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ABSTRACT

Nonlinear systems display a wide range of rich and varied dynamics which are usually modelled
in the framework of nonlinear dynamics and bifurcation theory. Adding dissipation to the system
fundamentally changes the dynamics of the system and leads to the formation of even more inter-
esting solutions, such as attractive limit cycles which represent phase oscillators. In an ensemble
of coupled phase oscillators one can observe the onset of a collective response under certain cou-
pling conditions, also known as synchronisation. Many effects that occur in nature have been at-
tributed to synchronisation. However, an experimental study of synchronisation in ensembles of
many coupled oscillators has proved challenging due to the lack of a suitable system. In this the-
sis, we report on the emergence of synchronisation in a driven-dissipative hot Rydberg vapour.
Two-photon EIT spectroscopy of Rydberg states reveals oscillations in the bulk transmission of
the probe laser by a thermal rubidium vapour at temperatures between 35 and 60 °C. Simula-
tions of the hot vapour system support the interpretation of the observed oscillatory response
as the onset of synchronisation in a driven-dissipative atomic system with global coupling via a
Rydberg atom density field. The appeal of this system is twofold. Firstly, its wide tunability and
fast oscillation frequencies on the order of 10 kHz allows for an exploration of the synchonisation
transition over a large parameter space. Secondly, the Rydberg vapour contains ~ O(10%) atoms
in the beam volume and a somewhat lower number of constituent oscillators, which gives access
to a large number of coupled oscillators. Additionally, connections to continuous dissipative time
crystals and other phenomena can be drawn, which adds another layer of interest.

ZUSAMMENFASSUNG

Nichtlineare Systeme zeigen eine Bandbreite an vielfdltigen Dynamiken, welche meistens im Rah-
men der Theorie nichtlinearer Systeme und Bifurkationstheorie untersucht werden. Wenn man
zu einem solchen System nun dissipative Elemente hinzufligt, dann kdnnen sich die daraus re-
sultierenden dynamischen Verhaltensweisen des Systems fundamental andern. Unter anderem
konnen sich sogenannte limit cycles als Attraktoren ausbilden, sodass das System zur Klasse
der Phasenoszillatoren gehort. Viele in der Natur auftretenden Effekte konnen als Synchroni-
sation von gekoppelten selbstoszillierenden Einheiten, den Phasenoszillatoren, verstanden wer-
den wobei das Ensemble einen kollektiven, synchronisierten Zustand einnimmt. Experimentell
ist es schwierig Ensembles mit einer groRen Anzahl an gekoppelten Phasenoszillatoren zu un-
tersuchen, da entsprechende Systeme bisher fehlen. In dieser Arbeit stellen wir ein solches
System vor, namlich ein kontinuierlich getriebenes, dissipatives warmes Rydberg-Gas. Zwei-
Photonen E/T-Spektroskopie von Rydbergzustanden zeigt Oszillationen in der Transmission des
probe-Lasers durch ein warmes Rubidiumgas mit Temperaturen im Bereich von 35 bis 60 °C. Sim-
ulationen der Prozesse im Rydberg-Gas unterstiitzen die Interpretation der beobachteten Oszil-
lationen als Signatur von Synchronisation der Atomzusténde, wobei die Kopplung (indirekt) tiber
die Rydbergzustandsdichte erfolgt. Das hier vorgestellte System ist aus zwei Griinden besonders
interessant. Einerseits ermoglicht das System es einen weiten Parameterbereich zu erkunden,
da die Rydbergzustéande sehr versatil und veranderbar sind, und die schnellen Oszillationsfre-
quenzenin der Groflenordnungvon 10 kHz schnell ausgelesen werden kdnnen. Zum Zweiten sind
etwa ~ O(10°) Atome im aktiven Strahlvolumen enthalten, woduch eine groe Anzahl an global
gekoppelten Oszilatoren untersucht werden kann. AuRerdem kdnnen Verbindungen zur Physik
von kontinuierlichen, dissipativen Zeitkristallen sowie anderen bekannten Effekten hergestellt
werden. Dies macht das System noch in einem weiteren Zusammenhang interessant.
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1 INTRODUCTION

Have you ever sat in an audience and noticed the applause change from chaotic clapping to
a rhythmic pattern? Ever wondered why slightly detuned metronomes placed on a common
baseplate tick together, and why fireflies flash in unison? Or why an ensemble of Rydberg atoms
responds collectively to continuous driving, even though each atom individually is subject to
random motion?

As different as these situations may seem, the underlying processes are very similar. All in-
stances can be abstracted to an ensemble of constituents that undergo their own periodic pro-
cesses which, eventually, begin to align to a single, collective response. This alignment of the
periodic processes, however, does not happen by chance. The constituents cannot be thought
of as independent of each other, rather there is some form of interaction between them. In the
case of the audience this interaction is given by hearing the clapping of ones neighbor which
might cause one to adjust one’s own clapping pattern. As a result, a growing group of people
begin to clap in synchrony which, in turn, compels even more people to adjust to this pattern
until the entire crowd claps as one. This kind of process is a universal phenomenon known as
synchronisation' [4, 5].

Synchronisationis ubiquitousin nature and has been employed to explain the examples above,
but also many other processes such as pattern formation in chemical reactions [6-8] and the
strong vibrations of the Milennium bridge in London on its opening day” [10]. A detailed un-
derstanding of the conditions required for the emergence of synchronisation is therefore key
to understanding many phenomena that occur in our environment. The mathematical study
of synchronisation has made many advances since the first discussions of the phenomenon by
Winfree [11] and, later, Yoshiki Kuramoto [12]. However, even though many processes have been
described using the framework of nonlinear dynamics and synchronisation, itis still challenging
to probe and study the phenomenon for very large numbers of coupled oscillators. Ideally, the
test system would be easy to implement, simple to monitor, and have a set of widely tunable
parameters. For low numbers of oscillators, such experiments have been performed e.g. with
two pendula fixed to a common support [13] or metronomes placed on a moving baseplate [2].
For large numbers of coupled oscillators, the demands on the system are hard to come by - par-
ticularly the tunability of the coupling strength and the other parameters is difficult to obtain in
generic systems.

'References for the examples mentioned above are: synchronisation of applause in an audience [1], of coupled
metronomes [2] and the flashing of fireflies [3].

2This interpretation is contested, mechanisms other than synchronisation could also be employed to explain the
strong lateral vibrations. See e.g. [9].



CHAPTER 1. INTRODUCTION

In this thesis we report on the emergence of synchronisation in a driven-dissipative hot Ry-
dberg vapour. The system consists of an estimated ~ O(107) coupled oscillators with widely
tunable paramters and coupling strengths. Additionally, the setup and monitoring of the sys-
tem is easily done in an atomic physics laboratory. The oscillation frequency on the order of
10 kHz permits real-time monitoring and quick feedback, as opposed to other known and con-
trolled instances of synchronisation like in the Belousov-Zhabotinsky reaction [14, 15].

To lead towards the experiment and provide an understanding of the mechanisms causing
the emergence of synchronisation in our system, the thesis starts with a description of the fun-
damental building blocks of our experiment. That is, the framework to describe interactions of
individualatoms with lightis outlined in Chapter 2. The exaggerated properties of highly-excited
atomic states, so-called Rydberg atoms, isintroduced in Chapter 3 with a particular focus on the
strong second-order interactions between pairs of Rydberg atoms. These chapters set the pre-
requisites required for the remainder of the thesis, where a theoretical study and simulations of
a hot Rydberg vapour in Chapter 4 is followed by a presentation of the experimental results in
Chapter 5. We first show that a dissipative three-level system with a power-law shift of the Ry-
dberg state is attracted towards limit cycles under certain conditions, and that interactions via
a global mean field lead to synchronisation of the dynamics of individual atoms in a hot vapour
simulation. As a result, oscillations of the bulk quantities of the driven-dissipative hot Rydberg
vapour are predicted. We then show the experimental observation of persistent oscillations in
the transmission of a probe laser in a three-level Rydberg EIT configuration. The behaviour of
the resulting oscillation regime with changes in the experimental parameters is presented and
possible mechanisms are discussed. Detailed calculations and derivations as well as further
information on the experimental setup can be found in the appendices.

/ AAVAYAVAVAY

time t

Fig. 1.1: Schematicrepresentation of the synchronisation of three phase oscillators. The phase space
trajectories of three phase oscillators are shown in the insets, with the dot indicating the state
of the sysem at a given time t. A coupling between the oscillators (gray) induces a force which
entrains the oscillators in frequency and phase on their limit cycles. As a result, synchronisation
emerges.



2 ATOM-LIGHT INTERACTION

The object of interest in this thesis is a driven-dissipative hot Rydberg vapour and some no-
table processes occurring therein. However, in order to understand the relevant phenomena
we must first revisit the fundamentals of atom-light interactions. The semiclassical approxima-
tion and the resulting framework for a description of the atom-light system are introduced first,
and some well-known effects are discussed. This semiclassical treatment of an n-level system
is usually an idealisation of the actual situation, which presents itself as more complex. Compli-
cations are, among others, Doppler broadening and associated motion-induced effects as well
as the complex level structure of atoms on the fine- and hyperfine level. These effects, and how
one can incorporate them into a semiclassical description of the light-matter interaction, are
therefore briefly mentioned at the end of the chapter.

2.1 SEMICLASSICAL APPROXIMATION

When working in the regime of quantum optics, one usually deals with single or few photons
and an ensemble of individual to many atoms [16]. In such a situation, both the atomic and
the photonic part of the system have to be quantised in order to provide a useful description
of the atom-photon system. For strongly driven systems in the many-photon limit, one needs
not quantise the photonic field in order to arrive at a useful description of the system [16]. The
resulting semiclassical approximation can account for e.g. the well-known effects of Rabi os-
cillation [17], electromagnetically induced transparency (EIT) [18], and Autler-Townes splitting
[19].

In the semiclassical approximation, light is treated as a classical field E while the atomic com-
ponent is quantised into discrete energy states {|1),]2),...,|n),...} as is encapsulated in the
single-atom Hamiltonian H,. These atomic states are coupled via resonant driving by the light
field, such that the photon energy matches the energy difference of the atomic states and a
population transfer is induced between the states. The dipole coupling strength between two
atomic levels is quantified via the Rabi frequency’ € = (i|d - Eo |j) /h, where d = ef denotes
the dipole operator. Additionally, decay channels introduce dissipative dynamics into the sys-
tem and can fundamentally change the resulting behaviour. For the remainder of this thesis
we assume that the atomic basis is complete insofar as all decay occurs within the basis set
and no atomic population is lost. This is enshrined in the trace condition for the density matrix

tr(p) = 1.

'E( denotes the amplitude of the electric field E, including spatial orientation.
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Fig. 2.1: Rabi oscillations and dressed states in a two-level system. The 2-level atom-light system is
shown schematically in (a) and the resulting dynamics in (b). In the case of no decay from the
excited state, Rabi oscillations persist (left). These oscillations are damped and quickly fade out
when the decay is included (right). (c) The eigenenergies F of the dressed states |+) and the
state admixture y+ = | (i|£) |? for |i) € {|g), |e)} are colour-encoded.

2.1.1  TWO-LEVEL SYSTEM, RABI OSCILLATIONS, AND DRESSED STATES

The simplest case is that of a two-level system with ground and excited states |g) and |e), re-
spectively, as shown in Figure 2.1 (a). The levels are coupled via a light field of Rabi frequency 2
and detuning” A, and the excited state decays into the ground state at rate I'. In the dipole and

rotating wave approximations [16], the atom-light Hamiltonian is given by HAL = d- E, which
results in an overall single-atom Hamiltonian
h (o €
H:H0+HAL:§(Q —2A)' (2.1)

The coherent time evolution of the system is governed by the von Neumann equation® [16] and
formulated in operator representation via the density matrix p

op (A S
= [l (2.2)
As a result, one finds that a two-level system subject to constant driving undergoes Rabi oscil-
lations, as shown in Figure 2.1 (b). The population oscillation frequency is given by the effective
Rabi frequency Q¢ = V22 + A% which depends on the detuning from the excited state, as does
the magnitude of population that oscillates between the two states.

Analysing the Hamiltonian # reveals an interesting effect for strong coupling Q2. The light-
induced coupling of the bare atomic states produces a new set of eigenstates |+) of the Hamil-
tonian, the so-called dressed states which are a mixture of the bare states. Their corresponding
eigenenergies are given by E;, = 2 (—A + /A2 4 02). On resonance where A = 0, the eigen-
states are not degenerate as one mlght initially expect, but have an energy splitting of (2. This

ZFor an atomic transition of frequency wy and a driving field of frequency w, the detuning A from resonance is
definedas A = w — wy.

3At this stage, the time evolution can equivalently be described by the well-known Schrédinger equation. The
framework of the von Neumann equation is chosen here due to the introduction of dissipation and dephasing
later in the chapter.



2.1. SEMICLASSICAL APPROXIMATION

results in an avoided crossing of the system’s eigenstates |+) as can be seen in Figure 2.1 (c).
Such dressing of a pair of atomic states via strong coupling has been observed in a wide range
of systems and has found applications in e.g. terahertz field sensing [20].

However, real-world systems rarely ever behave as neatly coherent as was shown above. Usu-
ally, the states are subject to decay and additional dephasing of the atomic cohrences, e.g. via
laser phase noise. This can be included by extending the von Neumann equation (2.2) with the
Lindblad superoperator [21]

. . 1 .
D(p) = Z (Liij;'rj 5 [szLijyp} PB) (2.3)

]

where [-, ]pp denotes the Poisson bracket. The operators L,; represent the decay channels for
i # j andthe dephasing of atomic coherences fori = j. In bra-ket representation, the operators
are denoted as L;; = /T; |i) (j| with T';; being the corresponding decay or dephasing rate.
The resulting time evolution of the density matrix is then determined by the quantum Liouville
(Lindblad) equation

dp i
at i

Accounting for incohrent processes leads to significantly different behaviour of the system.
Figure 2.1 (b) shows Rabi flopping of a two-level system without decay, this coherent dynamic
would continue infinitely if the system remained unperturbed. The right panel, however, shows
asystem subject to decay from the excited to the ground state. This decay leads to strong damp-
ing of the Rabi oscillations which eventually fade out such that the system is attracted toward a
steady state.

The damping of the coherent dynamics has caused experimentalists severe headaches over
the years, and many different approaches have been trialled to increase the coherence time of
the experiments. Many of them are based on ultracold setups and selection of (meta-)stable
states as well as improving performance of the laser systems and field controls, though other
avenues have been explored as well [22, 23].

L(p) = 1 |H.5] + D). (2.4)

2.1.2  THREE-LEVEL SYSTEM AND ELECTROMAGNETICALLY INDUCED TRANSPARENCY

When adding a third level to the system, one finds another remarkable quantum mechanical
effect called electromagnetically induced transparency (EIT). The system can have any of the
three configurations =, V or A, depending on the energetic configuration of the states [18]. Two
states are coupled to the third via dipole coupling, and the decay rates have to be set as ap-
propriate. Figure 2.2 (a) shows the schematic structure of a ladder (Z) configuration of states
where ground and excited state are coupled via the probe laser while the coupling laser drives
the |e) < |r) transition.

When monitoring the transmission of the probe laser through an ensemble of such three-
level systems, one observes a sudden change in the probe transmission around two-photon
resonance. Thisis caused by destructive interference of excitation pathways [18], resultingin re-
duced absorption of the probe laser. As a result, a so-called dark state forms which is completely
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Fig. 2.2: EIT and Autler-Townes splitting in a three-level ladder (=) system. (a) shows a schematic
representation of a three-level = system including the relevant decay rates. (b) The resulting
spectral response of the system is shown for different probe powers inceasing towards the right.
The upper row of panels shows a scan of the probe laser detuning for fixed coupling laser de-
tunings A, while the lower row shows the corresponding scan of the coupling laser detuning for
fixed Ap,. The other system parameters are set to €2}, /T'ge = 0.02, I'¢; /T'ge = 103 and Igr =0,
and no dephasing of the atomic populations or coherences was taken into account.

decoupled from the strongly decaying intermediate state |¢) and contains only the (meta-)stable
states |¢g) and |r). Figure 2.2 (b) shows the imaginary part of the electric susceptibility x,,, which
is a measure for the absorption of the probe light by the vapour - and is therefore related to the
vapour’s transmission.

The response of the vapour and the resulting shape of the EIT resonance depends strongly
on the parameters of the system including decay rates, detunings, and coupling strengths. In-
creasing the coupling Rabi frequency leads to aninitial change in EIT amplitude at low €2 before
the resonance begins to split as one enters the Autler-Townes split regime at high 2. In this
regime, the spectral separation of the EIT peaks grows linearly with coupling Rabi frequency
as is expected for a pair of dressed states. The strong dependence of the EIT resonance on the
coupling field strengths and state dressing by additional resonant fields has been utilised in ra-
diofrequency (rf) field measurement techniques [24] and atom-based broadband receivers [25,
26].

Another curious effect, namely that of slow and fast light [27], is linked to EIT since the medium
displays a strongly varying refractive index” near two-photon resonance. Steep changes of the
refractive index at a given frequency lead to extreme group velocities® at this frequency. This
effect has been used to slow light down to 17 m/s [28] by inducing a delay to a light pulse with
respect to one travelling outside the medium.

Such a continuous-wave (cw) scheme cannot, however, be used to stop light completely. If
one wishes to do so, one needs to employ an adiabatically pulsed scheme [29] where the pho-
ton is converted into an atomic spin-wave excitation [30-32]. This strongly coupled atom-light

4The complex refractive index n of a medium is linked to the electric susceptibility x vian = /T + x. The electric
susceptibility is composed of the bulk properties of the medium determining the magnitude xo, as well as the
microscopic properties derived from the density matrix p which determine the shape of the resonance.

>The group velocity v, of the probe field at frequency w can be calculated from the real part of the probe refractive

-1
index n, as vgr(w) = ¢ (np(w) + w%) . See also e.g. [18] for further details.
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Fig. 2.3: Fine- and hyperfine structure of rubidium in a typical = Rydberg system. The resolvable
hyperfine levels of the |55 /5) ground state and |5 5) on the Dy transition of rubidium at 780
nm are shown in (a). Hyperfine state energy splitting values are given in MHz for the #Rb (dark
orange) and 87Rb (light yellow) isotopes. The fine structure of the |n.D) series is resolved in stan-
dard experiments for n < 100 [43] while the |n.S) state has just a single possible fine structure
value j = 1/2. The hyperfine structure splitting of Rydberg states is usually < MHz and therefore
not resolved in standard experiments. The transition to the |nL ;) Rydberg states has a wave-
length of around 480 nm. (b) shows an example coupling laser scan across the |35D) states of
the 85Rb isotope for a counterpropagating geometry. The spectrum reveals the fine-structure
splitting of the Rydberg state, rescaled by x(A./\,) due to Doppler mismatch, as well as the
hyperfine structure of the intermediate [5P; ) state, rescaled by x (1 — Ac/\) [43]. The probe
laser was locked A, /27 = —140 MHz below the [5S /9, F' = 3) <> [5P3/9, F}, = 4) D3 line of
85Rb.

system forms a quasiparticle called polariton which inherits properties from both light and mat-
ter. Polaritons have been used for many applications, e.g. simulation of the Gross-Pitaevskii
equation [33], Bose-Einstein condensation [34, 35] at room temperature [36] and in thermal
equilibrium [37], coherent control of quantum states [38, 39], and the generation of an effective
interaction between photons [40-42].

