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Abstract

Heavy ion collisions conducted at facilities such as the Large Hadron Collider (LHC) and the Relativistic
Heavy Ion Collider (RHIC) create an extremely hot and dense state of matter known as the quark-gluon
plasma (QGP). This plasma exists for only about 10−23 seconds before transitioning into discrete particles.
Although the QGP cannot be observed directly, its properties can be inferred by comparing the results of
computational collision models with experimental data. In this thesis, Bayesian parameter estimation is em-
ployed to systematically compare model results to data in order to investigate the properties of the QGP. The
model includes the TRENTo package for initial conditions, FluiduM for simulating relativistic viscous hy-
drodynamics, and FastReso for incorporating resonance decays. The first part of the analysis focuses on
quantifying the pion excess in the low transverse momentum regime in heavy-ion collisions. This analysis
is conducted across different centrality classes and collision systems at both the LHC and the top RHIC
energy. The second part presents a phenomenological analysis of experimental measurements on transverse
momentum spectra and flow observables of identified charged hadrons in Pb-Pb and Xe-Xe collisions at the
LHC. The Bayesian framework is utilized to constrain model parameters and transport coefficients of the
QGP, including shear and bulk viscosities, initialization time, and the kinetic freezeout temperature.

Zusammenfassung

Schwerionenkollisionen, die an Einrichtungen wie dem Large Hadron Collider (LHC) und dem Relativistic
Heavy Ion Collider (RHIC) durchgeführt werden, erzeugen einen extrem heißen und dichten Materiezu-
stand, der als Quark-Gluon-Plasma (QGP) bekannt ist. Dieses Plasma existiert nur etwa 10−23 Sekunden,
bevor es in diskrete Teilchen übergeht. Obwohl das QGP nicht direkt beobachtet werden kann, lassen sich
seine Eigenschaften durch den Vergleich der Ergebnisse von rechnerischen Kollisionsmodellen mit exper-
imentellen Daten ableiten. In dieser Arbeit wird die Bayessche Parameterschätzung angewendet, um sys-
tematisch Modellergebnisse mit Daten zu vergleichen und so die Eigenschaften des QGP zu untersuchen.
Das Modell umfasst das TRENTo Paket für die Anfangsbedingungen, FluiduM für die Simulation rela-
tivistischer viskoser Hydrodynamik und FastReso zur Einbeziehung von Resonanzzerfällen. Der erste Teil
der Analyse konzentriert sich auf die Quantifizierung des Pionenüberschusses im Niedrigtransversalimpuls-
bereich bei Schwerionenkollisionen. Diese Analyse wird über verschiedene Zentralitätsklassen und Kol-
lisionssysteme sowohl am LHC als auch bei der höchsten RHIC-Energie durchgeführt. Der zweite Teil
präsentiert eine phänomenologische Analyse experimenteller Messungen der Transversalimpuls-Spektren
und Flussobservablen identifizierter geladener Hadronen in Pb-Pb- und Xe-Xe-Kollisionen am LHC. Der
Bayesianische Rahmen wird verwendet, um die Modellparameter und Transportkoeffizienten des QGP zu
beschränken, einschließlich Scher- und Bulkviskositäten, Initialisierungszeit und kinetischer Freezeout Tem-
peratur, zu beschränken.
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1 Introduction

1.1 Quantum chromodynamics

Quantum chromodynamics (QCD) is the gauge field theory that describes the strong interaction, one of the
four fundamental forces in nature [1]. QCD governs the behavior of quarks, the elementary constituents of
matter, which interact through the exchange of massless vector gauge bosons known as gluons. Although
QCD shares conceptual similarities with quantum electrodynamics (QED), the theory of electromagnetic
interactions, it is built on a more complex gauge structure,SU(3)color, compared to the simplerU(1) symme-
try of QED. ThisSU(3)color symmetry introduces a variety of novel features and complexities, most notably
the self-interaction of gluons, which carry a quantum property known as color charge, analogous to electric
charge in QED.

The self-coupling of gluons in QCD leads to a unique behavior of the strong coupling constant,αs, which
serves as the QCD analogue of the fine-structure constant α in QED. αs exhibits a strong dependence on
the distance scale or momentum transfer involved in a process. At large distances or low momentum trans-
fers—corresponding to momentum scalesQ < 1GeV/c or distances greater than 1 fm—the coupling con-
stant αs becomes large. This increase in coupling strength at low energies provides a qualitative explana-
tion for the phenomenon known as confinement: quarks and gluons cannot exist freely but are perpetually
bound together to form color-neutral composite particles known as hadrons, such as protons, neutrons, and
pions.

Hadrons are composed of quarks that carry one of three possible color charges—red, green, or blue. These
quarks combine in such a way that the resulting hadron is colorless, a requirement dictated by theSU(3)color

symmetry. Baryons, for instance, are formed by three quarks (or three antiquarks), while mesons consist of
a quark-antiquark pair. In contrast to the electrically neutral photon of QED, gluons in QCD are not color-
neutral; instead, they carry a combination of color and anti-color charges, allowing them to interact with
one another.

While QCD does not provide an explicit value for the strong coupling constant αs at any given momen-
tum transferQ, it does predict the functional form of its variation withQ. This variation is encapsulated in
the concept of asymptotic freedom, a fundamental property of QCD discovered in the 1970s [2, 3]. Asymp-
totic freedom refers to the phenomenon where αs decreases as the momentum transfer increases, leading
to weaker interactions between quarks and gluons at short distances or high Q. Mathematically, as Q be-
comes very large (Q → ∞), the strong coupling constant αs approaches zero, effectively rendering quarks
and gluons nearly free at such scales. This behavior contrasts sharply with the confinement at low momen-
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1 Introduction

tum transfers, and it is this dual nature of QCD that underpins much of our understanding of high-energy
particle physics.

To understand the variation of αs with Q, we rely on the renormalization group equation [4], which
governs theQ dependence of αs:

Q2∂αs(Q
2)

∂Q2
= β

(
αs

(
Q2
))
, (1.1)

where β(αs) is the β function, which accounts for quantum corrections to the running of αs. While the β
function is typically expanded and calculated to the 4-loop approximation [4, 5], for simplicity, we consider
the expansion up to the 2-loop:

β
(
αs

(
Q2
))

= −β0α2
s

(
Q2
)
− β1α

3
s

(
Q2
)
+O

(
α4
s

)
, (1.2)

where β0 =
33−2Nf

12π
and β1 =

153−19Nf

24π2 , with Nf representing the number of active quark flavors at the
energy scale Q. These coefficients, β0 and β1, are derived from the group constants CA = N and CF =
N2−1
2N

, which are specific to theories with SU(N) symmetry. In the case of QCD, where SU(3) symmetry
applies,CA = 3 andCF = 4

3
.

The renormalization group equation, in its one-loop approximation—where higher-order terms in β1
and beyond are neglected—yields the following solution:

αs

(
Q2
)
=

αs(µ
2)

1 + αs(µ2)β0 ln
(

Q2

µ2

) , (1.3)

whereµ2 acts as an integration constant. This expression not only relates the values ofαs at two different mo-
mentum transfers—µ2 andQ2—but also illustrates the property of asymptotic freedom. AsQ2 approaches
infinity, the strong coupling constant αs diminishes toward zero, provided that the number of active quark
flavorsNf remains below 17, affirming that quarks and gluons behave as free particles at high energies.

The determination of αs at a particular Q is an essential task, akin to measuring fundamental constants
such as the electromagnetic coupling α, the elementary electric charge, or the gravitational constant. How-
ever, testing the predictions of QCD requires more than just a single measurement of αs. It necessitates
precise measurements across a wide range of energy scales to compare experimental results with theoretical
calculations and validate the theory’s predictions, particularly regarding confinement at low energies and
asymptotic freedom at high energies.

Relating the underlying concepts of QCD to observable phenomena is challenging, as exact analytical
solutions to the QCD equations are often impractical. For high-energy interactions, where the momentum
transfer Q2 exceeds 1GeV2/c2, perturbative QCD (pQCD) becomes a reliable tool. In pQCD, the strong
coupling constantαs is small enough to allow the expansion of the equations in terms ofαs, enabling accu-
rate calculations of scattering matrix elements and other quantities of interest. These theoretical predictions
can then be directly compared with experimental data, as illustrated in Figure 1.1.

At low energies, however, the strong coupling constant αs becomes too large for perturbative methods
to be effective. In this regime, non-perturbative approaches such as lattice QCD (LQCD) [7] are employed.
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1.2 Quark-gluon plasma

αs(mZ
2) = 0.1180 ± 0.0009

August 2023
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Figure 1.1: Measurements of the strong coupling constant αs as a function of the momentum transfer Q [6]. The
pQCD method used to determine each value is indicated in parentheses, allowing for comparison with
experimental data.

LQCD involves discretizing space-time into a finite grid, enabling the numerical computation of QCD in-
teractions. Despite its computational intensity, requiring supercomputing resources, LQCD has been suc-
cessful in accurately predicting various hadronic properties, including masses and decay rates [8, 9].

1.2 Quark-gluon plasma

The variation of the strong coupling constant αs with Q leads to the prediction of distinct phases of nu-
clear matter within QCD, each characterized by different dominant degrees of freedom. In ordinary nuclear
matter, where the temperature T is close to zero and the baryon chemical potential µB is approximately 1
GeV—indicating a slight excess of matter over antimatter—quarks and gluons are confined within color-
neutral hadrons due to the strong coupling at low energies. This confinement ensures that quarks and
gluons cannot move freely over large distances. However, at extremely high temperatures, on the order of
150–160MeV (equivalent to temperatures exceeding 1012 K), and/or at high baryon densities, QCD pre-
dicts that quarks and gluons can escape this confinement. In such conditions, they can move freely over dis-
tances larger than the size of a nucleon, forming a deconfined state of matter known as quark-gluon plasma
(QGP) [10, 11].

The different phases of strongly interacting matter can be illustrated using a QCD phase diagram, where
temperature and baryon chemical potential serve as the primary thermodynamic variables. A schematic ver-
sion of this phase diagram is shown in Figure 1.2. At low temperatures and small baryon chemical potential,
quarks and gluons remain confined within hadronic states, maintaining the color-neutral property of nu-
clear matter. Ordinary nuclear matter, like that found in atomic nuclei, occupies this region of the phase
diagram at T ∼ 0 and µB ∼ 1GeV.

As the temperature increases, the system may transition into the QGP phase. For conditions where the
baryon chemical potential µB is nearly zero, LQCD calculations indicate that this transition is not a sharp
phase change but rather a smooth crossover [13]. The critical temperature at which this crossover occurs has
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1 Introduction

when ordinary substances are 
subjected to variations in tempera-

ture or pressure, they will often undergo 
a phase transition: a physical change 
from one state to another. At normal 
atmospheric pressure, for example, water 
suddenly changes from liquid to vapor 
as its temperature is raised past 100° C; 
in a word, it boils. Water also boils if the 
temperature is held fixed and the pres-
sure is lowered—at high altitude, say. The 
boundary between liquid and vapor for 
any given substance can be plotted as a 
curve in its phase diagram, a graph of tem-
perature versus pressure. Another curve 
traces the boundary between solid and 
liquid. And depending on the substance, 
still other curves may trace more exotic 
phase transitions. (Such a phase diagram 
may also require more exotic variables, as 
in the figure).

One striking fact made apparent by 
the phase diagram is that the liquid-
vapor curve can come to an end. Beyond 
this “critical point,” the sharp distinction 
between liquid and vapor is lost, and 
the transition becomes continuous. The 
location of this critical point and the 
phase boundaries represent two of the 
most fundamental characteristics of any 
substance. The critical point of water, for 
example, lies at 374° C and 218 times nor-
mal atmospheric pressure. 

The schematic phase diagram shown 
in the figure shows the different phases 
of nuclear matter predicted for various 
combinations of temperature and baryon 
chemical potential. The baryon chemical 
potential determines the energy required 
to add or remove a baryon at fixed pres-
sure and temperature. It reflects the net 
baryon density of the matter, in a similar 
way as the temperature can be thought to 
determine its energy density from micro-
scopic kinetic motion. At small chemical 
potential (corresponding to small net 
baryon density) and high temperatures, 
one obtains the quark-gluon plasma phase; 

a phase explored by 
the early universe dur-
ing the first few micro-
seconds after the Big 
Bang. At low tempera-
tures and high baryon 
density, such as those 
encountered in the 
core of neutron stars, 
the predictions call for 
color-superconduct-
ing phases. The phase 
transition between a 
quark-gluon plasma 
and a gas of ordinary 
hadrons seems to be 
continuous for small 
chemical potential 
(the dashed line in 
the figure). However, 
model studies sug-
gest that a critical 
point appears at 
higher values of the 
potential, beyond 
which the bound-
ary between these 
phases becomes a sharp line (solid line in 
the figure). Experimentally verifying the 
location of these fundamental “landmarks” 
is central to a quantitative understanding 
of the nuclear matter phase diagram.

Theoretical predictions of the loca-
tion of the critical point and the phase 
boundaries are still uncertain. However, 
several pioneering lattice QCD calculations 
have indicated that the critical point is 
located within the range of temperatures 
and chemical potentials accessible with 
the current RHIC facility, with the envi-
sioned RHIC II accelerator upgrade, and at 
existing and future facilities in Europe (i.e., 
the CERN SPS and the GSI FAIR). Indeed, 
the recent discovery of the quark-gluon 
plasma at RHIC gives evidence for the 
expected continuous transition (dashed 
line in the figure) from plasma to hadron 
gas. Physicists are now eagerly anticipat-

ing further experiments in which nuclear 
matter will be prepared with a broad range 
of chemical potentials and temperatures, 
so as to explore the critical point and the 
phase boundary fully. As the experiments 
close in, for example, the researchers 
expect the critical point to announce itself 
through large-scale fluctuations in several 
observables. These required inputs will be 
achieved by heavy-ion collisions spanning 
a broad range of collision energies at RHIC, 
RHIC II, the CERN SPS and the FAIR at GSI.

The large range of temperatures and 
chemical potentials possible at RHIC and 
RHIC II, along with important technical 
advantages provided by a collider coupled 
with advanced detectors, give RHIC scien-
tists excellent opportunity for discovery of 
the critical point and the associated phase 
boundaries.

Search for the Critical Point: “A Landmark Study”

Quark-Gluon Plasma

The Phases of QCD

Te
m

pe
ra

tu
re

Hadron Gas

Early Universe

Future FAIR Experiments

Future LHC Experiments

Nuclear
MatterVacuum

Color
Superconductor

Critical Point

Current RHIC Experiments

R
HIC

Energy Scan

Crossover

Baryon Chemical Potential

~170 MeV

0 MeV 900 MeV
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Neutron Stars

1st order phase transition

Schematic.QCD.phase.diagram.for.nuclear.matter ..The.solid.lines.show.the.
phase.boundaries.for.the.indicated.phases ..The.solid.circle.depicts.the.critical.
point ..Possible.trajectories.for.systems.created.in.the.QGP.phase.at.different.
accelerator.facilities.are.also.shown .

�� The Phases of Nuclear Matter

Figure 1.2: Schematic representation of the QCD phase diagram for nuclear matter, illustrating the phase boundaries
between different states of matter. The solid lines indicate the boundaries separating the distinct phases,
with the solid circle marking the critical point. The diagram also shows possible trajectories for systems
created in the QGP phase at various accelerator facilities, which differ in center-of-mass collision energy
and colliding species [12].

been estimated by LQCD to beTc = 154±9MeV [14]. This state of matter is believed to have existed in the
early universe, microseconds after the Big Bang, before the universe cooled below the critical temperatureTc
and quarks and gluons became confined within hadrons once again [15].

At finite temperatures close to zero and increasing baryon chemical potential, QCD predicts a first-order
phase transition to a deconfined state, potentially exhibiting color-superconducting properties [16]. Such a
phase might exist in the dense cores of neutron stars, where extreme conditions prevail.

1.3 Heavy-ion collisions

Ultra-relativistic heavy-ion collisions serve as a powerful tool for probing the QGP because they generate the
extreme temperatures and energy densities required to reach this deconfined state of matter. Currently, there
are two major experimental facilities in the world capable of achieving such conditions: the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in New York, USA.

RHIC is a circular accelerator primarily dedicated to colliding heavy ions, although it also conducts ex-
periments with protons and light ions. It operates at center-of-mass energies per nucleon pair ranging from
√
sNN = 7.7 to 200GeV [17–20]. While RHIC’s maximum energy is lower than that of the LHC, it

offers several unique advantages, such as longer operational periods for heavy-ion collisions and highly con-
figurable beam settings. This versatility enables detailed studies of various collision systems and energies,
making RHIC an invaluable facility for QGP research.
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1.3 Heavy-ion collisions

The LHC, like RHIC, is a large circular collider, but it is distinguished by its unprecedented beam ener-
gies. The LHC has achieved proton-proton collision energies up to √

sNN = 13TeV [21] and heavy-ion
collision energies up to √

sNN = 5.44TeV [22], which is more than an order of magnitude higher than
the maximum energies reached at RHIC. Although heavy-ion collisions constitute a smaller fraction of the
LHC’s overall physics program compared to RHIC, the LHC’s higher energies provide a complementary
perspective, allowing the study of QGP under extreme conditions.

When two ultra-relativistic heavy ions collide, the system undergoes a complex evolution that can be vi-
sualized as a space-time diagram, as depicted in Figure 1.3.

Tkin	 Tchem	

Figure 1.3: Illustration of the space-time evolution of a heavy-ion collision in the laboratory frame. The hyperbolic
curves represent regions of constant proper-time τ . The figure is taken from [23].

The basic concept of the space-time evolution during a heavy-ion collision was first introduced by Bjorken
in 1982 [24]. In the Bjorken coordinate system, the horizontal axis represents the longitudinal direction, par-
allel to the initial beam, while the vertical axis represents time. The QGP forms near the origin and expands
hydrodynamically in both the transverse plane (x-y) and the longitudinal direction z. At any given z po-
sition, the fluid’s longitudinal velocity is approximately z/t. As the colliding nuclei continue to separate,
the fluid forms at later times away from z = 0, approximately along a spacetime hyperbola defined by the
constant proper time τ ≡

√
t2 − z2 ∼ 1 fm/c [25].

Since the QGP phase exists for only about τ ∼ 10 fm/c, corresponding to 10−23 s, its properties must
be inferred indirectly through the analysis of the entire evolution of the heavy-ion collision. Understanding
the various stages of this evolution is therefore crucial and can be described as follows:

• Before the collision (τ < 0 fm/c): The initial stage of a heavy-ion collision involves two heavy
nuclei approaching each other at velocities near the speed of light. Due to relativistic effects, the col-
liding nuclei are significantly Lorentz-contracted along the longitudinal (z) direction, resembling thin
pancakes as they move toward the point of collision.
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1 Introduction

• Initial state (τ = 0 fm/c): At the moment of collision, the nuclei overlap, and the energy den-
sity reaches its peak, primarily due to the extreme Lorentz contraction. The transverse structure of
the nuclei at this instant is characterized by the spatial distribution of the nucleons. The majority of
quarks and gluons involved in the collision undergo low-momentum transfer interactions, predom-
inantly soft collisions between gluons, which carry only a small fraction of the total momentum of
the nuclei [26]. A small fraction of partons, however, engage in hard collisions, involving significant
momentum transfer and resulting in the production of particles with large transverse momentum.
The majority of the entropy produced in the collision occurs during this initial moment [27].

• Pre-equilibrium phase (0 < τ ≲ 1 fm/c): During this phase, the system is far from thermal equi-
librium, and the interaction rate between partons is extremely high. Hard scattering processes may
occur, leading to the production of high-energy particles known as hard probes. These probes are of
particular interest as they carry information about the early stages of the collision. The system rapidly
approaches local thermal equilibrium, with the thermalization time expected to be τ0 ≲ 1 fm/c [28].

• Hydrodynamic phase (1 ≲ τ ≲ 10 fm/c): Once local thermal equilibrium is achieved, the system
can be described as a QGP. In this phase, the QGP exhibits significant transverse and longitudinal
pressure gradients, which drive its expansion. These pressure gradients arise from the differences in
matter density compared to the vacuum and from the inhomogeneities present in the initial state.
The evolution of the QGP during this phase is well-described by the equations of relativistic fluid
dynamics. As the QGP continues to expand, its energy density and temperature gradually decrease.

• Hadronization and freeze-out (τ ∼ 10 fm/c): As the system cools down and the energy density
drops below a critical threshold, the QGP undergoes a phase transition into a hadron gas. During this
transition, the strong interactions between particles weaken, causing the fluid dynamic description
to become less applicable. Chemical freeze-out occurs when inelastic collisions cease, fixing the com-
position of the hadrons. LQCD calculations and experimental measurements have shown that the
chemical freeze-out temperature aligns closely with the QGP crossover temperature at high collision
energies [29]. Following chemical freeze-out, particles continue to scatter elastically until the system
becomes sparse enough that the momentum distribution of the particles no longer changes. This final
stage is known as kinetic freeze-out.

• Final detected particles (τ ≫ 10 fm/c): After kinetic freeze-out, particles stream freely toward
the detectors. As they travel, long-lived unstable particles decay, contributing to the mix of primary
and decay products that are eventually detected. The primary particles detected are predominantly
pions, kaons, and protons. By analyzing these final-state particles, we can infer the entire timeline and
dynamics of the collision.
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1.4 Experimental observables

1.4 Experimental observables

An experimental observable refers to any measurable quantity or parameter that can be derived from exper-
imental data obtained during heavy-ion collisions. The experimental observables related to the QGP can
broadly be categorized into two classes: particle yield measurements and particle correlation measurements.

Particle yields are often measured in relation to various kinematic variables such as the rapidity y, pseudo-
rapidityη, or the transverse momentumpT of identified particles. These measurements can also be examined
with respect to event characteristics, like the charged hadron multiplicityNch, which represents the number
of particles produced in the collision. The relevant kinematic quantities are defined as follows:

y =
1

2
ln
E + pz
E − pz

, (1.4)

η = − ln tan(θ/2), (1.5)

pT =
√
p2x + p2y, (1.6)

where θ is the polar angle and E is the energy. It is important to note that while pseudorapidity η approxi-
mates rapidity y when pT ≫ m, wherem is the particle’s mass, they should not be confused with spacetime
rapidity ηs. The former operates on the energy-momentum vector, while the latter pertains to spacetime
position.

Basic yield measurements provide insight into the cross sections of the underlying production processes
[30], where yield ratios between different hadron species can provide information about the hadronization
process [31]. In addition to yield measurements, particle correlations represent another essential class of
observables. Correlations are typically calculated between the kinematic variables of particular identified
particles or between all particles produced in a collision event. For example, correlations in the azimuthal an-
gle provide information about anisotropic flow coefficients [32], whereas momentum correlations are more
sensitive to the spatial evolution of the system [33]. In this section, we will focus on two key experimen-
tal observables that are central to the analyses throughout this thesis: transverse momentum spectra and
anisotropic flow coefficients.

1.4.1 Transverse momentum spectra

The transverse momentum (pT) spectra represent the distribution of particle yields as a function of trans-
verse momentum. Mathematically, the differential pT spectra can be expressed as:

E
d3N

d3p
=

1

2πpT

d2N

dpTdy
, (1.7)

whereE d3N
d3p

represents the invariant yield as a function of momentum and d2N
dpTdy

is the differential yield per
unit transverse momentum and rapidity. The factor 1

2πpT
accounts for the phase space density, where pT is

treated as a polar or cylindrical radius in momentum space.
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By integrating Equation 1.7 over the transverse momentum and rapidity, one can obtain the multiplicity
of particles. The multiplicity is a key observable that depends strongly on the impact parameter b in the
transverse plane, which is defined as the distance between the centers of mass of the two colliding nuclei at
the point of closest approach. Since the impact parameter cannot be directly measured, collision events are
categorized into centrality classes based on the total charged-particle multiplicity. Centrality classes provide
a way to classify collision events according to the degree of overlap between the colliding nuclei. These classes
are typically expressed as percentiles. For instance, the0−5% centrality class corresponds to the5%of events
with the highest multiplicity, indicating the most central, head-on collisions. Conversely, higher centrality
percentiles correspond to more peripheral collisions, where the overlap between the nuclei is smaller.

As previously discussed, the chemical freeze-out marks the point at which the abundances of different
hadronic species become fixed. However, the shapes of their momentum spectra can still be altered during
the subsequent hadronic phase due to elastic scatterings. It is only after the kinematic freeze-out—when
the system has expanded and cooled sufficiently that it becomes too dilute for further interactions—that the
momentum spectra of particles become fixed and unchanging.

To analyze the spectral shapes of hadronic species, particularly in the low pT region, it is useful to trans-
form to the transverse mass variable mT =

√
p2T +m2, where m is the rest mass of the particle. The mT

distributions are often considered because they exhibit a universal pattern, known as "mT scaling," at low
mT [34]. This transformation is expressed as:

1

2π

d2N

pTdpTdy
=

1

2π

d2N

mTdmTdy
, (1.8)

where the transverse mass distribution can be described by an exponential function:

1

2π

d2N

mTdmTdy
= exp

(
− mT

Tslope

)
. (1.9)

Here, Tslope represents the universal inverse slope parameter. This parameter characterizes the mT spectra
and represents the slope of the pT distribution.

For an expanding system, the parameter Tslope is influenced by both the kinetic freeze-out temperature
Tkin and the collective expansion velocity of the system, denoted as ⟨v⊥⟩. This expansion is referred to as
radial flow [30]. In the low pT regime (pT ≤ 2GeV/c), Tslope can be expressed as:

Tslope = Tkin +
1

2
mi⟨v⊥⟩2, (1.10)

wheremi is the mass of the particle species. This relationship demonstrates how the observed inverse slope
parameter Tslope encapsulates both the thermal motion of particles at kinetic freeze-out and the additional
momentum boost from the system’s collective expansion. Thus, by analyzing the pT spectra, we can attempt
to constrain the freeze-out temperatures.
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1.4 Experimental observables

1.4.2 Anisotropic flow coefficients

One of the most pivotal discoveries associated with the formation of the QGP is the evidence of collective
flow within the system. Before the first ultra-relativistic heavy-ion collisions were conducted at RHIC, it
was widely anticipated that the QGP would behave as a weakly-coupled gas [35]. This assumption, based
on the idea that particle production occurs independently at various points within the heavy-ion collision,
implied that the final hadron yields would exhibit weak correlations with respect to the azimuthal angle ϕ.
Under this scenario, significant azimuthal correlations were expected to arise primarily from jets and other
hard scatterings, which generate back-to-back particle showers near midrapidity.

However, the initial measurements at RHIC presented a strikingly different scenario. The data revealed
that particles produced in each collision exhibited strong correlations with respect to the azimuthal an-
gle ϕ, and these correlations extended far from midrapidity [36], contradicting the weakly-coupled predic-
tions [37]. The observed pattern was more consistent with a strongly-coupled system, where the QGP be-
haves like a nearly perfect, low-viscosity liquid.

𝒙

𝒚

𝒛
𝜙

𝒃

Initial state spatial anisotropy Final state momentum anisotropy

Figure 1.4: Left: The asymmetric overlap region formed by two colliding nuclei (represented by circles) with a non-
zero impact parameter b. Right: The resulting anisotropic emission of particles in the transverse plane. The
figure is inspired from [25].

The development of azimuthal correlations in the context of heavy-ion collisions can be understood
through the lens of hydrodynamic flow. In a typical collision between two ultra-relativistic nuclei, as de-
picted on the left side of Figure 1.4, the nuclei collide with a non-zero impact parameter b, resulting in an
asymmetric overlap region that resembles an almond shape. This region, where the hot and dense QGP
forms, exhibits a steeper pressure gradient. The pressure difference from the central region to the surround-
ing vacuum is more significant along the x-axis than the y-axis due to the shorter distance over which this
change occurs. These anisotropic pressure gradients drive the fluid-like expansion of the QGP more strongly
in the x-direction. As the QGP cools and hadronizes, this directional momentum is transferred to the out-
going particles, leading to a transverse momentum distribution that is anisotropic as illustrated on the right
side of Figure 1.4. As a result, there is an enhanced particle yield near azimuthal angles ϕ = 0 and ϕ = π,
reflecting the initial spatial asymmetry in the collision.
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Experimentally, this anisotropy in particle yield is quantified by expanding the azimuthal particle distri-
bution into a Fourier series [38, 39]:

dN

dϕ
∝ 1 + 2

∞∑

n=1

vn cos[n(ϕ−Ψn)], (1.11)

where Ψn represents the event plane angle, which corresponds to the direction of maximum final-state par-
ticle density. The integer n denotes the harmonic order, with the first harmonic v1 known as directed flow,
the second harmonic v2 as elliptic flow, the third harmonic v3 as triangular flow, and so forth.

These flow coefficients, or harmonics, are calculated by:

vn = ⟨⟨cos[n(ϕ−Ψn)]⟩⟩. (1.12)

The notation ⟨⟨· · · ⟩⟩ represents an average taken first over all particles within a single event, and then aver-
aged over all events within a defined event class. These classes are typically categorized based on parameters
such as centrality, rapidity, and transverse momentum. When the flow is analyzed as a function of pT within
narrow pT bins, it is referred to as differential flow and denoted as vn(pT). In contrast, integrated flow refers
to the flow coefficients vn that are averaged over the entire transverse momentum range, quantifying the
overall azimuthal anisotropy within a given centrality class.

Flow coefficients are sensitive indicators of the viscous properties of the QGP. The shear and bulk vis-
cosities of the QGP influence the evolution of its flow patterns by altering the system’s response to initial
spatial anisotropies. Shear viscosity, which induces anisotropic deviations from local equilibrium, acts to
smooth out differences in expansion rates across various directions, thereby reducing the anisotropic flow
generated by the initial geometric anisotropies of the collision zone. Consequently, higher shear viscosity
leads to smaller flow coefficients, reflecting a diminished ability of the medium’s collectivity to convert initial
state spatial anisotropies into final state momentum anisotropies [35]. In contrast, bulk viscosity introduces
isotropic pressure corrections that counteract the expansion, primarily affecting the radial flow and resulting
in steeper pT spectra. By precisely measuring flow coefficients and comparing them with theoretical models,
we can extract valuable constraints on the shear and bulk viscosities of the QGP.
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2 Modelling heavy-ion collisions

2.1 Initial conditions

Initial condition models play an essential role in defining the entropy or energy density at the thermaliza-
tion time τ0, the point at which the QGP is formed and fluid-dynamic descriptions become applicable.
There are two primary approaches to modeling the initial state. The first approach explicitly models the
pre-equilibrium stage, as in the IP-Glasma model [40], which incorporates the interactions and dynamics of
the constituent particles to provide a more realistic description of the early-time evolution. However, since
this approach is not utilized in our framework, further details are not included here.

