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Abstract

The gaseous Time Projection Chamber (TPC) of the ALICE experiment at CERN serves some of the
most crucial roles in many physics analyses within the collaboration and is responsible for 92.5% of the
raw data taken with the experiment. One of its major advantages is extensive particle identification
over a wide range of momenta. The basic underlying physics concerns the process of ionization of gas
molecules and the associated specific energy loss of traversing particles, described by the Bethe-Bloch
formula.
In this thesis, a novel method for the tuning of parameters of the ALEPH parameterization of the
Bethe-Bloch formula is presented based on the concept of hyperparameter optimization. A novel
framework called OPTUNA and custom designed loss functions are investigated and tested against
the performance on datasets with known particle identity from Run 2 of the LHC.
Besides the parameterization, further corrections to the mean as well as an estimation of the standard
deviation of particle data distributions have to be made in high dimensions, which forms the main
body of this thesis. Both parts are approximated with fully connected feed-forward neural networks
trained on identified daughter particles from weak decays of K0

S , Λ, Λ̄ and γ conversions. An average
accuracy of around 3‰ for the mean correction based on a neural network ensemble is achieved.
This is compared with the results obtained from one-dimensional spline corrections in Run 2 and it is
shown that the neural network introduced in this thesis can perform similarly well as the approaches
from Run 2 but shows significant improvements in higher dimensions since it does not rely on a
factorization approach.
The estimation of uncertainty of the distribution for each particle species is performed likewise, and
an overall similar performance as the functional parameterization from Run 2 is achieved. However,
due to the multidimensional mean corrections by the neural network and the limitations that a
parameterized functional shape inherits, the standard deviation is captured better for all particle
species by the neural network. In contrast to the Run 2 approach, this method works without additional
iterations and consumes overall less time and effort for quality checks.

Zusammenfassung

Die gasbasierte Zeitprojektionskammer des ALICE Experiments am CERN spielt eine entscheidende
Rolle vielen physikalischen Analysen innerhalb der Kollaboration und liefert ca. 92.5% der Rohdaten
des gesamten Experiments. Einer der hauptsächlichen Vorteile des Detektors sind seine Fähigkeiten zur
Teilchenbestimmung in einem breiten Impulsspektrum. Der zugrunde liegende physikalische Prozess
ist die Ionisierung von Gasteilchen, die wiederum zu einem Energieverlust der traversierenden Teilchen
führt, welcher durch die Bethe-Bloch Gleichung beschrieben wird.
Im Rahmen dieser Arbeit wurde eine neue Methode entwickelt, um die Parameter der ALEPH
Parametrisierung der Bethe-Bloch Gleichung zu bestimmen. Sie basiert auf dem Konzept der Hyperpa-
rameter Optimierung mit dem neuen Framework OPTUNA und eigens entwickelten Loss Funktionen.
Die Fitgüte wird mit der Parametrisierung aus Run 2 basierend auf Daten mit bekannter Teilcheniden-
tität verglichen.
Darauf folgend müssen Korrekturen auf die Parametrisierung angewendet werden und die Breite der
Teilchenverteilungen in höheren Dimensionen bestimmt werden. Sowohl die Korrekturen als auch
die Sigma Parametrisierung werden in dieser Arbeit durch neuronale Netzwerke approximiert, die auf
Tochterteilchen von V0 Zerfällen trainiert wurden. Dabei wurde für die Korrekturen eine Standard-
abweichung von 3‰ mithilfe von einem Netzwerk-Ensemble bestimmt. Dies wurde mit den Ergeb-
nissen der Korrekturen von Run 2 verglichen und festgestellt, dass das neuronale Netzwerk ähnlich
gute Ergebnisse liefert, jedoch einen signifikanten Vorteil, durch seine Fähigkeit höher-dimensionale
Abhängigkeiten zu beschreiben, aufweist.
Die Approximation der Standardabweichung wurde ebenso mit neuronalen Netzwerken durchgeführt
und erneut wurden ähnliche Ergebnisse wie in Run 2 gefunden. Durch die vorherige, multidimension-
ale Korrektur und die funktionale Beschränktheit der Fitfunktion von Run 2 wurden auch hier höhere
Genauigkeiten für alle Teilchenspezies erzielt. Im Vergleich zu der Kalibrierung in Run 2 bedarf die
hier gezeigte Methode keiner weiteren Iterationen und benötigt insgesamt weniger Zeit und Aufwand
für Qualitätskontrollen.
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I Introduction

The Large Hadron Collider (LHC) located at CERN near Geneva is the largest particle accelera-
tor in the world. Four major experiments, ALICE, ATLAS, CMS and LHCb, are located around
the 27 kilometre (circumference) accelerator ring and measure particles emerging from colli-
sions within their detectors.
With their groundbreaking discoveries, the experiments at the Large Hadron Collider (LHC)
improve our understanding of the fundamental laws of nature and allow us to test the prop-
erties of the most precise theory of subnuclear particles and their interactions known to date,
the Standard Model.

1.1 The four major experiments
While all the four major experiments at the LHC are dedicated to the studies of subnuclear
matter, their constructions differ vastly and are fine-tuned to their specific physics goals. Each
experiment is specialized to investigate certain aspects of subnuclear physics to high degrees
of precision. In 2022 Run 3 of LHC reconvened with proton-proton beams after Long Shut-
down 2 (LS2) (2018-2022). The four experiments can be seen in the schematic figure 1.1.

Figure 1.1: Schematic representation of the CERN accelerator complex with the four major
experiments ALICE, ATLAS, CMS and LHCb.
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I. Introduction 2

ATLAS - A Torroidal LHC Apparatus
Named after the Greek titan, ATLAS takes the Herculean tasks of searching for new particles
in the Standard Model and beyond such as dark matter, investigating super symmetry and
improving the precision of mass measurements of fundamental particles such as the Higgs
boson. A lot of attention was focused on ATLAS in 2012 when it achieved one of its major
physics goals, the discovery of the Higgs boson, which was the last missing particle in the
Standard Model. ATLAS is the largest collaboration at CERN and can be found at interaction
point (IP) 1 of the Large Hadron Collider.

CMS - Compact Muon Solenoid
The physics goals of the CMS collaboration are similar to the ones of the ATLAS collaboration,
though using a different detector setup and in particular a different magnet-system design.
One of its major components is its large solenoid magnet, which can generate magnetic fields
of up to 4 Tesla. In 2012 CMS codiscovered the Higgs boson and up until this day delivers some
of themost precise measurements of particle masses ever made (e.g. themass of the top quark).

LHCb - Large Hadron Collider beauty
The LHCb experiment focuses on the investigation of the bottom quark (called beauty quark),
one of the fundamental particles of matter in the Standard Model. Its studies are dedicated to
the investigation of the CP violation in the interaction of hadrons containing a bottom quark.
This could provide insight to a fundamental physics question, the matter-antimatter asymme-
try in the universe. Its detectors are set up in a forward configuration, in particular they are
not in a cylindrical arrangement around the beam pipe such as for ATLAS or CMS.

ALICE - A Large Ion Collider Experiment
While all the above-mentioned experiments mainly focus on the interactions of proton-proton
(pp) collisions, the physics programme of ALICE concentrates on the investigation of an exotic
fluid, emerging from the collision of heavy-ion collisions, the Quark-Gluon Plasma (QGP). This
fluid is investigated in Pb-Pb collisions and has one of the lowest viscosity over entropy ratios
ever found (close to the theoretical limit), making it an almost perfect fluid. From the study of
collective phenomena such as flow or the production of heavy (anti-)nuclei like 3He, 4He and
the 3

ΛH, to individual particle interactions with the medium like jets or the study of heavy-
flavour, ALICE covers a large variety of physics goals. Its extensive particle identification
capabilities distinguish ALICE from the other experiments and make it unique for the study
of the QGP.



II The ALICE experiment

Gaining experimental access to regimes of nuclear and sub-nuclear scale at energy densities
similar to the early universe is a tremendous challenge. ALICE attempts to probe theories
about the underlying physics by measuring particles emerging from collisions of protons or
heavy ions inside its detectors. Each detector at the ALICE experiment has unique character-
istics suited for specific tasks.

2.1 Overview
The detectors of the ALICE experiment can be divided in three main sectors, the cylindrically
arranged central barrel of detectors around the beam pipe centred at the interaction point,
the forward detectors located along the beam axis but shifted away from the interaction point
and a small set of trigger detectors for triggering and event characterization. The forward
detectors mainly deal with the investigation of muons (the muon forward spectrometer) and
the remaining parts of nuclei emerging from a collision of heavy ions (mainly the ZDC (Zero
Degree Calorimeter)). In contrast, the central barrel consists of the main tracking and particle
identification detectors.

In radial direction, particles emerging from the collisions first traverse ITS (Inner Tracking
System), TPC (Time Projection Chamber), TRD (Transition Radiation Detector) and finally
TOF (Time-Of-Flight detector). These four detectors are mainly used for tracking and iden-
tification of the traversing particles. Their tracks are curved by the applied magnetic field
(max. 0.5T) which allows a momentum measurement through the curvature radius. Going
further outwards in radial direction, HMPID (High Momentum Particle IDentification), PHOS
(PHOton Spectrometer) and EMCal (Electro-Magnetic Calorimeter) are found. A schematic
representation of the detectors of ALICE in Run 3 of LHC is shown in figure 2.1. Besides a
new, narrower beam pipe of LHC, many detector systems of ALICE have received major up-
grades to cope with the higher interaction rates of the LHC in Run 3. In addition, continuous
readout of the detectors together with substantially increased luminosities allow for strongly
enhanced statistics and even the measurement of suppressed decay channels or rare processes.

3
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Figure 2.1: Schematic representation of the detector systems for Run 3 of the ALICE experi-
ment, located at IP2 at the LHC.

2.2 Detectors of the central barrel
One of the most valuable characteristics of the experiment are its extensive particle identi-
fication (PID) capabilities. Many physics analyses conducted in the collaboration require a
precise knowledge of particle yields in different momentum regions. Four detectors of the
central barrel are crucial for this task: ITS, TPC, TRD and TOF. In combination, they can cover
an approximate momentum range from ∼100 MeV/c up to ∼100 GeV/c.

2.2.1 ITS - Inner Tracking System
Located in closest proximity to the collision point, the ITS has multiple purposes for tracking
and particle identification. As a silicon based detector, the primary advantage of the ITS is its
excellent position resolution of tracks. The reconstruction of primary and secondary vertices
greatly benefit from the innermost layers of the ITS, which consist of two layers of Silicon
Pixel Detectors (SPD). In Run 2, two layers of Silicon Drift (SDD) and Silicon Strip Detectors
(SSD) complemented the ITS with multi-track reconstruction capabilities. Furthermore, the
analogue readout of the SDD and SSD detectors allowed particle identification via the mea-
surement of the specific energy-loss of particles in matter (dE/dx).

