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Abstract

The evolution of the quark-gluon plasma (QGP) that forms in heavy-ion collisions has
been shown to be described well by the theory of relativistic viscous fluid dynam-
ics. Since the fluid dynamic properties of the QGP are not accessible experimentally
in a direct way, they have to be inferred by modeling the evolution of the system.
Such modeling based on event-by-event simulations of individual collisions has been
demonstrated to reproduce the average yields of particles at midrapidity with specific
transverse momentum (transverse-momentum spectra) observed in experiment, how-
ever, it is associated with a high computational cost. A newly developed software
package for heavy-ion collisions called Fluidum provides modeling of the fluid dy-
namic evolution at low computational cost when given an initial entropy density pro-
file as well as parameters describing the initial state and the evolution. An optimiza-
tion of these parameters is performed, such that the produced model output fits best
transverse-momentum spectra of pions, kaons, and protons from Pb-Pb collisions at
p

sNN =2.76 TeV at the LHC measured by ALICE. This is done within a bayesian frame-
work inferring bayesian estimates and uncertainties for each of the parameters using
a feed-forward neural network ensemble emulator model and Markov chain Monte
Carlo simulations, fully developed in the context of this thesis.

Zusammenfassung

Die Dynamik des Quark-Gluon-Plasmas (QGP), das sich bei Schwerionenkollisionen
bildet, lässt sich nachweislich gut durch die Theorie der relativistischen viskosen Fluid-
dynamik beschreiben. Da die fluiddynamischen Eigenschaften des QGP experimentell
nicht direkt zugänglich sind, müssen sie durch Modellierung der Evolution des Sys-
tems abgeleitet werden. Es hat sich gezeigt, dass eine solche Modellierung, die auf
Event-für-Event Simulationen einzelner Kollisionen beruht, die im Experiment beo-
bachteten durchschnittliche Teilchenanzahlen bei mittlerer Rapidität mit spezifischem
Transversalimpuls (auch Transversalimpulsspektren genannt) reproduzieren kann, al-
lerdings häufig mit einem hohen Rechenaufwand verbunden ist. Ein neu entwick-
eltes, auf Fluiddynamik basierendes Softwareframework namens Fluidum ermöglicht
die Modellierung der fluiddynamischen Evolution des Systems mit geringem Rechen-
aufwand. Dafür müssen lediglich ein initiales Entropiedichteprofil sowie Parameter,
die den Anfangszustand und die Evolution beschreiben, definiert werden. In dieser
Arbeit werden diese Parameter optimiert, sodass das theoretische Modell die Transver-
salimpulsspektren von Pionen, Kaonen und Protonen aus Blei-Blei-Kollisionen bei
p

sNN =2.76 TeV, gemessen durch das ALICE Experiment am LHC, bestmöglich re-
produziert. Dafür werden innerhalb einer neu entwickelten Bayesianischen Analyse
Bayesianische Schätzungen und Unsicherheiten der Parameter unter Verwendung eines
Ensembleemulators aus neuronalen Netzen und einer Markovketten Monte Carlo Sim-
ulation abgeleitet.
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Chapter 1

Introduction
High-energy heavy-ion collisions at the Large Hadron Collider (LHC) at the European
Organization for Nuclear Research (CERN) provide the opportunity to study Quantum
Chromodynamics (QCD), the quantum field theory (QFT) of the strong interaction, at
high temperatures and energy densities. Under these conditions, a new state of matter
is formed, the so-called quark-gluon plasma (QGP), in which the quarks and gluons
are deconfined and move almost freely within the strongly coupled plasma. Accord-
ing to the generally accepted model of the origin of the universe, the matter in the
universe existed in the state of QGP within the time from 10�12 to 10�5 seconds after
the Big Bang [1]. Thus, understanding the formation and evolution of the QGP can
provide important information about the formation and evolution of the universe. Ex-
perimentally, the QGP can be produced in the laboratory via heavy-ion collisions and
is examined in large experimental programs at CERN and other facilities around the
world. Specifically designed to study the physics of strongly interacting matter at large
energy densities where the QGP forms, is ALICE (A Large Ion Collider Experiment),
one of the four major experiments at CERN [1]. However, the QGP is inaccessible via
direct measurements because it exists only for a short period of time and in a small
region of space. Only the final state of the free-streaming particles can be captured by
the detectors after the system has undergone an evolution with complicated dynamics.
To access important characteristics of the QGP nonetheless, the evolution is modeled
theoretically and the output can be compared to experimental observables.
It has already been demonstrated, that the evolution of the QGP can be described by
relativistic fluid dynamics [2]–[4]. Based on this description, the characteristics of the
QGP have been examined recently based on a Bayesian analysis [5], [6], which is how-
ever severely limited by the computational expense of the simulation model.
In this thesis, a Bayesian analysis will be performed with a much more efficient software
package called Fluidum [7], which solves the fluid dynamic equations of motion based
on a mode expansion approach. Together with the phenomenological model Trento [8],
which is used to produce the initial conditions for Fluidum, and the model FastReso
[9], which describes the hadronization of the fluid field and therefore the production of
the final particles, a theoretical model is formed that expresses the whole evolution of a
heavy-ion collision based on a few parameters. In this analysis, the goal is to optimize
these parameters using ALICE data of Pb-Pb collisions at

p
sNN = 2.76 TeV. In this

context, a Bayesian optimization procedure adapted to the more efficient simulation
model is developed, which includes an ensemble of neural networks for emulation.
In pursuit of this goal, the thesis has the following structure: In chapter 2, the theoret-
ical groundwork is laid by the introduction of the physics of the QGP and heavy-ion
collisions. After that, in chapter 3, the modeling of heavy-ion collisions is elaborated
on, including the initial conditions, the fluid dynamic evolution of the QGP, and the
hadronization. In chapter 4, the machine learning methods that are used within this
work are introduced. This comprises neural networks and Markov-chain Monte-Carlo
simulations. After that, the analysis is developed and performed in chapter 5, before in
the results are discussed in chapter 6 and a conclusion is given in chapter 7.
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Chapter 2

The Standard Model and Quantum
Chromodynamics
The Standard Model of particle physics (SM) is a theory classifying all elementary par-
ticles as well as covering three of the four fundamental forces of the universe. It in-
cludes the strong, the weak, and the electromagnetic force while the gravitational force
is currently not described by it. The elementary particles are categorized into groups ac-
cording to their characteristic masses and quantum numbers. The SM includes twelve
spin-1/2 particles (fermions) and thirteen particles with integer spin (bosons). The
fermions can be divided based on their interaction: leptons interact via the electro-
magnetic and weak force and quarks can additionally interact via the strong force. The
different species of leptons and quarks are organized into three generations with two
particles each. Quarks form composite particles called hadrons that are made of two
or more quarks. Mesons refer to quark anti-quark pairs and baryons refer to compos-
ite particles with three quarks. Among the bosons in the SM, there are twelve gauge
bosons of spin 1, which act as the force carriers of the interactions: the photon mediates
the electromagnetic interaction between charged particles, the W+, W� and Z bosons
mediate the weak interaction between particles of different flavors, and the eight gluons
mediate the strong interaction between quarks. Furthermore, there is a special boson,
the Higgs boson, which has a unique role in the SM because it gives some particles a
mass via the Higgs mechanism. A collection of all particles covered by the SM and their
characteristics is given in fig. 2.1.

FIGURE 2.1: The elementary particles of the Standard Model of particle
physics. Taken from [10].
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Mathematically, the SM can be expressed in terms of a non-abelian gauge theory within
the framework of quantum field theory (QFT). In quantum field theory, each particle is
described as an excitation of a corresponding quantum field and all interactions are de-
scribed by interaction terms in the Lagrangian density involving these quantum fields.
As all field theories, also the SM is based on a certain set of symmetries. The symme-
try that predominantly defines the SM is the local U(1)⇥SU(2)⇥SU(3) gauge symme-
try, where the three factors are connected to the three interactions of the SM. The last
term, the local SU(3) symmetry, relates to the strong interaction, and the part of the SM
describing this is called Quantum Chromodynamics (QCD). Since QCD provides the
framework to describe the formation of the quark-gluon plasma, which is the subject of
this thesis, it will be laid out in more detail in the next section.

2.1 Quantum Chromodynamics

Quantum Chromodynamics is the quantum field theory of the strong interaction. The
particles that are involved in the theory are the six quarks that can be classified by their
masses and charges into three generations. The first generation contains the up (u) and
down (d) quarks, the second the charm (c) and strange (s) quarks, and the third the top
(t) and bottom (b) quarks. These species are also referred to by their flavors. In QCD,
each flavor of quark comes in three different colors, which are introduced as the charges
of the strong interaction. The color charge states are called red (r), blue (b), and green
(g), nevertheless they are completely unrelated to the normal meaning of color and are
rather a notation of the charge states. In QCD, the quarks may then be represented by
the quark fields Y f

C
( f = 1, 2, ..., 6, C = r, g, b), which are the quantum fields for the

flavor and color states. The color states of the quarks give rise to the SU(3)C symmetry
of QCD, this can be expressed mathematically by the invariance of the color triplets
Y f = (Y f

r , Y f

g, Y f

b
)T under SU(3) local transformations [11]:

Y f (x) ! Y0 f (x) = exp[i gs a(x) · T̂]Y f (x). (2.1)

In this equation, a(x) are eight functions of the space-time coordinate x and T̂ = {Ta}

are the eight generators of the SU(3) symmetry, also related to the Gell-Mann matrices
la by

Ta =
1
2

la, a = 1, ..., 8. (2.2)

gs is the coupling strength, which can also be expressed in terms of the fine-structure
constant of the strong interaction as by

as =
g

2
s

4p
. (2.3)

The eight generators of the SU(3)C symmetry can be associated to eight massless vec-
tor bosons, the gluons, which mediate the strong force between colored particles. In
contrast to the force carrier of Quantum Electrodynamics (QED), the photon, gluons
carry charge themselves, such that they can also participate in the strong interaction
in addition to mediating it. They carry a pair of color and anti-color, leading in total
to eight independent color combinations for the eight gluons. Since gluons carry color
and mediate the strong force between colored particles, gluons can also interact with
other gluons. This self-interaction in QCD has some important implications and makes
QCD significantly harder to analyze than QED. In QCD, the gluons are associated to the
gluon fields G

a
n, where a = 1, 2, ..., 8 specifies the gluon color charge while n = 1, 2, 3, 4
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denotes the space-time component. The dynamics of the gluons can be described by
the gluon field strength tensor G

a
µn using the gluon fields G

a
n and the structure constants

fabc:

G
a

µn = ∂µG
a

n � ∂nG
a

µ + gs fabcG
b

µG
c

n (2.4)

The last term in eq. 2.4 accounts for the gluon self-interaction. It occurs in the theory
since the generators of the SU(3) symmetry group do not commute ([Ta, T

b] = fabcT
c 6=

0). The full dynamics of QCD are expressed in the Lagrangian density LQCD (for a
given species of quarks), which is given by [12]

LQCD = Ȳ
�
igµ

Dµ � m
�

Y �
1
4

G
a

µnG
a,µn, (2.5)

where the first part accounts for the quark dynamics and the second part describes the
gluon interactions. Dµ is the gauge covariant derivative which is given by

Dµ = ∂µ � igs

la

2
G

a

µ (2.6)

and couples the quark field with the coupling strength gs via the generators Ta to the
gluon fields. An important feature of non-abelian gauge theories as QCD that is con-
nected to the gluon self-interaction is asymptotic freedom, in which the strength of
the QCD coupling constant as varies with the momentum transfer q

2 of the interact-
ing particles. Whereas for small momentum transfers the coupling strength is rather
large, for large momentum transfers, respectively at large energy scales, the coupling
strength decreases. For example, the coupling strength at |q| ⇠ 1 GeV is O(1) and at
|q| > 100 GeV is O(0.1). Mathematically, the running of alpha can be treated by renor-
malization theory, which leads to the following behavior [11]:

as(q
2) =

as(µ2)

1 + 33�2Nf

12p as(µ2) ln
⇣

q2

µ2

⌘ . (2.7)

Nf is the number of quark flavors and µ2 is an arbitrary reference scale. Since Nf  6,
33 � 2Nf is always greater than zero and hence as decreases with increasing q

2 for
QCD. This behavior has been verified experimentally as shown in fig. 2.2. Another
consequence of the gluon self-interaction respectively the non-abelian nature of QCD
is that for low momentum transfers or at low energy scales, the quarks and gluons
are strongly bound within colorless singlet states. This is known as color confinement
and is the reason why quarks cannot be observed in isolation but are always found in
hadrons like mesons and baryons at temperatures below the Hagedorn temperature of
⇠ 150 MeV. This behavior changes for temperatures above the Hagedorn temperature,
where the quarks and gluons are no longer confined. Then the system reaches a new
type of matter which will be laid out in the next section.

Analytically, solutions to QCD processes are hard or impossible to obtain because of
the features of the strong force. Therefore, perturbative and numerical methods are
usually employed to solve QCD equations. For large momentum transfers, where the
coupling constant is much smaller than one, perturbation theory can be applied. The
equations may then be expanded in powers of the coupling constant and a finite num-
ber of the leading terms may be already sufficient to approximate the solution. This
method is called perturbative QCD (pQCD) in the context of QCD. However, for small
momentum transfers, the perturbative approach is no longer applicable since the cou-
pling constant is O(1). In this regime, a computational technique, the so-called lattice
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FIGURE 2.2: Summary of the measurements of as as a function of the
energy scale Q. Taken from [14].

QCD (lQCD) has been established. In lQCD, the quantum-mechanical calculations are
performed on a discrete lattice of space-time points. For an infinite number of lattice
points and infinitesimal small distances between them the continuum QCD solution
would be recovered. lQCD calculations are computationally intensive and have to be
performed at supercomputing facilities, nevertheless, they have been successful in de-
scribing QCD in the non-perturbative regime. For example, the proton mass was calcu-
lated with a precision of less than two percent using lQCD [13]. However, lattice QCD
is primarily applicable at low matter densities because at large densities the calcula-
tions interfere with a technical problem called the numerical sign problem. Therefore
the strong interaction is only accessible by QCD calculations in limited ranges.

2.2 Quark-gluon Plasma

At large energy densities, the coupling strength of the strong interaction decreases due
to the asymptotic freedom. The quarks and gluons of a system reaching this state be-
come deconfined and are no longer bound to colorless hadrons. The system is then
characterized by the dynamics of the color-charged quarks and gluons. Because of its
similarity to plasma, this new state of matter is called quark-gluon plasma (QGP). The
QGP phase can be reached for temperatures T at QCD scale (⇠ 200 MeV) and/or if the
matter density rises to the point where the hadrons overlap, such that the association
of quarks to specific hadrons is meaningless. This happens if the inter-quark distances
are below ⇠ 1 fm, which is approximately the size of a hadron. The density is often ex-
pressed using the baryon chemical potential µB, which quantifies the net baryon content
of the system. Using the thermodynamic quantities of temperature and baryon chemi-
cal potential, the different phases of a strongly interacting matter can be illustrated in a
phase diagram. Such a QCD phase diagram is depicted in fig. 2.3.
For low temperature and small baryon chemical potential, quarks and gluons are con-
fined into color-neutral hadronic states. Normal nuclear matter is positioned within
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FIGURE 2.3: The QCD phase diagram covering the different phases of
quark matter. Taken from [15].

this region at T ⇠ 0 and µB ⇠ 1 GeV. By increasing the temperature, at some point, the
system reaches the state of the QGP. For vanishing baryon chemical potential µB, lattice
QCD calculations have demonstrated that the phase transition between the hadronic
and QGP state is a continuous crossover rather than a sharp phase transition [16]. Fur-
thermore, the critical phase transition temperature where this crossover takes place,
was estimated by lattice QCD calculation to be at Tc = 156.5 ± 1.5 MeV [17]. The re-
gion at zero baryon chemical potential is of particular interest since the matter in the
universe existed in the state of the QGP with µB ⇡ 0 within the first few microsec-
onds after the Big Bang according to the generally accepted model of the origin of the
universe. Therefore, studying the QGP and its crossover to hadronic matter gives key
insights into the formation of the universe. At larger baryon chemical potentials the
experimental and theoretical understanding of the phase diagram is limited. Lattice
QCD calculations are limited to the region where µB < T because of the numerical sign
problem and perturbative QCD is not applicable for low temperatures. Nevertheless,
at larger µB the crossover is expected to change into a first-order transition passing a
critical second-order point where the continuous crossover turns into a sharp phase
transition [16]. For temperatures below ⇠ 100 MeV and baryon chemical potentials be-
yond nuclear densities the medium is expected to undergo a phase transition to a state
of color superconducting, in which quarks become correlated in Cooper-pairs analog
to metal superconductors [18].
The QGP phase diagram is experimentally only accessible via heavy-ion collision ex-
periments, where sufficiently high temperatures and densities can be reached to pro-
duce the QGP. Depending on the collision energy in these experiments, different re-
gions and trajectories in the QGP phase diagram can be explored. The collision energy
is usually expressed using the center of mass energy per nucleon pair

p
sNN of the col-

lision. Higher collision energies are connected to a higher initial temperature of the
medium and a smaller baryon chemical potential, whereas smaller energies are suited
to study the phase diagram at a larger baryon chemical potential. Many heavy-ion col-
lision experiments have been or are performed to study the QGP phase. Examples of
the low-energy collision experiments are, among many others, FOPI or HADES at GSI,
whereas experiments for example at RHIC or the LHC mostly probe the QGP at large
collision energies. Usually, in these experiments, the beam energy is varied to search
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for the critical point. The exploration of the QCD phase diagram is still an active field
of research, new regions of it will be also investigated in upcoming heavy-ion facilities
like NICA and FAIR at large baryon chemical potential [15].

2.3 Heavy-Ion Collisions

Ultra-relativistic heavy-ion collisions can be used to study the state of the QGP because
they provide large enough temperatures and energy densities to reach this phase. For
heavy-ion collisions at the LHC, which will be studied here, the initial temperature of
the medium exceeds the critical temperature Tc, while the baryon chemical potential
is approximately zero, conditions that are similar to the ones in the early universe.
However, since the state of the QGP in heavy-ion collision experiments exists only for
a very short time of about 10�23 s, it is impossible to perform any direct measurements
in this phase. Only later stages of the evolution of the collision system can be observed
in the detectors. Because of this, an understanding of the full evolution of a heavy-ion
collision is necessary to infer information about the QGP. The space-time evolution of
a collision can be divided into several stages, which are depicted in fig. 2.4. For the
evolution it is convenient to introduce a proper time scale t =

p
t2 � z2, accounting

for relativistic effects such that it is invariant under Lorentz boosts and the space-time
rapidity hs = 1

2 ln
�

t+z

t�z

�
[19].

FIGURE 2.4: The space-time diagram for the evolution of a heavy-ion
collision. Taken from [20].

Using this definition, the following stages are defined, mainly adapted from [20]:

• Initial state At time t = t = 0, the two Lorentz contracted nuclei collide with
ultra-relativistic velocity. The initial state is defined by the positions and interac-
tions of all the constituent nucleons of the nuclei.

• Pre-equilibrium In the pre-equilibrium phase hard scattering processes with large
transferred momenta between the interacting partons may occur, which lead to
the production of a few highly energetic and massive particles, also called hard
probes. However, this stage is mostly dominated by strong interaction dynamics
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between the constituent particles that drive the system to approximate thermal-
ization. The exact dynamic in this stage is not well understood yet.

• Thermal equilibrium and QGP phase After a proper time of t0 . 1 fm/c, the
medium approaches the state of a local thermal equilibrium (the QGP), which can
be described well within the theory of relativistic hydrodynamics [21]. The strong
microscopic dynamics lead to rather small dissipative transport coefficients, such
that the QGP is an almost perfect fluid. Because of the large temperature and
density, the QGP is expanding rapidly, while cooling down.

• Hadronization When the system passes the critical temperature Tc, the QGP starts
to hadronize, and quarks and gluons are confined into hadrons. If there is still a
large enough density, there are many inelastic scattering events, such that the
chemical and kinetic equilibrium is maintained.

• Chemical freeze-out At some point, the temperature of the medium becomes
so low, that inelastic scattering events cease and the chemical equilibrium is no
longer maintained. This process is called chemical freeze-out and the particle
yields are fixed at this point up to decays of particles with very short lifetimes.
The temperature defining the freeze-out is the chemical freeze-out temperature
Tch and it has been argued that it is near the critical temperature Tc [22].

• Kinetic freeze-out If the temperature drops even further, also elastic scatterings
cease and particle spectra and correlations are fixed. This is the kinetic freeze-out,
which occurs at temperatures of Tkin ⇠ 100 MeV.

Ultimately, what can be observed in the detectors are the particle spectra and corre-
lations that arise from the evolution of the system. The particles can originate from
different stages of the evolution. While high energetic particles and heavy quarks come
mainly from the pre-equilibrium phase, light hadrons originate from the hadronization
process.
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Chapter 3

Modeling of heavy-ion collisions
From the whole evolution of a heavy-ion collision, only the free-streaming particles
from the last stage can be measured in the detectors. All the other stages of the evolu-
tion are not directly accessible by the experiments, such that their physical properties
cannot be measured. However, they still have a large impact on the resulting particle
spectra and correlations, such that it can be attempted to infer them indirectly. This
can be achieved by modeling the whole evolution process of a heavy-ion collision and
comparing the results of this modeling to experimental data. The established approach
in the field of heavy-ion collisions is to model every stage of the evolution (as given in
sec. 2.3) individually. The description of each stage is then matched to the others to
obtain one complete model for the full evolution. The physical properties of the stages
can then be inferred by optimizing the model parameters such that the model output
matches the experimental data. This approach has already been used successfully mul-
tiple times [23], [24], however, quantitative estimates for important properties of the
QGP are still not very precise. One reason for this is that the physics of some stages of
the evolution is not fully understood yet and therefore different physical assumptions
can be considered. The goal of this thesis is to contribute to a better understanding of
the properties of the QGP and to provide quantitative estimates for these properties by
applying such modeling. The difference with respect to other analyses is that a newly
developed hydrodynamic software package called Fluidum [7] will be used to model
the stage of the expansion of the QGP. Usually, modeling is mostly based on event-
by-event hydrodynamics, where individual heavy-ion collisions are simulated and the
QGP properties are inferred by averaging over thousands of events. This approach is
computationally expensive but offers the opportunity to also study high-order observ-
ables like flow coefficients and multi-particle correlations. In contrast, Fluidum is based
on averaging the initial event characterization and evolving only this average hydro-
dynamically, therefore it is computationally much cheaper which is advantageous for
a quantitative analysis. In the following, the modeling of all stages of the heavy-ion
collision that will be used in this thesis will be laid out.

3.1 Initial conditions

Initial condition models provide a description for the entropy or energy density at ther-
malization time t0, the time at which the QGP is established and the fluid-dynamic
description becomes valid. There are two conceptually different approaches to model-
ing the initial state. In the static approach, it is assumed that the energy or entropy after
the collision remains unchanged in space-time until the time t0, such that modeling
its density directly after the collision provides also the initial conditions for the hy-
drodynamical evolution at time t0. In contrast to this, in the dynamical approach, the
dynamics of the constituent particles in the pre-equilibrium stage are explicitly mod-
eled in addition, to describe the situation more realistically. Both approaches have been
used successfully in the past and many different models for characterizing the initial
state exist [25]. In this thesis, the non-dynamical Trento model [8], which is connected
to the more general Glauber model, will be used to produce the initial conditions for the
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hydrodynamical evolution, thus omitting a specific description of the pre-equilibrium
stage.

3.1.1 Event characterization

Before the initial condition model is introduced, it is convenient to characterize the
geometry of a collision event. Individual heavy-ion collision events can differ signif-
icantly in entropy production and in the number of produced particles (the so-called
multiplicity) depending on the configuration of the individual collision. Consider the
collision of two nuclei A and B, as it is depicted in fig. 3.2.

FIGURE 3.1: The transverse and longitudinal geometry of a collision.
Taken from [26].