The other approach treats the initial state of the collisions as a superposition of binary nucleon-nucleon
collisions, commonly referred to as the Glauber model [41]. This method is based on several key assump-
tions. Firstly, due to their large longitudinal momentum, nucleons travel along straight-line trajectories, and
their positions within the nuclei remain effectively unchanged. Upon collision, nucleons undergo binary
nucleon-nucleon scattering, with the likelihood of such an interaction determined by the experimentally
measured inelastic nucleon-nucleon cross section. The transverse momentum gained in these interactions is
relatively small compared to the original longitudinal momentum, allowing for the assumption that the nu-
cleons continue on straight-line trajectories after collision. In these events, the deposition of entropy occurs,
and in the absence of a first-principles description, its distribution remains dependent on the specific model
employed. These models provide the energy or entropy density at τ0 and serve as the initial conditions for
the subsequent fluid dynamics of the QGP without addressing the thermalization process itself. The focus
is predominantly on the transverse dynamics within the participant region, with no modeling of the longitu-
dinal dynamics or the behavior of spectators (nucleons that do not participate in scattering). Since a majority
of the entropy in heavy-ion collisions is generated during the initial state, the particle yield in the final state is
proportional to the initial entropy, which is used to categorize collisions into centrality classes. In our analy-
sis, the TRENTo model1 is employed to generate the initial conditions for hydrodynamic evolution, thereby
omitting a specific description of the pre-equilibrium stage.

2.1.1 TRENTo

This section is primarily based on the works of Moreland et al. [43, 44]. For a comprehensive understanding,
readers are encouraged to refer to these sources.

1A 3D version of TRENTo also exists [42], which computes a fully three-dimensional energy density profile including longi-
tudinal fluctuations. However, we use the 2D version in our framework.
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2 Modelling heavy-ion collisions

TRENTo is an effective model designed to generate realistic Monte Carlo initial entropy profiles without
assuming specific physical mechanisms for entropy generation, pre-equilibrium dynamics, or thermaliza-
tion [44]. The model employs the Monte Carlo Glauber formalism [45] as its foundation and parametrizes
entropy deposition as a function of local participant nuclear density. The key operational principles of
TRENTo are summarized as follows:

1. The nucleon positions for nucleiA andB are sampled from a standard uncorrelated Woods-Saxon dis-
tribution and shifted by±b/2, where b is the impact parameter (assumed to be along thex direction),
such that ρA,B = ρ(x ± b/2, y, z). Additionally, a minimum distance criterion |xi − xj| > dmin

can be introduced to emulate the repulsive interactions between individual pairs of nucleons.

2. Inelastic nucleon-nucleon collisions, i.e., participants, are sampled using an impact parameter-dependent
nucleon-nucleon collision profile adapted from the analytic Glauber model:

Pcoll(b) = 1− exp
[
−σggTnn(b)

]
, (2.1)

where σgg denotes the effective parton-parton cross section, ensuring that the total nucleon-nucleon
cross section matches the experimentally observed inelastic nucleon-nucleon cross section. The nu-
cleon density is modeled as a three-dimensional Gaussian distribution with width w. The nucleon
thickness function is then given by:

Tn(x⊥) =
1

2πw2
exp

(
−|x⊥|2

2w2

)
, (2.2)

and the nucleon-nucleon overlap function Tnn(b) is defined as:

Tnn(b) =

∫
d2xTn(x⊥)Tn(x⊥ − b) =

1

4πw2
exp

(
− b2

4w2

)
. (2.3)

3. The density of each nucleon, ρn, is summed over NA,B , the total number of participants in each
nucleus, to produce a three-dimensional participant density field:

ρ̃
part
A,B(x) =

1

NA,B

NA,B∑

i=1

γi ρn(x− xi ± b/2), (2.4)

where γi are the nucleon weights sampled from a gamma distribution with a unit mean and variance
1/k. Each constituent density ρn is described by a Gaussian distribution of width v:

ρn(x) =
1

(2πv2)3/2
exp

(
− x2

2v2

)
, (2.5)
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2.2 Hydrodynamic evolution of QGP

and each constituent’s position xi in Equation 2.4 is sampled from a Gaussian radial distribution.
The participant density ρ̃part

A,B(x) is then projected onto the transverse plane, x⊥, by integrating over
z to construct two participant thickness functions:

T̃A,B(x⊥) =

∫
dz ρ̃

part
A,B(x⊥, z). (2.6)

These participant thickness functions describe the fluctuating density of participant matter in each
nucleus as observed by a probe moving parallel to the beam axis and intersecting the transverse coor-
dinate x⊥.

4. The entropy density s at midrapidity and at thermalization time is set proportional to the reduced
thickness function, defined as the generalized mean of the participant thickness functions:

s(τ0,x⊥)|ηs=0 ∝ TR(p; T̃A, T̃B) ≡
(
T̃A + T̃B

2

)1/p

, (2.7)

where τ0 is the thermalization time and ηs is the spacetime rapidity. This parametrization introduces
a continuous entropy deposition parameter p, which effectively interpolates among different entropy
deposition schemes. For p = (1, 0,−1), the generalized mean reduces to the arithmetic, geometric,
and harmonic means, respectively, while for p → ±∞, it asymptotically approaches the minimum
and maximum functions.

2.2 Hydrodynamic evolution of QGP

Hydrodynamics, also referred to as fluid dynamics, is the theoretical framework that governs the motion of
fluids. Originally developed to describe the behavior of water, this theory is applicable to a wide range of
materials. Hydrodynamics serves as an effective theory for the long-wavelength behavior of systems where
there is a sufficient separation of scales. In such systems, macroscopic motions vary so slowly in space and
time that they are largely insensitive to the underlying microscopic dynamics. For instance, in the case of
water, when macroscopic quantities such as pressure and temperature vary slowly in space relative to the
average molecular distance and slowly in time relative to the molecular scattering rate, the fluid’s behavior
can be accurately described by the equations of hydrodynamics.

The bulk dynamics of the quark-gluon plasma can be effectively described using the framework of vis-
cous relativistic hydrodynamics [46, 47], grounded in the fundamental principles of energy and momentum
conservation. The core equations governing these dynamics are derived from these conservation laws. To
gain a deeper understanding, it is useful to first review the conventional non-relativistic formulation of hy-
drodynamics, which provides the foundation upon which relativistic theories are built.
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2 Modelling heavy-ion collisions

2.2.1 Non-relativistic fluid dynamics

The conventional non-relativistic formulation of hydrodynamic equations describes the evolution of fluid
properties such as velocityv(t,x), pressure p(t,x), and mass density ρ(t,x) at each point in space and time.
These properties are governed by the following equations [48, 49]:

∂ρ

∂t
+∇ · (ρv) = 0, (2.8)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p . (2.9)

These equations, known as the continuity equation (Equation 2.8) and Euler equation (Equation 2.9), re-
spectively, express the conservation of mass and momentum for an ideal fluid, which is a fluid without dissi-
pation. To complete the system of equations, an additional relation, typically an equation of state p = p(ρ),
is required.

For non-ideal fluids where dissipative effects are significant, the Euler equation is extended to the Navier-
Stokes equations [50, 51]:

∂vi

∂t
+ vk

∂vi

∂xk
= −1

ρ

∂p

∂xi
− 1

ρ

∂Πki

∂xk
, (2.10)

Πki = −η
(
∂vi

∂xk
+
∂vk

∂xi
− 2

3
δki
∂vl

∂xl

)
− ζ δik

∂vl

∂xl
. (2.11)

The viscous stress tensor Πki incorporates the shear viscosity (η) and bulk viscosity (ζ). The coefficients,
similar to the equation of state, depend on the specific fluid in question and reflect information about its
microscopic dynamics.

2.2.2 Relativistic ideal fluid dynamics

To extend the discussion to a relativistic framework, we introduce the energy-momentum tensor T µν(x).
This symmetric tensor encapsulates the distribution of energy and momentum within a system. In any
chosen reference frame, the component T 00 represents the energy density, T 0i = T i0 indicates the i-th
component of the momentum density, and T ik represents the flux of the i-th component across the xk

surface.

The conservation of energy and momentum in relativistic terms is expressed as:

∂µT
µν = 0. (2.12)

At each point in space-time, we define the local rest frame of the fluid, where the momentum density is
zero, T 0i(x) = 0. The velocity of this local rest frame relative to a fixed laboratory frame defines a fluid 4-
velocity uµ(x). In the local rest frame, this 4-velocity is uµrest = (1, 0, 0, 0), and it satisfies u2 = uµuµ = 1.
Thus, we have uµT µν = ϵuν , where ϵ(x) is the energy density in the fluid’s rest frame.
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2.2 Hydrodynamic evolution of QGP

The equations of relativistic ideal hydrodynamics arise from the conservation equation Equation 2.12
when the energy-momentum tensor is isotropic (rotationally invariant) in the local rest frame:

T µν
ideal,rest =




ϵ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p



. (2.13)

In a general reference frame, the covariant form is given by:

T µν
ideal = (ϵ+ p)uµuν − pgµν = ϵuµuν − p∆µν , (2.14)

where p(x) is the isotropic pressure in the rest frame, gµν = diag(1,−1,−1,−1) is the metric tensor, and
∆µν ≡ gµν − uµuν is the projection operator orthogonal to the fluid velocity. This operator satisfies the
properties ∆µνuµ = ∆µνuν = 0 and ∆µν∆α

ν = ∆µα.

The hydrodynamic equations can be expressed using this projection operator to separate components
parallel (uν∂µT µν) and perpendicular (∆α

ν∂µT
µν) to the fluid velocity. These components are explicitly

given by:

uν∂µT
µν
ideal = (ϵ+ p)∂µu

µ + uµ∂µϵ = (ϵ+ p)∂µu
µ +Dϵ = 0 , (2.15)

∆α
ν∂µT

µν
ideal = (ϵ+ p)uµ∂µu

α −∆µα∂µp = (ϵ+ p)Duα −∇αp = 0 , (2.16)

where the shorthand notation for derivatives stands for projected parallel (D ≡ uµ∂µ) and perpendicular
(∇α = ∆µα∂µ) to the fluid velocity.

As illustrated in Equation 2.15 and Equation 2.16, the description of a perfect fluid requires three key
fields: ϵ, p, and uµ. Together, these fields represent five degrees of freedom. However, since the conserva-
tion laws yield only four independent equations, an additional relationship is needed to fully determine the
system. This is provided by the equation of state, p = p(ϵ), which closes the system of equations. With the
inclusion of the equation of state and given initial conditions for ϵ, p, and uµ, the fluid’s dynamics can be
fully resolved.

2.2.3 Relativistic viscous fluid dynamics

To account for dissipative, or viscous, effects, the hydrodynamic equations can be extended by considering
a more comprehensive form of the energy-momentum tensor:

T µν = T µν
ideal +Πµν = ϵuµuν + (−p+ πbulk)∆

µν + πµν , (2.17)

where Πµν represents the viscous stress tensor, which includes contributions from dissipative processes to
the overall energy-momentum tensor T µν .
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2 Modelling heavy-ion collisions

From energy-momentum conservation, one obtains evolution equations for energy density and fluid ve-
locity,

uµ∂µϵ+ (ϵ+ p+ πbulk)∇µu
µ + πµν∇µuν = 0, (2.18)

(ϵ+ p+ πbulk)u
ν∇νu

µ +∆µν∂ν(p+ πbulk) + ∆µ
ν∇ρπ

ρν = 0. (2.19)

In this form, the system of evolution equations is not closed but needs to be supplemented by additional
constitutive relations for the stress tensorπµν and the bulk viscous pressureπbulk. In the first order of deriva-
tives with respect to the fluid velocity, the shear stress tensor and the bulk viscous pressure can be approxi-
mated by

πµν = −2η

(
1

2
∆µα∆νβ +

1

2
∆µβ∆να − 1

3
∆µν∆αβ

)
∇αuβ = −2ησµν , (2.20)

πbulk = −ζ∇µu
µ, (2.21)

where the shear viscosity η and the bulk viscosity ζ are introduced as in the non-relativistic fluid dynam-
ics case. This formulation represents a relativistic generalization of the Navier-Stokes theory. While this
procedure represents a direct extension of the non-relativistic case, it has been demonstrated that the rela-
tivistic formulation of Navier-Stokes theory violates the principle of relativistic causality and exhibits linear
instability [52]. As a viable solution to the causality issues inherent in first-order theories, the second-order
hydrodynamics developed by Israel, Stewart, and Müller [53, 54] introduces dynamical equations for the
shear stress tensor πµν and the bulk viscous pressure πbulk, ensuring their evolution adheres to equations of
motion [55],

P µ ρ
ν σ

[
τshear

(
uλ∇λπ

σ
ρ − 2πσλωρλ

)
+ 2η∇ρu

σ − φ7 π
λ
ρπ

σ
λ + τππ π

σ
λσ

λ
ρ − λπΠ πbulk∇ρu

σ
]

+πµ
ν [1 + δππ∇ρu

ρ − φ6 πbulk] = 0,
(2.22)

τbulk u
µ∂µ πbulk+πbulk+ζ∇µu

µ+δΠΠπbulk∇µu
µ−φ1π

2
bulk−λΠππ

µν∇µuν−φ3π
µ
νπ

ν
µ = 0. (2.23)

where Equation 2.22 is evolution equation for shear stress and Equation 2.23 is the evolution equation for
πbulk.

The projector P µν
ρσ onto the symmetric, transverse, and traceless part of a tensor is defined as follows:

P µν
ρσ =

1

2
∆µ

ρ∆
ν
σ +

1

2
∆µ

σ∆
ν
ρ −

1

3
∆µν∆ρσ. (2.24)

Additionally, we define the symmetric σµν and antisymmetric ωµν combinations of fluid velocity gradi-
ents. These expressions are given by:

σµν = P ρσ
µν ∇ρuσ, (2.25)

ωµν =
1

2
(∇µuν −∇νuµ) =

1

2
(∂µuν − ∂νuµ). (2.26)
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Among the various transport coefficients introduced in Equation 2.22 and Equation 2.23, the most crit-
ical are the shear viscosity η and bulk viscosity ζ , both of which also appear in the Navier-Stokes approxima-
tion. The parametrization of these viscosities will be discussed in detail in Subsection 2.3.2. Additionally,
the relaxation times τshear and τbulk play a crucial role in determining the rate at which the shear stress tensor
and bulk viscous pressure relax towards their asymptotic forms, πµν = −2ησµν and πbulk = −ζ∇µu

µ,
respectively. Beyond these, there are several second-order transport coefficients, including τππ, δππ, λπΠ,
δΠΠ, and λΠπ, which are of the order O(Kn Re−1) (where Kn is the Knudsen number—the ratio of a mi-
croscopic scale, such as the mean free path, to a macroscopic scale over which the macroscopic fields change
effectively—and Re−1 is the inverse Reynolds number, where the Reynolds number is the ratio of a macro-
scopic length scale to the scale at which perturbations are damped by viscosity [56]), as well as φ7, φ6, φ1,
and φ3, which are of the order O(Re−2). These coefficients can be interpreted as nonlinear modifications
to the relaxation-type equations, as discussed in [57].

The Israel-Stewart-Müller equations of motion constitute a closed system of partial differential equations
governing the energy density ϵ, the independent components of fluid velocity, the shear stress tensor com-
ponents, and the bulk viscous pressure. While these equations are generally complex and non-linear, making
them difficult to solve analytically in most realistic scenarios, analytical solutions can be obtained under cer-
tain simplifying assumptions or symmetries [55]. For more general cases, however, numerical methods must
be developed to accurately describe the dynamics of the QGP.

2.2.4 FluiduM

This subsection is mostly based on [55] and in parts inspired by [58].

Accurately modeling the evolution of the QGP requires solving the equations of motion derived from
relativistic viscous fluid dynamics. Given the complexity of these partial differential equations, analytical
solutions are unattainable, thus necessitating the use of numerical methods. One such method is imple-
mented in the specialized software package Fluid dynamics of heavy-ion collisions with Mode expansion
(FluiduM [55]). FluiduM numerically evolves fluid fields based on Equation 2.22, Equation 2.23, and ini-
tial conditions. In this subsection, we will elaborate on the main principles and methodologies of FluiduM
as detailed in [55], emphasizing its relevance and application in the context of heavy-ion collisions.

To effectively describe the dynamics of heavy-ion collisions, selecting an appropriate coordinate system
is crucial. While Cartesian coordinates (t, x, y, z) can be used with the origin placed at the collision center,
they are not well-suited for capturing the underlying symmetries and kinematic features of the collisions,
particularly the longitudinal boost invariance observed in the early stages of the system’s evolution.

By introducing the proper time, or Bjorken time, τ and space-time rapidity η, defined as

τ =
√
t2 − z2, (2.27)

η = arctanh(z/t), (2.28)
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2 Modelling heavy-ion collisions

one can describe the dynamics in a way that naturally reflects the boost-invariant expansion along the lon-
gitudinal (beam) direction. This transformation simplifies the equations of motion and makes it easier to
impose boundary conditions and initial states that are consistent with the symmetries of the collision, with
t and z expressed as t = τ cosh(η) and z = τ sinh(η). In the transverse plane, cylindrical coordinates are
convenient, with the radial coordinate r and azimuthal angle ϕ defined by

r =
√
x2 + y2, (2.29)

ϕ = arctan(y/x). (2.30)

This coordinate system is particularly advantageous for describing the approximate azimuthal rotation
symmetry ϕ→ ϕ+∆ϕ, and the approximate longitudinal rapidity boost symmetry η → η+∆η observed
in heavy-ion collisions. Consequently, every space-time point can be described using (τ, η, r, ϕ), facilitating
the numerical solution of the equations of motion in FluiduM.

After establishing the coordinate system, one can describe the scheme for solving the equations of motion.
This involves considering a general set of hyperbolic, quasi-linear partial differential equations, which can be
expressed as

A(Φ, τ, r) · ∂τΦ+B(Φ, τ, r) · ∂rΦ+C(Φ, τ, r) · ∂ϕΦ
+D(Φ, τ, r) · ∂ηΦ− S(Φ, τ, r) = 0.

(2.31)

In this equation, Φ(τ, r, ϕ, η), referred to as the "Nambu spinor", represents a vector characterized by
N independent components such as the fluid temperature T , the four-velocity uµ, the shear stress tensor,
the bulk viscous pressure, and any other field necessary for a local description of the fluid. The matrices A,
B, C, and D are N × N coefficient matrices, while S, the source term, is an N -component vector. These
components are functions of Φ, τ , and r, with the explicit dependence on τ and r arising from the chosen
coordinate system. By comparing this general form to the specific equations of motion for a relativistic
dissipative fluid, the appropriate coefficients can be identified, thereby tailoring the general framework to
the specific physical scenario.

Background-fluctuation splitting

The core concept behind FluiduM involves decomposing the field Φ into a symmetric background com-
ponent and a symmetry-breaking perturbation. Specifically, we write:

Φ(τ, r, ϕ, η) = Φ0(τ, r) + ϵΦ1(τ, r, ϕ, η), (2.32)

whereΦ0(τ, r) represents the background field, which is symmetric under azimuthal rotations and Lorentz
boosts in the longitudinal (η) direction. The term Φ1(τ, r, ϕ, η) represents the perturbation or fluctuation
field, capturing deviations from this symmetric background. The ϵ is taken as a formal expansion parameter
(i.e., the equations of motion are expanded in orders of ϵ) but will be set ϵ→ 1 at the end.
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2.2 Hydrodynamic evolution of QGP

In FluiduM, Φ0(τ, r) is defined as a boost-invariant statistical expectation value, averaged over a large
number of collision events where the event average only cancels outϕdependence. Conversely,Φ1(τ, r, ϕ, η)

represents the fluctuations specific to each individual event. This decomposition offers a significant advan-
tage over traditional event-by-event simulations of the QGP evolution. In standard methods, each collision
is simulated individually, generating an initial entropy density that evolves hydrodynamically according to
the equations of motion. The mean behavior is then extracted by averaging over all simulated events. This
approach is computationally intensive due to the necessity of simulating thousands of events. In contrast,
FluiduM involves averaging before solving the equations of motion. This allows the mean evolution be-
havior to be inferred from a single evolution calculation, making it computationally more efficient.

To solve the partial differential equations within this framework, Equation 2.32 can be substituted into
Equation 2.31. This results in the following expression:

A(Φ0 + ϵΦ1, τ, r) · ∂τ (Φ0 + ϵΦ1) +B(Φ0 + ϵΦ1, τ, r) · ∂r(Φ0 + ϵΦ1)

+C(Φ0 + ϵΦ1, τ, r) · ∂ϕ(Φ0 + ϵΦ1) +D(Φ0 + ϵΦ1, τ, r) · ∂η(Φ0 + ϵΦ1)

−S(Φ0 + ϵΦ1, τ, r) = 0.

(2.33)

From Equation 2.33, one can derive the equations of motion for the background field Φ0 by retaining
only the terms of zeroth order in ϵ. To obtain the linearized equations for the perturbations Φ1, one must
isolate the terms linear in ϵ. Higher-order terms, which include quadratic and beyond, account for interac-
tions among perturbation modes. The equations of motion for the background fields are reduced to a set of
partial differential equations in 1 + 1 dimensions

A0(Φ0, τ, r) · ∂τΦ0(τ, r) +B0(Φ0, τ, r) · ∂rΦ0(τ, r)− S0(Φ0, τ, r) = 0. (2.34)

Due to symmetry constraints, the background fieldsΦ0 generally possess fewer independent components
compared to Φ. For instance, in the context of Israel-Stewart-type fluid dynamics employed here, one can
express Φ0 as (T, v, πϕ

ϕ, π
η
η, πbulk). The matrices A0 and B0 represent the projections of the matrices A

and B onto this reduced space of independent components, evaluated for the background configuration
Φ0.

For the perturbations, at linear order in ϵ, we obtain:

A1(Φ0, τ, r) · ∂τΦ1 +B1(Φ0, τ, r) · ∂rΦ1 +C1(Φ0, τ, r) · ∂ϕΦ1

+D1(Φ0, τ, r) · ∂ηΦ1 − S1(Φ0, τ, r) ·Φ1 = 0.
(2.35)

The matrices A1, B1, C1, and D1 are obtained by evaluating A, B, C, and D at the background con-
figuration Φ0. In contrast, the source term matrix S1 includes additional contributions arising from the
linearization of A and B around Φ0:

S1(Φ0, τ, r) =
∂

∂Φ
[S(Φ, τ, r)−A(Φ, τ, r) · ∂τΦ0 −B(Φ, τ, r) · ∂rΦ0]Φ=Φ0

. (2.36)
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2 Modelling heavy-ion collisions

Mode expansion

To efficiently solve the equations governing the dynamics of perturbations in a system, it is often advan-
tageous to employ certain simplifications. One effective approach is the introduction of a background-
fluctuation splitting ansatz, as discussed earlier. This method allows for the reduction of the dimensionality
of the background field equations from 3+1 dimensions to 1+1 dimensions. This reduction is particularly
beneficial for numerical algorithms, as it significantly simplifies the computational process required to solve
the system of equations.

However, while the background field equations benefit from this dimensional reduction, the perturba-
tion fields themselves are still governed by equations that span the full 3+1 dimensions. To address this
challenge and optimize the numerical treatment of these perturbations, we introduce a mode expansion in
Fourier space. The perturbation field Φ1(τ, r, ϕ, η) can be expanded as a sum over Fourier modes:

Φ1(τ, r, ϕ, η) =
∞∑

m=−∞

∫
dk

2π
eimϕ+ikηΦ

(m,k)
1 (τ, r), (2.37)

wherem represents discrete mode numbers due to the periodic symmetry in the angular coordinate ϕ (ϕ =

ϕ + 2π), and k is the wave number associated with the longitudinal coordinate η. The use of this Fourier
expansion is particularly advantageous because, in Fourier space, differential operators simplify to algebraic
multiplications, which greatly facilitates the computational process.

Applying this expansion to the perturbation equations transforms the original 3+1 dimensional prob-
lem into a set of 1+1 dimensional equations for each mode. The evolution of each perturbation mode
Φ

(m,k)
1 (τ, r) is then governed by the following set of partial differential equations:

A1(Φ0, τ, r) · ∂τΦ(m,k)
1 (τ, r) +B1(Φ0, τ, r) · ∂rΦ(m,k)

1 (τ, r) + imC1(Φ0, τ, r) ·Φ(m,k)
1 (τ, r)

+ikD1(Φ0, τ, r) ·Φ(m,k)
1 (τ, r)− S1(Φ0, τ, r) ·Φ(m,k)

1 (τ, r) = 0.
(2.38)

To reconstruct the full solution, it is necessary to perform the sum and integral in Equation 2.37, yielding:

Φ(τ, r, ϕ, η) = Φ0(τ, r) + ϵ

∞∑

m=−∞

∫
dk

2π
eimϕ+ikηΦ

(m,k)
1 (τ, r). (2.39)

As previously discussed, the Bjorken boost symmetry allows us to neglect the η-dependence, which sim-
plifies the problem by considering only the k = 0 mode. This reduction results in the following expression:

Φ(τ, r, ϕ) = Φ0(τ, r) + ϵ

∞∑

m=−∞
eimϕΦ

(m)
1 (τ, r). (2.40)

The summation over the m modes must be truncated for practical purposes, but this approximation is
well-justified in [59]. The structure of Equation 2.40 also plays a crucial role in the construction of flow
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2.3 Equation of state and transport properties

coefficients, as detailed in Subsection 2.4.3. The perturbation modes introduced here will be later translated
into response functions, which quantify their influence on the final particle distribution.

To proceed with the mode expansion, it is necessary to specify the initial field values for the perturbation
modesΦ(m,k)

1 (τ, r). At the initial time τ0, all fields are assumed to be zero, except for the energy-related field.
The initial energy density ϵ(r, ϕ) at time τ0 can be decomposed into Fourier modes and is expressed as:

ϵ(r, ϕ) =
∞∑

m=−∞
eimϕϵ(m)(r). (2.41)

To factor out event-by-event fluctuations in the initial perturbation configuration, this energy density is
further decomposed into a set of nonfluctuating radial basis functions ψ(m)

l (r), characterized by a radial
wave number l and expansion coefficients ϵ(m)

l (k). For the purposes of this analysis, we neglect the depen-
dence of these coefficients on the longitudinal wave number k, focusing instead on the boost-invariant dy-
namics typical of heavy-ion collisions. To establish initial conditions, we choose a set of radial basis functions
that span the r-coordinate space for eachmmode at time τ = τ0:

ϵ(m)(r) =
∞∑

l=1

ϵ
(m)
l ψ

(m)
l (r), (2.42)

where ϵ(m)
l are expansion coefficients and ψ(m)

l (r) are the radial basis functions. The choice of these basis
functions is detailed in [60]. While this decomposition is primarily discussed in the context of energy density,
it is important to note that all other fields are similarly decomposed into l and m modes, though they are
initially set to zero. To ensure consistency with our parameterization of the perturbation fields, the initial
energy density for each perturbation mode is converted to enthalpy density using the equation of state. At
the initial time, the full fields are given by:

Φ(τ0, r, ϕ) = Φ0(τ0, r) +
∞∑

m=−∞

∞∑

l=1

eimϕϵ
(m)
l Φ

(m)
l (τ0, r), (2.43)

where Φ0(τ0, r) represents the initial field values of the background fields (which will be discussed in detail
in Chapter 4), and Φ

(m)
l (τ0, r) denotes the initial field values for each mode. As before, all fields are set to

zero initially, except for those corresponding to energy. The complete solution then requires evolving these
initial background fields and each of them and l modes over time.

2.3 Equation of state and transport properties

2.3.1 Equation of state

The equation of state (EoS) is a fundamental relation that describes the state of a physical system by relating
its state variables. For a given system, the equation of state links variables such as pressure (p), volume (V ),
temperature (T ), and sometimes additional quantities such as density (ρ) or energy density (ϵ). From the
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2 Modelling heavy-ion collisions

standpoint of fluid dynamics, an EoS p = p(ϵ) is necessary to complete the set of conservation equations
given in Equation 2.12. The EoM is typically derived from the partition function of the systemZ ,

p =
T

V

(
∂ lnZ

∂V

)

T

. (2.44)

For QGP, assuming that the net baryon chemical potential is approximately zero at sufficiently high col-
lision energies, the equation of state can be computed using lattice QCD techniques [61]. Furthermore, the
evolution of the fireball must be considered since the quarks and gluons combine into hadrons at lower tem-
peratures. During this hadronic phase, the EoS shifts to reflect the properties of the hadron resonance gas
(HRG) model [62].
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Figure 2.1: (a) The QCD equation of state (EoS) provided by the HotQCD Collaboration [63] is illustrated with col-
ored bands representing the normalized pressure, energy density, and entropy density, all plotted as func-
tions of temperature as predicted by lattice QCD (LQCD). The widths of these bands denote the asso-
ciated uncertainties. In contrast, the solid lines depicts the corresponding predictions from the Hadron
Resonance Gas (HRG) model. The vertical yellow band marks the crossover region at Tc = 154± 9 MeV.
(b) Thermodynamic pressure p(T ) as a function of temperature, derived from the equation of state used in
FluiduM across the temperature range. In the green-shaded region, the data from LQCD was used for the
fit, while the orange-shaded region represents the HRG model. The two regions are connected smoothly
across the transition area, ensuring a continuous equation of state.

Figure 2.1a depicts the variation of pressure, energy density, and entropy density as functions of tem-
perature, derived from the HotQCD Collaboration’s latest lattice calculations of the EoS for (2+1)-flavor
QCD at zero net baryon density [63]. These results indicate a crossover deconfinement transition occurring
at Tc = 154 ± 9 MeV. At low temperatures, the predictions of the two models converge, allowing the use
of the HRG model as the EoS. However, at higher temperatures, where quarks and gluons become the rel-
evant degrees of freedom, the HRG approximation becomes invalid, necessitating the use of lattice QCD
(LQCD) to determine the EoS of the system.

For the background-fluctuation splitting ansatz and the numerical implementation of FluiduM using
spectral methods, it is essential to have a continuous and differentiable equation of state. The numerical
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2.3 Equation of state and transport properties

solution must also account for regions of the system that have already frozen out, which requires the EoS
to be valid in both the quark-gluon plasma and hadronic phases. To achieve a continuous EoS p(T ) that
meets these criteria, a parametrization of the pressure is fitted to LQCD data above the critical temperature
Tc = 154 MeV and to the HRG model below Tc. The parametrization is given by:

p(T )

T 4
= exp

[
−c2T̂ − d2T̂ 2

][ (16+21/2Nf )π
2

90
+ a1T̃ + a2T̃

2 + a3T̃
3 + a4T̃

4

1 + b1T̃ + b2T̃ 2 + b3T̃ 3 + b4T̃ 4

]
, (2.45)

where T̃ = Tc/T , Tc = 154 MeV, Nf = 3 is the number of quark flavors, and T̂ = 100/T MeV. The
best-fit parameters for this parametrization are provided in Table 2.1.