Higher interaction and readout rates are foreseen for Run 3 of the LHC, hence the ITS
required an upgrade from the setup used in Run 2. To reduce the material budget and improve
readout rates, the ITS was fully replaced and comprises 7 layers of pixel detectors. Particle
identification via the specific energy loss is thus not possible any more, but a substantially
higher precision in vertex reconstruction and resolution is achieved. The precision of the
impact parameter resolution increases with the transverse momentum of traversing particles
and can be as good as 3 µm in the transverse plane and 4 µm in the longitudinal direction for
a particle with a high transverse momentum (pT ≈ 20GeV/c).
All layers are built from a new 0.18 µm CMOS technology in which a matrix of charge

collection diodes (pixels) is incorporated into a single, monolithic block of silicon, hence their
name Monolithic Active Pixel Sensors (MAPS). This led to a reduction in the material budget
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by a factor of seven for each layer (50 µm instead of 350 µm in thickness), increased the pixel
density by a factor of 50 and allowed to place the innermost detection layer closer to the beam
pipe axis. Moreover, higher readout rates for individual interactions of up to 400 kHz in pp
and 100 kHz in Pb-Pb collisions are now supported and have been experimentally surpassed
with measurements up to 4 MHz in proton-proton interactions, compared to 1 kHz in Run 2
[1].

2.2.2 TPC - Time Projection Chamber
Second in radial direction, after the ITS, comes the TPC detector. It is a gaseous detector and
the main tracking device of the experiment. Cylindrically shaped, with an outer radius of 250
cm and a length of 500 cm, the ALICE TPC contains 88 m3 of gas, making it the largest TPC
ever built. A schematic view of the TPC as it is used for Run 3 can be seen in figure 2.2.

Figure 2.2: 3D representation of the ALICE TPC for Run 3 [2] with annotations.

A time projection chamber detector is mainly built from a large volume of gas or liquid in
which traversing, charged particles release electrons from the detector material through the
process of ionisation. These electrons drift towards the readout electronics (IROC, Inner Read-
Out Chamber and OROCs, Outer Read-Out Chambers) via a constant, homogeneous electric
field, generated from cathodes close to the readout at the end-caps of the TPC and a central
electrode, located in the center of the TPC. Several components make the particle identifica-
tion capabilities of this detector unique, such as the choice for the detector gas, the readout
and front-end electronics as well as its homogeneous electric field.

Detector gas

Different gases have different properties for diffusion, quenching and drift velocities of elec-
trons and charged ions. For the ALICE TPC, a mixture of Ne-CO2-N2 in the proportions 90-
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10-5 is used (in order to obtain the percentages, the values have to be rescaled since they add
up to 105). Experiments have shown that the gas mixture Ne-CO2, 90-10 showed very good
performance, but the addition of another quencher gas (N2), shows beneficiary effects for the
operational stability of the chamber at higher electric fields [3]. In particular, quench gases
have a high cross-section for photon absorption in a broad interval of wavelengths which re-
duces secondary showers of photons emitted by accelerated electrons.

Readout

The drifting electrons are accelerated by the homogeneous electric field and eventually
reach the readout electronics located at the end-plates (cathodes) after a maximum drift time
of ∼ 100µs for electrons emitted close to the central electrode. The charge of the electrons,
i.e. the number of electrons released by the process of ionisation, is proportional to the spe-
cific energy-loss per unit distance of the original particle in the detector gas. This allows for
particle identification and tracking. Likewise, positively charged ions are released from the
collisions of the accelerated electrons with the gas molecules.
In order to be able to measure a signal, the arriving charges must be amplified. In Run 2, the
drifting electrons passed a Multi-Wire Proportional Chamber (MWPC). For a MWPC, wires
are positioned in a grid-like structure, as can be seen in the illustration 2.3. The electric field
around each anode wire accelerates the drifting electrons further, causing them to induce
avalanches. Additional wires (gating plane) are positioned further away from the readout
plane which serve the purpose of holding back positively charged ions disturbing the ho-
mogeneous electric field of the TPC (ion back-flow). However, the operation of the MWPC
together with a gating grid limits the data readout rate to 1 kHz.

Figure 2.3: MWPC as it was used in the ALICE TPC for Run 2 [4].
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For Run 3 the MWPC was replaced by Gas Electron Multipliers (GEMs) which allow con-
tinuous readout with a rate of up to 50 kHz in Pb-Pb collisions.
The GEMs for the ALICE TPC consist of a 50µm thin insulating polyimide foil, coated with
copper (2-5 µm in thickness on each side). Double-conical holes with an inner diameter of
around ∼50µm and an outer diameter of ∼70µm are imprinted in the material. A potential
of 200-400V is applied over the two electrically conducting layers producing field strengths
of O(50 kV/cm) in each hole, sufficient for avalanche creation [3]. A simulation of the charge
amplification in a GEM hole can be seen in figure 2.4.

Figure 2.4: Cross-sectional view: Garfield simulation for an electron passing a GEM hole [3].

2.2.3 TRD - Transition Radiation Detector
The TRD detector is based on the emission of radiation of a particle upon crossing the bound-
ary of two materials with different dielectric constants. Each chamber of the ALICE TRD is
built from a foam/fibre radiator, followed by a drift volume filled with a Xe-CO2 gas mixture
and MWPC’s which is preceded by a 3cm drift region. The main task of the TRD is the sep-
aration of electrons from heavier particles, since transition radiation is emitted for γ > 1000
which is only fulfilled for electrons. Hence, they lose proportionally more energy per unit
distance than heavier particles which allows particle identification. Furthermore, the time
information obtained from the track passing the detector together with the fast online recon-
struction made the TRD usable as a trigger for collisions in Run 1 and 2.
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2.2.4 TOF - Time-Of-Flight detector
Following in radial direction, the TOF detector shows excellent particle identification capa-
bilities in the mid-momentum range (0.6 − 5 GeV/c) and additionally provides a trigger for
cosmic rays and ultra-peripheral collisions. It is located at 3.7 meters in radial direction from
the interaction point, covering a pseudo-rapidity range of −0.9 < η < 0.9 with 18 azimuthal
sectors and a total of 152928 readout channels. This avoids high detector occupancies, even in
high multiplicity events.
Particle identification is performed by measuring the time-of-flight between a collision (tev)
and the detection in the sensitive volume of the detector (tTOF). Based on theMultigap Resistive
Plate Chambers (MRPC) technology, the TOF detector of ALICE measures traversing particles
by amplifying their signal using 5 stacks of glass resistive plates, separated by gaseous layers
in which the incident particle creates avalanches based on an externally applied, homogeneous
electric field [5].
Measuring the velocity of an incident track, together with the momentum information in-
ferred from the curvature radius of a particle in the magnetic field, particle identification can
be performed based on the calculated mass of the track

m = |p⃗| ·

√(
t

l

)2

− 1 (2.1)

where |p⃗| is the absolute value of the measured momentum, t is the time-of-flight (t =
tTOF − tev) and l the traversed distance.

2.3 O2 - Online-Offline computing system
The upgrade of many detectors in ALICE for Run 3, specifically ITS and TPC, allow data-taking
at higher collision rates compared to Run 2. This poses tremendous challenges for data-taking
and reconstruction since computing resources and storage have to be used most efficiently.
Hence, a completely new software framework (O2) was designed and is still under commis-
sioning at the time of writing this thesis.

The general tasks for the software framework can be categorized in two sections: Online,
synchronous processing, which deals with all computing tasks that have to be executed at
data-taking time of the detectors (mainly online reconstruction and data-compression) and
offline, asynchronous processing, which concerns all processes decoupled from data-taking
(in particular offline reconstruction, calibration and analysis).

In Pb-Pb collisions, the raw data taking rate is≈3.5 TB/s. Cluster recognition and correlation
in the TPC is used for lossless compression (Huffman coding) and allows to reduce the datarate
to 1.5 TB/s for the online farm. Further reconstruction and background elimination results in
a rate of 100GB/s of data being written to disk.

2.3.1 Data processing and storage
Besides the updates on the hardware, a major effort was conducted to renew the analysis soft-
ware of ALICE. The key motives for designing this new framework called O2, are computa-
tional efficiency of calculations and the lowest possible memory consumption. The computing
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model was changed from assuming the Worldwide LHC Computing Grid (WLCG) as a homo-
geneous entity, capable of handling any type of job, to dedicated facilities that take care of
specific tasks [6].

• ALICE Online-Offline Facility (O2)
Online reconstruction and calibration for data compression are conducted here. RAW
data is reduced to Compressed Time Frames (CTFs) and finally to Analysis Object Data
(AODs). Data is compressed to Sub-Time Frames where each frame contains ∼20ms of
data meaasured with an arbitrary reference clock (the so called heartbeat trigger) and is
passed from the First Layer Processors (FLPs, data compression factor≈2.5) to the Event
Processing Nodes (EPNs) for further reconstruction (data compression factor ≈8).

• Tier 0 and Tier 1 - CERN Computer Centre facility with grid site
Provides CPU, storage and archiving resources and takes care of further reconstruction
and calibration tasks as well as simulations. Receives CTF from the O2 facility and AODs
from Tier 2 to perform further compression and additions to AODs.

• Tier 2 - Regular grid site
High bandwidth connection, running simulations. Additions to AODs via Monte Carlo
simulations (MC).

• AF - Analysis facility
Dedicated facility for analysis with High Performance Computing (HPC) infrastructure.
AODs are converted to trees and histograms.

While for pp collisions synchronous and asynchronous processing of the incoming data is
possible, data rates for Pb-Pb collisions are too high for the asynchronous processing such that
AOD re-filtering is needed. The O2 facility will be capable of storing and processing roughly
2/3 of the CTFs for Pb-Pb and 1/2 for pp data taking, while Tier 1 sites support the asyn-
chronous processing of the remaining CTF data.

The central facility for storing calibration objects is the condition and calibration database
(CCDB). The central aspect for storing objects on the CCDB are intervals of validity. Each
object is stored with a "valid-from" and "valid-until" timestamp which specifies the range of
collisions for which the object is valid. The CCDB is used from online processing down to the
analysis level and provides a low-latency, scalable infrastructure for central objects of calibra-
tion and reconstruction.