The impact parameter ~b is defined as the vector, that connects the two centers of the
colliding nuclei in the plane transverse to the beam. The events can be can then be
classified into centrality classes. This can be done by defining percentiles for the hadronic
cross-section s. This means, that the five percent of collisions with the largest cross-
section correspond to the 5% centrality class, the next 5% to the 5-10% centrality class,
and so on. However, the cross-section cannot be measured in the experiment directly,
therefore the centrality classes are usually defined using observables that are highly
correlated with it. In the ALICE experiment centrality is for example defined by the
energy deposited in the V0 detectors [1]. The quantity that will be used in this thesis to
define the centrality is the charged particle multiplicity, which is negatively correlated
with the impact parameter~b. Therefore the five percent of collisions with the largest
multiplicity correspond to the 5% centrality class and so on. Mathematically, this can
be expressed by [26]

R
ni

• (dNevt/dNch) dNchR 0
• (dNevt/dNch) dNch

= i, (3.1)

where ni is the boundary for percentile i and dNevt/dNch is the charged-particle multi-
plicity. This definition can also be used to classify events of initial condition models as
it will be done in the following.

3.1.2 Trento

Trento [8] is an effective initial conditions model to generate realistic Monte Carlo en-
tropy profiles without assuming specific physical mechanisms for entropy production,
pre-equilibrium dynamics, or thermalization [8]. The model arises from simple geomet-
ric and statistical considerations. Its main idea is to describe the collision of two nuclei
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FIGURE 3.2: Illustration of the centrality classes related to different ob-
servables. Taken from [26].

by the individual collisions of their constituent nucleons and then relate the arising dis-
tribution to the production of entropy. To describe the collision in terms of nucleon
interactions, at first, the positions of the nucleons inside the nuclei have to be specified.
This can be done by regarding the nuclear density within a nucleus, which is often
characterized by a Woods-Saxon distribution in terms of the nuclear density at the core
of the nucleus r0, the "nuclear" radius R, which defines the radius where the density is
halved (r(R) = r0/2), and the surface thickness a of the nucleus:

r(r) =
r0

1 + exp[(r � R)/a]
(3.2)

For individual Trento events, the position of the nucleons inside a nucleus is sampled
from this distribution. The density of each nucleon can be described by a Gaussian
distribution with some width w

rnucleon (x, y, z) =
1

2pw2 exp
✓
�

x
2 + y

2 + z
2

2w2

◆
. (3.3)

Using the positions of the nucleons within the nuclei and the density distribution for
the nucleons, the collision probability for the collision of two individual nucleons A
and B can be calculated by

Pcoll = 1 � exp

�sgg

Z
dxdy

Z
dzrA

Z
dzrB

�
, (3.4)

where sgg is an effective parton-parton cross-section adjusted such that the total cross-
section is equal to the experimental inelastic nucleon-nucleon cross-section. When sam-
pling from this distribution, the number of participants in the collision can be deter-
mined. To describe the deposition of entropy, the so-called thickness function can be



14 Chapter 3. Modeling of heavy-ion collisions

introduced, which is the density of the nucleons projected to the transverse plane or-
thogonal to the beam direction. Mathematically this manifests in integrating out the z

coordinate from the density:

TA,B(x, y) = wA,B

Z
dzrA,B(x, y, z). (3.5)

The additional weights wA,B are introduced to account for multiplicity fluctuations ob-
served in the experiment, therefore eq. 3.5 gives rise to the fluctuated thickness function.
The weights are sampled in Trento from a gamma distribution.

Pk(w) =
k

k

G(k)
w

k�1
e
�kw (3.6)

The shape parameter k adjusts the magnitude of the fluctuations: values between zero
and one lead to large multiplicity fluctuations, whereas values of k >> 1 suppress
them. The thickness functions of the two colliding nuclei can be constructed by adding
up the contributions from all individual nucleons

TA,B =
Npart

Â
i=1

wi

Z
dzrnucleon (x � xi, y � yi, z � zi) . (3.7)

The core assumption of the Trento model is, that the overlap of the thickness functions
of the two nuclei TA and TB is related to the production of entropy. This relation is
assumed to be described by a scalar field f (TA, TB), such that f is proportional to the
entropy created at midrapidity and at the thermalization time t0:

f µ dS/ dy|t=t0
(3.8)

For the function f there are several reasonable choices with different physical interpre-
tations. In Trento the reduced thickness function is given by

f = TR (p; TA, TB) ⌘

 
T

p

A
+ T

p

B

2

!1/p

, (3.9)

where the dimensionless continuous parameter p is used to interpolate between dif-
ferent physical mechanisms for entropy production. By adjusting the p parameter, the
function interpolates between the minimum and maximum value of TA and TB, passing
arithmetic, geometric and harmonic means for certain values

TR =

8
>>>><

>>>>:

max (TA, TB) p ! +•,
(TA + TB) /2 p = +1, (arithmetic)
p

TATB p = 0, (geometric)
2TATB/ (TA + TB) p = �1, (harmonic)
min (TA, TB) p ! �•.

(3.10)

Using the procedure above, entropy profiles at thermalization time can be produced for
heavy-ion collisions. Up to a normalization factor, these profiles can be taken as initial
conditions for the further evolution of the system. This evolution, which is done using
a hydrodynamic approach will be laid out in the next section.

3.2 Fluid dynamic evolution of the QGP

After the initial collision and the subsequent pre-equilibrium phase, the heavy-ion col-
lision system thermalizes and the QGP forms. As mentioned before, the evolution of
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the QGP can be modeled by relativistic fluid dynamics, also loosely referred to as hy-
drodynamics. Within this approach, the complex microscopic dynamics of the particles
in the system are summarized in a few macroscopic, thermodynamic and transport
properties. However, the validity of this approach relies on the assumption that local
thermal equilibrium is established and maintained during the time of the evolution of
the QGP until the freeze-out phase. This assumption is quite strong, but experimental
results and the success of fluid dynamic modeling suggest that it holds [27]. In the past,
QCD dynamics have been studied already extensively in the context of fluid dynamics,
nevertheless, its thermodynamic and transport properties are not fully understood and
quantified yet. An overview of the developments in this field can be found in [25], [27],
[28]. In the following, the basic aspects of relativistic fluid dynamics will be introduced
as well as the software package Fluidum [7], which will be used for hydrodynamic
modeling of the quark-gluon plasma in this thesis. This section mainly follows [27] and
[7]. All calculations will be expressed in natural units (c = h̄ = kB = 1).

3.2.1 Ideal fluid dynamics

Ideal fluid dynamics is a simplified description of real fluids where the fluid is assumed
to be incompressible and non-viscous, which means that it has no internal resistance to
the fluid flow (viscosity). An important assumption of ideal fluid dynamics is that the
fluid is in local thermodynamic equilibrium, meaning that each infinitesimal fluid el-
ement is in thermodynamic equilibrium with its neighboring elements. The state of
the fluid may then be defined by certain densities and currents associated with con-
served quantities which are mathematically expressed in terms of continuous scalar or
vector fields. For fluid dynamics, the most important conserved quantities are energy
and momentum. There exist other conserved charges e.g. baryon number, strangeness,
and electric charge, however, these will not be considered here. For relativistic fluids,
the densities and currents are encoded in the energy-momentum tensor T

µn. In the local
rest frame of the fluid, where the fluid velocity~v is zero everywhere, it can be expressed
for the ideal fluid in of the energy density e(x) and pressure p(x) by

T
µn =

0

BB@

e(x) 0 0 0
0 p(x) 0 0
0 0 p(x) 0
0 0 0 p(x)

1

CCA . (3.11)

To describe the fluid in the global rest frame, the four-velocity field u
µ(x) has to be

taken into account, which defines the velocity at each space-time point and is given by

u
µ(x) ⌘ g

✓
1
~v

◆
, (3.12)

where g = 1/
p

1 �~v2 and u
µ(x) is normalized such that

u
2
⌘ gµnu

µ(x)un(x) = �1, (3.13)

using the metric gµn = diag(�1,+1,+1,+1) in Minkowski space with Euclidean coor-
dinates. The energy-momentum tensor in the global rest frame can now be obtained by
Lorentz boosting the tensor of the local rest frame according to the four-velocity field
u

µ(x). This procedure leads to an energy-momentum tensor of the following form

T
µn = #u

µ
u

n + p (g
µn + u

µ
u

n) . (3.14)
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The dynamics of a relativistic fluid can be inferred by considering the local conserva-
tion of energy and momentum, which can be expressed mathematically in terms of the
derivative of the energy-momentum tensor by

rµT
µn = 0, (3.15)

where rµ ⌘ ∂/∂x
µ transforms as a covariant derivative under Lorentz transforma-

tions. Utilizing these conservation equations, the equations of motion of ideal fluid
dynamics can be constructed. They describe the full dynamic of the ideal relativistic
fluid and are given by the partial differential equations

u
µ∂µe + (e + p)rµu

µ = 0, (3.16)
(e + p)uµ

rµu
n + (g

nµ + u
n
u

µ) ∂µ p = 0. (3.17)

As it is apparent in eqs. 3.16 and 3.17, three fields, namely e, p and u
µ, are required

to describe the perfect fluid. They correspond to five degrees of freedom. Since the
conservation laws only provide four equations, additionally the Equation of State, p =
p(e), has to be taken into account to form a closed system of equations, that can then
be solved to obtain the dynamics if initial conditions for e, p and u

µ are provided.

3.2.2 Dissipative fluid dynamics

To describe a fluid more realistically, dissipative corrections to the stress-energy tensor
must be taken into account. In this way, heat and energy may dissipate by friction be-
tween the fluid elements in the fluid. To account for the dissipation effects, the energy-
momentum tensor of eq. 3.14 has to be modified by the term Pµn, containing gradients
of thermodynamic quantities e.g. the fluid velocity [29]

T
µn = T

µn
ideal + Pµn. (3.18)

The energy-momentum tensor may then be decomposed, such that

T
µn = eu

µ
u

n + (p + pbulk )Dµn + pµn, (3.19)

where Dµn = g
µn + u

µ
u

n is the projector into the space components of the fluid rest
frame, pµn is the symmetric shear stress tensor, which is traceless (pµ

µ = 0) and orthog-
onal to the fluid velocity (uµpµn = 0), and pbulk is the bulk viscous pressure. Analo-
gously to the ideal case, the equations of motion can be derived from the conservation
laws eq. 3.15, which yields

u
µ∂µe + (e + p + pbulk )rµu

µ + pµn
rµun = 0, (3.20)

(e + p + pbulk ) u
n
rnu

µ + Dµn∂n (p + pbulk ) + Dµ
nrrprn = 0. (3.21)

In the first order in derivatives with respect to the fluid velocity, the shear stress tensor
pµn and the bulk viscous pressure pbulk can be approximated by

pbulk = �zrµu
µ (3.22)

pµn = �2h

✓
1
2

DµaDnb +
1
2

DµbDna
�

1
3

DµnDab

◆
raub, (3.23)
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where the bulk viscosity z(e) and the shear viscosity h(e) are introduced, which are
so-called transport coefficients as they describe the microscopic momentum exchange
and therefore the dissipation of energy. This procedure follows the relativistic gener-
alization of the Navier-Stokes theory. The non-relativistic Navier-Stokes equation can
be recovered by regarding eq. 3.21 in the non-relativistic limit. Although this proce-
dure is the straightforward generalization of the non-relativistic case, the relativistic
formulation of Navier-Stokes theory has been shown to violate the relativistic causality
principle and to be linearly unstable [30]. Therefore, second-order theories have been
introduced to overcome these problems. The idea of these theories is to provide dynam-
ical equations for the shear stress tensor pµn and the bulk viscous pressure pbulk . For
Fluidum, the evolution equations for the shear stress tensor pµn and the bulk viscous
pressure pbulk are given by [7]

P
µr
ns

h
tshear

⇣
u

l
rlps

r � 2pslwrl

⌘
+ 2hrru

s
� j7pl

r ps
l + tppps

lsl
r

�lpPpbulk rru
s
⇤
+ p

µ
n

⇥
1 + dpprru

r
� j6pbulk

⇤
= 0

(3.24)

tbulk u
µ∂µpbulk + pbulk + zrµu

µ + dPPpbulk rµu
µ
� j1p2

bulk

� lPppµn
rµun � j3p

µ
n pn

µ = 0,
(3.25)

where the projector P
µr
ns to the symmetric, transverse, and traceless part of a tensor is

defined as

P
µn
rs =

1
2

Dµ
r Dn

s +
1
2

Dµ
sDn

r �
1
3

DµnDrs (3.26)

and the abbreviations

sµn = P
rs
µnrrus, wµn =

1
2
�
rµun �rnuµ

�
=

1
2
�
∂µun � ∂nuµ

�
(3.27)

were used. Within eqs. 3.24 and 3.25, various transport coefficients are introduced. The
first order coefficients h and z for the shear and bulk viscosities were already intro-
duced and have the largest impact on the dynamics. From the second order transport
coefficients, the relaxation times tshear and tbulk also have a considerable impact on the
dynamics. They quantify how fast the shear stress tensor and the bulk viscous pres-
sure return to their asymptotic values pµn = �2hsµn and pbulk = �zrru

r [7]. Other
second-order transport coefficients like tpp, dpp, lpP, dPP, lPp, j7, j6, j1 and j3 have
only a minor impact. Equations 3.20, 3.21, 3.24 together with 3.25 form a closed system
of partial differential equations, which can be solved numerically to obtain the dynam-
ics of the system.

3.2.3 Transport coefficients

In the context of dissipative relativistic fluid dynamics, transport coefficients appear.
Since these are important properties of the fluid, they will be laid out here in more de-
tail. In general in physics, transport coefficients measure how rapidly a system returns
to equilibrium after it has been perturbed. For the perturbed system, gradients of phys-
ical properties arise, which lead to a flux bringing the system back to equilibrium by
transporting the physical quantity in an irreversible process. The transport coefficients
gk of physical quantity k occur as the connection between the flux Jk and the gradient
force Xk in transport laws
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Jk = gkXk. (3.28)

Such transport coefficients are for example the thermal conductivity, which describes
the conduction of heat and therefore the transport of energy, or the viscosity, which
is an example of microscopic transport of momentum by the irreversible process of
friction. As elaborated in the last section, the most important transport coefficients in
dissipative relativistic fluids like the QGP are the shear and bulk viscosity as well as
the relaxation times tshear and tbulk. The shear viscosity h is the diffusion coefficient of
momentum transfer perpendicular to the local velocity of the fluid. It acts against the
buildup of flow anisotropies between fluid layers. On the other hand the bulk viscosity
z acts against the buildup of radial flow, therefore damping the expansion of the fluid.
In general, the determination of these transport properties is difficult in QCD. They can
be obtained in very weakly interacting theories from perturbation theory and in very
strongly interacting theories via the AdS/CFT correspondence [31]. For theories that
are located in between these extremes, the determination is still an open problem. For
strongly interacting systems a lower bound was postulated for the ratio of the shear
viscosity to entropy density h/s [32], which is given by

h

s
�

1
4p

. (3.29)

It can be shown that the shear and bulk viscosities always appear in the hydrodynamic
equations of motion in the dimensionless combinations h/s and z/s with the entropy
density s [29]. Therefore, the strength of the shear and bulk viscosities is often expressed
in terms of these dimensionless quantities and so it will be in this thesis. Following
the second law of thermodynamics, it can be also derived, that the inequalities h/s �

0 and z/s � 0 hold [29].

3.2.4 Fluidum

To model the evolution of the QGP, the equations of motion that arise from the treat-
ment of the dissipative relativistic fluid have to be solved. Since these partial differen-
tial equations are not solvable analytically, numerical methods have to be applied. One
of these numerical methods is the recently developed software package Fluid dynam-
ics of heavy-ion collisions with Mode expansion (Fluidum [7]), which evolves the fluid
fields numerically according to the equations of motions, starting from provided initial
conditions. In the following, the reasoning behind Fluidum will be laid out on the basis
of [7].

To solve the equations of motions numerically, a coordinate system for the collision
system has to be chosen. In Fluidum, its origin is set at the collision point in the center
of the expanding fireball. The z-axis and the laboratory time t are expressed using the
proper time t =

p
t2 � z2 and the rapidity h = arctanh(z/t), such that t = t cosh(h)

and z = t sinh(h). In the transverse plane, the coordinates x and y are conveniently
expressed in cylindrical coordinates, such that r =

p
x2 + y2 and f = arctan(y/x). The

reason for the use of this coordinate system is that it is particularly well suited to de-
scribe the approximate azimuthal rotation symmetry and the approximate longitudinal
rapidity boost symmetry observed in real heavy-ion collisions. Using this coordinate
system, every space-time point can be described by t, r, f, and h.

After introducing the coordinate system, the scheme for solving the equations of mo-
tion can be described. For this, the general case of a set of hyperbolic, quasi-linear
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partial differential equations is considered. This set of hyperbolic equations can be ex-
pressed symbolically by

A(F, t, r) · ∂tF + B(F, t, r) · ∂rF + C(F, t, r) · ∂fF

+ D(F, t, r) · ∂hF � S(F, t, r) = 0,
(3.30)

where F is the "Nambu spinor" with N components which contains all fluid fields
needed to describe the state of the fluid, A, B, C and D are N ⇥ N coefficient matrices
and the source term S is a N-component vector. In the case of a relativistic dissipative
fluid, these may be for example the temperature, the fluid velocity, the independent
components of the shear stress, and the bulk viscous pressure. The coefficients in eq.
3.30 can be identified by comparing to the equations of motions, thus relating the spe-
cific problem to the general case. The main idea behind Fluidum is now that F can be
split into a background part that is symmetric under rotations and Lorenz-boosts in the
z direction and a symmetry breaking part accounting for deviations with respect to the
symmetric part

F(t, r, f, h) = F0(t, r) + eF1(t, r, f, h). (3.31)

The background field F0(t, r) can be seen as a statistical expectation value when av-
eraging over a large number of collision events, while F1(t, r, f, h) can be seen as the
fluctuations of each individual event. The advantage of this approach becomes clear
when the standard way to solve the evolution of the QGP system is considered. Usu-
ally, the collisions are simulated event-by-event, which means that for each collision an
initial entropy density is generated and then evolved hydrodynamically by solving the
equations of motions. The mean behavior of the system is then extracted by averaging
over all simulated events. This approach is computationally expensive because of the
individual simulation of thousands of events and therefore limited in its ability to ob-
tain precise quantitative results. In contrast to this, the averaging in Fluidum is done
before solving the equations of motions with the initial conditions, thus the evolution
has to be performed only once to infer the mean evolution behavior. It is therefore
computationally a lot cheaper. To solve the partial differential equations within this
approach, eq. 3.31 can be inserted into eq. 3.30, such that

A (F0 + eF1, t, r) · ∂t (F0 + eF1) + B (F0 + eF1, t, r) · ∂r (F0 + eF1)

+ C (F0 + eF1, t, r) · ∂f (F0 + eF1) + D (F0 + eF1, t, r) · ∂h (F0 + eF1)

� S (F0 + eF1, t, r) = 0.
(3.32)

If the fluctuation fields F1(t, r, f, h) are small with respect to the background field, this
equation can be expanded in terms of a small expansion parameter e. The equations of
motion for the background field can then be obtained by considering the zeroth order
in epsilon, which is given by

A0 (F0, t, r) · ∂tF0(t, r) + B0 (F0, t, r) · ∂rF0(t, r)� S0 (F0, t, r) = 0, (3.33)

where only the coordinates t and r are relevant. F0 is introduced since fewer fields
are needed to characterize the fluid because of the symmetry constraints for the back-
ground field, therefore F0 contains fewer independent components than F. A0 and
B0 are similarly reduced matrices, which can be seen as projections of A and B to the
reduced space of independent components. Carrying out the same procedure for the
perturbation field, it is also possible to infer the equations of motions for the first or
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higher orders of the perturbation field. This will not be discussed here, detailed infor-
mation about the treatment of higher orders is given in [7].
By assigning the equations of motion of the relativistic dissipative fluid to the symbolic
equations above, sets of hyperbolic partial differential equations for the evolution of the
background and perturbation field arise. To solve these numerically, the radial coordi-
nate r is discretized and the resulting differential equation is solved within Fluidum
via a pseudo-spectral method, where the solution is approximated as a linear superpo-
sition of certain basis functions. The exact numerical scheme will not be laid out here,
it can be found together with its validation in [7].

3.3 Hadronization and resonance decays

At some point in the evolution of the QGP, the system passes the cross-over temperature
Tc, and the quarks get confined in hadrons. This process is known as Hadronization. To
model this phase, the continuous fluid fields of the hydrodynamic evolution of the QGP
have to be related to the production of discrete particles such that momenta and energy
are conserved. This is usually done based on the Cooper-Frye procedure [33]. Within
this approach, the transition to particles is described by a freeze-out temperature Tfreeze
which defines a freeze-out hyper-surface s in the space-time evolution. On the freeze-
out surface, the fluid fields are converted to particles using the Cooper-Frye formula,
which performs an integration over it to infer particle momentum spectra. It is given
by [9]

Ep
dNa

d3p
=

na

(2p)3

Z

s
fa (�u

n
pn, T, µ) p

µ
dsµ, (3.34)

where na accounts for the spin degeneracy of the particle and fa is the particle distribu-
tion function of particle species a, which is dependent on the fluid temperature T(x),
the fluid velocity u

µ(x) and the chemical potential µ(x) for the ideal case. dNa

d3p is the re-

sulting momentum spectrum of species a and Ep =
p

m2 + p2 its energy. The particle
distribution function fa is given for an ideal fluid as the equilibrium Bose-Einstein or
Fermi-Dirac distribution feq depending on the species. However, for the viscous case,
the distributions have to be corrected due to bulk and shear viscous dissipation, such
that the particle distribution function also depends on the viscous shear-stress tensor
pµn(x) and the bulk viscous pressure pbulk (x). The functional dependence of the dis-
tribution function on viscous corrections is an unresolved problem, even at linear order
in dissipative terms [9]. Here, the following parametrization of the corrections in linear
order will be used for the particalization:

f = feq + d f
bulk + d f

shear , (3.35)

with the corrections [24]
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(3.36)

where cs(T) is the speed of sound of the medium at Tfreeze, m is the mass of the primary
resonance, and tbulk/z is the ratio of the bulk relaxation time and the bulk viscosity.
With this procedure, the fluid fields are converted to particles with certain momenta.
What has not been considered yet are decays of short-lived particles (so-called reso-
nances), which contribute significantly to the particle spectra of particles that reach the
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detectors. To take into account resonance decays, all sufficiently unstable particles that
are produced by the Cooper-Frye procedure have to be decayed according to their de-
cay channels to lighter stable particles. Often the decay processes are simulated by
Monte-Carlo generators [34] or by semi-analytic treatments of the decay integrals [35].
This can be computationally expensive since large cascades of decays may have to be
considered. Therefore, in this thesis, a program called FastReso [9] will be used to treat
resonance decays. It is computationally more efficient since the particle decays are not
computed event-by-event but decay maps are pre-computed. It will be explained in
more detail in the next section, but before a second freeze-out temperature will be in-
troduced into the Cooper-Frye procedure.
Until now, only one freeze-out temperature Tfreeze has been considered. However, in
heavy-ion collisions two freeze-outs, the chemical and kinetic freeze-out, occur. To ac-
count for this, the aforementioned procedure can be modified by introducing a phase
of partial chemical equilibrium. The temperature Tfreeze defining the freeze-out sur-
face of the fluid can be identified with Tchem since at this point the abundances of
quasi-particles are fixed. The inelastic scattering events cease, such that the chemi-
cal equilibrium cannot be maintained, but elastic scattering still occurs and impacts the
momentum distributions of the particles. To describe the evolution in this phase, it is
convenient to define conservation laws. Excluding resonance decays, the total number
of particles for each species is conserved after the chemical freeze-out such that for ex-
ample Np = const.. But from the temperature of the system, only the density of the
particles, for example, np is known. However, both quantities can be related if an ideal
fluid evolution is assumed, such that Np/S = np/s, where S is the total entropy and s

is the entropy density. With that, the conservation law ∂µ (npu
µ) = 0 can be expressed

for pions. The resonance decays break this conservation, however, new quantities for
all particles can be constructed which are conserved again. For that, also the decays
are taken into account. If for example the process r ! pp is considered, the combi-
nation np + 2nr is still conserved. The system may then be described by equations of
motion dependent on the temperature and the chemical potential µ. This is illustrated
in fig. 3.3, which is meant as an example to describe the introduction of two freeze-out
temperatures.