Table 2.1: Best-fit parameters for the thermodynamic equation of state as parametrized in Equation 2.45. These pa-
rameters were obtained from the table presented in [58].

a1 -15.53 a2 18.62 a3 -10.73 a4 2.74 c -1.05
b1 -3.31 b2 5.31 b3 -4.65 b4 1.86 d 0.10

Figure 2.1b shows the resulting pressure across the temperature range. In the green-shaded region, the data
from lattice QCD was used for the fit, while the orange-shaded region represents the hadron resonance gas
model. The two regions are connected smoothly across the transition area, ensuring a continuous equation
of state.

2.3.2 Transport coefficients

Understanding the behavior of the QGP requires a detailed examination of its transport properties, which
govern the transfer of momentum, energy, and other quantities within the medium. These transport co-
efficients, including shear and bulk viscosity, encapsulate the fluid’s response to various perturbations and
external forces and are particularly sensitive to temperature and the baryon chemical potential.

Shear viscosity, η, quantifies a fluid’s resistance to shear deformation. A fluid with low shear viscosity
is typically strongly interacting, meaning it efficiently transmits shear stress throughout its volume, and its
constituents have short mean free paths. In contrast, a nearly ideal (weakly interacting) gas exhibits high shear
viscosity because its particles do not scatter frequently enough to effectively transmit shear stress, resulting
in a less efficient response to applied strain. Bulk viscosity, ζ , on the other hand, is associated with the fluid’s
resistance to uniform compression or expansion. In the context of QGP, bulk viscosity plays a crucial role
by modulating the plasma’s expansion rate. Specifically, it tends to suppress radial expansion, leading to a
reduction in the average transverse momentum of particles emitted during the collision.

The transport coefficients are often normalized by the entropy density s to provide dimensionless ratios,
such as η/s and ζ/s, which offer deeper insights into the fluid’s behavior. The ratio η/s, known as the
specific shear viscosity or shear viscosity to entropy density ratio, is of particular interest because it provides
a measure of the fluid’s “quality.” In natural units where ℏ = kB = 1, η/s is dimensionless and serves as an
intensive property of the fluid.
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2 Modelling heavy-ion collisions

While the calculation of these transport properties from first principles is still challenging, we employ
parametrizations to describe their temperature dependence. To model the temperature dependence of η/s,
we apply a parametrization based on calculations from Yang-Mills theory, as detailed in Ref. [64] with up-
dated parameters provided in [65]. The analytic fit formula used to describe η/s in SU(3) Landau gauge
Yang-Mills theory is given by:

η

s
(T )YM = a

(
T

Tc
− d

)2

+
b

(T/Tc)δ
. (2.46)

For simplicity, the first term in this expression has been slightly modified from its original form in Ref. [64], as
these changes do not significantly impact hydrodynamic applications [65]. The best fit to the Yang-Mills re-
sults yields the parameters: a = 0.0613, b = 0.00588, d = −0.709, and δ = 40.3. In the low-temperature
regime, where the system is dominated by glueball dynamics rather than a hadron resonance gas, the param-
eters b and δ are adjusted to 0.02 and 6.0, respectively, to better capture the behavior of the system. A global
correction factor of 4/3 is applied to account for differences in scales and running couplings between Yang-
Mills theory and QCD [64]. To further refine this model for QCD, a global scaling parameter (η/s)scale is
introduced, which will be estimated through Bayesian analysis:

η

s
(T )QCD = (η/s)scale ·

4

3
·
[
a

(
T

Tc
− d

)2

+
0.02

(T/Tc)6

]
. (2.47)

In addition to shear viscosity, the bulk viscosity to entropy density ratio ζ/s is also considered temperature
dependent. We assume it to take the Lorentzian form [66]:

ζ

s
(T ) =

(ζ/s)max

1 +
(

T−Tpeak

Twidth

)2 . (2.48)

In this parametrization, the peak temperature Tpeak is set to 175 MeV, and the width Twidth is fixed at 24
MeV, as informed by the findings in Ref. [66]. The maximum value (ζ/s)max serves as a free parameter that
will be determined through Bayesian analysis.

The corresponding relaxation times are defined as follows:

τbulk
ζ/(ϵ+ p)

=
1

15
(
1
3
− c2s

)2 +
0.1 fm/c
ζ/(ϵ+ p)

, (2.49)

τshear
η/(ϵ+ p)

=




5 for T ≥ Tchem,

5 + (T − Tchem)3MeV for T < Tchem.
(2.50)

The adjustment of the shear relaxation time below the chemical freeze-out temperature ensures that this time
scale remains significantly larger than the characteristic scale of the hadron resonance gas, where scattering
processes become increasingly infrequent. Regarding the other coefficients that appear in Equation 2.23,
the parameter δππ is set to 4τshear/3, while all other second-order transport coefficients are neglected [58].
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2.4 Hadronization and final state observables

2.4 Hadronization and final state observables

2.4.1 Cooper-Frye freeze-out and thermal spectra

At a certain stage in the evolution of the QGP, the system cools down and undergoes a transition where
quarks and gluons become confined within hadrons, a process referred to as hadronization. This transition
occurs as the system passes through the crossover temperature, Tc. The modeling of this phase requires
translating the continuous fluid fields, described by hydrodynamics, into discrete particles while conserving
energy and momentum. This is typically achieved through the Cooper-Frye procedure [67], which defines
a freeze-out hypersurface, Σµ. The hypersurface is characterized by a constant freeze-out temperature, Tfo,
typically around 150 MeV, at which the hadronization is assumed to occur rapidly enough for the system to
be describable by a thermal distribution of particles.

On the freeze-out surface, the fluid fields are converted into particles using the Cooper-Frye formula,
which involves integrating the single-particle distribution function over the freeze-out hypersurface. The
spectrum of hadron species a on the freeze-out hypersurface Σµ can be expressed by

Ep
dNa

d3p
= − νa

(2π)3

∫

Σ

fap
µdΣµ, (2.51)

where dNa

d3p
is the number of particles per phase space volume, fa = fa(p

µ, T (x), uµ(x), πµν(x), πbulk(x))

is the particle distribution function, andνa is the degeneracy factor accounting for spin or polarization states.
The Cooper-Frye formula ensures that the transition from the fluid phase to the particle phase is consistent
with the principles of relativistic hydrodynamics and conserves the overall energy and momentum of the
system.

On the freeze-out surface, the distribution function fa is assumed to be close to equilibrium and is ex-
pressed as

fa = fa,eq + δfbulk
a + δf shear

a , (2.52)

where fa,eq represents the equilibrium distribution, which is given by either the Bose-Einstein or Fermi-
Dirac distribution depending on the particle species,

fa,eq =
1

e−
pνuν+µa

T ± 1
. (2.53)

The corrections δfbulk
a and δf shear

a account for bulk viscosity and shear viscosity effects, respectively, and
can be parameterized as [68, 69]:

δfbulk
a = fa,eq(1± fa,eq)

[
Ēp

T

(
1

3
− c2s

)
− m2

3TĒp

]
πbulk
ζ/τbulk

, (2.54)

δf shear
a = fa,eq(1± fa,eq)

πρνp
ρpν

2(ϵ+ p)T 2
. (2.55)

25



2 Modelling heavy-ion collisions

where Ēp is the energy of the particle in the reference frame, c2s is the speed of sound squared in the medium
at the freeze-out temperature,m is the mass of the primary resonance, ζ is the bulk viscosity, and τbulk is the
bulk relaxation time. Similarly, πρν represents the shear stress tensor, and (ϵ+ p) is the enthalpy density.

By substituting the distribution function from Equation 2.52 into Equation 2.51, one can compute the
thermal spectra on the freeze-out hypersurface. However, these spectra do not directly correspond to what is
observed in the detector. Although the particles cease to interact with each other after freeze-out, the spectra
are still influenced by the decays of unstable particles, such as resonances, as they travel to the detector. These
resonances decay into lighter, stable particles, and their contributions must be included to accurately predict
the final particle spectra observed in experiments.

To fully understand the intricacies of particle production in heavy-ion collisions, it is crucial to distinguish
between the different stages of freeze-out. In the previous discussion, we introduced the assumption of a
single freeze-out temperature, Tfo = Tch = Tkin, where chemical freeze-out, which determines the relative
abundances of various particle species, and kinetic freeze-out, which sets the momentum distributions of
these particles, are assumed to occur at the same time. While this simplification can be useful, it overlooks
the more complex reality where these freeze-out processes actually occur at different stages as the system
evolves. As the system expands and cools, the interactions among hadrons become less frequent, leading to a
departure from chemical equilibrium, though kinetic equilibrium can persist for a while longer. To address
this complexity, our model utilizes the concept of partial chemical equilibrium (PCE) [70]. After the initial
freeze-out, the hadron density remains high enough to allow for elastic scatterings, which preserve kinetic
equilibrium even as chemical equilibrium is lost. This requires us to distinguish between the chemical freeze-
out temperature, Tch, where inelastic collisions stop, and particle yields are fixed, and the kinetic freeze-out
temperature, Tkin, where elastic scatterings cease, finalizing the momentum distributions. By incorporating
these two distinct freeze-out temperatures, our model represents the gradual decoupling of hadrons as they
transition from an interacting medium to free-streaming particles. The detailed implementation of PCE in
our model can be found in [60].

Finally, in the context of mode expansion, when the fluid fields are translated into particle yields on the
freeze-out surface, the complete final particle distribution for a given particle species "a"—depending on its
massma, transverse momentum pT , and azimuthal angle φ—can be expressed as [59]:

dNa

pTdpTdφ
= Sa(ma, pT, φ) = S0;a(ma, pT) +

∞∑

n=−∞

∞∑

l=1

ϵ
(n)
l einφS

(n)
l;a (ma, pT). (2.56)

In this expression, S0;a(ma, pT ) represents the contribution from the azimuthally symmetric, or back-
ground, part of the initial fields, while S(n)

l;a (ma, pT ) captures the response to azimuthally dependent per-
turbations in the initial fields. It is important to note that the dependence on rapidity is omitted, as we
focus exclusively on the midrapidity region, |ηP | < 0.5, where the rapidity dependence is negligible. The fi-
nal expressions for the thermal background spectrum S0;a(ma, pT ) and the thermal perturbation spectrum
S
(n)
l;a (ma, pT ), as implemented in FluiduM, are detailed in [60].
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2.4 Hadronization and final state observables

2.4.2 Particle spectra including resonance decays

After hadronization, many of the particles produced are unstable and undergo decays before reaching the
detector. These decays, particularly those of short-lived resonances, significantly influence the final particle
spectra observed in heavy-ion collision experiments. To accurately account for these effects, it is necessary
to simulate the decay processes of these resonances, which can result in cascades of decays, leading to the
formation of lighter, stable particles.

Mathematically, the final particle spectrum, including contributions from decaying resonances, can be
expressed as:

Ep
dNb

d3p
=
∑

a

∫
d3q

(2π)32Eq

Da
b (p,q)Eq

dNa

d3q
, (2.57)

where Da
b (p,q) is the decay map, which encapsulates the Lorentz-invariant probability of a resonance a

with momentum q decaying into a particle b with momentum p (Typically, a decays into two particles,
a → b + c, but for simplicity, c is omitted here). The decay maps are computed considering phase-space
integrals, four-momentum conservation, and the relevant branching ratio for each decay channel.

A conventional approach for incorporating resonance decays relies on Monte-Carlo generators [71, 72],

which are computationally intensive due to the need to simulate all intermediate states within the decay
chains. In our framework, a more computationally efficient method called FastReso [73] is utilized to
handle resonance decays.

FastReso computes the final decay spectra of direct resonance decays by directly utilizing the hydrody-
namic fields on the freeze-out surface. It applies the decay map, Equation 2.57, to the distribution function
of primary particles prior to the Cooper–Frye integration, thereby determining the distribution function for
the decay products. Subsequently, the final particle spectrum is obtained through a Cooper–Frye freeze-out
integral. A key advantage of FastReso is that it eliminates the need for repeated calculations of interme-
diate particle decays, which are typically computed event-by-event. The essential components of the decay
particle distribution function are computed only once, enabling the calculation of the spectrum for a few
significant hadron species, including the feed-down from all direct decays, for any arbitrary freeze-out sur-
face. This method not only significantly reduces the computational load associated with direct resonance
decays but also ensures that the effects of these decays on the final particle spectra are accurately captured.

While FastReso provides a comprehensive framework for calculating the final decay spectra, the detailed
exploration of thermal particle spectra that include resonance decays extends beyond the primary focus of
this thesis. For readers interested in the most up-to-date versions of these spectra, along with their associated
kernels, detailed information can be found in [58]. Instead, this thesis focuses on comparing the spectra
of pions, kaons, and protons, including the effects of resonance decays, with experimentally measured pT-
differential spectra of identified hadrons.
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2 Modelling heavy-ion collisions

2.4.3 Construction of flow coefficients

This subsection is mainly inspired by [59, 74].

The collective behavior of the fluid in a heavy-ion collision is commonly referred to as the flow of the sys-
tem. To quantify this flow, one can construct flow coefficients from the final particle distribution. A starting
point is to consider the so-called fully integrated flow coefficients. The flow coefficient vn can be expressed in
terms of the one-particle momentum distribution f(p), which represents the number of particles expected
in a given momentum region [74]:

vn(D) ≡ ⟨einφ⟩ =

∫

D
einφf(p) d3p
∫

D
f(p) d3p

, (2.58)

where the angle brackets denote an average over many events, φ is the azimuthal angle of the particle’s mo-
mentum in the plane perpendicular to the beam axis, measured relative to the reaction plane of the collision,
and D represents a phase space region in the (pT , y) plane where the flow is measured, typically correspond-
ing to the detection region of an experimental apparatus.

Direct evaluation of Equation 2.58 requires the reconstruction of the reaction plane for each event. How-
ever, this can be challenging in practice, so correlation functions are often employed to infer the flow coef-
ficients. Since the exact orientation of the reaction plane is not directly accessible in experiments, measure-
ments are typically limited to relative azimuthal angles between outgoing particles. The standard approach
in flow analysis involves two-particle azimuthal correlations, which utilize the two-particle distribution func-
tion f(p1,p2) = dN/d3p1d

3p2:

⟨2n⟩ = ⟨ein(φ1−φ2)⟩D1×D2 =

∫

D1×D2

ein(φ1−φ2)f(p1,p2) d
3p1d

3p2

∫

D1×D2

f(p1,p2) d
3p1d

3p2

, (2.59)

where φ1 and φ2 are the azimuthal angles of two different particles measured in the laboratory frame, and
the integration is performed over the phase space window D1 ×D2.

In standard analysis, it is often assumed that nonflow correlations—those not related to the reaction
plane—are negligible. Under this assumption, the two-particle momentum distribution factorizes:

f(p1,p2) = f(p1)f(p2), (2.60)

which leads to the relation:
⟨ein(φ1−φ2)⟩D1×D2 = vn(D1)vn(D2). (2.61)

This equation indicates that the azimuthal correlation between two particles arises solely from their mutual
correlation with the reaction plane. However, it is important to recognize that reconstructing flow coef-
ficients from two-particle correlators is inherently an approximation. To reduce the influence of nonflow
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2.4 Hadronization and final state observables

effects and few-particle correlations in these estimates, higher-order cumulants, constructed from multi-
particle correlators, can be employed.

In the discussion above, all particles were used to calculate the so-called integrated flow coefficients. By
narrowing down the phase space under consideration, one can define differential flow coefficients. To achieve
this, the measured particles are divided into particles of interest (POIs) and reference flow particles (RFPs).
Typically, POIs are selected within a specific range of transverse momentum, while RFPs encompass all other
particles. By restricting the phase space window of one particle to a particular pT value, we can define the
pT-dependent two-particle correlator:

⟨2′n⟩(pT) =
∑mp

i=1

∑M
j=1 e

(in(φi−φj))

∑mp

i=1

∑M
j=1 1

, (2.62)

where mp is the number of POIs, M is the total number of particles, and the primed sum indicates that all
indices are distinct. Here, φi represents the azimuthal angles of the particles as measured in the laboratory
frame. For simplicity, we have assigned all particle weights to unity. The correlator ⟨2′n⟩(pT) now depends
on the pT region from which the POIs are selected. It is assumed that POIs are chosen based solely on their
transverse momentum, regardless of particle species. The differential two-particle correlators are defined
using continuous distribution functions as:

⟨2′n⟩(pT) =
∫
D1

∫
D2(pT)

ein(φ1−φ2)f(p1,p2) dp1 dφ2 dη2∫
D1

∫
D2
f(p1,p2) dp1 dφ2 dη2

, (2.63)

where the pT dependence arises because, within one phase space window, only the azimuthal angle and
rapidity are integrated over. With the differential two-particle correlators established, one can also define the
differential flow estimates from two-particle correlations. According to [75], these estimates are given by:

v′n{2}(pT) =
⟨⟨2′n⟩(pT)⟩√

cn{2}
, (2.64)

where cn{2} is the cumulant defined as cn{2} = ⟨⟨2n⟩⟩, and the second averaging bracket represents an av-
erage over all events within the centrality class under consideration. The differential flow estimates naturally
inherit their momentum dependence from the differential two-particle correlator. Furthermore, higher-
order correlators can be employed for differential flow estimates, as described in [75].

In principle, POIs can be selected not only within a specific momentum region but also based on particle
species, leading to particle-species-dependent flow estimates. In this context, the two-particle correlator is
denoted as dn;a{2}(ma, pT), where the dependence on the particle species "a" is explicitly included.

Finally, we aim to construct flow coefficients using the mode expansion technique. For simplicity, we will
begin by focusing on the flow coefficients of charged particles. As discussed in Equation 2.59, flow coeffi-
cients can be derived from two-particle correlation functions. We will now apply a similar approach, starting
with the calculation of the two-particle correlator for charged particles. Since our current model does not ex-
plicitly incorporate two-particle correlations, the two-particle distribution function can be approximated as
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2 Modelling heavy-ion collisions

a product of one-particle distribution functions. In the general case, the two-particle distribution function
for particles of species "a" and "b", with massesma andmb respectively, is given by:

fa,b(ma,mb,p1,p2) =
d6Na,b

pT1pT2 dφ1 dφ2 dpT1 dpT2 dy1 dy2
= Sa(ma, pT1 , φ1)Sb(mb, pT2 , φ2).

(2.65)

Since we are initially calculating flow estimates for charged particles without distinguishing between species,
all charged particles must be correlated with each other. Consequently, we can work with the two-particle
distribution function for charged particles, which is obtained by summing over the different species:

f(p1,p2) =
∑

a

Sa(ma, pT1 , φ1)
∑

b

Sb(mb, pT2 , φ2),

= S(pT1 , φ1)S(pT2 , φ2),

(2.66)

where the summation includes all charged particles—pions, kaons, and protons in this case. We introduced
the shorthand notation S(pT , φ) =

∑
maSa(ma, pT , φ). Substituting Equation 2.56 into Equation 2.66

and applying Equation 2.59, while neglecting terms of higher than second order in the expansion coefficients
ϵml1 , we obtain the following expression for n ̸= 0:

⟨2n⟩ =
∑∞

l1,l2=1 S
(−n)
l1

ϵ
(−n)
l1

ϵ
(n)
l2
S
(n)
l2

S2
0

, (2.67)

where S(n)
l =

∫
dpTpT

∑
maS

(n)
l;a (ma, pT ) and S0 =

∫
dpTpT

∑
maS0;a(ma, pT ). This expression rep-

resents the two-particle correlator for a single event. To obtain the flow estimates, we must average over
multiple events. Given that only the expansion coefficients depend on the specific event, the averaging pro-
cess can be carried out within the summation. The integrated flow estimate for charged particles, derived
from two-particle correlations, is then given by:

v2n{2} = ⟨⟨2n⟩⟩ =
∑∞

l1,l2=1 S
(−n)
l1

〈
ϵ
(−n)
l1

ϵ
(n)
l2

〉
S
(n)
l2

S2
0

, (2.68)

where vn{2} =
√
cn{2}. The averaging process in Equation 2.68 encompasses all events within a given

centrality class. The detailed computation of the correlators
〈
ϵ
(−n)
l1

ϵ
(n)
l2

〉
, which represent the initial mode

coefficients, is thoroughly discussed in [58, 76]. These correlators can be evaluated across different models,
establishing a direct connection between the response functions and the resulting flow coefficients.

The calculation of charged particle differential flow estimates follows a similar approach to the one used
for integrated flow coefficients. As previously mentioned, when dealing with differential flow coefficients,
the particles of interest are selected within a narrow pT interval. In the continuous framework, this corre-
sponds to omitting the integration over one of the two transverse momenta, resulting in a continuous func-
tion of pT . When comparing with experimental data, it is necessary to introduce transverse momentum
bins, as these are used in the extraction of experimental measurements. By applying the same approxima-
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tion—considering only terms up to second order in the expansion coefficients—we obtain thepT -dependent
two-particle correlator:

⟨2′n⟩(pT) =
∑∞

l1,l2=1 S
(−n)
l1

(pT)ϵ
(−n)
l1

ϵ
(n)
l2
S
(n)
l2

S0S0(pT)
, (2.69)

where S(m)
l (pT) =

∑
a S

(m)
l;a (ma, pT) and S0(pT) =

∑
a S0(ma, pT). Similar to the integrated flow co-

efficients, the event-averaging process can be straightforwardly performed by averaging the factor ϵ(−n)
l1

ϵ
(n)
l2

.
Using Equation 2.64, we can directly link the response functions and the correlation functions of the initial
weights to the differential flow coefficients.

For single-particle flow coefficients, only one particle species is correlated with all others. Following similar
calculations, the integrated single-particle species flow estimates derived from two-particle correlations are
given by:

v2n;a{2}(ma) =

∑∞
l1,l2=1 S

(−n)
l1;a

(ma)
〈
ϵ
(−n)
l1

ϵ
(n)
l2

〉
S̃
(n)
l2;a

(ma)

S̃0;a(m)S0;a(m)
, (2.70)

In this expression:

• S(n)
l;a (ma) represents the integrated spectra modes, defined as:

S
(n)
l;a (ma) =

∫
dpT pT S

(n)
l;a (ma, pT). (2.71)

• S0;a(ma) denotes the integrated spectra, which is calculated as:

S0;a(ma) =

∫
dpT pT S0;a(ma, pT). (2.72)

• S̃(n)
l;a (ma) corresponds to the integrated spectra modes for charged particles, expressed as:

S̃
(n)
l;a (ma) =

∫
dpT pT

∑

b ̸=a

S
(n)
l;b (mb, pT). (2.73)

• S̃0;a(ma) is the integrated spectra for charged particles, given by:

S̃0;a(ma) =

∫
dpT pT

∑

b ̸=a

S0;b(mb, pT). (2.74)

For the differential flow estimates, the expression is:

dn;a{2}(ma, pT) =

∑∞
l1,l2=1 S

(−n)
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(ma, pT)
〈
ϵ
(−n)
l1

ϵ
(n)
l2

〉
S̃
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(ma)

S̃0;a(ma)S0;a(ma, pT)
, (2.75)
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and the differential flow coefficient is finally given by:

vn;a{2}(ma, pT) =
dn;a{2}(ma, pT)

vn;a{2}(ma)
. (2.76)

In Chapter 5, the results of Equation 2.76 will be used to compare the differential flow coefficients ob-
tained from the model with experimental data.
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3 Bayesian inference

Understanding the behavior of matter under extreme conditions, as experienced in heavy-ion collisions, ne-
cessitates sophisticated computational models, as shown in the previous chapter. These models require a set
of input parameters that represent the physical properties of interest. Ideally, they should simulate the entire
evolution of the collision, producing outputs directly comparable to experimental measurements. By com-
paring these model calculations with experimental data, we can infer the true values of the physical properties
involved.

This approach presents significant challenges. The sheer number of input parameter configurations re-
quires an extensive exploration of the model’s parameter space, which can be computationally demanding.
Additionally, correlations exist between these model parameters, meaning a single parameter might influence
multiple measurable quantities.

Bayesian statistics offers a systematic approach to estimating model parameters while accounting for un-
certainties inherent in the data. Through Bayesian inference, the final outcome is represented as a posterior
probability distribution, which reflects the probability of different parameter values being the true values
given the observed data. The general methodology can be summarized as follows. Let θ = (θ1, θ2, ..., θn)

denote the parameters of interest, and y represent the experimental data. Bayesian inference involves defin-
ing three key probability distributions:

• Prior distribution P (θ): This distribution encodes our initial beliefs or knowledge about the pa-
rameters before considering any data. It represents our assumptions about the parameter values prior
to conducting the experiment.

• Likelihood P (y|θ): This conditional probability distribution reflects how well the model, with a
specific set of parameters θ, fits the observed data y. It incorporates all sources of uncertainty in the
measurement process and quantifies the probability of observing the data given the parameters.

• EvidenceP (y): Also known as the marginal likelihood, is the probability of the observed data under
all possible parameter values. Since the evidence remains constant regardless of the parameter values,
it does not impact the shape or range of the posterior distribution or the parameter estimates them-
selves. Therefore, it acts as a normalization constant and is typically omitted in parameter estimation.
Mathematically, the evidence is computed as P (y) =

∫
P (y|θ)P (θ)dθ.

Bayes’ theorem is then used to update the prior distribution with the likelihood of the observed data,
resulting in the posterior distribution:
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P (θ|y) = P (y|θ)P (θ)
P (y)

∝ P (y|θ)P (θ). (3.1)

The posterior distribution represents the updated understanding of the parameters after incorporating
the experimental data. While the posterior provides a comprehensive picture of all parameter values, we are
often interested in individual parameters and their uncertainties. To focus on a specific parameter, we inte-
grate (marginalize) the posterior distribution over all other parameters. For example, to obtain the marginal
distribution for parameter θ1, we integrate the posterior P (θ|y) over all other parameters (θ2, θ3, . . . , θn)
as shown in Equation 3.2:

P (θ1|y) =
∫
dθ2, dθ3, · · · , dθnP (y|θ). (3.2)

This marginal distribution, P (θ1|y), represents the probability distribution of the parameter θ1 after
considering the data. From this marginalized distribution, we can extract key information such as the most
likely value and the associated uncertainty of θ1.

For many realistic models in Bayesian parameter estimation, the posterior distribution of the parameters
is analytically intractable. This intractability arises primarily due to two key reasons: the complexity of the
likelihood function and the high dimensionality of the parameter space.

Firstly, even when the likelihood function is well-defined (such as a multivariate Gaussian in our case), the
correlation between parameters and the shape of the posterior distribution can be highly complex. These
complexities make it challenging to express the likelihood in a simple mathematical form. Moreover, when
combined with prior distributions that are not conjugate to the likelihood, the resulting posterior distribu-
tion can lack a closed-form solution, making direct analytical integration impossible.

Secondly, the parameter space in many Bayesian models is high-dimensional. In our case, with six model
parameters, the parameter space becomes substantially large. High-dimensional spaces pose significant chal-
lenges for analytical integration because the volume of the space increases exponentially with the number of
dimensions. This exponential growth makes it computationally infeasible to perform the necessary integrals
to normalize the posterior distribution or to marginalize over some parameters.

Given these challenges, Markov chain Monte Carlo (MCMC) sampling provides a practical solution.
MCMC is a computational technique that allows us to efficiently generate a large number of samples from
the posterior distribution. It works by constructing a Markov chain, a sequence of parameter vectors where
each step depends only on the previous one but ultimately explores the entire parameter space according to
the posterior distribution. This approach offers two main advantages:

• MCMC avoids the need for complex integrations required for marginalization. Instead, we can simply
extract the values of the desired parameters from each parameter vector in the generated sample.

• The generated sample provides a wealth of information beyond just marginal distributions. We can
directly analyze the entire set of parameter vectors to understand relationships between parameters
(joint distributions), visualize the parameter space, and estimate various quantities of interest.
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While MCMC offers a powerful solution for exploring the posterior distribution, a significant challenge
arises when dealing with computationally expensive models, as is often the case for simulating heavy-ion
collisions. Each sample in the MCMC chain requires a model evaluation, which can become a major bottle-
neck.

To address this obstacle, researchers have developed the concept of model emulators. These emulators act
as fast, simplified substitutes for the full model. They achieve this by:

1. Targeted model evaluations: The full model is evaluated at a strategically chosen set of points within
the parameter space.

2. Emulator training: This data, consisting of model inputs and corresponding outputs, is used to train
the emulator.

3. Surrogate model: The trained emulator then serves as a surrogate for the full model during MCMC
sampling. It can rapidly predict the model’s output for any parameter set within the trained range.

By relying on the emulator for most evaluations, the overall computation time required for MCMC sam-
pling is reduced by several orders of magnitude. This effectively overcomes the limitations imposed by the
full model’s computational cost and allows for efficient exploration of the posterior distribution.

In the following sections, the various components and techniques essential for implementing Bayesian
inference in the context of heavy-ion collisions will be discussed. An overview of the inference process is
presented in Figure 3.1.

Model parameters
𝑁𝑜𝑟𝑚, 𝜂/𝑠, 𝜁/𝑠, 
𝜏0, 𝑇kin, 𝑇ch

Neural network emulator
Surrogate model

Model
FLUIDuM+FASTRESO

Bayesian inference
Parameter estimation from 

experimental data

Experimental data
𝑝T-differential spectra 

and 𝑣𝑛(𝑝T)’s

Posterior distributions
Quantitive estimates of 

model parameters

Figure 3.1: Overview of the Bayesian parameter estimation conducted in this analysis. The figure is inspired from [25].
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3.1 Parameter space

In any scientific model or simulation, the term "parameter space" refers to the multidimensional set of all pos-
sible values that the parameters of the model can take. Our phenomenological models in heavy-ion physics
consist of several parameters, and the primary objective of this thesis is to estimate them along with their
uncertainties. Given the complexity of our models and the limitations of computational resources, it is im-
practical to explore the entire parameter space exhaustively. Therefore, the first crucial step in our analysis is
defining the range of model parameters. Once we establish these ranges, we need to develop efficient methods
to sample the parameter space intelligently.

3.1.1 Parameter ranges

The determination of the parameter ranges is a critical step, as it directly influences the model’s ability to
reproduce observed phenomena. Narrow ranges might limit the model’s capacity to capture the experimen-
tal observables, while overly broad ranges can hinder the identification of optimal parameter values and the
interpretation of model outputs. To address this challenge, let us first remind six parameters introduced in
Chapter 2:

1. Norm: Normalization factor for the initial entropy density profile.

2. τ0 (fm/c): Initialization time of QGP phase.

3. (η/s)scale: Scale value of the temperature dependent shear viscosity to entropy density parametriza-
tion given in Equation 2.47. (η/s)scale can be converted to (η/s)min, representing the minimum of
the shear viscosity to entropy density, using Equation 2.47.

