating from a
secondary vertex with a significant distance from the primary vertex with a large
transverse momentum. The analysis specific offline selection such as additional se-
lection cuts applied for the signal and normalisation channel are further described
in Section 6.3. Those consist of applying vetoes to suppress specific backgrounds,
tighter particle identification requirements and in addition charged track isolation
variables. Two multivariate classifiers are trained and applied to further suppress
different remaining background components as explained in Section 6.4.

6.1 Prequisites

Several selection variables must be defined in order to understand the selection
requirements:

DOCA Distance of closest approach between two particle tracks.

IP Impact parameter defined as the minimal distance between a track
with respect to the primary vertex (PV).

IPχ2 Impact parameter χ2 defined as the difference between the χ2 ob-
tained when fitting the PV with and without the considered par-
ticle. It is a measure of the probability that a particle is coming
from the PV.

FD The flight distance (FD) is the length of displacement between the
primary and secondary vertex.

FDχ2 The flight distance χ2 is the difference between the χ2 obtained
when fitting the secondary vertex (SV) with and without the con-
strain of zero flight distance.

DIRA Cosine of the direction angle. The direction angle is the angle
between the momentum vector of the reconstructed particle with
respect to the flight distance vector.
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6.2 Trigger selection

Events are first processed online by the L0 hardware trigger. For this analysis
candidates need to pass the L0MuonTos trigger line at hardware level, which selects
events containing at least one muon with a transverse momentum of more than
1.76 GeV/c for 2012 and a SPD hit multiplicity of below 600 [86].
In the first stage of the software-based trigger, HLT1, signal events have to pass
the Hlt1SingleMuonHighPT which requires minimum transverse momenta of 4.8
and a momenta of larger than 8 GeV/c [87].
As a second part of the software trigger, events must pass either the
Hlt2SingleMuonDecisionTOS or the Hlt2TopoMu2BodyDecisionTOS trigger line.
The first selects candidates with a transverse momenta larger than 1.3 GeV/c, a
good quality track (χ2/n.d.f. < 2) which is well separated from the PV via the
impact parameter (IP > 0.5mm, IPχ2 > 200). This trigger line is pre-scaled with
a factor of 0.5 in data, which has to be applied also to simulated events exclusively
triggered by this line to match the data. The TopoMu2BodyBBDT is an inclusive
trigger designed to select partially reconstructed decays of B hadrons containing
a high likelihood muon and one additional good quality track [87]. Two-body ob-
jects are created from these tracks if their distance of closest approach (DOCA)
is less than 0.2 mm, and if they form a displaced secondary vertex. The following
kinematic variables are used to efficiently select signal candidates:

∑ |pT|, pT
min,

invariant mass, corrected mass, DOCA, IP significance IPχ2 and flight distance
significance (FD χ2). Here the

∑ |pT| variable sums up the transverse momenta of
2 candidate tracks and pT

min is the minimum transverse momentum of one of these
tracks. Those variables are combined into a multivariate selection rather than a
simple cut-based trigger, since higher rejection power of background for the same
signal efficiency is achieved [86]. A boosted decision tree (BDT) is used with dis-
cretised input variables given in Table 7, also called a Bonsai BDT (BBDT). The
BDT can only apply selections at the specific intervals listed in the last column of
Table 7, the chosen cut values are given in the second column.

Variable Cuts BBDT Intervals∑ |pT|[ GeV/c] > 3 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20
pT

min[ GeV/c] > 0.5 0.6, 0.7, 0.8, 0.9, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 10
m[ GeV/c2] < 7 2.5, 4.75
mcorr[ GeV/c2] 2, 3, 4, 5, 6, 7, 8, 9, 10, 15
DOCA [mm] < 0.2 0.05, 0.1, 0.15
IPχ2 20
FDχ2/100 > 1 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 100

Table 7: The variables, the selection cuts applied and the intervals used in the BBDT for
the TopoMu2BodyBBDT trigger selecting 2 body decays. Table slightly modified from [86].
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Variables Stripping cuts
Event long track multiplicity < 250
Kaon
Track pT > 0.5 GeV/c
Track p > 10 GeV/c
Track IPχ2 > 16
Track χ2/n.d.f. < 6
Track GhostProb < 0.5
∆logLKπ > 5
∆logLKp > 5
∆logLKµ > 5
muon
Track pT > 1.5 GeV/c
Track p > 6 GeV/c
Track IPχ2 > 12
Track χ2/n.d.f. < 4
Track GhostProb < 0.35
∆logLµπ > 3
∆logLµp > 0
∆logLµK > 0
Kµ (B0

s )
mcorr [2.5, 7] GeV/c2

SV χ2/n.d.f. < 4
DIRA > 0.994
FDχ2 > 120
HLT2 Hlt2SingleMuonDecisionTOS or Hlt2TopoMu2BodyDecisionTOS

Table 8: Stripping selection criteria for B0
s → K+µ−ν signal candidates.

6.3 Preselection

The first offline selection stage to process the data are the so-called stripping
selections. For this analysis dedicated stripping lines were written, one for
the signal (StrippingB2XuMuNuBs2KLine) and several others for background
studies. The StrippingB2XuMuNuBs2KSSLine is used to select same sign kaon and
muons (K+µ+) as well as stripping lines with looser particle identification (PID)
selection cuts for the muon, kaon and both (StrippingB2XuMuNuBs2K FakeKLine,

StrippingB2XuMuNuBs2K FakeMuLine, B2XuMuNuBs2K FakeKMuLine) which are
used for particle misidentification studies.
The selection cuts for the signal are further specified in Table 8. The stripping
line uses as input the trigger selection specified in the previous section. Events
with at least one reconstructed PV are selected and events with more than 250
long tracks as defined in Section 3.2.1 are rejected. First requirements on the
final state particles are made and good quality tracks χ2/n.d.f. are selected. To
reduce the amount of artificial ghost tracks created by the reconstruction software,
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tracks need to have a small ghost track probability, as introduced in the detector
section. Kinematic cuts for the muon and kaon to select high momentum and
high transversal momentum tracks are applied as well as requirements based on
the particle ID, such that they have a high likelihood to be identified as a kaon
or a muon as discussed in Section 3.2.2. Based on the topology of the decay the
final state tracks have to be well separated from the primary vertex by requiring a
large impact parameter χ2 (IPχ2).
In the next step the previously selected final state particles are combined to built
the partially reconstructed B0

s candidate. The reconstructed secondary vertex
from this combination has to be of good fit quality (Vertex χ2 < 4) and needs
to be well separated from the primary vertex (flight distance χ2 > 120). The
combined B0

s candidate has to fulfil the requirement DIRA > 0.994. For signal
decays this quantity should be close to one. In addition the corrected mass of the
B0
s candidate has to be within the range of [2.5, 7] GeV/c2.

For the normalisation channel a different Stripping line B2DMuNuX Ds is used
to efficiently select B0

s → D+
s µ
−ν decays. All selection cuts are summarised in

Table 10. For the muon similar cuts as for the signal are used to reduce systematic
uncertainties, whereas for the kaon less tight kinematic cuts are used due to the
additional charged tracks coming from the D+

s decay, such as the pion. The latter
inherits the same cuts as the kaon apart from the PID cut. The selected kaon
and pion particles are then combined to built the D+

s candidate using a window
around the nominal D+

s mass together with topological requirements such as the
direction angle (DIRA) and a well separated, good quality decay vertex. From
this the B0

s candidate is built together with the muon track accepting candidates
in a large mass window around the B0

s mass. Also the B0
s vector is required to be

in flight direction before the D+
s vector.

In addition a dedicated line has been written for background studies by relaxing
the muon PID requirements B2DMuNuX_Ds_FakeMu.

6.4 Offline selection

In order to reduce the background contamination as much as possible, further
selections cuts have to be placed on the data. As explained earlier one of the
dominant backgrounds for this analysis are |Vcb| decays such as B+ → D0µν, which
are due to the CKM-matrix structure and the higher fragmentation fraction about
40 times larger than the signal decay we are interested in. Also background from
b → cc̄s decays such as B+ → J/ψK+ needs to be reduced as much as possible.
They can be wrongly identified as signal decays if the positively charged muon is
not reconstructed. Also higher excited K∗ resonances can be misidentified as signal,
when they further decay into a kaon and neutral pion. To suppress these kind of
backgrounds vetoes are applied, but due to the small reconstruction efficiency of
the neutral pion those are not very effective.
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Variables Stripping cuts
Event long track multiplicity < 250
Muon
Track pT > 1 GeV/c
Track p > 6 GeV/c
Track GhostProb < 0.35
Track χ2/n.d.f. < 3.0
Track IPχ2 > 12
∆logLµπ > 0
Kaon
Track pT > 250 MeV/c
Track p > 2000 MeV/c
Track GhostProb < 0.35
Track χ2/n.d.f. < 3.0
Track IPχ2 > 4
∆logLKπ > −2.0
Pion
Track pT > 250 MeV/c
Track p > 2000 MeV/c
Track GhostProb < 0.35
Track χ2/n.d.f. < 3.0
Track IPχ2 > 4
∆logLKπ < 20.0
D+
s candidate
|mCand. −mD+

s
| < 80 MeV/c2

DOCA χ2 < 20
Vertex χ2/n.d.f. < 6.0
FDχ2 > 25
DIRA > 0.99
D+
s µ
− (partial B0

s )
mCand [2.2, 8] GeV/c2

Vertex χ2/n.d.f. < 9.0
DIRA > 0.999
Vertex(D+

s )Z − Vertex(B0
s )Z > −0.05

Table 9: Stripping selections applied to B0
s → D−s µ

+νµ candidates using the B2DMuNuX Ds

line.
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Figure 29: Invariant K+µ− mass for kaons identified as muons in data. Events consistent
with the J/ψ mass are rejected.

6.4.1 Background vetoes for B0
s → K−µ+νµ

Several vetoes are applied to reduce different background components for the
signal channel, they are summarized at the end of the section in Table 11.
The opposite sign kaon and muon pair used to reconstruct the signal can originate
from semileptonic charm meson decays. Those backgrounds are reduced by
requiring the invariant mass of the K+µ− pair to be greater than the mass of the
D meson (>1.9 GeV/c).
At the stripping level PID requirements are applied to select a K+µ− pair,
but residual muons can remain which are misidentified as kaons. Therefore
J/ψ →µ+µ− decays can be wrongly identified as B0

s → K−µ+νµ signal decays.
These candidates are rejected by requiring the K+µ− invariant mass to be
outside the nominal J/ψ mass, if the kaon is reconstructed under the muon mass
hypothesis and is identified as a muon. Figure 29 shows the invariant K+µ− mass
of these events in data, they are vetoed if they fall into the J/ψ mass window of
3072 < m(µK → µ) < 3130 MeV/c2.

Background from higher excited kaon decays (K∗+ → K+π0) can be re-
jected by searching for neutral pions in a cone around the reconstructed kaon
track. The π0 candidates are reconstructed using two photons with an invariant
mass around the nominal π0 mass. The reconstructed π0 mass is shown in the left
of Figure 30 for different simulated K∗ resonances. Higher excited kaon candidates
are rejected if a neutral pion is found and the invariant mass of the K+π0 pair is
consistent with coming from either the K∗+(892) or the K∗+0,2(1430) with the mass
ranges (|m(K+π0) − m(K∗(892))| < 65 ) and (|m(K+π0) − m(K∗(1430))| < 90)
respectively. The right of Figure 30 shows the invariant K+π0 mass for the
simulated K∗ resonances, those are reconstructed as the signal through the K+µ−

pair where a neutral pion is added with the requirements given above. This veto
only rejects about 20% of the background from higher excited kaon resonances
due to the low reconstruction efficiency of neutral pions [112]. Its remainder has
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Figure 30: (Left) The invariant mass of the neutral pion reconstructed from two photons
m(π0) on the left and the reconstructed invariant mass of a kaon together with a neutral
pion m(K−π0) for different simulated K∗ resonances: B0

s → K∗−(892)(→ K−π0)µ+νµ,
B0
s → K∗−0 (1430)(→ K−π0)µ+νµ and B0

s → K∗−2 (1430)(→ K−π0)µ+νµ.

to be taken into account in the signal fit to the corrected mass. The veto rejects
around 4% of signal events.

Combinatorial background comes from randomly combined K+ and µ− tracks. It
can arise from bb̄ production where the kaon and muon originate from the decay
of different q

¯
uarks which hadronise into different B mesons. This background has

to be suppressed further. This can be done by exploiting the different topology of
bb̄ production with respect to the decay of interest as displayed schematically in
Figure 31. The two b-quarks fragment into B-mesons which are back-to-back in the
rest frame. For a boosted bb̄ pair in the longitudinal direction, as produced at the
LHC, this results in B mesons having opposite momenta in the transverse plane.
Therefore their corresponding decay products, the K+µ−, also have opposite
transverse momenta and they end up in opposite quadrants in the xy plane. This
results in a low relative transverse momenta of the reconstructed fake B0

s meson
candidate as shown in Figure 32 for data together with true B0

s candidates. These
events are rejected by requiring px(K

+)× px(µ−) < 0 AND py(K
+)× py(µ−) < 0.

6.4.2 Additional selection cuts for B0
s → D−

s µ
+νµ

In addition to the selection cuts applied at the stripping level, tighter PID cuts are
applied to the kaon and muon of the normalisation channel. Also the kaons need to
have a momenta larger than 10 GeV/c and the reconstructed D+

s candidate should
be witin the nominal D+

s mass. All additional selection cuts are summarized in
Table 10.
For the normalisation channel B0

s → D−s µ
+νµ with D+

s →K+K−π+ the background
mainly originates from semileptonic B0

s decays to higher excited D+
s resonances,

such as B0
s →D∗−s µ+νµ, B0

s →D∗−s0 µ+νµ and B0
s →D∗−s1 µ+νµ. Other background

consists of partially reconstructed decays such as B0
q→D−s D

(∗)
q X where the Dq

further decays semileptonically.
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Figure 31: Topology of the combinatoric background with kaon and muon originating
from the decay of different B mesons looking down the beam line. Figure taken from [9].
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Figure 32: pT distribution of reconstructed B0
s candidates in data (black solid), split up

into combinatorial background candidates with px(K+) × px(µ−) < 0 AND py(K
+) ×

py(µ
−) < 0 (dashed red) and potential signal candidates with px(K+) × px(µ−) <

0 OR py(K
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Additional Selections
K− ∆logLKπ > 5.0
K− ∆logLKp > 5.0
K− ∆logLKµ > 5.0
K− p > 10000 MeV
µ+ ∆logLµπ > 3.0
µ+ ∆logLµp > 0
µ+ ∆logLµK > 0
D+
s |mCand. −mD+

s
| < 40 MeV/c2

Vetoes
D∗− →D0π+ Veto |mKKπ −mKK | > 148 MeV
B0
s →D−s π+ Veto |mDs(µ→π) −mB0

s
| > 70 MeV

Isolation min(IsoMinBDT_K, IsoMinBDT_Mu) > -0.8

Table 10: Additional selections and vetoes applied to B0
s → D−s µ

+νµ candidates.

Figure 33: The topology of Signal decays (left) compared to B+→ J/ψK+ background
(middle) where the second muon is a non-isolated track and isolated tracks coming from
a different vertex (right). Figure taken from [9].

Background from B → (D∗ → (D0 → K+K−)π)µνX is rejected using the mass
difference between the D∗ and D0 which is only slightly higher than the pion mass
(|m(KKπ)−m(KK)| > 148 MeV). This selection efficiently rejects all B → D∗µν
decays.
Possible background from B0

s →D−s π+ can be reduced by reconstructing the muon
under the mass hypothesis of a pion and rejecting D−s π

+ candidates with an invari-
ant mass around the nominal B0

s mass (|m(Ds(µ→ π))−m(B0
s )| < 70 MeV). The

applied isolation cut mentioned in Table 10 is explained in the following section.

6.4.3 Charged track isolation

Charged track isolation variables are used to further discriminate signal from
background with additional charged tracks. They are used by many LHCb
analysis [113–115]. For true B0

s signal decays no further charged tracks are
expected nearby the kaon and muon tracks. Instead for partially reconstructed
background such as B+→ J/ψK+ there are additional charged tracks originating
from the same decay vertex, as displayed in Figure 33.

The algorithm searches through all underlying tracks of the event for additional
charged tracks (other then the signal tracks) which build a good vertex with any
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signal track. In addition it uses cone isolation variables by drawing a cone around
the candidate tracks in ∆R =

√
∆φ2 + ∆η2, where φ is the azimuthal angle and η

the pseudorapidity, and checking for tracks and energy deposits in the calorimeter
within this cone. The algorithm returns variables determining the activity around
the track either from neutral or charged particles. True B0

s → K+µ−ν candidates
are well isolated and have very little detector activity within the cone.
Several variables are built based on cone isolation of the candidate track:

pT(cone) =
∑

i ~pT Transverse momenta of a cone defined as the
vector sum of pT of all tracks within the cone.

ApT =
| ~pT(track)− ~pT(cone)|
| ~pT(track)+ ~pT(cone)| Momentum asymmetry between the cone

and the candidate track.

TI =
pT(track)

pT(track+Cone)
Transverse isolation of the cone with respect
to the candidate track.

The isolation algorithm used in this analysis is a BDT adapted from a pre-
vious analysis [116]. It uses as input kinematic and topological information of
the B candidate and the reconstructed tracks and returns for each track an
output variable specifying the likelihood to be consistent with originating from
the same vertex. The BDT is trained with simulated samples of B0 →D∗−µ+νµ
as signal and B+ →D∗−π+µ+νµ as background. The following variables are used
in the training to separate signal and background, here ’test track’ refers to all
reconstructed tracks of the event other then the signal tracks which are tested :

track minIPchi2 Minimum of impact parameter χ2 of the test track with
respect to any PV.

track η, φ, pT pseudorapidity, azimuthal angle and transverse momen-
tum of the test track.

track MatchChi2 Track quality determined from the track fit when down-
stream and upstream track segments are matched.

track pvdis mu Distance between (signal track, test track) vertex with
respect to the PV.

tracksvdis mu Distance between (signal track, test track) vertex of with
respect to the SV.

track DOCA mu Distance of closest approach between the signal track
and the test track.

track angle mu Angle between signal track and the test track.

track fc mu FC =
(psig+ptrack)×αsig+track,PV

(psig+ptrack)×αsig+track,PV +ptsig+pttrack

where αsig+track,PV is the angle between the sum of mo-
menta (psig + ptrack) and the straight line from the pri-
mary vertex to the vertex reconstructed using the signal
track and the test track.
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Figure 34: The per-event distribution of the minimum output of the isolation BDT for
signal (black) compared to background MC from B+→ J/ψK+ (red), B0

s → D−s µ
+νµ

(green) and SS data (blue). Figure taken from [9].