EIT can therefore be used as a spectroscopic technique to detect atomic states via two-photon
resonance [43, 44], but can similarly be utilised as a tool in spatial imaging techniques [45].
Hot vapour EIT systems have been developed as useful tools for vector field measurements in
electrometry [46, 47] and magnetometry [48, 49]. Equivalently, the EIT dark state is used to
store and retrieve single photons on demand [50], thereby constituting the building block of a
deterministic single photon source, or as a quantum memory [51, 52]. In the experimental part
of this thesis, EIT is used as a spectroscopic method to coherently probe highly excited atomic
states, so-called Rydberg states.



CHAPTER 2. ATOM-LIGHT INTERACTION
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Fig. 2.4: Electric dipole allowed transitions and intensity radiation patterns. (a) shows the differ-
ent dipole-allowed transitions with respective angular momentum state changes on the fine-
structure level. The intensity radiation pattern of 7 (olive) and o (red) electric dipole transitions
is shown in (b). The angle # denotes the angle between quantisation axis and the observer, and
the radiation patterns have the angular dependencies I, « sin?() and I, o< (1 + cos®(0)/2).

2.2  FINE- AND HYPERFINE STRUCTURE OF ATOMS

Experimentally, it may not be entirely straightforward to isolate n levels in an atomic system.
The fine- and hyperfine splitting® of low-lying atomic states is comparably large, for instance
the rubidium ground state |55 5) is split on the order of gigahertz’ and the |5P;,) state hy-
perfine splitting is still on the order of 100 MHz [54, 55]. However, this is not the case for highly
excited Rydberg states where the hyperfine structure scales with the effective principal quan-
tum number (n*) 3 [56], and even the fine structure splitting cannot easily be resolved for very
highly excited states.

Figure 2.3 shows an example three-level EIT spectrum of a scan across the |35D) resonance
of ®Rb. The hyperfine structure of the intermediate |5P; », F},) state is resolved but rescaled
by the Doppler mismatch of a counterpropagating geometry [43]. Only the fine structure of
the Rydberg state is resolved because the hyperfine energy splitting is much lower than the EIT
linewidth.

Applying external electric or magnetic fields lifts the degeneracy of the angular momentum
manifold via Stark and Zeeman splitting, respectively. This allows to address the specific angu-
lar momentum states m; via frequency and polarisation matched coupling fields [57]. The po-
larisation of the light field with respect to the quantisation axis determines the transition that
is driven (m, o1). It therefore addresses only pairs of states with a matching difference in orbital
angular momentum?, i.e. Am; = 0, %1 for electric dipole allowed transitions’. The different

®The atomic fine structure originates in spin-orbit coupling to a total orbital angular momentum J while the hy-
perfine structure arises from an additional coupling with the nuclear angular momentum to the total angular
momentum F. More details on the coupling and limits of applicability of the different quantum numbers can
be found in the literature, e.g. in [53].

7 85Rb has a ground-state hyperfine splitting of 3.0 GHz and 87Rb of 6.8 GHz [54, 55].

8This assumes an electric dipole transition. Higher-order electric transitions like quadrupole, or magnetic transi-
tions, can also be coupled but are usually much weaker and therefore neglected.

9The selection rules for electric dipole-allowed transitions state that Al = +£1, Aj = 0,+1,and Am; = 0,+1
must be satisfied. Further conditions apply in certain cases, likee.g. (j = 0 <+ j' = 0) or (Aj = 0, Am; = 0)
are forbidden.
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2.3. ADDITIONAL EFFECTS OCCURRING IN A HOT VAPOUR
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Fig. 2.5: Motion-induced detuning and transit-time broadening in a hot vapour. The motion-induced
Doppler detuning is shown schematically in (a) and the resulting detuning of a thermal ensem-
ble of rubidium atoms from the Dy, line in (b). The thin lines indicate the root mean square (rms)
velocity at different temperatures and the inset shows v,.,,s for rubidium. In (c), the effect of
transit-time broadening is shown. Excited atoms fly out of the beam volume while ground-state
atoms move in, leading to an effective decay from every excited state level to the ground state.
As shown in (c), the calculation of the transit-time decay rate I'y; is simplified by considering
only the 1/e?-radius of the beam.

transitions have different spatial intensity radiation patterns with respect to the quantisation
axis, as shown in Figure 2.4 (b). This property is relevant to keep in mind when e.g. designing
imaging schemes for experiments or using optical pumping schemes.

The fine structure of atomic states as well as the angular dependency of the electric dipole al-
lowed transitions will be relevant again in Chapter 3. In the experimental Chapter 5, EIT scans of
a hot rubidium vapour akin to that in Fig. 2.3 will be shown, and the level structure of Rubidium
is of relevance.

2.3 ADDITIONAL EFFECTS OCCURRING IN A HOT VAPOUR

The generic semiclassical n-level treatment seems to be fairly straightforward to use. One writes
down the equations of motion following from consideration of all possible coupling and decay
mechanisms, and then integrates or solves for the steady state. The fine- and hyperfine structure
of the atoms complicates the situation a little as it introduces more levels that might have to be
taken into account, depending on the polarisation-dependent coupling of states and possible
state shifts due to electric or magnetic fields.

Nevertheless, the list of real-world complications is much longer. In a hot vapour, one addi-
tionally has to take the atomic motion into account which results in motion-induced detuning
and dephasing, transit-time broadening, and collision-induced ionisation [21]. As a result, the
response of a hot vapour looks significantly different to that of an ultracold ensemble at similar
densities.

1



CHAPTER 2. ATOM-LIGHT INTERACTION

Motion-induced detuning and dephasing

The Doppler effect is well-known from the perceived change in frequency of the horn of a pass-
ing ambulance. The very same effect occurs in a hot'® ensemble of atoms with a spread in ve-
locity relative to the direction of propagation of the light field. Due to the Doppler effect, the
lightis detuned by Av = —k - v for atoms moving with velocity v with respect to the ones being
stationary in the lab frame. The laser’s wavevector k encodes the wavelength A of the laser via
the relation |k| = 27/, and additionally the direction of propagation of the light field.

Doppler detuning either has to be incorporated in the experiment or avoided by techniques
such as saturated absorption (Doppler-free) spectroscopy. Additionally, different forms of motion-
induced dephasing have plagued experimentalists, e.g. in single-atom ultracold experiments
with optical tweezers or for the storage of quantum information in hot vapours. The solutions
to reduce the effect depend on the problem, cooling to the motional ground state can be im-
plemented in tweezer setups [58] while hot vapour spin wave experiments can utilise zero-
wavevector schemes [59]. Difficult to control, however, is the effect of collisional dephasing
in hot vapours [21].

Transit-time broadening

Another consequence of atomic motion in hot vapour experiments is that atoms simply move
out of the interaction volume of the laser beam(s). This behaviour could be prevented by excit-
ing only a narrow class of atoms centered around the stationary velocity class [60, 61]. Without
employing such schemes, one has to take transit-time broadening into account. The resulting
effective decay rate I';; can be approximately calculated for atoms with a velocity v perpendic-
ular to the laser’s direction of propagation to be

T (v) ~ — (2.5)

Wo

[21], where w, denotes the 1/e?-beam waist of the light field. To get an approximate value for
the transit time broadening in a hot vapour, one can set the velocity v to the 2D RMS velocity
vap ruvs and set Ty = Ty (vop rs)- As an estimate for the order of magnitude, one finds that
Ity ~ O(100kHz) for a rubidium vapour at room temperature and a beam diameter of 1 mm.

Collision-induced ionisation
It has been mentioned before that atomic collisions in hot vapours lead to dephasing of the

atomic coherences. They can also facilitate collision-induced state changes [62] or even ionise
highly-excited atomic states, so-called Rydberg states. This Rydberg to ground-state collisional

A5 is well known, statistical mechanics links the velocity distribution of particles in an (ideal) gas to a temperature
via the Maxwell-Boltzmann velocity distribution. In this framework, a cold ensemble is understood to have only
a very narrow spread of velocities while a hot ensemble has a correspondingly large spread. As a consequence,
the mean velocity of the ensemble is irrelevant for the definition of hot and cold - only the spread in velocities is
relevant for the classification. The crossover between hot and cold arguably depends on the experimenter and
their research, a (not so) useful rule of thumb is to speak of a hot ensemble when the motion-induced detuning
leads to a sizeable change of the resulting dynamics.

12



2.3. ADDITIONAL EFFECTS OCCURRING IN A HOT VAPOUR

cross section grows with the effective principal quantum number n* to the power of four [63]
and has been shown to lead to the build-up of a weak plasma in strongly-driven hot Rydberg
vapours [63-65].

Why, then, work in a hot vapour?

The obvious solution to all the motion-induced problems is to go ultracold, such that the atoms
have a very narrow velocity distribution and basically do whatever one wants'. Miniaturised
cold atom sources have been developed [68], and the robustness of the devices has been in-
creased such that they are routinely sent into space as GPS time sources, or to produce Bose-
Einstein condensates (BECs) aboard the ISS [66]. The issue that remains, even for highly op-
timised and industrialised devices, is the need for an ultrahigh vacuum as well as cooling se-
quences. Practical factors additionally set limits on the maximum feasible vapour densities that
can be achieved in such a setup. Allin all, these ultracold machines are highly useful for science
but presently tend to be rather too complicated and costly for everyday applications by low-end
users.

In the last few years, the fields of quantum communication and quantum sensing based on
atomic vapours have gained traction. This led to the development of many applications in the
fields of electromagnetic field sensing [20, 24, 69], biomedicalimaging [70], telecommunication
[25, 26], and quantum state memories [29, 51, 52, 71]. All these technologies are currently, or
soon will be, made available on a large scale for many users. And many of the technologies
presently in transition to a large-scale user platform are built on hot vapour technologies. The
reason being simply that hot vapour setups are easier to build and maintain, more cost-and
resource-effective, and much more flexible to handle than their ultracold counterparts. The
motion-induced effects are currently the price to pay for the advantages of a hot vapour setup.

Dissipation in itself is not a problem, nor are motion-induced effects. First and foremost they
are simply just a property of the system, and not even necessarily detrimental to a purpose.
Sometimes they do not matter very much unless one pushes an application towards limiting
cases. But dissipation can even be made actively useful as in dissipation-stabilised phases of
matter [72] like continuous dissipative time crystals [73].

One feature that many of the aforementioned hot vapour technologies have in common is
that they utilise Rydberg states and their exaggerated properties. The next section therefore
introduces Rydberg atoms with their extreme properties, and provides some example use cases
to demonstrate the versatility of Rydberg atomic systems.

"They might not do everything one wants them to, and working in an ultracold environment poses its very own
challenges. What one does win is an excellent control of the temperature of the atomic cloud with temperatures
as cold as hundreds of pK [66], which is orders of magnitude below the temperature of the cosmic microwave
background at 2.7 K [67].

13



3 RYDBERG ATOMS

Rydberg atoms have been described as being the gentle giants of atomic physics [74], and this
unconventional description is certainly not unjustified. Even though there is no general conven-
tion on when one speaks of an excited atom being in a Rydberg state, this name is typically used
for atoms with principal quantum number n > 15. These highly excited atoms have spatially
huge electronic wavefunctions such that the excited electron is, on average, far displaced from
the nucleus which results in exaggerated atomic properties. Rydberg atoms are therefore being
used for a variety of applications ranging from radiofrequency (rf) field sensing [20, 24, 69] and
nonlinear optics [41, 75-78] to quantum computing [76, 79-81] and simulation [82, 83]. One key
property of Rydberg atoms utilised in many of the aforementioned fields and technologies is
the strong interaction between Rydberg atoms in close spatial proximity [84]. This interaction
can also be used to generate effective interactions between photons when mapping them onto
Rydberg polaritons [40, 41, 85], leading to curious new states of light like photonic molecules
[86]. Ultimately, this approach could lead to the generation of photon-photon interactions on
demand.

It is therefore safe to say that Rydberg atoms are highly useful due to their extreme proper-
ties, particularly the strong interactions. This chapter will therefore introduce some of the most
notable properties of Rydberg atoms, with a focus on the interactions between Rydberg states,
and demonstrate the versatility of Rydberg atoms by discussing some example applications.

3.1 GENERAL PROPERTIES AND SCALING LAWS

Highly excited Rydberg states are weakly bound with a state energy just below the ionisation
threshold and the electron being on average far displaced from the atomic nucleus [74, 84].
The resulting exaggerated atomic properties can be computed particularly easily for hydrogen-
like atoms with a single valence electron - i.e. the alkali atoms like rubidium, for instance. In
these hydrogen-like atoms one finds that the binding energy of Rydberg states generally follows
a power law in the principal quantum number n scaling as n_2. The power law scaling is not
perfect in n, so one uses the effective principal quantum number n, = n — J,;; where the
energy defect' §,,, ; has to be determined experimentally for the different angular momentum
states [87-89].

The energy defect arises from the excited electron of low angular momentum states penetrating the nucleus with
a small likelihood. Analytic expressions for the energy defect exist but the modified Rydberg-Ritz coefficients
have to be determined experimentally. Experimental values for rubidium can be found in references [87-89].
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Rydberg states feature particularly long state lifetimes scaling with n? for low angular momen-
tum states and n’ for so-called circular states [84], i.e. Rydberg states with [ = n — 1 which have
only a single spontaneous decay channel to energetically lower-lying states withn’ = n—1. This
results in long radiative lifetimes of the Rydberg states up to ~ (100 ps). One therefore also
speaks of metastable states since the radiative decay timescales are much longer than typical
ultracold experimental sequences. However, particularly in hot vapour experiments one finds
significant population redistribution due to blackbody radiation induced state changes [90, 91]
and atomic collisions. This populates not only energetically lower-lying states but also nearby
states higher up in the energy ladder and leads to additional dipole interactions in the vapour,
as well as to a reduction of the state lifetime. These blackbody radiation induced effects have
also been observed experimentally [92, 93].

The large spatial extent of the electronic wavefunction leads to an increased collisional cross
section scaling with n? [59, 63], as well as a strongly enhanced sensitivity to electromagnetic
fields with the polarisability of Rydberg states scaling as n” [84]. External electromagnetic fields
therefore provide an additional control parameter for the Rydberg state since one can easily
change the state energies by applying a field, and then e.g. tune transition wavelengths within
a certain range. This enhanced sensitivity to electromagnetic fields is also used in rf field sens-
ing and imaging techniques in the previously almost unaccessible terahertz (THz) region of the
electromagnetic spectrum.

3.1.1  EXAMPLE APPLICATION: RF FIELD SENSING

Rydberg atoms have been used as sensorsin rf vector electrometry [47] and magnetometry [48],
thereby allowing a measurement of electric or magnetic rf fields including their magnitude and
polarisations. These atom-based radiofrequency field measurements have been shown to de-
tect THz radiation powers on the order of nW in hot vapour systems [20]. A recent preprint [94]
claims to have approached the standard quantum limit up to a factor of 2.6 for detection of mi-
crowave fields at ~ 37 GHz with an optically thin sample of ultracold atoms. Setups operated at
room temperature greatly reduce the complexity and increases flexibility of the measurement
devices as opposed to ultracold atomic setups.

These rf measurement detection methods often utilise a four-level scheme as shown in Figure
3.1 (a), where the two Rydberg states |r) and |r’) are dipole-coupled by the rf field. Low rf field
strengths (low €2,¢) induce a change in the amplitude and shape of EIT resonance while strong
fields with high Rabi frequencies €2, lead to Autler-Townes (AT) splitting of the EIT resonance.
This crossover from EIT into the AT regime with increasing ), is shown in Figure 3.1 (b). Tuning
the detuning A, of a strong rf field across resonance, on the other hand, reveals the avoided
crossing of the dressed states in the EIT spectra as shown in Figure 3.1 (c). Dipole transition
strengths beween Rydberg states with small differences in principal quantum number n tend to
be large due to the large overlap of the radial wavefunctions. This leads to high Rabi frequencies
even for low field strengths and thereby enhances the sensitivity of the detectors.

The Rydberg atom-based rf detection schemes are of particular relevance in the terahertz
(THz) domain (0.3 - 3 THz), which is sandwiched between the range of electronic and optical
sensors and currently lacks efficient detection schemes. This THz gap can be closed by atom-
based sensors since a multitude of transitions between Rydberg states lies within the THz do-
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Fig. 3.1: RF field detection via EIT spectroscopy in a four-level scheme. For a four-level scheme, the
relevant levels are shown in (a). Coloured arrows indicate the transitions driven in the examples
shown in (b) and (c), where EIT was performed in a hot rubidium vapour with an additional mi-
crowave field coupling the Rydberg state |rr) = [35D5,) to a second Rydberg state ') = |34F).
Furthermore, we have |[g) = [55;/5) and |e) = |5P%)5). (b) shows the transition from EIT to
Autler-Townes (AT) splitting when increasing the microwave power for the microwave driving to
the j/ = 7/2 state. In the AT split regime in (c), one can see the avoided crossing of energy lev-
els as the microwave frequency is swept across resonance with the [35D35) (left, at A. = 0)
and |35D5/2> (right) states. Data was taken with a microwave power set to P,,,,, = —3 dBm, the
corresponding electric field amplitude in the vapour can be calculated from the splitting of the
states. One can nicely see the three |35 D5 /) resonances split at the same microwave frequency,
and the weaker \35D3/2) resonances split at their same respective frequencies. The colourbar
applies to both (b) and (c).

main [59]. The THz frequencies accessible via two-photon detection schemes, as in 3.1 (a), are
shown in Figure 3.2 for the two most commonly used alkalis, namely rubidium (red) and ce-
sium (yellow). Recently, THz imaging schemes have been developed which utilise similar level
schemes as in rf field detection [95].

3.2 RYDBERG-RYDBERG INTERACTIONS

Another notable property of Rydberg atoms is the strong interaction between pairs of Rydberg
states in spatial proximity. The resulting interactions have been utilised in e.g. neutral atom
quantum computing schemes to implement CNOT (controlled-NOT) gates [96], in quantum sim-
ulation to effectively implement Ising and Heisenberg spin Hamiltonians [82] or simulate the
temporal evolution of systems governed by the Gross-Pitaevskii equation [33], and in quantum
optics to create optical nonlinearities at the single-photon level [41, 78].

In experiments with excitation into a single Rydberg state |n, [, j), like in the experiments dis-
cussed in this thesis, one finds the interaction dominated by van der Waals interaction’ between
identical atoms. However, we will start with a brief discussion of the underlying mechanism to

2The blackbody radiation induced population redistribution, as well as collisional state changes, can admix cer-
tain amounts of other Rydberg states which might be dipole-coupled to the target Rydberg state. For simplicity,
this effect will be assumed to be negligible.
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Fig. 3.2: THz transitions accessible with two-photon schemes for Rb and Cs. The THz transitions in
Rb (red) and Cs (yellow), which are accessible with two-photon detection schemes as in 3.1 (a),
are shown with their respective relative dipole matrix element |7, |.

explain the interactions on a fundamental level before the distance scaling of the interaction is
considered for different regimes, and the resulting angular dependency is discussed in detail.