2.3.2 Software design and computing model
Data processing on the analysis level is done on AODs which are produced after data has
passed the reconstruction and calibration workflows. The data (tracks) in AODs are stored
in ROOT histograms and is processed in the O2 software framework in form of tables. With
similarities to relational databases, tables can be joined to combine columns. These tables can
be used in functions and tasks to perform physics analyses. Tasks can have dependencies on
each other since they can add columns to tables. This makes O2 highly modular and compu-
tationally efficient.
Besides local computations, O2 further provides possibilities for decentralized computing on
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the WLCG via the Hyperloop system. Tasks are submitted in the form of "wagons" which are
appended to "trains" running workflows with custom configurations on specified datasets.
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Modern machine learning (ML) techniques gain ever greater popularity in particle physics
in the last decades. A prime example are boosted decision trees which have long been used
to perform signal-to-background separations of measurements. However, machine learning
offers many more opportunities in a variety of different tasks.

3.1 Overview of machine learning methods
Most common machine learning methods can be classified into two main categories, super-
vised and unsupervised learning.
Supervised learning uses a set of training data (X) to learn a specific output (Y), i.e. a super-
vised model adapts to map an input to an output, f(X) = Y . On the contrary, unsupervised
models only see an input dataset (X) where a mapping to an output space is only determined
by the construction of the algorithm and the dataset.

Common tasks addressed by machine learning include regression, classification, cluster
finding, anomaly detection and creating synthetic data. While supervised algorithms typi-
cally learn the underlying probability distribution of a given training dataset, unsupervised
methods are based on algorithmic procedures which assume a general structure in the data.

In general, many machine learning based methods focus on the approximation of a solution
for a given problem by minimizing a loss-function. The loss-function is typically connected to
the discrepancy of a model to a given dataset. This requires the mathematical definition of a
"good solution" (or ideally a perfect solution), which is in many cases a non-trivial task.

Typically, a machine learning method which does not assume any form of the underlying
probability distribution is called distribution-free. Additionally, such methods typically do not
have a fixed set of parameters, making them non-parametric. This does not mean that the
given method does not have parameters, but rather that the amount of parameters and the
particular values are determined based on its performance on data.
Adjusting these parameters on a training dataset is commonly referred to as training a model.
Many algorithmic approaches have been investigated in the literature that can minimize a
loss-function while adjusting the parameters of the given model. Most well-known are two
approaches called gradient descent and hyperparameter optimization.

3.2 Gradient descent and hyperparameter optimization
In physics, problems are typically expressed in mathematical equations of a closed form. In
some cases, this allows the calculation of maxima or minima by using first order derivatives
and finding solutions to analytically solvable problems. However, the vast majority of real-

11
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world problems do not have analytic solutions and require iterative approaches to find ap-
proximations of solutions.

3.2.1 Gradient descent
A well-known example of finding a solution using an iterative approach is the search for the
roots of real-valued functions. One such algorithm is the Newton-Raphson method, which
finds better approximations of the roots at each iteration xn given a sufficiently good starting
value x0 for a function f(x), x ∈ R. At each step xn is updated to xn+1 using

xn+1 = xn −
f(xn)

f ′(xn)
. (3.1)

To find extrema of a function f(x), the Newton-Raphson method is applied to the first
derivative f ′(x) of the function f(x).

xn+1 = xn −
f ′(xn)

f ′′(xn)
. (3.2)

For functions of more than one variable, the first derivative is expressed with the vector-
gradient ∇, hence the general class of such algorithms is called gradient descent methods.

Generally, gradient descent methods can be expressed as

xn+1 = xn − γ∇F (xn) (3.3)

where γ is the so-called learning rate. A good choice for γ can significantly reduce the num-
ber of iterations needed until an approximate solution is found.

Real-world problems often require gradient calculations on a large dataset, which makes
computational cost andmemory consumption a significant factor of consideration. Awell per-
forming approach to reduce memory consumption is to calculate gradients only on randomly
sampled subsets of data. The gradient obtained by this method still allows a good represen-
tation of the gradient of the full dataset. Common algorithms employing this method are the
Stochastic Gradient Descent (SGD) or adaptive momentum estimation optimizer (Adam).

3.2.2 Hyperparameter optimization
A hyperparameter of a model can be defined as any parameter which cannot be optimized
through gradient descent. In particular, this includes parameters which define the model it-
self, i.e. the number of parameters needed for a model to describe data well.

Classical methods for a hyperparameter tuning are exhaustive grid or random searches. The
function for which the minimum needs to be found is evaluated at many different phase-space
points (spanned by the model parameters) which allows the approximate determination of a
minimum through interpolation of the evaluated points.
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Besides exhaustive searches, algorithmic approaches have been designed to optimize the search
for such parameters. One algorithmic approach which is commonly employed is Bayesian op-
timization which tries to find a balance between exploration (most uncertain outcomes) and
exploitation (trials close to the optimum) thus mapping the phase-space on a probabilistic ba-
sis. It performs better than exhaustive searches, but more recent approaches based on pruning
and evolutionary algorithms have shown even better performances for certain tasks like neu-
ral architecture optimization. Evolutionary algorithms start at random points throughout the
phase-space and evaluate the performance of trial points using a fitness function. Iterations
are based on previous trials where the fitness function is optimized on the explored phase-
space of previous iterations. Less promising trials are stopped (pruning, early stopping) and
are replaced by new trials starting at different points in the phase-space, mimicking an evolu-
tionary behaviour, hence the name "evolutionary algorithm".

3.3 Neural Networks
Neural networks are a part of supervised learning and can perform classification and regres-
sion. Although their architectures and constructions can vary widely depending on the task
at hand, some of the mathematical working principles are shared. The essential components
which define a network are

• The neurons in the input layer.
The number of neurons in the input layer is proportional to the number of features per
observation in the input data. So-called "channels" like RGB (red, green, blue) in an
image can add further neurons.

• The neurons in the hidden layers.
A network with 2 or more hidden layers is typically called a deep neural network, while
the architecture is highly task-dependent and allows limited freedom for design choices.

• The neurons in the output layer.
These are typically defined by the task at hand, e.g. regression or (multi-class-) classifi-
cation.

• The loss-function.
This is the essential component to define what and how a network should learn from
data. In particular, the emphasis of the task at hand is encoded in it.

3.3.1 From neurons to networks
The atomic unit of a neural network is called neuron. One neuron typically comprises an
activation function σ(x̃) (where x̃ is an scalar value), a weight vector w and a bias value b
(scalar). For a given input vector x, the output of one neuron is a scalar value corresponding
to

σ(w · x+ b) = σ

( dim(w)∑
i=0

wi ∗ xi + b

)
(3.1)
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The activation function σ can here be any function that satisfies a R → R mapping and is
piece-wise differentiable. Commonly used functions are the hyperbolic tangent, ReLU (Recti-
fying Linear Unit), sigmoid and softmax function (multi-class classification) which are shown
in figure 3.1. Each of them serve special purposes for different tasks.

Figure 3.1: Common 1D Activation functions of neurons in a neural network.

One can also append the bias to the weight vector by appending a scalar value of 1 to the
input data, making it a pure vector multiplication

[x1, ..., xn] · [w1, ..., wn]
T + b = [x1, ..., xn, 1] · [w1, ..., wn, b]

T (3.2)

Having defined one such neuron now allows the construction of a neural network as a con-
catenation of neurons in layers and connecting the inputs of a layer with the outputs of the
previous layer(s). Figure 3.2 shows a representation of a standard, fully connected neural net-
work. From the input layer onwards, every neuron (circles) receives the output of all neurons
from the previous layer as input (straight lines), computes a scalar value and passes it on to
every other neuron of the subsequent layer.

Since every neuron is fully specified by the activation function, the weight vector and the
bias, a layer of a neural network can be represented as a matrix-vector-multiplication

layer output: σ

(
[x1, ..., xn, 1] ·


w11 . . . w1l
... . . . ...

wn1 . . . wnl

b1 . . . bl


)

(3.3)

1Source: https://www.ibm.com/cloud/learn/neural-networks

https://www.ibm.com/cloud/learn/neural-networks


15 III. Machine learning & Neural Networks

Figure 3.2: Example of a fully connected neural network built from single neurons represented
in coloured circles. 1

where the activation function σ here is meant to be applied element wise. For this reason,
neural network training and execution are highly parallelizable and make them excellent can-
didates for calculations on Graphics Processing Units (GPUs).

For practical applications, the weights of a neural network have to be determined in a math-
ematical way to fulfil a meaningful task. In particular, it can be advantageous to find hidden
correlations in data without imposing structure on it. Hence, the determination of weights
and biases is typically purely based on a set of training data which is representative of the
underlying probability distribution of the data density on which the network is being applied
after training. An exception to this rule can be graph neural networks, where the architecture
and values of the chosen parameters are specifically tuned to perform a certain task.

3.3.2 Backpropagation and training networks
Determining the weights of a neural network mathematically is done with an iterative ap-
proach on a set of training data. At each iteration the network performs its calculations on a
part of the training dataset, the so called mini-batch and calculates a loss score based on its
predictions and the known labels / values in the training and validation set. Optimally, this
score represents a meaningful value for the goodness of fit of the network prediction to the
mini-batch. A lower loss score implies a better fit.

It is practically impossible to initialize the network with ideal weights. Since most or all of
the neurons in a neural network are interconnected, changing one weight-value can alter the
output of the entire network. This implies that the "loss surface" produced by the network is
highly complex, with many fluctuations in close neighbourhoods. An example of how such
a loss surface can look like is shown in figure 3.3. This further demonstrates the necessity of
a rigorous algorithm that can optimize the weights of a network given a training dataset in a
local neighbourhood of the starting point.
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Since the activation functions of the neurons are chosen to be at least piece-wise differ-
entiable, gradients of the loss function can be computed and back-propagated through the
network to adjust the weights. Gradient descent algorithms can then be used to find iterative
steps to improve the weights, moving towards minima in the loss surface.

Figure 3.3: Representation of a loss surface of a neural network. The irregularities show the
difficulty of finding optimal weights. [7]

If the loss surface is convex, the training is guaranteed to converge in the global minimum,
while for non-convex loss surfaces, the training converges at least in a local minimum.

Computationally, back-propagation is one of the most memory consuming parts of training
a network. In order to reduce the computational cost, the gradient can be calculated on a ran-
domly chosen subset of the batch (stochastic gradient descent). Furthermore, modern libraries
support automatic differentiation, such that the gradients do not have to be implemented sep-
arately for each layer of the network.

3.3.3 Architectures and design choices
Various design choices in the construction of a neural network can be made which allow for
more efficient approximations of the data at hand. Starting from a single neuron, a choice for
the activation function and the number of input and output connections can be made. Not all
networks have to be fully connected and not all neurons in a network have to connect to just
the subsequent layer.
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An example of a non-subsequent connection is a so-called skip connection, shown in figure
3.4. The skip connection was popularized with the residual neural network and allows the
residual block (all layers that the skip connection span over) to learn the difference between
the input and the output of the layers. This can be easily seen by

R(x) := F(x) + x ⇒ F(x) = R(x)− x (3.4)

where F(x) is the output of the block encapsulated by the skip connection.