Distributions of these discriminating variables are shown in Figure 35 for signal
and background. The output of the Gradient Boosted Decision Tree (BDTG)
classifier is shown in Figure 36 along with its ROC curve. In the next step
these track-based quantities have to be converted into candidate based quantities.
When processing an event each reconstructed track is assigned a weight based
on the BDT output to be either a signal or an underlying track. Different
combinations of the BDT values are possible, for this analysis two combined
variables are created for each candidate track: IsoMinBDT and IsoSumBDT. The
first one is the minimum BDT output value of the test track which relates to a
high probability to originate from the same vertex as the candidate and is assigned
to both the kaon and muon. The minimum BDT output for both kaon and muon
is shown in Figure 34 for simulated signal and background events as well as for
data. There is a clear separation visible with respect to the background events
which peak at low values, therefore a loose selection cut is placed on this vari-
able of min(kaon_IsoMinBDT,muon_IsoMinBDT) > -0.9 for B0

s → K+µ−ν and
min(kaon_IsoMinBDT,muon_IsoMinBDT) > -0.8 for the normalisation channel
B0
s → D−s µ

+νµ. The IsoSumBDT variable is the sum of the BDT output over all
underlying tracks when compared to the candidate track. The isolation algorithm
also saves the kinematics of the least isolated track (trackleast iso) with respect to
both candidate tracks. These charged track isolation variables are used as input
for two additional BDTs trained to discriminate signal and background even
further and are explained in more detail in Section 6.5.

6.4.4 Corrected mass uncertainty

As mentioned already in Section 5.1 rejection of events with a large uncertainty
on the corrected mass improves the separation between signal and background. In
this analysis candidates with a corrected mass uncertainty larger than 100 MeV/c2

are rejected which results in an efficiency of ≈ 30% for both signal and partially
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Figure 35: Input variables for the BDT training of the charged track isolation. Figure
taken from [9].

Figure 36: (Left) BDTG output distribution for signal (blue) and background (red).
(Right) ROC curve corresponding to the BDTG output. Figure taken from [9].
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Figure 37: The corrected mass uncertainty for signal decays compared to background
decays.

reconstructed background decays while backgrounds from random combinations
are significantly reduced. The cut value of 100 MeV/c2 corresponds to the peak
of the signal distribution of the corrected mass uncertainty, as shown in Figure
37. Although this selection does not increase signal purity the separation between
signal and background decays is significantly improved in the corrected mass, this
results in a reduced systematic uncertainty when performing a fit to the corrected
mass.
The variable is verified using a control channel as explained further in Section 7.
The distributions of the corrected mass uncertainty for K−µ+ combination from
the decay B+ → (J/ψ → µ+µ−)K+ are plotted in Figure 38 for Monte Carlo
samples and data, together with simulated signal events. For the normalisation
mode B0

s → D−s µ
+νµ no selection on the corrected mass uncertainty of the K−µ+

pair or the D−s µ
+ pair is made.

6.4.5 Summary of the offline selection

The offline requirements applied to B0
s → K−µ+νµ signal decays which were de-

scribed in the previous subsections are summarized in Table 11.

6.5 Selection BDT

For this analysis two different BDTs are trained to separate signal from background,
both of them use B0

s → K−µ+νµ signal MC samples for training. The first BDT is
used to discriminate signal from partially reconstructed background with additional
charged tracks, the so-called charged BDT. The second BDT is trained to remove
background found in SS data, such as combinatorial and other feed-down decays of
higher excited particles, it is referred to as SS BDT. All previously defined selection
cuts, including the loose cut on the output of the isolation BDT, are applied to
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Figure 38: The corrected mass uncertainty for signal decays and B+ →J/ψK+ decays
reconstructed as B0

s → K−µ+νµ. Figure taken from [9].

Selection Variables
Candidates per event = 1
D meson rejection mKµ > 1900 MeV/c
π0 and K∗ veto |m(π0)− 135| < 30 MeV &

(|mK+π0 −mK∗(892)| > 65 MeV OR
|mK+π0 −mK∗(1430)| > 90 MeV)

J/ψ misID veto K+ IsMuon & |m(K→µ)µ −mJ/ψ | > 30 MeV
combinatorial cut px(K

+)× px(µ−) > 0 OR py(K
+)× py(µ−) > 0

track isolation min(kaon_IsoMinBDT,muon_IsoMinBDT) > −0.9
corrected mass uncert. σmcorr < 100 MeV/c2

Table 11: Offline selection criteria for B0
s → K−µ+νµ
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Sample Entries
B0
s → K−µ+νµ 165k

Background Samples
b→ (c→ KµX)X 47k
b→ K±µ±X 190k
b→ KµX 550k
B0 → J/ψK∗0 226k
B0 → (D∗ → KπππX)µν 50k
B0 → (D∗ → KπX)µν 1210k
B0 → (D∗ → Kπ)µν 34k
B0 → (D → Kππ)µν 75k
B+ → J/ψK+ 445k
B+ → J/ψK∗+ 135k
B+ → D0µ+νµX 230k
B0
s → J/ψφ 2500k

B0
s → D−s µ

+νµX 96k

Table 12: Simulated background samples used for training of the charged BDT.

the MC and data samples. Then the charged BDT is trained on MC samples from
partially reconstructed backgrounds, a selection based on its output is chosen and
afterwards the SS BDT is trained to provide additional discriminating power on
other backgrounds.
The charged BDT is trained on a mix of background MC samples, reconstructed as
B0
s → K−µ+νµ, their contribution is given in Table 12. All of these samples used

for training, are kinematically corrected using the reweighting procedure described
in Section 7. It uses as input the variables displayed in Table 13 to separate signal
from background, the separation power of the different variables with respect to
the background is also given as computed by the BDT. It is zero for identical dis-
tributions and one if distributions do not overlap. For the training 850 trees with a
maximum depth of 3 and a minimum node size of 2.5% of all events are used with
the AdaBoost method [110]. To remove possible overtraining the data is divided
by magnet polarity for training and testing samples.
The same-sign (SS) BDT is trained with K−µ− candidates in data as the back-

ground sample. The input variables used in the training are shown in Table 14
together with their separation power. To minimise correlations in the training be-
tween the two BDTs a selection is placed on the output of the charged BDT before
the training of the SS BDT. Its training follows the same procedure as for the
charged BDT described above.
The BDT response for both BDTs are shown in Figures 39. In the left plot the

charge BDT response for simulated signal events is compared to background from
simulated B0

s → K∗−µ+νµ, B+ →J/ψK+, |Vcb| decays, combinatorial background
as well as SS data. In the right plot the SS BDT response of the signal is compared
to simulated |Vcb| decays as well as SS data. The corresponding ROC curves to
illustrate the performance of the classifiers by plotting the signal efficiency against
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Variable Separation
min(kaon_IsoMinBDT,muon_IsoMinBDT) 1.90× 10−1

m(K− +trackleast iso) 1.00× 10−1

max(kaon_IsoSumBDT,muon_IsoSumBDT) 9.39× 10−2

Minimum of kaon & muon cone Isolation 3.54× 10−2

Transverse isolation (TI) between K− and cone 3.00× 10−2

Kaon pT 2.84× 10−2

Transverse isolation (TI) between K− and charged cone 2.58× 10−2

pT(B0
s )− 1.5× pT(µ+) 2.17× 10−2

B0
s pT 1.94× 10−2

∆η between K− and charged cone 1.89× 10−2

Momentum asymmetry (ApT) between µ+ and charged cone 1.85× 10−2

kaon_IsoMinBDT-muon_IsoMinBDT 1.63× 10−2

B0
s Decay vertex fit χ2 1.11× 10−2

m(µ+ +trackleast iso) 7.67× 10−3

B0
s helicity angle 2.03× 10−3

Table 13: The input variables used for the charged BDT are listed with their separating
power. Several variables use information obtained from a cone drawn around candidate
tracks with ∆R = 0.5 and were defined in Section 6.4.3.

Variable Separation
Kaon pT 2.76× 10−02

DIRAB0
s

1.98× 10−02

Momentum asymmetry (ApT) between K− and neutral cone 1.36× 10−02

Transverse isolation (TI) between K− and neutral cone 1.30× 10−02

m(K− + π0) 1.02× 10−02

pT(B0
s )− 1.5× pT(µ+) 9.31× 10−03

B0
s Flight distance significance 7.56× 10−03

B0
s pT 6.20× 10−03

B0
s helicity angle 5.96× 10−03

B0
s Decay vertex fit χ2 3.68× 10−04

Table 14: The input variables for the SS BDT training. Several variables use information
obtained from a cone draw around candidate tracks with ∆R = 0.5.
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Figure 39: Response for the charged BDT (left) and SS BDT (right). In the left the
signal response in black is compared to background from simulated |Vcb| decays (indicated
by Hb → Hc(K

−X)µ+X ′ in red), B0
s → K∗−µ+νµ in purple, B+ →J/ψK+ in blue,

combinatorial background in green as well as SS data in grey. In the right the SS BDT
response for signal in black is compared to simulated |Vcb| decays in red as well as SS
data in blue. Figure taken from [9].

the background rejection are given in Figure 40. A selection of Charged BDT >

0.05 is placed on the charged BDT and SS BDT> 0 on the same sign BDT.

The BDTs are validated by comparing the BDT response in sPlot unfolded data
with simulated B+ →J/ψK+ decays using a fully reconstructed K+µ−µ+ decay
or only the K+µ− pair. The validation is shown in Figure 41, where a slight dis-
crepancy is visible in the BDT response between simulation and data. Therefore a
correction factor and a systematic uncertainty needs to be applied to the calculated
BDT efficiency using the B+ →J/ψK+ decay. The details are given in Section 10.
More validation plots of the BDT input variables are given in Appendix B.

6.6 Selection on data

Figure 42 shows the B0
s corrected mass distribution for opposite-sign K+µ− and

same-sign K+µ+ candidates in data after applying all consecutive selection steps.
The first plot shows the data where only the trigger and stripping selection as
detailed in Sections 6.1 and 6.2. Then the different vetoes are applied as well as the
combinatorial background cut of the offline selection detailed in Section 6.4.2. The
charge isolation requirement introduced in Section 6.4.3 reduces the data sets even
more and by applying the two selection BDTs defined in Section 6.5 a structure
appears in the K+µ− data set corresponding to the B0

s mass. When applying
the corrected mass error cut in the final plot the signal decay B0

s → K−µ+νµ is
visible by eye as a shoulder at the B0

s mass. Figure 42 compares the opposite-
sign K+µ− data candidates to the simulated B0

s → K−µ+νµ signal decay after
the same consecutive selections are applied. Here the top four plots are drawn
normalized otherwise the signal distribution would not be visible, in the bottom
two the distributions are not normalized such that the evolving signal structure in
opposite-sign data is overlaid with the shape from the signal simulation.
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Figure 40: ROC curves for the charged BDT (left) and SS BDT (right). The curves
for training and testing are both shown. The SS BDT is applied after the charge BDT.
Figure taken from [9].

0.6− 0.4− 0.2− 0 0.2
Charge BDT

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
. U

.

 data- mu+µ -K

 MC- mu+µ -K

0.6− 0.4− 0.2− 0 0.2
Charge BDT

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
. U

.

 data+µ -K
 MC+µ -K

0.6− 0.4− 0.2− 0 0.2
SS BDT

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
. U

.

 data- mu+µ -K

 MC- mu+µ -K

Figure 41: The charged BDT response on top and SS BDT on the bottom plotted for
B+ → J/ψK+ decays reconstructed as B+ → J/ψK+ (red) and the K+µ− pair in (blue)
for Monte Carlo (line) and background subtracted data (points). Figure taken from [9].
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Figure 42: Corrected mass distribution for kaon and muon candidates from same-sign
(SS) and opposite-sign (OS) data passing consecutive selection cuts. The top left plot
shows the distributions after trigger and stripping cuts are applied, top right for adding
the vetoes and middle left plot with the combinatorial cut applied. The middle right plot
has the isolation cut and the bottom left the selection BDTs applied. For the bottom
right plot the corrected mass error cut is added on top as the full selection, here a clear
peaking structure at the B0

s mass can be seen.
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Figure 43: Corrected mass distribution for K+µ− candidates from opposite-sign (OS)
data compared to simulated signal events passing consecutive selection cuts. The same
sequence of cuts are applied as in the previous Figure from top left to bottom right: trigger
and stripping, adding vetoes, removing combinatorial background, isolation requirements,
applying BDT cuts and full selection cuts including the low corrected mass uncertainty
selection.
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7 Control channel

In general the agreement between simulated samples and data is not perfect
and several variables show disagreement. As many Monte Carlo (MC) samples
are used in this analysis either to evaluate efficiencies or as fitting variables it is
important that these differences between data and MC are corrected. Therefore
the accuracy with which the MC samples describe the data has to be verified in
control channels.
A simple solution for the MC correction would be to reweight the MC sample to
agree with data in the variable of interest showing discrepancies. This approach
however fails when more than one variable needs to be reweighted. Low statistic
bins and the unknown optimal binning choice to resolve structures within a bin
often cause problems for multidimensional reweighting. Therefore for this analysis
a BDT is trained to separate signal candidates in data and MC. If the simulation
perfectly models the data, the BDT returns an output variable with no separation
power. Overtraining and statistical fluctuations would return a false separation
power. For disagreement between data and MC samples the BDT returns an
output variable with separation power. This approach assumes that this output
variable combines all differences between simulation and data in different variables
into a single discriminating variable. A reweighting is permormed to match the
BDT output variable in simulation to data. This one dimensional correction on the
BDT output is able to correct all variables used in the training simultaneously [117].

The control channel used for this correction should have similar topology
and kinematics as the signal channel B0

s → K−µ+νµ. Here the decay B+ →J/ψK+

is selected as the control channel due to its high yield. Furthermore it is a high
purity data sample with only minor background contributing. Depending on the
study under investigation, B+ → (J/ψ →µ+µ−)K+ is either fully reconstructed
from µ−µ+K+ or only through the µ−K+ pair similar to the signal.In order to
validate the kinematic variables of the signal decay the B+ →J/ψK+ decay is
reconstructed as B0

s → K−µ+νµ due to the similarity to the signal with a non
reconstructed neutrino with respect to the non reconstructed second muon in
B+ →J/ψK+. The B+ candidate can be fully reconstructed together with the
additional muon found by the charge isolation algorithm as the least isolated
track as defined in Section 6.4.3. The reconstructed B+ mass peak is then used
to extract a pure data sample, subtracting background by exploiting the sPlot
method as explained earlier in Section 5. The mass distribution is shown in left of
Figure 44.
For the correction of the simulated normalisation channel B0

s → D−s µ
+νµ a simu-

lated cocktail sample B0
s → D−s µ

+νµX is used to compare to a well reconstructed
D+
s peak in data together with a muon. Possible backgrounds are reduced by

selecting regions of the isolation BDT output (muon_p_IsoMinBDT > −0.8 AND
kaon_m_IsoMinBDT > −0.8) as well as tight PID cuts for the kaon and muon. The
sPlot technique is used on the D+

s peak to get a clean D+
s sample as shown in the

right of Figure 44.
The BDT training for both samples uses 200 trees with a maximum depth of 3
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Figure 44: Invariant Mass of B+ reconstructed from Kµµ (left) and D+
s reconstructed

from K+K−π (right) used to generate the sWeights for the signal and normalisation
channel. Figure taken from [9].

B0
s → K−µ+νµ B0

s → D−s µ
+νµ

Track multiplicity Track multiplicity
B0
s η B0

s η
B0
s pT B0

s pT

K− pT D−s pT

µ+ pT µ+ pT

Table 15: Input variables used to train the BDT to correct for MC and data differences.

86



BDT Response
1− 0.5− 0 0.5 1

0

0.005

0.01

0.015

0.02

Data

Monte Carlo + Kψ J/→+B

BDT Response
1− 0.5− 0 0.5 1

C
or

re
ct

io
n 

W
ei

gh
t

0.5

1

1.5

2

2.5

3 + Kψ J/→+B

Figure 45: The BDT response for B+ → J/ψK+ used to separate Monte Carlo and data
(left) and the weights used to correct the simulation (right). The decay is reconstructed
through only the µ−K+ pair. Figure taken from [9].
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Figure 46: The BDT response and the weights for B0
s → D−s µ

+νµX used to correct the
simulation. Figure taken from [9].

and a minimum leaf size of 6% for B0
s → D−s µ

+νµ and 4% for B0
s → K−µ+νµ to

separate simulation and data with the AdaBoost method. Overtraining is removed
by using again the 2 k−folding method for training and testing as explained
in Section 5.4. The BDT is trained with the input variables given in Table 15
which are the ones showing differences between simulation and data and should
be corrected in simulation by the BDT.
The left of Figure 45 shows the BDT response for B+ →J/ψK+ candidates in data
and MC samples. In the right of Figure 45 the corresponding correction weights
are shown which are applied to the simulated sample. Figure 46 shows the BDT
response in MC and data as well as the corresponding correction weights for the
normalisation channel B0

s → D−s µ
+νµX. Figure 47 shows the effect of the BDT

reweighting for some variables of B+ → J/ψK+ decays in simulation together
with background subtracted data. Figure 48 shows kinematic variables for the
normalisation channel B0

s → D−s µ
+νµX before and after the BDT reweighting

corrections are applied. After the corrections the MC and data samples agree very
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well. Additional validation plots can be found in Appendix C.
The control channel for the signal and normalisation channel are also used to
evaluate systematic uncertainties due to the mis-modelling of selection cuts
between MC and data as further explained in Section 10.2.
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Figure 47: Kinematic distributions for B+ →J/ψK+ reconstructed using the K+µ− pair
for simulation before and after correction, plotted against background subtracted data.
Figure taken from [9].
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Figure 48: Kinematic distributions for B0
s → D−s µ

+νµX before and after correction using
the BDT reweighting compared to data. Figure taken from [9].
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8 Fit to the normalisation channel

After the signal and normalisation channel are selection and the kinematic correc-
tions are applied using the control channel, as described in the previous section, the
corresponding yields of the signal and normalisation channel are needed to measure
their relative branching fraction. This chapter presents the maximum likelihood
fit performed to extract the yield of the B0

s → D−s µ
+νµ normalisation channel. A

binned template fit is performed on the corrected mass of the D−s µ
+ candidates in

data, passing all selection cuts outlined before (Section 6). The Beeston-Barlow
method is used for fitting templates taking into account the finite Monte Carlo
statics as discussed in Section 9.1. The specific implementation for this analysis
the so-called HistFactory tool is outlined in Section 9.2. The MC templates used
in the fit to the normalisation mode to model the corrected mass are explained in
Section 9.3. A background subtraction is done to remove non-D+

s events in data
as shown in Section 9.4. The final results of the fit to the reconstructed D−s µ

+

corrected mass distribution are given in Section 9.5 together with the discussion of
a possible fit bias.