3.2.1  UNDERLYING MECHANISM: DIPOLE-DIPOLE INTERACTIONS

Rydberg atoms appear as electrically neutral at distances that are large compared to the spatial
extent of their electronic wavefunction. This leads to a vanishing direct Coulomb interaction be-
tween two spatially separated Rydberg atoms. However, Rydberg atoms do interact with each
other via dipole-dipole and weaker, higher-order electromagnetic interactions. They easily ac-
quire a permanent electric dipole moment when subject to an external electric field due to the
high polarisability of Rydberg states [97]. Additionally, when undergoing a state change an atom
acquires a transient dipole moment for the duration of the transition between the states [16].
Two Rydberg atoms in spatial proximity can therefore interact via electromagnetic interactions,
for which retardation effects of the fields are negligible while in the near field regime®. The re-
sulting interaction can be calculated based on a multipole expansion [98, 99], which is well jus-
tified for non-overlapping charge distributions®. The leading term in the multipole expansion
describes the interaction of two dipoles and is given by

N (i 1 N ~ ~ N
) (Rzg) = |:dl . dj — 3(d, . rij)(dj . rij) (31)

dd, cart 47T€0R?j

with R;; = |R;;| denoting the absolute distance between the atoms (7, j) and r;; = R;;/R;; the
corresponding unit direction. d; denotes the dipole operator acting on the i-th atom.
When performing a basis transformation from cartesian to spherical, with the quantisation

3With kR < 1where k denotes the wavevector of the respective transition and R the distance between the nuclei.

#The minimum interatomic distance required for a validity of the approach can be estimated from the spatial
extent of the electronic wavefunctions and is given by the Le Roy radius rr = 2 ((7%) + (73)) [59, 100]. For
states with non-vanishing angular momentum [ # 0, however, it has been shown that the Le Roy radius may
be an underestimate for the lower bound of the regime of applicability of the power-law scaling in interaction
strength. An expression including the orientation of the orbital angular momenta has been proposed in [101].
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Fig. 3.3: Angular dependency of dipole interaction operator Vya- (a) shows the definition of the an-
gles # and ¢ for a two-atom system in the spherical basis. The atoms are indicated in red. (b)
The absolute values of the angular dependencies of the dipole interaction operator Vy for dif-
ferent |AM| = 0, 1,2 are shown in the spherical basis. One finds the angular dependencies
Vaa(AM = 0;0) oc 1 — 3cos?(0), Vaa(AM = £1;0)  sin() cos(#) and Vag(AM = +2;60)
sin?(6) The interaction is isotropic in ¢ in the spherical basis, up to a global phase.

axis assumed to be parallel to the z-axis’, one finds the dipole operators to be defined as
1

V2

The cZ? dipole operator conserves the magnetic quantum number m;° while the a?li operators
change it by £1. The dipole operators are therefore associated with 7 and 0. transitions, re-
spectively, as is shown in Figure 2.4. This change to a spherical basis leads to the equivalent
formulation of the dipole-dipole interaction operator Vyq [102] as

P =d and dF= (df + d;/) . (3.2)

(1 — 3cos?(0)) [&9629 + L(dFd + Cz;czﬂ
i 1 . sy 2 o o
‘/;l(d:]s)ph(Rij) = IR —\% sin (@) cos(0) [e (d2d; +d; d?) — e (d2d} + djd?)}
K LA LA A
—3 sin*(0) [ede;dj_ - e*ZZ‘z’djd;r]

(3.3)

Thetermsinthe upperrow resultin no change of the magneticquantum number M = m; +ma
of the two-atom system, while the middle and lower row describe the processes leading to
AM = +1and AM = =2, respectively. As one can see, the angular dependency of the in-
teraction is determined by the resulting change in AM, as is also shown in Figure 3.3 (b). The
angles 6, ¢ are defined in Figure 3.3 (a) for clarity.

>The angle 6 is defined as the angle enclosed by the quantisation axis q and the interatomic direction vectorr;;,
i.e. 8 = £(q,r). Secondly, externally applied electric and magnetic fields are assumed to be orientated along
the z-axis for simplicity, i.e. E = Fpe, and B = Bye,.

®In the fine-structure basis, the quantum state of an atom is characterised by the state vector |n, [, j,m;) where
m; denotes the orientation of the orbital angular momentum j with respect to the quantisation axis.
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Fig. 3.4: Coupled pair state system and coupling-induced shift of eigenstates from resonance. (a) A
schematic representation of the states |r;) and |r}) with the relevant dipole coupling is shown.
The resulting pair-state picture with the energy defect A = E(r},75) — E(r1,72) and coupling
V' is shown at the bottom. In (b), the energy eigenstates of the coupled pair-state system is
shown and the relative state admixture indicated. For a coupling strength much weaker than the
energy defect, i.e. |[V| < |A|, the eigenstates are only weakly admixed and are approximatly
equal to the bare pair states. These limiting cases are indicated as dashed lines. (c) The energy
eigenvalues of the coupled pair-state system are shown for variation of the interaction strength
V relative to the energy defect A. The coupled pair state can be excited by a field of bandwidth
B only within a certain range where |E| < B such that the coupled pair-state eigenenergy is
not shifted out of the excitation range of the field.

Now, let’s consider a pair of Rydberg atoms |ry, )" at distance R, with each atom dipole-
coupled to another Rydberg state |r}). The pair state |ry, r2) then interacts with the pair state
|, r}) via the dipole-dipole interaction V (R) = (r!, 74| Via(R)|r1, m2) = Cs/R3. The pair states
might be slightly off-resonant, such that an energy defect A = E(r},r}) — E(r1,r2) remains.
In the pair-state basis {|r1,72) , |}, 75) } the dynamics of the two-atom system is then governed
by the pair-interaction Hamiltonian®

V(R))

pair — 0
dd V(R)
which results in an oscillation back and forth between the two pair-states for sufficiently strong

coupling V' (R) and small energy defects A. The eigenenergies of the Hamiltonian are found to
be £, = (A £ \/A? + 4V (R)?)/2 and the corresponding eigenstates are given by

1
lex) = \/042:+1 (vt |r1, o) + |1, 7))
i

withayr = —(A+£ /A% 4+ 4V (R)?2)/2V(R). For A = 0 the eigenstates |e..) consist of a symmet-
ric superposition of |1, 75) and |}, r5) up to a factor of £1.

A (3.4)

This Hamiltonian is similar to the two-level atom-light Hamiltonian discussed in Section 2.1.1,
which gave rise to the dressed state picture with the resulting eigenstates shifted in energy

"In the following, we will use |rr) as a shorthand notation for the fine-structure state |n, 1, j, m;).
8n this chapter we have set i = 1 for simplicity.
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around resonance for strong coupling fields €2. In the case of interacting pair states, the cou-
pling strength between the near-resonant pair states is given by the dipole-dipole interaction
V'(R), and the detuning from resonance by the energy difference A between the pair states. In
analogy to the dressed atom-light system, one also has to consider the eigenstates of the cou-
pled pair-state system in the near-resonant and off-resonant limit cases.

For large energy defects compared to the pair-state coupling, i.e. |A] > V(R), the eigen-
states are given by the bare pair states |ry, r5) and |}, r5) with negligible state admixture, and
the eigenenergies E. correspond to the respective pair state energies. However, the situation
changes drastically for the case of strong coupling relative to the pair-state energy defect, i.e.
for V(R) > |AJ. In this regime one finds strong state admixture, i.e. the Rydberg atoms oscil-
late back and forth between the pairs |r1,75) <> |}, 75), and the eigenenergies of the coupled
system change relative to the uncoupled case.

The dipole-dipole interaction therefore couples two Rydberg pair states |ry, r2) and |7}, 75)
if |r1) <> |r]) and |rq) <> |r}) are each dipole-coupled. Depending on the energy defect A
and the coupling strength V' (R) this may lead to the formation of dressed states with shifted
eigenenergies relative to theinitial bare state |1, 75). As a consequence, resonant excitation of a
second Rydberg state |ry) near |r;) may not be possible on the bare state resonance frequency if
the pair-state interaction shifts the pair-state eigenenergies out of resonance with the excitation
laser - an effect known as Rydberg blockade [103] and shown in Figure 3.4 (c).

Various interaction-induced effects occurring in the strongly coupled system have been ob-
served experimentally [103, 104], e.g. the fast oscillations between the pair states |ry, ) and
|71, %) [102]. The general angular dependency of the dipole-dipole interaction has been shown
[105] and the typical angular dependency o< (1—3 cos?(6)) for anisolated transition with AM =
has been demonstrated [102].

One can now apply the tool developed above to study the resulting interactions between Ryd-
berg atoms. The states |r;) and |r5) might be directly dipole coupled such that |}, r5) = |r2,71)
which results in a vanishing energy defect A = 0. Such degenerate pair states with vanishing
energy defect are said to be on Forster resonance. This resonant dipole-interaction induced
coupling leads to long-range scaling of the interaction strength oc 1/R? and induces oscilla-
tions between the states |ry,rs) <> |r2,71) with frequency V' (R). If, however, the atoms are
coupled by V,, in a second-order process?, e.g. because they initially occupy the same Rydberg
state, then one can find different regimes with oc 1/R? or o< 1/R% scalings in distance. Since
the experiment reported in this thesis excites only to a single Rydberg state, these second-order
interaction processes are dominant and we will proceed by having a closer look at those.

3.2.2 SECOND-ORDER INTERACTION PROCESSES

For two atoms with an orbital angular momentum difference Al = |l; — I5| € {0, 2} the inter-
action mediated by V, is of second order, e.g. for a pair of atoms initially in the same Rydberg
states |r1,72) = |r,r). This means that the interaction process includes an intermediate, aux-
illary dipole-coupled pair state |7, 7) as shown schematically in Figure 3.5 (a). The two-atom

9Higher-order electric coupling like e.g. dipole-quadrupole, or magnetic couplings between the two atoms are
usually orders of magnitude weaker than a second-order dipole-dipole coupling process [106].
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Fig. 3.5: Second-order interaction in the van der Waals regime and Rydberg blockade effect. The
second order interaction process is shown schematically for the case of no state hpooing, i.e.
where |i) = |f), in the top left and for the case of state hopping in the bottom right of panel
(a). Both processes ensure that the state energy of initial and final state, i.e. E(|i)) and E(|f)),
are identical. The intermediate state may have an energy defect A, though. Crossover of the
second-order interaction scaling in distance from o« R™3to o« R for R <« R,qw and R >
R,qw respectively, is shown in (b). The resulting effect of Rydberg blockade is shown for the
van der Waals regime in (c), but occurs equally in the other regimes. Coupling of the |r) and
7'} states leads to a distance-dependent shift of the |ry, o) pair state energy. For interatomic
distances R < R; below the blockade radius, the state energy is shifted out of the range covered
by the excitation bandwidth B associated with the transition. This prevents an excitation of an
atom into the Rydberg state when being in close spatial proximity to another Rydberg atom.

system therefore undergoes the process'’
. \% . o\ V
i) = [r1,72) = |71, T2) = [rh,75) = |f) . (3.5)

. - di 1~y 4 R . .

The single-atom transitions |r;) — |7;) — |r}) occurring in this process all have to be dipole-
allowed with d;, d; representing the respective dipole transition matrix elements. When con-
sidering the resulting scaling of the interaction with atomic distance R one finds two differ-
ent power law scalings for different distance regimes, separated by the van der Waals radius
Row = +/|C3/A] where the interaction-induced level shift V(R) = C3/R? equals the pair
state energy defect A(r],7%). For shorter distances R < R,qw the long-range interaction o
V(R) = C3/R3 scales with n? while R > R, implies short-range interactions o< Cg/R°
where Cg scales' with nl! [107].

Additionally, the interactions leads to the aforementioned Rydberg blockade effect - both in
the van der Waals and the dipole-coupled regime, where the interactions scale as x R~ with
n = 6andn = 3, respectively. While the two atoms are further apart than the blockade radius

19For the following considerations the initial and final states do not necessarily have to be identical but could also
be interchanged. l.e. for |i) = |r1,72) one always has |f) = |i) and, if dipole coupled, also |f) = |ra,71) as
possible final states.

"The scalings of C3 and Cg with effective principal quantum number n, can be estimated very easily. The dipole
matrix elements d; » between two nearby Rydberg states grow as n? while the corresponding energy defect
scales as n 2. Therefore, C5 o didy ox ntand Cg o (diddadh)/A < nll [84].
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R, = {/C, /B, the coupled pair-state eigenenergies lie within the range that can be excited by
the coupling field of bandwidth B'”. Hence, both atoms can be excited into the Rydberg state
|rr). As the atoms move closer, the spatial dependency of V/(R) o< R~ eventually shifts the
pair state energy out of resonance with the excitation field, effectively inhibiting the excitation
of a second Rydberg atom within the radius R < R,. Only the states |rg), |gr) will be populated
in this scenario.

For a given initial pair state |ry, o) there is usually a number of intermediate pair states which
are somewhere nearresonance with the initial pair state, but with a non-vanishing energy defect
A. Therefore, many intermediate pair states will contribute to the dynamics of the interaction
which is accounted for in the second-order interaction Hamiltonian by summing over all dipole-
coupled intermediate pair states {|71, 72) } [106]

- Viaa(R) |71, T2) (71, 72| Vaa(R)
Hyo(R) = Z A7) . (3.6)

{I71,72)}
The level shifts induced by this second-order interaction also lead to the Rydberg blockade ef-
fect[108,109], seealso Figure 3.5, and the resulting interaction has been shown to be anisotropic
in general [106, 109, 110]. However, even though a direct evaluation of ]:ISO(R) is possible, it
does not provide much intuition on the behaviour of the anisotropy. This spatial anisotropy can
be understood when considering the angular momenta of the most significantly contributing
intermediate pair states and the angular dependence of the dipole transitions involved in the
process, as will be shown in the next section.

3.2.3 STRUCTURE OF THE Cg INTERACTION COEFFICIENT

When being in the van der Waals regime with R > R, 4w, the interaction between two Rydberg
atoms in the same state scales as Cs/ R® o< nl!'. However, when calculating the interactions for
two Rydberg atoms with different initial Rydberg states |n4, l1, j1, mj,) and |nq, s, j2, m;,), One
finds that the 2D maps with varying (n, ns) show very clear structures. This is shown in Figure
3.6 for the interaction of two P;-states in rubidium with different principal quantum numbers
n;. The angular dependency of the C4 coefficients has been discussed from a technical perspec-
tive in [106] for n; = ny, based on a study of the dominant angular momentum channels. This
section uses a similar angular momentum channel approach in order to provide an intuitive un-
derstanding of the angular dependency of the Cq4 coefficients but allowing for n; # ns, and to
explain the structure formation observed in [111]. The resulting understanding of the Cq interac-
tion coefficients is then used to discuss interesting pairs of pair states for the generation of an
on-demand effective interaction between two photons in Section 3.2.5.

For the readers interested in the details of the structures found in the interaction map, we
present an extended analysis of the different contributions leading to the specific features in
the interactions. The main results of this section are summarised in Subsection 3.2.3.4.

2For simplicity, one usually sets the bandwidth B equal to the effective Rabi frequency Qg of the transition.
However, significant line broadening and other effects may broaden the bandwidth beyond the limit given by
Qett
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Fig. 3.6: Structures in the C¢ coefficients of P,-states in rubidium. The absolute values of
the total interaction coefficient C¢ for the interaction of two Rydberg atoms |ri, 7o) with
|ri) = |niPj,m; = +J), i.e. with the same angular momentum quantum numbers [, j, m;
but varying principal quantum numbers n;, is plotted. J = 1/2is shown in the left pair of plots
and J = 3/2 on the right, both at the angles § = 0, /2 (left, right subplot per pair). The colour-
bar applies to all plots. One can clearly see a strong structuring of the Cg coefficients in form
of lines of strong/weak interactions apparent in the log-plot. The angular dependence of |Cg| is
also apparent. For identical angular quantum numbers the Cg coefficients are symmetric with
respect to an exchange of ny and ns, as can also be seen in the symmetry of the plots with re-
spect to the axis defined by n; = na.

When having a closer look at a single second-order interaction process in (3.5)"

dyd,

. dids |~ -
i) = |r1,ra) —= [Ty, 7a) —= |1y, ) = |f), (3.7)
Vaa Via

one finds that the overall interaction strength is determined by the dipole matrix elements

d;t = <ni7livji’mj,i|d?|n;>l;ajz{>m;‘,i> (3.8)

(2

of the specific transitions in equation (3.7). a = 0, +1 relates to the electric field polarisations
driving 7, o4 transitions, respectively. Further analysis of the dipole matrix element of an atomic
transition reveals that it can be splitinto a radial and an angular part by use of the Wigner-Eckart
theorem [112]. When suppressing the atom-index ¢, a dipole matrix element is given as

d* = <n/7 llaj/7 m;|d&’n7 l7j7 m]> = R(na l?]u n/7 llajl>Da(j7 my; jl7 m;) (39)
with the radial and angular parts [98, 106, 111]

R(n,l; n',I') = (=1)"'\/(2l + 1)(2I' + 1) (é (1) i),) /00 Ru(r)erRyy(r) r?dr  (3.10)
0

and

D1, j,my; U, j',m)) = (=)0 emmith /(95 4+ 1)(25/ + 1)

g1y J I
L L) o)

BThe transition type o = m;- —m; € {0,%1} corresponds to the m, o+ transition driven by the field, and has

been absorbed in d;, d; for simplicity.
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The above equations use (:::) to notate the Wigner-3j symbol and {:::} for the Wigner-6j sym-
bol, while s denotes the electron spin. R,,(r) denotes the radial wavefunction of the respective
state and depends only on n.and ['*. The coupling strength between the states |r), |r’) is mostly
determined by the radial coupling strength R while the angular coupling is absorbed in D°.

Since the overall process described in equation (3.7) is of second order, the energy defect A
also plays a decisive role in shaping the resulting strength of the interaction. The interplay of
these three ingredients - radial coupling strength, angular dependency, and energy defect - and
the resulting structure in the C4 coefficients - are discussed in the following.