4. (ζ/s)max: The maximum temperature of the bulk viscosity to entropy density ratio in Equation 2.48.

5. Tkin (GeV): Kinetic freeze-out temperature.

6. Tch (GeV): Chemical freeze-out temperature.

Among these six parameters, Norm and τ0 exhibit system dependence, indicating their variation across
distinct collision systems. The remaining parameters are hypothesized to converge toward the same values,
independent of the specific collision system or energy. The primary objective of the Bayesian approach is
the simultaneous determination of all six parameters. This involves allowing each parameter to explore all
possibilities within predefined intervals, which will be outlined in Chapter 5.

3.1.2 Sampling of the parameter space

There are several parameter sampling methods used in simulations [77]. In this thesis, only three of them
will be discussed. The first sampling method could be the factorial design, where the points in the parameter
space are placed on a uniform lattice. In low dimensions, this is the best approach to cover the parameter

36



3.1 Parameter space

space uniformly. However, in high dimensions, it becomes not feasible anymore. For a factorial design with
k values for each n dimensions, the number of points increases exponentially with kn.

Random sampling is another widely used method in simulations, particularly advantageous in high-dimensional
spaces where factorial design becomes impractical. Unlike factorial design, random sampling distributes
points randomly across the parameter space, offering better coverage and efficiency in higher dimensions.
This approach mitigates the exponential increase in required points that factorial design suffers from, mak-
ing it more scalable and computationally feasible. However, random sampling is not without its drawbacks.
One significant limitation is the potential for clustering of points in certain regions of the parameter space
and sparse coverage in others. This clustering can lead to biased results or inaccurate representations of the
system under study.

To address these issues, we turn to alternative sampling methods such as Latin Hypercube Sampling
(LHS) [78]. LHS is a systematic sampling technique designed to overcome the shortcomings of both fac-
torial design and random sampling. It partitions the parameter space into equally probable intervals along
each dimension and then randomly selects a single point from each interval, ensuring even coverage across
the entire space. One of the key advantages of LHS is its ability to ensure a more uniform distribution of
samples compared to random sampling, consequently minimizing the occurrence of clustering and sparse
regions. LHS also ensures a thorough exploration of each dimension within the parameter space, making
it well-suited for sensitivity analysis and uncertainty quantification tasks. This attribute holds particular
significance for the performance of the neural network emulator, which will be introduced in the next sec-
tion. Inadequate distribution of training data across the parameter space can worsen uncertainties within
our model and the posterior probability densities of model parameters. The systematic approach of LHS
facilitates the identification of relationships between input parameters and model outputs, enhancing the
robustness and reliability of simulation results.

To visually illustrate the differences between sampling methods, Figure 3.2 presents 2D samplings gen-
erated by all methods. LHS aims to provide a more evenly distributed set of samples compared to random
sampling, which can exhibit local clusterings within the parameter space.

1

2

Factorial Sampling

1

2

Latin Hypercube Sampling

1

2

Random Sampling

Figure 3.2: Comparison of parameter sampling methods: Factorial sampling, Latin Hypercube Sampling (LHS), and
random sampling. While factorial sampling appears reasonable in 2D, it is imperative to acknowledge its
limitations in higher dimensions. Specifically, factorial sampling exhibits sparsity as the dimensionality
increases.
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In the implementation of LHS within our framework, we use the pyDOE3 Python Library [79]. In our
analyses, we employ a sample size of 20000, strategically selected to balance parameter density with compu-
tational efficiency.

3.2 Neural network emulation

This section is mainly inspired by [80].

Following the selection of parameters, we execute our models and incorporate the resultant data in train-
ing the neural network emulator. Emulation is the process of constructing a surrogate model that replicates
the behavior of a more intricate system or simulation. The primary objective of this surrogate, known as an
emulator, is to develop a function that can evaluate the model for any set of parameters within the parame-
ter range. The construction of the emulator relies on training it with input-output pairs {θi, yi}, where the
θi represent the parameter samples obtained through LHS and yi represent the model results, in our case,
experimental observables.

Among the methodologies embraced within the Bayesian frameworks of heavy-ion physics, Gaussian
process regression (GPR) [81] stands out as a frequently utilized emulation technique. It has been widely
adopted by many research groups[82–87] for two primary reasons. Firstly, GPR offers a flexible nonpara-
metric framework for emulation modeling. Secondly, it efficiently quantifies the predictive uncertainty as-
sociated with interpolating between training points in the n-dimensional parameter space. However, the
computational cost of model simulations and the scaling of GPR with O(n2) in memory and O(n3) in
computation pose significant challenges, making it infeasible to rely solely on GPR. Consequently, to miti-
gate these issues, an alternative approach is adopted in our framework: Neural network emulation.

Research has shown that sufficiently large neural networks are as flexible as GPR and can thus fit multi-
dimensional functions comparably well. In fact, it has been demonstrated that infinitely wide neural net-
works can converge to GPR [88]. Unlike Gaussian process regression, neural networks offer favorable scal-
ing properties with the number of training samples. The computation time for training scales linearly with
O(n), while the model’s memory consumption remains unaffected by the number of samples. Additionally,
neural networks can be tailored to accommodate varying numbers of inputs and outputs simply by adjusting
the number of input and output nodes. It’s worth noting that alongside GPR and neural network emula-
tion, alternative emulation methods such as transfer learning have also been explored in the literature [89].

Readers interested in more details on emulation in heavy-ion physics are encouraged to see [90] along with
associated references therein.
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3.2.1 Neural networks

A neural network can be defined by a sequence of definitions.

Definition 3.1. An activation function is a function σ : Rn → Rn which applies typically a non-linear
transformation, g : R → R, to the input vector x element-wise:

σ(x) = (g(x1), g(x2), · · · , g(xn))T . (3.3)

Definition 3.2. An artificial neuron with weights {wj,i ∈ R : i = 1, . . . , n}, bias bj ∈ R and activation
function σ : R → R is defined as the function aj : Rn → R given by

aj(x1, . . . , xn) = σ

(
n∑

i=1

wj,ixi + bj

)
. (3.4)
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Figure 3.3: Activation function in one neuron and one layer in matrix notation [91].

Definition 3.3. A dense layer of sizem is a set ofm neurons. For the k ’th dense layer we have the collection
of neurons

{
a
(k)
j : j = 1, . . . ,m

}
where each neuron in the set has the same domain. The activation of

layer k,A(k) : Rn → Rm, is given by:

A(k)(x) =
(
a
(k)
1 (x), a

(k)
2 (x), · · · , a(k)m (x)

)T
. (3.5)

Activation functions in one neuron and one dense layer in matrix notation are illustrated in Figure 3.3.
A neural network is then built by concatenating dense layers. This leads to the following definition.
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Definition 3.4. A neural network of depthd is a composition ofddense layers, forming a mapf : Rn → Rl

defined by the function f : x 7→ f(x), where

f(x) = A(d) ◦ A(d−1) ◦ · · · ◦ A(2) ◦ A(1)(x), (3.6)

with ◦ denoting functional composition. Each layer A(i) is a function A(i) : Rni−1 → Rni , where n0 = n

and nd = l. For the composition to be valid, the codomain of any layerA(i) must match the domain of the
subsequent layerA(i+1). That is, ifA(i) : Rni−1 → Rni , thenA(i+1) : Rni → Rni+1 for i = 1, 2, . . . , d−1.

Such neural networks can be illustrated using directed acyclic graphs, as shown in Figure 3.4. In our case,
n is the number of model parameters, and k is the total number of pT binning of experimental data.
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Figure 3.4: Architecture of a feed-forward, fully connected neural network with three hidden layers [91].

Neural network training and hyperparameters

The ultimate goal of neural network training is to find a set of parameters that results in the best possible
performance on a given task, such as classification or regression. For regression tasks, a common loss function
is the Mean Squared Error (MSE), defined as:

J(w) =
1

n

n∑

i=1

(yi − ŷi(w))2, (3.7)

where n is the number of samples, yi is the true value, and ŷi is the predicted value.
To minimize MSE, the gradient descent algorithm is employed. This iterative optimization method aims

to locate the local minimum of a differentiable function, a fundamental task in neural network training.
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3.2 Neural network emulation

Central to this process is the computation of gradients for each parameter, which is crucial for effective net-
work optimization. Backpropagation [92] plays a pivotal role in this regard, iteratively computing gradients
throughout the neural network by leveraging the chain rule. By calculating partial derivatives of the loss
concerning the model parameters, backpropagation enables the network to iteratively adjust and enhance
its predictions over time.

The process initiates with the initialization of weights and biases using random values. Following this
initialization, a forward pass is executed to compute the network’s predictions. Subsequently, the chosen
loss function is evaluated to quantify the deviation between predicted and actual values. At this juncture,
the backpropagation mechanism is employed, enabling the computation of gradients with respect to the
weights and biases. These gradients inform the subsequent adjustment of weights and biases, aligning them
in the direction of the negative gradient. This adjustment process is governed by an update rule for each
weightw, which is expressed as:

wj+1 = wj − η∇J(wj) = wj −
η

n

n∑

i=1

∇J(wj; θi, yi), (3.8)

where η is the learning rate, a hyperparameter that controls the step size of each update. These steps are
repeated for a predefined number of epochs or until the loss converges to a satisfactory value.

Following the optimization through gradient descent, our attention turns to hyperparameters, which
are pivotal in shaping the network’s architecture and training process. Unlike weights and biases, hyper-
parameters are predefined settings that remain fixed throughout training. These settings play a crucial role
in determining the model’s performance and convergence behavior. Important hyperparameters are listed
below:

• Number of layers: The number of layers in the neural network. More layers allow the network
to model more complex functions but can also increase the risk of overfitting and computational
complexity.

• Number of nodes per layer: The number of neurons in each layer. More neurons can capture
more features of the data, but like the number of layers, too many neurons can lead to overfitting and
increased computational cost.

• Activation function: The function applied to each neuron’s output. Common choices include
ReLU (Rectified Linear Unit), sigmoid, and tanh. The activation function introduces non-linearity
into the network, enabling it to learn more complex patterns.

• Weight initialization: The method used to initialize the network’s weights before training. Proper
initialization can help speed up convergence and avoid issues like vanishing or exploding gradients.
Common methods include Xavier initialization [93] and He initialization [94].

• Number of epochs: The number of times the entire training dataset is passed through the network
during training. More epochs can lead to better learning, but excessive epochs can cause overfitting.
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• Batch size: The number of training examples used in one iteration to update the network parameters.
Smaller batch sizes can make the training process noisier but provide more frequent updates, while
larger batch sizes result in more stable updates but can be computationally more intensive.

• Learning rate: The learning rate is a crucial hyperparameter in gradient descent. If the learning rate
is too large, the algorithm may overshoot the minimum, causing it to diverge. If the learning rate is
too small, the algorithm may take too long to converge, getting stuck in a local minimum. Choosing
an appropriate learning rate is essential for efficient and effective training.

• Patience: Used in early stopping and learning rate scheduling. Patience is the number of epochs to
wait for an improvement in the loss before stopping training or reducing the learning rate. It helps
prevent overfitting and reduces training time.

• Factor: In learning rate scheduling, the factor by which the learning rate is reduced when the perfor-
mance metric has stopped improving. A common choice is to reduce the learning rate by a factor of
0.1.

• Loss function: The function that measures the difference between the predicted outputs and the
actual target values. Common loss functions for regression include Mean Squared Error (MSE), and
for classification, Cross-Entropy Loss.

• Optimization algorithm: The method used to minimize the loss function. While gradient descent is
a basic method, more advanced optimizers like Adam [95], RMSprop, and Adagrad [96] often provide
better performance and faster convergence.

In the training phase, it’s essential to divide the dataset into distinct subsets for training, validation, and
testing purposes. This division ensures that the model is trained on a subset of data while also being evaluated
on data it hasn’t seen before, thereby assessing its generalization capabilities. In our study, we partitioned the
20,000 FluiduM +FastReso results into 83.3% for training data and reserved 16.7% for validation and
test data. During training, the neural network learns to map input data to desired outputs by adjusting its
parameters based on the training data’s features and corresponding labels. The performance of the model
is monitored using the validation dataset, which acts as a proxy for unseen data. By periodically evaluat-
ing the model’s performance on the validation set, we can make adjustments to hyperparameters or detect
overfitting, where the model performs well on the training data but fails to generalize to new data.

The neural network was implemented in our framework using the PyTorch [97] package, a widely-used
open-source machine learning library that provides robust support for tensor computation and automatic
differentiation, making it well-suited for deep learning applications. To optimize the hyperparameters of the
neural network, we utilized the Tune [98] package, a scalable hyperparameter tuning library. Tune provides
advanced features such as early stopping, distributed hyperparameter search, and integration with various
search algorithms, which collectively enhance the efficiency and effectiveness of the hyperparameter tuning
process.

42



3.2 Neural network emulation

Several hyperparameters crucial for the neural network’s architecture and training process have been pre-
viously determined, as detailed in [80]. These hyperparameters serve as foundational settings and have been
outlined in Table 3.1.

Table 3.1: Previously determined hyperparameters.

Parameter Value

Loss function MSE
Activation function ReLU
Batch size 100
Epochs 300
Weight initialization Xavier
Optimizer Adam

Additionally, certain hyperparameters have been fine-tuned specifically for this thesis through a grid search
process. The search regions for hyperparameter tuning for different collision systems are outlined in Ta-
ble 3.2.

Table 3.2: Hyperparameter tuning search regions for different collision systems.

Parameter Search region

Learning rate 0.0005-0.5
Number of hidden layers 2-4
Number of nodes per hidden layer 128 - 1024
Patience 5-10
Factor 0.1-0.8
Trainable parameters 1-3M

3.2.2 Neural network uncertainty quantification via ensemble method

While neural networks offer powerful predictions, they are often considered black-box models, providing
little interpretability. In simpler terms, understanding why a neural network makes a specific decision is
rarely feasible. Moreover, these models tend to be overly confident, attributing low uncertainty to their
predictions even when uncertainty is actually large in reality. Studies have demonstrated that employing an
ensemble of models, rather than using a single neural network, yields more reliable uncertainty estimates [99–

101].

To address these challenges, within our framework, the ensemble model is constructed by averaging the
outputs of multiple neural networks, which is illustrated in Figure 3.5. In practice, the ensemble prediction
is often computed by averaging the individual predictions from each member of the ensemble as

y(θ) :=
1

M

M∑

i=1

yi(θ), (3.9)
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Figure 3.5: Representation of a neural network ensemble.

where y(θ) represents the ensemble prediction, yi(θ) denotes the prediction of the i-th member of the en-
semble, andM is the total number of ensemble members. Additionally, the spread of the different ensemble
members can be quantified by the standard deviation of the member predictions, given by:

σ̂emu(θ) =

√√√√ 1

M

M∑

i=1

(yi(θ)− y(θ))2, (3.10)

where σ̂emu(θ) is the standard deviation. However, the σ̂emu(θ) itself may not adequately capture the full
uncertainty in the ensemble predictions. It assumes that the predictions from different ensemble members
are uncorrelated, which is not the case. To address this limitation and incorporate correlations among the
ensemble members, we introduce an additional term into the uncertainty quantification process as in Equa-
tion 3.11

σemu(θ) =

√
1
M

+ M−1
M

ρ

1− ρ
·

√√√√ 1

M

M∑

i=1

(yi(θ)− y(θ))2 = c · σ̂emu(θ). (3.11)

In the new equation, σ̂emu(θ) is scaled by a factor that takes into consideration the correlation coefficient
ρ among the ensemble predictions. A detailed derivation of Equation 3.11 can be found in [80]. The intro-
duced term, called as correction factor c, is determined by fitting a t-distribution to (ymodel(θ)− y(θ))/σ̂emu(θ)

(ymodel represents the original FluiduM + FastReso output), which ideally follows a standard normal dis-
tribution if the prediction uncertainty accurately captures the prediction error.

Lastly, the model covariance matrix can be computed from the ensemble output as follows:

Σmodel = Σj,k
emu(θ) = c2 · 1

M − 1

M∑

i=1

[(
yji (θ)− yj(θ)

)(
yki (θ)− yk(θ)

)]
, (3.12)
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where yji is the j-th output value of yi and yj is the mean prediction for the j-th output. Here, Σmodel

denotes the model covariance matrix, which plays a crucial role in quantifying the uncertainty associated
with the predictions of an emulator in the MCMC phase. This matrix characterizes the variability and
correlation among the predicted outputs of the emulator across different input parameter configurations.
Each element Σj,k

emu(θ) of the model covariance matrix represents the covariance between the j-th and k-th
output dimensions, normalized by a scaling factor c2 and the number of samplesM .

3.3 Bayesian parameter estimation

3.3.1 Prior choice

When we have minimal information about the parameters, it is appropriate to use a uniform prior, which
means π(θ) is constant. In our current methodology, we define specific finite ranges for each parameter.
Consequently, the neural network emulator is confined to making predictions within these predefined lim-
its. Thus, we can select a prior that remains constant within the design region and drops to zero outside this
region as

π(θ) ∝
{
1, if min(θi) ≤ θi ≤ max(θi) for all i,

0, otherwise.
(3.13)

where θi are the input parameters.
Assuming the prior is zero beyond the design region imposes a significant constraint, as it suggests that

we entirely rule out the possibility of any parameter value falling outside the specified range. To prevent
inadvertently excluding any reasonable parameter values, we define our parameter ranges broadly, informed
by the literature, as described in Subsection 3.1.1.

3.3.2 Likelihood formulation

This subsection is mainly inspired by [25].

The likelihood L(D|θ) represents the probability of observing the data given a set of parameters. It mea-
sures how well the model’s predictions, at a specific point θ in the parameter space, align with the experi-
mental data.

In our Bayesian inference framework, we employ a multivariate normal distribution for the likelihood
function, as detailed in Ref. [25].

First, letyexp denote the vector of experimental data, which results from observing the hypothetical "true"
values ytrue

exp with some measurement error ϵexp. This relationship can be expressed as:

yexp = ytrue
exp + ϵexp, ϵexp ∼ N (0,Σexp), (3.14)

where the error follows a multivariate normal distribution with mean zero and covariance matrixΣexp. This
covariance matrix accounts for all sources of experimental uncertainty, including statistical and systematic
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errors. In our analyses, we assume that there is no correlation between the experimental uncertainties. Con-
sequently, Σexp is a diagonal matrix given by:

Σexp = diag
[
σ2
1, σ

2
2, · · · , σ2

k

]
, (3.15)

where each σ2
i represents the total uncertainty for the i-th measurement, composed of the statistical uncer-

tainty (σstat
i )2 and the systematic uncertainty (σsys

i )2, thus, σ2
i = (σstat

i )2 + (σsys
i )2.

Second, the model outputs ymodel for input parameters θ are given by:

ymodel(θ) = yideal
model(θ) + ϵmodel, ϵmodel ∼ N (0,Σmodel), (3.16)

where ϵmodel follows a multivariate normal distribution with mean zero and covariance matrix Σmodel. In
this context, the "ideal" model outputs refer to the hypothetical results generated by a perfect physical model
with infinite precision. Since we are using a model emulator, ymodel(θ) represents the emulator’s predic-
tions. The model covariance matrix Σmodel accounts for the uncertainties derived from the emulator, as
explained in Equation 3.12.

Assuming there are true values for the parameters θ∗ where the ideal model calculations align with the
actual experimental data: ytrue

exp = yideal
model(θ

∗). Integrating this assumption with Equation 3.14 and Equa-
tion 3.16, we obtain:

ymodel(θ
∗)− yexp = ϵ, ϵ ∼ N (0,Σ), Σ = Σexp + Σmodel. (3.17)

This relationship between the model results and the experimental data indicates that the likelihood follows
a multivariate normal distribution, with Σ representing the total covariance matrix that encompasses all
sources of uncertainty

L(D|θ) = 1√
(2π)n detΣ

exp

[
−1

2
(ymodel(θ)− yexp)

TΣ−1(ymodel(θ)− yexp)

]
, (3.18)

where n is the number of parameters.

3.3.3 Markov chain Monte Carlo sampling

Markov chain Monte Carlo aims to construct a Markov chain on the state space S whose stationary distri-
bution is the target density P(θ|D), the posteriors we are after. A Markov chain is a stochastic process that
satisfies the Markov property, which can be formally defined as follows:

p(Θt+1 = θt+1 | Θ0 = θ0,Θ1 = θ1, . . . ,Θt = θt) = p(Θt+1 = θt+1 | Θt = θt), (3.19)

for all t ≥ 1 and allθ0, θ1, . . . , θt+1 ∈ S . This property essentially states that the probability of transitioning
to the next state Θt+1 = θt+1 depends solely on the current state Θt = θt, independent of the sequence of
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past states. MCMC generates samples that are correlated in a way that allows for a more efficient exploration
of the target distribution compared to independent samples from basic Monte Carlo methods.

The frequently encountered MCMC algorithms include Gibbs sampling [102], the Metropolis-Hastings
(MH) algorithm [103, 104], and Slice sampling [105]. While these methods have demonstrated effectiveness,
they have become somewhat dated. Given the advancements in sampling algorithms over the years, newer
approaches often outperform these traditional methods. In our MCMC sampling, we utilize the emcee
Python Library [106], which represents a significant advancement over traditional MCMC methods such
as the MH algorithm. Unlike the MH algorithm, which relies on single-step proposals, emcee employs
an ensemble of "walkers" that evolve simultaneously, utilizing sophisticated moves like "stretch moves" and
"shrink moves" based on affine transformations [107]. This approach, known as affine-invariant ensemble
sampling, adapts dynamically to the local structure of the parameter space. This adaptability allows emcee
to explore the parameter space more efficiently and converge to the target distribution more rapidly.

Comprehending the fundamental concepts and terminology of MCMC aids in evaluating the efficiency
and effectiveness of such algorithms. These key concepts are listed as:

• Walkers: Walkers are independent chains or trajectories in the parameter space. Each walker repre-
sents a potential sequence of parameter values generated by the Markov chain. The ensemble of walk-
ers explores the parameter space collectively, providing a more comprehensive sampling compared to
a single chain.

• Autocorrelation: Autocorrelation measures the correlation between consecutive samples in a Markov
chain. Large autocorrelation indicates that successive samples are highly dependent on each other,
suggesting inefficient exploration of the parameter space. Low autocorrelation indicates more effec-
tive sampling, as each sample contains more independent information. Autocorrelation is often used
as a diagnostic tool to assess the mixing and convergence of MCMC chains. In MCMC simulations,
the integrated autocorrelation time (τf ) quantifies the rate at which successive samples become effec-
tively independent. This parameter is crucial for determining the effective number of samples and
controlling sampling error.

• Burn-in: Burn-in refers to the initial phase of an MCMC simulation where the Markov chain is
allowed to reach its equilibrium distribution. During burn-in, samples are typically discarded because
they may not be representative of the target distribution. The length of the burn-in period depends
on the specific problem and the convergence properties of the algorithm.

• Number of Steps: The number of steps in an MCMC simulation refers to the total number of
iterations or samples generated by the algorithm. This parameter determines the length of the Markov
chain and affects the quality of the resulting samples. A larger number of steps generally leads to a
more accurate estimation of posterior distributions but may also increase computational time.

To ensure adequate convergence of the Markov chain, it is essential to minimize the sampling error of the
MCMC method to less than 1%. This error is diminished by the ratio of the integrated autocorrelation time
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(τf ) to the number of samples N . Consequently, the total exploration effort, determined by the product
of the number of walkers (set to 400 in our study) and the length of the chains, must exceed 10000τf .
Additionally, to prevent premature termination, we stipulate that the variation in τf (evaluated every 100
MCMC steps) remains below 1% [80].
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4 Quantification of the pion excess in
the low transverse momentum
regime in heavy-ion collisions

This chapter is mainly based on the article: P. Lu, R. Kavak, A. Dubla, S. Masciocchi, and I. Selyuzhenkov.
Quantification of the low-pT pion excess in heavy-ion collisions at the LHC and top RHIC energy. 2024.
(arXiv:2407.09207). My primary contribution to this work involved performing all the Bayesian analy-
ses presented throughout this chapter. The quantification of the pion excess was primarily conducted by
my colleague, Pengzhong Lu. The interpretation of the results was a collaborative effort within our research
group, ensuring a comprehensive understanding of the phenomena under study.

In the previous chapters, we have explored the foundational aspects of viscous hydrodynamics and its
role in describing the QGP formed in heavy-ion collisions. Over the years, extensive theoretical and phe-
nomenological advancements have deepened our understanding of how relativistic hydrodynamics describes
the complex dynamics of the QGP. These studies have broadened the applicability of hydrodynamic mod-
els, enabling more accurate descriptions of the QGP’s behavior across different collision energies and system
sizes. As a result, viscous hydrodynamics has emerged as the “standard model” for interpreting a wide range
of experimental observables in heavy-ion collisions, effectively capturing key features such as anisotropic
flow and particle spectra [108, 109]. While this framework provides a robust description of many aspects
of the QGP and its evolution, certain phenomena, particularly at low transverse momentum (pT), remain
inadequately understood.

Among these phenomena, the enhancement observed in the low-pT pion spectra stands out as a particu-
larly intriguing feature that challenges the completeness of hydrodynamic models. This chapter is dedicated
to exploring this low-pT pion excess, which current hydrodynamic models fail to fully account for. Under-
standing the origins of this excess is crucial, as it likely points to physical processes beyond those captured by
standard fluid dynamic descriptions.

The current understanding suggests that the low-pT pion excess may arise from a combination of sev-
eral physical effects, each contributing to the enhancement observed in the spectra. One possibility is Bose-
Einstein condensation, where pions, being bosons, may accumulate in the lowest momentum states, leading
to a macroscopic occupation of these states and an excess of low-pT pions [110, 111]. Another contributing
factor could be an enhanced resonance population, where the decay of a larger-than-expected number of res-
onances, such as ρmesons, results in a greater yield of low-pT pions [30]. Additionally, the ρmeson, having
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a finite width in its mass distribution rather than a fixed mass, can decay into pions with a range of energies.
This broader mass spectrum leads to an increased overall pion yield, particularly in the low-pT region [112].

The investigation of low pT pion production continues at the latest heavy-ion colliders. Significant efforts
by the ALICE Collaboration [113–116] at the LHC and the PHENIX and STAR Collaborations [117–120]

at RHIC have reported a low pT pion excess across different collision systems and energy levels when ex-
perimental outcomes are contrasted with hydrodynamic models [121–128]. Typically, these pion pT spectra
measurements extend down to pT = 0.1GeV/c at the LHC and pT = 0.2GeV/c at RHIC. The exact
amount of the pion excess and the kinematic regime at which it starts to dominate over thermally generated
particles are still unknown.

This chapter is dedicated to systematically investigating the low-pT pion excess at the LHC, specifically in
Pb–Pb collisions at √sNN = 2.76 TeV [113] and 5.02 TeV [114], as well as in Xe–Xe collisions at √sNN =

5.44 TeV [115], and at the top RHIC energy, examining Au–Au collisions at √sNN = 200 GeV [117, 120].

Through Bayesian inference analysis of the pT spectra for pions, kaons, and protons, we identify the optimal
pT range where fluid dynamic simulations best match the observed pion spectra. The pion excess is extracted
across various centrality intervals: 0-5%, 5-10%, 10-20%, 20-30%, and 30-40% for ALICE data, and 0-5%,
5-10%, 10-15%, 15-20%, 20-30%, and 30-40% for RHIC data. This extraction focuses on the low-pT region
where the fluid dynamic model fails to provide an adequate description.

Parameter intervals and initial conditions

To perform a robust Bayesian analysis, it is essential to accurately define the parameter intervals of the adopted
model. As described in Chapter 3, our Bayesian inference approach is centered around several key free pa-
rameters, including the overall normalization constantNorm, (η/s)scale and (ζ/s)max in the shear and bulk
viscosity to entropy density ratio, the starting time of the hydrodynamic phase τ0, and the two freeze-out tem-
peratures Tkin and Tch. In our Bayesian inference analyses, we try to constrain these six model parameters
within predefined intervals.

The parameter intervals used in this study are summarized in Table 4.1. Their ranges are chosen based on
previous works [29, 82–85, 113, 123, 129, 130]. A posteriori confirmation revealed that the optimal parameter
values reside within the predefined intervals rather than at their edges. In instances where the analysis did not
show definitive convergence, the parameter intervals were subsequently expanded to ensure a comprehensive
exploration of the parameter space.

Table 4.1: Defined intervals for the six model parameters across the four collision systems. Norm and τ0 are recognized
as system-dependent parameters.

(η/s)scale (ζ/s)max Tkin (GeV) Tch (GeV) Norm τ0 (fm/c)

Pb–Pb, √sNN = 2.76 TeV

0.08–0.78 10−4–0.3 0.110–0.140 0.130–0.155

5–80 0.01–3.0
Pb–Pb, √sNN = 5.02 TeV 80–140 2.0–7.0
Xe–Xe, √sNN = 5.44 TeV 70–150 2.0–7.0
Au–Au, √sNN = 200 GeV 3–80 0.05–3.0
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In addition to these parameters, the initial condition parameters for the TRENTo model, as outlined in
Subsection 2.1.1, are crucial for the analysis. The TRENTo model parameters are not estimated through
Bayesian analysis in this study. Instead, they are fixed and chosen based on the work by the Duke group,
as detailed in Ref. [131], and are listed in Table 4.2. While the number of constituents inside the nucleon
does not exhibit a sharply peaked distribution, the remaining parameters are well-constrained. Furthermore,
through comparative analysis, we found that these parameters yielded the most accurate model results in
terms of describing the experimental data. Specifically, they outperformed several other initial condition
parameter combinations that were tested [84, 124, 132], as evidenced by a superior data-to-model ratio and a
lower resulting reduced χ2 value.

Table 4.2: Input parameters for the TRENTo model adopted from [131].

Parameter Description Value

w [fm] Gaussian nucleon width 0.98
v [fm] Gaussian constituent width 0.473
m Number of constituents inside the nucleon 6
p Reduced thickness parameter 0.013
k Gamma distribution shape parameter for nucleon fluctuations 0.1835
d [fm] Minimum nucleon-nucleon distance 1.13

The nucleon-nucleon cross section values used in this analysis are derived from measurements by the
ALICE Collaboration [133] and the PHENIX Collaboration [134]. Specifically, the cross section values are
61.8 mb for Pb–Pb collisions at √sNN = 2.76 TeV, 67.6 mb for Pb–Pb collisions at √sNN = 5.02 TeV,
68.4 mb for Xe–Xe collisions at √sNN = 5.44 TeV, and 42.3 mb for Au–Au collisions at √sNN = 200

GeV.
All ions are sampled from the Woods-Saxon distribution. The Pb ion exhibits spherical symmetry, char-

acterized by a radius ofR = 6.65 fm and a surface thickness of a = 0.54 fm. The Xe ion features spheroidal
deformation, with a radius of R = 5.60 fm, a surface thickness of a = 0.49 fm, and deformation parame-
ters β2 = 0.21 and β4 = 0.0 [135]. Lastly, the Au ion is described by a radius ofR = 6.38 fm and a surface
thickness of a = 0.535 fm. Employing this parameter set, a dataset comprising 50 million minimum-bias
events is generated. TRENTo events are created with random impact parameters and incorporate multiplic-
ity fluctuations of the generated profiles, leading to initial entropy density profiles across all centrality classes
from 0% to 100%.