8.1 Beeston-Barlow method

The composition of the data sample is extracted by fitting the corrected mass.
However the individual distributions cannot be described analytically. Therefore
one has to rely on simulations to provide templates for the shape of the signal and
background. A binned template fit is performed to extract the signal yield using
histograms made of finite MC samples. Exploiting the so-called the Beesten-Barlow
method [118] uncertainties due to the finite statistics of the MC samples used to
obtain the templates is taken into account. This method is briefly explained here.
Dividing up the data into n bins gives a set of n numbers di with i ∈ [1, n], where di
is the number of events in data that fall into bin i. If j is a component contained in
the data (a fit component), Pj its strength and aji the number of simulated events
from component j in bin i, then the predicted number of events per bin i is given
by:

fi = ND

m∑
j=1

Pjaji
Nj

, (66)

where ND is the total number of events in the data sample, Nj the number of
simulated events of component j and m the total number of components (MC
templates) contained in the data

ND =
n∑
i=1

di, Nj =
n∑
i=1

aji. (67)

The Pj are the actual proportions of the different components which should sum
to unity. To estimate those one can perform a χ2 minimisation using

χ2 =
∑
i

(di − fi)2

di
, (68)
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but this assumes that the di follow a Gaussian distribution, which is a good ap-
proximation for large numbers. Instead for binned fits there is only a small number
of data points per bin, which makes this approximation inappropriate and leads to
the use of a Poissonian distributed probability to observe di:

L =
n∏
i=1

e−fi
fdii
di!
. (69)

The proportions are then found by maximising the logarithm of the likelihood

ln(L) =
n∑
i=1

(di ln(fi)− fi) (70)

where constant factorials are dropped. This likelihood function is also known as
the binned likelihood. It accounts correctly for small numbers of data events per bin
but it does not include uncertainties due to the finite number of events in simulated
samples.
Due to a large computation time simulated samples have often a small number of
events which leads to non-negligible statistical fluctuations of aji. Those have to
be taken into account which can be incorporated into the likelihood by modifying
it as follows. For each source j per bin i there is an unknown expected number
of events Aji, the predicted number of data events per bin (Equation 66) is then
modified to be

fi = ND

m∑
j=1

PjAji
Nj

. (71)

The observed number of simulated events aji is actually generated from Aji by a
Poisson distribution. Therefore the probabilities of observing di and aji have to be
combined and the total likelihood function to be maximised is

ln(L) =
n∑
i=1

di ln(fi)− fi +
n∑
i=1

m∑
j=1

aji ln(Aji)− Aji. (72)

The maximisation of this likelihood equation is referred to as the Beeston-Barlow
Method throughout this thesis.

8.2 HistFactory and Beeston-Barlow light method

Introducing the nuisance parameters Aji to include statistical uncertainties of the
simulation into the template fit, increases the number of floating parameters and
gives an additional nuisance parameter for each bin for each Monte Carlo template.
The values Aji(pj), where pj = NDPj/Nj, can only be determined by numerically
solving a large number of independent equations, one for each bin. This has to be
done at each iteration step of the value pj and leads to a large computational effort
with a very slowly converging fit. Also this can lead to discontinuous jumps in the
nuisance parameters [119], which is problematic for the numerical minimization
routine Minuit [120].
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The HistFactory tool [121] is used in this analysis to perform template fits to
the corrected mass, which is also part of the RooFit/RooStats framework based
on ROOT [122]. This framework is designed for binned fits using histogram tem-
plates and it builds a likelihood function which can be minimized with the usual
combination of minimizers built into Minuit (Migrad, Hesse, Minos). Due to
the computational complexity the HistFactory package uses a modified Beeston-
Barlow method, the so-called Beeston-Barlow light technique. This is implemented
in such a way that instead of a separate nuisance parameter Aji for each bin for
each Monte Carlo template, only a single nuisance parameter γi per bin is included
which accounts for the total MC estimate and the total statistic uncertainty in that
bin: Aji = γiaji. Such that each bin of the combined model is assigned a statistical
uncertainty according to the sum of the relative uncertainties from each template.
Each bin of the combined model is allowed to fluctuate up or down by a fractional
amount γi.
As this method does not keep track of separate fluctuations of the individual tem-
plates but only the summed template this light method may underestimate un-
certainties from small statistic templates as it mainly accounts for uncertainties in
the largest fit components. Thus the uncertainty from the Beeston-Barlow light
method should be cross-checked using the bootstrap technique and creating boot-
strapped fit templates where one samples from the original individual templates
using random selection with replacement to create alternative templates.

8.3 Normalisation fit model

A maximum likelihood, binned template fit is performed on the corrected D−s µ
+

mass distribution to extract the B0
s → D−s µ

+νµ normalisation yield. This is done
using the Beeston-Barlow light method implemented in the HistFactory tool
as described in the previous chapter. The fit to the corrected D−s µ

+ mass is
able to separate the B0

s → D−s µ
+νµ component from background contributions.

Here the D−s is reconstructed through the K−K+π− channel and in order to
remove K−K+π− combinatorial contributions not coming from the D−s decay,
a background subtraction is performed using the K−K+π− invariant mass as
described in more detail in the next section.
Background to B0

s → D−s µ
+νµ mainly comes from semileptonic B0

s decays con-
taining higher excited D−s resonances. Also backgrounds from doubly charmed

final states such as Bq → D
(∗)−
s D

(∗)
q are contributing, where the Dq is decaying

semileptonically and the D+
s further decays into K−K+π− and q = (u, d, s). Also

partially reconstructed tauonic decays like B0
s → D−s τ

+νµX are considered.
A potential background contamination from misidentified muons is studied using
data passing the stripping selection B2DMuNuX\_Dp\_FakeMuon. The contribution
is found to be of the order of three per mille of the B0

s → D−s µ
+νµ yield, its yield

is constrained in the fit. Misidentified D−s background does not contribute to the
fit since it is subtracted by the fit to the invariant K−K+π− mass as described in
Section 8.4.
Random combinations of real muons with real D+

s mesons can also lead to a
combinatorial background contribution. Those are investigated using the same
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Component Source
B0
s → D−s µ

+νµ Monte Carlo
B0
s → D∗−s µ+νµ, with D∗−s → D−s γ Monte Carlo

B0
s → D∗−s0 µ

+νµ, B0
s → D∗−s1 µ

+νµ Monte Carlo
B0
s → D−s τ

+νµX, with τ+ → µ+νµντ Monte Carlo

Bq → D
(∗)−
s D

(∗)
q , with Dq → µ+νµX, q = (u, d, s) Monte Carlo

Misidentified Muons Fake Muon Data

Table 16: Fit components of the normalisation fit.
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Figure 49: Individual fit templates from MC in the B0
s → D−s µ

+νµ fit normalized to unit
area. Figure modified from [9].

sign D−s µ
− sample which is assumed to be proxy for a purely combinatorial

component since only very few decays contain a same sign D−s and muon. Since
no D−s peak is seen in the K−K+π− invariant mass distribution of this sample,
this contribution is neglected in the fit to the corrected mass.
All fit components together with their template sources used in the fit to the
corrected D−s µ

+ mass are summarised in Table 16 and shown in Figure 49 for
comparison.

Backgrounds with similar shape in the corrected mass distribution are
combined into a common template since they can not be disentangled by the fit to
the corrected mass distribution. A comparison of similar template shapes are given
in Figure 50. On the left side backgrounds from B0

s → D∗−s0 µ
+νµ, B0

s → D∗−s1 µ
+νµ

and B0
s → D

(∗)+
s D

(∗)−
s X, where one Ds is decaying into K−K+π− and the other

one semileptonically, are shown. Those are combined into a single template in the
fit.
Another combined component consists of background from B0 → D

(∗)−
s D(∗)+,

B− → D
(∗)−
s D(∗)0 decays, where D(∗)−,0 are decaying semileptonically, together

92



3000 3500 4000 4500 5000 5500 6000 65000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Dsstar0MuNu_MC_h 

Dsstar1MuNu_MC_h 

Bs_DD_MC_h 

Bs Corr. mass (MeV)

E
v
e
n
ts

 /
 (

8
7

.5
 M

e
V

) Bd_DD_MC_h 
Entries 1462
Mean 4469
Std Dev 484.1

3000 3500 4000 4500 5000 5500 6000 6500

0

0.02

0.04

0.06

0.08

0.1
Bd_DD_MC_h 
Entries 1462
Mean 4469
Std Dev 484.1

Bd_DD_MC_h 

Bu_DD_MC_h 

DsstarXTauMuNu_MC_h

E
v
e
n
ts

 /
 (

8
7

.5
 M

e
V

)

Bs Corr. mass (MeV)

Figure 50: Similar background shapes are combined into a single template in the fit.

Those are B0
s → D∗−s0 µ

+νµ, B0
s → D∗−s1 µ

+νµ and B0
s → D

(∗)+
s D

(∗)−
s on the left side as

well as B0 → D
(∗)−
s D(∗)+, B− → D

(∗)−
s D(∗)0 and B0

s → D−s τ
+νµX decays on the right

side. Figure modified from [9].

with B0
s → D−s τ

+νµX decays, here the X stands for additional neutral particles
such as pions and photons coming from higher excites D−s states. Their templates
are shown on the right of Figure 50.
The MC templates are corrected for kinematic differences between data and
simulation using the BDT reweighter as explained in Section 7, as well as for PID
and tracking corrections as explained in Section 10.4 and 10.5. All component are
left free in the fit apart from the misidentified muon background which is fixed to
the yield determined from the fake muon data of around 570 events.

8.4 Background subtraction

In order to remove the K+K−π+ combinatorial contribution from real D+
s in data

a background subtraction is needed. Due to correlations between the K+K−π+

invariant mass and the D−s µ
+ corrected mass the sPlot method for subtracting

backgrounds cannot be used. Instead the data is divided into n smaller subsets
where each set corresponds to a specific bin in the D−s µ

+ corrected mass spectrum.
Then a binned maximum likelihood fit is performed to the K+K−π− invariant mass
distribution for each of those datasets. The D−s shape is modelled by a double-
Gaussian component and the combinatorial background by an exponential function.
Therefore the yield in each bin of the corrected D−s µ

+ mass template as plotted in
green in Figure 50 (right) is the result of this fit to the K−K+µ− invariant mass
to determine the D+

s yield and to subtract the combinatorial background. The
templates used in the fit contain 40 bins in corrected mass ranging from 3000 MeV
to 6500 MeV. The corresponding 40 fits to the K−K+µ− invariant mass are shown
in Figure 51.

8.5 Fit results

A maximum likelihood fit to the D+
s µ
− corrected mass distribution for all events

passing the B0
s → D−s µ

+νµ selection, as described in Section 6, is performed. The
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Figure 51: Fits performed as part of a combinatorial background subtraction on the
K+K−π+ invariant mass with pulls underneath. Figure taken from [9].
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Figure 52: Fit to the corrected D−s µ
+ mass. The error bars display the template uncer-

tainty due to the finite Monte Carlo statistics. Figure modified from [9].

Sample Yield / 103

B0
s → D−s µ

+νµ 191.0 ± 6.5
B0
s → D∗−s µ+νµ 385.5 ± 9.8

B0,− → D
(∗)−
s D(∗)0,−, B0

s → D−s τ
+νµX 54.6 ± 2.8

B0
s → D∗−s0,1µ

+νµ, B0
s → D

(∗)+
s D

(∗)−
s 23.8 ± 6.7

Table 17: Fit results for all components of the fit to the D−s µ
+ corrected mass distribu-

tion.

result is shown in Figure 52 together with its pulls including the data and template
statistical uncertainties defined as (nidata − nimodel)/

√
(σidata)2 + (σimodel)

2). The
signal and background yields obtained from the fit are given in Table 17. Their
correlation matrix is given in Table 18, where one can see a large anti-correlation
between the B0

s → D−s µ
+νµ and B0

s → D∗−s µ+νµ component.

The result of the D−s µ
+ corrected mass fit is validated by performing 1000

toy fits to pseudo-data. The data template in each pseudo-data fit is replaced with
a toy template generated from the fit templates with the same number of events
per template as given in Table 17. Therefore the yield of each fit component is
known precisely. The distribution of the pulls for all 1000 fits to the pseudo-data
is plotted in Figure 53. The pull is defined as (NFit − NIn)/σFit where NFit

and σFit are the yield and uncertainty obtained from the fit to pseudo-data and
NIn is the true number of B0

s → D−s µ
+νµ events in the pseudo-data. The pulls

should be centred at zero and follow a Gaussian distribution with a width of
one. As shown in Figure 53 the pull distribution of the toy fits is centred around
zero but has a width of smaller than one. This is due to the inclusion of the
statistical uncertainties of the templates from the Beeston-Barlow method which
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Param. 1 2 3 4 5
B0
s → D−s µ

+νµ 1 1 -0.858 0.461 -0.263 -0.002
B0
s →D∗−s µ+νµ 2 1 -0.769 0.471 -0.004

B0,− → D
(∗)−
s D(∗)0,−, B0

s → D−s τ
+νµX 3 1 -0.819 -0.001

B0,− → D
(∗)−
s D(∗)0,−, B0

s → D−s τ
+νµX 4 1 0.001

MisPID 5 1

Table 18: Fit correlation coefficients between the different templates of the D+
s µ
− cor-

rected mass fit which are left free in the fit.
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Figure 53: Distributions of pulls from fits to 1000 pseudo datasets for the B0
s → D−s µ

+νµ
yield, in the left plot including statistical template uncertainty whereas the right plot
they are excluded. Figure taken from [9].

overestimates the statistical uncertainties which is a known feature. When turning
off the statistical uncertainty in the fit, a pull width value of one is recovered as
shown in right of Figure 53.
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9 Fit to the signal channel

This chapter presents the maximum likelihood fit performed to extract yield of the
B0
s → K−µ+νµ signal channel. A binned template fit is performed to the corrected

mass of the K−µ+ candidates in data, passing all selection cuts outlined before
in Section 6. As input to this fit MC samples are used to describe the signal as
well the remaining background components, which are corrected by the corrections
determined from the control channel as explained in Section 7. An overview of the
used fit model as well as the different components to perform this fit is given in
Section 9.1, which again makes use of the HistFactory tool explained in detail in
the previous section. Some of the simulated background templates are combined
with each other due to their similar shape in the corrected mass which is described
in Section 9.2. The modelling of the combinatorial background for this analysis is
very challenging and a new method was developed from data which is outlined in
Section 9.3. Misidentified backgrounds are estimated using a specific technique as
detailed in Section 9.4. The fit results to the B0

s → K−µ+νµ channel are shown
and discussed at the end of the section.

9.1 Signal fit model

In order to determine the B0
s → K−µ+νµ yield, a simultaneous fit is performed to

two bins of q2, with the bin boundary placed at q2 = 7GeV2/c4. The two yields will
be used to extract the branching fraction of the signal in the two bins.As for the
normalization fit discussed in the previous section, the signal fit to the corrected
mass of the K−µ+ is implemented using the HistFactory tool included in the
RooFit package as a binned template fit. The same implementation as for the nor-
malisation channel is used which is based on the Beeston-Barlow light method [118]
to incorporate MC template statistical uncertainties. A corrected mass range of
2500 MeV/c2 < mcorr < 5750 MeV/c2 is used in the fit to K−µ+ candidates. Candi-
dates in data are selected by passing all selection cuts for the B0

s → K−µ+νµ signal
channel described in Section 6. Even after these tight selection cuts a large number
of background sources remain.
Dangerous background contributions come from B0

s decays to excited K∗ reso-
nances, where the K∗ further decays into a kaon and a neutral pion. Partially re-
constructed decays involving charmonium resonances such as Bq → cc̄K+X, where
the charmonium further decays into (µ+µ−) are critical. Those are dominated by
B+ → J/ψK+ decays which have a similar template shape as the signal. A large
background component comes from |Vcb| transitions such as Bq → DqµνX decays,
where the D-meson further decays via a kaon. Those decays have a much larger
branching fraction compared to the signal, but their candidates peak at lower cor-
rected mass as they are only partially reconstructed. Combinatorial background
from random combinations of a kaon and muon and candidates containing misiden-
tified kaon and muon particles are also present in the data after all selections cuts
but their contribution is much smaller .
All fit components used for the signal fit together with their template sources are
summarised in Table 19. The templates originating from Monte Carlo simulation
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Component Source
B0
s → K−µ+νµ (Signal) Monte Carlo

B0
s → K∗−µ+νµ Monte Carlo

B0
s → K∗−0 (1430)µ+νµ Monte Carlo

B0
s → K∗−2 (1430)µ+νµ Monte Carlo

B− → J/ψK− Monte Carlo
B− → J/ψK∗− Monte Carlo
B0 → J/ψK∗0 Monte Carlo
Combinatorics K−µ+ event mixing (data-driven)
Misidentified particles Fake muon and kaon sample (data-driven)
b →c →s inclusive Monte Carlo cocktail

Table 19: Fit component of the Signal Fit to extract the B0
s → K−µ+νµ yield.
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Figure 54: B0
s corrected mass template shapes of the three excited kaon resonances

considered in the signal fit compared to the B0
s → K−µ+νµ signal decay (left). In right

their combined template is shown which is used as an input template to the signal fit.

are corrected for differences in kinematic and mismodelling between simulation and
data using the BDT reweigther introduced in Section 7.