3.2.3.1  ANGULAR DEPENDENCY AND ANGULAR MOMENTUM CHANNELS

The angular dependency of the total second-order process described by equation (3.6) can be
separated into several angular momentum channels characterised by the (I, j, m;) quantum
numbers of the six atomic statesinvolved in the process, i.e. of all three pair states |i) , |interm.) , | f).
Each of these angular momentum channels is characterised by its own angular dependency. All
second-order processes with the same angular momentum pathway |11 j1, l2j2) — |l~131, 5232) —

l151,l272)

171, 1575) are combined into a single channel coefficient C’é , such that one finds the re-

arranged second order interaction Hamiltonian to be given by

. 1 R1R2RIIR'2 N
{5y \{@)} ir biy Ji

Cé[iji) o
= Y S, (312)
{(1:3:)}

Theindex i is used as shorthand notation to indicate a dependence of the respective value from
both atoms, i.e. I; = [1l,. The abbreviations R(l') and R(Q') have been used for the radial cou-
pling strengths, where the prime indicates the |interm.) — |f) process. The energy defect
A(#,1;, J;) is shorthand for

All angular dependency has been absorbed in the operator M(L,L), which will be analysed in
the next paragraph. This re-arrangement of the sums means that we can now study the angular
dependency of the different angular channels, weighted by their respective channel’s interac-
tion strength Céliji). For example, in the case of |i) = |f) = |n1Py/2,n2P;/2) one finds four
angular momentum channels with

]interm.> € {|ﬁ151/27ﬁ251/2> ) |7~1151/2, ﬁ2D3/2> ) ‘ﬁ1D3/2, ﬁ251/2> ) |7~11D3/2,7~12D3/2>}-
The resulting coefficients Céliji) constitute a sum over all possible intermediate state principal
quantum numbers (72;72) and can easily be computed with the functions available in Python

“The radial wavefunction is completely characterised by the quantum numbers n and [, while the relative phase
of the wavefunction at (6, ¢) depends on the angular quantum numbers.
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Fig. 3.7: Basis rotation and angular dependency of |, P, /5, n2 P />) angular momentum channels.
(a) shows the initial (unprimed, left) and rotated (primed, right) basis before and after rota-
tion by W (6, ¢). The dipole interaction takes its simplest form in the primed coordinate frame
where the 2’-axis and the internuclear axis align. The angular dependency of the four chan-
nels for the interaction of ]anl/g,ngPl/Q) with mj; = mja = +1/2is shown in (b). The in-
termediate states correspond to colour as follows: 7215 /2, 11251 /2) (purple), [721.51 /2, 12 D3 /2)
(green), |71 D3 /9,25 /2) (blue, identical to green), |71 D32, 2 D3/2) (yellow). The angle 6 is
varied in range [0, 27| while ¢ = 0 in plots (b) and (c). In (c), the angular dependency of the
[110P; /2, 110P; j9,mj1 = mj2 = 1/2) state of rubidium is shown. Dashed lines indicate neg-
ative values. The respective interaction coefficients C’éli”) are: 230.9 THz um® (purple), -49.9
THz um® (blue, green), and -2.4 THz um® (yellow), with the colours of the angular channels as

in (b). The gray colour is the resulting angular dependency of |C| as 6 is varied. Note that the
small lobes stretching towards 8 = 0, = have negative sign such that there exist angles 6 where

Cs(0o, ) = 0.

libraries such as ARC [98]. Structures of these coefficients, and their dependence on the radial
coupling strength and energy defect, are discussed in the following two Subsections 3.2.3.2 and
3.2.3.3.

To get an understanding of the angular dependency of M, one has to take another look at
the second-order process described by FISO(R). It inherits the angular dependency of the inter-
action from the dipole-dipole interaction V.4, which shows a complex pattern for a general set
of angles (6, ¢). The effective action of V;; becomes clearer when rotating into the frame where
the internuclear axis and the quantisation axis q align in parallel. In this orientation, the dipole
interaction term takes its simplest form since M = m; +mjs is conserved at this angle, so that
allterms in f/dd with AM > 0vanish.

A rotation of the atomic state |n, [, j, m;) between two coordinate systems X and X is per-
formed via the Wigner (uppercase) D-matrices'® W(6, ¢) [106] such that [i) = W (6, ¢) |i). Note
that the Wigner D-matrices perform a rotation of the total orbital angular momentum basis and
depend only on the angular quantum numbers j, m;, and m;'®. Having performed the basis ro-

>Note that the Wigner (uppercase) D-matrices allow for an arbitrary 3D rotation about the angles (6, ¢). If the
interaction were fixed in the xz-plane, then one would use the Wigner (lowercase) d-matrices which allow for
rotation by a single degree of freedom 6 [99].

'®The representation of the projection of the total orbial angular momentum m; changes as we change the basis
with respect to which we express the state. However, this transformation does not change the values n, [, j.
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tation, one can calculate the effect of the second-order dipole interactions in its simplest form
for & = 0 where AM > 0 terms vanish, and then compute the projection of the resulting states
onto the rotated final state ( f| W(6, ¢). Therefore,

Cs(0,0) = (fIV(0,¢) H(R,0 =0,0) W'(0, $)|i)

C(szz) . o R
= > 5 UIW(0.9) DL T) W0, 6) 1) (313)
{(ig}

Disindependent of (0, ¢),and is determined only by the angular momentum pathways m; that
are allowed by the dipole selection rules for a given set of intermediate state angular momen-
tum quantum numbers (7;, ;). The elements of D are defined via the angular parts of the dipole
transitions

(gimly, Lismln| D) | hjimg, lojams)

= Z Z C(a)D* (Iujvmy, hjimg ) D™ (lajamya, lajarings)
{(mj1,mj2)} \@e{0,+1}
Z (YD (I jyringn, lijim;1)D_a/(l~232mj27 ly, Jo) (3.14)
o/€{0,£1}

with the different polarisation coupling weights of f/dd(e = 0) implemented by

—2 =0
am:{4’§:i1

as given in equation (3.3).

The angular dependency therefore boils down to the overlap of the rotated final state with the
rotated initial state subject to the angular momentum channel’s allowed m; interaction path-
ways. These interaction pathways may differ between the angular momentum channels since
e.g. the pathway |m; = £1/2) — |m; = £3/2) — |m; = £1/2) is possible for an intermediate
| D) state, but not for an |.S) state. Figure 3.7 (a) shows the basis rotation protocol, and (b) the
angular dependencies of the angular channels for |n1P1/2, n2P1/2> states. An example for the
resulting angular dependency of [110P, 2, 110P, 2, m;; = mjs = 1/2) in rubidium is shown in

(c).

3.2.3.2 RADIAL COUPLING STRENGTH

The order of magnitude of the radial coupling strength R is determined by the integral in equa-
tion (3.10), which depends only on the principal and orbital momentum quantum numbers n
and [. Generally, the radial overlap of two Rydberg states grows with increasing n, n’ and de-
creasing |[An| = |n’ — n|. The coupling strength of two nearby Rydberg states scales as n? for
[ < n[84].
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Fig. 3.8: Radial coupling strength for low-l dipole transitions in rubidium. The upper row shows the
value of the radial coupling strength for single-atom [nL) — |n/(L + 1)) transitions relative to
the [nS) — |nP) coupling strength in rubidium at three different values of n = 50,80, 110.
The value of the radial overlap integral is weighted towards An = n’ — n < 0, rendering these
transitions more likely than those with An > 0. In the lower row, the value of the radial overlap
integral R(n,l; n,l’) is shown for different An = 0, +1. For An < 0, all channels follow the
well-known nf scaling law. However, for An = 0 one can see a destructive resonance in the
overlap integral value for the [nP) — |nD) channel, and for An = +1in the [nD) — |nF)
channel. For higher An > 1, the destructive resonance in the coupling strength of the |[nD) —
|nF') channel in rubidium moves to higher n. All values were calculated with ARC [98], which
utilises the Numerov method for computation of the radial overlap integrals.

However, the situation is not as simple as that as Figure 3.8 shows. The upper row shows the
relative radial overlap integral strength for [nL) — |n/(L + 1)) transitions with L € {S, P, D},
and one can see that the overlap integral is weighted towards An < 0 for all L. This behaviour
can be understood from the properties of the radial wavefunction R,,;(r). Each radial wave-
function hasn — [ — 1 nodes with an associated sign change along r at each node. For positive
An > 0, the resulting change in the sign and node structure of the radial wavefunction R,
leads to destructive overlap of the two radial wavefunctions, and a lower integral value. Such
transitions with An > 0 are therefore weaker coupled than transitions with An < 0. The same
effect is also visible in the lower row of Figure 3.8 where the reduced value of the radial overlap
integral for An > 0 can be seen in the destructive resonances of the data traces for L > 0. As
a consequence, transitions with An. < 0 and small An ~ O(1) generally have the strongest
radial coupling strengths. The general scaling of the radial coupling strength, however, follows
the well-known n? scaling - but attention has to be paid to the reduced coupling strengths for
An > 0.

Since the whole second-order process includes a total of four transitions, the intraction re-
sulting from a given channel is strongest when all four dipole matrix elements, and therefore
all radial coupling strengths RE'), are large. The strongest interactions are hence found at pairs
of transitions between states with high n and comparably small changes in principal quantum
number An ~ O(1).
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Fig. 3.9: Forster resonances of the angular momentum channels coupled to |1 P, /5, 2P /5) in
rubidium. The different angular momentum channels coupled to the |i) |f)
[n1 P /2, m2 P /2) have their own respective Forster resonance structure, as shown in the three
columns on the left. Different colours indicate the order An of the resonance, which is impor-
tant with respect to the radial coupling strength of the transitions. To complete the Forster res-
onance structure, one has to consider the permutated case of |2, 71) which occurs equally and
corresponds to a transposition of the plots at the n; = ny axis. In the non-symmetric channel
coupling via the |ﬁ151/2, ﬁ2D3/2> states one can see a line of very weak interactions between

the An; = 0, Ang = —2, —3 resonances. This occurs because the coefficient |C’éli’ji)| changes
sign across this line, which is not distinguishable in this absolute value plot. Absolute values of

energy defects A and interaction strengths are given in GHz, and the legend in log space.

3.2.3.3 ENERGY DEFECT

The strongest pair interactions occur on Forster resonance where two pair states |rq,r2) and
|71, 74) are (nearly) degenerate. This well-known effect has been used to identify strong Rydberg
self-interactions for the case where |r;) = |ry) = |r) [106]. However, Forster resonances also
occur for ny # no, which is a case that might be particularly useful when selecting Rydberg
states while subject to further experimental constraints.

The angular channels couple the initial state to different intermediate states, resulting in pat-
terns of the Forster resonances since different (An;, Ansy) channels will be nearly resonant with
theinitial state. Thisis shown in Figure 3.9 for the three angular channels of the [, Py /2, no Py /2)
interaction that was already introduced in Figure 3.6. The three'” angular channels are deter-

'"The fourth channel with intermediate state [} D32, 7551 /2) can be derived from the |/ S} /2, n5D3 ) channel
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mined by the dipole selection rules, and in this case given by |/ S1 /2, 1551/2), |17} S1/2, 5 Ds3/2),
and|n) D32, n5Ds5/,). Foreach of the three channels, the relevant Forster resonantintermediate
pair states are shown in the lower rows of Figure 3.9. The coloured segments indicate the abso-
lute value of the energy defect |A| of the indicated order An; for the respective near-resonant
transitions.

In the case of the symmetric channels, one has to add the contribution of the case with per-
mutated n; and n, to arrive at the full picture presented in the top row, which is indicated by
the dashed black line in the respective panels. This is due to the symmetry of the energy defect
under exchange of n; and n,. For the asymmetric channel coupling to one S and one D state,
a permutation of states leads to the fourth’ channel || D3/, 1551 /2) which corresponds to a
transposition of the respective plot at the n; = ny axis. The contributions from this permutated
channel has to be taken into account as well when computing the total 2D map of interaction
channel strengths, but is not shown here for simplicity.

Identifying the energy defect resonance curves in the (n1, no)-plot allows to find regions of
strong intractions also far away from the n; = ny axis. This knowledge is useful if one wants
to tune certain pair states into, or out of, resonance with the help of additional electromagnetic
fields to fine-tune interaction strengths. However, the energy defect is not the only quantity
that determines the interaction strengths. Different orders of An-channels have different radial
coupling strengths due to changes in the radial overlap of the states, as discussed previously.
Therefore, it is usually the channels with small changes in principal quantum numbers Any,
Ans that contribute strongest to the interaction coefficients. It may additionally happen that
a very strong Forster resonance occurs outside of the structure regions which leads to isolated
incidences of strong second-order interactions. The sign of the energy defect A determines the
sign of the resulting interaction.

3.2.3.4 STRUCTURES IN Cg MAPS

As we have seen in equation (3.13), the angular dependency of the second order interaction de-
pends on the interplay of the angular dependencies of the different angular momentum chan-

nels and their relative weighting. The relative weightings Céli;i) are a function of the radial cou-

pling strengths Rg') of the atomic transitions and the energy defect of the intermediate pair
state A, as can also be seen in equation (3.12). The structures arising in the 2D map 3.6 for any

spatial orientation (0, ¢) therefore depend on the structures in the Cﬁ(l”i) coefficients and their
interplay at any given set of angles. This interplay between the channels is determined by the
angular dependency of each channel, which can, on a conceptional level, be reduced to the
overlap of initial and final m; states subject to the second-order interaction.

Strong anisotropy of the interactions therefore occurs when asingle angular momentum chan
nel dominates the interaction dynamics, but a cancellation of the angular dependency occurs
if the different channels balance another. Strong domination of a single channel occurs on
Forster resonance of the given channel, as shown in Figure 3.10, though the resulting interac-
tion strength also crucially depends on the radial coupling of the single-atom transitions Rg’).
The 2D interaction maps can therefore be understood when considering the interplay of the key

by permutation of the states and is threfore not counted separately here.
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ingredients: angular dependency of the angular momentum channels, and Forster resonant
pair states with their respective radial coupling strengths.

Furthermore, the sign of the interaction coefficient, i.e. whether the interaction is attractive
orrepulsive, is determined by the sign of the energy defect. Changes in sign of the energy defect
A occur near the Forster resonance lines and allow a further tailoring of the interaction.

State hopping, where the second-order interaction leads to (partial) exchange of quantum
numbers between the two atoms, is possible whenever the initial and final state quantum num-
bers are dipole-coupled. In generic situations the probability to find the atoms with (partially)
exchanged quantum numbers is orders of magnitude lower than the process |i) — |f) = [i).
But in some situations where the respective radial coupling is strong, like e.g. for similar prin-
cipal quantum numbers n; = ns, state hopping may contribute significantly to the pair-state
dynamics. While being on Forster resonance with any particular intermediate state, the second-
order process is not virtual but the intermediate state is actually populated. This leads to addi-
tional dipole-dipole interactions between the initial and intermediate pair states. These inter-
actions are not present in the van der Waals regime where the second-order process is virtual
and the intermediate state is not (significantly) populated due to the large energy defect A.

3.2.3.5 FORSTER ZERO STATES IN DEGENERATE MANIFOLDS

An interesting case that deserves special mention due to its relevance for applications is that
of so-called Forster zero states [113] which can occur in degenerate manifolds of |m;) states.
In this case one finds that initial states, which might constitute of a superposition of |1, m;2)
sublevels, couple only weakly to some angular momentum channels. These states were termed
Forster zero states and will be denoted as {|F})};. For a given initial state |:), the overlap of

|7) = WH(8, ¢) |i) with the Forster zero state(s) depends on the spatial orientation of the atoms
(0, ¢). There might be sets of angles for which the overlap with the zero state(s) is large while it
is small for other angles. Forster zero states do not occur if the intermediate state fulfills j; > j;
for both atoms, but for any other channels there may be at least one Forster zero state [106]. If
one seeks to avoid these (near) zeros in Cs (6, ¢) for any set of angles, then one has to choose an
interaction that is dominated by the angular momentum channel satisfying j; > j; fori = 1, 2.

The presence of Forster zero states in any angular momentum channel can be detected by
studying the eigenvalues of T)(L}i). For the near-zero eigenvalues, one has a corresponding
number of Forster zero states which are given by the respective eigenvectors. A potential change
in sign of C can equally be detected from the eigenvalues, but this time of the full interaction
Z(l}ii) CG(Lji)ﬁ(fi}i). If eigenvalues of both signs exist, then there might be a change in sign
of C at angles {(6?, #9)};, conditional on the overlap of the initial state |i) with the respective
eigenstates as the angles (6, ¢) are changed. An example for such a case with zero interaction
and achangeinsign of CsisshowninFigure 3.7 (c) forthe [110P; /5, 110P, )5, mj1 = mjo = +1/2)
state, which is dominated by the intermediate state channel coupling to 72,51 /27251 /2).

This effect is of practical relevance since it results in varying Cj interaction strengths for en-
sembles with varying spatial orientations. For such ensembles, the Rydberg blockade radius is
therefore inconsistent and is determined by the weakest interaction. For experiments with large
clouds and randomly orientated atoms this effect has to be taken into account since Forster
zero states can crucially change the interaction dynamics. If one seeks reliable blockade, one is
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Fig. 3.10: Forster resonance structure and resulting angular dependency of C(605 /2, 125 /2) in

rubidium. C(605, /2, n2S1/2) values are plotted in the upper central panel for m;; = mjz =

+1/2and § = 0 (closed dot), # = 7/2 (open triangle). The corresponding values |Cél”i)|
of the angular momentum channels are plotted below and colour-coded as specified by the
coloured labels of the inset rows. The insets show the total radial coupling strength divided by
energy defect, resolved by intermediate state principal quantum numbers 77 and 7o, for the
four angular channels separately. White lines indicate the values for which An; = 0, with the
insets orientated such that n; on the horizontal and 72 on the vertical. The magnitude and sign
of the respective (71, 712) contributions are encoded in the colourbar. The Forster resonances
with An; = —1,0 and varying orders of An; are visible in the insets and correspond to strong
angular dependencies of Cg. This is easily understood when considering the spread in angular
momentum channel contributions on the resonances.
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therefore advised to choose states with the interactions dominated by the angular momentum
channel satisfying j; > j; fori = 1,2. This channel is free of Férster zeros and therefore pro-
vides the required reliability of the blockade. Alternatively, one can get rid of the Forster zero
conditions by lifting the m; degeneracy through application of electromagnetic fields.

3.2.4 TUNABILITY OF INTERACTIONS WITH ELECTRIC AND MAGNETIC FIELDS

It has been mentioned before that the strongest interactions occur on Forster resonance where
two degenerate pair states |ry, 75) and |, 1) are resonantly coupled via dipole intractions me-
diated by V;4(R). In this case, the interaction strength was shown to scale as oc 1/ R? in distance,
which leads to long-range interactions. However, for any given initial pair state there is usually
only avery small number of state combinations that is (nearly) on Férster resonance. If oneis re-
stricted to the use of certain initial pair states for experimental reasons, one can still try to arrive
at Forster resonance with a second pair state by applying additional electric or magnetic fields.
These fields do two important things at once - firstly, they lift the degeneracy of the |n,, j)
state manifold by adding an m;-dependent level shift. Secondly, these level shifts can be used
to fine-tune the residual energy defect between the |1, r2) and |}, r}) pair states by making use
of differential Stark- or Zeeman shifts of the different m; states. This has been used in e.g. [102]
to isolate a single pair-state transition on the m; fine-structure level.

For sufficiently weak fields such that (n, , 7) are still good quantum numbers, one can then
proceed in the calculation of the interaction strengths by taking the field-induced level shifts
of the m; states into account. One consequently finds the Forster resonances and extrema in
the interaction strength dependent on the m, state and field strengths - different m states will
have their strongest interactions at different field strengths. This tunability of the interaction
strength provides another tool to engineer interactions between neutral atoms on demand by
simply changing the strength and/or orientation of the externally applied electric or magnetic
fields.

3.2.5 EXAMPLE APPLICATION: PHOTON-PHOTON INTERACTION ON DEMAND

Afundamental understanding of the second-order interaction processes can be utilised in many
different ways. For instance, it might be the case that one has to use certain Rydberg states
due to other experimental constraints, but the interactions are not particularly suitable for the
purpose. An analysis of the contributing interaction channels and mapping out potentially ac-
cessible Forster resonances allows to fine-tune and taylor the resulting Rydberg-Rydberg inter-
actions with externally applied electromagnetic fields. This can be used to enhance the inter-
actions by bringing a particular pair state into resonance, but it obviously works in the reverse
way as well by reducing resonant energy transfer when detuning a pair state from Forster res-
onance. Certain angular dependencies of the interaction can also be engineerd in this fashion,
which can then be exploited by use of appropriate spatial geometries. For example, a strong
angular dependency could be used for fast switching of the interaction strength in a 1D chain of
atoms by fast changes of the orientation of the quantisation axis.