Figure 3.4: A skip connection as implemented in a residual neural network. 2

Besides the connections of neurons among each other, the choices for the activation func-
tion of the neurons make a critical difference for the fit performance of the network. While
the mathematical literature commonly uses the ReLU activation for simplicity since it is piece-
wise linear, it does not necessarily perform best for every task. Another common choice for
regression is the tanh function, while for classification, the sigmoid and softmax functions are
used.

In particular, the choice for the activation function in the last layer of the network is critical.
For regression, the last layer is classically chosen to have no activation function (or for that
matter, the identity function as activation). This allows the network to adjust for scaling and
shifting with the weights in the last layer, and returns an output space ranging from −∞ to
+∞. For classification, the activation in the last layer should be chosen as the sigmoid func-
tion for a two-class classification problem and the softmax function for an n-class classification
problem.

Besides the activation functions, an equally important choice for training is the loss func-
tion. It encodes what the network learns, i.e. for a regression problem the network should best
approximate all data points, which is typically evaluated with the mean square error (MSE)
loss.

MSE =
∑
i∈data

(y∗i − ŷi)
2 (3.5)

where y∗i is the true value to be fitted by the network for data point i and ŷi is the predicted
value.

2Source: https://theaisummer.com/skip-connections/

https://theaisummer.com/skip-connections/
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For classification, the cross-entropy loss function has to be chosen in order to compare the
predicted class labels ŷi with the ground truth class labels y∗i

CE =
∑

i∈labels

y∗i log(ŷi) (3.6)

To summarize, given a task, the activation functions for the last layer and loss functions as
shown in table (3.1) should be used

Problem at hand act. function in last layer loss function
Regression linear MSE

Classification (single label, two classes) sigmoid binary CE
Classification (single label, multiple classes) softmax CE
Classification (multiple label, multiple classes) sigmoid binary CE

Table 3.1: Activation and loss functions for neural network architectures and their application
for specific problems.



IV Particle identification using the specific
energy loss in the ALICE TPC

4.1 General aspects of particle identification with the TPC
Particle identification is one of the main tasks of the TPC in the ALICE experiment. Particles
traversing the detector lose energy in collisions with the atoms and molecules of the detector
gas, which causes the emission of electrons. A theoretical prediction for this loss of energy
per unit path length in the detector gas was first proposed by Hans Bethe [8]. It depends on
the electron density of the detector material n, the mean ionization energy of the atoms of the
detector material I , the charge of the traversing particle z, and the velocity of the traversing
particle which is encoded in the Lorentz factors β = v

c
and γ = 1√

1−(v2/c2)
where βγ can be

calculated given the massm and momentum p of a particle as βγ = p/m

〈
− dE

dx

〉
=

4πnz2

mec2β2
·
(

e2

4πϵ0

)2

·
(
1

2
ln

(
2mec

2

I
β2γ2

)
− β2 − δ(βγ)

2

)
. (4.1)

Here the electron density of the detector material n can be given as an expression of the
atomic number Z , the relative atomic mass A, the material density ρ and the molar mass
constantMu as

n =
NA · Z · ρ
A ·Mu

. (4.2)

This allows the calculation of the energy loss in different materials for an approximate kine-
matic range of 0.1 ≲ βγ ≲ 1000. First approximations for the mean excitation potential of
the detector material were first performed by Felix Bloch [9] and states I ≈ (10eV) ·Z . Hence,
formula (4.1) is called Bethe-Bloch formula.

As highly energetic particles traverse the detector medium, their electric field is subject to
Lorentz contraction in the direction of flight, but extends further in the transverse direction.
This causes electromagnetic interactions with more distant molecules and a contribution to
the Bethe-Bloch formula corresponding to a factor β2γ2 in the logarithmic term. This term
is referred to as the relativistic rise. However, the larger field extension in the transverse di-
rection polarizes the surrounding molecules, which partly shields the electric field and partly
limits the relativistic rise. This so-called "density effect" is described by the term δ(β), which
adds even stronger contributions in dense media (e.g. solids).

Formula 4.1 is constructed for heavier particles (e.g. pions, protons) scattering on compa-
rably light shell electrons. Due to their lighter mass, the kinematics of the ionization process
changes significantly for electrons. Additionally, quantum effects have to be taken in con-
sideration which, together with the energy loss from Bremsstrahlung, makes formula 4.1 not

19
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applicable for electrons in this form.
Since particles with high momenta can transfer a lot of energy to shell electrons upon scatter-
ing, it is possible that electrons are liberated (δ-electrons) from the shells, forming secondary
tracks which are no longer attributed to the original track. In order to take this effect into
account, an energetic cut-off Emax has to be introduced to the Bethe-Bloch formula

〈
− dE

dx

〉
=

4πnz2

mec2β2
·
(

e2

4πϵ0

)2

·
(
ln

(√
2mec2Emaxβγ

I

)
− β2 − δ(βγ)

2

)
. (4.3)

Emax is strongly dependent on the detector gas/material and effectively limits the maxi-
mum considered recoil energy of the two colliding particles. With the energetic limit, the
Bethe-Bloch formula is also valid for electrons.

Figure 4.1 shows ameasurement of the ⟨dE/dx⟩with the ALICE TPC. At low βγ, the specific
energy loss falls steeply with 1/βα where α ≈ 1.6 − 2 until the minimum ionizing region is
reached at βγ ≈ 3.6. The energetic cut-off together with the density effect lead ultimately to
the complete cancellation of the relativistic rise and cause the function to reach a limit at very
high βγ, the Fermi plateau.

Figure 4.1: ⟨dE/dx⟩ performance plot of the ALICE TPC at √sNN = 5.02 TeV [10]. Several
particle species are visible together with their parameterized Bethe-Bloch curve.

In order to obtain such a dE/dx distribution, it is necessary to assign one specific value of
dE/dx for each track. For this, the truncated mean estimator is used.

4.1.1 The truncated mean estimator
The energy loss of a particle in the TPC is read out at the pad rows, where 159 (152) for Run 2
(Run 3) charge clusters are collected. The deposited charge per cluster ∆Q is proportional to
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the energy loss per unit distance ∆E
∆x

of the original particle.
Themeasured values over the pad row follow a Landau distribution. This distribution has non-
finite first (mean) and second (variance) ordermoments, whichwould lead to large fluctuations
if an average value is calculated. To overcome this problem, the αN -lowest values (α ∈]0, 1])
are used to assign a dE/dx value for any given track. This estimator, the truncated mean ⟨S⟩α,
has shown good performance for the mean calculation while keeping fluctuations small. For
N measurements, the truncated mean ⟨S⟩α is defined as

⟨S⟩α :=
1

αN

⌈αN⌉∑
i=1

(
∆E

∆x

)
i

. (4.4)

Using the truncated mean results in a reliable dE/dx estimation, where the final distribution
of dE/dx values follows approximately a Gaussian distribution.

Based on the separation power of the particle species in different momentum regions, the
parameter α of the truncated mean is chosen. For this, the dE/dx-distance between the mini-
mum ionising region and the Fermi-plateau divided by their average resolution is considered.
Typical values for α are found to be between 0.5 and 0.7 [11].

4.1.2 Parameterization of the Bethe-Bloch function
Due to the use of the truncated mean estimator and in order to better fit the obtained particle
distributions, a parametrization of the Bethe-Bloch function is used, where seven parame-
ters allow adjustments in different kinematic regions. A commonly used functional shape is
the ALEPH parametrization which can be written as a function of βγ, the charge z and the
parameters a1, ..., a5, fz (the charge factor) and fMIP (the (dE/dx)-value of the minimum ion-
ising region)

⟨dE/dx⟩ALEPH = a1 ∗ (a2 − log(a3 + (βγ)−a5)/βa4 − 1) ∗ zfz ∗ fMIP (4.5)

Optimal parameters for this parametrization are not known a priori, but have to be deter-
mined from a fit to data. The regions of phase-space in which the parameters are found can be
approximated by calculating the appropriate pre-factors in the Bethe-Bloch function. For each
track, two properties are accessible as physical observables, the dE/dx measured in the TPC
and approximated by the truncated mean as well as the momentum which is typically mea-
sured at the inner wall of the TPC. Particle species assignments can then be made by testing
different mass hypotheses for each measured track and comparing with the parametrization.

In order to assess the statistical significance of the particle species assignment, the uncer-
tainty of the data distribution has to be estimated. Expected values for the width of each
particle distribution are determined by statistical fluctuations in the measurements, as well as
residual uncertainties of readout and detector effects. An estimate of the intrinsic uncertainty
of the energy loss is given at ≈5-7% of the expected dE/dx value [3].
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4.1.3 Relevant observables for particle identification
While the one-dimensional functional form of the Bethe-Bloch parametrization already per-
forms well for particle identification, a dependence on several other parameters exists. In
particular, detector effects have to be taken into consideration.

The inclination angle of the track, which is measured with the local polar angle tan(λ). A
higher inclination angle leads to a larger charge deposition per pad row in the readout and
thus to an enhanced dE/dx signal. The tan(λ) is also connected to the more commonly used
pseudo-rapidity of the track with η = − ln(tan(π

4
− λ

2
)). Their dependence is depicted in 4.2.
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Figure 4.2: Pseudo-rapidity and tan(λ) for different values of λ.

Besides track inclination, the occupancy (also called multiplicity) of the TPC can have a sig-
nificant influence on the dE/dx signal due to an increased probability of overlapping tracks,
which influence their mutual charge measurement (pileup). Furthermore, the quality of the
dE/dx signal increases with the number of clusters on the pad-rows on which a charge is col-
lected. Higher number of clusters decrease the statistical uncertainty and fluctuations in the
truncated mean calculation of the dE/dx measurement.

Further corrections have to be applied for low-momentum particles. In particular, particles
with momenta below 0.1 GeV/c show strong deviations from the expected Bethe-Bloch curves.
Here, the energy loss has a significant impact on the momentum of the particle. For kaons and
protons at such momenta, the dE/dx rises steeply (1/β2) as momentum decreases. Addition-
ally, due to a curvature radius which decrease with momentum, the effective track length of
a particle per pad row increases and significantly impacts the measured dE/dx signal. Low
momentum corrections have to be applied below 1 GeV/c and are typically performed down
to 0.15 GeV/c, limited by the available statistics.

Since the momentum of a track is significantly modified as it passes the ITS and inner field
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cage of the TPC, the momentum measured at the inner wall of the TPC is used for further
analysis. Residual tension between the Bethe-Bloch parametrization and data can predomi-
nantly be explained by detector effects, as mentioned above. This results in the necessity for a
multidimensional correction in order to gain reliable particle identification information from
the TPC.