FIGURE 3.3: An example for the introduction of two freeze-out tempera-
tures. The entropy per particle as a function of temperature. Taken from

[36].

It shows the dependence of the ratio of the entropy over the conserved particle number
np on the temperature and chemical potential. Suppose now Tchem = 180 MeV (point
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A). Then the chemical potential at this temperature is zero due to the chemical equi-
librium and the ratio s/n̄p ' 3.5. If the chemical equilibrium would be maintained
for temperatures smaller than Tchem, the evolution would follow the curve at µ = 0
and s/n̄p would increase. However, it is assumed that s/n̄p remains constant until the
kinetic freeze-out, such that chemical potential builds up. In the depiction, this means
that the evolution follows a horizontal line while the temperature decreases. If Tkin is
reached, which is here at 100 MeV, a chemical potential of 86 MeV has built up. This
shows, how the conservation of particle numbers drives the system out of the chemical
equilibrium and how chemical and kinetic freeze-out can be differentiated in the model
[36].

3.3.1 FastReso

FastReso [9] is an efficient method to calculate the final decay spectra of direct resonance
decays directly from the hydrodynamic fields at freeze-out.
The usual way to model the particalization is to convert the hydrodynamic fields to
particles by eq. 3.34 and then handle the resonance decays. The effect of the resonance
decays on the final particle spectra can be mathematically treated by so-called decay
maps D

a

b
(p, q), which provide the Lorentz invariant probability of particle a with mo-

mentum q to decay to a particle b with momentum p. By summing all contributions
from resonances decaying to a specific particle b, the final particle spectra can be ob-
tained by [9]
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. (3.37)

The individual decay maps D
a

b
(p, q) can be computed for each decay cascade by con-

sidering phase-space integrals, 4-momentum conservation and decay matrix elements.
In contrast to this, in the FastReso method, the order of the integration in eqs. 3.34
and 3.37 are reversed, such that the decay maps are applied and then the integration
over the freeze-out surface is performed. The formula for the final decay spectrum then
becomes
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where the vector distribution function g
µ is defined as g
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for the decay products. The function g
µ
b
(p, u, T, µ) can be further simplified into a sum

of a few irreducible Lorentz invariant weight functions and Lorentz vectors. These
components only need to be computed once, the function g

µ
b
(p, u, T, µ) may then be

constructed for all decay chains. This is of less effort compared to the standard proce-
dure since the decays do not have to be treated on an event-by-event basis. The final
particle spectra can then be computed by evaluating the Cooper-Frye integral for an ar-
bitrary freeze-out surface. The reasoning of the FastReso method is explained in more
detail in [9].
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3.4 Comparing to experimental data

Employing all the previous steps, a relativistic heavy-ion collision can be modeled start-
ing from the initial collision until the production of the final particles. Since the ultimate
goal is to infer the properties of the individual stages with respect to the real physics in
a collision, the model outcome has to be compared to experimental data. This can be
done by considering different physical observables which focus on different aspects of
the collision system. The only accessible observables are connected to the types, yields,
momenta and spatial distributions of the produced particles since only the last stage
of the free-streaming particles can be observed. Furthermore, the model output needs
to be treated in the exact same way as the experimental data to allow for comparisons
between them. This especially includes detector limitations that influence the physical
observables. The most straightforward observables to consider are the averaged mul-
tiplicities for all particles. However, only single numbers for the produced particles
may contain little information, therefore also the distributions of the multiplicities may
be evaluated with respect to the rapidity or momentum. Other physical observables
that are often used to describe particle production are the particle spectra. They are
the yields of the specific particles in dependence on their momentum. With that also
the kinematic properties of the particles are taken into account. The particle spectra are
often given in dependence of the momentum transverse to the beam direction pT. This
is done because the momentum components longitudinal and transverse to the beam
are independent of each other and pT has lower uncertainties. Furthermore, the spectra
are often built from particles observed only at midrapidity (h < 0.5), also because of
the better detector coverage. The typical spectrum is given by 1

Nev
1

2ppT
d

2
N

dpTdy
in units of

[c2/GeV2], where Nev is the number of events and y is the rapidity, which is given by
y = 1

2 ln E+pz

E�pz
. The rapidity is approximately the same as the pseudorapidity if the mass

of the particles is negligibly small compared to its momentum. Moreover, particle spec-
tra are commonly produced for every centrality class individually based on the central-
ity classes from the experiment. The particle spectra provide already a lot more infor-
mation than the multiplicities, however also the spatial distributions of the produced
particles can be taken into account. For this, often the collective flow is considered,
which describes the azimuthal distribution of the particles and reflects their collective
motion. The flow is usually expressed in flow coefficients, which are the Fourier coeffi-
cients of the azimuthal distribution of the particles. Additionally, other observables like
the mean pT value or particle correlations may be used, however, most widely used for
comparing hydrodynamic modeling to experiment are spectra and flow coefficients.
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Chapter 4

Methods
The work presented in this thesis employs methods from the field of machine learn-
ing (ML), where the algorithms are not explicitly programmed to make predictions or
decisions but are rather learning underlying rules from data to do so. For this, the algo-
rithms are trained using training data to make accurate predictions. These are verified
on test data, which is data that the model has not seen during the training process. This
procedure ensures that the model captures the underlying data dependencies instead
of just memorizing the training samples and therefore generalizes well. ML comprises a
wide variety of different methods that are closely related to computational statistics and
that are applied in diverse fields like medicine, computer vision or speech recognition.
The various ML methods can be assigned to different approaches, of which the two
most important ones are supervised and unsupervised learning. In supervised learn-
ing, the goal is to find a function that infers outputs based on inputs. The function is
constructed by regarding training samples of input-output pairs. Mathematically, this
can be expressed by finding a function fq with model parameters q that maps the inputs
x from an input space X to the target y from output space Y

y = fq(x). (4.1)

The form of x and y can be different depending on the problem. x may be a n ⇥ 1 col-
umn vector with entries for each of the n data points, but it may also be of the form
n ⇥ m, with m being the number of input variables. Similarly, y may have different
forms, it could be a scalar value, a vector of output variables or even a matrix. Based
on the type of the target variable, two cases can be distinguished. If the output variable
is of categorical nature, so that it can only take on a certain finite number of values, the
method is called classification, whereas if the output variable can take on continuous
numerical values, it is called regression. For example, classification is used to categorize
images or to make decisions whereas regression is used for interpolation or extrapola-
tion of data. In unsupervised learning, where no target variables are available, the goal
is primarily to find structures and similarities in the data. Examples for this are density
estimation, where a probability density distribution is inferred from the data, or cluster
analysis, where similarities between data points are identified and assigned to clusters.
In the following, the ML methods that will be used in this thesis will be introduced.
Why and how they are used will be explained in the analysis part of this thesis 5.

4.1 Neural networks

An artificial neural network (ANN), also often abbreviated only with neural network
(NN) is a computational learning system that is inspired by the functioning of the brain.
It is an algorithm in the field of supervised learning, which can be used for classification
as well as for regression tasks. NNs are able to find and model complex relationships
between inputs and outputs and are therefore often used in data analysis. A NN is com-
posed of a network of simple processing units, the artificial neurons or nodes, which
are inspired by biological neurons. These artificial neurons can be mathematically de-
scribed by
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y = f(z) = f
⇣

wTx + b

⌘
. (4.2)

They transform an input vector x(x 2 Rm) by weighting it with weights w(w 2 Rm)
and adding a scalar bias term b. The outcome is then fed into an activation function

f and the result is the output for the neurons. Fig. 4.1 A and fig. 4.1 B show two
representations of such a neuron, A with all elements and B in a simplified version.

FIGURE 4.1: A) Representation of a neuron with inputs xi, weights wi,
bias b and activation f. B) Simplified representation of neuron that is

commonly used. Taken from [37].

The choice of the activation function is important for the behavior of the neuron model.
Using the identity function for example would result in simple linear regression or a
linear discriminant function for classification. However, to model non-linear problems,
the activation function is usually chosen to be non-linear as well. Popular examples for
such functions are the sigmoid function, the hyperbolic tangent or the Rectified Linear
Unit (ReLU), which is widely used in the field of deep learning.
For the modeling of complex non-linear problems, multiple simple neurons can be con-
nected to form a neural network. The connections are realized by using the outputs of
some neurons as inputs to other ones. Depending on how the neurons are connected,
different arrangements (architectures) of the neurons are possible, which are suitable
for different types of problems. Here, only the simple case of a feed-forward neural
network will be described, information about other architectures may be taken from
[38]. The feed-forward NN (FFNN), as the name suggests, only consists of neurons
connected in the forward direction, meaning that information is strictly transported
from the inputs to the outputs without any cycles. The network is usually organized in
layers of neurons as illustrated in fig. 4.2.
The first layer is processing inputs and therefore it is referred to as the input layer. The
last layer is accordingly called the output layer and any additional layers that might
occur in between are so-called hidden layers. Mathematically the network can then be
described by subsequent execution of the single neuron transformation in eq. 4.2 for all
neurons in the layers:

f (x) = j(2)
⇣

W
(2)j(1)

⇣
W

(1)x + b(1)
⌘
+ b(2)

⌘
. (4.3)

The weights of the individual neurons are now encoded layer-wise in the weight matri-
ces W

(l), which are matrices of k
(l)⇥ k

(l�1), where k
(l) is the number of neurons in the lth

layer and k
(0) is the dimensionality of the input x. The bias becomes a k

(l)-dimensional
vector b(l), which collects all biases of the neurons in layer l. The scalar activation func-
tion is now applied element-wise to each output of the neurons in a layer such that a
vector of length k

(l) is returned. The output is then obtained by treating the output of
the first layer as the input of the second layer and so on. By adding more layers or
nodes to the network, more complex non-linear functions can be modeled. In fact, it
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FIGURE 4.2: A) A shallow FFNN with one hidden layer and one input
and one output layer. B) A deep FFNN with three hidden layers. Taken

from [38].

was postulated that a NN with one hidden layer and a sufficient number of neurons
is already capable of approximating any continuous function by adjusting its weights
and bias values. This is known as the universal approximation theorem and it is the
reason why NNs are so widely used. However, the theorem does not provide informa-
tion on how the network has to be trained to achieve this. In practice it is very difficult
to construct such a network because its width can get exponentially large. A solution
to this was found by introducing additional hidden layers to the network, which gives
rise to the so-called deep neural networks (DNNs). For deep neural networks with a
limited number of hidden units the universal approximation theorem has been shown
to remain valid, and for these networks efficient learning algorithms have been found.
For this reason, they are used in practice rather than one-layered neural networks.

4.1.1 Neural network training

So how can the neural network weight parameters w be adjusted to solve specific tasks?
In the supervised setting, they can be optimized using the training data. For this, a
loss function has to be defined, which quantifies the performance of the network. An
example for this is the mean squared error for regression (MSE), which is defined as

Q(w) =
1
n

n

Â
i=1

Qi(w) =
1
n

n

Â
i=1

( f (xi, w)� yi)
2 , (4.4)

where yi is the target value for the input xi, f (xi, w) is the prediction of the NN for the
input xi, n is the number of training samples and w are the weight parameters. If the
network is able to fully reproduce the data generating process, the loss function is zero,
the more they differ, the larger is the loss. Therefore, to approximate the data generating
process, the loss function has to be minimized with respect to the weight parameters.
This can be done by using a gradient descent algorithm, of which the simplest form
would give rise to the iteration rule
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wj+1 = wj � hrQ(w) = wj �
h

n

n

Â
i=1

rQi(w), (4.5)

where h is the gradient descent step size of the algorithm, also known as learning rate,
since it defines how fast a network can learn. For large training datasets, the calculation
of all gradients in eq. 4.5 is inefficient, therefore in practice only a part of the gradients
is used to approximate the true gradient of Q(w). This gives rise to the stochastic gra-
dient descent algorithm, where the parameters are updated using only single training
samples or mini-batches of training samples:

wj+1 = wj � hrQi(w). (4.6)

The training samples that are used in each training iteration are only a subset of the full
training set and are sampled randomly from it.
The calculation of the gradients in eq. 4.6 is taken care of by another algorithm, the
backpropagation algorithm, which is highly efficient. Backpropagation computes the
gradient of the loss function with respect to each weight parameter by the chain rule.
The algorithm iterates backward through the network while computing the gradients
layerwise and therefore omits redundant calculations that would occur if the gradi-
ent is computed for each parameter individually. A more detailed explanation can be
found in [39]. Stochastic gradient descent together with backpropagation provides an
efficient method to train the parameters of a NN. In practice, variants of these methods
are combined into an optimization algorithm, which performs the optimization steps
computationally.

4.1.2 Hyperparameters

There are a lot of parameters, which define the architecture as well as the training pro-
cess of a NN. Since these parameters are set before the training process and are not
optimized in it they are called hyperparameters. The hyperparameters have a large im-
pact on the performance and training process of the NN and thus it is crucial to find an
optimal set of hyperparameters for the NN to solve the task in the best possible way.
However, the optimal parameters are strongly dependent on the specific problem, no
universally applicable values for them exist. This is why the hyperparameters are often
optimized themselves using strategies like grid search or Bayesian optimization. In the
following, important hyperparameters of NNs together with their impact on the train-
ing will be elaborated shortly. Some of the hyperparameters like the activation function
or learning rate were already introduced, here also new ones will be discussed.

• Number of layers and number of nodes per layer The number of hidden layers
and the number of nodes per layer have a large impact on the performance of
a NN. If the number of layers and nodes is too small, the produced NN model
may be too simple to capture the complexity of the data, thus missing impor-
tant information about the relationship between inputs and outputs. This behav-
ior is referred to as underfitting. On the other side, if the number of layers and
nodes of the NN is too large, its complexity may exceed the one of the data, such
that even the data noise is reproduced by the model, a behavior that is called
overfitting. Therefore, an appropriate size of the NN has to be found to ensure
the best performance. In practice, NNs are often chosen to be rather large with
multiple hidden layers and nodes per layer such that underfitting is prevented.
Overfitting is then taken care of by regularization techniques [40] which lower the
complexity of NNs by adding a penalty term to the loss function that penalizes



4.1. Neural networks 29

large numbers of nodes. However, the disadvantage to such large NNs is that the
computational cost increases with the number of nodes because of the gradient
calculations. Thus, parallelization techniques commonly need to be applied for
the training of complex NNs.

• Activation function The activation function usually introduces the non-linearity
into the NN model. There are many choices for its functional form depending on
the problem. One example is the Sigmoid function (F(z) = 1/(1 + e

�z)), which
is often used for classification problems since it returns only values between 0
and 1, which can be associated with probabilities. Another often used choice is
the hyperbolic tangent (F(z) = tanh (z)), which maps values to the interval [-1,
1] and has a similar shape as the Sigmoid. It has the advantage that negative z

values are also mapped to negative output values and that z values around zero
are also mapped to the region at zero. The Sigmoid function and the hyperbolic
tangent are both differentiable and monotonic activation functions which are im-
portant properties for calculating the gradients. However, the most used activa-
tion function today is the ReLU (F(z) = max(0, z)), which is monotonic but not
differentiable at 0. It is so widely used because its evaluation, as well as the gra-
dient calculation, is computationally cheap: this is especially of advantage for the
training of large networks in the context of computer vision.

• Weight initialization Neural networks are optimized by applying the gradient
descent algorithm on the loss function and progressively updating weights. For
this process, the optimization algorithm requires a starting point in the weight
space to begin the optimization. The procedure to select the starting point is called
weight initialization. The weight initialization largely impacts the training process,
since the path to and the position of the local minimum in the optimization pro-
cess depend on it. A bad initialization can result in a very slow or not converging
optimization. Usually, the weights are initialized randomly according to a distri-
bution around zero, which can be for example a uniform or a Gaussian distribu-
tion. However, also more advanced methods like Xavier initialization [41] have
been developed, that take into account the chosen activation function to achieve
a faster training process.

• Number of epochs In each epoch, the network is trained on all training samples.
Therefore, the number of epochs defines how often the network is trained on the
full training set. For small numbers of epochs, the training may not converge,
whereas for a large number the network may overfit, therefore a reasonable value
has to be found. In practice, the optimal value can be identified by finding the
minimum in the loss function for the test dataset, and if the NN starts to overfit,
this value will increase again. Since the test loss is monitored anyway during
training, the number of epochs can be optimized without any further effort.

• Batch size The batch size is the number of training samples that are fed through
the network before an optimization step is done. Choosing a small batch size
leads to a faster training process and less memory usage because fewer gradi-
ents have to be calculated for each step. However, the estimate for the gradient
will be less accurate than for larger batch sizes since only a subset of gradients is
considered.

• Learning rate The learning rate defines the step size for the gradient descent al-
gorithm. It is one of the most important hyperparameters because of its large
impact on the convergence of the training process. For too small values, the al-
gorithm would converge too slowly or get stuck in a local minimum, whereas for
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too large values it may overshoot in an unstable training process such that the
minimum is missed. Furthermore, the optimal value usually decreases during
training, and this makes it even harder to optimize it. Hence, the learning rate is
often varied during training according to a predefined schedule or in an adaptive
way to optimize convergence and its starting value is optimized externally.

• Loss function The loss function quantifies the performance of the network. It
is chosen according to the type of the problem. For regression tasks, the Mean
Squared Error function, which was already introduced in equation 4.4, is usually
used. For classification tasks, the Cross-Entropy loss function is utilized, which
takes into account the categorical nature of the target variables. However, there
are in principle many more loss functions that could be used and its selection is
to a large degree the choice of the user.

• Optimization algorithm The optimization algorithm is the heart of the training
process of a NN. It is the implementation of the stochastic gradient descent and
backpropagation algorithm and ultimately performs the computational optimiza-
tion steps. There are many different variants of which the most used methods are
simple stochastic gradient descent (SGD), Adagrad [42] or Adam [43]. Depending
on the algorithm, the rate of convergence can be quite different, such that a good
choice can lower the computational effort drastically. To find the best performing
optimizer, the different methods can be tested and evaluated, however, Adam is
nearly always a good choice.

4.2 Uncertainty quantification for neural networks

In recent years, neural networks have been applied in many areas of science and tech-
nology. With new and more critical tasks, it has become increasingly important that the
networks not only have high precision but also provide information about the confi-
dence of their prediction. However, simple NNs only give point predictions without
any measure of their uncertainty or confidence. This is especially critical in scientific
applications, where uncertainties are crucial parts of any analysis. Therefore, to solve
this problem, several methods have been developed in the past that can estimate the
uncertainty within the context of NNs [44]. One of these will be presented in the fol-
lowing, but at first, different types and sources of uncertainty in the prediction will be
discussed.
Examples of uncertainties arising in the process of fitting a model like a NN to data are
errors from the variability of real-world situations, errors inherent to the measurement
system, errors in the architecture of the model, errors in the training procedure, or er-
rors caused by unknown data [44]. However, the different sources can be separated into
two general types of uncertainty, the data uncertainty (also aleatoric or statistical uncer-
tainty) and the model uncertainty (also epistemic or systematic uncertainty). As the name
suggests, the data uncertainty accounts for all errors inherent to the data itself like the
measurement process or statistical fluctuations. This uncertainty is irreducible and will
be always apparent if real-world data is used even if more data is available. In con-
trast to this, the model uncertainty is related to modeling errors like insufficient model
complexity, errors in the training process or missing information due to unknown data.
Theoretically, this type of uncertainty is reducible by adjusting the model or training
process or by providing more data to the model, but it is not always possible to remove
it completely.
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FIGURE 4.3: Depiction of data and model uncertainty. Left: Low and
high data uncertainty, visible by the spread of the data. Right: Low
and high model uncertainty, visible by the spread of appropriate models.

Taken from [44].

The two types of uncertainty are depicted in fig. 4.3. On the left side low and high
data uncertainties are illustrated which manifests in different spreads of the data dis-
tribution. The model uncertainty is shown on the right side: it can be depicted by the
variation between a number of reasonable models that describe the data equally well.
The two shown models for example may both be suited to describe the underlying data
generating process, however, they differ substantially in regions where the model is
poorly constrained because of limited data. This is therefore connected to larger model
uncertainty. This becomes especially apparent in regions where there is no data avail-
able, so-called out-of-distribution regions, such that the model is not constrained at all
and the model uncertainty increases.

4.2.1 Uncertainty quantification via ensemble methods

To quantify uncertainties in the context of deep learning, various methods are available.
An overview can be found at [44], on which this section is based. Here, only ensemble
methods will be discussed in detail as they will be used later.
The idea of ensemble methods is to obtain the prediction not on the basis of only one
model, but to combine several different models in an ensemble model. Because the
individual members compensate for their respective weaknesses, the ensemble model
is superior to the individual ones and the overall predictive uncertainty decreases [45].
There are different ways to combine the predictions fi of the members i 2 1, 2, ..., M of
the ensemble, of which the simplest one is to just average them by

f (x) :=
1
M

M

Â
i=1

fi(x), (4.7)

where x is the model input. Already this intuitive approach of ensembling has been
applied successfully for example in bioinformatics or climate modeling [44]. However,
there are also more advanced combination methods for example weighting and aver-
aging the predictions of the members.
Additionally to the reduced predictive uncertainty, an ensemble approach can be used
to infer an estimate for the model uncertainty, which is the main reason why they will
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be used in the analysis presented in this work. For this, the spread of the different
ensemble members can be taken into account. Mathematically, this is often quantified
by the standard deviation of the member predictions given by

sM =

vuut 1
M

M

Â
i=1

( fi � f̄ )2, (4.8)

such that a model like in 4.4 arises. However, it becomes apparent from equations 4.7
and 4.8, that a meaningful estimate for the model uncertainty and a better generaliza-
tion of the ensemble can only be achieved if two requirements are fulfilled:

• the individual performance of each member has to be as optimized as possible

• the individual members have to be as diverse as possible

Diversity needs to be introduced to decrease the correlation between the errors of the
members. If the correlation is large, the models will all tend to deviate in the same
direction, such that the estimate for the model uncertainties is incorrect. To introduce
diversity to the models, there are different methods in the field of NNs. The first op-
tion is to use random weight initialization and random data shuffling in the training
process. With this, each network is trained starting from a different point in the loss
landscape and therefore also results in a different local minimum. Data shuffling has
a similar effect since the network is trained in batches, its path varies during training,
and this leads to different local minima in the vicinity of the global minimum. An-
other option to introduce variety into NNs is to use Bagging (Bootstrap aggregating)
or Boosting, which aim at varying the training data for ensemble members. Bagging
means, that each NN of the ensemble is trained on a subset of the whole training data
that is sampled from it uniformly with replacement. This alters the training between
NNs and results in different local minima, thus varying the prediction of the models.
Boosting refers to a training procedure where the networks are trained one after an-
other and the probability of sampling a sample for the subsequent training set is based
on the outcome of the already trained ensemble. In this way, training samples for which
the prediction is poor get a larger weight, so the next network improves most where the
ensemble performs worst. This results in a better generalization of the ensemble. As
another option to maximize diversity among the ensemble members, different network
architectures for the NNs in the ensemble or data augmentation can be used, where
the input data is augmented randomly. It has been shown, that random initialization
and random shuffling are already sufficient to induce diversity into the ensemble and
that bagging may even lead to worse performance because the individual NNs are not
trained on the whole data set [46].
Because these strategies are already standard elements of any neural network, all that
is required to create an ensemble of NN is to train multiple NNs and combine their
predictions. This is easy to implement but leads to significant computational overhead.
For each additional member in the ensemble, the memory consumption and computa-
tional effort of training and testing increase linearly, which is often the limiting factor
for the usage of ensembles in practice. However, because the ensemble members are
completely independent of each other, the training process, as well as the evaluation, is
fully parallelizable, thus decreasing the time consumption of these steps.
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FIGURE 4.4: Visualization of an ensemble method. The individual pre-
dictions of the ensemble members are combined to a mean prediction

and uncertainty estimate. Taken from [44].