Lastly, the 2D interaction maps with their inherent resonances can also be used in a different
fashion. By looking at the structure in e.g. Figure 3.6 one can identify pairs of pair states with re-
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spective interaction strengths varying by orders of magnitude'®. Driving between such pairs of
pair states is therefore an alternative way to generate arapid change in interaction strength. This
scheme could be used to generate an effective on-demand interaction between two photons. It
has been mentiond in Chapter 2.1.2 that two photons effectively do not interact with another,
but when transferring a photon into a quasiparticle called polariton it inherits some properties
of matter. One of these inherited properties is the strong intraction between Rydberg atomic
states. Putting one and one together then provides a protocol to generate an effective inter-
action between to photons on demand: Initially, the two photons are transferred into Rydberg
polaritons with two distinct Rydberg states that interact only weakly. To induce the effective
interaction between the two photons one then transfers the Rydberg polaritons into a strongly
interacting pair state by application of a suitable coupling field to each polariton. Since this driv-
ing between the strongly and weakly interacting pair states occurs on demand one has obtained
all necessary ingredients and control tools required for the task. Eventually, the polaritons can
be released from their host medium and recovered in the form of photons.

18This is particularly pronounced for some pair states on higher-order resonances away from the n; = n, axis.
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As shown in the previous chapters, Rydberg atomic systems are known to have exceptional
properties due to the scaling of the Rydberg-Rydberg interaction with principal quantum num-
ber n. Interestingly, they also show behavior that is not naively expected for such systems. For
instance, optical bistability has been observed in hot Rydberg vapors [114]. Different theoretical
models have been employed to explain the origin of the bistability and the resulting hysteresis
effects. Notably, both Rydberg-Rydberg interactions [115, 116] and plasma formation of ionised
Rydberg atoms [63] have been shown, theoretically, to lead to optical bistability in the response
of a vapour. In essence, both approaches have in common a non-linear interaction mechanism
which causes a change in the stability of the system and produces multiple steady state solu-
tions for a single set of external driving parameters.

There is recent experimental evidence showing that plasma formation occurs in a hot Ryd-
berg vapour in the strong driving regime [63, 117] and can account for much of the resulting
lineshapes [63]. The underlying effect is a line broadening due to Stark shifts of the atomic lev-
els, caused by the surrounding ions. Due to the locally different electric fields for every atom
in the vapour and the different Doppler detunings due to atomic motion, simulations of such a
vapour become tedious and evade analytical solutions.

Based on the optical Bloch equations, we have set up a model including a generic nonlin-
ear Rydberg-density dependent level shift of the Rydberg state. We were aiming for simplicity
of the model to eventually gain further insight into the role that Rydberg interactions and ion-
induced level shifts play in the dynamics and response of a continuously driven hot vapour in
the strong driving regime. Therefore, we have not merely reproduced the methodology of the
plasma formation approach [63] but set up a simpler model which allows for a more intuitive
understanding of the resulting dynamics of the system.

The resulting model is first presented for an effective two-level system in Section 4.2.1 due to
the existence of partially analytical solutions for the resulting equations, and then extended to
a three-level model in Section 4.2.3. This treatment of a single velocity class is then extended
to a simulation of a hot vapour in Section 4.4. The chapter is completed by establishing links
to well-known phenomena such as ergodicity breaking and time crystals, but also to famous
models like the Kuramoto model, in Section 4.5.

The sections on stability of steady states, Hopf bifurcation, and synchronisation put an em-
phasis on the mathematical aspects of those phenomena within the framework of the theory of
dynamical systems and can be omitted by readers familiar with the mathematical background.
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two-level model three-level model

V(Pee)" V(p)"
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Fig. 4.1: Level schemes for 2-level and 3-level model. The two-level model consists of an atom with
ground state |g) and excited state |e), coupled by a field with Rabi frequency €2 and a detuning
A from resonance. The decay I represents a decay mode from |e) — |g), i.e. it is assumed
that there is no decay out of the basis states. In the three-level model, this assumption is also
made which leads to decay channels I'y¢, I'c, and I, between the basis states {|g) , |e) , |r) }.
The states |g) and |e) (|e) and |r)) are coupled via a probe (coupling) field of Rabi frequency 2,
(€2c). In both models, the additional level shift due to a power law interaction in V' (pe)™ and
V(prr)™ isindicated by the arrow and shifted state energy.

4.1 INTRODUCTION TO THE MODEL SYSTEMS

Based on the optical Bloch equations, one can set up the equations of motion for an n-level
system. This captures the coherent atom-light interaction processes, but does not account for
incoherent processes like dephasing or population decay. In a hot vapour, these mechanisms
play a significant role and so does the Doppler-shift induced level detuning. These incoherent
processes are included in the model by adding dissipation and dephasing terms, and calculat-
ing the equations of motion via the quantum Liouville (Lindblad) equation (2.4). The incoherent
decay and dephasing' rates originate from atomic state decay, collisional dephasing and decay,
transit time broadening, and dephasing due to laser noise. Further effects such as power broad-
ening [118] could also be taken into account.

Furthermore, our model contains an additional Rydberg-population dependent level shift
givenby V' and V p! for the two- and three-level model, respectively. The choices one makes
for the coupling strength V' and the power law scaling n determine the model. This allows to
model Rydberg-Rydberg interaction in the vapour and to approximate the plasma formation
model.

Without specifying these parameters any further one can find expressions determining the
steady state solutions of the model systems. For the sake of generality, those solutions will be
derived before further detailing and specifying the model by fixing the power law n and inter-
action parameter V. A discussion of the choice of those parameters is therefore deferred until
Section 4.3.

'The models as presented here do not include dephasing of the coherences with rates ;;, hence those are not
indicated in Figure 4.1. At the relevant positions in the text it is mentioned how one can easily extend the model
toinclude dephasing.
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4.2  STEADY STATE SOLUTIONS FOR A SINGLE VELOCITY CLASS

The time evolution of our dissipative n-level model system is governed by the quantum Liouville
(Lindblad) equation, as described in Chapter 2. The steady state solutions for a single velocity
class? v; can be found by setting the left-hand side of equation (2.4) to zero, i.e. p = 0 for the n-
level density matrix p. Without further specification of the physical parameters, one can study
the steady state properties of the effective 2-level and the 3-level model. In some parameter
regimes, the resulting behavior will turn out to be qualitatively very different for the 2- and 3-
level models.

The effective 2-level model will be studied first as anintroduction to the approach and method-
ology - and because it has partially analytical solutions, which makes it very instructive to study.
For the three-level model, the presented approach no longer leads to (partially) analytical so-
lutions® since there is no general expression for the roots of a polynomial of order > 4 in terms
of radicals, as stated by the Abel-Ruffini theorem [121, 122]. However, the presented approach
leads to a much more efficient calculation of the steady states of the system via the roots of a
polynomial, as opposed to a numeric integration of the system until a steady state is reached.
Additionally, the three-level model shows self-oscillation in certain parameter regimes, which
is one manifestation of the nonlinearity of the system for n £ 0.

4.2.1 EFFECTIVE 2-LEVEL MODEL

The effective two-level model, shownin Figure 4.1, is governed by the coherent atom-light Hamil-
tonian Har, the excited state population dependent level shift H ;g

h(0 Q 0 0
Ho="HaL + Haite = 5 (Q —2&) +h (0 sze) (4.1)

where the pl. in the Hamiltonian Hy, represents the expectation value, not an operator, and
the Lindblad term D(p)

Fpee _le e)
D(p :( ) (4.2)
( ) _%Fpeg _Fpee

A includes the Doppler detuning of velocity class v;, i.e. is the effective detuning of this velocity
class from resonance, and I' denotes the decay from |e¢) — |g). The resulting equations of
motion for the system follow from equation (2.4) as

pgg - - Qplm(pge) + Ppeea (43a)
pee = + Qp[m(pge) - Fpeea (43b)
] i 1 o

Pge = — 59(/066 — Pgg) — §Fpge - (A - Vpee) Pge- (4.3¢)

ZFor any single velocity class v; of atoms moving along the direction of propagation of a light field, the respective
transitionis Doppler shifted to A, = A,—k,v;,where A, denotes the transition detuning for atoms stationary
in the lab frame and k,, the wave vector of the respective laser x.

3Analytical expressions exist for three-level EIT models without the additional Rydberg-population dependent
level shift. Further details on EIT in three-level systems can be found in the initial proposal and experimental
paper [119,120], and e.g. in this review on EIT [18].
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When finding the steady state solutions, i.e. after setting the time derivative on the left-hand
side to zero, it is straightforward to reduce the above system of equations by reformulating the
populations” in terms of real and imaginary part of the coherence p,.. We also make use of the
trace condition 1 = Zj p;; Which enshrines the conservation of population - and therefore
probability - over time for any n-level system. The steady state equations corresponding to
system (4.3) therefore boil down to two equations in R, one each for real and imaginary part
of the coherence” p,.. These remaining two equations give the steady state solutions of system
(4.3) via

Phg = Pee =0, (4.4a)
r r Q 7
Pag =1 = Pee =1 = FPge; (4.4b)
r Q 7
Pee = fpgev (44C)
2 T- QO . \"1 .
Pge = T [A -V (;pge) } Pyer (4.4d)
3 n 2 Q 2 i \n 4 A Q "
0= (pge)2 i fVQ (f) - (pge) +1 |:fVA (f) :| (449)
24247 T Q
Tl | T T3 T

The roots of the polynomial (4.4¢€) in p;e determine the steady state solutions of system (4.3)
uniquely. A polynomial of order k with real coefficients, as the one above, has k solutions in C
- this follows from the Fundamental Theorem of Algebra [123, 124], also known as d’Alembert’s
theorem.

However, since real and imaginary part of the coherence were treated separately, we expect
a physical solution to be a real solution of equation (4.4¢). Also, not every real solution is nec-
essarily a physical solution. Having made use of the trace condition guarantees that all popula-
tions sum up to one for all possible solutions, but say a negative ground state population and
a correspondingly large excited state population would also sum up to one. This would be very
unphysical in light of our interpretation of the populations as being the probability of finding
the system in a given state upon measurement, i.e.

P()) = (il pli) = pis- (4.5)

Itis shown in Appendix A.1that all real solutions of equation (4.4¢) lie in the interval [0, %} which
implies that the interpretation of those real solutions as state probabilities are always valid.
Without actually finding the roots of the polynomial we can already give a statement on the
maximum number of real solutions that we could expect to find. For the trivial case of a constant
level shift of the excited state, i.e. V' # 0and n = 0, one finds the steady state solution for

*The imaginary part of the populations is always zero since the density matrix is hermitian, i.e. pf = p =
Im(pi;) = 0Vi € [1,n] for any n-level system described by p.
>We will use the notation Re(py;) = pf; and Im(py;) = pi, throughout the thesis.
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Fig. 4.2: Bistability in the 2-level model. (a) shows the steady state population in the excited state for

Q/I' =1,V/T = —30andn = 2. In (b), the dynamical evolution of system (4.3) towards
the stable steady states is shown for initial states [V),_, = (1 — z) |g) + z |e) with = € [0, 1].
The detuning A = —2is chosen such that the system has three steady states, two of which are

attractive and one repulsive, and is indicated with the gray dashed line in (a). In (c), real and
imaginary part of the coherence p,. are shown for the time traces in (b).

p;e to be analytical with always exactly one solution to equation (4.4¢) for all sets of external
parameters. In this case, the response of the system is just shifted in energy by a fixed value, but
otherwise remains identical to the unperturbed case.

/2

Phe =
ge Q24+2(A-V)2

n=20: o
r +§

(4.6)

When assuming a level shift of the excited state linearly in p.., i.e. when setting n = 1, the
situation changes fundamentally. The leading term of the polynomial (4.4¢€) is cubic with well-
known expressions for the roots. One now finds either one or three real solutions for a single set
of external parameters {Q, A, ", V'}. When having three real solutions, then all of them are phys-
ical in the sense that they allow for an interpretation of the populations as state probabilities.
However, not all three of the steady state solutions are stable.

Figure 4.2 (a) shows an example for such a case of multiple steady states in the 2-level system,
the middle branchin the region of three solutions is unstable. This means that the system would
never dynamically develop into this steady state, unless it was initialised exactly in that state.
Any tiny deviation from the unstable steady state would lead to a dynamical evolution further
away from that state - towards a stable steady state, if that exists. Panel (b) in Figure 4.2 shows
how the different initial states |U),_, = (1 —z) |g) +z |e) develop towards one of the two stable
steady states over time for the set of initial parameters marked by the gray dashed linein (a). The
time traces of (b) are plotted again in (c), but now in the space spanned by the coherence pg..
The system always starts in p,. = 0 but is attracted towards two separate steady state values,
depending on the initial state of the system at ¢ = 0.

A further point to note is that those sets of external parameters {Q, A, T', V'}, where the num-
ber - or nature - of the steady state solutions of a dynamical system changes, is called a bifur-
cation point. The mathematical field of bifurcation theory has led to a rich and varied study of
bifurcations in dynamical systems, and this thesis uses some of the results and findings of the

38



4.2. STEADY STATE SOLUTIONS FOR A SINGLE VELOCITY CLASS

20» T T T T T 20» T T T T T T T T 20» T T d T T 4 T " T T
n=1 L |
n=2
15 ™ n=3 {15} {15 | .
, : |
10F 10t .

Rabi frequency Q in [I]
o
T
1

ol
T
1
o1
T
1
o1
T
1

[ | 1 | 1 | I
0 -60 —40 -20 0 -60 —40 -20 0
detuning Ain [r]

1 1 Il
-60 -40 -20 0

Fig. 4.3: Scaling of the bistable region in the 2-level model. The bistable region is shown for a range
of detunings A /T, Rabi frequencies Q/T), interaction strengths V/T', and n. A general increase
in the size of the bistable region with increasing interaction strength V and decreasing power n
is apparent.

field. However, for ease of reading a more mathematical treatment is deferred until the follow-
ing Section 4.2.2 on the stability analysis of steady states.

Foranyn > 1,i.e. for ascaling of the excited state level shift beyond linear in the excited state
population, one finds that the polynomial (4.4e) does not have a general analytical solution.
However, we can still state that there is a maximum of three steady state solutions of system
(4.3) for any given set of external parameters. This follows from Descartes’ rule of signs [125,
126] which states that a polynomial

PA) = ax M 4+ ...+ ar A +

of degree k over R has at maximum [ < k positive real roots with [ being the number of sign
flips in the sequence of coefficients {«; | a; € Rfor0 < j < k}°. Additionally, one always has a
minimum of one steady state solution since the polynomial is of an odd order. Figure 4.3 shows
the scaling of the bistable region withn € {1,2,3} and Q/T" € [0, 20] for different values of the
interaction strength V/T. The detuning A/I" is the so-called bifurcation parameter since this
parameter is varied and the system’s response is observed for any fixed set of {Q2, V,T", n}.

Computationally, it is considerably more efficient to find the roots of the polynomial via nu-
merical methods than integrating system (4.3) until a steady state is reached. However, finding
all real roots of a polynomial can be tricky as common root finding algorithms do not guarantee
to find all real roots. There are algorithms based on Descartes’ rule of signs or Sturm’s theorem
which are complete insofar as they return all real roots of a polynomial. For reasons of com-
putation time and ease of implementation, we have used an alternative method to find all real
roots of the polynomial based on the companion matrix. The companion matrix [124] of a poly-
nomial has all roots of the polynomial in C as eigenvalues, and therefore also all the real ones.
In Python, the eigenvalues of a matrix can be computed efficiently using numpy’.

®A corollary of this theorem can be applied to find the maximum possible number of negative real roots by count-
ing the number of sign changes of the sequence when multiplying the odd coefficients with —1.
"The numerical results have turned out to be stable and accurate within the parameter regimes of relevance for
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4.2.2  STABILITY ANALYSIS OF STEADY STATES IN DYNAMICAL SYSTEMS

Having established the number of possible steady state solutions of the effective two-level sys-
tem, we can now study the stability of those solutions. In a physical sense this is synonymous
to the question of whether or not the system will approach a steady state for a given initial state
- and which one, in case of several steady states. Here, we do not present the concepts in a
mathematically rigorous fashion but give a brief overview of the tools required for the stability
analysis of the steady states. A sound mathematical treatment of the problem can be found in
e.g. [127,128].

When the time evolution of the state x of a dynamical system is given by a differential equation

dx

ar Xu(z) (47)

then the steady states® of the system are those =, € U such that

Here, the set U is a suitable subset of the phase space of the system and the subscript iz denotes
the other parameters which the system may depend on. The differential equation (4.7) is a set
of equations of motion that do not explicitly depend on time ¢ on the right-hand side.

For instance, when considering a dissipative system defined via

p = —%[”H,p]+17(p)

then setting the left hand side to zero, i.e. p = 0, and solving for p results exactly in the set of
steady states of the system. Those are the set of points for which the corresponding flow <I>Z
maps the points onto themselves, i.e. CIDZ(xU) =x0Vt € R.

A steady state x, of the differential equation (4.7) can generally either be stable or unstable.
Broadly speaking, x, is Lyapunov stable if there exists a neighborhood around z, such that all
trajectories starting in this neighborhood always remain within a finite distance ¢ > 0 to xg
forallt > 0. This means, effectively, that every trajectory starting near the equilibrium point
xo remains near the equilibrium for all time. A different, stronger notion of stability is called
asymptotic stability. It refers to the situation where a sufficiently small perturbation § from the
equilibrium point decays away as time evolves and the system returns to its equilibrium state
fort — oo. Lyapunov stability is not as strict as asymptotoc stability since it does not require
convergence of the trajectory towards the equilibrium z; in time, but it contains asymptotic
stability and can still be a useful concept since € can be chosen very small. An unstable steady
state, then, is one where for an arbitrary neighborhood of xy one finds at least one trajectory
that evolves away out of the neighborhood and does not return.

this thesis.

8We will use the terms steady state and equilibrium point interchangeably as they refer to the same state zq. A
fixed point of the corresponding flow <I>Z is equally a steady state of X,,, but the reverse implication does not
necessarily hold.
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The stability of a steady state can be studied by considering the linearisation® of the map X,
around the critical point xy. A steady state is asymptotically stable if the real part of all eigen-
values ); of the linearisation around z, are negative. The steady state is unstable if at least one
eigenvalue satisfies Re();) > 0".

The linearisation of X, at z, is given by the Jacobi J, evaluated at z = z,

J[X](@0) = DaXplo=so (4.9)

Finding the eigenvalues of J, is equivalent to finding the roots of the characteristic polynomial
XulJu](A). It can be useful to study the characteristic polynomial y,, instead of the Jacobi .J,,.
Reason being that several theorems on the roots of polynomials exist that may be of help for
deriving general statements on the stability of x, without actually having to calculate the roots.

Using these tools one can now calculate the steady states x of a system and determine their
stability. In many measurements, physicists are not concerned with the dynamical evolution of
a system after initial stimulus but are rather interested in the steady states approached by the
system after some time . The system will then be observed in the steady state it was attracted
to, given its initial conditions'’. This dependence on the initial state of the system is also shown
in Figure 4.2 (b) and (c).