Classification of the TRENTo events into centrality classes is achieved through the integrated transverse
density

∫
d2xTR(x), which demonstrates a linear monotonic relationship with multiplicity [136]. This ap-

proach enables the sorting of events into narrow one-percent multiplicity classes, mimicking the experimen-
tal procedure where events are categorized based on the number of produced particles. To improve statistical
accuracy and reduce computational costs, the statistics of the event-averaged entropy density profiles are in-
creased by integrating out the ϕ-dependence of the initial profiles. Typically, the TRENTo model provides
the transverse profile TR(r, ϕ), which is a function of both the radial coordinate r and the azimuthal angle
ϕ. In practice, we are primarily interested in the radially averaged profile TR(r). A conventional approach
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4 Quantification of the pion excess in the low transverse momentum regime in heavy-ion collisions

would be to evaluate TR(r, ϕ) along a single radial axis, but this method employs only a fraction of the avail-
able data, thereby underutilizing the statistical information from the entire profile. Instead, to fully leverage
the independent directions, we evaluate TR(r, ϕ) along 100 different directions and sum the results. Thus,
integrating out the ϕ-dependence in this manner can reduce the computational effort by up to a factor of
100. Mathematically, this is expressed as:

⟨TR(r)⟩ =
1

2π

∫ 2π

0

dϕ ⟨TR(r, ϕ)⟩. (4.1)

The representation of ⟨TR(r)⟩ for Pb–Pb collisions at √sNN = 2.76 TeV is shown in Figure 4.1 (left
panel). The resulting averaged entropy densities for larger experimental centrality classes are produced by
combining the corresponding distributions from narrower classes. The right panel of Figure 4.1 compares
the averaged entropy densities for centrality classes 0-5%, 5-10%, 10-20%, 20-30%, and 30-40% for Pb–Pb
collisions at √sNN = 2.76 TeV (solid lines) and Xe–Xe collisions at √sNN = 5.44 TeV (dashed lines).
Notably, the most central collisions in Xe–Xe correspond to the 10-20% centrality class in Pb–Pb at√sNN =

2.76 TeV, while the 30-40% centrality class in Xe–Xe corresponds to the 40-50% centrality class in Pb–Pb
at √sNN = 5.02 TeV, considering particle multiplicity, as supported by experimental measurements [137].
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Figure 4.1: Average transverse entropy density profiles. (Left) The representation of ⟨TR(r)⟩ for Pb–Pb collisions
at √sNN = 2.76 TeV across 50 narrow centrality classes. (Right) Comparison of the averaged entropy
densities for centrality classes 0-5%, 5-10%, 10-20%, 20-30%, and 30-40% for Pb–Pb collisions at √sNN =
2.76 TeV (solid lines) and Xe–Xe collisions at √sNN = 5.44 TeV (dashed lines).

Then, for each centrality class, the averaged entropy density profile is determined as follows:

s(r) =
Norm

τ0
⟨TR(r)⟩, (4.2)

where ⟨· · · ⟩ denotes the average over all the events in the class with a random reaction plane angle. The nor-
malization constant Norm is introduced to ensure the correct multiplicity scaling of the TRENTo events.
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4.1 Determination of the optimal transverse momentum fitting range

Additionally, the factor is scaled by the initialization time τ0 to account for the longitudinal expansion effect
at early times.

4.1 Determination of the optimal transverse momentum
fitting range

The objective of this section is to systematically investigate the pion excess in the low-pT regime and examine
its dependence on collision centrality and collision systems at both LHC and top RHIC energies. Several hy-
drodynamical fits to experimental data have consistently revealed a noticeable excess of pions at low-pT [122,

124, 125]. However, the exact magnitude of this pion excess and the specific kinematic regime at which it be-
gins to dominate over thermally generated particles have not been quantified. To achieve this, the Bayesian
inference analysis is conducted separately for each centrality class and collision system rather than attempt-
ing a global fit using all available data. In contrast to Chapter 5, which focuses on constraining the physical
parameters of the QGP, this section aims to determine the optimal pT fitting range for pion data to be used
in Bayesian inference.

The analysis utilizes the pT-differential spectra of pions, kaons, and protons across various centrality
classes measured by the ALICE Collaboration at the LHC and by the PHENIX Collaboration at RHIC.
The selection of these specific experimental data is motivated by several key considerations that align with
the objectives of this study. Firstly, the data spans a variety of collision systems (Pb–Pb, Xe–Xe, and Au–Au)
and covers a broad range of center-of-mass energies, from 200 GeV at RHIC to 5.44 TeV at the LHC. This
variety is crucial for investigating how different initial conditions, such as collision energy and system size, af-
fect the properties of QGP and the subsequent particle production. Furthermore, the data is analyzed across
multiple centrality classes, which is essential for understanding how the collision geometry influences the pT
spectra. The focus on identified particles—pions, kaons, and protons—rather than unidentified hadrons, is
another important aspect of the data selection. Identified particle spectra provide more precise information
about the hadronization process and the freeze-out conditions of different particle species, which is critical
for studying phenomena such as the π excess. A detailed summary of the experimental data used is provided
in Table 4.3.

Table 4.3: Experimental data used for Bayesian parameter estimation in low-pT pion studies.

Collision system Observables Particles Centrality classes Ref.

Pb–Pb, √sNN = 2.76 TeV pT-differential spectra π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [113]
Pb–Pb, √sNN = 5.02 TeV pT-differential spectra π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [114]
Xe–Xe, √sNN = 5.44 TeV pT-differential spectra π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [115]
Au–Au, √sNN = 200 GeV pT-differential spectra π−, K−, p̄ 0-5, 5-10, 10-15, 15-20, 20-30, 30-40 [117]

This study focuses on the single π excess, utilizing π+ pT spectra in Pb–Pb at √sNN = 2.76TeV and
averaging π+ and π− in Pb–Pb at √sNN = 5.02TeV and Xe–Xe at √sNN = 5.44TeV. For the Au–Au
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4 Quantification of the pion excess in the low transverse momentum regime in heavy-ion collisions

system, the π− pT spectra are utilized to compute the pion excess instead of the π+ spectra. This choice is
driven by the phenomenon of baryon stopping, which refers to the process where baryons from the colliding
nuclei lose a significant portion of their longitudinal momentum as they interact with the medium in the
collision zone [138]. In heavy-ion collisions at lower energies, such as those at RHIC, baryon stopping is more
pronounced, especially at midrapidity (y = 0), where the net baryon density—the difference between the
number of baryons and antibaryons—is higher. This, in turn, affects the production of pions, particularly
π+, due to the associated changes in the chemical environment. The presence of stopped baryons, which
are predominantly protons, alters the chemical environment in the collision zone. This can influence the
production of pions, particularly π+, due to the increased baryon density. As a result, the π+ spectra may
reflect these changes in the chemical environment, complicating the interpretation of theπ+ excess. Since the
theoretical model employed in this study does not account for baryon transport or the stopping of baryons at
midrapidity, using the π+ spectra could introduce biases related to these unmodeled effects. In contrast, π−

production is less sensitive to the presence of stopped baryons, as it primarily originates from processes that
do not involve baryon number conservation. Therefore, the π− pT spectra provide a more reliable measure
of the pion excess in this context, ensuring that the analysis remains consistent with the assumptions and
limitations of the model.

In this analysis, the uncertainties associated with the pT-differential spectra include both statistical and
systematic components. These uncertainties have been summed in quadrature and treated as fully uncor-
related among different particle species and transverse momentum intervals, as there is currently no clear
guidance on the precise degree of correlation in the experimental systematic uncertainties. While this as-
sumption simplifies the error propagation in the Bayesian inference process, it introduces a limitation: the
assumption of uncorrelated uncertainties may not accurately reflect the true nature of the experimental er-
rors. In reality, systematic uncertainties often contain correlated components, particularly across different
pT intervals or between various particle species. Neglecting these correlations could lead to an underesti-
mation of the total uncertainty and potentially bias the resulting parameter estimates. Therefore, while the
current treatment provides a practical framework for analysis, it is important for the reader to recognize this
limitation. Future studies would benefit from experimental input on the degree of correlation among the
uncertainties across pT intervals and particle species, enabling a more comprehensive treatment of systematic
uncertainties to enhance the robustness of the inferred QGP properties.

To determine the optimal pπT ranges for the experimental measurements to be used in the inference and
to accurately compute the low-pT pion excess, we systematically varied the pT interval of the pion spectra.
Throughout this process, the kaon and proton spectra were fixed at pK,p

T < 2.0GeV/c. The joint inference
of pion, kaon, and proton spectra is particularly important due to the mass differences among these particles.
Pions, being the lightest hadrons, are most sensitive to the thermal motion at kinetic freeze-out, while kaons
and protons provide additional constraints on the radial flow and the thermal freeze-out temperature. As
described in Equation 1.10, the parameter Tslope depends on both the kinetic freeze-out temperature Tkin
and the expansion velocity ⟨v⊥⟩, with the mass of the particle species playing a critical role. By using different
kinds of particles, we can obtain a more precise estimation of certain model parameters, such as the chemical
and kinetic freeze-out temperatures.
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We began by optimizing the starting pπT range within the interval x1 < pπT < 2.0GeV/c, where x1 was
systematically varied from 0.1 to 1.0GeV/c. The choice of 0.1GeV/c as the lower bound was dictated
by the experimental data, as it represents the lowest available data point. Subsequently, we optimized the
upper bound of the pπT range by focusing on the interval 0.5 < pπT < x2 GeV/c, with x2 varied from
2.0 to 3.0GeV/c. The upper limit of 3.0GeV/c was chosen because, beyond this point, the pT region
transitions from soft (low-pT) dynamics to hard scattering processes, where hydrodynamic models lose their
applicability. By constraining the analysis to the soft region, we ensure that the extracted parameters, such
as the freeze-out temperature, are derived from data where hydrodynamics remains valid and reliable. The
purpose of this systematic variation and optimization of the pπT range was to identify the best fitting range
that would provide the most accurate and meaningful constraints on the model parameters.

While the primary objective of this study is not to constrain the physical parameters of the QGP, it is
nevertheless crucial to carefully analyze the performance and convergence of these parameters during the
optimization of the pπT range. Ensuring that the selected pT range in the Bayesian inference procedure leads
to reliable convergence is vital for the validity and robustness of the results. In Figure 4.2, the evolution of
key parameters for the 0−5% centrality class in Pb–Pb collisions at √sNN = 2.76 TeV is illustrated. These
parameters are attempted to be constrained through a systematic Bayesian inference process, which involves
fitting the pT spectra of pions, kaons, and protons. The parameters Norm and τ0 are presented in the form
of a ratio (Norm/τ0) because, within our model, the expected entropy density profile is determined by their
ratio, as described in Equation 4.2. The top panel illustrates the optimization process for the starting pπT
range, while the bottom panel addresses the optimization of the ending pπT. The plotted points represent
the median values of the parameters obtained from the analysis, and the associated error bars denote the 68%
confidence intervals derived from their respective marginalized posterior distributions.

The stability of the model parameters varies across different pT fitting ranges. In the top panel, a con-
vergence of parameter values is observed when x1 surpasses a threshold of approximately 0.5GeV/c. This
indicates that including the low pT pion region (x1 < 0.5GeV/c, depicted in red) in the Bayesian anal-
ysis would introduce instabilities in the estimation of physical parameters, suggesting that a fluid dynamic
framework struggles to adequately describe the experimentally observed low-pT pion spectra. In the bottom
panel of Figure 4.2, the parameters begin to diverge from their stable values when the analysis incorporates
spectra values beyond pπT > 2.0GeV/c. This divergence aligns with the expectation that, at higher pT,
particle production becomes increasingly dominated by hard partonic scattering processes, with partonic
energy loss mechanisms playing a more prominent role in shaping the spectral distributions, rather than the
thermal production processes that are central to hydrodynamic models.

Beyond the issue of parameter instabilities, it is observed that FluiduM calculations could not reproduce
the experimental data accurately when either the low-pT or high-pT spectra are included in the inference.
This leads to significant discrepancies between the model predictions and the experimental observations at
both extremes of the pT spectrum. To ensure the consistency of these findings, the same analysis was per-
formed for the 30− 40% centrality interval in Pb–Pb collisions at √sNN = 2.76 TeV, yielding comparable
results across the different centrality classes. Consequently, the pT range of 0.5 < pπT < 2.0GeV/cwas de-
termined to be the optimal interval for Bayesian inference across all centrality classes and collision systems,
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Figure 4.2: Parameter values within different pT fitting ranges for the 0 − 5% centrality class in Pb–Pb collisions at√
sNN = 2.76TeV. The top panel presents the variation of the starting pT from 0.1GeV/c to 1.0GeV/c,

while the bottom panel displays the variation of the ending pT from 2.0GeV/c to 3.0GeV/c. The un-
certainty bars denote 68% confidence intervals of the marginalized posterior distributions for each model
parameter.

providing the most reliable and accurate results.

Figure 4.3 presents the posterior distributions of the model parameters across all centrality classes for Pb–
Pb collisions at √sNN = 2.76 TeV. These distributions are mostly well-contained within the prior intervals
specified in Table 4.1, rather than clustering at the boundaries, suggesting that the chosen parameter space
is appropriate. However, the (η/s)scale parameter is not well-constrained, as its distribution spans several
orders of magnitude, indicating significant uncertainty in its value. This behavior is consistent with previous
findings on the pT spectra [122], which show that the pT spectra alone are insufficient to tightly constrain
the (η/s)scale parameter. Therefore, additional observables, such as anisotropic flow coefficients, are required

56



4.2 Pion excess in the low transverse momentum regime

to impose further constraints and achieve a more precise determination of this parameter. Despite this, the
plot demonstrates a high level of consistency in the other model parameters across different centrality classes,
with variations generally staying within one standard deviation.
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Figure 4.3: Marginal posterior distributions of the model input parameters for the five analyzed centrality classes in
Pb–Pb collision at √sNN = 2.76TeV.

One particularly noteworthy feature is the systematic shift observed in the median value of the kinetic
freeze-out temperature, Tkin, as centrality decreases. This shift indicates a trend toward more rapid expan-
sion in central collisions, where the particle density is higher, leading to a longer-lived fireball with less pro-
nounced radial pressure gradients. In contrast, more peripheral collisions, which have lower particle den-
sities, are associated with a fireball that expands more quickly but has a shorter lifespan and stronger radial
pressure gradients. This behavior aligns with findings from previous studies using blast-wave fits [139] and is
consistent with theoretical expectations regarding the dynamics of the fireball in peripheral collisions [113].

This study determined that the optimal pT range for the pion pT spectra is 0.5 < pπT < 2.0GeV/c.
Consequently, the interval required to quantify the low-pT pion excess is defined as 0.1 < pπT < 0.5GeV/c
for the LHC and 0.2 < pπT < 0.5GeV/c for RHIC.

4.2 Pion excess in the low transverse momentum regime

In this section, we will analyze the low-pT pion excess by utilizing the maximum a posteriori (MAP) esti-
mates. The MAP estimate refers to the set of model parameters that corresponds to the mode of the pos-
terior distribution, representing the point in parameter space with the highest posterior probability. This
approach is particularly useful in parameter estimation, as it provides the parameters that best fit the experi-
mental data. Given that uniform priors are employed in our Bayesian inference framework, the MAP values
are equivalent to the parameters that maximize the likelihood function.

To determine the MAP values, we used numerical optimization algorithms to minimize the negative log-
arithmic posterior distribution using the SciPy package [140]. This approach aligns with the methodology
detailed in reference [82].

In Figure 4.4, the data-to-model ratios for pions, kaons, and protons are presented for MAP estimates.
The figure is organized with rows corresponding to each particle type and columns to each collision sys-
tem. The bands represent the combined statistical and systematic experimental uncertainties, summed in
quadrature. The model calculations produce nearly flat data-to-model ratios, consistent with unity within
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Figure 4.4: Comparison of differential yields for pions (π), kaons (K), and protons (p) with model spectra across 0−
40% centrality classes in various collision systems: Pb–Pb at√sNN = 2.76TeV [113], Pb–Pb at√sNN =
5.02TeV [114], Xe–Xe at √sNN = 5.44TeV [115], and Au–Au at √sNN = 200GeV [117]. Each row
corresponds to a different particle species, while each column represents one of the four collision systems
under study. Within each panel, the ratios are divided by centrality classes ranging from 0 − 40%. The
shaded bands indicate the statistical and systematic uncertainties of the experimental data combined in
quadrature.

one standard deviation across the fitted pT range for pions, kaons, and protons. This consistency is observed
across all centrality intervals and collision systems within the ranges used in the Bayesian analysis. However,
outside of the fitted pT range, deviations in the data-to-model ratios are observed.

The model calculations for all hadrons begin to deviate from experimental measurements after pT >

2.0GeV/c. This suggests that the higher pT domain may not be predominantly governed by soft processes,
which are typically described by fluid dynamic calculations. The observed deviations are more significant
for pions compared to heavier particles, such as protons, supporting the idea that hadrons originate from
a fluid with a unified velocity field. According to Equation 1.10, the transverse momentum distribution is
influenced by both the thermal motion at freeze-out and the radial flow of the system, with Tslope incorpo-
rating the particle mass mi. Since the radial flow velocity ⟨v⊥⟩ is the same for all particles, heavier particles
like protons receive a greater momentum boost compared to lighter particles like pions, pushing protons to
higher pT values. This effect causes the proton pT spectrum to extend to higher values, whereas the pion
spectrum, due to the pions’ smaller mass, peaks at lower pT. The early thermal freeze-out of pions, which
have a smaller mass and are more susceptible to dissipative effects, further limits their contribution to higher
pT, while the thermal production of heavier hadrons like protons continues at higher pT. This dynamic in-
terplay between mass, radial flow, and thermal freeze-out explains the more pronounced deviation of pions
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4.2 Pion excess in the low transverse momentum regime

from the model calculations and supports the concept of a unified velocity field driving the hadronization
process.

In the low-pT range (pT < 0.5GeV/c), the data-to-model ratios for pions exceed unity across all centrality
classes and collision systems, in contrast to kaons and protons. This indicates a systematic excess of pion
production in the experimental measurements compared to fluid dynamic production. Even when the low-
pT pion spectra are included in the Bayesian inference, the model fails to accurately describe the data in this
interval as discussed in the previous section.
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Figure 4.5: Comparison of pT spectra for pions in Pb–Pb collisions at √sNN = 2.76TeV for the 0-5% centrality
class across different pT fitting intervals. The upper panel shows the model predictions versus experimen-
tal data, while the lower panel displays the data-to-model ratios with combined statistical and systematic
uncertainties of the experimental data, summed in quadrature.

Figure 4.5 illustrates the pion excess in Pb–Pb collisions at√sNN = 2.76TeV for the 0-5% centrality class
across five different pT fitting intervals. The model calculations for pions begin to deviate significantly from
experimental measurements for pT > 2.0GeV/c, so only the 0.1 < pT < 2.0GeV/c range is shown in the
figure to emphasize the low-pT region. From left to right, the lower bound of the pπT range is progressively
narrowed from0.1 to0.5GeV/c. The upper panel compares the model predictions against the experimental
data, while the lower panel displays the data-to-model ratios. The lower panel also includes an uncertainty
band that reflects the combined statistical and systematic uncertainties of the experimental data, summed
in quadrature. Given that the pion excess in the low-pT regime is similar across all collision systems, Pb–Pb
collisions at √sNN = 2.76TeV serve as a representative example.

From the figure, it can be observed that the inclusion of low-pT pion spectra in the Bayesian inference
reduces the data-to-model ratio in the pT < 0.5GeV/c range by approximately 15%. Despite this reduction,
significant deviations up to 75% from unity remain, indicating that the model fails to accurately describe the
data in the low-pT interval.

Figure 4.6 presents the pion excess for the four collision systems as a function of centrality. The excess is
calculated by subtracting the integral of the pion spectra computed within our framework from the integral
of the experimentally measured pion spectra, both within the interval pT < 0.5GeV/c. Notably, the excess
is computed using different pT intervals for the LHC and RHIC: at the LHC (left panel), pion spectra are
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measured down to pT = 0.1GeV/c, while at RHIC (right panel), measurements extend down to pT =

0.2GeV/c.
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Figure 4.6: The integrated pion excess as a function of the centrality class in the three collision systems at the LHC
(left panel) and at the RHIC (right panel). The bars represent the experimental uncertainties propagated
as fully uncorrelated across pT.

The error bars depict the total experimental uncertainties, which are summed in quadrature. Both sys-
tematic and statistical uncertainties are propagated as fully uncorrelated across the pT intervals. The shaded
bands represent the model uncertainties, reflecting the spread in the posterior samples. These bands ac-
count for different sources of model and experimental uncertainty, as well as any tension in the optimal fit
parameters. Further details about model uncertainties will be discussed in Chapter 5. In Figure 4.4, it is
demonstrated that the best set of model parameters describes the data with reasonable accuracy within the
pT fitting range. The ratios of the pT spectra for pions, kaons, and protons to the model predictions remain
close to unity, with deviations up to 20% across all centrality classes. Therefore, the model uncertainties
should primarily originate from the neural network emulator. The uncertainty in the posterior distribution
could be reduced by running the calibration with more design points and a narrower range of parameter
values, increasing the density of training points to minimize interpolation uncertainty.

In our analysis, the significance of the excess (the ratio of the difference between the experimental data and
the model prediction to the experimental uncertainty) is above 5, with values ranging from 9.3 to 11.1 across
all centrality classes and collision systems. This measure provides a statistical indication of how many stan-
dard deviations the data deviates from the model, helping to assess the reliability and accuracy of the model
predictions. Additionally, a decreasing trend in the excess from central to peripheral collisions is observed
for all collision systems.

In Figure 4.7, the relative excess of pions is shown as a function of centrality for different collision sys-
tems. The left panel represents the LHC data with the pion spectra integrated over the range 0.1 < pT <

2.0GeV/c, while the right panel corresponds to RHIC data, where the pion spectra are integrated over
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4.2 Pion excess in the low transverse momentum regime

0.2 < pT < 2.0GeV/c. The relative excess is calculated by normalizing the excess pion yield in the range
0.1 < pT < 0.5GeV/c for the LHC (and 0.2 < pT < 0.5GeV/c for RHIC) to the total pion yield in the
broader interval 0.1 < pT < 2.0GeV/c (or 0.2 < pT < 2.0GeV/c for RHIC).
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Figure 4.7: Relative excess of pions in the range 0.1 < pT < 0.5 GeV/c, normalized to the integrated pion yields
over 0.1 < pT < 2.0 GeV/c for various centrality classes at the LHC (left panel). A similar normalization
against pion yields over 0.2 < pT < 2.0 GeV/c is presented as a function of centrality classes at the RHIC
(right panel). The bars represent the experimental uncertainties propagated as fully uncorrelated across pT.

While the initial analysis of the model calculations and experimental data assumes uncorrelated uncer-
tainties, a different situation arises when calculating the relative excess. This relative excess is determined
by taking the ratio of two related quantities: the excess yield and the integrated pion yield. Although the
uncertainties were treated as uncorrelated in the primary analysis, the relationship between these two yields
introduces a natural correlation when their ratio is considered. This correlation emerges because both the
excess yield and the integrated yield are derived from the same experimental data and are influenced by simi-
lar systematic uncertainties. Consequently, when calculating their ratio, these shared uncertainties partially
cancel out.

The relative excess exhibits a consistent trend across different centrality classes in all collision systems, with
values ranging from 10% to 20%. This suggests that fluid dynamic calculations account for approximately
80% to 90% of the total pion production in heavy-ion collisions, implying that the remaining excess, partic-
ularly in the low-pT region, may originate from additional physical mechanisms. Thus, accurately quantify-
ing the low-pT pion excess is essential for refining theoretical models of heavy-ion collisions and could offer
deeper insights into the underlying processes that contribute to this discrepancy.

Comparing the same centrality class in Pb–Pb collisions at √sNN = 2.76TeV and √
sNN = 5.02TeV,

there is an indication that the integrated excess is lower in Pb–Pb at√sNN = 5.02TeV. Given that the excess
is normalized, one would typically expect the normalized pion excess to be similar across different collision
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4 Quantification of the pion excess in the low transverse momentum regime in heavy-ion collisions

energies, especially in comparable centrality classes. The substantial difference observed between the two
energies, therefore, raises questions.

Upon closer examination, a significant discrepancy is evident in the low-pT region of the pion spectra
between the two energy scales. As shown in Figure 4.8, for pT < 0.3GeV/c, the pion spectra at √sNN =

5.02TeV exhibit noticeable discrepancies compared to those at √sNN = 2.76TeV. This observation is par-
ticularly surprising because one would generally expect the higher energy collision at √sNN = 5.02TeV to
produce more pions across the pT spectrum due to the increased energy density and overall particle produc-
tion. The fact that the pion yields are lower at √sNN = 5.02TeV is counterintuitive and suggests that there
may be underlying issues with the experimental data in this low-pT region. These unexpected discrepancies
highlight the need for careful scrutiny of the data.
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Figure 4.8: Comparison of the pion pT spectra between Pb–Pb collisions at √sNN = 2.76TeV [113] (blue) and√
sNN = 5.02TeV [114] (orange). The dashed lines represent model predictions for pion pT spectra,

while the data points correspond to the experimental measurements. The observed discrepancy in the low-
pT region (pT < 0.2GeV/c) between the two energy scales, where the 5.02 TeV data show lower values
than the 2.76 TeV data, is particularly notable and suggests potential issues in the experimental data or its
interpretation.

This unusual trend in the low-pT region could be due to several issues within the experimental data. There
may be differences in systematic uncertainties between the two datasets, particularly in how low-pT pions
are reconstructed and corrected. Such discrepancies can lead to biases that affect the lowest pT bins.

Finally, a thorough examination of the experimental procedures, with a focus on the estimation of sys-
tematic uncertainties and the application of corrections, is essential to fully understand and resolve these
discrepancies.
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5 Mapping properties of the QGP

The objective of this chapter is to investigate the model parameters related to the evolution of heavy-ion
collisions, such as the initialization time and kinetic freeze-out temperature, along with key transport coeffi-
cients of the QGP, specifically the shear and bulk viscosity to entropy density ratios. To achieve this, we will
conduct a Bayesian parameter estimation using pT-differential spectra and pT-differential flow harmonics
(vn(pT)) of pions, kaons, and protons produced in Pb-Pb collisions at √sNN = 2.76 TeV and 5.02 TeV,
as well as Xe-Xe collisions at √sNN = 5.44 TeV, across centrality classes of 0-5%, 5-10%, 10-20%, 20-30%,
and 30-40%. In the predecessor of this work, Bayesian inference was employed to determine the key parame-
ters of the QGP evolution and its properties [122]. However, even though the analysis was performed using
three collision systems, it was limited to a single observable: pT spectra. The results demonstrated that the
scale value of temperature-dependent shear viscosity to entropy density ratio and correspondingly minimum
value, (η/s)min, was not constrained by the pT spectra alone. Therefore, these findings indicated that the
inclusion of additional observables, such as flow coefficients, is necessary to possibly constrain the transport
coefficients of the QGP. The current study aims to build on the previous work by including flow coefficients
v2(pT), v3(pT), and v4(pT), into the Bayesian analysis. Including these observables is expected to lead to a
more robust estimation of the model parameters.

5.1 Analysis of individual collision systems

In this section, separate Bayesian analyses of Pb-Pb collisions at √sNN = 2.76 TeV and 5.02 TeV, as well
as Xe-Xe collisions at √sNN = 5.44 TeV, will be presented. Each system will be analyzed individually to
examine the model parameters and transport coefficients of the QGP. The subsequent section will discuss
the global fit, which integrates data from all three collision systems to provide a comprehensive analysis.

5.1.1 Experimental data

Table 5.1 summarizes the experimental data sets used for Bayesian inference analyses in this chapter. This
includes details of the collision systems, observables, particle species, and centrality classes. The pT spectra
are presented in the differential form of 1

Nev

1
2πpT

d2N
dpTdy

, whereNev is the number of events in a centrality bin.
Throughout this chapter, the term "pT spectra" is used as a shorthand for "pT-differential spectra" to improve
readability. Experimental data for low pT pions (with pT < 0.5 GeV/c) are excluded from the fits, based
on findings from Chapter 4, which indicated that current fluid dynamic models significantly underestimate
the yields of low pT pions. Additionally, the upper pT limit for the experimental data used in this analysis is
set to 2 GeV/c for all observables.
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5 Mapping properties of the QGP

Table 5.1: Details of experimental data sets used for Bayesian parameter estimation in this chapter, including collision
systems, observables, particle species, and centrality classes.

Collision system Observables Particles Centrality classes Ref.

Pb–Pb, √sNN = 2.76 TeV
pT-differential spectra π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [113]

v2(pT) π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [141]
v3(pT), v4(pT) π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [142]

Pb–Pb, √sNN = 5.02 TeV pT-differential spectra π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [114]
v2(pT) π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [143]

Xe–Xe, √sNN = 5.44 TeV pT-differential spectra π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [115]
v2(pT) π+, K+, p 0-5, 5-10, 10-20, 20-30, 30-40 [144]

5.1.2 Parameter intervals, initial conditions, and partial chemical
equilibrium

As discussed earlier, our framework employs partial chemical equilibrium (PCE), which introduces two dis-
tinct freeze-out temperatures in the calculation of final hadron spectra. However, the application of PCE in
the calculation of flow coefficients is currently not feasible due to the absence of specific system files, referred
to as "kernels." Kernels are specific functions that encapsulate the precomputed integrations, specifically the
azimuthal and rapidity integrations, over the freeze-out hypersurface. These functions are essential for cal-
culating the final particle spectra, as they store dependencies on fluid fields and mean pT. By precomputing
these integrations, the kernels facilitate efficient and consistent evaluations of the spectra across different
fluid evolutions and freeze-out conditions. This approach significantly reduces computational complexity,
ensuring accurate results without the need to repeatedly perform full integrations for each scenario [58].

In the results presented throughout this thesis, as well as in the work of our group, the pT spectra cor-
respond to the background spectra without the inclusion of perturbation effects in Equation 2.56. Con-
sequently, we have only required PCE kernels for the background spectra, and the absence of PCE-specific
kernels for the perturbation spectra has not been an issue so far. However, the calculation of flow coeffi-
cients depends on the perturbation spectra, as shown in Equation 2.75. Since the necessary kernels are not
available for the perturbation spectra, we are unable to apply PCE in the calculation of flow coefficients. In
Equation 2.75, both background and perturbation spectra are involved, and they must be treated consis-
tently, either with PCE or without PCE, to ensure accurate results.