9.2 Combined MC templates

Three excited kaon resonances K∗−, K∗−2 (1430) and K∗−0 (1430) are considered as
backgrounds for B0

s → K−µ+νµ decays, where each of the excited kaons decays to
K−π0. Their shape in corrected mass is plotted in left of Figure 54 together with
the signal template. Due to their similar shape those templates are combined into
a single template in the fit as the fit is not able to distinguish between the different
excited K∗ components. The combination of those templates is done taking into
account their different spin structure, such that the K∗ is a vector and contributes
with 3 different helicity states to the decay, K∗−0 (1430) is a scalar and K∗−2 (1430)
is a tensor. Therefore isospin relations of the PDG [12] from other decays such
as B+ → K∗+µ+µ− with respect to B+ → K+µ+µ− has be used to relate their
relative expected branching fraction as there are no theory predictions available.
Including the different branching fractions of the K∗ resonances to decay into the
final state K−π0 from the PDG [12], this leads to the following fractions between
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Figure 55: q2-distribution of data passing all selection cuts (blue) compared to simulated
B+ → J/ψK+ events (green).

the components in the template:

0.64×K∗− + 0.24×K∗−0 (1430) + 0.12×K∗−2 (1430) (73)

The final combined template which is used as input template to the signal fit is
shown in right of Figure 54. It will be called the Kstmunu component from now on.

Another dangerous background source comes from partially reconstructed
Bq → cc̄(→ µ+µ−)K+X decays, where cc̄ stands for different charmonium
resonances and the X denotes other light hadrons. Those include decays like
B+ → J/ψK+, B+ → ψ(2S)K+, B0

s → J/ψφ(→ K+K−) but also higher excited
kaon resonances such as B+ → J/ψK∗+ and B0 → J/ψK∗0. Those type of
backgrounds are very suppressed by the isolation and BDT cuts described in
detail in Section 6, but due to their high branching fraction with respect to the
signal decay a large amount still passes the selection. This can be seen from
the q2-distribution of data passing all selection cuts shown in Figure 55, where a
peak at around 10 GeV2/c4 is visible which corresponds to the nominal J/ψ mass
squared. For illustration purpose it is compared to the simulated q2-distribution
of B+ → J/ψK+, which is the dominant contribution of this kind of background
as only one particle is missing. The other decays mentioned above which also
contribute to the so-called B2CC decays are further suppressed by the isolation
algorithm and BDTs due to their additional charged particles. Also the branching
fraction of higher charmonium states decaying into µ+µ− is smaller. Therefore
only three templates are considered to describe the B2CC component in the fit:
B+ → J/ψK+, B+ → J/ψK∗+ and B0 → J/ψK∗0. Their shape is compared to
the signal in Figure 56. Due to their similar shape they are combined into a single
template in the fit, which is shown in right of Figure 56. Their combination is
based on their relative branching fraction.

The large background from |Vcb| transitions of Bq → (Dq → K)µνX decays is
described by an inclusive simulated sample selecting Hb → (Hc → K+X)µ−X ′
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Figure 56: B0
s corrected mass template shapes of the three considered B2CC templates in

the signal fit compared to the B0
s → K−µ+νµ signal decay (left). In right their combined

template is shown which is used as an input template to the signal fit.
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Figure 57: B0
s corrected mass template shapes of |Vcb| transitions such as

Bq → (Dq → K)µνX denoted here as inclukmu compared to the B0
s → K−µ+νµ sig-

nal decay (left). In right their combined template is shown which is used as an input
template to the signal fit.

events, where Hb and Hc stands for bottom and charm hadrons. The composition
of this sample is given in Table 20, for each listed decay the charm hadron has to
further decay into a kaon with a opposite charge to the muon. A large MC sample
was generated of around 83M events to describe this component, after all selection
cuts outlined in Section 6 only around 10k events are left. The corrected mass
shape of this component is shown in Figure 57 compared to the signal template.
This type of background will be called inclukmu in the following chapter.

9.3 Combinatorial background

The selection cuts discussed in Section 6 remove already a large component of
the combinatorial background, especially the quadrant cut removes the low pT

combinatorial and the corrected mass error cut is very powerful to further suppress
this kind of background at high corrected mass. The remaining combinatorial
background will be discussed in this section.
The usual approach to use µ+K+ SS data as a proxy for this background
component and removing the misidentified background from it does not work
here, as additional physics background contribute, which are not present in the
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Decay fraction [%]
B0 →D0µ−νµ X 10.02 ± 0.04
B0 →D+µ−νµ X 9.92 ± 0.04
B+ →D0µ−νµ X 19.76 ± 0.05
B+ →D+µ−νµ X 3.50 ± 0.03
B0
s →D0µ−νµ X 1.17 ± 0.01

B0
s →D+µ−νµ X 2.69 ± 0.02

B0
s →D+

s µ
−νµ X 23.67± 0.06

b baryon semileptonic 4.72 ± 0.03

Table 20: Decomposition of the inclusive MC sample selecting Hb → Hc(→ K+X)µ−X ′

events used to model |Vcb| background.

µ+K− OS data. Those include Cabibbo-favoured decays such as B+ → D̄0µν,
B+ → D−µ+π+µνX, B0 → D−µ+µν , B

0 → D0µνX, B0 → D∗µ+νµX, where
the charm meson then further decays via 2-, 3- and 4-body decays including
neutral pions. As a first attempt it was tried to subtract all these additional
components not present in the OS sample from the SS data, but this procedure
was discarded later since it is very error prone. Also the subtraction would need
templates for every component which is very computing resource intensive and the
statistics of the SS sample passing all selection cuts is not enough as it includes a
pre-scale factor of 0.1 in data. Therefore another method is needed to model the
combinatorial background.
Another common approach is to use events outside the reconstructed mass peak
in the sidebands above or below the peak. Due to the only partially reconstructed
signal decay including the neutrino there is no defined mass peak. By using the
corrected mass there are regions in phase space above the nominal mass of the B0

s

meson mK−µ+ > mB0
s

where a pure combinatorial sample can be obtained. This
however can only be used in that region above the B0

s mass and thus not in the
whole phase space considered in the fit to the corrected mass.

For this analysis a new method was developed to model the combinatorial
background, the so-called event mixing method. Here a candidate kaon track from
one event in data is combined with a candidate muon from another event and
the B0

s meson is reconstructed from this combination. The method is validated
by comparing the kinematics of these mixed data events with pure combinatoric
candidates in data above the B0

s mass, as outlined before.
The event mixing uses OS 2011 data events passing the stripping selections
outlined in Section 6. Those are split based on B0

s , K
−, µ+ candidate information

and the underling event. A new combinatoric B0
s candidate is created by combining

a muon and kaon from different events together, as illustrated in Figure 58 and
by recalculating its kinematic quantities. In order to determine the secondary
vertex (SV) of the combinatoric B0

s , the flight distance (FD) of the combined B0
s

is randomly sampled from candidates above the B0
s mass (mK−µ+ > mB0

s
) and

then used together with the primary vertex to calculate the secondary vertex.
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Event # n-1 n n+1 n+2 n+3 n+4 n+5 n+6 n+8 n+9 n+10 n+12 n+15
Combi. 1 B0

s µ+ K− Ev.
Combi. 2 B0

s µ+ K− Ev.
Combi. 3 B0

s µ+ K− Ev.
Combi. 4 B0

s µ+ K− Ev.
Combi. 5 B0

s µ+ K− Ev.

Figure 58: Each event is used to generate five combinatoric combinations. For the first
combination consecutive events are mixed, for the second combination alternate events
are used. Figure taken from [9].

Having the SV allows to calculate the corrected mass, whereas the corrected mass
uncertainty is determined using a toy study: the position of the secondary vertex,
sampled from the FD, is randomly varied within its quoted uncertainty where
a new value of the corrected mass calculated each time. The uncertainty on the
corrected mass is then the standard deviation of the corrected mass evaluated with
those toys. The combined combinatoric B0

s candidates are then passed through a
loose selection mimicking the preselection cuts given in Section 6.

The event mixing method does not reproduce the kinematics of the B0
s meson

in the region mK−µ+ > mB0
s
, therefore a two dimensional reweighting is used to

correct the momentum and transverse momentum of the B0
s candidate. This is

shown in Figure 59 with and without the kinematic reweighting applied. The B0
s

corrected mass distribution as the fit variable and the invariant K−µ+ mass are
invariant under such a kinematic correction, as shown in bottom of Figure 59. The
B0
s corrected mass for the whole mass range considered in the signal fit is shown

in Figure 60, this template is used as an input to the signal fit. More validation
plots of the event mixing method can be found in Appendix D. This component
will be called combi in the following chapter.

9.4 Misidentified background

Tight PID selections cuts are applied to select the kaon and muon from the
B0
s → K−µ+νµ signal as described in Section 6. Other particle types such as pro-

tons or pions can pass the selection and can be misidentified as kaons or muons.
Those kind of backgrounds have to be estimated to determine their yield as well as
their corrected mass shape. This can be done using a data-driven method, which is
similar to the one used by the Λ0

b → pµ−ν analysis [123]. In general the contribu-
tion of the misidentified background will be smaller with respect to the Λ0

b → pµ−ν
one due to a better kaon identification efficiency compared with the proton identi-
fication used in [123].
Two components contribute to the misidentified background for B0

s → K−µ+νµ:
particles misidentified as kaons and as muons, where the first one is the dom-
inant contribution. Events where both particles are misidentified are very rare
and will be neglected. To obtain misidentified background templates, data sam-
ples without kaon and muon PID requirements are used, those are selected
by the ’fake’ K and µ stripping lines: StrippingB2XuMuNuBs2K FakeKLine,

StrippingB2XuMuNuBs2K FakeMuLine. From those samples enriched regions of
π, µ, p for the misidentified K+ component and π, K, p for the misidentified µ−
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Figure 59: Distributions of mixed events before (blue) and after (red) kinematic reweight-
ing compared to the data in the region above the B0

s mass mK−µ+ > mB0
s

(black) for
the B0

s momenta (top left), pseudorapidity (top right), invariant mass (bottom left) and
corrected mass (bottom right). Figure taken from [9].
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Figure 60: The corrected mass of the K−µ+ pair plotted for candidates modelling the
combinatoric background. Figure taken from [9].
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Region Cuts applied to FakeKLine
Signal ∆logLKπ > 5 & ∆logLKp > 5 & ∆logLKµ > 5
π ∆logLKπ < 0 & ∆logLKp < 0 & ∆logLKµ < 0
p ∆logLKπ < 5 & ∆logLKp > 0 & ∆logLKµ < 0
µ ∆logLKπ < 0 & ∆logLKp < 0 & ∆logLKµ > 0

Region Cut applied to FakeMuLine
Signal ∆logLµπ > 3 & ∆logLµp > 0 & ∆logLµK > 0
π ∆logLµπ < 3 & ∆logLµp > 0 & ∆logLµK > 0
p ∆logLµπ < 3 & ∆logLµp > 0 & ∆logLµK < 0
K ∆logLµπ < 3 & ∆logLµp < 0 & ∆logLµK > 0

Table 21: PID requirements applied to obtain enriched regions for different particles for
the FakeKLine (top) and µ− FakeMuLine (bottom).

component can be obtained. Table 21 shows the PID cuts used to define such
regions. The yield of misidentified events estimated in the signal region for a given
particle type i (e.g π) is:

Yi =
N(region)i ×R(i→ K)

ε(i, regioni)
, (74)

where N(region)i is the number of candidates passing the PID cuts in Table 21
for the different particle type enriched regions, R(i → K) is the misidentification
rate per particle type in the signal region, and ε(i, regioni) the efficiency to select
particle-type i in the corresponding enriched region.
A complication is that the enriched regions themselves are not pure samples per
particle type i, they will rather have a contamination of other hadron species.
This cross-feed between the different region and various particle types has to be
accounted for in the previous equation and leads to

Nregioni =
∑
j

NTrue
regionj

× ε(j, regionj). (75)

Since ε(j, regionj) can be taken from PIDCalib as given in Table 22 for the differ-
ent enriched regions, the number of true events per enriched region of particle type
NTrue

regionj
from Equation 75 can be determined using the matrix inversion method.

Using Equation 74 and including the misidentification rate (R(i→ K)) from PID-
calib, this gives the yield for different misidentified particles in the signal region.
The total yield for misidentified kaons and muons is then obtained from summing
up the different components, which is around 2600 for kaon and 100 formuon can-
didates. Their distribution in the B0

s corrected mass variable is shown in Figure 61.
Both components are added together to get the final yield of the misidentified com-
ponent in the signal region as well as its template shape as input for the signal fit.
The yield of this component is Gaussian constraint in the fit.
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enriched region
particle type eff. [%] K π µ p
K 57.4 1.0 0.3 1.4
π 3.2 70.6 4.5 2.0
µ 0.6 10.1 76.4 0.51
p 2.7 9.7 0.9 30.1
K 97.9 18.1 3.3 85.6
π 89.6 89.1 3.9 82.2
µ 0.2 1.8 80.5 0.2
p 70.9 17.4 5.5 93.8

Table 22: PIDCalib efficiency for each particle-type in every enriched region calculated
for the kaon (top) and muon (bottom).
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Figure 61: B0
s corrected mass distribution for misidentified kaons (red) and muons (blue)

and the their total contribution in black.
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Figure 62: Signal fit to B0
s corrected mass in low (left) and high (right) q2 region. The

individual components are stacked on top of each other.

9.5 Fit results

A simultaneous maximum likelihood binned template fit is performed in two
bins of q2, which are split at q2 = 7GeV2/c4 using the Beeston-Barlow light
method implemented in HistFactory. The fit contains the six different tem-
plates explained before in this section: B0

s → K−µ+νµ Signal, the combined
Kstmunu and B2CC components, the combinatorial background modelled from
event mixing, the so-called inclukmu background from |Vcb| transitions and the
misidentified background obtained from the data driven method. The latter is
Gaussian constraint to the yield obtained from this method. One additional
constraint is needed for the fit to be able to disentangle the B2CC and Kstmunu
components which have a similar shape in corrected mass. The relative fraction of
B2CC events between the low and high q2 bin is constraint from MC simulation
to be 12% in the low and 88% in the high q2 bin. This is a valid assumption
since the branching fractions of these decays are well known as well as their
kinematic distribution as a function of q2. Also due to the J/ψ component in
the decay, they mostly peak at the nominal J/ψ mass with only a small tail to-
wards the low q2 bin as discussed previously in Section 11.3 and shown in Figure 55.

The result of the simultaneous fit to the low and high q2 bins is shown in
Figure 62 together with its pulls including data and simulation statistical uncer-
tainties. Here the different MC templates are drawn stacked on top of each other.
The signal component drawn in dark green is clearly visible in both bins, its
relative contribution is higher in the low q2 bin due to a smaller overall background
contamination. Also the high q2 bin shows are clear signal component but here
more background from B2CC, Kstmunu and especially from |Vcb| transitions are
contributing. The numerical fit results are given in Table 23 together with their
correlation matrix given in Table 24. There is a large anti-correlation between the
B2CC component and the Kstmunu yield in the high q2 bin.

The fit in Figure 62 is drawn allowing the templates to vary according to their
statistical uncertainties per bin according to the Beeston-Barlow method. This
deforms templates with large statistical uncertainties and pushes them up or down
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Component low q2 high q2

Signal 7277.90± 367.98 7415.90± 371.39
B0
s →K∗−µ+νµ 3407.16± 505.33 6809.36± 1399.12

B2CC 224.79± 198.00 1674.26± 1474.70
Combinatorics 2688.44± 135.11 941.78± 105.67
Misidentified particles 1431.79± 36.89 1534.61± 39.13
inclukmu 30401.8± 596.61 68798.90± 759.52

Table 23: Signal fit results for the simultaenous fit to the B0
s corrected mass for both q2

bins.

Bs Corr. mass (MeV)
2500 3000 3500 4000 4500 5000 5500

E
ve

nt
s 

/ (
 4

0.
62

5 
M

eV
 )

0

200

400

600

800

1000

1200

1400

1600

1800
BsKmunu

inclukmu

Kstmunu

B2CC

misID

combinatorics

Bs Corr. mass (MeV)
2500 3000 3500 4000 4500 5000 5500

P
ul

l

5−4−3−
2− 1−0
1
2
3
4
5

Bs Corr. mass (MeV)
2500 3000 3500 4000 4500 5000 5500

E
ve

nt
s 

/ (
 4

0.
62

5 
M

eV
 )

0

500

1000

1500

2000

2500
BsKmunu

inclukmu

Kstmunu

B2CC

misID

combinatorics

Bs Corr. mass (MeV)
2500 3000 3500 4000 4500 5000 5500

P
ul

l

5−4−3−
2− 1−0
1
2
3
4
5

Figure 63: Signal Fit to B0
s corrected mass in low (left) and high (right) q2 region drawn

without the Beeston-Barlow method.

to match the data per bin perfectly. Therefore it is difficult to judge if the the fit
model describes the data as the template are deformed. As a comparison the fit is
also drawn switching off this method, just scaling the input histograms by the fit
result given in Table 23, this additional fit is shown in Figure 63. Here the data
can also be well described by the different templates and in addition the template
statistical uncertainties are indicated as error bars on the templates. The inclkmu
template has the largest statistical uncertainties.

The result of the simultaneous signal fit to the B0
s corrected mass is vali-

dated as for the normalisation fit by performing 1000 fits to pseudo-data. For that
the data template in each pseudo-data fit is replaced with a toy template generated
by randomly selecting points from the total fit model with the same number of
events as in the fitted data. The parameters used to generate each toy are the
ones corresponding to the nominal fit results. The Beeston-Barlow procedure is
switched off when performing the toys as it overestimates the uncertainties as
the limited MC statistics of the templates are propagated to the fit uncertainties.
From these 1000 fits to pseudo-data the pull distribution can be determined. The
distribution of pulls should follow a normal distribution which is centred at zero
with a width of one. An offset would indicate a bias present in the fit and a
width differing from one would indicate that the uncertainty of the fitted yield is
incorrectly estimated and either over- or underestimated. The distribution of the
pulls for all 1000 fits to the pseudo-data of the signal fit is shown in Figure 64.
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Figure 64: Pull distribution for the signal yield from fits to 1000 pseudo-datasets together
with the distribution of the signal yield as the parameter of interest (POI) for these fits.