We have used the two-level approach as an introduction to the required mathematical tools
and as an illustration of the chosen approach to study the behavior of a single velocity class v;
for a given set of external parameters.

The effective 2-level approach has an analytical solution for the characteristic polynomial of
the linearisation, which permits an analytical study of the stability properties of the system. A
further discussion of the stability of the steady state solutions for this model can be found in
the Appendix A.1 but will not be discussed any further here as it does not produce time-periodic
solutions'” via Hopf bifurcation. The corresponding three-level model, however, leads to a very
different type of steady state solutions since it undergoes Hopf bifurcation and produces said
time-periodic orbits. We will therefore now look at the three-level model and its properties.

4.2.3 3-LEVEL MODEL

In the two-level model presented above we have simplified the often encountered situation of a
two-photon transition by assuming a large detuning A, from the intermediate state. This allows
to neglect the population dynamics of the intermediate state |e) and justifies the use of a two-
level system with effective Rabi frequency Qo o< €2, /A,.

9The Hartman-Grobman theorem [129] is applicable here and states that the stability of a hyperbolic equilibrium
point of a nonlinear system is locally the same as that of its linearisation around the equilibrium point. An
equilibrium point is hyperbolic if no eigenvalue of the linearisation evaluated at the equilibrium has a real part
equal to zero.

10If there exists at least on eigenvalue with Re()\) = 0, then stability of the steady state cannot be determined by
use of the linearisation.

"Though it is technically possible to initialise a system in an unstable steady state, it will not be observed in that
state after some time ¢ given that any small deviation from the state leads to the system evolving away from it
- and some degree of parameter fluctuations occurs even in the best experiments.

2This is shown in Appendix A.1.
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In a hot vapour, however, the Doppler detuning of the different velocity classes can become
very large and easily reaches the same order of magnitude as typical detunings A, from the
intermediate state. A full three-level treatment of the system is therefore required in order to
also include the population dynamics of the intermediate state.

The three-level model shown in Figure 4.1 is described by the coherent atom-light interac-
tion of probe and coupling field, encoded in H 41, as well as the additional Rydberg-population
dependent detuning encapsulated by H . ¢,

5 0 Qf‘i 0 00 0
H = Har + Henire = B Q, —24, ~QC ) +h{0 0O O , (4.10)
0 Q. —2(A,+A) 0 0 Vpr

where p. in Hgpnire IS @again an expectation value, not an operator, and the incoherent processes,
resulting in

I e r T Fer
Fgepeer+ Fgrprr _%pge ;ﬁpgr
Dtot-(p) = r_‘ipeg _];geﬁels tl_rerprr _Wper . (4”)
- 9T2 = )Org —= ;T - Pre _(Fgr + Fer)prr

If the model is to be extended to include additional dephasing of the coherences ;;, then those
are simply added to the respective incoherent terms via (Dtot_)(i H (Dtot,)(i i T Yijpij- In this

notation, A, again denotes the effective detuning of the velocity class of interest, i.e. including
the motion-induced Doppler detuning. The resulting equations of motion follow as

pgg = - Qplm(pge) + Pgepee + Fgrprra (4.12a)
pee =+ Qp[m(pge) - chm(per) - Fgepee + Ferprm (412b)
prr =+ chm(per) - (Fgr + Fer)pTH (412(:)
. Z Z Y F e

Pge = - §Qp(pee - pgg) + §Qcpgr - ZAppge - TQPge: (4-12d)
Per = — ch<prr - pee) - §Qppgr —1 <Ac - V(prr) ) Per (4126)

. Fge+Fer+Fgr
9 Per
. ) ) r,,+7T. = ~ n
Pgr = — §Qp/)er + §ch)ge - QTPW —1 (Ap + A= Vi(pm) ) Prg- (4.12f)

As in the two-level case, one can define the steady state solutions of system (4.12) via the roots
of a polynomial in the imaginary part of the coherence p.,. by using the trace condition and her-
miticity of the density matrix p. The resulting expressions are rather longish and complicated, a
summary and description of the necessary steps as well as a complete expression of the results
are therefore given in in the Appendix A.2.

However, a brief look at the general form of the polynomial defining the steady state values
is of interest here. For a Rydberg-population induced detuning scaling to the power of n, i.e.
V(p,)", one finds that the resulting polynomial P(p., ) is of the form

Plol) = > axlpl,) (4.13)

keX
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Fig. 4.4: Multiple bifurcations in the 3-level model. For both panels, the system parameters were set to
Q¢/Tye = 0.5,A,/Tye = —0.75,T¢;/Tye = 107°, T, /Tye = 10-2 and n = 3. The probe Rabi
frequencies are ,/T'yc = 2in (a) and Q,,/T'yc = 5in (b) while the interaction strength V/T. is
varied identically between 0 and -75 in both plots. In (b), the strong probe Rabi frequency leads
to dressed states but with different weights due to the intermediate state detuning Ap # 0.

with X = {4n+1,3n+1,2n + 1,2n,n + 1,n,1,0}. Due to the complexity of the expressions
defining the coefficients o, we have calculated the steady states of system 4.12 numerically by
finding the roots of P(p.,) = 0 via the companion matrix. For all parameter regimes tested,
there has always been a minimum of one real, positive solution. Additionally, all steady state so-
lutions obtained from the polynomial (4.13) have satisfied the requirement 0 < pi . pr., o, < 1.
The resulting steady state solutions can therefore be interpreted as physical and the popula-
tions p,; as state probabilities since the trace condition was initially used as a constraint on the
system.

In the parameter regimes that have been studied numerically, we can therefore state that this
approach always returns at least one physical solution and, applying Descartes’ rule of signs, we
can additionally state that the number of real, positive solutions cannot exceed seven. The case
n = 0 obviously returns a single steady state solution for any set of external parameters. For
other values of n € N, up to five steady states have been observed for certain values of the
system parameters {2, A,, V,I';;}.

An example for the onset of bistability with increasing interaction strength 1 is shown in Fig-
ure 4.4 (a). The steady states for the same parameters but with a stronger probe Rabi frequency
2, is shown in Figure 4.4 (b). Here, the strong probe leads to formation of dressed states as one
can see in the steady state response of system (4.12). For large interaction strengths V/, this can
produce up to five steady states for one set of external parameters {2, A, V,';; }.

The observation of bifurcations in the model immediately invokes the question of the sta-
bility of the resulting steady states. When studying the two-level model we had observed that
regions of multiple steady states produce stable and unstable solutions. A similar behaviour
is observed in the three-level model, but the stability of the steady states now shows a more
complex behaviour.

Figure 4.5 shows two situations where bifurcations occur. For the set of system parameters
chosenin 4.5 (a), the resulting bifurcation leads to the central steady state being unstable since
one eigenvalue has a positive real part. This is also the case for the set of parameters cho-
sen for 4.5 (b). However, the ‘upper’ steady state undergoes an additional bifurcation where
a complex conjugate pair of eigenvalues crosses the imaginary axis upon change of the bifur-
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Fig. 4.5: Hopf bifurcation in the 3-level model. The steady states and corresponding eigenvalues \; of
the three-level system are shown for 2. /T'y. = 1.5, A},/Fg6 = —5,V/lge = —15,T¢; /Tge =
1075, Ty, /T'ye = 1072 and n = 2. The top row corresponds to §2,,/T'gc = 0.3 while the bottom
row shows the situation for €2, /T'y. = 1.3. In the spectra shown in the left column, the unsta-
ble (middle) steady state is indicated in olive while the limit cycle region is marked in dark red.
The three panels on the right show the eigenvalues of the linearisation corresponding to the
respective steady states.

cation parameter A.. Such a type of bifurcation is known as a Hopf bifurcation which can lead
to the formation of limit cycles, giving rise to curious dynamics of the system. An example for
such a case where system (4.12) is globally attracted to a stable limit cycle for any initial state
\U),_, = (1 —x)|g) + z|r)isshown in Figure 4.6.

It is a well-known result from theoretical research in the context of (open) quantum systems
that nonlinear systems can approach limit cycles [130, 131] within certain parameter regimes.
These self-oscillations are nowadays understood as a possible manifestation of the nonlinearity
of a system. Famous examples for the occurrence of limit cycles in very different contexts are
the Lotka-Volterra model [132,133] and the van der Pol oscillator [134]. Otherinteresting objects,
such as the Mandelbrot set, are also connected to bifurcation theory.

4.2.4 HOPF BIFURCATION

As mentioned before, a bifurcation occurs when the number or nature of the steady state solu-
tions change upon variation of the bifurcation parameter. In the two-level model, we have en-
countered saddle-node bifurcations which occurred when the number of steady state solutions
changed between one and three. Such bifurcations are often encountered in systems displaying
hysteresis effects. Saddle-node bifurcations also occur in the three-level model, as can be seen
in the figures above and is also shown explicitly in Figure 4.8.
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Fig. 4.6: Limit cycles in the 3-level model. The spectrum in (a) shows the instable steady state in
olive and the limit cycle region in dark red. (b) shows the attraction of the system towards the
limit cycle for the two-photon detuning A/I‘ge = —0.9 and different initial state preparations
U),_o = (1—2x)|g)+z|r)withz € [0,1]. The coherence p,, corresponding to the time traces
from (b) is shown in (c). All traces approach the same limit cycle after a short time, though
with a relative offset in time. The system parameters are set to §2,,/I'ge = 3.8, Q./I'ge = 2,
Ap/Tge =0,T¢r/Tge =107°and Ty, /Tye = 1072, V/Tye = —12and n = 3.

However, the interesting additional feature of the three-level system is that one also finds a
different type of bifurcation in the model, the aforementioned Hopf bifurcation. Such a Hopf bi-
furcation features a complex conjugate pair of eigenvalues )\; of the linearisation' J, crossing
the imaginary axis' upon variation of the bifurcation parameter, as shown in Figure 4.5. This
immediately implies that the corresponding steady state becomes unstable, but the limit cycle
branching off at a Hopf bifurcation point may be stable or unstable . In the case of limit cycles,
stable means that all trajectories within a neighbourhood of the limit cycle stay in the neigh-
bourhood of the limit cycle as time tends towards infinity, or even converge to it. Therefore,
a stable limit cycle is yet another example for an attractor in a dynamical system - similar to a
Lyapunov stable steady state. One can depict the unstable limit cycle as repelling trajectories in
its neighborhood. This is not the mathematical definition of unstable limit cycles but it serves
as an intuitive picture. The stability of a limit cycle can be determined by looking at the sign of
the first Lyapunov coefficient, the reader is referred to e.g. [135, 136] for further details.

An example for the limit cycle changing in size and shape upon variation of the bifurcation
parameter A = Ap + A, is shown in Figure 4.7. The size of the limit cycle increases with grow-
ing distance to the bifurcation point ¢, which lies at that end of the limit cycle region closer to
two-photon resonance” (yellow). At the far end (blue) of the region indicated in the steady state
plot, the limit cycle becomes very large and eventually looses stability. In the bistable region of

3The linearisation J,, evaluated at the equilibrium point z:(¢), which depends continuously on the bifurcation
parameter (.

“The Hartman-Grobman theorem is not applicable at the Hopf bifurcation point itself. However, except for the
set of Hopf bifurcation points the theorem applies and one can study the stability of the linearisation to give
statements on the stability of the nonlinear system in a neighbourhood of the equilibrium point.

SThis is one of many indicators that the Hopf bifurcations are subcritical for V' < 0. On can further determine
whether a Hopf bifurcation is sub- or supercritical by considering a quantity called the first Lyapunov coefficient
[136].
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Fig. 4.7: Shape of limit cycles for variation of the bifurcation parameter. The limit cycles approached
by system (4.12) is shown in slices of the system’s phase space for different two-photon detun-
ings A/Fge. The spectrum on the left shows the steady state solutions in gray and the limit cycle
region shaded by colour. For different detunings, coded by colour as in the spectrum, the limit
cycles are shown in phase space slices for the coherences pye, pe,r and pg,-. The system parame-
ters are the same as in Figure 4.6.

this example, the lower steady states are asymptotically stable, the middle branch consists of
unstable steady states and the upper branch is similarly unstable, including the correspond-
ing limit cycles. However, it is not always the case that the limit cycles are unstable within the
bistable/multistable region of the model.

It should be stressed that a limit cycle is not in any form an oscillation between the stable
steady states of a system for multiple steady states. Instead, for a limit cycle to occur, a steady
state must loose stability and from this steady state value a limit cycle branches off at the bifur-
cation point. The limit cycle is separate from any other steady states in the system, which is also
why globally attractive limit cycles can exist as the only attractors in a system.

Physically, a limit cycle corresponds to self-oscillations of a system without an external, peri-
odic drive. Only by virtue of the system’s nonlinearity it is attracted toward a time-periodic orbit
that is robust to small fluctuations of the system parameters'®. The important point to highlight
here is the absence of periodicity in the drive, so the time-periodic response of the system is not
enforced on the system from the outside by an applied force but emerges fundamentally from
the nonlinearity of the system.

Hopf bifurcations are the mechanism behind the emergence of self-oscillations in the three-
level model. In the next section, the behavior of the limit cycle region and the resulting orbits is
presented in some detail.

4.2.5 BEHAVIOR OF THE LIMIT CYCLE REGION IN THE 3-LEVEL MODEL

As we have seen in the previous sections, the 3-level model shows interesting behavior and
has properties which the simplified, effective 2-level model does not have. Due to the lack of
analytical expressions for the 3-level approach, no equations were derived for the onset of the
bistable or limit cycle regions. However, some interesting properties of the 3-level model will
be shown to motivate a further study of this model.

18This robustness to small fluctuations in the system parameters is highly relevant for actual experimental obser-
vations of self-oscillations in the response of a system!
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Fig. 4.8: Scaling of bistable and limit cycle regions in the 3-level model. For increasing coupling Rabi
frequencies €2, the bistable/multistable region (top row) and limit cycle region (bottom row) is
shown for power law scalings n € [1, 2, 3] and interaction strengths V/I". € [—25, —50, —100].
The remaining system parameters are set to 2, /T'g. = 3, A~p/1“ge =35, /Tge = 10~° and
Ly /Tge = 1072

Firstly, it is interesting to have a look at the onset of the bistable and the limit cycle regions,
respectively. Figure 4.8 exemplarily shows the scaling of those regions for various interaction
strengths, with all other parameters held constant. One can see that both regions grow in size
with increasing interaction strength V//T',., but remain somewhat similar in shape. The onset
of bistability and limit cycles depends on the interaction strength. For increasing ' the onset
of either bifurcation is observed at lower coupling Rabi frequencies 2. for fixed probe Rabi fre-
quencies €2,,. Additionally, the onset of bistability occurs for lower coupling Rabi frequencies
than the onset of limit cycle formation. These two observations have been made throughout
for every set of system parameters that were tested'”.

Furthermore, it has been observed that the limit cycle is stable and globally attractive where
the limit cycle region does not overlap with the multistable region. In case of an overlap of
the two bifurcations, the limit cycle is no longer globally attractive and tends to loose stability
further away from the Hopf bifurcation point. Also, the size of the limit cycle grows and its period
reduces with increasing distance to the bifurcation point (.

It was also found that several Hopf bifurcations can occur upon variation of the bifurcation
parameter A.. An example for such a scenario is shown in Figure 4.9 where the steady state
values for p;,. are shown in (a). The eigenvalues, plotted in panel (b), show very clearly that the
two Hopf bifurcations on the lower branch (teal) are caused by different pairs of eigenvalues
crossing the imaginary axis. Only the set of limit cycles closer to zero detuning is stable. The

"t should be noted that the model was investigated only for n € N for reasons of implementation of the root-
finding algorithm for the polynomial defining the steady states of the system. The behavior of the model for
non-integer power law scalings in n or, more interestingly, for negative n, may be quite different.
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Fig. 4.9: Two separate spectral regions with globally attractive limit cycles. The steady state values
for p.,. are shown in (a), red indicates limit cycle regions and olive an unstable steady state.
The eigenvalues of the linearisation corresponding to the lower (teal), middle (red) and upper
(yellow) branch are shown in (b). Panel (c) shows the long-term trajectories of the system for the
detuningsA = AerAc indicated in (a). Thesametrajectories are representedin (d) in the space
spanned by the coherence p.,. The system parameters are set to Q2,,/T'ge = 3, Q./T'ge = 4.4,
Ap/Tge =0,V/Tye = —100,n = 3,T¢; /Ty = 107> and Ty, /T e = 1072,

limit cycle branching off where the eigenvalues shown in yellow cross the imaginary axis are
stable as well. The time traces in (c) also show that both separate limit cycle regions are stable,
and in this example even globally attractive at their respective detunings A. Here, the third limit
cycle region on the lower branch is unstable. The dotted line shows a trace from the limit of the
region of stable orbits for the second stable limit cycle region.

This example shows that for different detunings A one can obtain spectrally separate regions
of globally attractive limit cycles for certain system parameters. However, in most cases with
several limit cycle regions it has been observed that at most one region produces stable limit
cycles.

Lastly, it is interesting to have a closer look at the limit cycles themselves. Figure 4.10 shows
how the period of the limit cycle, as well as their shape, changes across the region of stable limit
cycles. Near the Hopf bifurcation, the trajectory is smaller and the period is shorter as expected
from bifurcation theory [127]. As can also be seen in Figure 4.9, the limit cycles become more
complicated and take on complex shapes before they loose stability, which can be seen in the
orbit shapes as well as in the time-dependent behavior of the coherences.

4.3 SCALING OF INTERACTION TERM

So far, the models have been studied as they are, i.e. without justifying a particular choice for
the power law scaling n of the population-dependent detuning'® V - (p.. We aim at modelling
a system that is known to interact via Rydberg-Rydberg interactions and may be ionised such
that a plasma forms around the atoms, causing a Stark shift-induced backaction on the Rydberg
state.

Bwith p,. we denote the population of the level highest in the ladder, i.e. 2 = e for the two-level model and
x = r for the three-level model. In this section we will describe the three-level model - but the interaction
scaling approximation works identical for the two-level model.
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Fig. 4.10: Temporal shape of limit cycle at different detunings. The temporal shape of the limit cy-
cles approached by system (4.12) is shown for different two-photon detunings A/Fge. The
spectrum on the left shows the instable steady state in olive and the limit cycle region in dark
red. The region shaded in gray is the spectral region where the limit cycles are stable. For
the three detunings indicated in the spectrum, the renormalised coherence p!,. (solid) and pge
(dotted) are plotted over time. The system parameters are set to 2, /T’ = 3.8, Q. /I'ge = 2,
Ap/Tye =0,V/Tye = —30,n = 3,T¢,/Tye = 107> and Ty, /Ty = 1072,

We will start by considering Rydberg-Rydberg interactions in the van der Waals regime. The
corresponding many-body interaction Hamiltonian features an atom-atom interaction scaling
with interatomic distance as r,,° for a pair of atoms (k, 1), and is given by

(k) b Cg
Hint, = ) Z 6 ") ([ @ [y, (] (4.14)
£k kl

From the derivation presented in Appendix B we know that the interaction Hamiltonian can be
approximated'® by the expression

47 p,
Y = == 0wV HOCe0l, |r) (1 (415)

to arrive at effective single-body equations of motion.