Currently, the perturbation kernels are computed using only a single freeze-out temperature. Therefore,
the analyses in this chapter are conducted using a single kinetic freeze-out temperature, Tfo = Tch = Tkin.
Consequently, the parameter intervals used in this study are designed to accommodate this constraint, as
summarized in Table 5.2. The range for Tkin is chosen to include the ranges of both kinetic and chemical
freeze-out temperatures. The other parameter ranges are determined as discussed in Chapter 4.

To demonstrate the influence of PCE, we compare the maximum a posteriori (MAP) estimates of the pT
spectra with and without PCE. Figure 5.1 illustrates the impact of PCE on the pT spectra for pions, kaons,
and protons in Pb–Pb collisions at √sNN = 2.76 TeV across various centrality classes (0-5%, 5-10%, 10-
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5.1 Analysis of individual collision systems

Table 5.2: Defined intervals for the five model parameters across the three collision systems. Norm and τ0 are recog-
nized as system-dependent parameters.

(η/s)scale (ζ/s)max Tkin (GeV) Norm τ0 (fm/c)

Pb–Pb, √sNN = 2.76 TeV 5–80 0.01–3.0
Pb–Pb, √sNN = 5.02 TeV 0.31–3.0 10−4–0.3 0.110–0.155 80–140 2.0–7.0
Xe–Xe, √sNN = 5.44 TeV 70–150 2.0–7.0

20%, 20-30%, and 30-40%). The plot compares the model predictions with PCE (dashed lines) and without
PCE (solid lines) against the experimental data. The data-to-model ratio panels include an uncertainty band
that accounts for the statistical and systematic uncertainties of the experimental data, which are summed in
quadrature and treated as uncorrelated, as detailed in Chapter 4. It is important to highlight that this figure
differs from those presented in Chapter 4 by incorporating five centrality classes in the inference process
rather than a single centrality class.
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Figure 5.1: Comparison of pT spectra from the model with partial chemical equilibrium (PCE) (dashed lines) and
without PCE (solid lines) to the experimental data for pions, kaons, and protons in Pb–Pb collisions at√
sNN = 2.76 TeV across various centrality classes (0-5%, 5-10%, 10-20%, 20-30%, and 30-40%).

For pions, no significant differences are observed in the fitting interval; however, in the low-pT regime
(pT < 0.5 GeV/c), the deviation from the experimental data is reduced when PCE is included. For the
most peripheral centralities, PCE significantly enhances the model’s ability to describe the high-pT spectra
for protons and kaons. These observations underscore the importance of PCE, which effectively accounts
for the hadron rescattering contribution during the hadron gas phase. Although the chemical composition
is fixed at chemical freeze-out, ongoing elastic scatterings under PCE continue to modify the kinetic distri-
butions of the particles, which is crucial for accurately capturing the influence of radial flow, particularly
on heavier particles such as protons. Consequently, it is important to note that the absence of PCE in our
model is expected to affect our analysis, potentially leading to a less accurate description of the experimental
data presented in this chapter.

Lastly, the initial condition parameters used in this chapter are the same as those listed in Section 4.1.
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5 Mapping properties of the QGP

5.1.3 All results in a tabular form

To provide a comprehensive overview of the results from our various fits, which will be discussed in the fol-
lowing sections, we present a summary of the posterior distributions for all collision systems and fit scenarios
in Table 5.3.

Table 5.3: Summary of posterior distributions. For each parameter, mean, median, MAP value, and credible interval
uncertainties are given.
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5.1 Analysis of individual collision systems

This table includes the mean, median, MAP value, and credible interval uncertainties for each model
parameter. The tabular summary serves as a preview of the detailed analysis presented in the subsequent
sections, highlighting the differences and similarities across different collision energies and fit combinations.
In our analyses, the proximity of the MAP values to the medians of the posterior distributions indicates that
our posterior distributions are relatively symmetric and unimodal, thereby enhancing the reliability of our
parameter estimates.

5.1.4 Results for Pb-Pb collisions at √
sNN = 2.76 TeV

Priors

Figure 5.2 shows the priors for the 10-20% centrality class in Pb–Pb collisions at√sNN = 2.76TeV as an ex-
ample. The rows, from top to bottom, display the pT spectra, v2(pT), v3(pT), and v4(pT) flow coefficients.
The columns, from left to right, correspond to pions, kaons, and protons. The solid markers in the plots
indicate the experimental data points used in the MCMC procedure, while the open markers represent the
full experimental dataset.

The 10-20% centrality class was chosen as an example because FluiduM performs better in lower cen-
trality classes due to its mode expansion technique, which decomposes the hydrodynamic fields into a back-
ground part and perturbation modes [55]. In heavy-ion collisions, the random positions of the nuclei lead
to overlap zones with random orientations. When events are averaged within a single centrality class, the
resulting fluid profiles exhibit symmetry under azimuthal rotations, making the background component in-
variant under these transformations. The background represents the primary features of the system that are
symmetric and regular, such as the average geometry of the overlap zone and the bulk collective flow patterns,
which are more consistent and less affected by fluctuations in lower centralities. The perturbation modes,
on the other hand, capture fluctuations and deviations from this symmetry, which are more challenging to
describe accurately in higher centrality classes due to increased irregularities and complex geometries. As
a result, while the 0-5% class benefits most from this decomposition due to its highly symmetric profiles,
and the 30-40% class is hindered by excessive fluctuations, the 10-20% centrality class provides an optimal
balance where both the background and perturbation modes can be objectively represented.

The priors, based on our initial parameter estimates, provide a good description of the pT spectra. Specif-
ically, the experimental data points fall within the model’s predicted range, spanning nearly an order of mag-
nitude in the logarithmic plot, with the data consistently positioned in the middle of the distribution. This
suggests that the model captures the underlying physics of particle production reasonably. Furthermore, the
v2 flow coefficients are accurately represented by the model, as the experimental data points, including their
uncertainties, are covered by the model’s predictions.

However, the model does not capture the v3 and v4 flow coefficients as effectively. For v3 and v4, the
experimental data points for pions and kaons are located at the upper edge of the prior distributions. This
discrepancy may arise from several factors:
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Figure 5.2: Priors, i.e., model outputs, for the 10-20% centrality class, obtained using initial conditions corresponding
to Pb–Pb collisions at √sNN = 2.76 TeV. These priors represent the initial parameter space used in the
Bayesian inference process, serving as a reference for comparing model predictions with experimental data.

1. Initial state fluctuations [55, 145]: As discussed in Subsection 2.2.4, FluiduM does not fully ac-
count for the fluctuations in the initial geometry, affecting its ability to produce triangular and quad-
rangular flow coefficients. However, it is important to note that the TRENTo parameters were kept
fixed during these calculations, which limits the robustness of any conclusions regarding the full ca-
pabilities of FluiduM in capturing initial state fluctuations.
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5.1 Analysis of individual collision systems

2. Missing non-linear interactions [146, 147]: FluiduM treats the QGP evolution primarily as a linear
response. However, higher-order flow coefficients (v3 and v4) are significantly influenced by mode-
couplings between different flow harmonics. This can lead to discrepancies between predicted and
observed flow patterns, especially for v3 and v4.

3. Higher sensitivity to model parameters [148]: Higher-order flow coefficients exhibit greater sensi-
tivity to specific model parameters, i.e. (η/s)scale, compared to lower-order coefficients. Since higher-
order flow coefficients are built upon lower-order ones, any approximations in the model’s represen-
tation of v2 will propagate and magnify when calculating v3, v4, and so on.

Additional model calculations were conducted using the same TRENTo parameters but with wider pa-
rameter ranges than those listed in Table 5.2. Despite these adjustments, the model still failed to accurately
capture the experimental data for the v3 and v4 flow coefficients. This persistent discrepancy indicates that
the current model parametrization and underlying assumptions may not fully account for the complexities
of higher-order flow harmonics. Consequently, further investigations of TRENTo parameters and possible
improvements to the FluiduM model are necessary to enhance our ability to describe the physics under-
lying v3 and v4. Addressing these issues and refining the model to better encapsulate the complexities of
higher-order flow harmonics will be an important focus for future work.

Emulator performance

With the priors established, we proceed to construct the emulator, which serves as a surrogate for the full
model during MCMC sampling by efficiently predicting the model outputs for any parameter set within
the trained range.

Figure 5.3 presents the emulator’s performance in reproducing the model outputs for various observ-
ables and centrality classes in Pb–Pb collisions at √sNN = 2.76 TeV. Each subfigure displays a scatter plot
comparing the model calculations (y-axis) with the corresponding emulator predictions (x-axis) for different
observables related to pions, kaons, and protons. In these plots, each point represents the value of a specific
observable for a particle type at a given pT bin. The diagonal line in each plot represents the ideal case where
the emulator exactly matches the model, providing a direct visual assessment of the emulator’s accuracy in
approximating the full model outputs.

The first row of subfigures shows the comparison for the pT spectra across different centrality classes. The
emulator accurately reproduces the pT spectra, as indicated by the data points closely following the diagonal
line. The performance remains consistent across all centrality classes, from 0-5% to 30-40%.

The second row illustrates the emulator’s performance for v2. Similar to the pT spectra, the emulator
effectively captures the v2 values, with the data points lying close to the diagonal line. This demonstrates the
emulator’s capability to represent the elliptic flow dynamics accurately.

Likewise, the third and fourth rows present the emulator’s performance for v3 and v4, respectively. The
emulator’s accuracy is lower compared to the pT spectra and v2, with data points deviating from the diagonal
line, especially as centrality increases (i.e., moving from more central to more peripheral collisions). This
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Figure 5.3: Comparison between the model and emulator for various observables and centrality classes in Pb–Pb col-
lisions at √sNN = 2.76 TeV. Each subfigure corresponds to a different observable (rows) and centrality
class (columns). The diagonal line in each plot represents the ideal agreement between the model and the
emulator, where all points would lie exactly on the line. Deviations from this line are expected due to the
inherent limitations of the NN emulator, such as the number of training points and the size of the NN
ensemble, both of which can affect the emulator’s accuracy and generalization.

deviation may be attributed to the inherent complexities of higher-order flow coefficients. Unlike v2, which
are primarily influenced by the overall elliptic shape of the overlap region, higher-order coefficients capture
finer details of the system’s anisotropies. Consequently, these coefficients are more challenging to model
accurately, especially when the emulator is trained on a limited dataset (83% of 20,000 model calculations),
potentially leading to less precise representations of these higher-order flow dynamics.

Overall, the emulator demonstrates performance that is close to the ideal case across the majority of ob-
servables and centrality classes. This high level of accuracy, particularly for the pT spectra and v2, suggests
that the emulator reliably captures the key dynamics of the model. Consequently, we can trust the emu-
lator’s performance and proceed to use it in our MCMC procedure to estimate the posterior probability
densities of the model parameters.
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5.1 Analysis of individual collision systems

Posteriors

In this subsection, the posterior probability density functions (PDFs) of the model parameters are presented.
Two sets of posteriors will be discussed: one estimated using pT spectra and v2(pT) observables, illustrated
in Figure 5.4, and the other using pT spectra along with v2(pT), v3(pT), and v4(pT) observables, illustrated
in Figure 5.5. The posterior plots throughout this thesis are generated using the corner package [149].
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Figure 5.4: Marginal and joint posterior probability density functions (PDFs) for model parameters in Pb–Pb colli-
sions at √sNN = 2.76 TeV obtained using pT spectra and v2(pT) observables in the Bayesian estimation.

The corner plots in Figure 5.4 and Figure 5.5 provide comprehensive visualizations of the marginal and
joint posterior distributions, highlighting the inferred parameter values, their uncertainties, and the correla-
tions between them. Each diagonal panel represents the marginal distribution for a single model parameter,
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obtained by integrating the posterior distribution over all other parameters. The values above each diag-
onal panel indicate both the median and the 68% highest posterior density interval (HPDI), also known
as the credible interval. The HPDI, being the narrowest interval containing 68% of the posterior density,
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Figure 5.5: Marginal and joint posterior probability density functions (PDFs) for model parameters in Pb–Pb colli-
sions at √sNN = 2.76 TeV obtained using pT spectra, v2(pT), v3(pT), and v4(pT) observables in the
Bayesian estimation.

implies that the true parameter value is expected to lie within this interval 68% of the time. Furthermore,
the off-diagonal panels (2D histograms) illustrate the joint posterior distributions, highlighting correlations
between pairs of parameters. The contours represent the (0.5, 1, 1.5, 2)-sigma equivalent regions, encom-
passing 11.8%, 39.3%, 67.5%, and 86.4% of the samples, respectively [149]. This notation reflects the integral
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properties of a Gaussian distribution in two dimensions, where the sigma levels correspond to these specific
percentages of the volume.

Firstly, we will discuss the results of (η/s)scale. In the first analysis, using only the pT spectra and v2
observables, the inferred value is (η/s)scale = 0.8370+0.0065

−0.0065, indicating a relatively narrow credible interval
and suggesting a high degree of confidence in this estimate. When the analysis is extended to include higher-
order flow coefficients v3 and v4 along with the pT spectra and v2, we observe a decrease in the inferred value
to (η/s)scale = 0.6957+0.0046

−0.0046. The inclusion of these additional observables resulted in a lower estimate of
the (η/s)scale. This reduction can be attributed to the fact that larger values of η/s tend to suppress the flow
coefficients vn. Since our model tends to produce smaller v3 and v4 compared to the experimental data while
capturing v2, the Bayesian inference process reduces the η/s value to obtain larger v3 and v4 with respect
to the case in which only the v2 coefficient is fitted. The corresponding minimum values of (η/s)min can
be calculated using Equation 2.47 and they are reported as (η/s)min = 0.2180+0.0017

−0.0017 for pT spectra+v2 fit,
and (η/s)min = 0.1812+0.0012

−0.0012 for pT spectra+v2+v3+v4 fit.
The inclusion of flow coefficients significantly enhances the ability to constrain the (η/s)scale parameter.

In the case where only the pT spectra were utilized, as shown in the posterior distributions in Figure A.1 and
the detailed parameter values listed in Table 5.3, the (η/s)scale remained unconstrained. However, even the
inclusion of the v2 coefficient alone in the fit provides a notable improvement in constraining (η/s)scale.
This demonstrates the sensitivity of flow observables to transport coefficients. Through this approach, we
achieve one of the primary objectives of this chapter: to employ additional observables beyond thepT spectra
to impose tighter constraints on the transport coefficients of the QGP.

Next, we turn to the bulk viscosity to entropy density ratio, (ζ/s)max. In the pT spectra and v2 analysis,
the inferred value of (ζ/s)max is 0.0005+0.0008

−0.0003, with uncertainties comparable to the median, suggesting
that (ζ/s)max is not constrained in this fit. This large uncertainty indicates a significant lack of precision,
making it difficult to draw firm conclusions about the bulk viscosity from this dataset alone. However,
when higher-order flow coefficients v3 and v4 are included, the value of (ζ/s)max becomes 0.0647+0.0031

−0.0032,
with much tighter constraints. This result is somewhat unexpected, as bulk viscosity is generally influenced
by radial flow, quantified by the mean transverse momentum, ⟨pT⟩, rather than higher-order anisotropic
flow coefficients [35]. One possible explanation is that the inclusion of v3 and v4 indirectly constrains the
overall hydrodynamic evolution, which, in turn, affects the correlations among model parameters that in-
fluence the estimation of bulk viscosity. This additional information could improve the precision of the
(ζ/s)max estimate, as changes in the inferred values of one parameter may affect others due to these correla-
tions. Therefore, the broader range of observables likely alters the overall constraint on the model parame-
ters, even if the direct sensitivity to (ζ/s)max is not immediately apparent from higher-order flow harmonics
alone. It has been observed in Ref. [130] that including bulk viscosity leads to a reduction in η/s. In our anal-
ysis, (η/s)scale is reduced due to the inclusion of v3 and v4, which could potentially explain the increase in
(ζ/s)max, as also seen in the correlations between these two parameters.

Thirdly, we examine the initialization time τ0. In the analysis using pT spectra and v2 observables, the
inferred value of τ0 is 0.7058+0.0256

−0.0255 fm/c. This estimate indicates a narrowly constrained initialization time
based on the given data, and it is consistent with the findings from the predecessor of this work [122]. When
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the analysis is extended to include v3 and v4, the inferred τ0 decreases to 0.2799+0.0245
−0.0244 fm/c. This reduction

in τ0 implies an earlier initialization time, which leads to a more extended hydrodynamic evolution and
potentially stronger collective flow development.

In addition, it is insightful to consider the normalization constantNorm alongside τ0. The normalization
factor accounts for variations in the fits from the TRENTo multiplicity scaling and is scaled by τ0 to consider
the longitudinal expansion effect. In the pT spectra and v2 analysis,Norm = 67.0120+0.6090

−0.6191, whereas in the
extended analysis including v3 and v4,Norm decreases to 52.9891+1.4373

−1.5318. This change suggests a correlation
between τ0 and Norm, as both parameters are adjusted to maintain the consistency of the initial entropy
density profile. The ratio Norm/τ0 is a critical quantity as it directly affects the initial entropy density s(r)
in Equation 4.2. Comparing these ratios, we find that Norm/τ0 = 94.97 for the pT spectra and v2 analysis,
and Norm/τ0 = 189.25 for the extended analysis. This increase in the Norm/τ0 ratio in the analysis where
v3 andv4 are included indicates a higher initial entropy density requirement intending to describe the higher-
order flow coefficients complexity.

Lastly, for the marginal PDFs, we compare the kinetic freeze-out temperature, Tkin. In the analysis us-
ing pT spectra and v2 observables, the inferred value of Tkin is 0.1446+0.0002

−0.0002 GeV. When v3 and v4 are
included, Tkin decreases to 0.1413+0.0002

−0.0002 GeV. This reduction could be attributed to the additional con-
straints imposed by v3 and v4 on the collective dynamics, which may require a longer evolution time and
a more extended cooling period to accurately reproduce these observables. It is important to note that our
analysis is conducted in the absence of a PCE phase. This simplification might influence the inferred freeze-
out temperature as the model attempts to compensate for the missing complexity of the hadron gas phase
interactions.

Furthermore, analyzing the correlations between model parameters provides deeper insights into the dy-
namics and constraints of the Bayesian estimations. Firstly, in both cases, there is a strong positive correlation
between Norm and τ0. This is expected, as both parameters are involved in scaling the initial entropy den-
sity, indicating that changes in one parameter are compensated by adjustments in the other to maintain a
consistent entropy profile. In the pT spectra and v2 fit, there are negative correlations between Norm and
Tkin, as well as τ0 and Tkin. This suggests that a higher normalization or earlier initialization times are associ-
ated with lower kinetic freeze-out temperatures. Conversely, in the extended fit, including v3 and v4, these
correlations become positive. This change indicates that with the additional constraints from higher-order
flow harmonics, the model requires higher Tkin values to be consistent with larger Norm and earlier τ0.

In the pT spectra and v2 fit, other parameter pairs appear uncorrelated, implying that each parameter
independently affects the model without significant interplay. However, in the extended fit, includingv3 and
v4, (ζ/s)max exhibits negative correlations with all other model parameters. This suggests that increasing
bulk viscosity requires adjustments in other parameters to maintain consistency with the observed data,
highlighting the sensitivity of (ζ/s)max to the overall hydrodynamic evolution. Additionally, there is a small
positive correlation between (η/s)scale and τ0 in the extended fit, indicating that lower shear viscosity values
are consistent with earlier initialization times, possibly due to the need for weaker shear effects to match the
higher-order flow coefficients.
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Figure 5.6 presents the model results for pT spectra and vn(pT) measured in various centrality classes
(0-5%, 5-10%, 10-20%, 20-30%, and 30-40%) in Pb–Pb collisions at √sNN = 2.76 TeV. These results are
derived from 400 model calculations, where the input parameters are randomly sampled from the posterior
distributions, considering parameter correlations, as shown in Figure 5.5. As in the priors plot, the solid
markers indicate the experimental data points used in the MCMC procedure, while the open markers repre-
sent the experimental data not used in the fit. The sampling algorithm draws parameters from the MCMC
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Figure 5.6: Model results for pT spectra and vn(pT) in Pb–Pb collisions at √sNN = 2.76 TeV across various central-
ity classes (0-5%, 5-10%, 10-20%, 20-30%, and 30-40%). These results are derived from 400 model calcu-
lations, with input parameters randomly sampled from the posterior distributions. Solid markers indicate
experimental data points used in the MCMC procedure, while open markers represent experimental data
not used in the fit. The model uncertainty, represented by the band, primarily originates from the neu-
ral network emulator. Detailed quantitative comparisons of the model calculations and experimental data
presented in this figure can be found in Appendix B.

chains after the burn-in period, ensuring that the sampled points reflect the posterior distributions accu-
rately. The band of model results represents the model uncertainty, primarily originating from the neural
network emulator, as discussed in Chapter 4. While it is observed that the model uncertainties (1 standard de-
viation) are approximately one order of magnitude smaller than the experimental uncertainties, as presented
in Appendix B, the spread of the model calculations appears compatible with the experimental uncertainties

75



5 Mapping properties of the QGP

for certain pT intervals in Figure 5.6. This is because the bands in the figure encompass the full spread of 400
model calculations, including those outside one standard deviation, resulting in a seemingly larger band.

The top row shows the pT spectra for different centrality classes. A characteristic feature of the pT spectra
is their decrease as pT increases. This trend is expected in hadronic collisions because higher transverse mo-
menta require more energy, resulting in fewer particles being produced at these higher energies. Additionally,
the hierarchy of particle yields—where pion spectra are higher than kaon spectra, and kaon spectra are higher
than proton spectra—can be explained by their masses. In thermal models, the particle yield decreases expo-
nentially with increasing particle mass, modulated by the temperature of the system at freeze-out [30, 150].

Moreover, the slopes of the pT spectra for pions are steeper than those for kaons, which in turn are steeper
than those for protons due to their mass differences and their sensitivity to radial flow.

Our model shows varying degrees of accuracy across different centrality classes. For the 10-20% centrality
class, the model accurately reproduces the experimental data. However, for more central collisions (0-5%
and 5-10%), the model tends to overestimate the experimental data, while it underestimates the data for more
peripheral collisions (20-30% and 30-40%) at higher pT values. This suggests that while the model captures
the general trends, it encounters difficulties in achieving precise reproduction at the extremes of the centrality
range. These discrepancies reflect the challenge of a simultaneous fit across all centralities, where a single set
of model parameters must account for a wide spectrum of collision conditions. The simultaneous fitting
approach inherently involves trade-offs, balancing accuracy across centralities, and may lead to a compromise
in precision at specific centrality intervals. The quantification of these deviations will be provided using
model calculations obtained from the MAP values.

In the second row, the v2(pT) flow coefficients are displayed for the same set of particles and centralities.
The mass hierarchy observed in the v2 values, where vpion

2 > vkaon
2 > v

proton
2 , can be attributed to the mass de-

pendence of particle flow. In the collision scenario where the final particles are produced via freeze-out of the
locally thermalized matter exhibiting collective flow, the interplay of radial expansion and anisotropic flow
results in a characteristic mass dependence of the differential flow [151]. Furthermore, the v2 values increase
as we move to more peripheral centralities. This increase is due to the larger spatial anisotropy in the initial
overlap region of the colliding nuclei in peripheral collisions [152]. The elliptic shape of the overlap region
in peripheral collisions creates stronger pressure gradients, enhancing the anisotropic flow and resulting in
higher v2 values.

The model samples align well with the experimental data at lowerpT values but start to deviate at higherpT
values as centrality increases. This suggests that while the model describes the elliptic flow dynamics reason-
ably well, there are limitations in its accuracy at higher transverse momenta and more peripheral collisions,
where the hydrodynamic description of the data is expected to be less accurate [125].

The third and fourth rows present the v3(pT) and v4(pT) flow coefficients, where the model samples
show significant deviations from the experimental data. This discrepancy indicates that our model struggles
to accurately describe the v3 and v4 observables. The observed hierarchy in v3 and v4 values (vpion

3,4 > vkaon
3,4 >

v
proton
3,4 ) follows a trend similar to that of v2, driven by mass-dependent effects on the particles’ response to the

medium’s radial flow. The increase inv3 andv4 with more peripheral centralities is less pronounced than that
for v2, as v3 and v4 are more directly tied to fluctuations rather than the overlap geometry. Given the model’s
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limitations in describing the v3(pT) and v4(pT)flow coefficients, it is reasonable to question the reliability of
the fit results from the pT spectra + v2 + v3 + v4 analysis. If our model cannot adequately capture the higher-
order flow coefficients, the inferred parameter values from this fit may not be trustworthy. Therefore, it may
be more prudent to rely on the pT spectra + v2 fit, where the model performs better. For this reason, we will
include only the pT spectra + v2 fits for different collision energies in the global fit presented in Section 5.2.

Additionally, our model consistently fails to accurately describe all flow coefficients (vn) for protons across
lower centrality classes (0-5%, 5-10%, and 10-20%) by overpredicting them at lower pT. This discrepancy can
be attributed to the model’s lack of PCE, which is essential for accurately modeling the behavior of protons.
Without incorporating PCE, the model fails to capture the full strength of the radial flow gained during the
hadronic phase and cannot shift the flow coefficients to higher pT values in central events.

To further investigate the impact of proton data on the model’s accuracy, we performed Bayesian inference
for pT spectra and v2 observables under two scenarios: one including proton data in v2 and the other exclud-
ing it. The results indicated no substantial difference in the overall fit quality, suggesting that the proton vn’s
do not play a significant role in our model. Detailed results of these fits are presented in Appendix A, specif-
ically in Figure A.2, Figure A.3, and Figure A.4. Future studies incorporating PCE are expected to provide
further insights into this issue.

In addition to examining the impact of proton data on the model’s accuracy, we also investigated the
influence of centrality classes on the inferred model parameters for Pb–Pb collisions at √sNN = 2.76 TeV.
This analysis involved a Bayesian inference approach, initially utilizing data from all five centrality classes (0-
5%, 5-10%, 10-20%, 20-30%, and 30-40%), and subsequently excluding the most peripheral centrality class
stepwise, resulting in fits with four, three, and two centrality classes. Separate fits were also performed for
each individual centrality class to assess the variation of the model parameters to different centralities. This
investigation was conducted prior to our decision to prioritize the pT spectra + v2 fit over the pT spectra
+ vn fit. As such, the detailed results of this study are not presented in the main text but are provided in
Appendix C.

In order to demonstrate the influence of model uncertainties on the results, we compare the log poste-
rior probability −2 logP with the χ2 value for the visited parameter configurations during the MCMC
sampling procedure. The use of the log posterior probability is preferred due to its numerical stability, as
the logarithm of the posterior probability is more manageable than the posterior itself, which can vary over
many orders of magnitude. The log posterior probability can be calculated using Equation 5.1, where L
represents the likelihood and π denotes the priors

logP(θ|y) = logL(y|θ) + log π(θ). (5.1)

Here, the logarithms of the uniform prior (Equation 3.13) and likelihood (Equation 3.18) are taken as
follows:
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log π(θ) =

{
0 if min(θi) ≤ θi ≤ max(θi) for all i,

−∞ otherwise
(5.2)

. logL(D|θ) = −1

2
log((2π)n detΣ)− 1

2
(ymodel(θ)− yexp)

TΣ−1(ymodel(θ)− yexp), (5.3)

where i is the number of model parameters. When Equation 5.3 is multiplied by -2, the resulting log poste-
rior probability is given as

−2 logP =

{
(ymodel(θ)− yexp)

TΣ−1(ymodel(θ)− yexp) if min(θi) ≤ θi ≤ max(θi) for all i,

∞ otherwise.
(5.4)

where −2 logP differs from χ2 only in the covariance matrix. The covariance matrix for −2 logP con-
tains both experimental uncertainties (diagonal terms, as no experimental data correlations are used in our
framework) and model uncertainties (which include off-diagonal terms). In contrast, the χ2 value contains
only experimental uncertainties. Therefore, comparing −2 logP and χ2 provides insights into how model
uncertainties influence the results.

Figure 5.7 presents the distributions of −2 logP and χ2 for the visited parameter configurations during
the MCMC sampling after the burn-in period. It is evident that incorporating model uncertainties increases
the posterior probability, impacting the overall distribution. The −2 logP distribution is narrower and
exhibits a 20% higher probability density compared to the χ2 distribution, which is broader and displays a
longer tail extending towards higher values.
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Figure 5.7: Distributions of log posterior probability (−2 logP) and χ2-values for the visited parameter configura-
tions during the MCMC simulation. The observed differences arise from the inclusion of model uncer-
tainties in the logP calculation.
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The MCMC simulations operate within a confined region of the probability space, characterized by vari-
ations in the log probability from 3625 to 3650 and χ2 varying from 3633 to 3660. In contrast, the χ2

values for the training samples range widely, from a minimum of 4203 to a maximum of 7201446. Notably,
the training sample with the smallest χ2 value of 4203 lies well outside the region to which the MCMC
simulation converged, which has a χ2 value around 3640. This indicates that the region of the highest pos-
terior probability is achieved predominantly through the interpolation capabilities of the neural network
ensemble. Incorporating additional training points from the region of the highest probability could be ad-
vantageous. This would likely reduce the ensemble error further and enhance the accuracy of the posterior
parameter estimates. The reduced chi-squared values of the MAP estimates are reported in Table 5.4.

Maximum a Posteriori estimates

Figure 5.8 displays the MAP estimates of pT spectra for two distinct fit scenarios: one combining spectra
with vn fits (solid lines), and the other combining spectra with v2 fits (dashed lines). The best agreement be-
tween experimental data and model predictions is observed in the 10-20% centrality class. For the 0-5% and
5-10% centrality classes, the ratios generally remain close to unity, though deviations up to 20% are present,
especially for pions at high pT in the 0-5% centrality class. On the other hand, the model’s accuracy de-
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Figure 5.8: The MAP estimates of pT spectra for pions, kaons, and protons across various centrality classes in Pb–Pb
collisions at √sNN = 2.76 TeV. The columns correspond to different centrality classes, and the data-to-
model ratios are shown in the bottom panels with uncertainty bands representing experimental uncertain-
ties. The solid lines represent model predictions from pT spectra combined with vn fits, while the dashed
lines represent model predictions from pT spectra combined with v2 fits.

creases in more peripheral collisions, particularly in the 30-40% centrality class, where it significantly under-
estimates the experimental data in the high pT regime. This deviation may be attributed to the limitations of
FluiduM in accounting for the characteristics of peripheral collisions, as the background-fluctuation split-
ting ansatz of FluiduM works best for central collisions, where the profiles are the most symmetric [55].