4.3 Markov chain Monte Carlo

In the course of the analysis in this thesis, Bayesian inference will be used to obtain
probability densities of model parameters. For that, the posterior density will be in-
ferred from a probabilistic model and high dimensional integrals will be performed to
get marginal probability densities for each parameter. Such a procedure is typical for
Bayesian inference, however, the calculation of the densities is usually intractable for all
but the simplest models. Also, in this case, an analytic treatment will not be possible,
because the probabilistic model will not have an analytic expression. To nonetheless
compute the considered quantities, approximating numerical methods have to be em-
ployed.
The standard method to obtain probability distributions or to integrate numerically in
high-dimensional spaces is Monte-Carlo (MC) sampling or as it is also called Monte-
Carlo integration. The idea is to sample independently and randomly from a probabil-
ity distribution to approximate the desired quantity. For example, instead of calculating
the mean of a normal distribution analytically, it can be approximated by computing the
sample mean of a number of random samples drawn from a normal distribution. The
error of this approximation decreases with 1/

p
n, with n being the number of drawn

samples. This method can also be used to infer the probability density numerically.
For that, random samples are drawn from the density and for a sufficiently large num-
ber of them, the distribution of samples will converge to the true density. Neverthe-
less, simple Monte Carlo sampling is inefficient because of the random sampling of the
probability densities, which is often done by the inefficient rejection method. This is
particularly critical in high-dimensional spaces, where the number of samples needs
to increase exponentially with respect to the dimensions to ensure a sufficient popu-
lation of the probability space. To overcome this problem, Markov chain Monte Carlo
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(MCMC) methods have been developed. In these methods, samples are drawn ran-
domly but not independently by constructing a so-called Markov chain. Each element
of the chain is sampled in dependence on its preceding element and only its preced-
ing element. This property is known as the Markov property. It can be mathemati-
cally expressed in terms of conditional probabilities. Assuming a sequence of samples
z1, z2, ..., zn from a sequence of random variables Z1, Z2, ..., Zn, the Markov property is
fulfilled if [40]

q(Zn+1 = z|Z1 = z1, Z2 = z2, ..., Zn = zn) = q(Zn+1 = z|Zn = zn), (4.9)

where q(Zn+1 = z|Zn = zn) or in short q(z|zn) is the probability of moving from state
zn to state z. Given the probability q(z|zn), a Markov chain may then be constructed
by defining a starting point and generating new elements z by drawing samples from
q(z|zn). By this procedure, the model performs a random walk based on the probability
q(z|zn), and if set correctly, it will converge to the desired quantity for a sufficiently
long chain. However, the next state probability distribution q(z|zn) has to be inferred
from the target probability distribution p(x) that should be integrated over. This is
not always possible such that more general algorithms have to be used which split
the dependence on the predecessor into a part of generating a proposal and a part of
accepting the proposal. One example of this is the Metropolis algorithm. Within this
algorithm, a proposal z

0 for the next element in the Markov chain is generated from
a proposal probability distribution q(z0|z) which is taken to be symmetric q(z0|z) =
q(z|z0). An example of this would be a Gaussian distribution. Then, in a second step,
the proposal is accepted or dismissed according to the Metropolis criterion [40]

r(z0, z) = min
✓

1,
p(z0)
p(z)

◆
, (4.10)

where r(z0, z) is the acceptance probability ranging from 0 to 1 and p(z0) and p(z) are
the target probabilities for states z

0 and z. The proposed new state is then accepted
with probability r. In practice, this means that a random number u is sampled from a
uniform distribution, and the proposal is accepted if u < r and dismissed otherwise. If
accepted, the proposal is added as the new element to the chain, otherwise, the prede-
cessor is added again. By accepting the steps according to the target probability p(x),
the chain will quickly converge to the region of the highest probability, such that the
equilibrium distribution can be computed efficiently. The convergence is dependent
on the starting point of the chain, if this is chosen far away from the equilibrium dis-
tribution, a large number of steps is needed to reach it. This may distort the resulting
distribution, to prevent it often the first samples from a chain are excluded, the so-
called burn-in samples. Besides the above introduced Metropolis algorithm also other
algorithms in the field of MCMC exist, which use different proposal probability distri-
butions and acceptance criteria to infer the equilibrium probability distribution. Some
examples can be found in the [47]–[49].
To ensure, that the Markov chain has converged sufficiently, the sampling error can be
considered. For MC methods, this error decreases with the known 1/

p
N dependence,

where N is the number of samples. For MCMC, however, the individual elements of
the chain are not independent, such that sampling error actually decreases by

q
tf /N

[50], where tf is the integrated autocorrelation time. tf /N can therefore be seen as the
effective number of samples, where tf is a measure of how far apart two samples in the
chain have to be for considering them to be independent of each other. The integrated
autocorrelation time is given by [50]
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tf =
•

Â
t=�•

r f (t), (4.11)

where r f (t) is the normalized autocorrelation function of the stochastic process that
generated the chain of f . r f (t) can be estimated from a finite chain { fn}

N

n=1 by [50]

r̂ f (t) = ĉ f (t)/ĉ f (0), (4.12)

where

ĉ f (t) =
1

N � t

N�t

Â
n=1

�
fn � µ f

� �
fn+t � µ f

�
(4.13)

and

µ f =
1
N

N

Â
n=1

fn. (4.14)

For a finite chain, evaluating eq. 4.11 is not possible but has to be approximated. This
is usually done by adding up all terms up to some limit M ⌧ N [50]:

t̂f (M) = 1 + 2
M

Â
t=1

r̂ f (t). (4.15)

M is chosen much smaller than N which reduces the variance but adds a bias. Sokal
[50] suggests using the smallest M for which M � Ct̂f (M) with C = 5.
With the autocorrelation time, the sampling error of the MCMC simulation can be
controlled. To achieve, for example, an accuracy of 1 %, the chain has to consist of
N = 10000tf elements. A more detailed discussion about the convergence of MCMC
simulations can be found in [50].
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Chapter 5

Analysis
With the introduction to the physics of heavy-ion collisions and their modeling in the
previous chapters, the basis has been laid to accomplish the goal of this work, the quan-
titative estimation of central characteristics of the evolution of heavy-ion collisions. As
already explained in chapter 3, these characteristics are not accessible via any direct
measurement but have to be inferred indirectly from physical observables. For that, the
desired characteristics can be treated as free parameters of a model simulating heavy-
ion collisions, which is then optimized to reproduce the experimentally observed data.
In the following, a new approach to this is discussed and applied. At first, the choice
of the model, physical observables, and experimental data is described in sec. 5.1, then
the general procedure for the optimization is laid out in sec. 5.3, and ultimately the
optimization is performed in sec. 5.4, 5.5 and 5.6.

5.1 Analysis setup

As the first step in this analysis, the theoretical model, as well as the experimental data
used as a reference, have to be defined. This is an important step because meaning-
ful conclusions about the real physical properties in heavy-ion collisions can only be
obtained from the parameters if the model describes the evolution of the system real-
istically. In this thesis, the strongly interacting matter evolution is described by com-
bining the models introduced in chapter 3. The initial state of the heavy-ion collision is
described by Trento, the evolution of the QGP by Fluidum and the freeze-out and res-
onance decays by FastReso. This setup is based on [24], the predecessor of this work,
with some changes. For the optimization of the parameters, a completely new frame-
work is developed. In the following, the settings for the individual sub-models of the
simulation are laid out.

Initial conditions

To generate initial conditions, Trento is used as it was introduced in section 3.1. The
parameters are chosen in accordance with ref. [8] similar to ref. [24]. The reduced
thickness p is fixed to p = 0, the fluctuation parameter to k = 1.4, the nucleon width
to w = 0.6 fm and the inelastic nucleon-nucleon cross section is set to sNN

inel = 6.18 fm2.
Using this set of parameters, the initial entropy densities for the fluid evolution are
obtained with the following procedure:

1. Generate transverse entropy densities TR(x, y) with Trento for 105 events.

2. Compute centrality classes 0-5%, 5-10%, 10-20%, 20-30%, and 30-40% using the
event pseudo-multiplicities and eq. 3.1 and sort events into these centrality classes.

3. For each centrality class, calculate an averaged transverse entropy density hTR(r)i.
For that, center each entropy density TR(x, y) to the center-of-mass and rotate it
randomly before averaging the profiles to hTR(r)i on the x-axis.
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(A) Example of a transverse entropy density TR(x, y)
generated by Trento. One pixel corresponds to

0.1 fm.

(B) Averaged transverse entropy densities hTR(r)i
for different centrality classes. Computed with set-

tings as given in tab. 5.1.

FIGURE 5.1: Trento entropy density computation.

4. Scale the entropy densities hTR(r)i with a normalization of Norm

t0

s(r) =
Norm

t0
hTR(r)i, (5.1)

to obtain the initial condition s(r) for the fluid dynamic evolution.

In contrast to event-by-event simulations, here the individual entropy densities are not
taken directly as the input to the fluid evolution model but are rather averaged to obtain
the mean entropy densities as initial conditions. This is done because Fluidum consid-
ers only the mean evolution of the system. For the sample average to be an accurate
representation of the mean, the number of generated events has to be large enough.
The value of 105 is based on ref. [24], but this will be verified in this analysis once more.
In step 3, the entropy densities are reduced from the two-dimensional form TR(x, y) to
the one-dimensional hTR(r)i. This is valid because the average entropy densities are
azimuthally symmetric for a large number of events.
In the last step, the computed entropy densities for all centrality classes are scaled by a
factor of Norm/t0. This scaling factor is introduced as a free parameter of the model,
Norm describes here a normalization factor, and t0 is the thermalization time. The
thermalization time is taken out here to decouple the Bjorken flow at early times from
the normalization.
The setup for the initial conditions is summarized in table 5.1. In fig. 5.1A and 5.1B,
an example of one transverse entropy density TR(x, y) is shown together with the com-
puted average transverse entropy densities hTR(r)i for different centrality classes. The
treatment of the initial conditions described here is identical to ref. [24], more informa-
tion can be found there.

Fluid dynamic evolution of the QGP

Following the description of the evolution of heavy-ion collisions in chapter 2.3, the
next stage after the initial collision and before the fluid evolution model is the pre-
equilibrium phase. This will not be modeled for this analysis, such that the initial ve-
locity at the beginning of the fluid evolution is assumed to be zero. Thus, the generated
entropy densities are used directly as initial conditions for the fluid dynamic evolution.
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The evolution of the QGP is described by relativistic dissipative fluid dynamics, and
the equations of motion arising from this approach (as given in 3.2.2) are solved by the
software package Fluidum [7]. In this analysis, the azimuthally averaged transverse
momentum spectra at mid-rapidity are used to compare to data (more on that in sec.
5.1). For this reason, only the azimuthally symmetric background part F0(t, r) (as
introduced in sec. 3.2.4) will be considered in the model. Any azimuthally and rapidity-
dependent perturbations from the fluctuation part F1(t, r, f, h) are neglected. The used
implementation of Fluidum features shear and bulk viscous dissipation and a state-of-
the-art thermodynamic equation of state [7]. For the analysis, it is assumed that the ratio
of the shear viscosity over entropy h/s is independent of the temperature. Additionally,
for the bulk viscosity over entropy ratio z/s a dependence on the temperature is set,
which is assumed to be given by a Lorentzian function [24]

z/s =
(z/s)max

1 +
⇣

T�Tpeak
DT

⌘2 , (5.2)

with the peak temperature Tpeak = 175 MeV and DT = 24 MeV [51]. Furthermore,
within Fluidum, the shear and bulk relaxation times are assumed to be given by the
equations

tshear
h/(e + p)

= 5,
tbulk

z/(e + p)
=

1
15( 1

3 � c2
s )2

+
a

z/(e + p)
, (5.3)

where e is the energy density, p the pressure, cs(T) the speed of sound and a = 0.1 fm/c
is a small offset to ensure a causal evolution of the radial expansion [24].
For this analysis, only the ratio of shear viscosity to entropy h/s and the maximum bulk
viscosity (z/s)max are free parameters that will be optimized. They are chosen because
they have the largest impact on the evolution of the fluid. In table 5.1, the setup for the
fluid evolution model is summarized.

Hadronization and resonance decays

To model the hadronization and resonance decays, the software package FastReso is
used as it was introduced in section 3.3. In addition to pre-computing the decay maps,
also the freeze-out integrals over space-time rapidity and azimuthal angle may be pre-
computed for the present study. This is possible because only the azimuthally sym-
metric background part of the fluid evolution is considered. With that, the freeze-out
surface can be reduced to 1 + 1 dimensions described by (t(a), r(a)), where a 2 (0, 1)
parametrizes the position on the surface. The integral over the freeze-out surface re-
duces to [24]

dN

2ppTdpTdy
=

n
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0
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initial conditions fluid evolution hadronization and decays

model: Trento [8] model: Fluidum [7] model: FastReso [9]
p = 0 relativistic, dissipative fluid ⇠ 700 considered decays
k = 1.4 background field F0(t, r) < 3 GeV mass resonances
w = 0.6 (h/s(T)) = const partial chem. equilibrium
sNN

inel = 6.18 fm2 z/s: Lorentzian shape parameters: Tchem, Tkin
scaling: Norm/t0 parameters: h/s, (z/s)max
parameters: Norm, t0

TABLE 5.1: Summary of the settings and assumptions for modeling the
heavy-ion collision.

For the particle decays, only strong and electromagnetic decays of ⇠ 700 resonances
with masses up to m ⇡ 3 GeV are considered, the settings are taken from ref. [24].
In contrast to the previous study in [24], this analysis differentiates between the chem-
ical and the kinetic freeze-out by adding a phase of partial chemical equilibrium to the
model. The freeze-out temperatures Tchem and Tkin are taken as free parameters of the
model that will be optimized.
A summary of the parameters used by the model of the particalization and resonance
decays is given in table 5.1.

Comparing to experimental data

In this work, the comparison between the fluid dynamic simulation and the experi-
ment will be done based on the transverse momentum spectra of pions, kaons, and
protons in five centrality classes of Pb–Pb collisions at the center-of-mass energy per
nucleon pair

p
sNN =2.76 TeV. The considered momentum range is pT < 3 GeV/c. The

data differs from previous analyses of model-to-data fits, where momentum-integrated
quantities, like particle multiplicity, mean transverse momentum, or flow harmonics
were used [23]. Nevertheless, as argued in ref. [24], the particle spectra provide suffi-
cient information to also set constraints on the transport properties, especially because
the experimental data available is of high precision.
The experimental data that will be used for the analysis was measured by the ALICE
collaboration in the 2010 run at the LHC [52]. The data comprises the pT-spectra of
pions (p), kaons (K) and protons (p) for the centrality classes 0-5%, 5-10%, 10-20%, 20-
30%, and 30-40% in the pT-range <3 GeV/c, measured at mid-rapidity (|y|<0.5). They
are given in the form 1

N

1
2ppT

dN

dpTdy
.

The experimental data is shown in fig. 5.2. For pions, the considered pT-range will be
modified to 0.5-3 GeV/c. This is done because previous analyses [24] showed that the
current fluid dynamic modeling significantly underestimated yields of low pT-pions,
suggesting physical processes that are not included in the model. Therefore they will
also not be included in the fit.

5.2 Model properties

After the simulation has been defined, particle spectra can be obtained from it by fixing
the free parameters and running its modules subsequently. An example of the output
of the model for an arbitrary set of input parameters is shown in fig. 5.3. The similarity
to the experimental data in fig. 5.2 is apparent although the parameters are not even
optimized yet.
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FIGURE 5.2: pT-spectra for pions (left), kaons (middle) and protons
(right) measured by ALICE in Pb-Pb collisions at

p
sNN =2.76 TeV.

FIGURE 5.3: pT-spectra for pions, kaons and protons produced by a
combination of Trento, Fluidum and FastReso for an arbitrary set of
parameters Norm = 18.3, h/s = 0.69, z/s = 0.003, t0 = 0.57 fm/c,

Tkin = 128.2 MeV and Tchem = 145.5 MeV.

Setting the free parameters and executing the model can be conceptualized as evaluat-
ing a function. In this description, the function f would be represented by the model
combination of Trento, Fluidum and FastReso, which takes a set of parameters Norm,
h/s, z/s, t0, Tkin and Tchem as an input x and returns the pT-spectra of pions, kaons and
protons as an output y. The concept is depicted in fig. 5.4. Since this description of the
problem is quite general and beneficial for the analysis, the parameters and the spectra
will be often referred to by x and y in the following.
To decide on a proper procedure for the analysis, it is important to discuss the prop-
erties of the model f and its parameters first. Three main features can be identified,
which will be discussed in detail in the following:

1. The simulation is a computationally expensive black-box function.

2. The model can be considered deterministic.

3. The response of the model is continuous with respect to its input parameters.
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Norm, h/s, z/s,
t0, Tkin, Tchem

Trento
#

Fluidum
#

FastReso

particle spectrax f (x)

FIGURE 5.4: The model evaluation can be conceptualized by a function
call y = f (x), taking input parameters x and returning particle spectra

y.

The first point is true because although each step of the model is in principle traceable
by physical or phenomenological relations, the global behavior and the interactions be-
tween different parameters are not. How a change in a parameter affects the output
underlies complex inter-dependencies between the different parts thus making it im-
possible to predict how the model reacts to different inputs. Moreover, no analytical
expression for the model exists, such that the impact of individual parameters is not
accessible via mathematical calculations. Therefore it can be seen as a black-box func-
tion. Additionally to this, the model is computationally rather expensive because of
the numerical solving scheme for the partial differential equations of the fluid dynamic
evolution. Although Fluidum is much faster than event-by-event simulations, it still
takes about 3 min of computation time to produce particle spectra output for one set
of parameters. This may seem fast, however, a large number of model evaluations is
needed to infer the optimal set of parameters. This problem may be circumvented by
massive parallelization of the model evaluations, but due to computational limitations1

this is not possible here. This makes it even more important to build an efficient proce-
dure to estimate the physical properties of the model.
The second feature considers the question of whether the model is statistical in its out-
puts for a given input or if it is fully deterministic. From its construction, it is obvious
that the initial state model Trento is statistical since it is an MC model, therefore also
outputs of the full model will fluctuate, even though Fluidum and FastReso are de-
terministic. However, in the calculation of the spectra, only the background field is
considered, which is built by averaging a large number of events. By this, the statistical
variations of the initial state are averaged out to a large degree, in the limit of infinitely
many events the fluctuations would converge to zero making the full model completely
deterministic again. To investigate how large the fluctuations in the spectra are with re-
spect to the initial state, the full model is evaluated 100 times for the same random set
of input parameters for different numbers of events ranging from 103 to 105. For each
number of events, the fluctuations are quantified by the standard deviation of the spec-
tra values from the 100 runs. This gives a measure for the fluctuations for each pT-bin
for each particle and for each centrality class for the respective number of events n. To
visualize the decrease of the fluctuations for an increasing number of events, the mea-
sure of the fluctuations is normalized with their respective value at n = 1000. Thus,
for each pT a value of the relative fluctuation is derived. Since considering the relative
decrease eliminates any dependencies on momentum, centrality, and particle species,
all measures of the fluctuation for a specific number of events n can be averaged and
an uncertainty can be estimated by the standard deviation. The result is shown in fig.
5.5A.
It is evident, that the fluctuations decrease with 1/

p
n, as is expected for the statistical

uncertainty. For an increase in the number of events from 103 to 105, the statistical error

1Fluidum is written in Mathematica and only 21 licenses for it are available on the used computing
cluster.
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(A) Average decrease in the relative uncertainty of
the spectra values. All pT-bins for the spectra of one
n are averaged. The 1/

p
n dependence is clearly

visible.

(B) Distribution of the ratio between the statistical
uncertainties of the model for 105 events and the
data uncertainty. The histogram combines the ra-

tios of all pT-bins for all particles.

FIGURE 5.5: Statistical fluctuations.

hence decreases by a factor of 10. Although the behavior of the fluctuations is only
determined for one set of parameters, it can be assumed, that it is general, since the
parameters do not affect the initial state.
What still has to be answered is the question if the absolute value of the statistical un-
certainty is sufficiently small to be negligible in the analysis if n = 105 as chosen in 5.1.
For that, the statistical uncertainty can be compared to the experimental uncertainty.
In fig. 5.5B, the distribution of the ratio between the statistical uncertainty from the
model and the data uncertainty is shown. In the histogram, the values of all pT-bins
for all particles and in all centrality classes are displayed together. The statistical un-
certainties are always below 13 % of the data uncertainty, most of them are around 4%.
This is sufficiently small to impact the analysis only marginally. Therefore, the model
is approximately assumed to be deterministic.
The last feature that is considered here is how the model reacts to a variation of its pa-
rameters. The input parameters themselves are continuous, but the output may still
exhibit discontinuities which would have a large impact on the procedure for the anal-
ysis. However, from the construction of the model, it can be assumed, that it produces
continuous outputs with respect to the inputs because the initial state is not impacted
by a change of parameters, the fluid evolution is differentiable and therefore continuous
and the particalization model calculates averaged pT-spectra and is therefore continu-
ous, too. Nevertheless, the continuity was checked for a random set of input parame-
ters by varying one parameter at a time and observing the effect on the particle spectra.
The results are depicted in fig. 5.6. What is visible is the change of the first pT-bin
spectra value with respect to a change in one input parameter while keeping the other
parameters fixed. It is clearly visible that the response to a change in the parameters is
continuous. This was also checked for all other pT-bins.

5.3 Finding the optimal parameters

After having characterized the model and the experimental data, the time has come to
address the main goal of this work, the determination of the optimal parameters for the
model to reproduce experimental data. To reach this goal, it has to be at first defined
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FIGURE 5.6: Spectra values of the first pT-bin of all particles and central-
ity classes in dependence of a variation in one parameter at a time. The

dependence is continuous.

how optimality of the parameters can be quantified. Depending on the measure of the
optimality, the resulting set of parameters could vary largely. A reasonable choice that
was used in [24], the predecessor of this work, is the c2-value between model output
and data, which is given by [24]

c2 =
N

Â
i=1

(xi � yi)
2

s2
i

, (5.5)

where xi is the experimental value of the transverse momentum spectrum of a particle
species in a specific pT-bin and centrality class, yi is the corresponding model output
for a fixed set of parameters, and si =

q
s2

i,sys + s2
i,stat is the square-root of the sum of

squares of the systematic and the statistical uncertainties of the experimental data. The
sum is taken over all considered pT-bins in all centrality classes for all particles. To find
the optimal parameters Devetak et al. minimized the c2-value. In practice, this was
realized by generating a 6D parameter grid and then calculating the c2 for each set of
parameters in the grid. The resulting c2-grid was interpolated by a spline model and
minimized by a minimization algorithm. This approach is straightforward, however, it
has some disadvantages:

• In the experimental data, the systematic uncertainties are usually correlated. In
the c2-value, this is not considered.

• Spline interpolation is not accurate if the distances between the data points are
large. But in high-dimensional spaces, the density of points will be low such that
the interpolation uncertainties increase. These uncertainties were not considered
in the analysis of [24].

• Correlations between parameters were calculated by 2D slices and fitting a qua-
dratic function to the minimum, however, it is not clear a priori, that the func-
tional dependence is quadratic.
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• For uncertainty quantification no correlations between the parameters were con-
sidered, they were obtained by 1D slices of the c2-landscape, making them po-
tentially smaller than they are.

To overcome these limitations and to improve the analysis performed in [24], in this
work, the optimality criterion will be based on Bayesian inference. Bayesian inference
offers a natural framework to optimize model parameters and quantify their uncertain-
ties and was used already extensively for such tasks, for example in [5] in the context
of heavy-ion collisions.