The pull distribution of the toy fits gives a mean of µ = 0.005 ± 0.030 and has a
width of σ = 0.959 ± 0.021 which is compatible with one. Therefore the signal
yield and the associated uncertainty are unbiased estimators.
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Table 24: Correlation matrix of the yield parameters of the signal fit
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10 Relative efficiencies and corrections

In the previous sections we have determined the yields for the B0
s → K−µ+νµ sig-

nal and B0
s → D−s µ

+νµ normalisation channel by fits their corresponding corrected
mass distributions. The next step is to convert these yields into a measurement
of the relative branching ratio of both decays. Therefore the relative efficiencies
have to be determined. The different decay topologies as well as the tight selection
cuts applied to the signal lead to different experimental efficiencies for both decays.
Moreover for the signal decay three different q2 regions are selected: q2 < 7GeV 2/c4,
q2 > 7GeV 2/c4 and the full q2 range. Between the first two regions inwards and
outward migration has to be taken into account which is discussed Section 10.6.
The relative efficiency is determined from simulated signal and normalisation sam-
ples. Differences between data and simulation are corrected from control samples
using data-driven methods. The total relative efficiency thus factorises into differ-
ent components:

εrel, q2≶7 =
εgen(B0

s → K−µ+νµ)

εgen(B0
s → D−s µ

+νµ)
× εsel(B

0
s → K−µ+νµ)

εsel(B0
s → D−s µ

+νµ)
× PID corr.

× trigger corr.× tracking corr.×migration corr. q2≶7GeV 2/c4

(76)

These relative efficiencies and applied correction will be described in more detail in
this section. The end of the section covers the estimated systematic uncertainties.

10.1 Generator efficiency

Only for MC events where all signal decay products are within the acceptance of
the detector, interactions with the detector are simulated. According generator
level cuts are directly applied after the generation of the decay and require the
polar angle θflight of all stable charged decay products to be within

0.01 < θflight < 0.4. (77)

For B0
s → K−µ+νµ events generator level cuts are applied to both the kaon and

the muon. In the normalisation channel B0
s → D−s µ

+νµ events are generated by
requiring the muon and the daughters of the D+

s to be in acceptance. All other sim-
ulated samples used as a proxy for the backgrounds, as described in Section 3.2.4,
require all charged tracks to be within the detector acceptance. The generator level
cut efficiency has to be determined for the different q2 regions. To determine this
efficiency for the signal and normalisation channel, 250000 events are generated for
each decay prior to the generator level cuts. Their generator efficiencies as a func-
tion of q2 are shown in Figure 65. The generator efficiencies are given in Table 25
together with their relative ratio, as explained above for the normalisation channel
only the full q2 range is used whereas for the signal three different q2 regions are
selected.
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Figure 65: The generator efficiencies plotted as a function of the true q2 for the signal
B0
s → K−µ+νµ on the left and the normalisation channel B0

s → D−s µ
+νµ on the right.

The q2 distributions are plotted in grey before and after the selections are applied. Figure
taken from [9].

Generator efficiency [%] B0
s → K−µ+νµ B0

s → D−s µ
+νµ Ratio

Full q2 20.84 ±0.083 17.87 ± 0.08 1.166 ± 0.006843
q2 < 7 GeV2/c4 19.67 ± 0.14 1.101 ± 0.008975
q2 > 7 GeV2/c4 21.13 ± 0.09 1.182 ± 0.007311

Table 25: Generator efficiencies for B0
s → K−µ+νµ and B0

s → D−s µ
+νµ decays in different

q2 regions evaluated on Monte Carlo together with their uncertainties coming from the
simulation statistics.
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Selection eff. [%] B0
s → K−µ+νµ B0

s → D−s µ
+νµ Ratio

Full q2 0.4162 ± 0.0138 0.7817 ± 0.02404 0.5265 ± 0.0270
q2 < 7 GeV2/c4 0.7790 ± 0.0209 0.9876 ± 0.0405
q2 > 7 GeV2/c4 0.3242 ± 0.0121 0.4094 ± 0.0233

Table 26: Selection efficiency for B0
s → K−µ+νµ and B0

s → D−s µ
+νµ decays in different

q2 regions evaluated on Monte Carlo together with their uncertainties coming from the
simulation statistics.

10.2 Selection efficiency

The selection is summarized in Section 6. Its efficiencies are evaluated on simulated
samples from the signal and normalisation channel. The resulting efficiencies are
given in Table 26 together with their relative ratio.

To ensure that differences between data and simulation are corrected properly
taken into account, the decay B+ →J/ψK+ is used as a control channel as
explained in Section 7. The decays of interest, B0

s → K−µ+νµ and B0
s → D−s µ

+νµ,
respectively, are partially reconstructed and have broad distributions making it
difficult or even impossible to isolate a pure signal sample in data. Contrary B+

→J/ψK+ can be selected purely in data using the sPlot technique and then its
distribution can be compared to simulation. For cuts on kinematics variables such
as the corrected mass error cut, the control channel is reconstructed partially by
only using one muon of the J/ψ in order to emulate the partially reconstructed
signal decay B0

s → K−µ+νµ. To evaluate efficiencies for isolation variables, the
control channel is fully reconstructed using both muons and the kaon to not have
any additional tracks associated to the secondary vertex. The selection efficiency
is calculated by performing a fit to the invariant µ+µ−K mass before and after
the selection cuts are applied, both for s-weighted data and simulation. From
this ratio a correction factor is obtained. The simulated signal B0

s → K−µ+νµ
and normalisation channel B0

s → D−s µ
+νµ are then scaled with this correction

factor, whereas its uncertainty is applied as a systematic uncertainty. For the
normalisation channel B0

s → D−s µ
+νµ only the charge isolation cut is applied as

explained in Section 6, its correction factor is determined using the same method.
The correction factors and the corresponding uncertainties for the different
selection cuts are given in Table 27. Due to the kinematic distribution of the
control channel B+→ J/ψK+, its q2 peaks at the squared of the J/ψ mass, such
that only very few events are reconstructed in the low q2 bin. Therefore only one
correction factor for the whole q2 range can be determined.

Figure 66 shows the distribution of the corrected mass error for simulated
signal events together with the simulated control channel and s-weighted data.
The black line indicates where the selection cut is placed. The response of the
charged track isolation BDT is shown in Figure 67 for the B0

s → K−µ+νµ signal
and B0

s → D−s µ
+νµ normalisation channel together with the control channel. The

charged BDT and same-sign (SS) BDT response for B0
s → K−µ+νµ are shown in

Figure 68 alongside with the control channel.
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B0
s → K−µ+νµ B0

s → D−s µ
+νµ

σmcorr 1.036± 0.005
Isolation BDT 0.993± 0.001 0.988± 0.002
Charged BDT 0.989± 0.007
Same Sign BDT 0.959± 0.011

Table 27: Correction factors applied to simulated B0
s → K−µ+νµ and B0

s → D−s µ
+νµ

decays determined exploiting the control channel B+ → J/ψK+.
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Figure 66: The corrected mass error for B+ →J/ψK+ in data and simulation together
with B0

s → K−µ+νµ candidates in simulation. The black line shows where the selection
cut is placed. Figure modified from [9].
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Figure 67: The response of the charged track isolation BDT for B0
s → K−µ+νµ (left) and

B0
s → D−s µ

+νµ (right) is plotted together with the B+ → J/ψK+ calibration samples.
The black line shows where the selection cut is placed. Figure modified from [9].
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Figure 68: The response of the charged BDT (left) and SS BDT (right) for B0
s → K−µ+νµ

candidates are plotted together with candidates of the B+ → J/ψK+ control sample.
Figure modified from [9].

10.3 Trigger efficiency

In general the trigger efficiency is defined in terms of the selected events

εtrig ≡ εtrig|sel =
Ntrig|sel

Nsel

, (78)

where Ntrig|sel are the number of selected events passing the trigger and Nsel are the
number of events that would been selected without the trigger. Here the problem
is that the latter number is unknown in data as only events passing the trigger
are stored and can be studied. Instead the so-called TISTOS method [125] is used
to determine the trigger efficiency in data which will be briefly explained in the
following, more details and the validation of the method itself can be found in
Reference [125].
Events can be triggered using tracks from the signal candidate, Triggered On Signal
(TOS), triggered by tracks not belonging to the signal, Trigger Independent of the
Signal (TIS), or triggered on both (TOB). Therefore the trigger efficiency can be
rewritten as

εtrig|sel =
Ntrig|sel

NTIS|sel

× NTIS|sel

Nsel

=
Ntrig|sel

NTIS|sel

× εTIS, (79)

where NTIS|sel are the number of TIS events after the selection is applied. The TIS
efficiency εTIS cannot be measured from data, but it can be approximated by the
TISTOS efficiency

εTIS ≈ εTISTOS ≡
NTIS&TOS

NTOS

(80)

where NTOS are the number of events that are selected by the TOS trigger and
NTIS&TOS the number of events that are both TIS and TOS. The approximation
assumes that the TIS efficiency εTIS is independent of the chosen sup-sample of
data, which was proven to be valid in Reference [125].

In this analysis the TISTOS method is used on a subset of its decay prod-
uct to determine the trigger efficiency.The K+µ− combinations of the signal
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Figure 69: TISTOS efficiency for partially reconstructed B+→ J/ψK+ decay in bins of
B+ pT and mcorr in background subtracted data (left) and simulation (right). Figure
taken from [9].

B0
s → K−µ+νµ and normalisation channel B0

s → D−s µ
+νµ have to fire the same

trigger lines (Hlt2SingleMuonDecisionTOS or Hlt2TopoMu2BodyDecisionTOS),
as explained in Section 6. This greatly reduces systematic effects due to the trigger
in the measurement of the branching fraction ratio of both decays. The remaining
differences in the trigger efficiency between both modes are related to different
kinematics or a difference in the corrected mass of the K+µ− pair.
In order to account for a possible mismodeling of the trigger efficiency in simulation
due to kinematic differences between data and MC, the TISTOS efficiency is
compared in simulation and data which follows the approach used in the Λb decays
analysis [123]. The comparison is made by evaluating the TISTOS efficiency in
the control channel B+→ J/ψK+, which is reconstructed as signal such that
one muon is ignored. The TISTOS efficiency is evaluated in bins of B+ pT and
corrected mass for both data and simulation, as shown in Figure 69. Figure 70
shows the ratio of data versus simulation efficiency TISTOSdata/TISTOSMC

based on the plots from Figure 69.

This difference between simulation and data in the control channel for each
2D bin of B+ pT and corrected mass is then used to correct the simulated
signal B0

s → K−µ+νµ and normalisation channel B0
s → D−s µ

+νµ depending on the
kinematic distributions. Their simulated 2D kinematic distribution is shown in
Figure 71. The correction map in Figure 70 is then used to correct the simulated
distributions shown in Figure 71. The calculated correction factors (data/MC) for
signal and normalisation are shown on the left side of Figure 72.
To estimate the statistical uncertainty due to this reweighting procedure, the
correction map is varied within the bin uncertainties using 1000 pseudo ex-
periments. The resulting distribution of the ratio of signal over normalisation
channel is shown on the right side of Figure 72. The mean of the distribution
is the trigger correction and the RMS gives the statistical uncertainty. The
statistical uncertainty is driven by the statistics of the available data control
sample B+→ J/ψK+. This procedure is repeated for the two q2 regions and is
summarised in Table 28.
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Figure 70: The ratio of data versus MC of the TISTOS efficicency
TISTOSdata/TISTOSMC for partially reconstructed B+→ J/ψK+ decays in bins of
B+ pT and mcorr. Figure taken from [9].
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Figure 71: Distributions of B0
s pT and mcorr signal (left) and normalisation (right) chan-

nel. Figure taken from [9].

117



MC(TISTOS)∈
data(TISTOS)∈

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.90

20

40

60

80

100

120

140

160

180

200

220 DsMuNu
KMuNu

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

νµCorrection Ds
νµCorrection K

0

10

20

30

40

50

60

70

80 Entries 1000
Mean 1.04
Std Dev 0.008219

Figure 72: Distribution of correction factors (data/MC) for signal (blue) and normali-
sation channel (red) on the left side. Distribution of the ratio of correction factors for
signal with respect to the normalisation channel for 1000 toy experiments (right). Figure
taken from [9].

B0
s → K−µ+νµ B0

s → D−s µ
+νµ Ratio

No Sel. 0.687± 0.007 0.661± 0.007 1.04± 0.008
q2
K−µ+ < 7 GeV2/c4 0.692± 0.007 1.046± 0.009

q2
K−µ+ > 7 GeV2/c4 0.684± 0.009 1.033± 0.009

Table 28: Trigger correction factors averaged over all events applied to Monte Carlo
samples in bins of q2. The ratio in the last column refers to the the ratio of signal versus
normalisation channel.

Using B+→ J/ψK+ decays, other cross checks for TISTOS and TOS efficiencies
for individual trigger lines are performed. The variation of the TOS fraction for
the trigger decisions in bins of η and pT are studied, the trends are compatible
between data and MC as shown in Appendix E.

10.4 Particle identification

As explained in Section 3.2.2, particles are identified combining the information
from different sub-detectors such as the calorimeters, the muon stations and
the two RICH detectors. These systems provide an excellent charged particle
identification (PID). Modelling their combined response in simulation is not
trivial since it depends on many different quantities such as the kinematics of the
particles, beam conditions as well as event-level quantities. Therefore data-driven
methods were developed to determine PID efficiencies and misidentification
rates for different final state particles such as protons, muons, charged pions
and kaons, based on calibration data samples. The calibration samples contain
candidates which have been selected without the use of any PID information,
such that different PID requirements can be tested using the tag and probe
method [124]. The calibration samples used are listed in Table 29. Here the PID
response is parametrised as a function of particle momentum, pseudo rapidity or
track multiplicity of the event. Therefore the determined PID performance of
these calibration samples are usable for any tracks. Tools to evaluate those are
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Decay Tag Probe
D∗+ → (D0 → K−π+)π+ soft π+ K−

D∗+ → (D0 → K−π+)π+ soft π+ π+

Detached J/ψ → µ+µ− µ± µ∓

Λ→ pπ− π− p

Table 29: The decays are used by the PIDCalib software package [124] to calibrate
particle identification efficiencies. The low momentum (soft) tag π+ originates from the
D∗+ decay allowing the flavour of the D0 to be unambiguously identified.

particle type PID selection cuts
µ+ ∆logLµπ > 3 and ∆logLµp > 0 and ∆logLµK > 0
K− ∆logLKπ > 5 and ∆logLKp > 5 and ∆logLKµ > 5
K+ ∆logLKπ > −2
π− ∆logLKπ < 20

Table 30: The PID likelihood selections applied to all particles. Selections are aligned be-
tween B0

s → K−µ+νµ and B0
s → D−s µ

+νµ minimising systematics when taking the ratio
of efficiencies. While the cuts for µ+ and K− are used for the signal and normalisation
channel, those for K+ and π− are only used for the normalisation mode.

collected within the PIDCalib software package [124] which is provided by the
collaboration. This package provides look-up tables for all PID efficiencies and
can be used by analysts to extract efficiencies for an analysis specific PID selection.

All PID selections cuts which are applied in this thesis to simulation and
data were introduced in Section 6, they are summarized in Table 30. Tight PID
selections are only applied to the opposite sign kaon and muon pair to minimise
systematic effects, while for the normalisation channel B0

s → D−s µ
+νµ also loose

selections to the additional opposite sign π−K+ pair are applied. Therefore the
PID selection efficiency will be similar for both signal and normalisation decay
such that systematic effects mostly cancel when the correction factor the ratio of
both is calculated.
Since the PID efficiency depends on track kinematic and underlying event vari-
ables, differences in these quantities between the calibration and signal samples
could lead to systematic differences in PID efficiencies. Therefore lookup tables
are binned in track momentum, pseudo rapidity and track multiplicity providing
the PID efficiency in that specific data region. Two dimensional projections of
these tables are shown in Figures 73 and 74. In order to minimise systematic
effects from intra bin variations in the efficiency and from the sWeight background
subtraction for the calibration samples, a MC/Data driven correction is used. The
MC/Data driven correction returns the ratio of PID efficiencies obtained in data
and Monte Carlo samples. This ratio is then used to correct the PID efficiency in
the simulation.
To determine the PID efficiency correction each track from each decay in the
MC sample is weighted by the correction factor obtained from the ratio of the
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Figure 73: A 2D projection of the PID efficiency lookup table for kaons determined from
D∗+ → (D0 → K−π+)π+ decays in data (left) and simulation (right) [124].
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Figure 74: A 2D projection of the PID efficiency lookup table for muons determined from
J/ψ → µ+µ− decays in data (left) and simulation (right) [124].
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B0
s → K−µ+νµ B0

s → D−s µ
+νµ Ratio

Full q2 0.850 ± 0.006 0.798 ± 0.007 1.067 ± 0.008
q2 < 7 GeV2/c4 0.848 ± 0.006 1.062 ± 0.008
q2 > 7 GeV2/c4 0.854 ± 0.006 1.074 ± 0.008

Table 31: Averaged PID correction factors applied to Monte Carlo samples to correct for
simulation and data differences.

lookup tables in MC and data. The corrected Monte Carlo yield is taken as the
product sum of the correction weights of each B daughter track. Systematic
uncertainties are evaluated by performing 1000 pseudo-experiments, each time
varying the contents of the lookup tables within its quoted uncertainties. This
is done seperately for the different q2 ranges considered. The corresponding
PID correction ratios between the signal and normalisation channel are shown in
Figure 75 as an example for the full q2 range. Additional systematic uncertainties
are due to the binning scheme in track momenta, pseudo rapidity and multiplicity
variables in the PIDCalib lookup table. Varying the binning scheme leads to an
additional systematic uncertainty of 0.4%. The final PID corrections averaged
over all tracks and all events for each q2 bin used in the analysis are given in
Table 31.
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Figure 75: Spread of the PID correction ratio between the signal and normalisation
channel by varying the efficiency corrections in the different bins of the lookup tables
within their uncertainties. This spread is used as a systematic uncertainty related to the
limited statistics of the calibration samples used to derive the correction. Here the PID
correction for the full q2 range is shown as an example. Figure taken from [9].