4.2 Clean sample selection
In order to provide multidimensional corrections for the detector effects, it is necessary to
extract data samples for which the particle identity is known a priori since these samples can
be selected cleanly and hence the residual tension between the measured and predicted val-
ues for the specific energy loss is purely induced by detector and environment effects. Clean
selections can be conducted for several particle species as they emerge from decays of other
unstable particles (so called V0 particles) or can be identified by detectors in regions of kine-
matic separation.

4.2.1 V0 selection
Unstable particles emerging from high-energetic collisions can decay into stable particles. The
initial particles are called mother particles, while the decay products are called daughter par-
ticles. For the investigated decays, the mother particle is uncharged and is hence not seen
in the detector, while each daughter particle carries charge and can thus be detected. The
V-shaped decay topology of the daughter tracks in combination with the zero charge of the
mother particle gives the decay its typical name, V0 decay.

The Λ (uds quark combination) baryon or K0
S (ds̄−sd̄√

2
quark combination) meson are exam-

ples of such unstable particles. They decay into

Λ → π−p , Λ̄ → π+p̄ , K0
S → π+π−

However, a similar conversion called pair production can also occur for highly energetic pho-
tons

γ + Z → eē+ Z

where the product is an electron-positron pair and Z is the nucleus of a molecule which par-
ticipates for energy and momentum conservation purposes.

Since the daughter particles emerge from charge-neutral mother particles which are not
detectable with the detectors of the inner barrel (no electromagnetic interactions with the de-
tector material), their electric charges are always opposite to each other. Hence, their tracks
curve in opposite directions in the magnetic field, emerging from the same (secondary) vertex,
making them identifiable by their topological separation.

Several physical variables obtained by measurements and the reconstruction procedure can
then identify clean samples of V0 particles and their corresponding daughter tracks. Com-
monly, kinematic variables obtained from the reconstruction are used, such as a selection cri-
terion on the reconstructed invariant mass of the mother particle. For this, the reconstructed
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mass of the mother particle is compared to the expected mass and accepted if it is found within
a (user-defined) range of validity, otherwise rejected.

Another common selection criterion for clean V0 selection is based on the Armenteros-
Podolanski variables, which employs a selection on the kinematic variables α and qT defined
as

qT := pT (4.1)

α :=
p+L − p−L
p+L + p−L

(4.2)

where p+L (p−L) is the longitudinal and p+T (p−T ) the transverse momentum of the positively
(negatively) charged daughter particle in the direction of flight of the mother particle, see
figure 4.3. In the reference frame of the mother particle it holds true that p+T = p−T := pT .

Figure 4.3: Representation of the Armenteros-Podolanski variables α and qT in the laboratory
((a) LAB) and the center-of-mass ((b) CM) frame [12].

Using the four momentum conservation and the ultra-relativistic approximation β → 1, an
equation for the kinematic occurrence of the V0 particles can be derived [12]

(α− α0)
2

r2α
+

q2T
p∗2

= 1 (4.3)

where

I. α0 =
m2

1 −m2
2

M2
(4.4)

II. rα =
2p∗

M
(4.5)
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III. p∗2 =
1

4M2
(M4 +m4

1 +m4
2 − 2M2(m2

1 +m2
2)− 2m2

1m
2
2) (4.6)

This forms an ellipse in the (α, qT )-space. If the daughter particles have the same mass (e.g.
for K0

S), the equations simplify since α0 = 0. Accordingly, the ellipse of the K0
S particle will

be centred around (α, qT ) = (0, 0) while for the decay of the Λ and Λ̄ particles, the centre of
the ellipse will be offset with

(α, qT ) = (α0(M = mΛ,m1 = mp,m2 = mπ), 0) for Λ

and

(α, qT ) = (α0(M = mΛ,m1 = mπ,m2 = mp), 0) for Λ̄.

The expected ellipses can be clearly recognized in data (see figure 4.4) and a selection can
be applied accordingly.

Figure 4.4: Plot of the Armenteros-Podolanski variables with reconstructed mother particles
[13].

Since a decay occurs from highly energetic mother particles, the daughter particles will
have the highest proportion of their momentum in the direction of flight of the V0 particle
from which they originate. Reconstructing the angle θPA between the momentum vector of
the mother particle and the line connecting the primary vertex with the V0 decay-vertex can
bring significant improvement for the selection of clean samples. A selection on the cos(θPA) is
typically performed, where the index "PA" stands for the abbreviation of the name of the angle
θ between the direction of flight of the mother particle and its reconstructed momentum, the
pointing angle. An illustration of a V0 decay, together with cos θPA is shown in figure 4.5.
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Figure 4.5: Topological V0 decay and relevant kinematic variables for particle identification

4.2.2 Selection by detection
Besides the clean samples gathered from the decay of V0 particles, different detectors can kine-
matically separate particle species. This depends on their separation power and the quality of
their calibration. Typically, TPC and TOF selections are used to extract clean samples, where
their separation power can be seen in figure 4.6.

Figure 4.6: Separation power of the TPC (left) and TOF (right) detector

Given a theoretical prediction for the expected kinematic region in which particles are de-
tected, a fit to data can be performed and the particle species is determined through an Nσ
selection.

For the TPC, such a selection is performed on the measured dE/dx signal with the Bethe-
Bloch as the theoretical prediction for each species. Using the parametrization of the Bethe-
Bloch with its corrections as dE/dxcorr and an estimation of the spread of data as σexp, an Nσ
cut can be applied as

N =
dE/dxmeas − dE/dxcorr

σexp

. (4.7)
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Typically, the TOF-only selection is used up to p = 1.1 GeV/c for light particles like muons,
pions and electrons and up to even higher momenta for heavier particles like kaons, protons,
and deuterons.
TPC selections can typically be used for pions up to a momentum of 0.5 GeV/c, kaons up to 0.3
GeV/c and protons up to 0.6 GeV/c, at higher momenta a TPC + TOF selection has to applied.
Exact selection criteria can vary for individual datasets.

4.3 Mean correction and uncertainty estimation in Run 2
Once clean samples have been selected, a correction to the initial parametrization of the Bethe-
Bloch function can be performed. During Run 1 and 2 of LHC, corrections were performed on
a per-dimension basis by fitting piece-wise polynomial functions to identified clean samples.
In particular, this includes corrections for a dependence on tan(λ) and the occupancy of the
TPC, as well as low momentum corrections. The corrections were applied on a factorization
approach, where it is assumed that if corrections are small, they can be applied to the Bethe-
Bloch parametrization as

〈
dE

dx

〉
corr

=

〈
dE

dx

〉
param

· f(tan(λ)) · g(MULTTPC) · h(plow) (4.1)

where f, g and h are one-dimensional spline functions. Several iterations had to be per-
formed in order to find a correction which calibrated the data on the order of few permille
along the momentum axis. It can further obscure cross variable correlations by correcting
projections in each dimension separately as a projection of all data points.

The uncertainty of data was estimated using a physically motivated fit function, for which
the parameters were also adjusted using clean samples. In contrast to the mean corrections,
the sigma estimation was in fact a multidimensional polynomial constructed to also capture
cross-variable correlations. Vice versa, its predictions and potential to captured correlations
was limited by the rigidity of the polynomial approach.





V Analysis and results on particle identification
with neural networks

5.1 Outline of the research conducted in this thesis
Particle identification with the ALICE TPC is one of the most powerful tools in many analyses
performed within the ALICE collaboration. Several steps have to be conducted in sequence in
order to gain reliable PID information from the measured dE/dx signal.
At first, the parametrization which is used to describe the mean dE/dx signal in the (p, dE/dx)-
space without corrections for detector and environment effects has to be calibrated. A set of
initial parameters has to be determined from a fit to data and represents a parameterized the-
oretical prediction of the mean dE/dx signal based purely on the measured momentum and
charge of the particles.
Two approaches were chosen in this thesis, depending on the availability of data. If clean
samples are not available, a hyperparameter optimization (HPO) framework was constructed
which does not require initial particle identities. Given a region of phase-space in which a suf-
ficiently good set of parameters can be found, the HPO framework assigns a particle species
based on proximity to a Bethe-Bloch curve and calculates local density maxima or mean values
(both modes are available). Based on the found values, the points are approximated with least
square minimization. The parameters improve over the iterations of the framework. If clean
samples can be selected, a gradient descent method was implemented to approximate the best
possible parameters. Gaussian profiles are fitted in bins of βγ to data and the loss-function is
designed based on least square fitting to the mean values of the fitted Gaussian distributions.
After this, detector effects and further deviations have to be calibrated by applying a correc-
tion of the mean dE/dx in a high-dimensional space spanned by observables, which can impact
particle identification (see chapter IV). Additionally, the width of the particle distributions has
to be estimated in high dimensions. Using the truncated mean, the final distribution of data
around the mean dE/dx value follows in good approximation a Gaussian distribution in dE/dx
and as such the uncertainty can be estimated by the standard deviation.
In this thesis, both themean correction and estimation of the standard deviation are performed
with neural networks with high precision which are fitted to a cleaned dataset of identified
particles obtained from V0 selections.

Since the O2 software framework was still in the commissioning phase during the writing
of this thesis, the approaches were tested on data collected in Run 2 of LHC. In particular,
the clean sample selection is demonstrated on the LHC18b dataset, which was converted into
a Run 3 compatible data format and could thus be processed by the O2 framework. LHC18b
follows an internal nomenclature of the ALICE experiment and stands for a dataset which was
recorded in April 2018. The data was recorded at a centre of mass energy of

√
s = 13 TeV for

proton-proton collisions with ≈ 200 a million recorded minimum bias events (no trigger, i.e.
selection, was applied for the data taking).

29
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However, in order to provide a direct comparison to the fit performance in Run 2, the clean
samples produced during Run 2 for the LHC18b dataset (so called filtered trees) were used
to uncover shortcomings and benefits of the chosen approaches. The initial parametrization
was then determined on cleaned data and Run 3 data without selection criteria, while the final
neural network corrections were tested on the clean samples and compared with the results
from the Run 2 calibration.
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5.2 Clean sample selection
As shown in the previous section, reconstructed V0 particles can be identified clearly by the
topology of their decay and selected by passing selection criteria on kinematic variables. The
major criteria applied to data are demonstrated in this section on the LHC18b converted data
and were performed in the O2 software framework.

Selection criteria on the invariant mass and pointing angle

Based on the four-momenta of the daughter particles, the four-momentum of the mother par-
ticle can be reconstructed and hence the invariant mass is calculated based on the mass as-
sumption and momenta of the daughter particles. The reconstructed masses can be collected
in histograms, where clear peaks at the expected masses of the mother particles (Λ, K0

S) are
visible, see figure 5.1, (a)-(c).