5.3.1 Bayesian inference

In Bayesian inference, posterior probability distributions for each model parameter are
inferred, which quantify how likely each parameter value is given the experimental
data and the model. To understand how to compute these posterior densities, assume
a set of n parameters x = (x1, x2, ..., xn) and observed experimental and model data D.
Then, the so-called prior probability distribution p(x) can be defined, which represents
the initial beliefs about the likeliness of each parameter value. Moreover, the likelihood
p(D|x) is introduced, which quantifies how likely it is to observe the data D given a
specific set of the parameters x. This is connected to the quality of the fit of the model
to data. From these probabilities, the posterior probability distribution p(x|D) can be
calculated by Bayes formula:

p(x|D) =
p(D|x)p(x)

p(D)
, (5.6)

where p(D) =
R

p(D|x)p(x)dx is the marginal likelihood describing how likely an
observation of D is under the prior beliefs. This term can be neglected, since it does
not dependent on the parameters x and therefore only acts as a normalization constant.
The resulting posterior probability distribution p(x|D) is n-dimensional, however, to
infer estimates of the uncertainties of the parameters, usually, the marginal probability
densities are used. They are constructed by marginalizing over (integrating out) all
but one parameter xi of p(x|D). The marginal posterior probability distribution of x1
would be for example given by

p(x1|D) =
Z

dx2...dxn p(x|D). (5.7)

This distribution quantifies the probability for each parameter value. From that, uncer-
tainties may be estimated by considering measures of the width of the distribution like
credible intervals.
For the problem at hand, the parameters x can be identified with six input parameters
of the simulation, and the data D is given by the experimental spectra as well as the
model output spectra. In the following, the form of the prior distribution p(x) and
likelihood function p(D|x) are discussed for this case.

Choice of prior

The prior p(x) contains any information about the parameters of the model before ob-
serving any data. In the present case, little information about the parameters is avail-
able. Therefore, a constant prior is an appropriate choice, such that every parameter
combination is assumed to have a priori an equal probability to be the optimal set of
parameters. Because the search range of the parameters will be finite in the inference,
it is reasonable to restrict also the prior to these ranges. With that, the prior is given as
a uniform distribution:
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p(x) µ

(
1 if min (xi)  xi  max (xi) for all i

0 else
, (5.8)

where xi are the input parameters. Setting the prior outside of the search ranges to zero
is a strong assumption. By that, it is assumed that there is no probability to observe
any such parameter value. To avoid excluding plausible values outside of the search
region it is therefore important to define the parameter ranges large enough to include
all reasonable values.
The choice of the prior is to some extent arbitrary here since only little information
about the parameters is given beforehand. It could be also assumed to be of another
form, the only requirement that needs to be fulfilled is that it is uninformative. This does
not mean that the prior contains no information, but that it impacts the inference only
marginally. The posterior distribution obtained from eq. 5.6 is determined for an unin-
formative prior mainly by the likelihood p(D|x) if this is well constrained by the data.
In this case, the Bayesian approach yields not too different results from conventional
statistical analysis.

Likelihood function

The likelihood p(D|x) is the probability of observing the data D given the parameters
x. D includes the experimental data as well as the data generated by the model with
the set of parameters x. In a sense, p(D|x) can be seen as the fit probability of the model
outcome to the experimental data, thus quantifying the goodness of the fit.
To infer the form of the likelihood function, it is convenient to define a few terms at
first. The following calculations are mostly adapted from [5]. Let the experimental
data be given by the vector ye, which contains all spectra values of pions, kaons, and
protons of all considered centrality classes in all pT-bins in its elements. Then ye may
be represented by the sum of the physically "true" data ytrue

e and some experimental
uncertainty ee, such that

ye = ytrue
e + ee, ee ⇠ N (0, Se) . (5.9)

The experimental uncertainty ee is assumed to be a multivariate Gaussian with zero
mean and a covariance matrix Se, which accounts for statistical and systematic uncer-
tainties. The simulation output can be represented in the same form, leading to

ym(x) = yideal
m (x) + em, em ⇠ N (0, Sm) , (5.10)

where yideal
m (x) describes the outcome of a hypothetical ideal model, which does not

have any statistical or systematic uncertainties, and em is added to account for these
uncertainties. em is assumed to come from a multivariate normal distribution with
covariance matrix Sm. Assuming there is a set of optimal parameters x?, such that
ytrue

e = yideal
m (x?), combining eqs. 5.9 and 5.10 gives

ym (x?)� ye = e, e ⇠ N (0, S), S = Se + Sm. (5.11)

From this the likelihood can be constructed, which is given by a Gaussian distribution
with a mean ym(x)� ye and a covariance S

P(D | x) =
1p

(2p)n det S
exp

⇢
�

1
2
[ym(x)� ye]

T S�1 [ym(x)� ye]

�
, (5.12)
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where n is the number of parameters. By eq. 5.12, the likelihood can be computed for
any fixed set of input parameters x. For that, the simulation has to be evaluated and
the covariance matrix has to be constructed. Eq. 5.12 can be further simplified if the
model uncertainty as well as correlations in the uncertainties are neglected (S = Se, S
diagonal). Then the term in the exponential reduces to the c2-value from eq. 5.5, such
that minimizing the c2-value coincides with maximizing the likelihood

P(D | x) µ exp
⇢
�

1
2

c2
�

. (5.13)

5.3.2 General procedure

With the prior probability and the likelihood function in place, following eq. 5.6, the
posterior probability can be computed for any fixed set of parameters x. However,
to infer the full probability distribution, the posterior probability needs to be known
for any set of parameters in the parameter space. An analytic treatment would be the
best solution to this, but since the likelihood is a black-box function due to the model
evaluation in it, it is not applicable here. Thus numerical methods have to be applied
to approximate the posterior distribution.
The method that will be used here to populate the probability space of the posterior is
the MCMC algorithm that was already introduced in 4.3. It provides an efficient way
to obtain the probability distribution also in the high-dimensional parameter space of
the problem. Within the algorithm, random walks through the parameter space are
generated which are governed by the posterior probability. This is done by sampling a
random chain of steps and calculating the posterior probability as the target probability
for the Metropolis criterion (eq. 4.10) for each step. By construction, the distribution of
the parameter sets in the chains will then converge to the true posterior distribution.
However, this procedure involves a computational difficulty. Since the chains are con-
structed by sequentially computing the posterior probability for thousands of sets of
parameters, also the model has to be evaluated thousands of times while taking ap-
proximately 3 min per evaluation. In a reasonable amount of time, it is not possible to
obtain meaningful posterior estimates with this procedure because of the slow evalua-
tion. To overcome this obstacle, an emulator model can be introduced. The purpose of
this model is to emulate the computationally expensive simulation, such that it returns
the same outputs for the same inputs. The idea is that it does this much faster, taking
only a fraction of a second for a model evaluation, lowering the run-time of the MCMC
method to a reasonable value.
To construct an emulator model, input-output pairs can be generated with the simula-
tion, which are then used as training samples for the emulator model. Technically, this
is a supervised machine learning problem as introduced in chapter 4, more precisely
it is a regression problem since the output variables are continuous. The emulator is
therefore a regression model, which interpolates between data points obtained from
the true simulation. To train the emulator, input-output samples are usually generated
by evaluating the model on a grid structure in the parameter space. This step is again
computationally expensive since the model has to be evaluated many times, however,
it can be parallelized since the points in the parameter grid are independent of each
other.
Considering all of the above-mentioned steps, the workflow for inferring the posterior
probability distribution can be summed up as follows:
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• Parameter grid Define parameter ranges and generate a grid of parameter sets xi

within the parameter ranges. Run the simulation (Trento, Fluidum, FastReso) for
every grid point to infer the model outputs yi.

• Emulator model Define an efficient emulator model and use the input-output
pairs {xi, yi} to train the emulator to reproduce the model outputs. Verify the
performance of the emulator and quantify the uncertainty of the emulator.

• Bayesian inference Run the Bayesian inference to infer the posterior probability
distributions for each parameter. This is done by employing the MCMC algo-
rithm. Instead of evaluating the model, the emulator is used. The posterior is
calculated according to eq. 5.6.

• Parameter estimates Obtain parameter estimates by computing the marginal pos-
terior probability for each parameter. Parameter correlations can be inferred from
joint distributions.

The procedure is also illustrated in fig. 5.7. In the next sections, each of these steps will
be executed for the considered design of the study and the approach to each of them
will be discussed in detail.

FIGURE 5.7: General procedure for inferring the posterior parameter es-
timates in a Bayesian analysis.

5.4 Parameter grid

In the first step of the procedure, a parameter grid has to be defined which can then be
used to obtain training data for the emulator model. Its design is of particular impor-
tance since it has a large impact on the performance of the emulator. If the training data
does not contain sufficient information, the uncertainties of the emulator will increase
and thus the uncertainties of the posterior. This is especially an issue in high dimen-
sions where the density of points in the parameter space decreases exponentially with
the dimension for a fixed number of grid points. Because the number of possible model
evaluations is limited by the computational cost, the design of the grid has to be chosen
such that the maximal information is inferred from a minimal number of grid points.
For the choice of the grid design, there are three different possibilities. All of them
generate grid points in a hypercube inside the parameter space that is defined by the
search ranges for the respective parameters. The most simplistic approach would be a
factorial design with k values for each of n dimensions. The advantage is that the local
density is the same everywhere and thus the emulator will have a similar uncertainty
everywhere. However, the disadvantage is that the number of grid points increases
exponentially with k

n, which quickly reaches the computational limits of the model
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FIGURE 5.8: Depiction of a factorial, a random, and a Latin grid design.
The Latin grid combines the homogeneity of the factorial design and the

randomness of the random grid.

•

•

•

•

FIGURE 5.9: Example of Latin hypercube sampling. In every row and
every column, there is exactly one data point.

evaluations even for small k. In addition, the grid contains only little information since
for every parameter only k values are tested.
This can be circumvented by using a random grid. For this, N grid points are sampled
uniformly and randomly in the high-dimensional search space, thus all their parame-
ter values will be most likely different from each other. Disadvantageously to this ap-
proach is, that the local density of points may vary due to random sampling, resulting
in well and poorly-populated areas.
The method that can resolve both problems is Latin hypercube sampling. Within this
method, points are sampled semi-randomly in a n-dimensional unit hypercube [0,1]n

that can then be scaled to the desired search region. The idea of this method is to divide
each parameter axis into N equal probable intervals and then place N sample points
in the grid in such a way, that exactly one point is in each interval. The approach is
illustrated for the 2D case in fig. 5.9. The axes are divided into four rows and four
columns and in each row and each column exactly one point is sampled. To ensure that
the density of points is the same everywhere, the method can also be combined with
additional optimization methods.
Before a parameter grid can be generated, the parameter search ranges must be defined.
They are chosen in this work according to tab. 5.2.

Norm h/s (z/s)max t0 [fm/c] Tkin [MeV] Tchem [MeV]

1 � 60 0.1 � 1.5 0.003 � 0.12 0.1 � 1.0 120 � 140 140 � 150

TABLE 5.2: Search region for the parameters.

These search regions are based on physical considerations as well as previous analyses
[23], [24]. The Norm parameter has the least constraints since it is not related directly
to any physical interpretation. The shear and bulk viscosities are expected to be rather
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FIGURE 5.10: Two-dimensional projection of the used parameter grid.
The homogeneity and randomness of the Latin approach are apparent.

small because previous analyses showed that the QGP is an almost perfect fluid [21].
For t0, Tkin and Tchem, the search ranges can be chosen based on physical observables.
Tkin and Tchem are expected to be in the order of magnitude of the critical temperature
Tc and t0 is expected to be below 1 fm/c.
Having defined the parameter ranges, a Latin hypercube grid is constructed. The num-
ber of points is chosen to be N = 20000, which is a compromise between density in the
parameter space and computation time. Potentially, numbers up to N = 105 would be
feasible in a reasonable amount of time. Additionally, a second Latin hypercube grid
is sampled within the same ranges with N = 4000. This grid is used partly for testing
and validating the emulator model. In fig. 5.10, a two-dimensional projection of the
generated training grid is visible. It is apparent, that the density of points is homoge-
neous in the whole search region. The grid looks densely packed, however, this is due
to the projection onto two axis, in the six-dimensional space neighboring points may be
far apart. After the grid is built, the simulation with Trento, Fluidum, and FastReso is
run for all grid points to obtain the model spectra. In this case, the Trento output can be
pre-computed and used for all grid points because the initial state parameters are fixed.
For the given parameter grid, the spectra calculations succeeded for 19542 of the 20000
design points. The failed computations are connected to specific parameter combina-
tions that lead to numerical issues in Fluidum. Since the number of failed calculations
is rather small, these parameter combinations are omitted here.

5.4.1 Grid validation

To get a first impression of whether the chosen parameter ranges include the optimal set
of parameters to reproduce the experimental data, the computed spectra can be plotted
together with the data in one figure. This is shown in fig. 5.11.
The variety of the spectra for the different parameter configurations of the grid is de-
picted by box plots. For each pT-bin, the boxes indicate the lower (Q1) and the upper
quartile (Q3) values of the observed spectra values for the grid, with an additional
line at the median. The range between the two quartiles (Q3-Q1) is also called the in-
terquartile range (ICR). The whiskers of the boxes start from the first datum larger than
Q1� 1.5 ICR to the last sample less than Q3+ 1.5 ICR, following the standard definition
of box plots. Outliers are not shown to improve readability.
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FIGURE 5.11: Distribution of the spectra values generated with the pa-
rameter grid compared to the experimental data. The boxes extend from
the lower to the upper quartile values of the data, with a line at the me-
dian. It is obvious, that the experimental data is captured within the grid
data. Note that the y-axis is in log scale and that the scaling factors devi-

ate from previous plots to improve the visualization.
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From the figure, it is visible that the spectra generated with the parameter grid are
distributed around the experimental spectra. For all pT-bins except for high-centrality,
high-pT pions, the experimental data is captured within the ICR of the grid data. This
indicates that good parameter estimates may be found within the search region to re-
produce the experimental data.

5.5 Emulator model

The next step in the proposed procedure in sec. 5.3.2 is the construction of an emula-
tor model, which utilizes the generated input-output pairs {xi, yi} from the parameter
grid to reproduce the simulation. Because this problem is a standard machine learning
regression task, there are many available options for the emulator model. The canonical
choice is Gaussian process regression [53], which is widely used for interpolation and
was also employed for parameter estimation in the field of heavy-ion physics [23]. It is
a statistical non-parametric method that can interpolate multi-dimensional functions,
exactly what is needed here. The method also provides naturally a Gaussian uncer-
tainty estimate for its prediction. However, there are a few caveats for the emulation
in this case: Besides being optimal for computationally very expensive models where
only a few hundred data points can be generated, for less demanding models Gaussian
process regression is inefficient because the method scales with O(n2) in memory and
O(n3) in computation. In this analysis, the number of training samples n is ⇠ 104 � 105,
leading to already enhanced computation times. Furthermore, Gaussian process re-
gression can only return scalar outputs, thus for multi-dimensional outputs like in the
present case, additional methods have to be built on top to convert the scalar outputs
to multi-dimensional ones.
Because of these reasons, in this thesis, a different method will be used for emulation,
namely neural networks. NNs are, if constructed large enough, as flexible as Gaussian
process regression and are thus able to fit multi-dimensional functions similarly good.
In fact, it has been shown that infinitely wide NNs can converge to Gaussian process
regression [54]. The advantage of NNs is the good scaling with the number of training
samples. The computation time for the training scales with O(n), whereas the model’s
memory consumption is not affected by the number of samples. Furthermore, NNs can
be constructed to process any number of inputs and outputs by adjusting the number
of input and output nodes. With that, the multi-dimensional output can be fitted di-
rectly without further treatment. The only disadvantage that is connected to the use
of NNs is, that they do not quantify their uncertainty but only give point estimates.
To obtain an uncertainty estimate, additional methods must be laid out. In this work,
an ensemble of NNs will be used for that. The multiple NNs in the ensemble vary in
their predictions, hence their spread can be used as an estimate of the model uncer-
tainty. In the following, at first, the data preprocessing is discussed before a NN model
is constructed and verified and the ensemble is introduced and verified as well.

5.5.1 Data preprocessing

Before the NN emulator model is constructed, the data obtained from the parameter
grid is preprocessed. In the first step, the data is split into a training, a validation, and
a test set. This is done to have independent testing data for validating the model. The
training set is built with the 19542 input-output pairs from the first parameter grid and
the validation and test sets are built by splitting the 3909 data pairs of the second pa-
rameter grid in half. With that, the split of training, validation, and test set is 83.3 % to
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FIGURE 5.12: Illustration for the splitting of the data into a train, valida-
tion, and test set.

FIGURE 5.13: Examples of the normalization procedure. Left: Input pa-
rameter is normalized to the range [-1, 1]. Right: An output variable is

normalized to the same range.

8.3 % to 8.3 %, similar to fig. 5.12. The training set is used only for training the emu-
lator model, whereas the validation set is used for testing the model while optimizing
its parameters, and the test set is used for the final performance quantification. The
distinction between validation and test set is made because the validation error under-
estimates the true error of the model.
Additionally, the data is normalized based on the training data. For that, every input
parameter is scaled to the range [-1,1], such that the minimum value of the parameter
is converted to -1 and the maximum to 1. Because this normalization is done based on
the training set, -1 and 1 will not correspond exactly to the grid’s boundaries, however,
will be very close to it. For example, the corresponding values for the Norm-parameter
are 1.00388 and 59.9994.
There are two reasons for normalizing the input parameters: The first is the different
magnitude of the parameters. While the range for Norm is 1 � 60, it is 0.14 � 0.15 for
Tkin. This impacts the gradient descent algorithm, such that parameters with a larger
magnitude will be given more importance in the learning process, which may worsen
the result. The second reason is, that the activation functions operate in the region
around zero, thus if the parameter values are far away from it, the gradient will be very
small and training is inefficient. This is related to the problem of vanishing gradients,
where gradients calculated by backpropagation get smaller while propagating through
the network until they vanish completely. At that point, the network does not train at
all. Normalization may prevent this problem.
The outputs are normalized to the range [-1, 1] for the same reason. This is done for the
spectra values of each pT-bin in each centrality class for each particle. Examples of the
normalization procedure are shown in fig. 5.13.
The normalization of in- and outputs leads to a significant increase in the convergence
rate of the training process and makes the training much faster. The procedure will be
included in the emulator model, such that given parameter inputs will be normalized
automatically, then fed through the networks, and then the resulting outputs will be
scaled back to the output ranges.
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5.5.2 Neural network construction and training

Having normalized the in- and outputs, the NN emulator model may be constructed.
For this, all hyperparameters that were introduced in sec. 4.1.2 have to be specified,
which is elaborated on in the following:

• Number of layers and number of nodes per layer The NN has to take six input
parameters and return the spectra values of pions, kaons, and protons in five cen-
trality classes, which add up to 500 output values. Thus the network has to have
six nodes in the input layer and 500 in the output layer. The size and number of
hidden layers are not as well defined, the optimal value for them will be inferred
in a grid search. For this, a NN with 1024 hidden nodes is considered, as first
tests indicated that this is enough to reproduce the complexity of the simulation.
These 1024 nodes are distributed evenly across l layers, where l is variable. By
this, shallow and deep NNs can be compared since they have the same complex-
ity.

• Activation function For the present regression problem, suitable activation func-
tions are the hyperbolic tangent or the ReLU, as they are used widely in this field.
To find out, which one is preferable in this case, they will be also optimized in the
grid search.

• Weight initialization The weights for the NN are initialized by the Xavier weight
initialization procedure, which is the standard method used for NNs. By this, the
variances of the activations are the same across all layers, preventing exploding
or vanishing gradients. In this case, the normal Xavier initialization is applied as
described in [41]. The gain factor is chosen according to the recommended value
for the used activation function, thus either

p
2 for ReLU or 5/3 for Tanh.

• Number of epochs The number of epochs can be estimated by the point where the
validation loss increases while the training loss still decreases. It can be obtained
simply from plotting training and validation loss of the NN.

• Batch size The optimal batch size is dependent on the problem, therefore different
values are tested for it in the grid search. They are in the range of 100 to the full
length of the training set.

• Learning rate Also the learning rate is optimized in the grid search. The tested
values range from 10�1 to 10�4. These ranges are typical values for the learning
rate.

• Loss function The loss function for the training process is chosen to be the MSE
because this is the generally used metric for regression problems.

• Optimization algorithm As the optimization algorithm, the Adam optimizer is
used. First tests indicated that this works well here. However, if the performance
of the training is insufficient, also other alternatives are tested.

The NN model is implemented using PyTorch [55]. For this, a NN class was built that
includes methods to define the transformations for in- and outputs, the construction of
the NN, and the training of the NN. All necessary hyperparameters can be handed over
to these functions and thus constructing and training the NN breaks down to defining
parameters and calling functions.
As mentioned before, the values of some hyperparameters are specific to the problem,
thus they have to be inferred in an optimization procedure. This relates again to the
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learning rate batch size # layer activation

10�1, 10�2, 10�3, 10�4 100, 1000, 5000, 20000 1, 4, 8, 16 ReLU, Tanh

TABLE 5.3: Tested hyperparameter values for the NN training.

FIGURE 5.14: Effects of various NN hyperparameters on the training and
validation losses during the training process.

broad topic of optimization of parameters, however, in this case, the hyperparameters
are obtained with rather simplistic approaches, namely testing by hand and a simple
grid search. But also more advanced methods like Bayesian parameter estimation could
be used for it. To compare different architectures of NNs, the loss curves for the training
and validation set can be considered. They monitor the MSE of the training and vali-
dation data after each epoch during the training process of the NN and thus provide
a measure of performance and convergence of the NN. With that, conclusions about
many of the parameters can be drawn. To examine the effect of the parameters on the
loss curves, a grid search can be performed. Here, the grid includes the number of lay-
ers and nodes per layer, the activation function, the batch size, and the learning rate.
The tested values for each of the considered parameters are given in tab. 5.3.
The total number of parameter combinations is 4 ⇥ 4 ⇥ 4 ⇥ 2 = 128 since the number
of layers and the number of nodes per layer are varied in dependence on each other
(# nodes/layers = 1024/# layers) to compare networks of the same complexity. The
grid was generated and the hyperparameters of 128 NNs were set according to the
grid points and fixed parameters. Then all NNs were trained on the batch farm at GSI
and training and validation loss curves were stored. The loss curves of some NNs are
shown in fig. 5.14.
In the figure, in each plot only one parameter is varied at a time, all other parameters
were fixed to illustrate the effect specific parameters have. This corresponds to consid-
ering a 1D slice of the search grid. All effects that are visible, were also apparent for
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other fixed parameters so it can be assumed that they are general.
At first, it is reasonable to discuss some general properties of the loss curves. It is
visible, that the initial loss quickly decreases until it converges to some specific value
for all loss curves. The shape of this decrease already provides a lot of information.
Its steepness characterizes the convergence rate of the network, and steeper loss curves
indicate that the network learns faster. The value the training converges to is a measure
of the performance of the network, a lower MSE is connected to a better fitting NN.
Also, the optimal number of epochs can be obtained by the loss curves. If the loss curves
do not converge, it can be chosen larger, otherwise, the network can be trained until the
loss has converged. In this case, the MSE has converged for most of the NNs, but
for some, the number of epochs may even be increased. Another striking feature of all
losses in fig. 5.14 is, that no overfitting occurs, which would result in diverging training
and validation loss. The reason for this is that the used simulation is deterministic.
Hence, there is no noise in the data that could be fitted, and fitting the training data
better corresponds to fitting the model better.
In the upper left corner of fig. 5.14, the effect of the learning rate on the training process
is depicted. For too small learning rates the training converges slower because the
optimization algorithm only makes small steps in the gradient descent. For too large
learning rates the validation losses start to fluctuate heavily because the optimization
algorithm overshoots the minimum which also worsens the performance. Here, the
optimal learning rate is 0.001.
In the upper right plot, the effect of different batch sizes is visible. Smaller batch sizes
clearly benefit the training as they improve convergence and lead to a lower MSE. How-
ever, they also lead to larger fluctuations of the training loss because only a fraction of
the data set is used to update the weights in each optimization step. In this case, a batch
size of 100 is optimal since the converged MSE is also with its fluctuations lower than
the other tested values.
In the lower-left corner, the network architecture was changed. The NNs with layers
1, 4, 8, and 16 correspond hereby with a number of nodes-per-layer of 1024, 256, 128,
and 64, such that the total number of nodes in each NN is 1024. It is apparent, that
shallow NNs perform better than deep NNs for the present problem. This may be the
case because deeper networks are more susceptible to vanishing gradients such that
the weights are learned less efficiently. For this work, a NN with one hidden layer will
therefore be used.
The last hyperparameter that was tested is the activation function, which is depicted
in the lower-right corner of fig. 5.14. For the generated parameter grid in all cases, the
ReLU activation function was superior, therefore this will be used for the NN emulator
model.
From the hyperparameter grid, the best-performing NN can be extracted by comparing
the final losses of the validation data for all NNs. The minimally observed MSE is
5.4 · 10�6 when using a learning rate of 10�4, a batch size of 100, one hidden layer, and
the ReLU activation function. Therefore, this network design is used for the emulator
model. The loss curves for this configuration are shown in fig. 5.15.
The performed hyperparameter search is rather simplistic and only four of the hyper-
parameters were optimized. Furthermore, for the batch size and the learning rate, the
optimal values are at the edge of the grid suggesting that there might be even better
values outside of the search ranges. Hence, with a larger grid or more sophisticated
optimization schemes, better hyperparameters could be found which increases the per-
formance of the emulator model. However, it is expected that the chosen network
is already performing sufficiently well and that further optimization leads only to a
marginal performance boost. Thus this is omitted here.
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FIGURE 5.15: Training and validation losses of the best performing NN
in the hyperparameter grid. This network structure forms the basis of

the emulator model.