Additionally, as centrality increases, the data-to-model ratio for protons becomes tilted, indicating a lack of
radial flow in the model. This deviation is reduced in the presence of PCE, as shown in Figure 5.1. It is also
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noteworthy that this figure differs from those presented in Chapter 4 by incorporating five centrality classes
in the inference process rather than a single centrality class and by using a different number of observables.

The data-to-model ratio panels include an uncertainty band, which reflects the statistical and systematic
uncertainties of the experimental data. It is crucial to note that these ratios do not account for model uncer-
tainties shown in Figure 5.6, which could partly explain the observed discrepancies. Furthermore, despite
the different model parameters obtained from the spectra+v2 fit and the spectra+v2+v3+v4 fit, the resulting
pT spectra are nearly identical. This observation can be attributed to parameter correlations in the Bayesian
analysis, where variations in certain parameters are compensated by adjustments in others, leading to similar
model outputs. It suggests that the pT spectra are mainly sensitive to the bulk properties of the QGP, effec-
tively constrained by the pT spectra and v2 coefficient together. Lastly, as discussed in Chapter 4, a notable
excess of low pT pions below 0.5 GeV/c is observed across all centrality classes, indicating that the model
underestimates yields in this region.
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Figure 5.9: The MAP estimates of v2 for pions, kaons, and protons across various centrality classes in Pb–Pb collisions
at √sNN = 2.76 TeV.

Figure 5.9 presents the MAP estimates of the elliptic flow coefficient v2 for pions, kaons, and protons
across various centrality classes in Pb–Pb collisions at √sNN = 2.76 TeV for two distinct fit scenarios. The
comparison reveals that both fit scenarios yield similar results across all centrality classes. This similarity again
may be attributed to the parameter correlations in the Bayesian analysis, where variations in specific param-
eters are compensated by adjustments in others, resulting in consistent v2 values despite different parameter
sets. The v2 data-to-model ratios for pions and kaons remain very close to unity across all centrality classes,
indicating that the model accurately captures the elliptic flow for these particles, providing a good fit to the
experimental data. However, for protons, significant discrepancies are observed in the lower centrality classes
(0-5% and 5-10%). In central collisions, protons gain additional radial flow during the hadronic phase [153].

In our model, the v2 of protons is overpredicted at small pT for the most central collisions, suggesting that
the model does not adequately capture the strength of the radial flow, which pushes the elliptic flow to higher
pT in these central events. In more peripheral collisions (20-30% and 30-40%), the additional radial flow is
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5.1 Analysis of individual collision systems

less pronounced, and the agreement with proton measurements improves. This indicates that the model’s
balance between radial and elliptic flow is an important aspect that needs to be properly considered.
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Figure 5.10: The MAP estimates ofv3 for pions, kaons, and protons across various centrality classes in Pb–Pb collisions
at √sNN = 2.76 TeV.

Figure 5.10 presents the MAP estimates of the triangular flow coefficient v3, comparing two fit scenarios.
Although the spectra+vn MAP estimates describe v3 better than the spectra+v2 estimation, the model still
fails to reproduce the experimental data accurately. The v3 coefficient arises primarily from initial state fluc-
tuations rather than from the collision geometry. These fluctuations are included in our model only at the
first order [55, 145], indicating that even with the inclusion of v3 in the fit, the model does not fully capture
its magnitude.
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Figure 5.11: The MAP estimates of v4 for pions, kaons, and protons across various centrality classes in Pb–Pb collisions
at √sNN = 2.76 TeV.

Figure 5.11 presents the MAP estimates of the quadrangular flow coefficient v4, comparing two fit scenar-
ios. As in the case of v3, the spectra+vn MAP estimates describe v4 better than the spectra+v2 estimation,
yet the model results do not fully match the experimental data. Although the improvement between the
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two fits is evident, it is less prominent than for v3. Despite the inclusion of v3 and v4 in the fits, the model
struggles to accurately describe v4 in both fit scenarios across all centralities. The discrepancies between the
model and experimental data for v4 are more pronounced than for v2 and v3, indicating the absence of flow
mode-couplings [146, 147] in the model, in addition to a first-order approximation in the initial state fluctu-
ations.

Figure 5.12 shows the MAP estimates of the flow coefficients v2, v3, and v4 for charged hadrons in Pb–Pb
collisions at √sNN = 2.76 TeV for two different fit scenarios. It is important to note that charged hadron
vn’s are not directly included in the Bayesian inference in this study. Instead, they are calculated using the
most probable parameters. For charged hadrons, the model shows a good agreement with the experimental
data across all centrality classes for v2 and v3 when using the spectra+vn fits. The inclusion of higher-order
flow coefficients in the fits improves the description of the data more quantitatively. For instance, the data-
to-model ratio for v3 deviates from unity by approximately 40% when only pT spectra and v2 are used in the
Bayesian analysis. After the inclusion of v3 and v4, this deviation is reduced to below 20%. Similarly, for v4,
the deviation from unity is reduced to around 40% for the centrality classes 0-5%, 5-10%, and 10-20%.
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Figure 5.12: The MAP estimates of v2, v3, and v4 for charged hadrons across various centrality classes in Pb–Pb colli-
sions at √sNN = 2.76 TeV.

5.1.5 Results for Pb–Pb collisions at √
sNN = 5.02 TeV

Having examined the results for Pb–Pb collisions at √sNN = 2.76 TeV, we now turn our attention to
the analysis of Pb–Pb collisions at the higher energy of √sNN = 5.02 TeV. Similar to the lower energy
case, our model encounters difficulties in accurately describing the higher-order flow coefficients, v3(pT)
and v4(pT), at this energy as well. Given these limitations, the analysis in this subsection will focus on the
posteriors obtained from the pT spectra+v2 fit. Only the posterior results and sampled emulator examples
are presented here, while details regarding the priors and emulator checks can be found in Figure A.5 and
Figure A.6 in Appendix A. The MAP estimates are not included, as they are similar to those for the 2.76
TeV case; they will be provided in the context of the global fit, incorporating data from all collision systems,
as discussed in Section 5.2.
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Posteriors
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Figure 5.13: Marginal and joint posterior probability densities for model parameters in Pb–Pb collisions at √sNN =
5.02 TeV obtained using pT spectra and v2 observables.

Figure 5.13 shows the marginal and joint posterior PDFs for the model parameters in Pb–Pb collisions
at √sNN = 5.02 TeV estimated using pT spectra and v2(pT) observables, considering centrality classes 0-
5%, 5-10%, 10-20%, 20-30%, and 30-40%, and particles pions, kaons, protons. Key observations from the
posterior distributions can be listed as follows by comparing the results for Pb–Pb collisions at√sNN = 5.02

TeV with those at √sNN = 2.76 TeV (Figure 5.4):

• In our model, only the Norm and τ0 are system-dependent parameters, meaning we expect these pa-
rameters to change with different collision systems and energies. In contrast, (η/s)scale, (ζ/s)max, and
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Tkin should ideally remain consistent across different collision energies. However, the posterior distri-
butions indicate deviations from this expectation. (ζ/s)max remains small and unconstrained in both
cases. Specifically, (ζ/s)max = 0.0004+0.0007

−0.0003 at √sNN = 5.02 TeV and (ζ/s)max = 0.0005+0.0008
−0.0003

at √sNN = 2.76 TeV. On the other hand, the (η/s)scale decreases from 0.8370+0.0065
−0.0065 at √sNN =

2.76 TeV to 0.6256+0.0071
−0.0070 at √sNN = 5.02 TeV. Tkin also decreases from 0.1446+0.0002

−0.0002 GeV to
0.1435+0.0002

−0.0002 GeV. These differences might not indicate intrinsic changes in the QGP properties but
could reflect systematic uncertainties in our modeling and the different sensitivity of the experimental
data used in the Bayesian inference. In the global fit involving multiple collision energies, (η/s)scale
and Tkin are treated as system-independent, implying that the QGP exhibits consistent properties
across different collision energies.

• For Pb–Pb collisions at √sNN = 2.76 TeV, the normalization is Norm = 67.0120+0.6090
−0.6191 and the

initialization time is τ0 = 0.7058+0.0256
−0.0255 fm/c. At √sNN = 5.02 TeV, these values change signifi-

cantly, with Norm = 189.0113+0.5970
−0.5860 and τ0 = 3.1219+0.0507

−0.0513 fm/c. The increase in Norm reflects
the higher particle multiplicity and energy density at the higher collision energy.

• The correlations among the model parameters remained consistent across different collision energies.
For instance, a strong positive correlation betweenNorm and τ0 is observed in both cases, which is ex-
pected as these parameters jointly influence the initial entropy density profile. Similarly, the negative
correlations between Norm and Tkin, as well as τ0 and Tkin, are present in both analyses. This consis-
tency suggests that the underlying physics governing these parameters is robust and not significantly
affected by the change in collision energy. Additionally, the correlations involving (η/s)scale and
(ζ/s)max with other parameters also exhibit similar patterns, indicating stable relationships among
these transport coefficients and other model parameters.

The 400 model calculations for Pb–Pb collisions at √sNN = 5.02 TeV, where input parameters are
randomly sampled from the walker steps in the MCMC process shown in Figure 5.13, demonstrate a per-
formance similar to that observed at √sNN = 2.76 TeV. These calculations, shown in Figure 5.14, present
pT spectra and v2(pT) for pions, kaons, and protons across various centrality classes (0-5%, 5-10%, 10-20%,
20-30%, and 30-40%).

For both collision energies, the pT spectra exhibit similar characteristics, with no significant differences
observed. The model accurately reproduces the experimental data for the 10-20% centrality class. However,
it tends to overestimate the experimental data for more central collisions (0-5% and 5-10%) and underesti-
mate it for more peripheral collisions (20-30% and 30-40%) at higher pT values. Similarly, the v2 results of
pions and kaons for both collision systems align with experimental data at lower pT values but start to deviate
at higher pT values as centrality increases. On the other hand, for protons, there are significant discrepan-
cies in the lower centrality classes (0-5% and 5-10%), indicating that the model does not adequately capture
the strength of the radial flow, which pushes the elliptic flow to higher pT in these central events. In more
peripheral collisions (20-30% and 30-40%), the radial flow is less pronounced, resulting in better agreement
with proton measurements.
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Figure 5.14: Model results for pT spectra and v2(pT) in Pb–Pb collisions at√sNN = 5.02TeV across various central-
ity classes (0-5%, 5-10%, 10-20%, 20-30%, and 30-40%). These results are derived from 400 model calcula-
tions, with input parameters randomly sampled from the posterior distributions. Solid markers indicate
experimental data points used in the MCMC procedure, while open markers represent experimental data
not used in the fit. The model uncertainty, represented by the band, primarily originates from the neural
network emulator.

5.1.6 Results for Xe-Xe collisions at √
sNN = 5.44 TeV

Lastly, the results for Xe-Xe collisions at √sNN = 5.44 TeV are presented, focusing on the posterior PDFs
obtained using pT spectra and v2(pT) observables, and their corresponding model samples. As in the case
of Pb–Pb collisions at √sNN = 5.02 TeV, interested readers can refer to Figure A.7 and Figure A.8 in
Appendix A for details on the priors and emulator checks.

Posteriors

Comparing Figure 5.15 to Figure 5.4 and Figure 5.13, key observations are as follows:

• For Xe-Xe collisions at√sNN = 5.44TeV,Norm = 162.3138+2.2735
−2.2480, which is between the values for

Pb-Pb collisions at √sNN = 2.76 TeV (67.0120+0.6090
−0.6191) and √

sNN = 5.02 TeV (189.0113+0.5970
−0.5860).

The higher energy density at √sNN = 5.44 TeV might be influenced by the smaller size of the Xe
nucleus compared to Pb, resulting in a different normalization factor that reflects the combined effects
of collision energy and system size.

• The (η/s)scale for Xe-Xe collisions is 0.4968+0.0084
−0.0081, which is lower than the values for Pb-Pb colli-

sions at √sNN = 2.76 TeV (0.8370+0.0065
−0.0065) and √

sNN = 5.02 TeV (0.6256+0.0071
−0.0070). Again, these

differences could reflect systematic uncertainties in our modeling and the different sensitivity of the
experimental data used in the Bayesian inference.

• Tkin for Xe-Xe collisions is 0.1470+0.0003
−0.0003 GeV, higher than for the Pb-Pb cases. It is important to

note that the most central collisions in Xe–Xe correspond to the 10-20% centrality class in Pb-Pb at
√
sNN = 5.02 TeV, while the 30-40% centrality class in Xe–Xe corresponds to the 40-50% centrality
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Figure 5.15: Marginal and joint posterior probability densities for model parameters in Xe–Xe collisions at √sNN =
5.44 TeV.

class in Pb-Pb at√sNN = 5.02TeV, considering particle multiplicity [137]. Therefore, as discussed in
Chapter 4, this phenomenon can be attributed to the systematic increase in Tkin as collisions become
more peripheral.

• (ζ/s)max for Xe-Xe collisions is 0.0439+0.0072
−0.0076, which is not only higher but also better constrained

than in the Pb-Pb cases, where (ζ/s)max remains unconstrained. Furthermore, (ζ/s)max in the Xe-
Xe case is negatively correlated with all other parameters, suggesting a unique bulk viscosity behavior
in the smaller Xe-Xe system. This finding is unexpected and requires further investigation to better
understand the underlying mechanisms.
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Figure 5.16 illustrates the emulator samples forpT spectra andv2 observables in Xe-Xe collisions at√sNN =

5.44 TeV, derived from parameters sampled from the posterior distributions shown in Figure 5.15. Com-
paring these results with those from Pb-Pb collisions at √sNN = 2.76 TeV and √

sNN = 5.02 TeV, two key
observations can be made:

• The deviations between the model samples and the experimental data are more significant in the 0-
5% and 30-40% centrality classes for Xe–Xe collisions. Since the 30-40% centrality class in Xe-Xe
collisions corresponds to the 40-50% centrality class in Pb-Pb collisions when considering multiplicity,
the larger deviation at 30-40% centrality class in Xe-Xe collisions compared to Pb–Pb collisions may be
attributed to the limitations of FluiduM in accounting for the characteristics of smaller system sizes
since the background-fluctuation splitting ansatz of FluiduM is more effective for central collisions.

• The v2 coefficient of protons in Xe-Xe collisions is poorly described across all centralities, similar to
the observations in Pb-Pb collisions. This discrepancy could be attributed to the absence of PCE in
the FluiduM.
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Figure 5.16: Model results for pT spectra and v2(pT) in Xe–Xe collisions at√sNN = 5.44TeV across various central-
ity classes (0-5%, 5-10%, 10-20%, 20-30%, and 30-40%). These results are derived from 400 model calcula-
tions, with input parameters randomly sampled from the posterior distributions. Solid markers indicate
experimental data points used in the MCMC procedure, while open markers represent experimental data
not used in the fit. The model uncertainty, represented by the band, primarily originates from the neural
network emulator.
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5.2 Combined analysis of multiple collision systems

In this section, we extend the analysis to a global fit involving multiple collision systems to estimate the prob-
ability density functions of the model parameters more robustly. By leveraging data from Pb–Pb collisions at
√
sNN = 2.76 TeV and √

sNN = 5.02 TeV, as well as Xe–Xe collisions at √sNN = 5.44 TeV, we aim to ob-
tain a comprehensive understanding of the QGP properties that may transcend the limitations of individual
system analyses.

To achieve this, the likelihood function L(D|θ) is reformulated as a joint likelihood function across all
considered systems. This is expressed as:

L(D|θ) =
∏

i

L(Di|θi), (5.5)

where i indexes the different collision systems. This joint likelihood function allows for the simultaneous
fitting of the model to multiple datasets, ensuring that the inferred parameters are consistent across differ-
ent collision systems. The Markov Chain Monte Carlo procedure follows the methodology described in
Chapter 3, where the parameter space is sampled to generate posterior distributions that account for the
combined data. This integrated approach not only enhances the statistical power of the parameter estimates
but also helps to identify and mitigate system-specific biases, and hopefully would provide a more unified
and accurate characterization of the QGP.

Posteriors

The combined analysis of Pb–Pb collisions at√sNN = 2.76TeV and√sNN = 5.02TeV, along with Xe-Xe
collisions at √sNN = 5.44 TeV using pT spectra and v2(pT) observables, yields comprehensive posterior
distributions for the normalization factors specific to each collision system, (η/s)scale, (ζ/s)max, the initial-
ization times τ0 for each system, and Tkin, as shown in Figure 5.17. Key observations and differences from
a comparison of the combined posterior distributions with the individual system posteriors are highlighted
below:

• In the individual system analyses, the normalization factors were found to be 67.0120+0.6090
−0.6191 for Pb–

Pb collisions at √sNN = 2.76 TeV, 189.0113+0.5970
−0.5860 for Pb–Pb collisions at √sNN = 5.02 TeV,

and 162.3138+2.2735
−2.2480 for Xe-Xe collisions at √sNN = 5.44 TeV. In the combined analysis, these val-

ues are adjusted to 65.5684+0.6375
−0.6628 for √sNN = 2.76 TeV, 185.3688+0.5929

−0.6182 for √sNN = 5.02 TeV,
and 176.4074+1.1086

−1.1934 for √sNN = 5.44 TeV. The consistency observed in the Pb–Pb cases suggests
that the combined fit maintains the overall particle multiplicity and energy density well for these sys-
tems. However, the increase in the normalization factor for the Xe-Xe system may reflect adjustments
needed to balance variations in the other model parameters.

• The individual system analyses provided initialization times of 0.7058+0.0256
−0.0255 fm/c for Pb–Pb colli-

sions at √sNN = 2.76 TeV, 3.1219+0.0507
−0.0513 fm/c for Pb–Pb collisions at √sNN = 5.02 TeV, and
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Figure 5.17: Marginal and joint posterior probability densities for model parameters in combined Pb–Pb collisions at√
sNN = 2.76 TeV, √sNN = 5.02 TeV, and Xe-Xe collisions at √sNN = 5.44 TeV. The combined

analysis includes centrality classes 0-5%, 5-10%, 10-20%, 20-30%, and 30-40%, and considers pions, kaons,
and protons with pT spectra and v2(pT) observables.

1.1127+0.0820
−0.0750 fm/c for Xe-Xe collisions at √sNN = 5.44 TeV. In the combined analysis, these ini-
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tialization times are adjusted to 0.5610+0.0207
−0.0203 fm/c for √sNN = 2.76 TeV, 2.8643+0.0479

−0.0511 fm/c for
√
sNN = 5.02 TeV, and 2.0998+0.0698

−0.0724 fm/c for √sNN = 5.44 TeV. The change in τ0 is most promi-
nent in Xe-Xe collisions. One possible explanation could be that since τ0 is negatively correlated with
bulk viscosity, in the global fit bulk viscosity decreases significantly compared to the individual fit of
Xe-Xe, resulting in an increase in τ0. However, the bulk viscosity in the global fit is similar to that in
the individual Pb-Pb fits, and correspondingly, the τ0 values are also similar to those in the individual
Pb-Pb fits.

• The kinetic freeze-out temperatures were found to be 0.1446+0.0002
−0.0002 GeV for Pb–Pb collisions at

√
sNN = 2.76TeV, 0.1435+0.0002

−0.0002 GeV for Pb–Pb collisions at√sNN = 5.02TeV, and 0.1470+0.0003
−0.0003

GeV for Xe-Xe collisions at
√
sNN = 5.44 TeV. In the combined analysis, the value is estimated as

0.1449+0.0001
−0.0001 GeV. This combined result lies within the range of the individual system values and is

closer to the values obtained from the Pb–Pb analyses rather than the Xe–Xe analysis. This suggests
that the Pb–Pb collision data have a stronger influence on the global fit, potentially dominating the
estimation of the kinetic freeze-out temperature.

• In the individual system analyses, (ζ/s)max was found to be unconstrained for Pb–Pb collisions,
with values of 0.0005+0.0008

−0.0003 at √sNN = 2.76 TeV and 0.0004+0.0007
−0.0003 at √sNN = 5.02 TeV. Con-

versely, for Xe-Xe collisions at √sNN = 5.44 TeV, (ζ/s)max was more constrained, with a value of
0.0439+0.0072

−0.0076. In the combined analysis, the value of (ζ/s)max is adjusted to 0.0010+0.0019
−0.0008, though

it remains unconstrained overall.

• In the individual system analyses, the shear viscosity to entropy density ratio (η/s)scale was estimated
to be 0.8370+0.0065

−0.0065 for Pb–Pb collisions at √sNN = 2.76 TeV, 0.6256+0.0071
−0.0070 for Pb–Pb collisions at

√
sNN = 5.02 TeV, and 0.4968+0.0084

−0.0081 for Xe-Xe collisions at √sNN = 5.44 TeV. In the combined
analysis, this value is adjusted to 0.6988+0.0043

−0.0044. This combined (η/s)scale value lies between the in-
dividual estimates and again is closer to the values obtained from the Pb–Pb analyses rather than the
Xe–Xe analysis, suggesting the domination of Pb–Pb data in the global fit.

The temperature-dependent shear viscosity to entropy density ratio, η/s(T ), for each collision system is
derived by substituting the estimated (η/s)scale values obtained from the fits into the parametrization given
by Equation 2.47. The left panel of Figure 5.18 illustrates the η/s(T ), for Pb–Pb collisions at√sNN = 2.76

TeV, Pb–Pb collisions at √sNN = 5.02 TeV, and Xe–Xe collisions at √sNN = 5.44 TeV, along with
the combined analysis. The figure displays the posterior median and the 68% credible region for each sys-
tem. These results highlight several important points. First, the expectation that shear viscosity is collision-
system independent is not entirely met, as evidenced by the different minimum values of η/s(T ) for each
collision system. The minimum value of η/s is 0.2180+0.0017

−0.0017 for Pb–Pb collisions at √sNN = 2.76 TeV,
0.1630+0.0018

−0.0018 for Pb–Pb collisions at√sNN = 5.02TeV, and0.1294+0.0022
−0.0022 for Xe–Xe collisions at√sNN =

5.44 TeV, with the minimum located at 0.145 GeV for all values. The combined analysis yields a minimum
shear viscosity of 0.1820+0.0011

−0.0011. This discrepancy can be regarded as a source of systematic uncertainty aris-
ing from different collision dynamics, specific experimental data used in the fit, and the approximations in
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5.2 Combined analysis of multiple collision systems

the model. The combined analysis provides a median value that lies between the individual system values,
suggesting a balanced estimate of η/s(T ) across different collision environments. The observed minimum
values are also compared to the KSS bound [154], which sets a theoretical lower limit for shear viscosity and
remains larger than the KSS bound η/s ≥ 1/(4π).
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Figure 5.18: Temperature-dependent shear viscosity to entropy density ratio η/s(T ) (left panel) for Pb–Pb collisions
at √sNN = 2.76 TeV, Pb–Pb collisions at √sNN = 5.02 TeV, Xe–Xe collisions at √sNN = 5.44 TeV,
and the combined analysis. The right panel shows the temperature-dependent bulk viscosity to entropy
density ratio ζ/s(T ) for the combined analysis only. The shaded bands represent the 68% credible inter-
vals, indicating the uncertainty range for each estimate, with the posterior medians shown as solid lines.

Comparing our results with those obtained by other Bayesian analysis groups, it is important to note
the differences in the parametrization of η/s(T ). Three groups, specifically Duke [82], Jyväskylä [83], and
Trajectum [84], have parameterized the temperature-dependent shear viscosity of the QGP with a three-
parameter modified linear ansatz. These groups report minimum η/s values of 0.085+0.0026

−0.0025, 0.1010+0.0046
−0.0046,

and 0.065+0.038
−0.040, respectively. In contrast, our shear viscosity parametrization is given by Equation 2.47.

This methodological difference can lead to variations in the resulting minimum values of η/s(T ). Our
combined analysis yields a minimum shear viscosity of 0.1820+0.0011

−0.0011, which is higher than those reported
by Duke, Jyväskylä, and Trajectum. Additionally, the JETSCAPE collaboration [85] and the Ohio State-
Northwestern [86] use a different parametrization. These groups do not report a specific (η/s)min value;
however, our (η/s)min value is compatible with their 90% credible intervals based on their posterior results.

The right panel of Figure 5.18 presents the temperature-dependent bulk viscosity to entropy density ratio,
ζ/s(T ). The temperature dependence follows the functional form described by Equation 2.48, with the
parameters Tpeak and Twidth fixed to 175 MeV and 24 MeV, respectively, as referenced in [66]. The posterior
median value for the maximum bulk viscosity is (ζ/s)max = 0.0010+0.0019

−0.0008. This value is very close to zero,
and the credible interval indicates that (ζ/s)max is not constrained. Such small values of bulk viscosity are
also estimated by other Bayesian analysis groups [83, 84]. The near-zero values suggest that bulk viscosity
has a minimal impact on the QGP’s hydrodynamic evolution compared to shear viscosity. This underscores
the challenges in precisely constraining (ζ/s)max and indicates that, within our current model and data
constraints, the QGP’s bulk viscosity remains an elusive property.
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5 Mapping properties of the QGP

It is worth noting, however, that other studies, such as the one presented in [155], have reported signifi-
cantly larger bulk viscosity values. This discrepancy can be attributed to differences in the initial condition
models employed. Specifically, the IP-Glasma model used in their analysis requires a larger ζ/s to accurately
describe the experimental observables. This suggests that the initial condition parameters play a crucial role
in determining the inferred bulk viscosity. Consequently, to achieve a more precise constraint on ζ/s, it
would be beneficial to explore a wider range of initial condition parameters within our model. Although
our current analysis does not vary these parameters, future studies could adopt this approach to gain deeper
insights into the QGP’s bulk viscosity.

Maximum a Posteriori estimates

The MAP estimates of the pT spectra and v2(pT) for Pb–Pb collisions at√sNN = 2.76TeV,√sNN = 5.02

TeV, and Xe–Xe collisions at √sNN = 5.44 TeV, where the model parameters are estimated through a
combined analysis of these systems, show similar characteristics across all three collision systems.

Figure 5.19, Figure 5.20, and Figure 5.21 present the pT spectra for Pb–Pb collisions at √sNN = 2.76

TeV, Pb–Pb collisions at √sNN = 5.02 TeV, and Xe–Xe collisions at √sNN = 5.44 TeV, respectively.
For all systems, the data-to-model ratios remain close to unity, with deviations within 20% in the fitting pT
range for centrality classes 0-5%, 5-10%, and 10-20%. This indicates that the global fit accurately describes
the spectra for these centrality classes across all collision systems. However, the data-to-model ratio begins
to diverge for the 20-30% centrality class, where the model tends to underestimate the experimental data,
particularly at high pT. This deviation is more pronounced in the 30-40% centrality class, where the model
significantly underestimates the data at high pT, with the data-to-model ratio reaching values up to a factor
of 2.
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Figure 5.19: MAP estimates of pT spectra for Pb–Pb collisions at √sNN = 2.76 TeV, where the model parameters are
estimated through a combined analysis of Pb–Pb and Xe–Xe collisions.
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Figure 5.20: MAP estimates of pT spectra for Pb–Pb collisions at √sNN = 5.02 TeV, where the model parameters
are estimated through a combined analysis of Pb–Pb and Xe–Xe collisions.
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Figure 5.21: MAP estimates of pT spectra for Xe–Xe collisions at√sNN = 5.44TeV, where the model parameters are
estimated through a combined analysis of Pb–Pb and Xe–Xe collisions.

Figure 5.22, Figure 5.23, and Figure 5.24 present the v2(pT) results for Pb–Pb collisions at√sNN = 2.76

TeV, Pb–Pb collisions at √sNN = 5.02 TeV, and Xe–Xe collisions at √sNN = 5.44 TeV, respectively.
Across all systems, the global fit shows a good agreement with the experimental data for pions and kaons
across all centrality classes, with deviations from unity within 20% at low pT, indicating the model’s ro-
bustness in describing the elliptic flow for these particles. However, the model encounters significant chal-
lenges in accurately describing the v2 for protons, particularly in central collisions (0-5% and 5-10% centrality
classes). This issue persists in both the individual and combined fits, highlighting a consistent difficulty in
modeling the elliptic flow for protons. This difficulty might arise because the current model does not ade-
quately capture the strength of the radial flow, which pushes the elliptic flow to higher pT in these central
events.

93



5 Mapping properties of the QGP

0.0

0.1

0.2

0.3

v 2 Pb-Pb,
√
sNN = 2.76 TeV

Centrality: 0-5%
Centrality: 5-10% Pion

Kaon
Proton

Centrality: 10-20% Model
Data

Centrality: 20-30% Centrality: 30-40%

1

2

1

2

D
at

a/
M

od
el

0.5 1.0 1.5 2.0

pT [GeV/c]

0

1

2

0.5 1.0 1.5 2.0

pT [GeV/c]

0.5 1.0 1.5 2.0

pT [GeV/c]

0.5 1.0 1.5 2.0

pT [GeV/c]

0.5 1.0 1.5 2.0

pT [GeV/c]

Figure 5.22: MAP estimates of v2 for Pb–Pb collisions at √sNN = 2.76 TeV, where the model parameters are esti-
mated through a combined analysis of Pb–Pb and Xe–Xe collisions.
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Figure 5.23: MAP estimates of v2 for Pb–Pb collisions at √sNN = 5.02 TeV, where the model parameters are esti-
mated through a combined analysis of Pb–Pb and Xe–Xe collisions.
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Figure 5.24: MAP estimates of v2 for Xe–Xe collisions at √sNN = 5.44 TeV, where the model parameters are esti-
mated through a combined analysis of Pb–Pb and Xe–Xe collisions.
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The χ2/Ndof values for the MAP estimates throughout this thesis are calculated using Equation 5.6 and
are reported in Table 5.4. In this equation, Npoints denotes the number of pT values used in the Bayesian
inference for the respective collision system, while nparameters represents the number of model parameters.
The termσi represents the statistical and systematic experimental data uncertainties, summed in quadrature.
The subtraction of 1 in the denominator follows the approach outlined in [156], which accounts for the
adjustment in degrees of freedom due to the estimation process.

χ2

Ndof

=
1

Npoints − nparameters − 1

n∑

i=1

(
ymodel, i − yexp, i

σi

)2

. (5.6)

Table 5.4: χ2/Ndof values for MAP estimates across different collision systems and observables.

Collision system Observables χ2/Ndof

Pb–Pb, √sNN = 2.76 TeV pT-differential spectra + v2(pT) 3.004
Pb–Pb, √sNN = 2.76 TeV pT-differential spectra + vn(pT) 4.431
Pb–Pb, √sNN = 5.02 TeV pT-differential spectra + v2(pT) 11.806
Xe–Xe, √sNN = 5.44 TeV pT-differential spectra + v2(pT) 6.152
Combined analysis pT-differential spectra + v2(pT) 7.640

The χ2/Ndof values indicate the goodness of the fit for each collision system. Notably, the χ2/Ndof for
Pb–Pb collisions at√sNN = 5.02TeV is significantly higher than that for Pb–Pb collisions at√sNN = 2.76

TeV. This can be attributed to the smaller experimental data uncertainties for the √sNN = 5.02 TeV data,
which makes the fit more sensitive to discrepancies.