(a) (b)

(c)

Figure 5.1: Reconstructed invariant mass distributions for γ (top left), K0
S (top right) and Λ /

Λ̄ (bottom center).

A tight selection on the reconstructed invariant mass of the mother particle can be applied
without biasing the momentum distribution of the daughter particles. Typical selection crite-
ria are chosen between 2− 3σ based on the width of the distributions.

On the contrary, a tight selection on the cos(θPA) (pointing angle) can bias the resulting
momentum distribution of the daughter particles by shifting it towards higher momenta, but
can also bring a significant improvement for the purity of the clean selection. The criterion
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is typically chosen to be at cos(θPA) ≥ 0.999 but still on the plateau of the distribution. The
distribution of the cos(θPA) for all decays mentioned above is shown in figure 5.2.

Figure 5.2: Distribution of the cos(θPA) combined for all decays.

Armenteros-Podolanski

The longitudinal and transverse momentum of the daughter particles from a Λ or K0
S decay

result in ellipses in the (α, qT )-space for the location of the mother particle. However, the
ellipses contain cross-over regions, such as the ones of Λ and Λ̄ overlapping withK0

S at qT ≈
0.11 GeV/c. Thus, the kinematic overlap regions between the particle species are excluded to
reduce misidentification errors. Similarly, γ-particles are found close to α ≈ 0 and thus show
an overlap with Λ and Λ̄ ellipses, which are then excluded accordingly. Figure 5.3 shows the
clean selection based on the applied Armenteros-Podolanski selections (selections on invariant
mass and cos(θPA) are already applied).

Figure 5.3: Pure V0 selection based on the Armenteros-Podolanski selections for the LHC18b
converted dataset together with applied selection criteria on the invariant mass and
cos(θPA) (this work).
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5.2.1 Purity of the obtained data
Residual contamination of the pure samples can be quantified as a comparison between the
contamination and clean samples by using a sufficiently good initial calibration and an Nσ
selection based on an estimation of Gaussian fitting in the (p, dE/dx) space.
The mean and standard deviation of each particle distribution on bins in momentum and the
resulting points were fitted with a polynomial of 13th order to capture all features and fluc-
tuations. This allows the estimation of impurity in regions where there is clear, kinematic
separation in the measured dE/dx distribution of the TPC. For pions in the minimum ionizing
region and protons at low momenta, the contamination was found in both datasets to be ap-
proximately 1%. This shows that a similar purity is achieved, however the implementation of
selection criteria on kinematic variables and their specific values is a topic of investigation at
the time of writing this thesis.
Potential contamination can be explained by suboptimal or missing kinematic selections and
by misidentification of certain decays (e.g. electron-positron pairs can be misidentified for the
decay of a Lambda baryon). The dE/dx distributions as a ratio to the Bethe-Bloch parametriza-
tion from Run 2 together with the fitted polynomials to determine the purity are shown in
figures 5.4 (a-c).

(a) (b)

(c)

Figure 5.4: Distributions of the TPC dE/dx as a ratio of the Bethe-Bloch function against the
measured momentum for electrons (a), pions (b) and protons (c) together with
Gaussian fits and polynomials for assessing the purity.
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5.3 Initial calibration of the Bethe-Bloch
parameterization using hyperparameter optimization

The parameters for the Bethe-Bloch function have to be determined from a fit to data. How-
ever, certain preconditions determine the optimal method for a fit. One possible approach is to
perform a simple least-squares fitting of the parameters based on a cleaned dataset. However,
especially at the start of Run 3 of LHC, not all detectors are calibrated with sufficient precision
(e.g. TOF calibration not sufficient, ITS alignment missing) which requires an approach that
does not rely on any initial PID information. Even if a selection with these detectors can be
made, the assigned PID information might not be reliable enough for a fitting procedure.

The initial parametrization will receive additional corrections for detector effects and hence
exhaustive searches (e.g. grid-based approaches) are not taken into consideration since they
are computationally expensive. Furthermore, the parameters can at best be estimated to a
certain region of phase-space, which requires an algorithmic approach that investigates the
phase-space.
Hence, a novel hyperparameter optimization framework called Optuna [14] is employed. It
allows efficient parsing of the phase-space using pruning methods for unpromising trials eval-
uated on various internal metrics.

The construction of the score function which defines the goodness of a parameter set is a
critical step and is based on the search for density maxima or the estimation of mean values
of data in a local neighbourhood. Particle identities are assigned dynamically at each iteration
and by proximity to the nearest Bethe-Bloch curve in dE/dx. The underlying assumption is
that in the vicinity of a good parameter set, the Bethe-Bloch curves overlap with the local
maxima / mean values of data density for each assigned particle species. An example of local
maximum searches (grey points) based on the initial parametrization from Run 2 and the dy-
namic assignment of particle identities for the LHC18b dataset can be seen in figure 5.5.

Figure 5.5: Locally assigned particle species and density maxima based on binning in βγ and
dE/dx.
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The score function for the fitting procedure is purely based on the assigned maxima / mean
values and gets evaluated at every iteration. The final score is calculated with the sum of
square residuals from these points to the predicted Bethe-Bloch curves for all bins

Scoreoptim =
∑

i∈species

∑
j∈bins(βγ)

1

Nbins
·
(
max(ρij)−BB(βγ = j)2

BB(βγ = j)

)2

. (5.1)

A fit can succeed if the data density is high enough and a sufficiently wide range of values in
βγ is covered. In particular, the amount of data is crucial for the maximum-density approach,
since otherwise the found values for the maxima are subject to large fluctuations based on the
distribution of single tracks.
If no tracks or too few tracks are found in a bin of βγ, then the density maximum is set to
overlap with the Bethe-Bloch value at this point. Like this, the score is not artificially inflated
by fluctuations in data or regions of low data density.
In order to reduce fluctuations further, a region of validity around the Bethe-Bloch curves is
defined based on a local sigma estimation, in which the maximum or mean value is calculated.

The performance is first demonstrated on the cleaned filtered tree of the LHC18b dataset
and compared to the parametrization found in Run 2. Based on the availability of clean sam-
ples, electrons, pions and protons are used for the fit procedure. The ratios ((dE/dx)meas.-
(dE/dx)exp.)/(dE/dx)exp for each particle species are shown in figure 5.6. The momentum
was divided into bins and mean and sigma values were calculated in each bin. Since final cor-
rections are not applied here, a fit on the precision of few percent is sufficient.
Overall, the performance of the HPO algorithm without particle assigned is similar to the pa-
rameters found with the method in Run 2. Qualitatively, it is notable that for pions, the HPO
algorithm performs better than the method used in Run 2 at the minimum ionization region,
while for protons the binned mean values show a better fit for the Run 2 parametrization.
For electrons, the results from the HPO algorithm are preferable at higher momenta (p ≥ 0.5
GeV/c). Overall, both mean and maximum estimation perform similarly well and result in
parametrizations which capture the underlying data distributions on the order of few percent.

Comparing the results of the loss function, the mean estimation achieves an overall lower
score of 0.001866 compared to the maximum estimation with a score of 0.03186. This indicates
higher fluctuations of the assigned maxima over the bins in βγ. From this, it can be concluded
that the maximum estimation needs stronger regulation for the minimum number of points
per bin in order to minimize statistical fluctuations of the density maxima. It further implies
that a higher amount of data is needed in order to obtain stable and thus reliable results.

In order to investigate the performance with known particle identities, the fit was repro-
duced with an initially fixed particle identity for each track based on the identity provided in
the clean samples. The results are shown in figure 5.7. Here it can be clearly seen that the
mean estimation performs better than the maximum estimation for protons, while the perfor-
mance over pions and electrons is similar for both methods. This can indicate an excessively
granular binning was chosen for the maximum estimation to work.
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Figure 5.7: Comparison of the HPO performance for fixed particle identities with the Run 2
parameterization for identified electrons, pions and protons.
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In comparison with the previously presented results from Run 2 (see figure 5.6) it can be
noted that the HPO algorithm performs overall better and in particular the mean estimation
algorithm performs better than 1% of deviation to the Gaussian fits in regions where the par-
ticle identity is kinematically separated from other particle species (p(π)≥ 0.5 GeV/c, protons
in the full kinematic region, p(e) ≥ 0.5 GeV/c).
By the output of the score functions, it can be noted again that the approach of calculating
mean values performs more stably due to an overall lower loss score of 0.0191 compared to
0.0523 for the maximum estimation approach. Further investigations have to be conducted in
order to determine an optimal working point and an optimal amount of data for both versions
of the algorithm.

Besides potentially suboptimally tuned parameters, it can be noted that the hyperparameter
optimization framework can perform at least similarly well if not better than the framework
used in Run 2 and shows promising results for clean samples.
Finally, the resulting curves were compared to the parametrization from Run 2 to investigate
the overall difference in different kinematic regions. The result is shown in figure 5.8 together
with the approximated, data-covered regions for each particle species.

Figure 5.8: Difference in [%] between the Bethe-Bloch parametrization obtained in Run 2 and
the parametrizations obtained from the HPO algorithm with different settings.

It can be noted that all parametrizations show a tendency towards higher values for dE/dx
at the same values for βγ for the low-βγ region where protons dominate the fit and a tendency
towards lower values than the parametrization from Run 2 for high values of βγ, close to the
Fermi plateau where electrons dominate the data distribution.
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5.3.1 Improvement on clean data with gradient descent
In order to improve the fit, gradient descent can be used for fixed particle identities on clean
samples or with a particle assignment based on a sufficiently good initial parametrization from
the hyperparameter optimization. Gaussian profiles are fitted to each of the assigned distri-
butions in slices of momentum and hence, mean values can be estimated. With a sufficient
number of bins, gradients can be estimated for all parameters and the fit can be conducted
based on update steps to each of the parameters entering the parametrization. The results of
the gradient descent are compared to the results obtained with the hyperparameter optimiza-
tion in figure 5.9.

Figure 5.9: Gradient descent method together with the HPO results as a ratio to the Run 2
parametrization.

As can be seen, the gradient descent shows great similarities with the results found by the
hyperparameter optimization. On the Fermi plateau, the parametrization shows agreement
with the results from the HPO for the mean estimation and fixed particle identities. At low
momenta however, the parametrization shows higher agreement with the results from Run
2 than with the mean estimation of the HPO. Since data density is rather sparse in this re-
gion, it can hardly be determined which curve fits the data better. Overall, all methods show
good agreement within few per-cent, with the gradient descent being a further tool for im-
provement which can be applied after sufficiently good initial parameters were found by the
hyperparameter optimization framework.