Performance of the NN

To quantify the performance of the trained NN, its output can be compared to the val-
idation output. The MSE already provides an estimate of the performance, however,
since it is based on the normalized outputs its absolute value is not informative. There-
fore, other metrics are used here to examine the performance of the NN. One of them is
the error of the NN prediction, which is given by the NN output minus the validation
output of the simulation (yNN

i
� y

model
i

). The error can then be compared to the exper-
imental uncertainty of the output to get an impression of its magnitude. In fig. 5.16,
the correlation of the NN predicted spectra output and the model output is shown for
three different pT-bins for three different particles for three centrality classes as well as
the ratio between the prediction error and the data uncertainty for the same bins. The
neural network predictions are strongly correlated to the model outputs, which indi-
cates that the NN emulates the simulation well. It does this not only for the data it was
trained on but also for the validation data. On the right side of the figure, the distribu-
tions for the ratio between the prediction error and the data uncertainty for the three
cases are plotted. The error is distributed around zero in a Gaussian-like shape and the
distributions for training and validation data are approximately the same. In all bins,
the prediction error is much smaller than the experimental data uncertainty, thus the
Bayesian inference will be mostly driven by the experimental uncertainty and further
improvements to the NN architecture will not affect the result of it much.
In fig. 5.16, only three of the 500 considered pT-bins are illustrated, but the correlations
and distributions for all of them were checked. No deviation from depicted behav-
ior was found. The combined distribution of all 500 pT-bins is depicted in fig. 5.17.
The prediction error rarely exceeds 30 % of the experimental uncertainty. The largest
observed value for the ratio is 3.57 which is an outlier.
Having defined and trained the NN, a fast surrogate model for the simulation is avail-
able. To illustrate its outputs and deviations to the experimental data, it is convenient
to consider the c2-value as this is related to the calculation of the Bayesian posterior
probability and reduces the information of the 500 spectra values to just one value. In
fig. 5.18, two-dimensional slices of the search space are visible, in which the c2-value
between emulator and data is encoded in the color. The plots were generated by apply-
ing the NN to parameter grids and then the c2 was calculated using the experimental
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FIGURE 5.16: Left: Correlation between the NN prediction and the sim-
ulation output for training and validation data. The NN clearly repro-
duces the simulation data. Right: Prediction error in units of the experi-
mental error. The prediction error is well below the experimental uncer-

tainty and distributed around zero.
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FIGURE 5.17: Distribution of the prediction error in units of the exper-
imental uncertainty for the validation and training data for all pT-bins

combined.

data. In these plots, regions of lower c2, respectively better fits to data, are visible,
which an optimization procedure would converge to. However, the produced plots are
only presented here for illustration purposes, the apparent minima most certainly are
not the global minimum, since only slices of the six-dimensional parameter space are
considered.

5.5.3 NN ensemble emulator model

Having defined and trained the NN model, an ensemble of NNs can be built. The en-
semble model is chosen rather than a single NN as an emulator to obtain also model
uncertainty estimates for each prediction. Thus, the prediction error does not have to
be calculated by considering the deviation from the simulation outputs. In this work,
the ensemble model will be built by averaging the results of several NN and using the
standard deviation of their prediction as an estimate of the model uncertainty. This ap-
proach was already introduced in sec. 4.2.1, the corresponding formulas for the calcu-
lation of the ensemble prediction and the prediction uncertainty are given there in eqs.
4.7 and 4.8. This simple approach is mainly used because only the model uncertainty
but no data uncertainty has to be considered here due to the deterministic nature of the
simulation. For problems where also data uncertainty is prevalent, more sophisticated
methods like deep ensembles [46] may be used.
For the ensemble, two requirements must be met: Each ensemble member has to be as
good as possible, and the individual members have to be as diverse as possible. The
first point was already addressed in the last section, so what remains is the introduction
of diversity into the ensemble. As was argued in sec. 4.2.1, the ensemble members are
sufficiently different if random weight initialization and random shuffling are used.
Hence, these two methods will be the only ones that are considered to induce variety.
From a computational standpoint, this is not connected to much further effort since
these techniques are already implemented in the network presented in the last section.
To build the ensemble, therefore, only several NNs have to be trained and then their
predictions can be combined to a mean ensemble prediction with a standard deviation.
Until now, it has not been discussed, what the optimal number of NNs in an ensemble
is. To examine this, the performance of ensembles with a varying number of members
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FIGURE 5.18: c2-values across slices of the parameter grid generated
with the NN. Clearly visible are regions with larger and lower c2, which

indicate worse and better parameters of the model.
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FIGURE 5.19: Left: Prediction error in units of data uncertainty for an en-
semble with different numbers of NNs. Right: Decrease of the variance

of the prediction for an increasing number of NNs.

can be evaluated. To construct the ensembles, 100 NNs are trained with the optimized
hyperparameters found in the last section. Each NN is trained with random initializa-
tion and data shuffling, which ensures diversity among the NNs. Then, 7 ensembles
with 1, 2, 5, 10, 20, 50, and 100 members are constructed from the 100 NNs to test their
performance.
At first, the prediction error is considered, which is the ensemble output prediction
(average prediction of all members) minus the true output obtained from the simulation
(yemsemble

pred � ymodel). This error is calculated for all outputs of the validation dataset,
including all pT-bins of all particles in all centrality classes. To get a feeling for the size
of this error, it can be normalized again by the corresponding experimental uncertainty
for the specific pT-bin. The distribution of the prediction error over the experimental
uncertainty for all pT-bins of the validation set combined is shown for the 7 ensembles
in fig. 5.19.
It is apparent, that the prediction errors decrease for ensembles with an increasing num-
ber of NN. This is expected since the ensemble prediction, an average of its members,
gets more precise for larger sample sizes. On the right side of fig. 5.19, the variance
of the distributions of the left side is depicted to quantify the increase in accuracy. The
variance drops significantly by a factor of ⇠ 3 from 1 NN to 10 NNs and then from 10 to
100 by another factor of ⇠ 1.2. The observed behavior does not follow the 1/

p
N law,

which is the expected functional form for the average of an uncorrelated sample and
would result in a linear function in the log-log plot. The reason for this is correlations
between the NNs. Each network is trained on the same data and has the same hyper-
parameters, thus they tend to deviate from the true value in the same direction. Hence,
adding new correlated NNs to an ensemble adds less information than adding uncor-
related ones and the variance decreases less pronounced. The correlation is discussed
later in more detail again.
The results of fig. 5.19 imply that the ensemble for the parameter estimation should be
chosen as large as possible to minimize the prediction error. But increasing the number
of members of an ensemble is also associated with an increased computational effort
for training and evaluation, such that too large ensembles are impractical to use. As
a compromise between accuracy and computational performance, in the following, an
ensemble with 10 NNs is selected for the emulator model. For 10 NNs, the ensemble
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FIGURE 5.20: Examples of the NN predictions for three pT-bins and ran-
dom input parameters taken from the validation set.

variance is reduced significantly by a factor of ⇠ 3 compared to a single NN, and the
computational effort is still manageable. Any further NN contributes only little to the
overall performance, thus adding more members is not worth the additional computa-
tional effort.
Until now, only the mean prediction of the ensemble has been considered. However,
the ensemble has been introduced primarily to account for the model uncertainty of the
NNs, which also has to be investigated. A priori it is not clear if the difference in the
predictions of individual NNs can describe the model uncertainty, although previous
results support this claim [46]. To investigate this, at first, the spread of the predictions
of the NNs in the ensemble is considered. In fig. 5.20, the predictions of the ensemble
members are shown for three different input parameter configurations from the vali-
dation set together with the true output from the simulation. For all three cases, the
predictions are distributed in a Gaussian-like shape, not necessarily around the true
value, but the distribution always includes it. To check if the apparent samples can
be identified with a Gaussian, the Shapiro-Wilk test [56] can be performed. This test
tests the hypothesis that a sample comes from a Gaussian distribution. The significance
level is set to 0.05 for the test. The p-values for the three different cases of fig. 5.20 are
0.55, 0.21, and 0.57, which are larger than the significance level. Therefore, the null hy-
pothesis can not be rejected and the samples can be assumed to come from a Gaussian
distribution. This test can be carried out for all 1954⇥ 500 outputs of the validation data
set to ensure that the Gaussian assumption is true for all regions in the parameter space
and for all pT-bins in all centrality classes and for all particles. From the 1954 ⇥ 500
tests, the hypothesis could be rejected in 48, 918 cases, which is a fraction of 0.05007.
This value is the expected value of rejected hypotheses if the null hypothesis is true
for a significance level of 0.05. Therefore, the distribution of the NN predictions can be
assumed everywhere to come from a normal distribution.
What remains is the calculation of the uncertainty of the ensemble prediction. The
commonly used procedure is to estimate it simply by the standard deviation of the
predictions of the NNs in the ensemble, which was used for example in [46]. Because
of two reasons, this is not accurate: Firstly, the prediction of the ensemble will be the
mean prediction of all NNs in the ensemble. Thus the error of the mean has to be con-
sidered rather than the error of a single NN. And secondly, any correlation between the
networks is not considered, which heavily impacts the estimate of uncertainty.
To include both effects in the uncertainty estimate, let’s assume the NNs predictions
to be samples of random variables Xi for fixed input parameters. Then, in the general
case of correlated random variables, e.g. correlated NNs, the variance of the sum can
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be obtained by
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where N is the number of variables. This is a sum over all entries of the covariance ma-
trix. Dividing by 1/N

2 then gives the variance of the mean. Eq. 5.14 can be simplified
for the case that all variables have the same variance s2, which yields

Var(X̄) =
s2

N
+

N � 1
N

rs2, (5.15)

where X̄ is the average prediction, and r is the average correlation between two vari-
ables. s2 in the case of the NNs is the uncertainty of a single NN sNN

pred. The assumption
that this is the same for all NNs is reasonable since all NNs in the ensemble are trained
in the exact same way with the same data, thus their predictions will exhibit the same
magnitude of uncertainty. The uncertainty sNN

pred is not accessible directly either but may
be estimated by the spread of the NN predictions. It is given by

sNN
pred =

1p
1 � r

ŝNN
pred, (5.16)

where ŝNN
pred is the standard deviation of the NN predictions and r is again the mean

correlation. The factor
p

1 � r accounts for the correlation between the NNs. With this,
the full expression of the uncertainty estimate of the mean is

sensemble
pred =

s
1
N
+ N�1

N
r

1 � r
ŝNN

pred, (5.17)

which implies that the correlation effectively accounts for a correction factor of the
standard deviation of the NN predictions. If no correlation is apparent, the formula
reproduces the error of the mean for uncorrelated samples 1/

p
NŝNN

pred. Thus, the en-
semble prediction uncertainty can be calculated by multiplying the correction factor
with the standard deviation of the spread of the NNs in the ensemble. However, the
mean correlation r, and therefore the correction factor, is unknown a priori, so it has to
be estimated from the data itself. To do so, the distribution of the error of the ensemble
prediction (yensemble

pred � ytrue)/spred can be considered. This is given by a standard nor-
mal distribution if the prediction uncertainty spred captures the prediction error. spred
can be expressed by csNN

pred, where c is chosen according to eq. 5.17. Because of this, the
distribution (yensemble

pred � ytrue)/sNN
pred has a standard deviation of c. The correction factor

may therefore be obtained by fitting this distribution.
Nevertheless, additionally, it has to be taken into account that the uncertainty sNN

pred
has to be estimated by the sample standard deviation ŝNN

pred itself since the true value is
unknown. Therefore, the ratio (yensemble

pred )/ŝNN
pred will not be normally distributed but will

follow a Student’s t-distribution, which is similar to a normal distribution but exhibits
heavier tails. It is defined by the number of degrees of freedom, given by N � 1, where
N is the number of NNs in the ensemble. For large N, the t-distribution converges to
the normal distribution, but in the present case with an ensemble size of 10 NNs, there
is still a significant difference to it.
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FIGURE 5.21: Left: Determination of the correction factor of the ensem-
ble uncertainty by fitting a t-distribution. Right: Corrected distribution

for the test data set.

Taking into account all these considerations, the correction factor for the uncertainty
of the ensemble prediction can be estimated by fitting a t-distribution to the distribu-
tion (yensemble

pred )/ŝNN
pred. In principle, this distribution has to be constructed and fitted for

every input parameter configuration and every pT-bin, which is infeasible since the
true model values are only known at the training or validation points. To simplify the
procedure, it is assumed that the correlation, and therefore the correction factor, are
independent of the position in the parameter space and the considered pT-bin, which
allows collecting all errors from all pT-bins and points in all regions of the parameter
space in one distribution. The assumption holds because the density of points in all
regions of the parameter space is the same and all pT-bins are treated in the same way,
which leads to similar correlations between the networks. This assumption is, however,
not strictly true because the density varies on a small scale, so some deviations may oc-
cur. If the assumption does not hold this will be visible in the distribution, as it is then
described by a sum of t-distributions instead of a single one.
In fig. 5.21 on the left side, the distribution (yensemble

pred )/ŝNN
pred is shown for the training

data, combined for all pT-bins. The figure also shows a fitted Student’s t-distribution.
It has 9 degrees of freedom (#NN � 1) and the correction factor, e.g. the scale of the
distribution, is estimated to be sfit = 0.43.
From fig. 5.21 it is obvious, that the t-distribution describes the form of the data well
thus the assumption of the constant correlation is reasonable. Only a slight deviation
compared to the distribution is visible. The correction factor sfit = 0.43 is equivalent to
a mean correlation of r = 0.0806 according to eq. 5.15. In the right plot of fig. 5.21, the
corrected distribution for the test data is depicted. The corrected uncertainty is able to
describe the ensembles’ prediction error as the expected t-distribution with 9 degrees
of freedom and a scale of one is approximately retained.
To cross check if eq. 5.17 is describing the uncertainty correctly, the scaling factors for
the distributions of ensembles with different numbers of members can be computed
by fitting t-distributions. As it can be expected that the average correlation between
two networks is the same regardless of the size of the ensemble, the correction factors
should follow the functional form of eq. 5.17 in dependence of N with r = 0.0806,
approximately. In fig. 5.22 on the left, the error distributions are plotted for ensembles
with 2, 5, 10, 20, 50, and 100 NNs. To these distributions, t-distributions were fitted, and
the correction factor was extracted and plotted on the right side in dependence on the
number of NN in the ensemble. The arising points were then fitted with the expected
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FIGURE 5.22: Left: Decrease of the prediction error due to averaging
over the ensemble members. Right: Variances of the distributions on the

left in dependence of N and the expected functional form.

functional form.
It is apparent, that eq. 5.17 is able to describe the general dependence between the
correction factor and the number of NNs in the ensemble. The estimated correlation is
r = 0.081 ± 0.007, which agrees with the previously determined value of r = 0.0806.
As mentioned before, the reason for the introduction of the emulator model is to ef-
ficiently obtain outputs for given inputs mimicking the simulation. In the previous
sections, it has been shown and verified that the ensemble accurately reproduces the
simulation, hence, what is left to be discussed is the decrease in computation time be-
tween simulation and emulator. To examine this, the simulation and the ensemble can
be evaluated for a set of input parameters and the running times can be compared.
While the simulation takes about 3 minutes to compute the output for one set of pa-
rameters, the ensemble takes only 0.01 seconds, reducing the computation time by a
factor of 105. The large decrease makes the MCMC simulation applicable in the first
place. The computational performance of the emulator is even higher if batches of in-
put parameters are provided to the ensemble because of vectorization. For example,
1000 configurations computed in parallel take about 0.6 s. Furthermore, the ensemble
model is easily parallelizable on a computing cluster as it is coded in python, whereas
the parallelization of the simulation is limited by the number of available Mathematica
licenses on the cluster.
In conclusion, the constructed ensemble model provides an efficient and accurate em-
ulator model to obtain the outputs of the simulation for given inputs. Moreover, any
deviation between the emulator model and the simulation is quantified by it, thus pro-
viding well-calibrated uncertainty estimates of its predictions. This model may now be
used to replace the simulation.

5.6 MCMC simulation

After an efficient emulator model for the simulation has been constructed and verified,
it can be used for the ultimate goal of this thesis, the determination of the posterior
probability distributions using Bayesian inference. For that, the posterior probability
is calculated by eq. 5.6, effectively multiplying the prior probability chosen by eq. 5.8
with the likelihood given in eq. 5.12. As already introduced in sec. 4.3, the probability
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space is most efficiently populated by an MCMC simulation. Computationally, this will
be taken care of by the emcee python package [57], which is an implementation of the
affine-invariant ensemble sampler proposed by Goodman and Weare [58]. For running
the MCMC algorithm, the logarithmic probability of the considered distribution has to
be quantified. In the present case, this is given by log of the posterior probability:

log(P(D|x)) µ

(
�

1
2 [ym(x)� ye]

T S�1 [ym(x)� ye] if x
min
i

 xi  x
max
i

8 i

�• else
, (5.18)

where xi, i = 1, 2, ..., 6 are the input parameters, x
min
i

and x
max
i

are their limits, ye is a
vector of the experimental spectra for all considered particles and centralities, ym(x) is
the according vector for the emulator model for inputs x, and S is the covariance matrix
consisting of the data and model covariance matrices (S = Se + Sm). The experimental
data ye was already specified in sec. 5.1 and the emulator output ym(x) is straightfor-
ward to compute, thus only the covariance matrices have to be discussed here. For
the experimental data, only the statistical and systematic uncertainties are available for
each spectra value, but no information about their correlations. Therefore, the data co-
variance matrix consists of entries only on the diagonal. These elements are given by
the squared sum of the statistical and systematic uncertainties (s2 = s2

stat + s2
sys). Omit-

ting correlations results in larger posterior probabilities and lower c2-values, which
impacts the final posterior distributions, however, since no information is available,
including them is infeasible at the moment.
The second covariance matrix that is considered is the emulator model covariance. This
covariance can be simply computed with the output of the NNs predictions in the em-
ulator for each input configuration. The NNs provide a matrix of size N ⇥ 500, where
N is the number of NNs. The covariance is then given by

Cov(yj, yk) =
1

N � 1

N

Â
i=1

�
yij � ȳj

�
(yik � ȳk) , (5.19)

where yj is the jth spectra output value and ȳj is the mean prediction for the jth output.
To obtain the covariance matrix of the mean prediction, all entries have to be scaled by
the correction factor of 0.432. The covariance matrix can be calculated by this procedure
for each prediction. To get an impression of the covariance structure, the correlation
matrix, which is connected to the covariance matrix, is depicted in a heatmap in fig.
5.23.
What is shown is the average correlation of the spectra values from the spectra of Pi-
ons, Kaons, and Protons in all considered five centrality classes. The matrix consists
of 500 ⇥ 500 correlations between the pT-bins. The particle and centrality classes are
displayed on the axes, but not the specific pT-values because of visualization purposes.
The correlation of the spectra of two particles and centrality classes is depicted in the
box substructure. From the boxes of the main diagonal, the correlation of neighboring
pT-bins in the spectra can be extracted. As expected, these are highly correlated, as
the ensemble produces a continuous output. In contrast to this, pT-bins of the same
spectrum far apart from each other are weakly correlated. Because of these two effects,
the correlation between spectra exhibits a strong diagonal structure, which is visible in
the figure. Additional to the main diagonal there are several parallel diagonals that are
apart by three boxes. These account for the correlations between different centrality
classes of the same particles, which also contain strong correlations. Furthermore, pi-
ons and kaons of the same centrality classes have strong correlations, protons, however,
are less correlated with these particles.
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FIGURE 5.23: Average correlation between the outputs of the emulator
for the validation data.

Having defined all components of eq. 5.18, the MCMC simulation can be deployed. For
this, two additional parameters have to be set, namely the number of walkers and the
number of steps per chain. These are important because if chosen too small, the chains
may not be converged to the equilibrium distribution, leading to distorted results. To
ensure converged distributions, the needed length of the chains and the number of
chains can be estimated using the integrated autocorrelation time tf . As explained in

sec. 4.3, the sampling error of the MCMC method is given by
q

tf /N governed by
an effective sample size N/tf , taking into account the autocorrelation in the chains. In
this analysis, the distributions will be considered converged, if the sampling error is
below 1 %. This implies, that the sample size of the chains has to be N � 10000tf . It
does not matter if this sample size is reached by running a lot of parallel chains with a
small number of steps or running only one chain with a large number of steps due to the
ergodicity of the Metropolis-Hastings sampler that is used. This means that the product
of the number of chains times the length of the chains has to be greater than 10000tf

to reach an error below 1 %. The number of walkers is chosen to be 64 and the MCMC
simulation will be stopped if the chains reach a length of 200tf , which leads to 12800tf

generated samples. The integrated autocorrelation time is approximated during the
generation of the chain, every 500 steps it is calculated by the integrated autocorrelation
time method of emcee. The estimate is unreliable if the chains are smaller than 50tf , as
explained in [57], thus to prevent a too early stopping of the MCMC simulation a second
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FIGURE 5.24: Example of an MCMC chain projected onto the Tchem-axis.
On a small scale the autocorrelation is visible.