Therefore, to model van der Waals interactions between Rydberg atoms in the vapour, one
setsn = 2and V = 47;”” I 9.4/ h2Cs. For simplicity, one can assume the Rydberg-Rydberg
interaction to be isotropic which sets Iy ) = 4m. The three-level model then follows directly

from the above approximation of the many-body Hamiltonian for van der Waals interactions.

If, on the other hand, the dynamics of the level shifts in the vapour are dominated by Stark
shifts of the Rydberg state due to collisional ionisation of Rydberg atoms, the power law scaling
was shown in Appendix C to be given by n = 4/3 for sufficiently low Rydberg populations. The

Stark shift results in a scaling V oc —aN;223(pr, )43,

19The assumptions made in the approximation in Appendix B are that of a mean field model, therefore neglecting
direct two-body correlations or entanglement, and secondly the assumption of similarity of all atoms, meaning
that - statistically - the situation will be the same for whichever atom in the ensemble, allowing to reduce the
many-body case to a set of single-body equations of motion.
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With these motivations for a p,..-dependent power law scaling of the Rydberg state detuning,
we can now consider the additional complications arising from the motion of the atoms. This
leads us to a full hot vapour simulation of the Rydberg system.

4.4 HOT VAPOUR SIMULATION FOR ALL VELOCITY CLASSES

So far, we have been looking at a single velocity class v; and how the atoms within this veloc-
ity class interact with one another via Rydberg density-dependent interactions. The resulting
dynamics within this velocity class strongly depend on the detuning of the atoms from the in-
termediate and Rydberg states, as well as on the other system parameters.

However, assuming only a single velocity class must fail in the description of a hot vapour.
As an example, the thermal energy of a rubidium atom at 1 K corresponds to a kinetic energy
which is equivalent to v ~ 14 m/s. At 780 nm - the wavelength of the Rb D, line - this is equal to
a detuning of A ~ 18 MHz, which is roughly half the natural linewidth of the transition. This is
very much.

Therefore, if one wants to simulate a hot vapour it becomes necessary to take the full range of
velocity classes of the atoms in the vapour into account. Furthermore, one has to deal with the
additional complication that all velocity classes interact with one another through the shared
Rydberg-Rydberg interaction and all feel the same plasma bath. Single velocity classes can no
longer be treated as separate entities but have to be regarded as part of one vapour composed of
many different velocity classes, all acting under the influence of a shared Rydberg atom density.
To include this shared interaction, it does not suffice to just look at many velocity classes and
sum over their weighted response over time. An analytical treatment of the problem now results
in a set of integro-differential equations which are harder to deal with as compared to standard
ODEs. The system is therefore studied numerically with an adapted integration scheme. In or-
der to account for the resulting dynamics of the entire vapour one has to include the Rydberg-
density dependent level shift in every integration step. This implies that standard integration
schemes are unsuitable and have to be modified for this purpose.

Tothisend, we have implemented a stepwise Runge-Kutta integrator’® in a matrix-based fash-
ion in python. The equations of motion (4.12) were written in the form

Proy(tiv1) = My (prey (t5)) - proy (t5)

with M3 (pro, () € ROONeed) and py, (t5) € RONe)? N, denotes the number of velocity
classes in the velocity class* partition {v; }; with respective velocity class weights {p(v;)}; and
bin width {Av; };. The matrix M.} (p(t;)) depends on the detunings specific for every velocity
class v, € {v;}; and on the weighted Rydberg state population in the vapour at time ¢;, and
therefore has to be updated for every time step ¢t; — t,.4. For N, velocity classes the Rydberg-
density dependent level shift A,p,; 1:(¢;) has to be adjusted by taking the weighted sum over all
velocity classes.

20Runge-Kutta 4 (rk4), [137].

2'This uses the fact that p;-j = 0. An implementation including the imaginary part of the populations is also pos-
sible, but unnecessary and computationally more expensive.

2Throughout the remainder of the thesis we will assume that probe and coupling laser are propagating in one
dimension, i.e. are co- or counterpropagating, such that only one spatial degree of freedom is of relevance.
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Fig. 4.11: Thermal vapour simulation leading to time-periodic response. The time evolution of a sys-
tem initially in |g>®N“el is shown for the case of a vapour with velocity classes interacting via
the shared Rydberg atom density (upper row, a) and a vapour composed of self-interacting ve-
locity classes (lower row, b). The system parameters are €}, = 6I'ye, Q. = 4L'ge, A, = 0,
A, = —11Ty, Tep = 107T ¢, Ty = 1073y and n = 2. The velocity class detunings corre-
spondtoaRbgasatT = 48°C with counterpropagating probe and couplingbeamsat A\, = 780
nm and A, = 480 nm. The simulation uses N,; = 101 velocity classes with equal population
weight, shown in colour in all plots and rescaling by (x NV,;/5). The solid black line shows the
total vapour response.

As a result, one obtains the time evolution of the 9 x N,;-dimensional state vector py,,(t;)
which encodes the state vector py,,3(t;) for all velocity classes simultaneously™.

Figure 4.11 shows an example for an interacting (a) and a noninteracting (b) sample. Nonin-
teracting here means that every velocity class evolves under its own interaction but does not
experience the Rydberg density of the other velocity classes. The black solid lines in each panel
shows the resulting Rydberg state population integrated over all velocity classes. As one can
see, the resulting behavior of the two cases is significantly different. In the noninteracting case,
some velocity class approach limit cycles, but each with its own frequency and phase. The re-

BThis integration scheme is slow for large numbers of velocity classes and long timescales, making it a bit in-
convenient to use. To properly simulate a thermal vapour, N,.; ~ O(100) are usually required. For a linear
spacing of velocity classes in {v; } and large probe and coupling Rabi frequencies on the order of I, around
Nyer = 300 — 500 velocity classes are required. If one chooses a spacing linear in the velocity class popu-
lations {p(v)}, this number reduces to N,,; =~ 100 — 200. To further speed up the code, one can employ
additional tricks such as the introduction of a cutoff weighted Rydberg state population at cutoff time ¢.. All
velocity classes with weighted Rydberg populations below the bar are regarded as contributing insignificantly
and taken to be constant for future integration steps. This reduces the computational costs of a single inte-
gration step and is effective particularly for cases of many noncontributing velocity classes. Overall, the time
required to run a single integration can be sped up by more than one order of magnitude, bringing computation
times down to < 1 minute per run while keeping deviations from the full thermal vapour integration negligi-
bly small. An implementation of adaptive step size Runge-Kutta integrations with Fehlberg (RKF45) [138] and
Dormand-Prince (RKDP) [139] pairs has been trialled as well. However, the additional function evaluations and
calculations required for the error estimate have slowed the evaluations more than an adaption of step size has
sped it up for the parameter range of interest.
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sulting Rydberg state population of the vapour therefore does not show any distinctive oscilla-
tory feature due to the averaging over all velocity classes.

If the velocity classes interact with one another through the shared Rydberg density as in
Figure 4.11 (a), one observes a very different behavior. Some velocity classes initially begin to
oscillate at their own frequencies, but after some time the velocity classes eventually oscillate
in lockstep with each other at a single frequency. This behaviour is known as synchronisation
and is briefly discussed in Section 4.4.1 below. It is noteworthy that the frequency of the result-
ing oscillations are orders of magnitude different than the laser Rabi frequencies or interaction
strength. In this example, the oscillation frequency w,s. is smaller than I, but it holds that
Q,,Q. >T,andV > I'y.. Itis therefore very obvious that the oscillation phenomenon arises
fundamentally from the system properties rather than being imprinted on the system by some
external drive or force.

4.4,1  SYNCHRONISATION

It has been observed in Figure 4.11 (a) that some velocity classes initially begin to oscillate at
their own natural frequency w(v,). After a transient phase the populations begin to oscillate in
lockstep with a fixed phase relation to each other, leading to macroscopic oscillations in the hot
vapour’s bulk quantities. This effect can be understood in the framework of synchronisation,
which is described in detail in e.g. [140].

Synchronisation is a process that can occur between self-oscillating systems** where the phase,
frequency and/or amplitude of the self-sustained oscillators are adjusted towards synchrony.
Mechanisms for synchronisation can either be a direct coupling between self-oscillating sys-
tems or coupling via an external force, e.g. the day-night cycle on planet earth forcing most
people to adapt a 24 h rhythm even though individual circadian rhythms vary. The nature and
directionality of this coupling may vary, which leads to the observation of different forms of
synchronisation.

In systems like the hot vapour model considered above, one finds a scenario where many
self-sustained phase oscillators with slightly different natural frequencies w(v;) are coupled via
a global” mean field. This mean field is, of course, the total Rydberg atom population o, of the
vapour and is composed of the Rydberg populations of all velocity classes. It leads to backaction
on the Rydberg state by Rydberg population-dependent level shifts. The oscillation of the mean
field therefore arises from the oscillation in Rydberg population due to some velocity classes
being attracted towards limit cycles, i.e. self-oscillating states. It maintains the periodicity by
enforcing a synchronisation of the oscillations within the ensemble of velocity classes via global
coupling by a periodic shift in Rydberg state energy.

21t is crucial here that the system is self-oscillating rather than driven by an external force. If the system were
driven externally, then the phase of the system (i.e. the position on the limit cycle at a given time t) is locked
onto the phase of the external drive. This makes phase synchronisation impossible as two driven oscillators
cannot adjust their phases to oscillate in synchrony. Self-oscillating systems, on the other hand, are not forced
into any given phase on the limit cycle at a given time such that the phase can easily be adjusted by a coupling
or a force. It should also be mentioned, again, that self-oscillation is a feature of some nonlinear systems.

5Since the atoms in the different velocity classes should, on average, be distributed uniformly across the vapour
one may assume that the contribution of a single velocity class to the mean field depends only on the amplitude
of the velocity class’s population and is global.
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Fig. 4.12: Local and global attractiveness of the hot vapour system. The steady states and limit cy-
cles approached by the thermal vapour system are shown for the initial states |g)®N”€‘ (-)and
le)®Nvet (x). Error bars indicate the oscillation amplitude. The time evolution of the hot vapour
system is shown in the p,.-space in the right panel and the resulting limit cycles in the inset.
System parameters are the same asin Figure 4.11, except for the coupling laser detuning A /T g,
being varied in the range [—20, 10].

Examples of globally coupled phase oscillators have been studied in abundance in recent
years, starting with the works of Winfree [11] and Kuramoto [12]. The list of systems stretches
from coupled laser arrays [141-143] and Josephson junctions [144] to the synchronous flashing
of fireflies [3] and the synchronisation of the chirps of snowy tree crickets [145].

Interesting to note is that several other effects can take place within the framework of syn-
chronisation. Forinstance, in certain parameter regimes itis possible that only a subset of phase
oscillators synchronises, which is known as partial synchronisation [4, 5, 146]. Also, forinhomo-
geneous global coupling where the coupling strength depends on e.g. the spatial separation
between oscillators, clustering of synchronised oscillators can occur. This means that the oscil-
lators within a cluster are synchronised, but the different clusters may have different oscillation
frequencies [140].

Therefore, the naively rather unexpected occurrence of macroscopic oscillations in the hot
vapour simulation arises from synchronisation of the initially independent oscillations of the
Rydberg population of some velocity classes, mediated via global coupling through the vapour’s
Rydberg atom density. Certain conditions must be met for the occurrence of synchronisation [4,
140]. This leads to the onset of a self-sustained oscillatory phase in the vapour without external
periodic forcing or driving. Importantis the realisation that the synchronised oscillations do not
decay away in time but would continue perpetually.

4.4.2 BEHAVIOUR OF THE LIMIT CYCLE REGION IN HOT VAPOUR SIMULATIONS

Using the full hot vapour integration scheme, one can now study the resulting behavior of the
system?”®, from lineshapes to the occurrence of pronounced population oscillations.

25|t tends to be a little difficult to find an oscillation regime in the hot vapour when not knowing where to look. It
turned out that the hot vapour simulation tends to be in a synchronised phase if the stationary single velocity
class model with the effective interaction Vs = V- (pf,r)’“1 isinan oscillatory regime. Here, p.,. denotes the
total vapour Rydberg density and has to be estimated.
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Fig. 4.13: Example limit cycle shapes in hot vapour system. The limit cycles approached by the system
are shown for the values indicated with gray dashed lines in the spectrum (left). The central
plot inset shows the phase space approached by the system for ¢ > 40001“;61, with the system

not approaching either limit cycle or steady state for A, = —3I'y,. within this integration time.

One can clearly see different shapes of the oscillations and also that the oscillation region is

interrupted at A, = —2I'y.. The system parameters are ), = 1.5I'g¢, Q. = 1Ly, A, = 0,

AcfTye € [=7,7),Ter = 107%T g, Ty = 1073T g, V = —300 and n = 2. The velocity class

detunings correspond to a Rb gas at 7" = 48°C' with counterpropagating probe and coupling

beamsat A\, = 780 nmand \. = 480 nm. The simulation uses N,; = 101 velocity classes with

equal population weight.

The first point to note is that the full hot vapour system equally knows locally and globally at-
tractive solutions, as shown in Figure 4.12. The left panel shows the spectrum when varying the
coupling laser detuning across resonance, once with the initial state being \g>®NU” () and once
for |e>®N“€l (x). The bars indicate the magnitude of the oscillations in Rydberg state population
o, if present. The corresponding temporal evolution towards the steady state or limit cycles is
shown in the right plotin the space spanned by p;, and pze. The existence of locally and globally
attractive states is relevant for modelling experimental sequences such as a coupling laser scan,
or when giving statements on the presence of limit cycles at given system parameters.

Similar to the single-velocity case displayed in Figure 4.10, the frequency and shape of the
limit cycle in the synchronised state change as one changes the bifurcation parameter A,. This
is shown in Figure 4.13 where the Rydberg population is shown in time for the three detunings
indicated in the spectrum. Additionally, one can see that the limit cycle region is interrupted
at A.,/T,c = —1.5 and does not approach a closed orbit within tI'y, < 5000 for A./T,, =
—2.5. This case is reminiscent of a system near a strange attractor, the orbits are each somewhat
similar and appear periodic, but are not perfectly so.

For the same system parameters, Figure 4.14 (a) shows in detail which velocity classes con-
tribute to the oscillations. The colour of the velocity class corresponds to the total detuning
from two-photon resonance of the respective velocity class (red: red detuned, yellow: on reso-
nance, blue: blue detuned). One can see that the spectral region where frequency entrainment
leads to large relative oscillation amplitudes of the individual velocity classes is very narrow
and changes with detuning A.. This explains the different limit cycle shapes and frequencies
observed in Figure 4.13. In (b), it is shown that for fixed detuning A./T';,. = 1 the width of this
entrainment region depends on the interaction strength and forms a triangular shape reminis-
cent of an Arnold tongue. Additionally, the full hot vapour system also preserves ‘knowledge’ of
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Fig. 4.14: Contributing velocity classes, oscillation frequency entrainment, and phase freedom in
limit cycle of thermal vapour system. For the same model parameters as in Figure 4.13, the
amplitude of the entrained velocity classes relative to the mean value is shown in (a) for the
oscillation region. The central plot (b) shows the relative amplitudes of the velocity classes
at fixed detuning A./T'yc = 1 for varying interaction strengths V/I';. € [0, —1000]. The
increase in width of the frequency entrainment region with increasing V' is visible. At the
same detuning, (c) shows the limit cycle in pJ,. and in p.,.-space (inset) for different initial
W),_o = (1 —2)]g)®Net + 2 |e)® !, demonstrating that the phase in the limit cycle de-
pends on the initial state of the system. (x = 0 : blue, z = 1 : green)

the initial state as shown in (c) since the phase of the system in the limit cycle depends on the
initial state of the system. This behavior is typical for self-oscillating and synchronising systems.

Generally, it was observed that the oscillation frequency increases with increasing Rabi fre-
quencies, and depends rather weakly on the interaction strength V. No oscillations occur for
large ratios of decay rates to Rabi frequencies, i.e. the decay must be sufficiently small to facil-
itate an oscillation regime. Also, a minimum coupling Rabi frequency must be given for oscilla-
tions to occur but this critical value depends on the other system parameters. Synchronisation
can occur in regions with equal and different signs of IV and A, though the contributing velocity
classes, and therefore the amplitude of the oscillations, vary.

Concluding this brief study of the thermal vapour approach it should be noted that the be-
havior of the system depends strongly on the external parameters?’ as well as on the initial state
of the system. Numerical investigations of this system is feasible on standard computers when
minimising the computational requirements of the code, allowing an exploration of the system’s
behavior. It has been shown that the three-level model and the thermal vapour system display
rich nonlinear dynamics. We will therefore now turn our attention to the connection of these
model systems to already established models and phenomena.

2TFor comparison, in our thermal vapour experiment we routinely work in the following regime:

A, = —27x (140 MHz) [147], A, € 27 x ([-250,100 ] MHz), peak Rabi frequencies €2, € 27 ([90,200] MHz) and
Q. € 27w x ([0,24] MHz) [98] which results in effective 2-photon Rabi frequencies up to Q;’}afﬂ” = 27 x (16.4 MHz).
I'ye = 2mx (6.07 MHz) [55] is the Dy, line decay rate of 87Rb, I',.,. < 27 (5 kHz) due to radiative decay [98], and
the decay I'y, ~ 27X (643 kHz) is the sum of Rydberg state lifetime and transit time induced broadening [21].
Temperatures vary in ranges of 35 - 60 deg. Celsius, the van der Waals coefficient |Cg| € [15, 4037] GHz (um)®
[98] and resulting blockade radii in range r;, € [3.9, 9.5] um. The Rydberg atom fraction fr,q. was around the
saturation threshold. The coupling laser scan rate is of order 10 GHz/s.

55



CHAPTER 4. THEORETICAL MODEL

4.5 RELATION TO OTHER MODELS, EFFECTS, AND PHENOMENA

The three-level and thermal vapour model, as presented above, and the effects occurring therein,
namely self-sustained oscillation and synchronisation, are very interesting to study in their own
rights. Additionally, these connect the models to well established phenomena which will briefly
be mentioned below. The breaking of ergodicity by multistable classical systems is discussed
in Section 4.5.1 and the transition from an equilibrium state to a synchronised state in the hot
vapour system is related to generalised Kuramoto models and the nonequilibrium synchroni-
sation transition occurring therein in Section 4.5.3. The closely related phenomenon of time
crystals is briefly mentioned in Section 4.5.2.

4.5.1 ERGODICITY BREAKING

The ergodic hypothesis, i.e. the assumption that equivalence holds between the time average
of a typical trajectory and the ensemble average of the system, is a cornerstone of statistical
physics. However, the notion of ergodicity breaking has received much attention since the un-
expected finding of Fermi, Pasta, Ulam and Tsinghou (FPUT) in 1955 that a system of a few non-
linearly coupled oscillators on a 1D chain with fixed boundary conditions did not equilibrate
within the accessible timescales [148]. On the contrary, the chain showed almost perfect recur-
rence to the initial state, i.e. (quasi-) periodic motion. This result raised questions on ergodicity
and thermalisation in their model, i.e. the relaxation of a far-from-equilibrium state towards
equilibrium and the equipartition of energy between the normal modes of the system?®.

Returning to ergodicity, since the FPUT simulations it has been found that ergodicity breaking
occurs in a significant number of classical nonlinear systems [151]. For a classical system with
two different attractive equilibrium states®’, ergodicity breaking is very easily established [151].
Compare two (typical) trajectories, one from each basin of attraction of the two equilibria. One
finds that the time average of the two necessarily differs - and those are each different to the
ensemble average in thermal equilibrium®°.