5.3.2 Performance on full data (LHC22f)
The possibility for applying the algorithm on contaminated data samples opens the opportu-
nity to investigate data collected in Run 3 of LHC. Tracks can be propagated from the primary
vertex to the TPC, giving reliable momentum and dE/dx information. Hence, the HPO algo-
rithm was applied to perform the initial calibrations for LHC22f (and further datasets of the
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LHC22 periods, the performance is demonstrated here on LHC22f). This dataset was taken
in July 2022 with a record energy of LHC of

√
s = 13.6 TeV in proton-proton collisions. The

result for data taken from a small fraction of the dataset are shown in figure 5.10.

Figure 5.10: Performance of the mean and maximum density estimation on uncleaned data of
the LHC22f dataset.

A noticeable difference between the data and the fitted curve is apparent for the electrons.
Although data density is limited, the fit was performed before also on different datasets from
Run 3 which all showed a similar behaviour. This could indicate that the wrong region of
phase-space is used for the Bethe-Bloch parameters, or the curve itself cannot capture the
features for low momentum electrons. A feature that can be observed in the data is that the
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gradient for low momentum electrons is much stronger than what was observed in the Run 2
data. Especially close to the cross-over with pions, the electrons show disagreement with the
fitted curves. Ultimately, this feature will be captured by the neural network corrections (see
next section), but it remains a topic of investigation to test different regions of the phase space
spanned by the Bethe-Bloch parameters.

Pions and protons are showing agreement in kinematic regions where they can be cleanly
selected by their TPC signal. However, only with clean samples can the cross-over regions be-
tween different particle species be investigated and potential differences between the fit and
the data be visualized.

It can be noted that both the mean and maximum searches perform similarly well. For
electrons, the maximum search performs slightly better and shifts the curve towards lower
values, thus centering more on the distribution. In contrast, the mean parametrization per-
forms slightly better for low momentum protons. For pions, both parametrizations perform
almost identically. This illustrates, that the minimum ionizing region (dominated by pions) is
well captured by the curve, while the relativistic rise where particle species overlap (mainly
pions, kaons and protons) still shows residual tension.
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5.4 Mean correction with neural networks
After clean samples have been selected, a mean correction using neural networks is applied in
this thesis. This represents a possible replacement for the per-dimension corrections applied
by the spline fit used in Run 2.

The choice of the network architecture is based on the training performance (MSE score)
and fit performance on final datasets. Since the networks will be applied in many analyses
within the ALICE collaboration on (multi-)CPU powered machines, a trade-off between ac-
curacy, computation time and memory consumption has to be made. For the purposes of the
mean correction, a large fully connected network with 10 hidden layers and 12 neurons per
layer is trained initially. This network learns an initial correction for the mean, but is com-
putationally too expensive for a large scale inferencing. Hence, a second, smaller network (3
layers, 8 neurons per layer) is trained on the output of the larger model which can then be
applied in the O2 software framework at runtime.

The network is trained to learn the ratio dE/dxmeas./dE/dxexp. where the expected signal is
given by the Bethe-Bloch functionwith parameters determined from the initial fit. As an input,
the network obtains properties of the tracks measured in the TPC.
These are

1. momentum at the inner wall of the TPC: p in GeV/c

2. tangent of the local track inclination angle: tan(λ)

3. sign of the charge of the particle divided by the transverse momentum: sign(q)/pT

4. mass (hypothesis) of the particle: m in GeV

5. multiplicity of the TPC normalized to 11000: MULTTPC/11000

6. number of clusters of a track measured in the TPC normalized to the maximum number
of clusters of 159 rows (Run 2) / 152 rows (Run 3) in the TPC:√
159/NCLTPC (Run 2) ;

√
152/NCLTPC (Run 3)

The normalization for each variable is chosen to keep the values close to the range of [0,1].
The choice of the parameters is inspired by the most significant variables influencing the mean
corrections and sigma estimations determined in Run 2. In particular, the dependence on
momentum and the local track inclination showed significant dependencies throughout Run
2.

5.4.1 Mean correction values from training on cleaned data
Using the MSE as the loss function during training, the network learns the mean values of
dE/dxmeas./dE/dxexp. in the six-dimensional space spanned by the input variables and thus a
correction to the Bethe-Bloch parametrization can be applied as

dE/dxcorr. = dE/dxexp. · netmean. (5.1)

In order to compare the neural network corrections directly to the corrections applied in Run
2, the same initial parameters as in Run 2 are being used for the training of the network. The
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corrections are applied for both cases. The resulting distributions are binned in momentum
and the mean is taken in each bin. The results can be found in the figures (5.11).

Figure 5.11: Mean corrections applied to the clean samples for the Run 2 and neural network
approach.

As can be seen on the right-hand plots, the network correction results in fitted mean val-
ues better than 3‰ and performs overall similarly well as the spline fit from Run 2. Larger
tension is observable for electrons at low momenta for the corrections from Run 2 since low-
momentum corrections are not applied for p ≤ 0.15 GeV/c. However, this region is well
captured by the neural network and shows deviations of typically ≤ 3‰ from the expected
values of the mean at 0. Slight tension can be observed for both methods for protons at lower
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momenta, which could however also be due to limited statistics. The overall success of the
small architecture of the neural network shows that the correction factors do not fluctuate
strongly over the phase-space.

5.4.2 Comparison of η-map corrections
In order to compare the corrections on a per-dimension basis, the corrections in the (tanλ,
1/(dE/dxexp))-space are plotted (so called η-maps). This showed one of the most dominant
dependencies throughout Run 2 and indicates whether similar corrections were found by the
neural network as compared to the spline fit. The results are shown in figures 5.12 and 5.13.

Figure 5.12: Mean corrections for protons in the (tan(λ),1/(dE/dxexp)) space for the neural net-
work (left) and the spline fit (right).

Figure 5.13: Difference between the η-maps (left) and the density of data points (right).

The comparison between the η-maps shows a smoother overall behaviour for the correc-
tions from the spline approach. However, this can indicate that high-dimensional features or
correlations are not captured by the two-dimensional approach, but can be seen by the fluc-
tuations in the η-map for the network corrections. Overall, the corrections show similarities
for both methods, which is also shown by taking the difference between the two η-maps (see
figure 5.13, left). It is noticeable that around tan(λ) ≈ 0 a structure is visible in the spline cor-
rection, but hardly noticeable in the neural network fit. This could indicate potential problems
for small values of the input in the neural network fit.
However, further, more extensive testing would need to be conducted to investigate the be-
haviour in all corners of the phase space, which reaches outside the scope of this thesis.
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5.4.3 Fluctuations of the mean correction values
In order to investigate the fluctuations of the correction values to the mean Bethe-Bloch
parametrization, an ensemble of 15 neural networks was trained on the same dataset with
identical settings. The only difference between the networks is the random sampling for train-
ing / validation data and the initialization of the weights and biases of each neuron which are
randomly sampled from a standard normal Gaussian distribution. Based on the results, the
standard deviation of the correction values to the mean parametrization can be determined
and is shown for each species in figure 5.14.

Figure 5.14: Deviation of the mean correction factors produced by a neural network ensemble
for momentum and tan(λ).
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From these plots it can be seen that low data-densities clearly impact the stability of the net-
work fits (e.g. electrons at p ≥ 6 GeV/c, protons at p ≤ 0.7 GeV/c). It can further be observed
that a large fraction of the correction values are typically found within 5‰ around the mean
of the ensemble. This shows that the network fits will typically produce corrections with an
accuracy of ≤ 5‰. The clearly visible outliers in these distributions (e.g. standard deviation
≥ 1%) were investigated based on a random selection and were found in regions of low data-
density or at the corners of the phase space (e.g. at low and high momenta for each particle
species). This further demonstrates the necessity for an equal distribution of data across the
phase space of interest which can be achieved by e.g. down-sampling in pT using the Levi-
Tsallis distribution of particle yields since the overall statistics will cover the phase space well
in Run 3.

Increasing tension can be observed for pions and protons in the region of tan(λ) ∼ 0.
This could indicate that larger fluctuations in the dE/dx signal are apparent since tan(λ) ∼ 0
implies λ ≈ 0 and hence this also correlates to tracks which get absorbed by the central elec-
trode. Hence, missing statistics in this phase-space region could be an explanation of this
phenomenon, but further investigations have to be conducted before a final verdict can be
given.

The mean fluctuations could possibly be further suppressed by training the networks with
more epochs. In the case demonstrated in this thesis, a learning rate scheduling together with
decreasing batch-sizes and 200 training epochs were used to produce the neural networks with
≈ 6.2× 105 data-points in total.
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5.5 Sigma estimation with neural networks
The estimation of the uncertainty of the data is an essential part of particle identification, since
it defines the significance with which a selection is made and is required to do Nσ selections
on the final distributions. In case of the TPC PID, the data distribution for each particle species
can be well approximated by a Gaussian distribution in dE/dx for every slice in momentum.
The mean value and standard deviation change as a function of the observables that span the
phase-space.
In order to estimate the standard deviation of the data, a reliable mean estimation has to be
done in the first place. After this, the distribution can be centred accordingly (the mean of the
distribution is at / close to 0 in the full phase-space) and the standard deviation can be fitted
as shown in the following.

The Gaussian distribution N (x, µ = 0, σ), x ∈ R is considered. This corresponds to the
centred point-density distribution with x = dE/dx at every point in the considered phase-
space (the mean correction has been applied) where the standard deviation should now be
estimated. Taking the absolute values in x (i.e. x = dE/dx) and normalizing the distribution
yields

N ∗(x) := 2N (x, µ = 0, σ)θ(x) (5.1)

where θ(x) = IR+
0
(x) is the indicator function and σ is the standard deviation of the original

Gaussian distribution. TheN ∗(x)-function in comparison to the original Gaussian distribution
is shown in figure 5.15. The mean µ∗ of this function can be calculated as

µ∗ =

∫ ∞

−∞
x · N ∗(x)dx

=

∫ ∞

−∞
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(5.2)

Hence the neural network training can be performed on the centred distribution of abso-
lute values of dE/dx. By using the MSE loss and fitting N ∗(x), the standard deviation of the
original dataset can be learned by a neural network where σ(x) =

√
π
2
· NN(N ∗(x)). The

N ∗-distribution can be constructed from the centred dE/dx distribution by taking the abso-
lute values, N ∗(|dE/dxmeas.−dE/dxexp.·netmean

dE/dxexp.·netmean
|). Figure 5.15 illustrates the location of the mean of the

N ∗-distribution together with the original Gaussian distribution (σ = 1 was chosen for illus-
tration purposes).
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Figure 5.15: Comparison between original Gaussian distribution and the N ∗ distribution.