FIGURE 5.25: Estimate of the integrated autocorrelation time t̂f in de-
pendence of the length of the chain. For small lengths, the estimate is

unreliable.

criterion has to be introduced, which ensures that the algorithm is only stopped if also
the estimate of the integrated autocorrelation time has converged. This is assumed to
be the case if the change of tf between two calculation steps (500 MCMC steps) is less
than 1 %.
Following this procedure, an MCMC simulation was run using the emulator model.
The generated output consisted of 64 chains of a length of 23000. In fig. 5.24, the output
for one chain projected to one axis is depicted.
From the figure, it is apparent that on small scales there is autocorrelation between the
samples. On the broad scale, however, the distribution looks like a stationary random
process, indicating that the chain has converged to the equilibrium distribution. To en-
sure that both convergence criteria are met, the estimates of the integrated autocorrela-
tion time t̂f are plotted in dependence on the number of steps in fig. 5.25. Additionally,
the stopping criterion is shown.
In principle, the integrated autocorrelation time is constant, which would result in a
horizontal line in the plot. However, since its value is not known, it has to be estimated
from the chain. For short chains, this estimate is poor and completely underestimates
the true value. Only as the length of the chain increases, the estimate of tf becomes
more reasonable and finally converges to the true value. The intersection with the linear
function (# steps/ N) marks the point where the first stopping criterion is met. At that
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FIGURE 5.26: Marginal posterior probability distributions in the search
space for all parameters.

point, the chain has a length of 200t̂f . It is then prolonged until the estimate of t̂f has
converged, meaning that its change is less than 1 % between two calculation steps. The
ultimate estimate of the mean integrated autocorrelation time is 103. The plots verify
that the distribution has converged.
To infer the estimates for the input parameters, the marginal posterior probability dis-
tributions have to be constructed. Mathematically this is done by integrating out all
but one parameter, numerically this can be achieved by projecting the six-dimensional
distribution onto one axis. To also account for correlations of the parameters, the poste-
rior distribution can also be projected into two-dimensional spaces with the considered
parameters as axes. The arising marginal posterior distributions are shown in fig. 5.26.
From the six input parameters, five, namely Norm, h/s, (z/s)max, Tkin, and Tchem are
well contained within the search ranges. Only the thermalization time t0 seems to be
not captured by the search region as the MCMC simulation runs against the boundary
at 0.1 fm/c. This may also impact the marginal distributions of all other parameters,
thus their values have to be taken with care. It is also visible, that there is some corre-
lation among the parameters. The shear viscosity h/s and the maximum bulk viscosity
(z/s)max are strongly positively correlated, whereas both of them are negatively corre-
lated with the Norm parameter. The Norm is also correlated with the kinetic freeze-out
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FIGURE 5.27: Log posterior probability and c2-values of visited parame-
ter configurations in the MCMC simulation. Both are calculated with the
NN ensemble. The difference is due to the consideration of the ensemble

uncertainty in the log(p) calculation.

temperature Tkin. All other combinations exhibit no or small correlations.
Before the plots are discussed in more detail it is worthwhile having a closer look at the
region where the MCMC simulation converged to. For this, the log posterior probabil-
ity of the visited points in the MCMC simulation can be considered. This is closely re-
lated to the c2-value, for vanishing model uncertainty the c2-value is given by �2 log p.
The distribution of the log posterior probability for the MCMC simulation is shown
in the form �2 log p in fig. 5.27. Additionally, to explore the effect of the ensemble
uncertainty on the MCMC simulation, the distribution of the c2-values, omitting the
ensemble uncertainty, is depicted.
From the figure two effects are apparent: Firstly, taking into account the ensemble un-
certainty increases the posterior probability and has a significant impact on the distri-
bution. And secondly, the MCMC simulation runs only in a very small region of the
probability space with differences in the log probability of only 5 and maximum c2 dif-
ferences in the order of 30. In comparison, the c2-values of the training samples range
between a few hundred and a few million. Even the training sample with the smallest
c2 of 639 is far above the region where the MCMC simulation converged to with a c2

of about 490. This means, that the region of highest probability is obtained fully by the
interpolation of the NN ensemble. Additionally, the region is at the edge of the search
grid at t0 = 0.1 fm/c, thus it is less constrained by the training samples. From both
of these observations, it can be concluded that additional training points from the re-
gion of highest probability may be beneficial to further reduce the ensemble error and
improve the posterior parameter estimates.

5.7 Refining the results

To refine the estimate of the parameters, the idea is to generate new points in the region
of the highest probability to then train a new, more accurate, ensemble on these points
which is then used to run another MCMC simulation to obtain the posterior estimates.
This is essentially a second iteration of the introduced procedure. For this, the following
steps have to be performed:
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1. Generate uniformly new training and test points in the region of the highest prob-
ability of the first iteration.

2. Train and test the new ensemble model using the new data. Infer the correction
factor.

3. Run an MCMC simulation using the new and improved ensemble model.

The first step can be done for example by using rejection sampling and uniformly sam-
pling points in the search space and rejecting all that have a c2-value above some
threshold. Or, as it will be done here, new points can be sampled from an MCMC
simulation. For that, the following log probability may be used:

log p =

(
const for (log p)it0 > pthreshold

�• else,
(5.20)

where (log p)it0 is the log posterior probability defined in eq. 5.18, and pthreshold is some
chosen threshold that defines the region of highest probability. An MCMC simulation
running with these settings uniformly generates samples from the region of highest
probability. That the samples are distributed uniformly in the space is important as one
assumption of the ensemble method is, that the correlation is constant with respect to
the position in the parameter space, which is only approximately given if the density
of points is constant.
For the present analysis, the threshold pthreshold was set to -280. This is well contain-
ing the region of the MCMC simulation which runs at log probabilities of -250 to -240
and additionally includes points around the region of highest probability to better con-
strain the NN ensemble. The MCMC simulation was run and from the chains, points
were sampled by calculating the integrated autocorrelation t̂f time and taking every
t̂fth point of the chain. This is done because the preceding points of the Markov chains
are not independent of each other. The procedure resulted in 7177 parameter config-
urations, uniformly distributed in the region of highest probability. These were then
divided into a training and a test set (test size: 0.2) and fed into the simulation to obtain
new training and test points for the ensemble.
Having defined a new training and test set, an ensemble model can be constructed
again following the procedure explained in the previous sections. As this was already
discussed in detail, here only the determination of the correction factor is considered.
The relevant plots are shown in fig. 5.28.
The correction factor is estimated to be sfit = 1.36, which is equivalent to a correlation
of r = 0.637. The correlation is much higher than in the first iteration, which is due to
the larger density of points which constrains the training more. It is also visible in the
figure, that the observed error distribution deviates from the expected behavior, which
indicates that the assumption of constant correlation is not strictly fulfilled. However,
the uncertainty estimate is still reasonable, and because the uncertainty of the ensemble
has only a minor impact on the posterior distribution it will not be investigated further.
To visualize and quantify the improvement the ensemble of the second iteration ex-
hibits in comparison to the first iteration ensemble, their predictions can be plotted
against the true values of the simulation for the test set. This is depicted in fig. 5.29 for
three output pT-bins. For an ideal emulator, the ensemble predictions would match the
simulation outputs, resulting in all points laying on the diagonal.
For all three plots, the ensemble of the second iteration is closer to the ideal emulator
model than the ensemble of the first iteration, which means that the prediction is more
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FIGURE 5.28: Left: Determination of the correction factor of the ensem-
ble uncertainty by fitting a t-distribution. Right: Corrected distribution
for the test data set. The distributions were obtained with the ensemble

of the second iteration.

FIGURE 5.29: Comparison of the predictions of the ensemble from the
first and second iteration. It is clearly visible, that the ensemble from the

second iteration is much more accurate in its predictions.

accurate. In the left plot also a systematic underestimation of the first ensemble is visi-
ble, for the second iteration ensemble this is not the case. The observed improvement in
the mean prediction is also apparent in all other 497 pT-bins, which is not shown here.
The improvement also manifests in the corrected estimated uncertainties of the model.
In fig. 5.30, the uncertainties of all pT-bins of the test data samples of the ensemble
of the second iteration are compared to the experimental uncertainties as well as the
uncertainties from the ensemble of the first iteration.
The ensemble uncertainties of the second iteration are approximately five times smaller
compared to the first iteration ensemble and are in the order of 0.5 % of the experimental
uncertainty.
In conclusion, the newly trained ensemble is much more accurate and may therefore
provide better estimates of the parameters.
The last step to infer the posterior estimates is to run the MCMC simulation, which
is done analogously to the last section. The resulting distributions are depicted in fig.
5.31.
The produced distributions mostly agree with the ones from the first iteration. How-
ever, the marginal distributions for the normalization Norm and the two viscosities h/s

and (z/s)max are more Gaussian shaped for this second iteration. This can be attributed
to the lower impact of the ensemble uncertainty on the posterior probability.
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FIGURE 5.30: Left: Ensemble uncertainty compared to the experimental
data uncertainty. Right: Ensemble uncertainty from the second iteration

compared to the one from the first.

FIGURE 5.31: Marginal posterior probabilities for the input parameters
inferred using the ensemble from the second iteration. Five considered

centrality classes: 0-5 %, 5-10 %, 10-20 %, 20-30 %, and 30-40 %.
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parameter mean median 68 % CI 95 % CI 99 % CI

Norm 25.1 25.1 24.1-26.2 23.1-27.4 22.5-28.2
h/s 0.36 0.36 0.33-0.39 0.31-0.42 0.29-0.45

(z/s)max 0.026 0.026 0.020-0.032 0.015-0.037 0.012-0.041
t0 [fm/c] 0.104 0.103 0.101-0.109 0.100-0.118 0.100-0.125

Tkin [MeV] 132.1 132.0 131.1-133.0 130.2-134.0 129.6-134.6
Tchem [MeV] 147.3 147.3 147.0-147.6 146.7-148.0 146.5-148.1

TABLE 5.4: Mean, median, and credible intervals for posterior probabil-
ity distributions of the parameter estimates. Fit based on five centrality
classes (0-5 %, 5-10 %, 10-20 %, 20-30 %, and 30-40 %) and three particles

(pions, kaons, protons).

To quantify the parameter estimates, credible intervals can be constructed using the
marginal probability densities. A credible interval defines an interval within which a
parameter value falls with a certain probability similar to confidence intervals in fre-
quentist statistics. Here, the 68 %, 95 %, and 99 % credible intervals will be used, which
means that the value of the respective parameter has a probability of 0.68, 0.95, or 0.99
to be in the interval. Credible intervals can be easily computed with central percentiles,
so the 95 % credible interval is for example defined by the 2.5th and 97.5th percentiles.
The credible intervals together with mean and median values of the marginal posterior
probability distributions of the parameters are given in tab. 5.4.
The credible intervals are mostly symmetric around the mean estimated parameter
value since they follow a normal distribution. Only for the thermalization time t0, this
is not true as the distribution is shaped like an exponential. Because of the Gaussian-
like distributions, the mean and median are also equivalent.
The values in tab. 5.4 mark the results of the parameter optimization for the considered
five centrality classes and three particles. The values will be evaluated in detail in the
discussion in the next chapter.

5.8 Optimization at thermalization times below 0.1 fm/c

From the distributions shown in fig. 5.31, it is obvious that the optimal value of the
thermalization time t0 is not included in the chosen search region, as the MCMC simu-
lation runs into the lower boundary of t0 = 0.1 fm/c. Before the physical implications
are discussed, it is worthwhile to extend the search region to lower values, such that
the optimum may be included. In principle, the extension of the grid to lower ther-
malization times is straightforward, as all it needs are new grid points in the area of
t0 < 0.1 fm/c and then the introduced procedure may be employed. However, for the
used simulation this is not possible because of one reason: For low thermalization times
in the vicinity of zero, the simulation becomes unstable due to numerical instabilities.
These distort the simulated output spectra of the particles and thus the posterior esti-
mates heavily. The instabilities do not occur for all parameter configurations at low t0,
but only for some specific ones. These regions are not predictable and hard to identify
as there is no information on how the spectra should behave. One way to find these
instabilities is by considering the c2-value of neighboring parameter configurations in
the grid. Because the simulation output is continuous with respect to the input param-
eters, also the c2-value is continuous. For unstable regions, this is not the case, as can
be seen as an example in the in figs. 5.32 and 5.33.
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(A) Example of the unstable region for low t0.
The c2-value is discontinuous.

(B) Example of the stable configurations for low t0.
The c2-value changes continuously.

FIGURE 5.32: Normalization behavior.

(A) Example of instabilities for low values of the
bulk viscosity (z/s)max. (B) Effect of the bulk instability on other parameters.

FIGURE 5.33: Bulk viscosity behavior.

Instabilities in the data also lead to a much worse fit of the ensemble model and become
apparent in the correlation plots of the predictions (fig. 5.34). Therefore, checking for
instabilities in the data can be done indirectly by checking these.
To infer the posterior estimates of the parameters for t0 < 0.1 fm/c, the idea is now
to iteratively expand the ranges of the search grid depending on where the MCMC
simulation hits the boundary, train an ensemble, check if the region is stable and then
infer again posterior estimates. This is done for the simulation with the same settings as
before, such that only the parameter ranges are varied. Here only the final implications
of this procedure will be outlined as the rest is similar to the last chapters.
From the procedure, two results were obtained: Firstly, the optimization for thermaliza-
tion times below 0.1 fm/c led to larger posterior probabilities compared to those above
it. This can be seen already from the minimum c2-values of the grid runs. For the
analysis with the boundary at t0 = 0.1 fm/c, the minimum c2-value was about 500,
whereas the minimum c2-value for the grids at lower thermalization times was found
to be 430 at a thermalization time of t0 = 10�5 fm/c. And secondly, the optimization
always ran into the boundary of the lowest t0 for all generated grids, indicating that
the optimal value for the thermalization time is zero, which is numerically infeasible
to reach with the simulation. As an example, the posterior distribution for the lowest
stable grid is shown in fig. 5.35, which has a boundary value of t0 = 10�4 fm/c.
To investigate the effect a smaller t0 has on the marginal posterior probabilities of the
other parameters, the thermalization time was set to the smallest stable value of t0 =
10�4 fm/c and the optimization procedure was employed by optimizing the other five
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FIGURE 5.34: Effect of including numerically unstable regions in the NN
fitting procedure. The unstable configurations are clearly fitted much

worse than the stable points.

FIGURE 5.35: Marginal posterior probability distribution of the thermal-
ization time at low t0. The optimal value is still not reached.

input parameters. The results are depicted in fig. 5.36.
The result is seemingly a multivariate normal distribution. In comparison to fig. 5.31,
the distributions of Norm, h/s and (z/s)max have shifted to lower values. In contrast
to this, the distributions for the kinetic and chemical freeze-out temperatures remained
mostly the same. Furthermore, the correlations between the parameters are similar
to the ones observed in fig. 5.31 with the exception of correlations with the chemical
freeze-out temperature, which are smaller here. To compare the differences quantita-
tively, the credible intervals are given in tab. 5.5.
The difference of the norm in tab. 5.4 and 5.5 is 23.7 and has an uncertainty of 1.0,
thus the two values are significantly different. The differences for the shear and bulk
viscosities are 0.07 ± 0.04 and 0.017 ± 0.006, so they are not significantly different but a
shift can be notified. In contrast to this, the values for the kinetic freeze-out temperature
Tkin and for the chemical freeze-out temperature Tchem fully agree (DTkin = 0.1 ± 1.4,
DTchem = 0.3 ± 0.4). The implications of the findings in this section will be discussed in
the next chapter.
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FIGURE 5.36: Marginal posterior probability distributions for Norm, h/s,
(z/s)max, Tkin and Tchem for a fixed t0 = 10�4 fm/c for the centrality
classes 0-5 %, 5-10 %, 10-20 %, 20-30 %, and 30-40 % for pions, kaons, and

protons.

parameter mean median 68 % CI 95 % CI 99 % CI

Norm 1.42 1.42 1.36-1.48 1.30-1.55 1.26-1.59
h/s 0.29 0.29 0.27-0.31 0.26-0.33 0.25-0.34

(z/s)max 0.009 0.009 0.007-0.011 0.006-0.012 0.005-0.013
Tkin [MeV] 132.0 132.0 131.1-133.0 130.2-133.8 129.7-134.4

Tchem [MeV] 147.6 147.6 147.4-147.9 147.1-148.1 146.9-148.3

TABLE 5.5: Mean, median, and credible intervals for the posterior proba-
bility distributions of the parameter estimates for a fixed t0 = 10�4 fm/c.
Fit based on five centrality classes (0-5 %, 5-10 %, 10-20 %, 20-30 %, and

30-40 %) and three particles (pions, kaons, protons).
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5.9 An alternative ansatz for the emulator

During the development of the optimization procedure laid out in the last chapters, an
alternative ansatz for the emulator was also tested, which has not been mentioned yet.
For completeness, it will be discussed here.
As already explained in 5.6, the likelihood function, and therefore also the posterior
probability, is effectively dependent on the c2-value between the simulation output and
the experimental data. In the previous analysis, this value was calculated for a specific
parameter configuration with the emulated simulation output and the experimental
data after the emulation. However, since the experimental data is always the same, it
is possible to include the calculation of the c2 into the emulator. This means, that the
emulator may not be used to predict the output spectra of the considered particles, but
directly the c2-value for a specific parameter configuration. This methodical shift is
illustrated in fig. 5.37.

FIGURE 5.37: Instead of emulating the particle spectra and subsequently
deriving the c2-value, both steps can be included in the emulator model.

The change in the emulator model does not make any conceptual difference, hence
all derived posterior probability estimates stay the same. Nevertheless, emulating the
c2-value exhibits some advantages and disadvantages. An advantage of it is that the
uncertainty of the posterior probability is expected to be lower. This is because while
emulating the spectra, the model uncertainty of all 500 pT-bins add up, whereas for the
c2-emulator only one output node is considered. A disadvantage of the approach is,
that the information of the 500 pT-bins is condensed to only one value, which makes
the output space much more complex and thus the training of the emulator.
To prove that emulating the c2 results in the same posterior parameter estimates as for
the spectra emulator, the introduced optimization procedure is adapted and deployed
for its use. The analysis is started from the second iteration grid generated with the sim-
ulation. Because of this, it is not fully independent of the first analysis with the spectra
emulation model, as only the region of the highest probability of the first iteration is
considered. This is done because the first grid has a density of points that is too low
to fit the c2-emulator accurately. The effect occurs since the c2 that is fitted has a more
complex dependence on the input parameters than the individual 500 spectra values.
Nevertheless, if the estimates differ from the previous results, this will be visible in the
posterior distributions. In the following, the adaptions of the procedure for using the
c2-emulator are discussed.

5.9.1 Parameter grid

The parameter grid is the same as used in the previous analysis, but here directly the
second iteration grid is used. All outputs for the particle spectra of a specific input
parameter configuration are condensed into one c2-value using the experimental data.
The c2-values are taken as the new outputs. The division into train, validation, and test
set remains the same.
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5.9.2 Emulator model

For the emulator, the data preprocessing also remains the same. However, the archi-
tecture and hyperparameters of the NN change. The optimal settings of these were
inferred by trial and error, without grid search. They can be found in tab. 5.6.

hyperparameter value hyperparameter value

input nodes 6 output nodes 1
# layers 8 # nodes per layer 16

activation function Tanh weight initialization Xavier
Number of epochs 300 Batch size 100
initial learning rate 0.001 loss MSE

TABLE 5.6: Hyperparameters of the NN for the c2-fit.

The found hyperparameters are quite different from the ones for the spectra fit. Instead
of a wide shallow NN, a deeper NN with 8 layers worked better here, which may be
related to the more complex structure of the output space. Furthermore, the hyperbolic
tangent performed better than the ReLU activation function. Additionally, the predic-
tive performance of the NN was improved by using a learning rate scheduler, which
reduces the learning rate if the loss reaches a plateau, and oversampling of the training
set, such that in each epoch the training set is seen multiple times. The training and
validation loss of the used NN are shown in fig. 5.38.

FIGURE 5.38: The training and validation loss of the constructed NN
fitting the c2 of the simulation to data.

With the NN in place, the ensemble can be constructed by combining the predictions of
several NNs. Since the principles remain the same, this is done analogously to the case
of the spectra fit. The ensemble consists of 10 NNs and its uncertainty can be estimated
again by the spread of the predictions. The resulting correlation plot for the constructed
c2-ensemble is depicted in fig. 5.39.
From the left plot of the figure, it is evident that the c2-values predicted by the ensemble
reproduce the true c2 from the simulation. Moreover, from the right plot, it es apparent
that the uncertainty of the ensemble is distributed around zero with a difference in the
predicted and the true c2 of mostly below 1.
Using the ensemble, the correction factor can be estimated again by fitting a Student’s
t-distribution to the error distribution. The corresponding plots are shown in fig. 5.40.
The estimated correction factor is sfit = 0.49, which is equivalent to a mean correlation
between the networks of r = 0.12. This is much smaller than for the spectra ensemble
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FIGURE 5.39: Left: Correlation between c2-value calculated with the
simulation and predicted with ensemble model. Right: Error distribu-

tion for the c2-value.

FIGURE 5.40: Left: Fit of a t-distribution to the error distribution of
the training data. Right: The corrected test data and the expected t-

distribution.

(r = 0.64) trained on the same data, which may be attributed to the changed network
architecture and the strong correlation between the spectra outputs.

5.9.3 MCMC simulation

Having constructed and verified the ensemble model, the MCMC simulation can be
run. However, at first, some important changes in the expression of the posterior prob-
ability have to be discussed. For the spectra fit, it is given by eq. 5.27, where the uncer-
tainties of the experiment and the model are both captured in the covariance matrix S.
This is not the case for the c2-ensemble, as the c2, given by

c2 = [ym(x)� ye]
T S�1

exp [ym(x)� ye] , (5.21)

only captures the experimental uncertainty and the ensemble uncertainty comes in at
a later stage as the prediction uncertainty of this value. For the ensemble model, the
logarithmic posterior probability is given by

log(P(D|x)) µ

(
�

1
2 c2 if x

min
i

 xi  x
max
i

8 i

�• else
. (5.22)
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FIGURE 5.41: The marginal and joint posterior distributions for all con-
sidered input parameters. Blue: c2-ensemble, red: spectra-ensemble.

Because the c2 is not exactly known but has to be predicted, it has to be replaced by its
estimate, which is given by a normal distribution around the ensemble mean prediction
c2

pred with a standard deviation of ŝpred. Thus, the posterior probability for a fixed set
of parameters x follows a log-normal distribution. The MCMC simulation is not able
to process distributions, but only scalar values. Hence, the expectation value for the
posterior probability is used here, which is given by the log of the expectation value of
the log-normal distribution c2

pred + 1/2ŝ2
pred. Using this, the expression for the log of

the expectation of the posterior probability becomes

log E(P(D|x)) µ

(
�

1
2 c2

pred + 1
8 ŝpred if x

min
i

 xi  x
max
i

8 i

�• else
. (5.23)

This is used for the MCMC simulation. The simulation is run with the same settings as
before (see sec. 5.6). The results of the MCMC simulation are shown in fig. 5.41.
For comparison, in fig. 5.41, in addition to the marginal distributions of the c2-ensemble
in blue, the results of the spectra-ensemble are depicted in red. It is evident, that both
methods converge to the same solution. This is the expected behavior, as both variants
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calculate the same quantity, the posterior probability, and are based on the same experi-
mental data and simulation. Differences may only arise from the different treatments of
the errors or uncertainties in the prediction. Because major disagreements do not occur,
it can be concluded, that the model uncertainties are small enough to have no effect on
the posterior distributions, and it indicates that the estimates can not be further refined
by improving the emulator model. The findings will be discussed in more depth in the
next chapter.

5.10 Parameter optimization for the most central events

The performed optimization of the last chapter led to a vanishing thermalization time
t0 < 10�4 fm/c, which is incompatible with the physical expectation. This indicates,
that the simulation misses a part of the description of the evolution of the heavy-ion col-
lision or introduces an error that is not considered. In correspondence with the theory
group which is responsible for the simulation of Trento, Fluidum, and FastReso, two
possible reasons for the small thermalization time could be identified: Firstly, within
the model, the Equation of State is applied only to the averaged background fields. By
that, some contribution to the energy of the fluctuations of the individual collisions is
lost, which introduces a source of error. The effect is expected to be small in the most
central collisions as for them the fluctuations are small. However, for more peripheral
collisions, the approximation is expected to be less reliable which may drive t0 to zero.
The second reason could be that the fluid velocity is set to zero as an initial condition
for the fluid dynamic evolution. Thus, to build up the fluid velocity that is needed to
reproduce the data, the optimization is driven to particularly low thermalization times.
The issues may be solved by modeling the pre-equilibrium phase of the heavy-ion col-
lision explicitly, such that a fluid velocity can build up and more realistic initial condi-
tions arise. This will be implemented in the near future into the simulation, but was
not yet available for this work. To nevertheless resolve the first presented issue, the op-
timization is done considering only the most central events, where the error connected
to the linearization is small.
Optimizing only considering the spectra of the first centrality class from 0 � 5 % is
straightforward. The whole procedure for parameter optimization that was introduced
in this thesis stays the same, but now only the 100 pT-bins of the first centrality class of
the three particles are considered. It is even possible to reuse the first generated param-
eter grid, as all information about the outputs of the simulation of the 0� 5 % centrality
class is included in it. Moreover, since the fit to the first centrality class is a part of the
previous optimization, all assumptions about its uncertainty remain valid. Therefore,
the emulator model is trained on the outputs of the first parameter grid with the same
hyperparameters as for five centrality classes. The correction factor of the uncertainty
can be inferred again by fitting a t-distribution. The corresponding plots are depicted
in fig. 5.42.
The estimated correction factor is sfit = 0.48, which is equivalent to a mean correlation
of r = 0.115. The correlation is, as expected, in the same magnitude as for the first en-
semble (r = 0.081), because the fit is performed on a fraction of the same data. Having
defined the ensemble model, the MCMC simulation can be performed analogously to
the previous runs. For considering only the first 0 � 5 % centrality class, the obtained
results for the first iteration are given in fig. 5.43.
The thermalization time t0 seems to be more constrained for the new settings. How-
ever, before the distributions are evaluated in more detail, a second iteration of the
optimization is performed to improve the results. This is done similarly to the proce-
dure in 5.7. The threshold was set to pthreshold = �44, which was estimated based on
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FIGURE 5.42: Left: Error distribution for training data of ensemble fitting
only the 0� 5 % centrality class. Right: Corrected distribution for the test

data.