10.5 Tracking correction

In order to perform a branching fraction measurement it is necessary to determine
the track reconstruction efficiency. This is measured using a data-driven tag-and-
probe method from J/ψ → µ+µ− decays, where the tag muon track is fully recon-
structed and identified as a muon and the probe track is only partially reconstructed
using only specific subdetectors to probe the remaining ones [126]. The tracking
efficiency is defined to be the fraction of J/ψ → µ+µ− where the probe track can
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Figure 76: The tracking efficiency look-up table used to correct charged tracks, binned
in momentum and pseudorapidity. Figure taken from [127].

be matched to a fully reconstructed track. The ratio of the resulting tracking effi-
ciency between data and simulation is then used to weight the simulation sample
according to pseudorapidity and momentum to obtain an efficiency correction in
each (pT, y) bin. Such a lookup table is provided by the collaboration and shown
in Figure 76. Here the correction factors range from 0.987-1.073. These correction
factors are applied as a weight on each track depending on its kinematic and the
efficiencies are corrected by taking the product of the weights for each track. Before
this weight can be applied the simulated sample needs to be weighted to agree in
event multiplicity and other variables with the data. This is done using a BDT as
explained in Section 7. As the signal channel B0

s → K−µ+νµ is a two body decay
and the normalisation channel B0

s → D−s µ
+νµ is a four body decay, the corrections

partially cancels when taking the ratio of the efficiencies.
The systematic uncertainties on the correction factor are determined by perform-

ing 1000 pseudo-experiments, each time varying the efficiencies in the lookup tables
within their uncertainties. The weight per event is then obtained by multiplying
the efficiency ratios for all signal tracks which is shown in Figure 77. The RMS
of the distribution of the tracking correction ratio gives the statistical uncertainty,
which is 0.1% for signal, 0.4% for B0

s → D−s µ
+νµ and 0.4% for their ratio. In

addition systematic uncertainties from hadronic interactions with the detector ma-
terial have to be taken into account. They partially cancel in the ratio between
the two decays, but due to the two extra tracks in the normalisation channel from
D−s → K+K−π− there is an additional uncertainty for the kaon of 1.1% and the
pion track of 1.4%. The sum of both gives an uncertainty of around 3% includ-
ing also the uncertainty of the method. The tracking corrections to the efficiency
calculations are summarised in Table 32 for each of the q2 bins used in the fit.

10.6 Migration in between q2 bins

The q2 variable is reconstructed from the neutrino solution selected by the linear
regression algorithm described in Section 5.2. Due to the non-negligible resolution
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Figure 77: Distribution of tracking correction ratio from varying the individual efficiency
corrections from the lookup table within their uncertainties. Figure taken from [9].

K−µ+ q2 Sel. B0
s → K−µ+νµ B0

s → D−s µ
+νµ Ratio

No Sel. 0.999 ± 0.012 0.975 ± 0.035 1.025 ± 0.03
q2
K−µ+ < 7 GeV2/c4 0.999 ± 0.012 1.025 ± 0.03

q2
K−µ+ > 7 GeV2/c4 0.999 ± 0.012 1.025 ± 0.03

Table 32: Tracking efficiency corrections applied to Monte Carlo events.

of the reconstructed q2, the migration of events between the selected q2 > 7 GeV2/c4

and q2 < 7 GeV2/c4 regions have to be determined. This leads to rejected events
which should have been selected with a truly reconstructed q2 in the requested
region but are reconstructed only outside (outward migration). Furthermore there
are events outside the region of interest based on the true q2 which are selected
inside due to their resolution (inward migration). The migration of events is deter-
mined by comparing the true q2 distribution against the reconstructed one as shown
in Figure 78. Here the regions containing events migrating in and out are marked
in green and pink, whereas the correctly selected events are marked in white for
the low q2 bin and in olive for the high q2 bin. A correction factor is calculated
from these simulated events by taking the ratio of true versus reconstructed events
in the different q2 regions. The resulting correction factors are:

migration corr. q2>7GeV2/c4 = 1.022± 0.018

migration corr. q2<7GeV2/c4 = 0.990± 0.017.
(81)

These results are obtained from simulated B0
s → K−µ+νµ events after a full selec-

tion is applied. The systematic uncertainty from the q2 migration is assigned as
the uncertainty of the correction factor.

10.7 Final corrected relative efficiency

The calculated efficiencies and correction factors applied to determine the full cor-
rected efficiency of B0

s → K−µ+νµ and B0
s → D−s µ

+νµ as explained in the previous
section are summarised in Table 33. The final corrected ratio of efficiencies for
B0
s → K−µ+νµ divided by B0

s → D−s µ
+νµ is given in Table 34.
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Figure 78: The reconstructed q2 solution using the regression model plotted against the
true q2 for simulated B0

s → K−µ+νµ events. The different migration regions are marked
in green and pink when selecting the q2 region of interest above and below 7 GeV2/c4.

Source Efficiency [%] B0
s → K−µ+νµ

B0
s → D−s µ

+νµ q2 < 7GeV2/c4 q2 > 7GeV2/c4

Generator 17.87± 0.08 20.84± 0.08 19.67± 0.14 21.13± 0.09
Selection 0.7817± 0.02404 0.4162± 0.0138 0.7790± 0.0209 0.3242± 0.0121
Source Correction factor
Tracking 0.975± 0.035 0.999± 0.012 0.999± 0.012 0.999± 0.012
Trigger 0.661± 0.007 0.687± 0.007 0.692± 0.007 0.684± 0.009
PID 0.789± 0.007 0.850± 0.006 0.848± 0.006 0.854± 0.006
σmcorr 1.036± 0.005 1.036± 0.005 1.036± 0.005
Isolation 0.988± 0.002 0.993± 0.001 0.993± 0.001 0.993± 0.001
Charged BDT 0.989± 0.007 0.989± 0.007 0.989± 0.007
Same sign BDT 0.959± 0.011 0.959± 0.011 0.959± 0.011
q2 migration 0.990± 0.017 1.022± 0.018

Total Corrected Efficiency [%]
0.07097± 0.0030 0.0498± 0.00021 0.0860± 0.0035 0.0395± 0.0018

Table 33: Summary of efficiencies and corrections entering into the combined efficiency
for the signal and normalisation modes.
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Source Efficiency Ratio
Full q2 q2 < 7GeV2/c4 q2 > 7GeV2/c4

Generator 1.166± 0.006843 1.101± 0.008975 1.182± 0.007311
Selection 0.5265± 0.02704 0.9876± 0.04052 0.4094± 0.02333
Source Correction factor
Tracking 1.025± 0.03 1.025± 0.03 1.025± 0.03
PID 1.067± 0.008 1.062± 0.008 1.074± 0.008
Trigger 1.04± 0.008 1.046± 0.009 1.033± 0.009
σmcorr 1.036± 0.005 1.036± 0.005 1.036± 0.005
Isolation 1.005± 0.002 1.005± 0.002 1.005± 0.002
Charged BDT 0.989± 0.007 0.989± 0.007 0.989± 0.007
Same sign BDT 0.959± 0.011 0.959± 0.011 0.959± 0.011
q2 migration 0.990± 0.017 1.022± 0.018

Total Corrected Efficiency Ratio
0.6897 ± 0.04315 1.2100 ± 0.07016 0.5556 ± 0.0390

Table 34: Summary of efficiency and correction ratios entering into the combined effi-
ciency.

10.8 Systematic uncertainties

The uncertainties on the correction factors calculated before to correct for MC
and data differences are taken as systematic uncertainties when calculating the
final ratio of branching fractions.

The corrected efficiency for B0
s → K−µ+νµ is plotted against the true cor-

rected mass and true q2 in Figure 79 which are built from truth matched
quantities. One can see that the selection is q2 dependent such that events at
high q2 are suppressed. This bias together with the lack of knowledge on the
shape of true q2 distribution leads to a large uncertainty on the efficiency. As
described earlier in Section 2.5, the different form factor models predict a very
different q2 distribution. Their different distributions after all applied selection
cuts are compared in Figure 80. One form factor prediction has to be chosen for
the different q2 bins. Here LCSR [52] prediction are used for the low q2 bin as
it is valid is that kinematic region. The latest Lattice QCD calculations from
the MILC collaboration [51] are used in the high q2 bin as well as for the full q2 bin.

Since the generator and selection efficiency are determined from MC sam-
ples reweighted to the corresponding form factor models, there is a systematic
uncertainty related to the finite MC statistic of these samples. The systematic
uncertainty due to the generator level efficiency is small due to its large generated
sample size. The selection efficiency is calculated before and after applying all
selection cuts explained in detail in Section 6. Since some of them are very tight
in order to reject as much background as possible the statistics of the sample is
limited which leads to the largest systematic uncertainty.

The finite MC statistics also leads to an uncertainty in the template shape
for the templates used in the signal and normalisation fit. By using the Beeston-
Barlow light method as described in Section 8.2 for the maximum likelihood
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Figure 79: The corrected efficiencies for selections on B0
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sections cuts are applied successively: no selections (black), generator level cuts (red),
stripping and trigger (green), corrected mass error (blue), Isolation and Charged BDT
(magenta), SS BDT (light blue). Figure modified from [9].

0 5 10 15 20 25

610×

)2 (MeV2q

0

50

100

150

200

 )
2

E
ve

nt
s 

/ (
 0

.1
25

 G
eV

LCSR

HPQCD

UKQCD

MILC

Figure 80: q2 distribution of the different FF models.
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template fits, the effect of this systematic uncertainty is already folded into the
fit likelihood. Therefore the uncertainties on the yields presented in Tables 17
and 23 contain both the statistical uncertainty of the data sample and the
systematic uncertainty due to the limited MC sample size. To separate out the
latter component from the total fit uncertainty, both fits are repeated without the
use of the Beeston-Barlow method. The quadrature difference is separated from
the total fit uncertainty as the systematic uncertainty from the limited statistic of
the fit templates, which is 3.5% for the full q2 range and 4.3% for the different q2

bins as a relative uncertainty for the ratio of branching fractions. By doing this
the reported statistical uncertainty refers only to the statistical uncertainty of the
data, not including the MC statistical uncertainty.

The D+
s of the normalisation channel is reconstructed via the D−s → K−K+π−

decay mode. Therefore the external branching fraction is needed to normalise the
decay B0

s → D−s µ
+νµ. The latest PDG [12] gives:

B(D−s → K−K+π−) = 5.45± 0.17% (82)

which gives a relative uncertainty of 3.1% for the ratio of branching fractions.

Systematic uncertainties on the signal fit come from variations of the cor-
rected mass due to the different form factor models. This is tested by reweighting
the default Isgur-Wise model with LQCD and LCSR predictions. The effect on
the corrected mass is shown in Figure 81 for the different q2 regions used in the
analysis, which is only barely visible. Therefore this systematic uncertainty is
negligible.

Table 35 summarizes the total systematic uncertainties for both signal and
normalisation channel. Their relative systematic uncertainties associated to the
branching fraction ratio are given in Table 36.
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Figure 81: Reweighting the corrected mass with different FF predictions for different q2

regions: q2 < 7 (top), q2 > 7 (middle), full q2 (bottom)
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Uncertainty [%] B0
s → D−s µ

+νµ B0
s → K−µ+νµ

No q2 sel. q2 < 7 q2 > 7
Generator efficiency 0.5 0.4 0.7 0.4
Selection efficiency 3.1 3.3 2.7 3.7
Tracking 3.5 1.2 1.2 1.2
Trigger 0.7 0.7 0.7 0.9
PID 0.7 0.6 0.6 0.6
mcorr error 0.5 0.5 0.5
Isolation 0.2 0.1 0.1 0.1
Charged BDT 0.7 0.7 0.7
Same Sign BDT 1.1 1.1 1.1
q2 migration 1.7 1.8
Fit MC statistics 2.3 2.5 3.6 3.6
B(D−s → K−K+π−) 3.1

Table 35: Summary of systematic uncertainties for B0
s → D−s µ

+νµ and B0
s → K−µ+νµ.

Variable Relative uncertainty
No q2 sel. q2 < 7 q2 > 7

Selection efficiency 5.1 4.1 5.7
Fit MC statistics 3.5 4.3 4.3
B(D−s → K−K+π−) 3.1 3.1 3.1
Tracking 3.0 3.0 3.0
q2 migration 1.7 1.8
Same Sign BDT 1.1 1.1 1.1
Trigger 0.8 0.9 0.9
Particle Identification 0.8 0.8 0.8
Charged BDT 0.7 0.7 0.7
Generator efficiency 0.6 0.8 0.6
mcorr error 0.5 0.5 0.5
Isolation 0.2 0.2 0.2
Total 7.8 7.9 8.8

Table 36: Summary of systematic uncertainties associated with the branching fraction
ratio of B0

s → K−µ+νµ to B0
s → D−s µ

+νµ.
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11 Results

This chapter combines all previously obtained quantities, such as the signal and nor-
malisation yields determined in Sections 8, 9 and the relative efficiency calculated
in Section 10, and determines the ratio of branching fractions of B0

s → K−µ+νµ
with respect to B0

s → D−s µ
+νµ. This branching fraction ratio is then used together

with theoretical predictions to extract the ratio of CKM matrix elements |Vub|/|Vcb|
from these decays. In addition the total B0

s → K−µ+νµ branching fraction is de-
termined. The obtained results are compared to already existing measurements at
the end of the section and discussed.

11.1 Measurement of the branching fraction ratio

The ratio of branching fractions for the signal and normalisation channel,
B0
s → K−µ+νµ and B0

s → D−s µ
+νµ respectively, is determined from the ratio of

yields at production which is obtained by correcting the fitted yields by their effi-
ciencies. Since the D−s of the normalisation channel is reconstructed through the
decay channel D−s → K+K−π− this branching fraction has also to be taken into
account. The branching fraction ratio is calculated from the following formula

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
=

N(B0
s → K−µ+νµ)

N(B0
s → D−s (→ K+K−π−)µ+νµ)

× ε(B0
s → D−s µ

+νµ)

ε(B0
s → K−µ+νµ)

× B(D−s → K+K−π−).
(83)

The input values are summarised in Table 37. The fitted normalisation and signal
yields come from Section 8 and 9, respectively, where the given uncertainty cor-
responds to the statistical uncertainty of the data as the MC statistic uncertainty
is taken into account as a systematic uncertainty. The relative efficiency is deter-
mined in the previous section. Together with the external branching fraction taken
from the PDG [12] they can be used to calculate the branching fraction ratio.
This results in the ratios of branching fractions for B0

s → K−µ+νµ and
B0
s → D−s µ

+νµ decays in the different q2 bins considered:

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
|full q2 = (6.0791± 0.2006(stat)± 0.4759(syst))× 10−3 (84)

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
|low q2 = (1.7163± 0.0714(stat)± 0.1350(syst))× 10−3 (85)

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
|high q2 = (3.8086± 0.1426(stat)± 0.2903(syst))× 10−3 (86)

where the first uncertainty is statistical coming from the size of the fitted data
sample and the second uncertainty is systematic. The uncertainty on the branch-
ing fraction ratio is dominated by the systematic uncertainty, which is twice as big
as the statistical uncertainty.
The various systematic uncertainties entering into these ratios were summarised in
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Input Variable Value Reference
N(B0

s → K−µ+νµ) 14693.8 ± 353.4 Table 23
low q2 7277.9 ± 252.0
high q2 7415.9 ± 253.8

N(B0
s → D−s µ

+νµ) 191000 ± 4393 Table 17
ε(B0

s → K−µ+νµ)/ε(B0
s → D−s µ

+νµ) 0.6897 ± 0.04315 Table 34
low q2 1.2100 ± 0.07016
high q2 0.5556 ± 0.0390
B(D−s → K+K−π−) 0.0545 ± 0.0017 [12]

Table 37: Summary of quantities entering the calculation of the ratio of branching frac-
tions.

the previous section in Table 36. The largest systematic uncertainty comes from
the selection efficiency which is calculated from MC samples and is therefore re-
lated to the statistics of the MC sample. The second largest systematic uncertainty
is also related to the MC statistics, but this time due to the template statistical
uncertainty used in the signal and normalisation fit. Both of them can be reduced
by generating more MC samples. Especially for the signal fit a larger statistic of
the |Vcb| template would help to reduce the uncertainty as this component has the
largest uncertainty in the template shape coming from the small MC statistics as
shown in Figure 63 of the Section 9.5. After all selection cuts only 10k events left
in the full q2 range whereas the fit pushes this component up by a factor of 10
requiring around 100k events.
The branching fraction B(D−s → K+K−π−) taken from the PDG [12] is the third
largest systematic uncertainty, but it is only marginally bigger than the uncertainty
from the tracking. The latter one is irreducible since it is dominated by the uncer-
tainty of the material interaction of the two additional tracks of the normalisation
decay. Systematic uncertainties due to the q2 migration can be improved by a more
precise form factor prediction for B0

s → K−µ+νµ. A more realistic simulation of the
same sign, charge BDT response as well as isolation and corrected mass variables
could help to improve their corresponding systematic uncertainty. Uncertainties
due to the trigger and PID can be improved due to a higher statistics of their
control modes in data.

11.2 Measurement of CKM elements |Vub|/|Vcb|

The ratio of CKM matrix elements |Vub|/|Vcb| can be determined from the branching
fraction ratio calculated in the previous section using the formula:

|Vub|
|Vcb|

=

(B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
×RFF

) 1
2

(87)
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where RFF is a ratio determined from the form factor (FF) models described in
more detail in Section 2.4 defined as

RFF =

∫ q′2max
0

dΓ(B0
s→D

−
s µ

+νµ)

dq2
/|Vcb|2dq2∫ q2max

0

dΓ(B0
s→K−µ+νµ)

dq2
/|Vub|2dq2

. (88)

The corresponding predicted decay widths were discussed in Table 3 of Section 2.5
for the different available FF models. Using the prediction from the MILC
collaboration [51] for the integrated B0

s → K−µ+νµ decay width and the latest
B0
s → D−s µ

+νµ FF predictions from the HPQCD collaboration [47] leads to the
following FF ratio:

RFF =
9.155± 0373

4.263± 0.922
= 2.147± 0.473. (89)

Using this ratio of form factors together with the branching fraction ratio for the
total q2 range from Equation 84 gives

|Vub|
|Vcb|

= 0.11425± 0.00485(exp.)± 0.01257(theo.) (90)

where the first uncertainty is the combined experimental uncertainty from the
statistical and systematic uncertainties on the branching fraction ratio given in
Equation 84 and the second uncertainty is theoretical from the uncertainties on
the form factor predictions.