In order for the mean and sigma to be on similar scales and in order not to skew the neural
network values by learning values with larger discrepancies, the final network is trained to
learn the mean correction in the first output dimension and the mean correction + sigma
estimation in the second output dimension. Like this, both dimensions that need to be learned
are close to 1.
In figure 5.16, a representation of a fully trained network together with the connecting weights
(line thickness) can be seen. Neurons are represented as circles, edges between neurons are
represented with lines.

Figure 5.16: Neural network (final architecture) with the connecting weights represented by
the line-thickness between adjacent layers.
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5.5.1 Mean correction with sigma estimation applied to data
Using the mean correction from the neural network from the previous section and estimating
mean and sigma values in slices of momentum results in figure 5.17.

Figure 5.17: Nσ distributions for identified electrons, pions and protons with the method from
Run 2 and the neural network application.

As can be seen from the plots, the Nσ distributions are capturedwell by bothmethods. How-
ever, the network shows an overall smoother behaviour for the sigma estimation and shows
fewer fluctuations in the mean (e.g. electrons at high momenta, pions at low momenta) in two
dimensions. Since the Nσ selections for the TPC will be performed in the (p, dE/dx) space by
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the analysers, this plot represents the final correction quality and ultimately determines which
tracks pass the selection.

To show the capability of fitting a high dimensional space and that there are cross-variable
correlations, the Nσ plots were performed against tan(λ). The result is found in figure 5.18.

Figure 5.18: Nσ distributions for identified electrons, pions and protons with the method from
Run 2 and the neural network application.

This clearly demonstrates that, besides the application of an η-map correction, correlations
between the variables in higher dimensions exists, which are not captured by the approach of
a spline fit in each observable individually. Tension between the corrected data and the calcu-
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lated mean values is clearly apparent in almost all regions of tan(λ) for the approach of Run 2
and is particularly strong for electrons. While slight tension is also visible for the corrections
of the neural network at tan(λ) close to 0, the deviations are far less pronounced. It remains
a topic of investigation which dependencies cause the fluctuation at tan(λ) ≈ 0. A physical
reason for such a behaviour could be tracks which get absorbed by the central electrode, since
tan(λ) ≈ 0 corresponds to tracks passing the TPC in parallel to the central electrode. Upon
investigation of the location of points with tan(λ) ≈ 0 in other dimensions, no clear depen-
dence or outliers in any dimension could be found. This could indicate that crucial observables
for understanding and balancing this behaviour are not yet included in the input to the neural
network.

Similar to the mean correction, the predicted sigma values by the neural network have been
measured with the ensemble for each track. The result is shown in figure 5.19.
As can be seen in the figure, the fluctuations for the sigma estimation are of similar scale and
even slightly better than the fluctuations for the mean correction values. Enhanced fluctua-
tions can be observed for higher momenta with pions and protons, where data density gets
sparser and potential contamination from other particle species interferes. An overall higher
spread is observed at large absolute values of tan(λ) (close to 1 and -1) is found for pions.

The apparent double structure at | tan(λ)| > 0.5 (most prominently seen for pions) was
investigated and it was found that the points with an overall lower standard deviation of the
ensemble have (on average) a higher mean correction factor. These points are typically located
close to theminimum ionizing regionwhere the data point density is high andmean correction
factors greater than 1 were typically found by the network. The secondary ridge with higher
values of the standard deviation of the ensemble was found in regions of lower data density
with momenta over p ≥ 2 GeV/c for pions and mean correction values close to and below 1.
This further demonstrates the necessity for sufficient data in all regions of the phase space.
In particular, in the high momentum range, highly energetic cosmic particles could provide
great value by being a reliable source and covering the full phase space uniformly. However,
it remains to be seen whether enough statistics can be gathered from cosmic tracks.
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Figure 5.19: Deviation of the sigma estimation produced by a neural network ensemble for
momentum and tan(λ).
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5.6 Technical aspects on training and inferencing
The neural networks used in this thesis will have the main purpose of being applied at analysis
time in the O2 software framework. Since it will be used in many analyses, the main focus is
put on efficient calculations, while it must be ensured that the network is not overtraining on
the training data.

Firstly, the loss scores over the training epochs is investigated. If the network overtrains on
the training data, it will be immediately visible on the validation score. The validation score
will increase again after a certain number of epochs, while the training score decreases. This
would correspond to a good fit of the network to its training data while missing the data-
points in the validation set. For the training, at each epoch 10% of all data is kept in aside as
validation data while 90% is used for training the network. A more typical split would be 80%
in the training data and 20% in the validation set, however since physics-wise all data in which
samples are clearly identifiable can be used to train the network, this split was chosen such
that the a higher amount of data is used for training. The obtained loss scores of the networks
are shown in figure 5.20 as a function of the number of training epochs.

Figure 5.20: Loss scores of the networks trained for the mean and sigma estimation, as well as
the full network for the application in O2.

Firstly, it can be seen that no over-training has occurred. The low loss score of the full net-
work can be explained since it does not retrain on the data itself, but rather only on the values
produced by the previous two networks for the mean correction and sigma estimation. This
demonstrates that the high-dimensional features can already be learned well by a comparably
small network, which makes inferencing more efficient and allows the application at runtime.
It is further noticeable that the loss for the estimation of the standard deviation tends to sys-
tematically lower values. An explanation for this behaviour can be given as data is denser for
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the sigma estimation due to the use of the absolute values in the N ∗-function and hence a
better fit is achieved.

Fluctuations in the loss score areminimized over the epochs by using a learning rate schedul-
ing which decreases the learning rate after a defined amount of epochs (here 5 epochs) if the
loss score has not improved significantly. This adds beneficial effects on reaching the local
minimum in the loss surface.

The application in the O2 software framework shows no significant increase in computa-
tion time (wall time) on multi-CPU machines, but it was observed, that CPU time increases
drastically on calling the Run()-function of the ONNX framework with spikes of up to 18 sec-
onds per call. Typical functions of the tasks are found at around 2.2 seconds (CPU time). The
difference shown in 5.21 (a) and (b). One network evaluation (i.e. one track and one mass
hypothesis) takes around 52 ns (wall-time) and is hence comparable with the application of a
multidimensional or convoluted C++ function.

(a)

(b)

Figure 5.21: CPU time used for the tasks in O2 without (a) and with the neural network appli-
cation (b).
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Various optimizations are under investigation at the time of writing this thesis to reduce
this time and make calculations more efficient. Further tests have to be conducted on the hy-
perloop analysis system on which analyses will be run by many analysers and the impact on
single- and multi-CPU machines.
Further considerations had to be taken for the optimization of the memory consumption. Each
call of the ONNX Run()-function is computationally expensive, hence tracks are stored in an
array and the Run()-function is only called once. Storing all tracks of a collision in one array
and applying the network for each particle hypothesis posed a problem to the memory con-
sumption of the task. Hence the network was applied on a per-species basis (total of eight calls
of the Run()-function, instead of one call). This did not measurably increase wall time, but re-
duced thememory consumption to a sufficient level. Applying the neural network shows≈250
MB higher memory-consumption (resident set size) of the tpc-pid-full task (here the network
is applied) while leaving all other tasks untouched. This corresponds to a 23% higher memory
consumption of ≈ 1.35 GB (accumulated over runtime) compared to ≈ 1.1 GB without the
network. The memory consumption of all tasks is shown in figure 5.22 (a) and (b).

(a)

(b)

Figure 5.22: Memory consumption for the tasks in O2 without (a) and with the neural network
application (b). The tpc-pid-full task, where the network is applied, is marked
with an arrow
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Extrapolation capabilities of the neural network pose an interesting question about fluc-
tuations and the behaviour in regions outside the training data of the neural network. This
topic is of particular interest for the clean selection of light nuclei for which training data is
typically to sparse. Unfortunately it cannot be guaranteed that the neural network performs
well for regions of extrapolation, since this is also an open question in the machine learning
community. Considering their masses, deuteron, triton and helium nuclei are on the order of
magnitude protons, hence it is very much plausible that an extrapolation is feasible, however
this will ultimately be determined once sufficient statistics are available during the Run 3 data
taking.
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In conclusion, new, powerful tools for particle identification with the TPC detector were pre-
sented in this thesis. Starting with the initial parameterization, a novel method for the de-
termination of initial parameters based on hyperparameter optimization was demonstrated
which does not rely on initially assigned particle identities but can perform similarly well, if
not better, than the approach used during Run 2 with identified tracks for each species.
Based on neural network regression, the new framework is capable of finding corrections to a
parametrization of the mean energy loss per unit distance given by the theoretical prediction
of the Bethe-Bloch formula. It is further capable of estimating the uncertainty of a Gaussian
shaped particle density distribution and in contrast to the spline fit used in Run 2 of LHC, the
neural network can perform both tasks in high dimensions.
In connection with the work performed in this thesis, neural network applications have been
integrated into the new ALICE analysis software (O2) and are available for users at runtime.

Overall, the methods are mainly limited by the availability of data in different corners of
the phase-space, which will be no obstacle in Run 3 of LHC due to detector upgrades allowing
for ≥ 50 times higher raw data taking capabilities. A particular advantage of the presented
method is that it does not rely onMonte-Carlo driven data for training, but it rather represents
a fully data-driven approach with full functional flexibility for the a priori unknown correc-
tion factors and sigma values at all corners of the covered phase-space. Moreover, it does not
require multiple iterations to find sufficiently good corrections to the initial parametrization.
The correction factors in every corner reach stable values with a precision of≤ 3‰ once data-
density is sufficiently high and enough epochs are used to train the network. Since statistics
were overall limited in the tests performed in this thesis, it remains to be seen how much data
needs to be gathered to make a firmly reliable neural network fit and how often a fit has to be
performed.
Further research has to be conducted in order to optimize the amount and distribution of data
over the phase-space for training, to find optimal working points of the neural network and
the hyperparameter optimization and to investigate the extrapolation behaviour of the neural
network to other particle species such as e.g. deuteron, triton or Helium-3.
Especially at high momentum (≥ 8 GeV/c), cosmic tracks are foreseen to cover a wide region
of the underlying phase-space while being a uniformly distributed. Additionally, kaon sam-
ples can be selected kinematically in low momentum with the TOF detector and weak decays
of omega baryons (Ω → KΛ).

Finally, it has to be said that ultimately the performance can only be investigated by per-
forming a specific physics analysis (e.g. a D0 meson analysis in the golden channel D0 →
K−π+, where particle identification is key due to the large combinatorial background at low
momentum). This would show misidentifications and inefficiencies of the neural network fit
and could guide the direction for further developments.
The full potential of this neural network regression is yet to be uncovered, as several criteria
for clean selections were not fulfilled for the high statistics in Run 3 data at the time of writing

57
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this thesis. However, the research conducted in this thesis on Run 2 data shows very promising
results and extends the achievements of deep learning in ALICE.
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