In the combined analysis, the χ2/Ndof value lies between the ranges observed for the individual collision
systems, suggesting that the combined analysis effectively compensates for the higher and lower χ2/Ndof

values of the individual systems.
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6 Conclusion and outlook

In this thesis, the Bayesian inference framework has been extended and employed in two significant studies
to investigate key aspects of heavy-ion collisions and the properties of QGP.

The first study centered on quantifying the pion excess observed in the very low-pT regime in heavy-ion
collisions. This analysis spanned various centrality classes, collision energies, and collision systems at the
LHC and top RHIC energy. As a preliminary step, a pT range scan was conducted to identify the optimal
pion pT range for Bayesian inference, leading to the determination that the ideal range is 0.5 < pπT < 2.0

GeV/c. Subsequently, a significant excess in pion yield was systematically observed across all centrality classes
and collision systems at low pT. The relative excess remained consistent at 10–20% across different centrality
classes, indicating that fluid dynamic calculations account for 80–90% of the measured pion production
in heavy-ion collisions. This suggests that the observed low-pT component arises from physics mechanisms
beyond thermal production.

In the second study, the Bayesian inference framework was applied to further investigate the model param-
eters associated with the evolution of heavy-ion collisions, with a particular focus on the initialization time,
kinetic freeze-out temperature, and key transport coefficients of the quark-gluon plasma, namely the shear
and bulk viscosity to entropy density ratios. By incorporating pT-differential spectra and pT-differential flow
coefficients (vn(pT)) of pions, kaons, and protons from Pb-Pb and Xe-Xe collisions at varying energies and
centrality classes, this study extended the analysis beyond the limitations of previous work [122]. The inclu-
sion of flow coefficients, particularly v2(pT), v3(pT), and v4(pT), allowed for a more precise estimation of
the temperature-dependent shear viscosity to entropy density ratio.

While the extension of the Bayesian inference framework has provided a robust foundation, there remain
several critical areas where further enhancements can increase the precision and scope of the analysis. These
potential improvements and additional research directions are outlined below.

• In the current study, the TRENTo model parameters are not estimated through Bayesian analysis;
instead, they are fixed based on previous work, as detailed in Ref. [131]. This approach restricts the
exploration of the full parameter space for initial conditions. By varying these initial conditions and
including the TRENTo parameters in the Bayesian analysis, we can potentially identify optimal pa-
rameters that lead to more accurate hydrodynamic evolution and a better match between model pre-
dictions and experimental data.

• Additional observables, such as the mean transverse momentum ⟨pT⟩ and its fluctuations, can be
incorporated to further constrain model parameters and transport coefficients. These observables are
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particularly valuable if the TRENTo model parameters are included in the Bayesian framework, as
⟨pT⟩ fluctuations serve as a sensitive probe of initial state fluctuations [157, 158].

• Additional model parameters, such as the peak temperature Tpeak and the width Twidth of the bulk
viscosity parametrization (as defined in Equation 2.48), along with the shear relaxation time τshear (as
given in Equation 2.50), can also be incorporated into the Bayesian analysis, as demonstrated in pre-
vious studies [122]. Although these parameters were found to have a negligible impact when only the
pT spectra were used as observables in Ref. [122], the inclusion of ⟨pT⟩ could offer tighter constraints
on them [35]. This approach has the potential to provide more precise estimations of viscosity and
relaxation times, thereby enhancing our understanding of the transport properties of the QGP.

• A theoretically motivated parametrization for the temperature-dependent bulk viscosity to entropy
density ratio could be employed, similar to the approach used for the shear viscosity. In the current
study, we utilize a three-parameter (unnormalized) Cauchy distribution for bulk viscosity, as outlined
in Ref. [66]. However, adopting a parametrization based on theoretical calculations, analogous to the
Yang-Mills theory-inspired expression used for shear viscosity [64, 65], could provide a more accurate
description of the bulk viscosity behavior in QCD.

• New perturbation kernels can be computed by incorporating both kinetic and chemical freeze-out
temperatures, enabling the use of PCE in the calculation of flow coefficients. Without PCE, the model
fails to capture the full strength of radial flow gained during the hadronic phase and cannot shift
the flow coefficients to higher pT values in central events, especially for particles with large mass like
protons. Additionally, these new kernels would also allow for the inclusion of resonance decays, which
have not been previously considered in flow coefficient calculations. Accounting for resonance decays
could further improve the model’s accuracy, as demonstrated in previous studies [159].

• Missing non-linear interactions can be incorporated into the model to address discrepancies observed
between the model results and experimental data for v3(pT) and v4(pT). FluiduM currently treats
the QGP evolution primarily as a linear response, which overlooks the significant influence of mode-
couplings between different flow harmonics [146, 147]. By including these non-linear interactions, the
model could provide a more accurate description of experimental data, particularly for higher-order
flow coefficients.
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A Additional priors and posteriors

This appendix presents additional results related to the prior settings, posterior distributions, and model-to-
data comparisons for the Bayesian parameter estimation in heavy-ion collisions. The figures include marginal
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Figure A.1: Marginal and joint posterior probability density functions (PDFs) for model parameters in Pb–Pb colli-
sions at √sNN = 2.76 TeV obtained using only pT spectra observable in the Bayesian parameter estima-
tion.
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A Additional priors and posteriors

and joint posterior probability density functions (PDFs) for model parameters obtained using different com-
binations of observables, such as transverse momentum spectra (pT) and elliptic flow coefficients (v2(pT)),
for Pb–Pb collisions at √sNN = 2.76 TeV. Further comparisons are made between results obtained with
and without the inclusion of proton data in the v2 observable, highlighting the impact of different datasets
on the parameter constraints. The appendix also covers prior distributions for specific centrality classes in
Pb–Pb and Xe–Xe collisions at √sNN = 5.02 and 5.44 TeV, respectively. Additionally, model predic-
tions are compared to emulator outputs, demonstrating the accuracy and performance of the emulator in
reproducing the model results.
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Figure A.2: Marginal and joint posterior probability density functions (PDFs) for model parameters in Pb–Pb col-
lisions at √sNN = 2.76 TeV obtained using pT spectra and v2 observables in the Bayesian parameter
estimation when the proton data is excluded in v2.
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Figure A.6: Comparison between model predictions and emulator outputs for Pb–Pb collisions at √sNN = 5.02
TeV, demonstrating the emulator’s accuracy in reproducing the model results.
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Figure A.7: Priors for the model parameters in the 10-20% centrality class for Xe–Xe collisions at √sNN = 5.44 TeV.

Figure A.8: Comparison between model predictions and emulator outputs for Xe–Xe collisions at √sNN = 5.44
TeV, showing the emulator’s performance in approximating the model results.
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B Quantitative comparisons of model
calculations to experimental data

The tables in this appendix provide quantitative comparisons derived from the 400 model results shown in
Figure 5.6. Each table presents a detailed comparison between model outputs and experimental measure-
ments for pT differential spectra, v2(pT), v3(pT), and v4(pT). The first column indicates the centrality class,
ranging from 0 − 5% to 30 − 40%, while the second column specifies the particle species (pion, kaon, or
proton). The third column shows the transverse momentum (pT) value used in the fit for the corresponding
particle-centrality class-observable combination. The fourth and fifth columns list the mean and standard
deviation (SD) of the 400 model results, respectively. The sixth column provides the experimental data
corresponding to the pT bin, with the seventh column presenting the associated experimental uncertainty,
which includes statistical and systematic uncertainties summed in quadrature. The eighth column shows
the total uncertainty, combining the experimental and model uncertainties. The final column represents
the data-to-model ratio, calculated using the mean value of the model results, with its associated uncertain-
ties.
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B Quantitative comparisons of model calculations to experimental data

Table B.1: Comparison of model results to experimental data for different centrality classes and particle species for the
observable: pT differential spectra. The columns represent the centrality class, particle species, pT values
in [GeV/c] (first and last), mean, standard deviation (SD) of 400 model results, corresponding experimen-
tal data, experimental data uncertainty (the statistical and systematic uncertainties summed in quadrature),
total uncertainty (the statistical and systematic uncertainties of the experimental data and the model un-
certainty summed in quadrature), and the data-to-model ratio (mean value used for the model). The total
uncertainties are used in the data-to-model ratio uncertainties.

Centrality Particle pT value Mean SD Exp data Exp unc. Total unc. Data-to-model ratio

0− 5% Pion 0.525 192.41995 0.74389 193.00000 9.91262 9.94049 1.00301± 0.05166
0− 5% Pion 1.950 2.24884 0.02235 1.71000 0.11673 0.11885 0.76039± 0.05285
0− 5% Kaon 0.225 44.50326 0.26687 44.61000 6.04587 6.05175 1.00240± 0.13598
0− 5% Kaon 1.950 1.10217 0.00973 0.89940 0.09363 0.09413 0.81602± 0.08541
0− 5% Proton 0.325 4.74655 0.04418 4.52600 0.66837 0.66982 0.95353± 0.14112
0− 5% Proton 1.950 0.73468 0.00582 0.81790 0.05814 0.05843 1.11328± 0.07953
5− 10% Pion 0.525 153.19576 0.60450 158.20000 7.91581 7.93886 1.03267± 0.05182
5− 10% Pion 1.950 1.68269 0.01718 1.42900 0.09749 0.09900 0.84923± 0.05883
5− 10% Kaon 0.225 36.41987 0.22971 40.28000 5.23692 5.24195 1.10599± 0.14393
5− 10% Kaon 1.950 0.83139 0.00757 0.76090 0.07930 0.07966 0.91521± 0.09582
5− 10% Proton 0.325 3.91752 0.03696 3.66400 0.52227 0.52358 0.93528± 0.13365
5− 10% Proton 1.950 0.56531 0.00460 0.67440 0.04804 0.04826 1.19298± 0.08537
10− 20% Pion 0.525 111.97466 0.45476 118.30000 5.80775 5.82553 1.05649± 0.05203
10− 20% Pion 1.950 1.09883 0.01185 1.09100 0.07481 0.07575 0.99288± 0.06893
10− 20% Kaon 0.225 28.04760 0.18882 29.52000 3.66415 3.66901 1.05250± 0.13081
10− 20% Kaon 1.950 0.55013 0.00527 0.56990 0.05899 0.05922 1.03594± 0.10765
10− 20% Proton 0.325 3.06912 0.02963 2.88700 0.39266 0.39377 0.94066± 0.12830
10− 20% Proton 1.950 0.38574 0.00329 0.48910 0.03449 0.03465 1.26796± 0.08982
20− 30% Pion 0.525 72.53655 0.31023 79.02000 3.78583 3.79852 1.08938± 0.05237
20− 30% Pion 1.950 0.58265 0.00688 0.73340 0.05016 0.05063 1.25873± 0.08689
20− 30% Kaon 0.225 19.93644 0.14618 20.54000 2.43977 2.44415 1.03027± 0.12260
20− 30% Kaon 1.950 0.29855 0.00311 0.36050 0.03747 0.03760 1.20751± 0.12593
20− 30% Proton 0.325 2.25356 0.02251 2.23800 0.29496 0.29582 0.99309± 0.13127
20− 30% Proton 1.950 0.21937 0.00203 0.31840 0.02253 0.02263 1.45141± 0.10314
30− 40% Pion 0.525 45.21994 0.20410 50.82000 2.36542 2.37421 1.12384± 0.05250
30− 40% Pion 1.950 0.27403 0.00359 0.47130 0.03232 0.03252 1.71989± 0.11868
30− 40% Kaon 0.225 14.06835 0.11046 13.88000 1.58534 1.58918 0.98661± 0.11296
30− 40% Kaon 1.950 0.14414 0.00172 0.23240 0.02426 0.02432 1.61231± 0.16873
30− 40% Proton 0.325 1.66052 0.01715 1.57000 0.20035 0.20108 0.94549± 0.12110
30− 40% Proton 1.950 0.11216 0.00118 0.19020 0.01354 0.01359 1.69586± 0.12115

106



Table B.2: The v2(pT) coefficient comparison of model results to experimental data for different centrality classes and
particle species. The columns represent the centrality class, particle species, pT values in [GeV/c] (first and
last), mean, standard deviation (SD) of 400 model results, corresponding experimental data, experimen-
tal data uncertainty (the statistical and systematic uncertainties summed in quadrature), total uncertainty
(the statistical and systematic uncertainties of the experimental data and the model uncertainty summed in
quadrature), and the data-to-model ratio (mean value used for the model). The total uncertainties are used
in the data-to-model ratio uncertainties.

Centrality Particle pT value Mean SD Exp data Exp unc. Total unc. Data-to-model ratio

0− 5% Pion 0.548114 0.02287 0.00007 0.02262 0.00208 0.00209 0.98907± 0.09120
0− 5% Pion 1.94846 0.06355 0.00019 0.05618 0.00276 0.00276 0.88394± 0.04349
0− 5% Kaon 0.35087 0.00571 0.00007 0.00288 0.00218 0.00218 0.50425± 0.38264
0− 5% Kaon 1.9479 0.05797 0.00015 0.05720 0.00330 0.00330 0.98675± 0.05700
0− 5% Proton 0.357532 0.00578 0.00007 −0.00437 0.00660 0.00660 −0.75656± 1.14170
0− 5% Proton 1.94861 0.04959 0.00012 0.04503 0.00376 0.00376 0.90798± 0.07584
5− 10% Pion 0.548114 0.03568 0.00011 0.03867 0.00220 0.00220 1.08386± 0.06170
5− 10% Pion 1.94846 0.10375 0.00030 0.10319 0.00329 0.00330 0.99461± 0.03181
5− 10% Kaon 0.35087 0.00702 0.00012 0.00670 0.00220 0.00221 0.95516± 0.31432
5− 10% Kaon 1.9479 0.09487 0.00026 0.09589 0.00355 0.00356 1.01084± 0.03749
5− 10% Proton 0.357532 0.00570 0.00009 −0.00499 0.00443 0.00443 −0.87534± 0.77702
5− 10% Proton 1.94861 0.07681 0.00018 0.08224 0.00439 0.00439 1.07076± 0.05714
10− 20% Pion 0.548114 0.05256 0.00017 0.05569 0.00238 0.00239 1.05960± 0.04540
10− 20% Pion 1.94846 0.15625 0.00047 0.14893 0.00402 0.00405 0.95313± 0.02590
10− 20% Kaon 0.35087 0.00923 0.00020 0.01182 0.00211 0.00212 1.28066± 0.22982
10− 20% Kaon 1.9479 0.14354 0.00043 0.14249 0.00408 0.00411 0.99269± 0.02860
10− 20% Proton 0.357532 0.00487 0.00013 0.00151 0.00361 0.00362 0.30996± 0.74264
10− 20% Proton 1.94861 0.11479 0.00031 0.12338 0.00523 0.00524 1.07487± 0.04565
20− 30% Pion 0.548114 0.06907 0.00022 0.07363 0.00262 0.00263 1.06602± 0.03811
20− 30% Pion 1.94846 0.20803 0.00066 0.19080 0.00491 0.00495 0.91719± 0.02381
20− 30% Kaon 0.35087 0.01227 0.00029 0.01496 0.00216 0.00217 1.21942± 0.17729
20− 30% Kaon 1.9479 0.19155 0.00063 0.18391 0.00496 0.00500 0.96011± 0.02612
20− 30% Proton 0.357532 0.00303 0.00018 0.01038 0.00457 0.00457 3.42973± 1.51106
20− 30% Proton 1.94861 0.15241 0.00052 0.16700 0.00625 0.00627 1.09574± 0.04114
30− 40% Pion 0.548114 0.08108 0.00027 0.08462 0.00279 0.00281 1.04365± 0.03462
30− 40% Pion 1.94846 0.24400 0.00083 0.21415 0.00539 0.00546 0.87766± 0.02237
30− 40% Kaon 0.35087 0.01694 0.00035 0.01806 0.00217 0.00220 1.06640± 0.12979
30− 40% Kaon 1.9479 0.22473 0.00083 0.20666 0.00545 0.00551 0.91956± 0.02452
30− 40% Proton 0.357532 0.00263 0.00026 0.00954 0.00556 0.00556 3.63036± 2.11639
30− 40% Proton 1.94861 0.17779 0.00079 0.19843 0.00683 0.00687 1.11609± 0.03865
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B Quantitative comparisons of model calculations to experimental data

Table B.3: The v3(pT) coefficient comparison of model results to experimental data for different centrality classes and
particle species. The columns represent the centrality class, particle species, pT values in [GeV/c] (first and
last), mean, standard deviation (SD) of 400 model results, corresponding experimental data, experimen-
tal data uncertainty (the statistical and systematic uncertainties summed in quadrature), total uncertainty
(the statistical and systematic uncertainties of the experimental data and the model uncertainty summed in
quadrature), and the data-to-model ratio (mean value used for the model). The total uncertainties are used
in the data-to-model ratio uncertainties.

Centrality Particle pT value Mean SD Exp data Exp unc. Total unc. Data-to-model ratio

0− 5% Pion 0.594128 0.01306 0.00004 0.01577 0.00414 0.00414 1.20761± 0.31722
0− 5% Pion 1.99433 0.05150 0.00020 0.06891 0.00421 0.00422 1.33802± 0.08189
0− 5% Kaon 0.437333 0.00327 0.00004 0.00035 0.00313 0.00313 0.10768± 0.95718
0− 5% Kaon 1.99495 0.04975 0.00019 0.06355 0.00373 0.00373 1.27737± 0.07508
0− 5% Proton 0.526573 0.00214 0.00004 −0.00002 0.00334 0.00334 −0.00781± 1.56459
0− 5% Proton 1.89632 0.04288 0.00017 0.04068 0.00318 0.00318 0.94870± 0.07427
5− 10% Pion 0.594128 0.01543 0.00005 0.01847 0.00354 0.00354 1.19748± 0.22939
5− 10% Pion 1.99433 0.05996 0.00025 0.07804 0.00363 0.00364 1.30149± 0.06064
5− 10% Kaon 0.437333 0.00391 0.00005 0.00114 0.00229 0.00229 0.29265± 0.58652
5− 10% Kaon 1.99495 0.05779 0.00024 0.07105 0.00306 0.00307 1.22945± 0.05318
5− 10% Proton 0.526573 0.00214 0.00004 −0.00018 0.00394 0.00394 −0.08520± 1.84053
5− 10% Proton 1.89632 0.04920 0.00020 0.04902 0.00378 0.00379 0.99644± 0.07704
10− 20% Pion 0.594128 0.01812 0.00005 0.02068 0.00361 0.00361 1.14144± 0.19923
10− 20% Pion 1.99433 0.06911 0.00032 0.08461 0.00373 0.00375 1.22422± 0.05422
10− 20% Kaon 0.437333 0.00485 0.00005 0.00161 0.00327 0.00327 0.33137± 0.67471
10− 20% Kaon 1.99495 0.06665 0.00031 0.07773 0.00387 0.00388 1.16622± 0.05819
10− 20% Proton 0.526573 0.00229 0.00006 −0.00064 0.00331 0.00331 −0.28010± 1.44186
10− 20% Proton 1.89632 0.05637 0.00026 0.05447 0.00278 0.00279 0.96628± 0.04955
20− 30% Pion 0.594128 0.02098 0.00006 0.02352 0.00315 0.00315 1.12120± 0.14997
20− 30% Pion 1.99433 0.07861 0.00041 0.09146 0.00336 0.00338 1.16340± 0.04301
20− 30% Kaon 0.437333 0.00617 0.00005 0.00369 0.00330 0.00330 0.59870± 0.53430
20− 30% Kaon 1.99495 0.07568 0.00040 0.08427 0.00392 0.00394 1.11343± 0.05211
20− 30% Proton 0.526573 0.00288 0.00007 −0.00141 0.00428 0.00428 −0.49186± 1.48771
20− 30% Proton 1.89632 0.06357 0.00035 0.06566 0.00345 0.00347 1.03292± 0.05454
30− 40% Pion 0.594128 0.02298 0.00008 0.02487 0.00265 0.00265 1.08221± 0.11544
30− 40% Pion 1.99433 0.08610 0.00048 0.09491 0.00301 0.00305 1.10234± 0.03545
30− 40% Kaon 0.437333 0.00747 0.00004 0.00349 0.00370 0.00370 0.46757± 0.49578
30− 40% Kaon 1.99495 0.08245 0.00048 0.08468 0.00434 0.00436 1.02712± 0.05293
30− 40% Proton 0.526573 0.00392 0.00007 −0.00078 0.00551 0.00551 −0.19779± 1.40487
30− 40% Proton 1.89632 0.06817 0.00044 0.07786 0.00442 0.00444 1.14219± 0.06513
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Table B.4: The v4(pT) coefficient comparison of model results to experimental data for different centrality classes and
particle species. The columns represent the centrality class, particle species, pT values in [GeV/c] (first and
last), mean, standard deviation (SD) of 400 model results, corresponding experimental data, experimen-
tal data uncertainty (the statistical and systematic uncertainties summed in quadrature), total uncertainty
(the statistical and systematic uncertainties of the experimental data and the model uncertainty summed in
quadrature), and the data-to-model ratio (mean value used for the model). The total uncertainties are used
in the data-to-model ratio uncertainties.

Centrality Particle pT value Mean SD Exp data Exp unc. Total unc. Data-to-model ratio

0− 5% Pion 0.594128 0.00555 0.00003 0.00319 0.00792 0.00792 0.57431± 1.42762
0− 5% Pion 1.99433 0.02875 0.00023 0.05207 0.00794 0.00794 1.81132± 0.27626
0− 5% Kaon 0.437333 0.00125 0.00001 −0.00728 0.00876 0.00876 −5.82184± 7.00519
0− 5% Kaon 1.99495 0.02843 0.00023 0.04318 0.00918 0.00918 1.51908± 0.32300
0− 5% Proton 0.526573 0.00053 0.00001 −0.00020 0.00307 0.00307 −0.36719± 5.77060
0− 5% Proton 1.89632 0.02489 0.00018 0.02154 0.00261 0.00262 0.86553± 0.10513
5− 10% Pion 0.594128 0.00634 0.00004 0.00476 0.00692 0.00692 0.75057± 1.09196
5− 10% Pion 1.99433 0.03171 0.00028 0.05575 0.00697 0.00697 1.75812± 0.21994
5− 10% Kaon 0.437333 0.00151 0.00001 −0.00687 0.00813 0.00813 −4.55831± 5.39735
5− 10% Kaon 1.99495 0.03131 0.00027 0.04767 0.00859 0.00859 1.52243± 0.27449
5− 10% Proton 0.526573 0.00064 0.00001 0.00153 0.00325 0.00325 2.37884± 5.07161
5− 10% Proton 1.89632 0.02738 0.00022 0.02614 0.00272 0.00273 0.95486± 0.09974
10− 20% Pion 0.594128 0.00740 0.00006 0.00580 0.00715 0.00715 0.78439± 0.96673
10− 20% Pion 1.99433 0.03569 0.00036 0.05807 0.00726 0.00727 1.62718± 0.20378
10− 20% Kaon 0.437333 0.00188 0.00001 −0.00487 0.00661 0.00661 −2.59105± 3.51983
10− 20% Kaon 1.99495 0.03516 0.00035 0.05003 0.00726 0.00727 1.42279± 0.20679
10− 20% Proton 0.526573 0.00084 0.00001 0.00116 0.00408 0.00408 1.37816± 4.83255
10− 20% Proton 1.89632 0.03071 0.00029 0.02918 0.00299 0.00300 0.95013± 0.09774
20− 30% Pion 0.594128 0.00814 0.00008 0.00720 0.00693 0.00693 0.88442± 0.85194
20− 30% Pion 1.99433 0.03876 0.00047 0.06336 0.00715 0.00716 1.63460± 0.18479
20− 30% Kaon 0.437333 0.00218 0.00002 −0.00524 0.00540 0.00540 −2.40282± 2.47922
20− 30% Kaon 1.99495 0.03785 0.00046 0.05336 0.00630 0.00631 1.40966± 0.16677
20− 30% Proton 0.526573 0.00107 0.00002 0.00140 0.00620 0.00620 1.29927± 5.76815
20− 30% Proton 1.89632 0.03266 0.00040 0.03913 0.00481 0.00483 1.19821± 0.14793
30− 40% Pion 0.594128 0.00757 0.00011 0.00815 0.00654 0.00654 1.07717± 0.86354
30− 40% Pion 1.99433 0.03772 0.00057 0.06178 0.00695 0.00697 1.63787± 0.18480
30− 40% Kaon 0.437333 0.00202 0.00003 −0.00242 0.00826 0.00826 −1.19740± 4.08839
30− 40% Kaon 1.99495 0.03653 0.00056 0.05454 0.00894 0.00895 1.49299± 0.24510
30− 40% Proton 0.526573 0.00097 0.00003 −0.00012 0.00716 0.00716 −0.12000± 7.37119
30− 40% Proton 1.89632 0.02973 0.00051 0.04211 0.00510 0.00513 1.41662± 0.17246
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C Analysis of marginal posterior
distributions for model parameters
across centrality classes in Pb–Pb
collisions at √

sNN = 2.76 TeV

In Chapter 5, we demonstrated that the inclusion of higher-order flow coefficients, such as v3(pT) and
v4(pT), poses challenges for Bayesian inference results due to the model’s limited ability to accurately de-
scribe these observables. Before reaching this conclusion, however, an additional analysis was conducted to
investigate the influence of centrality class inclusion and exclusion on the model parameters using all avail-
able observables. This appendix presents the results of that analysis for readers interested in an alternative
perspective of the model’s behavior across different centrality classes.

Figure C.1 illustrates the marginal posterior probability density functions (PDFs) for the model parame-
ters in Pb–Pb collisions at √sNN = 2.76 TeV, obtained using pT-differential spectra, v2(pT), v3(pT), and
v4(pT) observables within a Bayesian framework. Each row in the figure represents the marginal PDFs ob-
tained from Bayesian fits performed for different centrality classes. The centrality classes, denoted as 0-5%,
5-10%, 10-20%, 20-30%, and 30-40%, are sequentially excluded to examine the robustness of the parameter
estimates. The marginal PDFs are presented as the median values of the marginal distributions, with 68%
confidence intervals represented by error bars. Each column corresponds to a distinct model parameter, pro-
viding a comprehensive overview of their posterior distributions across varying centrality exclusions. The
parameters examined include (η/s)scale, (ζ/s)max, Tkin, and Norm/τ0.

The (η/s)scale shows consistent posterior distributions across most cases, except for the 0-5% centrality
class, which exhibits a notable deviation. This deviation could be attributed to the larger radial flow present
in the most central collisions, which is not well reproduced due to the absence of PCE in the model. In
such central collisions, larger values of η/s might modify the particle production at higher pT, trying to
compensate for the significant radial flow observed in the 0-5% centrality class.

The (ζ/s)max exhibits relatively stable posterior distributions for most centrality classes, with some no-
table deviations. Specifically, the 30-40% centrality class has the narrowest credible intervals among the single
centrality cases, followed by the 20-30%, 10-20%, 5-10%, and 0-5% classes. This progression suggests that the
inclusion of the 30-40% class significantly affects the overall fit, resulting in narrower credible intervals when
all centrality classes are included. As certain centrality classes are excluded, the credible intervals for (ζ/s)max
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Figure C.1: Marginal posterior PDFs of parameters for different centrality cases in Pb–Pb collisions at √sNN = 2.76
TeV, obtained using pT differential spectra, v2(pT), v3(pT), and v4(pT) observables. The parameters
shown are (η/s)scale, (ζ/s)max, Tkin, and Norm/τ0. Starting with all 5 centrality classes, the most pe-
ripheral centrality class is excluded stepwise, resulting in 4, 3, and 2 centrality classes, respectively. The
marginal PDFs are represented as the median of the marginal distribution with 68% confidence interval
uncertainties, depicted as error bars.

widen, indicating that the fit robustness is particularly enhanced by the constraints provided by the 30-40%
centrality class data.

The Tkin shows a clear increasing trend as collisions become more peripheral. This increase in Tkin can be
understood by examining the dynamics of the system at different centralities. In the most central collisions,
the nuclei overlap significantly, creating a high-energy density and temperature in the initial state. The system
formed in these collisions undergoes more explosive expansion due to large pressure gradients, resulting in
significant radial flow [20]. As the system expands rapidly, it cools substantially before reaching kinetic freeze-
out, leading to a lower Tkin. In more peripheral collisions, the overlap region between the colliding nuclei is
smaller, resulting in lower initial energy density and temperature. The system experiences larger initial spatial
anisotropy, leading to higher flow coefficients driven by geometric anisotropy. However, due to the smaller
pressure gradients, the radial expansion is less pronounced, and the cooling is less efficient. As a result, the
system reaches kinetic freeze-out at a relatively higher temperature, resulting in a higher Tkin. This trend
is reflected in the fits that include multiple centrality classes. As higher centrality classes are included, the
inferred estimates for Tkin tend to be higher, capturing the varying freeze-out conditions across different
centralities. The model’s sensitivity to these differences in expansion and cooling dynamics underscores the
importance of considering centrality-dependent behavior in the analysis of heavy-ion collision data. This
systematic shift of Tkin is also observed in Chapter 4 where its median value was increasing from central
to peripheral collisions. This observation aligns with previous findings obtained using a Blast-wave fit [113]

and supports the idea of a more rapid expansion with increasing centrality [20]. In peripheral collisions,
this behavior is consistent with the expectation of a shorter-lived fireball exhibiting stronger radial pressure
gradients [160].

The normalization factor divided by the thermalization time, Norm/τ0, displays broader credible inter-
vals compared to other parameters. This parameter is crucial as it scales the initial entropy density profile,

112



⟨TR(r)⟩, which is used to determine the initial conditions for the hydrodynamic evolution. In central colli-
sions, the system’s high energy density and temperature result in a well-defined initial entropy density profile.
The high multiplicity and significant particle production provide a robust constraint to Norm/τ0. In more
peripheral collisions, the lower multiplicity and increased fluctuations in the initial entropy density profile
lead to greater uncertainty in the Norm/τ0 estimates. The fits for two centrality classes (excluding the most
peripheral ones) yield the most constrained estimates with the narrowest credible intervals. As additional pe-
ripheral centralities are included, the credible intervals widen, and the fit starts to shift, indicating increased
uncertainty. This suggests that the inclusion of peripheral centralities, with their lower multiplicity and
higher fluctuations, complicates the estimation of Norm/τ0 and highlights the sensitivity of this parameter
to the varying initial state conditions and its fluctuations.
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