A comparison of this new result with the existing results of inclusive and
exclusive |Vub| and |Vcb| results from HFLAV [60] as well as the recent |Vub|/|Vcb|
determination from Λb-decays [5] by LHCb is shown in Figure 82. The world
average indicated in red is a combined fit done by HFLAV to the exclusive |Vub|
and |Vcb| measurements coming from B̄ → πlν`, B̄ → D∗lν` and B̄ → Dlν` decays
respectively, as well as the constraint from Λb decays, excluding the measurement
performed in this thesis. The fit gives a value of P (χ2) = 7.7%, the dashed ellipse
around it corresponds to a 1σ 2-dimensional contour of 68% confidence level.
The inclusive |Vub| and |Vcb| values are shown as a point with error bars, they
are extracted from different calculations where the GGOU calculation is used for
|Vub| and the kinematic scheme for |Vcb|. Details for these can be found in the
recent HFLAV publication [60]. The light-blue band corresponds to the result of
|Vub|/|Vcb| determined from B0

s → K−µ+νµ with respect to B0
s → D−s µ

+νµ decays
in this thesis. The bands displayed in the Figure correspond to ∆χ2 = 1 contours
of the different values.
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Figure 82: Comparison of exclusive and inclusive |Vub| and |Vcb| measurements. Exclusive
|Vub| comes from B̄ → πlν`, exclusive |Vcb| from B̄ → Dlν` and B̄ → D∗lν` decays and
|Vub|/|Vcb| from Λb decays. Those measurements are combined in a fit which is displayed
as the world average in red. The point with error bars gives the inclusive |Vub| and |Vcb|
values from different calculations. The light blue band shows the result of this thesis.
This plot was modified from the official HFLAV publication [60] to include the result of
this thesis.
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11.3 Extraction of B(B0
s → K−µ+νµ)

The total B0
s → K−µ+νµ branching fraction can be determined from the measured

ratio of branching fractions from Equation 84 according to the formula

B(B0
s → K−µ+νµ) =τB0

s
× B(B0

s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
× |Vcb|2

×
∫ q′2max

0 GeV/c2

dΓ(B0
s → D−s µ

+νµ)

dq2
/|Vcb|2dq2,

(91)

where τB0
s

= 1.509 ± 0.004 ps is the world average of the B0
s lifetime taken from

the Heavy Flavor Averaging Group (HFLAV) [60]. For the |Vcb| value either the
inclusive or the exclusive average from the 2019 update of the PDG [12] is used,
given as

|Vcb|incl. = (42.2± 0.8)× 10−3, |Vcb|excl. = (39.5± 0.9)× 10−3. (92)

The total decay width for B0
s → D−s µ

+νµ was calculated in Section 2.5.3 for dif-
ferent form factor predictions. Using the latest lattice QCD prediction from the
HPQCD collaboration [47] which is valid for the full q2 range gives∫ q′2max

0 GeV/c2

dΓ(B0
s → D−s µ

+νµ)

dq2
/|Vcb|2dq2 = 9.155± 0.373 ps−1. (93)

From that the branching fraction of B0
s → K−µ+νµ using the inclusive |Vcb| is

determined as

B(B0
s → K−µ+νµ) = (1.496± 0.049(stat.)± 0.117(syst.)± 0.061(theo.)

± 0.057(|Vcb|incl)± 0.004(τB0
s
))× 10−4,

(94)

using instead the exclusive |Vcb| value leads to

B(B0
s → K−µ+νµ) = (1.310± 0.043(stat.)± 0.103(syst.)± 0.053(theo.)

± 0.060(|Vcb|excl)± 0.003(τB0
s
))× 10−4,

(95)

where the first uncertainty is statistical, the second uncertainty is systematic, the
third arises from the theoretical form factor predictions related to the decay width,
the forth is from the uncertainty from the used |Vcb| value and the fifth from the
B0
s lifetime.

Those two branching fractions are compatible with each other within 1.2 σ. They
can be compared to the predicted B0

s → K−µ+νµ branching fractions from the
different form factor models given in Table 3 of Section 2.5 which were calculated
using the exclusive |Vcb| value. The measured branching fractions are in good
agreement with the predictions from the HPQCD [49] collaboration giving (1.60±
0.32)× 10−4. The predictions from the UKQCD [50] and MILC [51] collaboration
are slightly lower at (0.94 ± 0.27) × 10−5 and (0.88 ± 0.20) × 10−5, respectively,
which are in agreement at 1.4σ and 2.2σ with the extracted total branching fraction.
The predicted B0

s → K−µ+νµ branching fractions from LCSR [52] is predicted to
be much higher as (2.29± 0.24)× 10−4 which differs by 4σ from the measured
branching fraction.
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11.4 Implications of the measurement

In order to put the measurement of |Vub|/|Vcb| from this thesis into context, it has
to be compared to previous measurements. The ratio of partial branching fractions
at high q2 from Λb → pµ−νµ and Λb → Λ+

c µ
−νµ decays [5] was measured by LHCb

in 2015. Using the recent average of B(Λ+
c → pK−π+) = 6.28 ± 0.32 [12] and

the LQCD predictions of the form factors [128] leads to the ratio of CKM matrix
elements calculated by HFLAV [60]:

|Vub|/|Vcb|Λb = 0.079± 0.004(exp.)± 0.004(theo.) (96)

The PDG [12] also quotes a ratio of |Vub|/|Vcb| which is evaluated separately for
inclusive and exclusive B-decays.

|Vub|/|Vcb| = 0.101± 0.007 (inclusive), (97)

|Vub|/|Vcb| = 0.094± 0.005 (exclusive). (98)

These ratios are an average of different measurements. For exclusive |Vcb| mea-
surements from B̄ → D∗lν` and B̄ → Dlν` decays are combined with theoretical
predictions, whereas for exclusive |Vub| various B̄ → πlν` measurements from BaBar
and Belle are combined with form factor predictions from Lattice QCD.
The result for |Vub|/|Vcb| obtained in this thesis from semileptonic B0

s decays
together with form factor predictions from the MILC collaboration [51] for
B0
s → K−µ+νµ and from the HPQCD collaboration [47] for B0

s → D−s µ
+νµ gives

|Vub|
|Vcb|

= 0.114± 0.005(exp.)± 0.013(theo.) (99)

This result is significantly larger than the previous LHCb result using Λb decays [5]
and compatible with it only at 2.5σ. The result of this thesis has much larger
uncertainties from the form factor predictions since the whole available q2 range
was used instead of the only the very limited q2 range used in the Λb analysis. The
result of this thesis agrees within 1.4σ with the exclusive |Vub|/|Vcb| average from
the PDG, but it is slightly higher than that. The result is in good agreement with
the inclusive |Vub|/|Vcb| PDG average at the level of 0.9σ.
The |Vub|/|Vcb| result obtained in this thesis from B0

s decays are in agreement with
previous measurements based on B+ and B0 decays and gives an additional con-
straint to the length of the unitarity triangle opposite to the angle β.

11.5 Discussion and outlook

The |Vub|/|Vcb| measurement from semileptonic B0
s decays presented in this thesis

is limited by theoretical uncertainties which are much larger than the experimental
ones. For lattice calculations the uncertainties are dominated by the chiral contin-
uum extrapolation, light and heavy-quark discretization, and renormalization [51]
which are planned to be further reduced by improvements in lattice techniques.
Also further improvements on LCSR are planned such as higher loop corrections
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which will reduce the theoretical uncertainties further [52]. In addition the form
factor predictions for B0

s → K−µ+νµ are in tension at low q2 with as much as
around 2.3σ at q2 = 0 as estimated by the MILC collaboration [51]. This tension
is still up for debate and being discussed in the theory community, it might come
from a different z-expansion between the collaborations. This assumption could
be verified by updated form factor predictions from the UKQCD collaboration as
well as from the MILC collaboration using different ensembles, which are expected
very soon. Also an updated LQCD average by the Flavour Lattice Averaging
Group (FLAG) would help to understand this tension, since by the time of their
last average in 2019 [129] the latest results from the MILC collaboration [51] were
not yet included.

Experimentally the uncertainty on |Vub|/|Vcb| is dominated by systematic
uncertainties coming from the limited MC statistic used to calculate the selection
efficiency as well as the template MC statistic used in the signal fit, which is
very small for the large inclusive b → c background component. Both of these
components can be reduced by generating more MC samples.
In addition for the signal fit there is a large uncertainty and correlation between
the B2CC and higher excited kaon components due to their similar shape in
corrected mass. The latter component could be further constrained by theoretical
predictions of the B0

s → K∗ and higher excited kaon resonance form factors and
decay rates. Those could be compared to the fixed fractions between the different
K∗ components as used in the signal fit given in Equation 73. Another approach
was followed in the official analysis note which is in internal working group review
of the semileptonic group within the collaboration at the moment. Here the B2CC
yield is fixed to the yield obtained from a method to reconstruct the B+ peak
from J/ψK+ which is similar to the q2 reconstruction described in Section 5.2,
but it has large uncertainties from choosing the correct solution as well as from
correcting for the inefficiency of the method and extrapolating it to the full B2CC
yield. Nevertheless leads this approach to very similar signal yields.

This analysis was performed on 2fb−1 of data collected in 2012 by LHCb
which represents only a small fraction of the total data collected so far of about
9fb−1. Therefore the measurement could be extended to measure the branching
fraction ratio in finer bins of q2. This could further constrain the q2 dependence of
the form factors or even fully measure the form factors in data. The latter would
be challenging due to the limited resolution of the reconstructed q2, as discussed
in Section 5.2 and would require a complicated unfolding. In addition for this kind
of measurement a magnitude higher amount of simulated MC would be needed, in
order to not be systematically limited by MC statistics as the current measurement
and to correctly model the different kind of backgrounds contributing to the
measurement. The generation of simulated data already presents a challenge today
due to the large computing resources needed as well as the disk space in order
to store these events. An order of magnitude more MC needs new developments
such as ReDecay [130], RICHless [131] or tracker-only [132] simulations. ReDecay
splits up the events in two groups: one containing the signal process and the other
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containing the rest of the event, the latter one is then re-used multiple times
whereas the signal process is regenerated every time. RICHless MC generation
inherits the idea to reconstruct events without to use of the two RICH detectors
which are mainly used for hadronic particle identification and take up about 30%
of the simulation time. Another approach is to use the tracker-only simulation
which goes one step further and does not simulate the RICH, calorimeter and
muon system response. Those developments speed-up the MC simulation by large
factors (between 8-20) and thus result in a reduced computation time. The latter
two approaches even reduce the event size and such the disk space needed to store
those. Those techniques will be of crucial importance for possible updates and
extensions of this analysis but also in general for the larger data samples which
will be collected in Run 3 of the LHC and beyond by the upgraded LHCb detector.
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12 Conclusions

This thesis reports the measurement of the CKM matrix elements |Vub|/|Vcb|
from semileptonic B0

s -meson decays using 2fb−1 of pp data collected in 2012 at√
s = 8 TeV by the LHCb experiment. The B0

s -meson is reconstructed through
B0
s → K−µ+νµ and B0

s → D−s µ
+νµ decays and their relative branching fraction

is measured. The measurement is performed in two bins of the four-momentum
squared of the muon and neutrino q2, as well as for the full kinematically allowed
q2 range. The ratio of branching fraction are measured to be

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
|full q2 = (6.0791± 0.2006(stat)± 0.4759(syst))× 10−3

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
|low q2 = (1.7163± 0.0714(stat)± 0.1350(syst))× 10−3

B(B0
s → K−µ+νµ)

B(B0
s → D−s µ

+νµ)
|high q2 = (3.8086± 0.1426(stat)± 0.2903(syst))× 10−3,

where the first error is statistical and the second systematic. The uncertainty on
these measurements is dominated by the systematic uncertainty, where the biggest
uncertainty systematic comes from the limited statistic of the Monte Carlo samples.
The ratio of CKM matrix elements is extracted from this experimentally measured
branching fraction ratio together with theoretical form factor predictions. Using
Lattice QCD predictions from the MILC [51] for B0

s → K−µ+νµ and from the
HPQCD [47] collaborations for B0

s → D−s µ
+νµ, leads to the following ratio of CKM

matrix elements

|Vub|/|Vcb| = 0.114± 0.005(exp.)± 0.013(theo.),

where the first error is the combined experimental uncertainty from the branching
fraction ratio and the second one is the theoretical uncertainty from form factor
predictions. This result is higher than the first LHCb result using Λb decays but
it also has much larger theoretical uncertainties. It is also also bigger than the
exclusive |Vub|/|Vcb| average from the PDG, but compatible with it at 1.4 σ. The
result is in good agreement with the inclusive PDG average.
From the experimental measurement of the branching fraction ratio the total
branching fraction of B0

s → K−µ+νµ can be determined for the first time to be

B(B0
s → K−µ+νµ) = (1.31± 0.14)× 10−4

where the uncertainty is the combined one from the experimental and theoretical
uncertainties as well from external inputs. The uncertainty is dominated by the
experimental systematic uncertainty.

Experimentally the different measurements performed in this thesis are dominated
by their systematic uncertainty, where the largest source is coming from the
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limited Monte Carlo statistics used to calculate the efficiencies as well as for the
simulated templates used in the signal fit. These limitations can be overcome by
using recent developments of fast simulation techniques for Monte Carlo samples
in the future.
In general these measurements presented are limited by their theoretical uncer-
tainties coming from the form factor predictions for B0

s → K−µ+νµ. Currently the
predicted differential decay rate differs especially at low q2 and the total integrated
decay rate varies by a factor of 2.6 dependent on the used form factor prediction.
This also means that the presented result of |Vub|/|Vcb| is very dependent on the
theoretical predictions used to obtain it, whereas the branching fraction ratio is
much less dependent on theory predictions. Therefore the measured branching
fraction ratio provides an important constraint for the theory community as well
as the extracted total branching fraction of B0

s → K−µ+νµ. In addition several
improvements are planned from Lattice QCD predictions for the form factors in
the near future which are expected to give percent level precision at the high q2

region and might also clarify the observed difference at low q2. New calculations
from the UKQCD and MILC collaboration are in progress and are therefore
eagerly awaited.
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collaboration [ref.] ensemble heavy b-quarks valence s-quark
HPQCD [49] Nf = (2 + 1) MILC-asqtad NRQCD b quarks HISQ action
RBC-UKQCD [50] Nf = (2 + 1) DWF RHQ action for b quark DWF light
Fermilab/MILC [51] Nf = (2 + 1) MILC-asqtad Fermilab b quark asqtad light

Table 38: Lattice simulation details of the papers providing form factor results for
B0
s → K−µ+νµ.

A Form factor comparisons

This Section gives a detailed summary of the used B0
s → K−µ+νµ and

B0
s → D−s µ

+νµ form factor calculations. It lists the parameter values from the
papers as well as their correlation matrix. Also plots from the published papers
are compared to those generated by the analysis software using these results to
check that they are correctly reproduced.

A.1 B0
s → K−µ+νµ publications

For the signal channel B0
s → K−µ+νµ 4 different form factor calculation from Ref-

erences [49–52] are used. The first three are from Lattice QCD whereas the last
one comes from Light-Cone sum rule predictions. The Lattice calculations differ
in several ways from each other which will be briefly compared. References [50]
and [49] use the B0

sK threshold for the z-parametrisation whereas Reference [51]
uses the Bπ threshold. Therefore the z-parameter is different and their form factor
dependence on z can not be directly compared. In addition Reference [49] uses a
modified z-expansion, where the chiral continuum extrapolation is combined with
the z expansion into one fit function. References [50] and [51] use the same pro-
cedure by first doing a chiral-continuum extrapolation at high q2, followed by a
z-expansion extrapolation to q2 = 0. Also the setup for the simulations is differ-
ent and is summarised in Table 38. Here DWF stands for domain wall fermions,
RHQ for relativistic heavy quark, NRQCD for non-relativistic QCD and HISQ for
an improved light quark action (Highly Improved Staggered Quark action). More
details can be found in the latest FLAG report [53].

A.1.1 HPQCD parameters

Table 39 gives the z-expansion fit parameters for the BCL parametrisation from
the HPQCD collaboration. They use K=3 for the expansion which leads to 3
coefficients in b

(0)
i and b

(+)
i . Figure 83- 87 show plots from their paper along with

the reproduced plots using the coefficients from Table 39 and generated with the
analysis software.
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Figure 85: Form factors from HPQCD plotted against q2. Left Figure taken from [49]
and on the right generated using fit parameters taken from this paper. On the right
Figure the red band corresponds to the scalar form factor f0 and the blue to the vector
form factor f+. Figure modified from [9].
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Figure 86: Form factors from HPQCD plotted against q2. Left Figure taken from [49]
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modified from [9].
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b
(0)
1 b

(0)
2 b

(0)
3 b

(+)
1 b

(+)
2 b

(+)
3

Value 0.31500 0.9450 2.3910 0.368000 -0.7500 2.7200
Error 0.12900 1.3050 4.6710 0.021400 0.1930 1.4580

b
(0)
1 0.01676 0.1462 0.4453 0.001165 0.0214 0.1434

b
(0)
2 0.14620 1.7020 5.8520 0.009481 0.2255 1.5390

b
(0)
3 0.44530 5.8520 21.810 0.029630 0.7472 5.3250

b
(+)
1 0.00117 0.0095 0.0296 0.000458 0.0012 -0.0013

b
(+)
2 0.02140 0.2255 0.7472 0.001157 0.0372 0.1858

b
(+)
3 0.14340 1.5390 5.3250 -0.001309 0.1858 2.1240

Table 39: Coefficients and corresponding errors of the z- expansion for the BCL parame-
terisation of the HPQCD form factors with the associated covariance matrix. Parameters
taken from [49].
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Figure 87: The differential B0
s → K−µ+νµ decay rate from HPQCD plotted against q2.

Left Figure taken from [49] and on the right generated using fit parameters taken from
this paper. Figure modified from [9].

A.1.2 RBC-UKQCD parameters

Table 40 gives the z-expansion parameters fit parameters for the BCL parametri-
sation from the RBC-UKQCD collaboration. They also use K=3 for the expansion
which leads to 3 coefficients in b

(0)
i and b

(+)
i . Figure 88- 90 show plots from their

paper along with the reproduced plots using the coefficients from Table 40 and
generated with the analysis software.

145



b0
(+) b1

(+) b2
(+) b0

(0) b1
(0) b2

(0)

Value 0.338 -1.161 -0.458 0.210 -0.169 -1.235
Error 0.024 0.192 1.009 0.024 0.202 0.880
b0

(+) 1.000 0.255 0.146 0.873 0.603 0.423

b1
(+) 0.255 1.000 0.823 0.311 0.954 0.770

b2
(+) 0.146 0.823 1.000 0.346 1.060 0.901

b0
(0) 0.873 0.311 0.346 1.000 0.556 0.479

b1
(0) 0.603 0.954 1.060 0.556 1.000 0.965

b2
(0) 0.423 0.770 0.901 0.479 0.965 1.000

Table 40: Central values, errors, and correlation matrix for the BCL z-parametrisations
of from factors from RBC-UKQCD. Values taken from [50].
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Figure 88: Form factors from RBC-UKQCD plotted against z. Left Figure taken from [50]
and on the right generated using fit parameters taken from this paper. On the right Figure
the red band corresponds to the scalar form factor f0 and the blue to the vector form
factor f+. Figure modified from [9].
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Figure 89: Form factors from RBC-UKQCD plotted against q2. Left Figure taken
from [50] and on the right generated using fit parameters taken from this paper. On
the right Figure the blue band corresponds to the scalar form factor f0 and the red to
the vector form factor f+. Figure modified from [9].
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Figure 90: The differential B0
s → K−µ+νµ decay rate from RBC-UKQCD plotted against

q2. Left Figure taken from [50] and on the right generated using fit parameters taken from
this paper. The dark blue band in the left Figure should be compared to the distribution
on the right. Figure modified from [9].