FIGURE 5.43: Marginal posterior probability distributions and correla-
tions for the optimization for the 0� 5 % centrality class for pions, kaons,

and protons.
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FIGURE 5.44: Left: Fit of the t-distribution to the error distribution of the
second iteration ensemble. Right: The corrected error distribution of the

test data.

FIGURE 5.45: The correlation between the ensemble model prediction
and the simulation output for three different pT-bins. The ensemble from
the second iteration is only slightly better than the one from the first

iteration.

the distribution of the logarithmic posterior probability from the first iteration. With the
procedure, 7360 new grid points were sampled in the region of the highest probability.
These were then used to train and test a new ensemble model. For this, the correction
factor can be determined again as illustrated in fig. 5.44.
The correction factor is estimated to be sfit = 2.32, which is connected to a mean cor-
relation of r = 0.84. From the figure, it is obvious that the error distribution is not
described well by a t-distribution, which indicates that the correlation is not constant
everywhere. However, the corrected uncertainty may still be used as an estimate for
the uncertainty as it defines an upper boundary of the real uncertainty. The mean cor-
relation between the NNs is rather large, even larger than for the case of five centrality
classes (r = 0.64), which means that combining the predictions of several networks
improves their prediction only marginally. This is also visible in the comparison of the
ensemble prediction and the true simulation output depicted in fig. 5.45.
For the three shown pT-bins, the second iteration ensemble is only slightly better than
the first iteration ensemble. For pions at 1.45 GeV/c there are even more outliers for the
second iteration ensemble than for the first one. The marginal improvement may be
attributed to the strong correlation and to the lower density of points in the region of the
highest probability. The density of points is lower than for the case of the five centrality
classes because a similar number of samples (⇠ 5000) is distributed in a larger space.
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FIGURE 5.46: Uncertainties of the second iteration ensemble compared
to Left: the experimental uncertainties, Right: the uncertainties of the

first iteration ensemble.

For example, the ranges for the viscosities obtained from the first iteration cover their
whole search regions instead of only a small part as for the case of the five centrality
optimization.
To evaluate the uncertainties, they can be compared again to the experimental ones and
the ones from the first iteration. This is depicted in fig. 5.46.
The estimated and corrected uncertainties are in the order of 3 % of the experimental
uncertainties. This is about six times larger than in the five-centrality fit. Furthermore,
the distribution in the left plot confirms the results of fig. 5.45. On average, the second
iteration ensemble is slightly better than the first one, but for some points, it is worse
with uncertainties up to twice as large as in the first iteration. The ensemble will be used
nonetheless to infer again the posterior probability densities. This is done analogously
to sec. 5.6. The resulting distributions are given in fig. 5.47.
The distributions for the kinetic and the chemical freeze-out temperature are approxi-
mately normally distributed, whereas all other distributions follow more complex shapes.
The viscosities h/s and (z/s)max are distributed over the whole search range and tend,
in contrast to the fit to five centralities, to the larger values. Both distributions are cut
off at the boundaries, which may also affect the other parameter estimates. The distri-
bution of the thermalization time runs again to the lower boundary at t0 = 0.1 fm/c,
which indicates the problem of the vanishing thermalization time is more related to the
fluid velocity of zero in the initial conditions. However, the increase to the boundary is
less pronounced than for the fit to five centrality classes, which suggests that the error
induced by linearization has an effect on t0. The mean estimates and credible intervals
for the parameters are given in tab. 5.7.
The derived credible intervals and means of the distributions have to be taken with
care because the posterior probability is cut off in some dimensions. If the search grid
is extended, the estimates could potentially change. The obtained parameter estimates
are only true if the underlying assumption of the analysis holds, that the optimal pa-
rameters are within the search ranges. The results are discussed now in more detail in
the discussion.
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FIGURE 5.47: Marginal posterior probability distributions for the opti-
mization based on the spectra of pions, kaons, and protons for the cen-

trality class 0 � 5 %.

parameter mean median 68 % CI 95 % CI 99 % CI

Norm 21.4 20.9 16.8-26.0 14.6-30.8 13.8-33.5
h/s 0.96 0.97 0.63-1.28 0.41-1.45 0.33-1.49

(z/s)max 0.08 0.09 0.05-0.11 0.02-0.12 0.01-0.12
t0 [fm/c] 0.25 0.21 0.13-0.39 0.10-0.61 0.10-0.76

Tkin [MeV] 124.5 124.4 122.7-126.4 121.3-128.4 120.5-129.8
Tchem [MeV] 146.0 146.0 145.2-146.7 144.5147.6 144.1-148.1

TABLE 5.7: Mean, median, and credible intervals for posterior proba-
bility distributions of the parameter estimates. The fit is based on one

centrality class (0-5 %) and three particles (pions, kaons, protons).
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Results and discussion
The final results of the parameter estimates inferred in this work for the normalization
Norm, the shear viscosity h/s, the maximum of the bulk viscosity (z/s)max, the ther-
malization time t0, the kinetic freeze-out temperature Tkin, and the chemical freeze-out
temperature Tchem are summarized in tab. 6.1. The table includes the optimized param-
eters for the three considered cases: Firstly, the fit to the spectra of pions, kaons, and
protons in five centrality classes (0-5 %, 5-10 %, 10-20 %, 20-30 %, and 30-40 %) with a
limiting t0 of 0.1 fm/c. Secondly, the fit to the spectra in five centrality classes (0-5 %,
5-10 %, 10-20 %, 20-30 %, and 30-40 %) with a fixed t0 = 10�4 fm/c. And lastly, the
fit to the spectra in the centrality class 0 � 5 % with a limiting t0 of 0.1 fm/c. For all
three cases, pions were fitted in the pp-range 0.5 � 3.0 GeV, and kaons and protons for
pT < 3.0 GeV.

parameter mean median 68 % CI 95 % CI 99 % CI

pions, kaons, protons, centrality classes: 0-5 %, 5-10 %, 10-20 %, 20-30 %, 30-40 %

Norm 25.1 25.1 24.1-26.2 23.1-27.4 22.5-28.2
h/s 0.36 0.36 0.33-0.39 0.31-0.42 0.29-0.45

(z/s)max 0.026 0.026 0.020-0.032 0.015-0.037 0.012-0.041
t0 [fm/c] 0.104 0.103 0.101-0.109 0.100-0.118 0.100-0.125

Tkin [MeV] 132.1 132.0 131.1-133.0 130.2-134.0 129.6-134.6
Tchem [MeV] 147.3 147.3 147.0-147.6 146.7-148.0 146.5-148.1

pions, kaons, protons, five centrality classes, fixed t0 = 10�4 fm/c

Norm 1.42 1.42 1.36-1.48 1.30-1.55 1.26-1.59
h/s 0.29 0.29 0.27-0.31 0.26-0.33 0.25-0.34

(z/s)max 0.009 0.009 0.007-0.011 0.006-0.012 0.005-0.013
Tkin [MeV] 132.0 132.0 131.1-133.0 130.2-133.8 129.7-134.4

Tchem [MeV] 147.6 147.6 147.4-147.9 147.1-148.1 146.9-148.3

pions, kaons, protons, centrality class 0-5 %

Norm 21.4 20.9 16.8-26.0 14.6-30.8 13.8-33.5
h/s 0.96 0.97 0.63-1.28 0.41-1.45 0.33-1.49

(z/s)max 0.08 0.09 0.05-0.11 0.02-0.12 0.01-0.12
t0 [fm/c] 0.25 0.21 0.13-0.39 0.10-0.61 0.10-0.76

Tkin [MeV] 124.5 124.4 122.7-126.4 121.3-128.4 120.5-129.8
Tchem [MeV] 146.0 146.0 145.2-146.7 144.5147.6 144.1-148.1

TABLE 6.1: Mean, median, and credible intervals for posterior proba-
bility distributions of the parameter estimates. Summary of the three

analyses.
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6.1 Optimization for five centrality classes

For the optimization based on the spectra of pions, kaons, and protons in five centrality
classes, the posterior distributions are shown in fig. 5.31. Before the derived estimates
are discussed in detail, some important properties of them have to be kept in mind:
The derived posterior distributions are only a valid description of the global optimal
parameters if the assumption that was made by defining the prior, that the probability
of the true value laying outside the search range is zero, is true. This is not fulfilled
here, because the thermalization time converges to values at the defined limit of its
range. Therefore the obtained parameter values may significantly change with respect
to the true global optimum. However, as the search range was expanded to lower ther-
malization times, the posterior distributions could also be studied near the potential
optimum at t0 = 0 fm/c, thus the effect of the thermalization on the other parameters
can be estimated.
Another important aspect is, that the uncertainties of the parameter estimates in this
thesis only consist of the experimental and the emulator uncertainties, but do not in-
clude systematic uncertainties of the simulation model, which are expected to con-
tribute significantly to the overall error, similar to the results of [24]. These can be
estimated by varying the fitting procedure and this will be done in future work. Hav-
ing said this, the inferred parameter estimates can be compared to the results of other
hydrodynamic modeling approaches, especially to the predecessor of this work [24].
Since the used simulation model has undergone some important changes with respect
to [24], a detailed comparison is however not possible.
The optimal Norm parameter is 25.1 ± 1, which is significantly different from the anal-
ysis in [24], which found a normalization of about 56. The difference most certainly
comes from the fact, that [24] only searched the optimal Norm parameter in the range
50-67, whereas in this work the range was extended also to lower values after prior
studies have shown that this produces better fits. Extending the t0 range to lower val-
ues near zero revealed a strong correlation between the Norm and the thermalization
time. For a fixed thermalization time t0 = 10�4 the Norm was reduced to a value of
1.42 ± 0.05, significantly different to the other value. The strong positive correlation
occurs due to the scaling of the entropy profiles according to eq. 5.1 by a factor of
Norm/t0. Because of the strong dependence between the normalization and the ther-
malization time, the estimate for the Norm is considered unreliable until the problem
of the vanishing t0 is fixed.
The value for the shear viscosity h/s = 0.36 ± 0.03 is well above its postulated lower
boundary at 1/4p. Compared to other works, the determined value is rather large,
[59] reported a value of h/s = 0.095, [24] a value of h/s = 0.164+0.079

�0.07 , and [23] a
temperature-dependent value of the same order. The results of this thesis and [24] are
not significantly different.
The found optimal value for the maximum bulk viscosity (z/s)max = 0.026 ± 0.06 is
consistent with the results of [24] and [6], all ranging in a region of 0.01-0.06. The
value of 0.3 from [59] could not be confirmed. For a lower thermalization time at t0 =
10�4 fm/c, the shear and bulk viscosities decrease to h/s = 0.29 ± 0.02 and (z/s)max =
0.009± 0.002. Similar to the findings of [24], the two viscosities exhibit a strong positive
correlation.
For the thermalization time t0, the posterior probability distribution was found to con-
verge to zero, which is incompatible with other estimates and the physical expectation.
As already explained in sec. 5.10, this is expected to be related to two issues: A lin-
earization error arising from not including the contribution of fluctuations for the en-
ergy, and the zero fluid velocity as an initial condition of the fluid dynamic evolution.
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The first point was addressed in this thesis by fitting only the most central events where
the error is expected to be small and is discussed in the next section. To solve the second
issue, in the future, a model for the pre-equilibrium phase of the heavy-ion collision is
included in the simulation model. The optimization may then provide more reliable
results for the thermalization time.
The kinetic freeze-out temperature is found to be Tkin = 132.1+0.9

�1.0 MeV and the chemical
one to be Tchem = 147.3 ± 0.3 MeV, which agrees with the result for thermal fits to
particle yields in [60]. In [24], a freeze-out temperature of Tfo = 137.1+8.0

�2.8 MeV was
reported, which is right between both temperatures and is consistent with both. The
temperatures stay the same for the reduced value of the thermalization time of t0 =
10�4 fm/c, they seem to be independent of it. This strengthens the expressive power of
the estimates, as the issue of the thermalization time seems to not affect them.
In fig. 6.1, the optimal solution of the particle spectra obtained with the simulation
model is compared to the experimental data. In the upper panels, the Maximum-a-
posteriori (MAP) estimate is shown as the optimal solution. This is the mode of the
posterior probability distribution or in other words, the most probable set of param-
eters. The lower panels depict the data-to-model ratios, where the uncertainty bands
were constructed by evaluating the simulation model for samples drawn from the pos-
terior probability distribution of the parameters. The simulations mostly agree with
the data within an accuracy of 10 � 20 %, except for high-pT pions, which exhibit larger
ratios of up to 1.8. The fit is consistent with the experimental data for protons within
the error margins, for pions and kaons there are significant deviations. The shape of the
ratios is similar to [24]. For pions, there is a tension visible between the data and the
model, which increases for larger centralities. Pions at pT > 2.5 GeV/c in peripheral
events are underestimated by the model, which indicates that the simulation model
does not describe the production of pions completely.

6.2 Optimization based on the most central events

In the second part of the analysis, the optimization was performed based on the parti-
cle spectra of pions, kaons, and protons in the first centrality class from 0 � 5 %. The
resulting posterior distributions are depicted in fig. 5.47. For the derived estimates, the
same remarks apply as in the last section. In this case, the posterior probabilities are less
reliable, because in addition to the thermalization time the distributions for the shear
and bulk viscosity are not fully covered. This may also alter the estimates for the other
parameters. Therefore, the quantitative estimates have to be taken with care. At least
for the shear and bulk viscosities, the issue can be fixed by performing the optimization
in a larger search space, which was not done here due to time constraints.
The posterior distributions exhibit a more complex structure than for the fit to five
centrality classes. For example, the joint probability distribution of the shear and bulk
viscosities is bent or the marginal distribution for the normalization is skewed. This
could be because the posterior captures a larger region of the parameter space, such that
the more complex large-scale behavior of the simulation is captured. If the posterior
would be localized to a small region, it could be approximated by simpler distributions
similar to the local approximation of complex functions by easier ones.
The value of the Norm = 21.4+4.6

�4.6 is consistent with the value of the last section. The
shear viscosity h/s = 0.96+0.32

�0.33 is very large, however, because its uncertainty is also
large, it agrees with the estimate for the fit in five centrality classes. The same is true for
the maximum bulk viscosity (z/s)max = 0.08± 0.03. Hence, excluding more peripheral
centrality classes seemingly loosens the constraining power of the fit. The thermaliza-
tion time is again converging to the lower limit of the search region of t0 = 0.1 fm/c,
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FIGURE 6.1: Top: The MAP estimate (Norm = 24.9, h/s = 0.35,
(z/s)max = 0.025, t0 = 0.10 fm/c, Tkin = 131.5 MeV, Tchem = 147.1 MeV)
as the best fit to the experimental spectra of pions, kaons, and protons in
five centrality classes in Pb-Pb collisions at

p
sNN = 2.76 TeV. Bottom:

data-to-model ratios. The error bands were constructed by sampling
from the posterior distribution and correspond to the 99 % credible in-

terval.
.

but less pronounced as in the fit to five centrality classes. Therefore, the error of lin-
earization seems to have an effect in driving the thermalization time to lower values,
but can not be considered the main reason for it. Further investigations have to show if
the usage of more realistic initial conditions with a non-zero fluid velocity can resolve
the issue.
The distributions for the kinetic and chemical freeze-out temperatures are both fully
captured within the search intervals and follow a Gaussian shape. The kinetic freeze-
out temperature Tkin = 124.5+1.9

�1.8 MeV is significantly different from the fit to five cen-
trality classes (Tkin = 132.1+0.9

�1.0 MeV), whereas the chemical freeze-out temperature
Tchem = 146+0.7

�0.8 is consistent with its previous estimate.
Similarly to the last section, the particle spectra produced with the optimal set of pa-
rameters and the simulation model can be compared to the experimental data. The
according plots are depicted in fig. 6.2 for the fit of the 0 � 5 % centrality class.
For all three particles, the simulation mostly agrees with the experimental data within
its uncertainties. Only for low and high pT pions (< 0.75 GeV/c, > 2.75 GeV/c) and
mid-pT kaons (1 GeV/c < pT < 2.25 GeV/c), significant differences can be observed.
It can be expected that the agreement between the data and the model increases, if
also the systematic uncertainties of the simulation model are considered. Overall, the
experimental data is reproduced with an accuracy of mostly better than 10 % with a
reached maximum of 25 % for high-pT pions.
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FIGURE 6.2: Top: The MAP estimate (Norm = 20.7, h/s = 0.49,
(z/s)max = 0.047, t0 = 0.12 fm/c, Tkin = 126.5 MeV, Tchem = 146.1 MeV)
as the best fit to the experimental spectra of pions, kaons, and protons
in the centrality class 0 � 5 % in Pb-Pb collisions at

p
sNN = 2.76 TeV.

Bottom: data-to-model ratios. The error bands were constructed by sam-
pling from the posterior distribution and correspond to the 99 % credible

interval.

6.3 NN ensemble model

Because the emulator model is of particular importance in the optimization, it is worth-
while to discuss its choice and performance here.
As already discussed in chapter 5, there are in principle many options for the choice
of the emulator model. The de facto standard for computationally expensive simula-
tion models is Gaussian process regression as it provides a flexible regression model
with well-calibrated uncertainty quantification. In this thesis, an ensemble of neural
networks was used instead to emulate the model combination of Trento, Fluidum, and
FastReso. This was done because of the different properties of Fluidum compared to
other hydrodynamic simulation models. With very expensive simulation models, only
a few hundred parameter configurations can be generated with the simulation in a
reasonable time to train the emulator. In these cases, it is most important that the un-
certainty measure is good since the parameter space is poorly populated and thus the
uncertainties are large. For these situations, Gaussian process regression is superior to
other methods, also because the computational complexity of O(n3) does not play a
role for such small data sets.
In contrast to this, for less demanding simulations where much more data points can
be computed with the simulation, Gaussian process regression becomes very inefficient
or unfeasible to use due to its computational complexity. One of these more efficient
models is Fluidum, which was used in this thesis and allows the generation of 104 to
105 data points in a reasonable time. To cope with this a much more efficient emulator
model had to be chosen. Therefore, in this work, a neural network ensemble was used,
which has a computational complexity of O(n). In the following, the performance of
the NN ensemble emulator model is discussed, as well as its uncertainty quantification.
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In section 5.5, it was shown, that NNs provide a powerful tool for emulation. The
NN was able to reproduce the simulation data within an uncertainty of 1%, which is
only a fraction of the uncertainty of the experimental data. However, compared to
Gaussian process regression, the definition and training are more complex, as a lot of
hyperparameters have to be set and optimized.
To estimate the uncertainty of the NN emulator, several NNs were combined in an en-
semble model, and the spread of their predictions was used to estimate the model un-
certainty. In particular, as the estimate, the error of the mean was used. This is different
from other uses of NN ensembles, where mostly the standard deviation of the predic-
tions is utilized as the uncertainty measure. The error of the mean is more precise but
harder to compute, as the correlations between the NNs have to be taken into account.
To include them, simplifying assumptions about the correlations between the NNs were
made, namely that the mean correlation between two networks is independent of the
position in the parameter space. These have been shown to be approximately correct,
such that the estimated uncertainty had a good agreement with the true uncertainty
obtained from comparing the emulator with the simulation. However, because the
optimization procedure was employed in an iterative fashion, the model uncertainty
could be decreased until it was vanishingly small compared to the experimental one,
such that meaningful parameter estimates could be inferred nonetheless.
Moreover, in this work, two variations of the NN ensemble were tested. One ensemble
model has fitted the particle spectra of the simulation, and one the c2-value between
the simulation and experimental particle spectra. Both models were used to compute
the same quantity, the posterior probability of the model parameters, such that both are
expected to converge to the same posterior distributions. This was confirmed in this
study. However, the spectra-ensemble is recommended over the c2-ensemble, since
the training process of the NNs is easier, the model is more flexible with respect to
including or excluding output bins, and the uncertainty is treated in a straightforward
way. The advantage of the c2-ensemble, that its estimate of the posterior probability
is more accurate because only the uncertainty of one NN node is considered, can be
compensated for by the iterative procedure when using the spectra-ensemble.
Overall, the NN ensemble model has been proven to provide reliable and accurate emu-
lation for the simulation of Trento, Fluidum, and FastReso. For this efficient simulation,
a NN ensemble model is a superior choice, as the larger data sets can be processed more
efficiently than with Gaussian process regression. In addition, the uncertainty estimates
have been demonstrated to describe the real uncertainties reliably.
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Chapter 7

Conclusion and outlook
In this thesis, estimates of fundamental characteristics of the evolution of heavy-ion
collisions were inferred by conducting a Bayesian parameter estimation. For that, the
transverse momentum spectra of pions, kaons, and protons from Pb-Pb collisions at
p

sNN = 2.76 TeV were compared to the output of a simulation consisting of Trento [8],
Fluidum [7], and FastReso [9]. In particular, the optimization was performed with re-
spect to the following parameters of the simulation: the normalization Norm, the shear
viscosity over entropy density h/s, the maximum bulk viscosity over entropy density
(z/s)max, the thermalization time t0, the kinetic freeze-out temperature Tkin, and the
chemical freeze-out temperature Tchem. For the Bayesian analysis, a procedure was de-
veloped ad hoc, which included generating a parameter grid, running the simulation,
training an emulator model, and running an MCMC simulation. In contrast to other
parameter estimation studies, a neural network ensemble model was used as the em-
ulator model. It has been demonstrated, that neural networks provide a powerful and
efficient alternative to Gaussian process regression, which especially may be used if a
lot of data can be generated with the simulation. Additionally, it has been shown that
their uncertainty can be quantified well within an ensemble model.
The inferred posterior estimates of the parameters are given in chapter 6. They mostly
agree with other studies. However, these estimates still have some limitations because
of two reasons: Firstly, the systematic uncertainties of the simulation model are not
included in the parameter estimates, and secondly, the thermalization time converges
to zero, which is incompatible with the physical expectation. The latter is expected to
originate from the assumption of zero fluid velocity at the start of the fluid dynamic
evolution. To get more realistic initial conditions, the pre-equilibrium phase may be
modeled explicitly. For this, work is ongoing to describe this phase by a free-streaming
model which eventually will drive the thermalization time to more physical values.
Also for the systematic uncertainty work is done, this can be estimated by varying the
settings of the fit procedure, such that the optimization is employed for example for
different particles, pT-regions or collision systems. For that, already a framework was
built such that the analysis can be performed efficiently.
Both of the stated issues are only minor obstacles before meaningful estimates can be
obtained, as the general procedure for the optimization remains the same. Therefore
the real value of this work lies in the full development of the optimization procedure,
including the parameter grid, the neural network ensemble, and the MCMC simula-
tion to infer posterior Bayesian estimates for the parameters. Especially the usage of
the neural network ensemble and its uncertainty quantification is a completely new ap-
proach in the field of fluid dynamic modeling in heavy-ion collisions. It was specifically
tailored to the requirements of the efficient simulation model of Trento, Fluidum, and
FastReso, and has been shown to work reliably and accurately as an emulator model.
The presented procedure provides a flexible and powerful method for parameter esti-
mation also in different settings, as it is not bound to the specific use case but is gen-
erally applicable. It lays the foundation for a large variety of different analyses in the
future. For example, on the basis of this work, additional parameters could be included
in the optimization. A natural choice would be the initial state parameters of the Trento
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model, which are expected to have a significant impact on the performance of the fit.
Moreover, also other physical observables like flow coefficients could be used to better
constrain the posterior parameter estimates. Thus, this work only marks the beginning
of a variety of further studies that are yet to come in the future.
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