A.1.3 Fermilab/MILC parameters

Table 41 gives the z-expansion fit parameters for the BCL parametrisation from the
Fermilab/MILC collaboration. They use K=4 for the expansion which leads to 4

coefficients in b
(0)
i and b

(+)
i for the z-parametrisation of the form factors. Figure 91

and 92 show plots from their paper along with the reproduced plots using the
coefficients from Table 41 and generated with the analysis software.
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b0
(+) b1

(+) b2
(+) b3

(+) b0
(0) b1

(0) b2
(0) b3

(0)

Value 0.3623 -0.9559 -0.8525 0.2785 0.1981 -0.1661 -0.6430 -0.3754
Error 0.0178 0.1307 0.4783 0.6892 0.0101 0.1130 0.4385 0.4535
b0

(+) 1.0000 0.6023 0.0326 -0.1288 0.7122 0.6035 0.5659 0.5516

b1
(+) 0.6023 1.0000 0.4735 0.2677 0.7518 0.9086 0.9009 0.8903

b2
(+) 0.0326 0.4735 1.0000 0.9187 0.5833 0.7367 0.7340 0.7005

b3
(+) -0.1288 0.2677 0.9187 1.0000 0.4355 0.5553 0.5633 0.5461

b0
(0) 0.7122 0.7518 0.5833 0.4355 1.0000 0.8667 0.7742 0.7337

b1
(0) 0.6035 0.9086 0.7367 0.5553 0.8667 1.0000 0.9687 0.9359

b2
(0) 0.5659 0.9009 0.7340 0.5633 0.7742 0.9687 1.0000 0.9899

b3
(0) 0.5515 0.8903 0.7005 0.5461 0.7337 0.9359 0.9899 1.0000

Table 41: Central values, errors, and correlation matrix for the BCL z-parametrisations
of Fermilab/MILC form factors, values are taken from [51].
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Figure 91: Form factors from Fermilab/MILC plotted against z on the left and on the
right plotted against q2. The top two images are taken from [51] whereas the bottom
two plots are generated using fit parameters taken from this paper. In the bottom left
plot the scalar form factor f0 in drawn in red whereas in the bottom right plot the colors
between the form factors are reversed.
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Figure 92: The differential B0
s → K−µ+νµ decay rate from Fermilab/MILC plotted

against q2 on the left from [51] and on the right generated using fit parameters taken
from this paper.

f+(0) b+
1 fT (0) bT1

Value 0.336 -2.53 0.320 -1.08
Error 0.023 1.17 0.019 1.53
f+(0) 1.00 0.79 0.000 0.00

b+
1 0.79 1.00 0.000 0.00

fT (0) 0.00 0.00 1.000 0.74
bT1 0.00 0.00 0.740 1.00

Table 42: Central values, errors, and correlations for the BCL z-parametrisations of f+

and fT form factors from LCSR predictions. Parameters taken from [52].

A.1.4 LCSR parameters

Light-cone sum rules parameters are provided by Reference [52]. They use a mod-
ified version of the z-expansion which is a rescaling of the coefficients to keep the
form factor at zero momentum transfer +,T (0) as one of the independent parame-
ters. The general form is given by

f+,T (q2) =
f+,T (0)

1− q2/M+2

(
1 +

K−1∑
k=0

b+,T
k

[
z(q2)k − z(0)k − (−1)k−K

k

K

(
z(q2)K − z(0)K

)])
,

(100)
where in Reference [52] K=2 is used for the BCL-parametrisation. Table 42 gives
the z-expansion parameters used in their paper. Figure 93 and 94 show plots from
their paper along with the reproduced plots using the coefficients from Table 42
and generated with the analysis software.

149



0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

q2@GeV2D

fBs K
+ Hq2L

]2 [GeV2q
0 2 4 6 8 10 12

0
 / 

f
+f

0.3

0.4

0.5

0.6

0.7

0.8

µν +µ - K→ 0
sB

Figure 93: Form factors from LCSR plotted against q2. Left Figure taken from [52] and
on the right generated using fit parameters taken from this paper. The green band in
the left Figure should be compared to the red distribution on the right. Figure modified
from [9].
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Figure 94: Form factors from LCSR plotted against q2. Left Figure taken from [52] and
on the right generated using fit parameters taken from this paper. The green band in
the left Figure should be compared to the blue distribution on the right. Figure modified
from [9].
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collaboration [ref.] ensemble heavy b-quarks valence c-quark
HPQCD [59] Nf = (2 + 1) MILC-asqtad NRQCD b quarks HISQ action
Fermilab/MILC [58] Nf = (2 + 1) MILC-asqtad Fermilab b quark Fermilab c-quarks
HPQCD 2019 [47] Nf = (2 + 1 + 1) MILC-HISQ heavy-HISQ approach for b quark HISQ action

Table 43: Lattice simulation details of the papers providing form factor results for
B0
s → K−µ+νµ.

a
(0)
0 a

(0)
1 a

(0)
2 a

(+)
0 a

(+)
1 a

(+)
2

Value 0.663 -0.10 1.3 0.868 -3.35 0.6
Error 0.031 0.30 2.8 0.032 0.41 4.7

a
(0)
0 0.0009534 -0.00303547 -0.00542391 0.000594503 0.00158251 0.0160091

a
(0)
1 0.00303547 0.0903097 -0.101760 0.000446248 0.0236283 0.0456659

a
(0)
2 0.00542391 -0.101760 8.02283 0.00848079 0.104246 0.760797

a
(+)
0 0.000594503 0.000446248 0.00848079 0.00100761 -0.00423358 -0.0264511

a
(+)
1 0.00158251 0.0236283 0.104246 -0.00423358 0.165251 -0.617234

a
(+)
2 0.0160091 0.0456659 0.760797 -0.0264511 -0.617234 22.49292

Table 44: Central values, errors, and covariance matrix for the BCL z-parametrisations
of HPQCD form factors from for B0

s → D−s µ
+νµ. Parameters are taken from [59].

A.2 B0
s → D−s µ

+νµ publications

For the normalisation channel B0
s → D−s µ

+νµ three different for factor calculations
from LQCD predictions are used corresponding to References [47, 58, 59]. The
Lattice calculations differ in their simulation set-up, which is compared in Table 43.
It should be noted that Reference [58] extracts the fit parameters of B0

s → D−s µ
+νµ

together with B → D parameters as a rstio of form factors, which is why they are
correlated. In Reference [51] they reconstruct the B0

s → D−s µ
+νµ form factors from

the ratio provided in [58] together with B → D form factors from [133]. Therefore
the form factors taken from Reference [58] alone should be treated with caution.

A.2.1 HPQCD parameters

Table 44 gives the z-expansion fir parameters for the BCL parametrisation with
K=3 from the HPQCD collaboration [59]. Figure 95- 97 show plots from their
older paper along with the reproduced plots using the coefficients from Table 44
which are generated with the analysis software.
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Figure 95: Form factors from HPQCD plotted against z. Left Figure taken from [59]
and on the right generated using fit parameters taken from this paper. The red band in
the right Figure corresponds to the vector form factor f+, while the blue band shows the
scalar form factor f0. Figure modified from [9].
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Figure 96: Form factors from HPQCD plotted against q2. Left Figure taken from [59]
and on the right generated using fit parameters taken from this paper. The red band in
the right Figure corresponds to the vector form factor f+, while the blue band shows the
scalar form factor f0. Figure modified from [9].
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Figure 97: The differential B0
s → D−s µ

+νµ decay rate from HPQCD plotted against q2.
Left Figure taken from [59] and on the right generated using fit parameters taken from
this paper. The dark red distribution in the left Figure should be compared to the
distribution in the right Figure. Figure modified from [9].

a
(+)
0 a

(+)
1 a

(+)
2 a

(0)
0 a

(0)
1 a

(0)
2

Value 0.01191 -0.111 0.47 0.01081 -0.0662 0.18
Error 0.00006 0.002 0.05 0.00004 0.0002 0.06

a
(+)
0 1.0 -0.055 -0.002 0.593 0.254 0.014

a
(+)
1 -0.055 1.0 -0.318 -0.067 0.867 -0.180

a
(+)
2 -0.002 -0.318 1.0 -0.038 -0.307 0.974

a
(−)
0 0.593 -0.067 -0.038 1.000 -0.050 -0.054

a
(−)
1 0.254 0.867 -0.307 -0.050 1.000 -0.233

a
(−)
2 0.014 -0.180 0.974 -0.054 -0.233 1.000

Table 45: Central values, errors, and correlation matrix for the BCL z-parametrisations
of Fermilab/MILC form factors for B0

s → D−s µ
+νµ. Values are taken from [58].

A.2.2 Fermilab/MILC parameters

Table 45 gives the z-expansion fir parameters for the BCL parametrisation with
K=3 from the Fermilab/MILC collaboration [58]. Figure 98 shows the plot from
their paper along with the reproduced plots using the coefficients from Table 45
and generated with the analysis software.
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Figure 98: Form factors from Fermilab/MILC plotted against z. Left Figure taken
from [58] and on the right generated using fit parameters taken from this paper. The
red distribution in the right Figure corresponds the vector form factor f+ while the blue
shows the scalar form factor f0. Figure modified from [9].

a
(+)
0 a

(+)
1 a

(+)
2 a

(0)
0 a

(0)
1 a

(0)
2

Value 0.66574 -0.25944 -0.10636 0.66574 -3.23599 -0.07478

a
(+)
0 0.00015 0.00188 0.00070 0.00015 0.00022 0.00003

a
(+)
1 0.00188 0.06129 0.16556 0.00188 0.01449 0.00001

a
(+)
2 0.00070 0.16556 3.29493 0.00070 0.18757 -0.00614

a
(−)
0 0.00015 0.00188 0.00070 0.00015 0.00022 0.00003

a
(−)
1 0.00022 0.01449 0.18757 0.00022 0.20443 0.10080

a
(−)
2 0.00003 0.00001 -0.00614 0.00003 0.10080 4.04413

Table 46: Central values, errors, and correlation matrix for the BCL z-parametrisations
of the latest HPQCD form factors for B0

s → D−s µ
+νµ. Coefficients are taken from [47].

A.2.3 HPQCD 2019 parameters

Table 46 gives the z-expansion fit parameters for the BCL parametrisation with
K=3 from the latest paper from the HPQCD collaboration [47]. Figure 99- 101
show plots from their paper along with the reproduced plots using the coefficients
from Table 46 and generated with the analysis software.
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Figure 99: Latest Form factors from HPQCD plotted against q2. Left Figure taken
from [47] and on the right generated using fit parameters taken from this paper. The
red distribution in the right Figure corresponds the vector form factor f+ while the blue
shows the scalar form factor f0.
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Figure 100: Latest Form factors from HPQCD plotted against z. The top two plots are
Figures taken from [47] while the bottom one is generated using fit parameters taken
from this paper. The blue distribution in the bottom Figure corresponds to the vector
form factor f+ shown in top right while the red band of the bottom Figure shows the
scalar form factor f0 displayed in the top left Figure.
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Figure 101: The differential B0
s → D−s µ

+νµ decay rate from the latest HPQCD paper
plotted against q2. The left Figure is taken from [47] and the right is generated using
fit parameters taken from this paper. The red distribution in the left Figure should be
compared to the distribution in the right Figure.

156



B Validation of selection BDT

As explained in the end of Section 6 the two BDT used in the selection have
to be validated using the control channel B+ → J/ψK+. This section shows the
input variables used in the BDTs, Monte Carlo simulation is compared to back-
ground subtracted data in the following plots. The channel is fully reconstructed
as B+ → J/ψK+ as this reconstruction is used to evaluate also the BDT efficiency.
Figure 102 and 103 show the input distribution for the charge BDT, Figure 104
shows the distribution for the input variables for the SS BDT.
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Figure 102: Distributions of mixed events before (blue) and after (red) kinematic
reweighting compared to the data in the region above the B0

s mass mK−µ+ > mB0
s

(black) for the corrected mass error (top left), B0
s pT (top right), missing pT (bottom

left) and the different B0
s flight distance coordinates.
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Figure 103: Distributions of mixed events before (blue) and after (red) kinematic
reweighting compared to the data in the region above the B0

s mass mK−µ+ > mB0
s

(black) for the corrected mass error (top left), B0
s pT (top right), missing pT (bottom

left) and the different B0
s flight distance coordinates.
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Figure 104: Distributions of mixed events before (blue) and after (red) kinematic
reweighting compared to the data in the region above the B0

s mass mK−µ+ > mB0
s

(black) for the corrected mass error (top left), B0
s pT (top right), missing pT (bottom

left) and the different B0
s flight distance coordinates.
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C Validation of reweighting BDT

As explained in detail in Section 7 a separate BDT is trained to correct for MC
and data differences. In addition to the validation plots given in Section 7, here all
reweighted kinematic distributions are shown for B+ →J/ψK+ in Figure 105 and
for B0

s → D−s µ
+νµX in Figure 106.
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Figure 105: Kinematic distributions for B+ →J/ψK+ reconstructed using the K+µ−

pair for simulation before and after correction, plotted against background subtracted
data. Figure taken from [9].
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+νµX before and after correction
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D Validation of event mixing

This appendix shows additional plots for the validation of the event mixing which is
used to model the combinatoric background for the signal channel B0

s → K−µ+νµ.
The event mixing method itself was explained already in Section 9. It needs to
be reweighted in order to reproduce the B0

s meson kinematics in the region above
the B0

s mass, this is done in the momentum and transverse momentum of the B0
s

candidate. Additional kinematic distributions for modelled events before (in blue)
and after kinematic reweighting (red points) are compared with data (black line)
above the B0

s mass in Figure 107.
The kinematical distribution of the event mixed µ+K− pair in the full accessible
range is shown on Figure 108.
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Figure 107: Distributions of mixed events before (blue) and after (red) kinematic
reweighting compared to the data in the region above the B0

s mass mK−µ+ > mB0
s

(black) for the corrected mass error (top left), B0
s pT (top right), missing pT (bottom

left) and the different B0
s flight distance coordinates. Figure taken from [9].
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Trigger Line Simulation data correction (N. σ w.r.t 1.)
L0Muon (Down) 94.09 ± 0.27 94.41 ± 0.16 0.996 ± 0.003 (1.3)
L0Muon (Up) 92.90 ± 0.30 93.65 ± 0.18 0.992 ± 0.004 (2.0)
Hlt2SingleMuon (Down) 54.79 ± 2.91 55.73 ± 1.24 0.983 ± 0.057 (0.3)
Hlt2SingleMuon (Up) 53.51 ± 3.03 57.58 ± 1.27 0.929 ± 0.057 (1.3)
TopoMu2BodyBBDT(Down) 93.95 ± 1.42 94.41 ± 0.80 0.995 ± 0.017 (0.3)
TopoMu2BodyBBDT(Up) 91.42 ± 1.61 93.59 ± 0.85 0.976 ± 0.019 (1.3)

Table 47: TISTOS efficiency for each trigger line used for the signal decay in simulation
and data. The third row shows the correction factor data/simulation.

E TisTos efficiency checks

In order to crosscheck the trigger efficiency, ths TISTOS efficiency is also evaluated
in different 2-D binnings by using the IP or the IPCHi2 instead of the B0

s corrected
mass. Both variables were studied following the procedure outlined in Section 10.
The correction factors for each variable change are comparable with the ones given
in Table 28 with only minor changes. Those changes are fully covered by the un-
certainty of the correction factor and therefore no further systematic uncertainty
is assigned.
Another cross check of the trigger efficiency is performed by estimating the
TISTOS efficiencies for the individual trigger lines used in this thesis:L0Muon,
HLT2SingleMuon and TopoMu2BodyBBDT. Those lines are considered separately and
the check is performed using again the B+→ J/ψK+ channel. Table 47 shows the
TISTOS ratio for each trigger line used along with the correction factor split in
magnet polarity. No significant correction is observed following this method.

The variation of the TISTOS efficiency is further studied in bins of B0
s η and

pT distributions in Figs. 109,110 as well as in bins of daughters kinematics for the
momentum and transverse momentum which are shown in Figure 111 to 114. The
distributions between data amd MC agree very well.
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Figure 109: TISTOS efficiency variations in bins of B0
s η for L0Muon trigger on top,

Hlt2SingleMuon in the middle and TopoMu2BodyBBDT on the bottom. Those are
determined per magnet polarity, on the left for up-polarity and on the right for down
polarity. Figure taken from [9].
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Figure 110: TISTOS efficiency variations in bins of B0
s pT for the L0Muon trigger on

top, Hlt2SingleMuon in the middle and TopoMu2BodyBBDT on the bottom. Those are
determined per magnet polarity, on the left for up-polarity and on the right for down
polarity. Figure taken from [9].
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Figure 111: TISTOS efficiency variations in bins of Kaon momenta for the L0Muon
trigger on top, Hlt2SingleMuon in the middle and TopoMu2BodyBBDT on the bottom.
Those are determined per magnet polarity, on the left for up-polarity and on the right
for down polarity. Figure taken from [9].
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Figure 112: TISTOS efficiency variations in bins of Kaon pT for the L0Muon trigger on
top, Hlt2SingleMuon in the middle and TopoMu2BodyBBDT on the bottom. Those are
determined per magnet polarity, on the left for up-polarity and on the right for down
polarity. Figure taken from [9].
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Figure 113: TISTOS efficiency variations in bins of muon momenta for the L0Muon
trigger on top, Hlt2SingleMuon in the middle and TopoMu2BodyBBDT on the bottom.
Those are determined per magnet polarity, on the left for up-polarity and on the right
for down polarity. Figure taken from [9].
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Figure 114: TISTOS efficiency variations in bins of muon pT for the L0Muon trigger on
top, Hlt2SingleMuon in the middle and TopoMu2BodyBBDT on the bottom. Those are
determined per magnet polarity, on the left for up-polarity and on the right for down
polarity. Figure taken from [9].
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