It is therefore straightforward to construct ergodicity breaking systems in the classical case,
one basically just needs a sufficiently nonlinear system with a bistable phase [151]. In the quan-
tum regime, the question is mostly studied through the lens of the eigenstate thermalisation
hypothesis (ETH) and is still a matter of active research [152, 153].

The bi- or multistable regions of the 2- and 3-level model for a single velocity class there-
fore imply ergodicity breaking by the system, and similarly so for the bistable regions in the hot
vapour model with a finite number of velocity classes N,;.

28| ater, it has been established that the FPUT model indeed thermalises for their initial conditions, just on
timescales much longer than they had studied [149-151].

2As a reminder, in the context of dynamical systems an equilibrium state is defined as a steady state and the
system will develop in time towards the attractive ones.

30_.given that each basin of attraction has a nonzero measure. The ergodic hypothesis is formulated for a dynami-
calsystem, i.e. thetriplet (T, i, ®*) with the system’s phase space I', measure p defined on " and time evolution
map ® at time . For a more detailed definition of each, see e.g. [151].
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4.5. RELATION TO OTHER MODELS, EFFECTS, AND PHENOMENA

4.5.2 TIME CRYSTALS

In 2012, the question has been raised whether time translation symmetry (TTS) could be broken
in a classical [154] or a quantum mechanical [155] framework, and the quantum version was put
on a more solid theoretical footing in 2016 [156, 157]. Such systems were coined time crystals,
in analogy to spatially periodic structures called crystals, and were to possess a time-periodic
structure. Soon after, the first reports of the experimental observation of discrete, i.e. periodi-
cally driven, Floquet time crystals emerged [158, 159].

Generally, one can distinguish different types of time crystals [160, 161]. Discrete time crys-
tals arise in periodically driven systems where the system responds at an integer multiple of the
drive period, thereby being both periodic in time and breaking discrete TTS. This type of time
crystal is predicted to occur in some many-body localised systems [157]. The first two experi-
mental reports of time crystals used closed quantum systems and were of this discrete kind.

Initially, it was thought that one had to carefully avoid dissipative channels in the system in
order to find time crystalline states. However, this had been disproved theoretically [162] and
experimentally [73, 163]. Additionally, it has been found that dissipative systems also allow for
breaking of continuous TTS [164, 165], and first experimental realisations of a continuous dissi-
pative time crystal have been reported in 2022 [166, 167]. In April this year (2023), a continuous
time crystalline state has been observed at room temperature via periodic changes in the trans-
mission of an optical metamaterial [168] and a preprint reports time crystalline behavior in the
response of a semiconductor [169].

Following the strict definition of a time crystal as a "stable, conservative, macroscopic clock"
given in [170], we cannot speak of a time crystalline phase occurring in the 3-level model or
the hot vapour system. Others have relaxed the requirements for time crystals to also include
open [171] and finite-body [172] systems. It therefore remains for the reader to decide whether
or not they classify the 3-level model, or its hot vapour extension, as a time crystal . In any
way, the phenomena are closely related and a thorough investigation of the hot vapour system
in the limit V,.;, — oo is of interest. The discussion of boundary time crystals [173] and their
subsequent classification as genuine many-body phases of matter [174] are also of particular
interest with respect to the system presented in this work.

4.5.3 KURAMOTO MODEL AND NONEQUILIBRIUM PHASE TRANSITIONS

The Kuramoto model describes the synchronisation of self-sustained oscillators with different
natural frequencies wj, interacting via global coupling [12]. For the Kuramoto model itself, the
mechanism leading to self-oscillations is of no concern but it is taken to be a natural property
of each oscillator. Of relevance is only the existence of a global mean field that each oscillator
couples to and is influenced by. As a result, the oscillators begin to synchronise within a cer-
tain range of natural frequencies, which has been found to depend crucially on the coupling
strength V' between the oscillators, such that Arnold tongues form. This onset of synchronisa-
tion isregarded to be a nonequilibrium phase transition [175-177] from an equilibrium state to a
(partially) synchronised, nonequilibrium state. The case of partial synchronisation occurs even
for self-sustained oscillators with the same natural frequency wy if the coupling is sufficiently
nonlinear, and is sometimes also referred to as self-organisation [146].
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Though the original model assumes a certain form of coupling between the individual oscil-
lators, generalisations of the Kuramoto model have been proposed and their ability to produce
(partially) synchronised states has been shown [4, 5,177,178]. Experimentally, the first-[179] and
second-order [8] phase transitions to a synchronised state have been demonstrated, and for en-
trainment of two [180] and many [8] coupled oscillators, the formation of an Arnold tongue has
been observed. Synchronisation of an ensemble of quanum oscillators has also been predicted
[181].

The hot vapour system described in Section 4.4 shows the prerequisites of a generalised Ku-
ramoto model: In certain parameter regimes, it produces self-sustained oscillators (the different
velocity classes v;) with a certain spread of natural frequencies w;, which are globally coupled
via a mean field (the total Rydberg atom density p!,. of the vapour). Similar to the nonequilib-
rium phase transition in the Kuramoto model, a transition to a synchronised state is observed
upon variation of the bifurcation parameter A.. The similarities between the thermal vapour
system of this work and generalised Kuramoto models are strikingly clear.

4.6 CLOSING REMARKS

In a hot Rydberg vapour, many processes happen at once that complicate an intuitive under-
standing of the system. Motion-induced detuning leads to a wide range of dynamics within the
vapour even for fixed laser detunings. Rydberg interactions as well as collision-induced ionisa-
tion processes cause even richer dynamics in such a system by introducing strong nonlineari-
ties. It is therefore difficult to develop an understanding of this complex system and intuit its
response to external driving.

To this end, we have provided a simplified description of a hot Rydberg vapour based on the
optical Bloch equations, with the assumptions that many-body correlations can be neglected in
this environment due to the many sources of incoherence. The resulting steady state solutions
for a single velocity class can be computed via the roots of a polynomial, which provides a fast
and efficient method to find the steady state solutions of the system.

We have shown that an effective two-level system may posess a bistable phase where two
attractive steady state solutions exist. In the three-level model, one additionally finds the sys-
tem to be attracted towards limit cycles for certain conditions where a Hopf bifurcation occurs.
These limit cycles arise fundamentally from the nonlinearity of the system, but equally require
dissipative processes for their occurrence and maintenance.

To take into account the prevalence of many different velocity classes in a hot vapour, the
three-level model was extended to a full hot vapour simulation. In this process, the different
velocity classes are originally attracted towards different limit cycles. The global coupling of
the velocity classes through a shared Rydberg density eventually leads to frequency and phase
entrainment of the limit cycles, and synchronisation emerges in the system. This leads to the
remarkable result that a single, clear and robust oscillation of the vapour’s bulk quantities is
predicted by this model.

These oscillations are connected to a time crystalline state, brought about and stabilised by
the nonlinearity, dissipation, and coupling in the model system. The properties of this system
are highly interesting to study experimentally since it provides access to a truly large number
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of coupled oscillators and therefore allows to investigate the emergence of synchronisation in
such large ensembles.

Inthe following chapter we report on the emergence of synchronisation in a driven-dissipative
hot Rydbergvapour such as the one studied theoretically. Besides the already well-known bista-
bility and hysteresis in such a system, we also find robust oscillations in the transmission of the
probe laser through the vapour. These oscillations arise from synchronisation in the vapour,
though the underlying mechanism causing the occurrence of limit cycles is disputed and cur-
rently unknown.

59



5 OSCILLATIONS

As shown in the previous Chapter 4, a driven-dissipative Rydberg vapour with nonlinearities
is predicted to show very unexpected behaviour in the response to constant external driving.
Beyond the optical bistability and hysteresis effects shown in Figure 5.1 (a), we have observed
persistent oscillations in the response of a hot vapour of rubidium atoms. As shown in Figure
5.1 (b), the transmission of the vapour changes periodically within a certain parameter regime
when scanning the coupling laser through the two-photon resonance (main plot), and when
fixing coupling and probe laser in the oscillation regime.

In this chapter, the experimental setup is presented before the observed dependence of the
oscillations on the system parameters is discussed. The presence of oscillations in the probe
laser transmission depends on the settings of the external parameters and the Rydberg state
properties, i.e. the Rabi frequencies, detunings and interaction strengths. The average inter-
action strength experinced by an atom depends on the Rydberg state as well as on the vapour
density and therefore also on temperature. The occurrence and frequency of the oscillations in
the response of the vapour were investigated for different Rydberg states, various coupling and
probe Rabi frequencies, and a range of vapour densities. In Section 5.2, the experimentally ob-
served dependence of the oscillations on the external parameters is presented. The subsequent
Section 5.3 then relates the observations to the three-level hot vapour model and discusses the
experimental results in light of the relevant experiments, concepts, and literature.
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Fig. 5.1: Bistability, hysteresis, and oscillations in the response of a thermal vapour. Panel (a) shows
a trace where optical bistability and the resulting hysteresis effect are visible as the coupling
laser is scanned across two-photon resonance with a Rydberg state. The sudden jump in the
vapour’s transmission is dependent on the coupling laser scan direction. (b) shows an example
for the occurrence of oscillations on the resonance wing. The inset shows an enlargement of the
oscillation region indicated by the gray dashed lines. The y-offset has been added for clarity.
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Fig. 5.2: Experimental setup and relevant level scheme of rubidium. (a) The probe and coupling laser
light at 780 nm and 480 nm, respectively, are collimated by fiber couplers before passing a half-
waveplate (A/2) and a polarising beamsplitter (PBS). The subsequent acousto-optic modulator
(AOM) and aperture are used for remote control of the beam powers. Dichroic mirrors are used
to combine the counterpropagating lasers on a shared beam path across the rubidium cell. The
probe laser is detected by a photodiode (PD) which generates the measured voltage signal. (b)
shows the generic level scheme of rubidium with the states that can be addressed via 2-photon
excitation.

5.1 EXPERIMENTAL SETUP

Th experimental setup used in this work is shown in Figure 5.2. A glass cell of 4 cm length is
filled with rubidium at natural abundance' and held at constant vapour temperature which can
be varied between 20 and 60 °C. In this work, the vapour temperature was varied in the range
of 35 to 60 °C. The vapour is probed with a probe laser on the rubidium D, line at 780.2 nm
via detection of the transmission of the vapour, using two-photon EIT spectroscopy. The probe
laser is locked at 2 x140 MHz below the closed transition |55} /5, F' = 2) <+ [5P;)9, F' = 3) of
87TRb [147] via modulation transfer spectroscopy (MTS) [182, 183]. The optical lock signal is fed
into a PID controller for frequency stabilisation.

A counterpropagating coupling laser at ~ 480 nm couples the intermediate state to a Ryd-
berg state, which is either an |nS) or |nD) state. The coupling light is derived from the seed
laser’s fundamental light at ~ 960 nm via second harmonic generation in a nonlinear crystal.
The fundamental light of the coupling laser is locked to an ultranarrow, ultrastable cavity via
sideband locking with an electro-optic modulator (EOM) [184, 185]. The error signal is gener-
ated from the cavity reflection spectrum with the Pound-Drever-Hall (PDH) error signal gener-
ation scheme [186, 187]. Using the EOM sideband allows to lock the laser to an arbitrary point
in the cavity spectrum. Scanning the sideband frequency then scans the laser lock point across
the frequency spectrum. Further details on the newly installed coupling laser and the updated
cavity lock can be found in Appendices E and F.

The polarisation of the probe and coupling lasers is cleaned after exiting the fiber by use of
polarising beamsplitters (PBS) and then set to the desired orientation by manual adjustment of
a half-waveplate (\/2). Finally, the laser powers supplied to the experiment are remotely con-

"Natural abundance of rubidium is 28% of 87Rb and 72% of 8°Rb. The 7Rb isotope was used in this work.
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Fig. 5.3: Onset of oscillations with increasing coupling Rabi frequency. For a fixed probe Rabi fre-
quency §2,, the coupling Rabi frequency €. is increased and the normalised photodiode signal
is shown. After the appearance of bistability in the vapour response, one can see an onset of
oscillations for even higher coupling Rabi frequencies €2.. The probe transition Rabi frequency
is ©, = 2m x 191 MHz for this dataset, the Rydberg state was [43Dj /5) and the measurement
was taken at a vapour temperature of 7' = (52.0£0.5) °C. This corresponds to a number density
of 8Rb atoms of pg7py = (4.7 £ 0.2) - 1019 cm—3 [98, 189]. Each trace was given an individual
y-offset for better visibility.

trolled via acousto-optic modulators (AOMs), which deflect power into higher orders propagat-
ing at slightly different angles such that they are dumped by an aperture.

Beam waists of up to 1 mm and different probe to coupling beam waist ratios w»/w. = 0.5,2
have been tried and no dependence of the oscillations on the beam waists has been observed.
The data presented in this thesis was taken for probe and coupling beam waists of w,=390 um
and w, = 440 um respectively, unless specifically stated otherwise. Typical probe laser powers
for the experiment were in the range of 50 — 600 uW, while the coupling laser power is usually
varied over a range of 25 — 300 mW. This corresponds to Rabi frequencies” of (2,,/2m in the range
of 95 to 330 MHz and 2./27 < 35 MHz.

For radiofrequency (rf) field sensing and similar applications one usually keeps the laser pow-
ers below the saturation intensity?®, particularly the probe laser power. This is to avoid - or at
least to minimise - effects like electron shelving and power broadening [118]. The strong driving
regime is therefore rather seldomly used in hot vapour applications. For the beam waists spec-
ified above, one leaves the weak probe regime at roughly 18 uW, or just below Q, = 27 x 60
MHz.

When scanning the coupling laser across two-photon resonance, we have observed that in-
creasing the coupling laser power to give higher Rabi frequencies often leads to an onset of
bistability in the vapour response before entering the oscillation regime at even higher Rabi
frequencies, as shown in Figure 5.3. Bistability refers to the sudden change in the vapour trans-
mission where the system jumps from one stable state to another. The width of the oscillation
region increases with increasing Rabi frequency as can clearly be seen in Figure 5.3. The depen-
dence of the oscillations on the experimental parameters is presented in the following section.

ZRabi frequencies always state the peak Rabi frequency for a TEMy, (Gaussian) mode.
3The saturation intensity is usually a good benchmark for whether or not one is in the weak probe regime, even
though one should generally be careful when defining a weak probe threshold [188].
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Fig. 5.4: Scaling of oscillation regime with Rabi frequencies. The occurrence of the oscillation regime
is shown for for varying probe (a) and coupling (b) laser powers with the respective other param-
eters kept constant. The coupling laser coupled to the [50D3/5) Rydberg state at A. = 0 MHz
and the [50 D5 ,) state at A. = 27 x 93 MHz. The coupling Rabi frequency was kept constant at
2. = 27 x 18 MHz in (a) and the probe Rabi frequency at {2, = 27 x 160 MHz in (b), respectively.

5.2 BEHAVIOUR AND SCALING OF OSCILLATION REGION WITH EXPERI-
MENTAL PARAMETERS

In this section, the observed typical behaviour of the oscillations and the scaling of the oscilla-
tion region with the various experimental parameters is presented. The underlying mechanism
causing the oscillations is currently disputed in literature, with two other works on this type
of oscillations emerging during the completion of this thesis [190, 191]. In [190], it is proposed
that limit cycles arise from a competition for population between different energetically close
states in the Rydberg manifold. The authors of [191] propose that spatial inhomogeneities and
a resulting spatial clustering of Rydberg atoms induce limit cycles.

The data in this Section is therefore presented as is with a purely descriptive approach to the
phenomenon. Scalings of the width of the oscillation region with changes in Rabi frequency
are discussed in Section 5.2.1 while the dependence on Rydberg state, and vapor temperature
is shown in Section 5.2.2. The frequency of the oscillations is studied in Section 5.2.3 and we
take a brief look at the shape of the oscillations along the scan in Section 5.2.4. A contextual
discussion and interpretation of the results follows in Section 5.3.

5.2.1 DEPENDENCE OF OSCILLATIONS ON RABI FREQUENCIES
Figure 5.4 shows typical traces when scanning the coupling laser through two-photon reso-

nance with a Rydberg state and increasing the Rabi frequency on one of the two transitions.
All other experimental parameters were held constant. Within a certain parameter regime, os-
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cillations occur in the transmission of the probe laser through the vapour®.

In Fig. 5.4 (a), the probe laser Rabi frequency is increased from the bottom to the top trace.
Eventually, an oscillation region becomes clearly visible but the width of the region and the os-
cillation frequency reduce with increasing probe power. After crossing a threshold probe power,
no oscillations remain in the response of the vapour.

The width of the oscillation region scales inversely when changing the coupling Rabi fre-
quency since the oscillation region opens with increasing €2.. After meeting a threshold coupling
Rabi frequency, slow oscillations occur in the response of the vapour. The oscillation frequency
and width of the region increases with increasing coupling power, as can be seen in Figure 5.4
(b). When increasing the coupling Rabi frequency even further, the oscillations become too fast
to be distinguishable from noise in the scans. However, one can still see an edge, or plateau,
near the |50Ds,) state at A, = 0 MHz in the spectrum.

This general behaviour was consistently observed for different Rydberg states and atom num-
ber densities. However, the oscillation frequency is not always constant within one oscillation
region, as one can see in some of the traces in Figure 5.4. For that reason, speaking of ‘the os-
cillations’ and of a single oscillation frequency does not capture the entire picture but is a sim-
plification that is done here for ease of discussion. It isimportant to keep in mind, though, that
the observations in the lab are more complex than that. Further example traces demonstrating
this behaviour are shown in Figures 5.8 and 5.9.

5.2.2 SCALING WITH VAPOUR DENSITY AND RYDBERG STATE

It has been mentioned before that the presence of oscillations depends on the external experi-
mental parameters, and that several oscillation regions may form. Itis therefore very interesting
to analyse the data from a different perspective by identifying the spectral regions where oscilla-
tions occur for different combinations of experimental parameters. This may help to shed some
light on the underlying mechanism causing the occurrence of oscillations.

Example results are shown in Figure 5.5, the upper row shows the spectral regions in which
oscillations are observed when coupling to the |79D) states at different Rabi frequencies and
three different densities. For fixed probe Rabi frequency (2, one can observe an onset of oscil-
lations at lower coupling Rabi frequencies for higher temperatures and therefore vapour densi-
ties. Clearly, one can infer a dependence of the presence of oscillations on the vapour density.

The lower row of Figure 5.5 shows the oscillation regime when addressing three different Ry-
dberg states at similar vapour densities. Here, the onset of ocillations occurs at lower coupling
Rabi frequencies for higher Rydberg states and otherwise similar experimental parameters. Itis
interesting to note that the van der Waals interaction |43 D5 ) state is larger than of the [50D5 )
state due to a near Forster resonance [106] with the [42F5 5 7/2), |44 P3/2), and [45F5 5 7/2) pair-
states. The Cj value of the [63D5,,) state is a factor 10 higher than that of the [50D; ;) state.
Additionally, the formation of spectrally separate regions can clearly be seen in the dataset for
the |63 D5 ,) state.

“In this example, no bistability occurs before or after the oscillation regime. The presence or absence of a bistabil-
ity edge depends on the external parameters, including beam alignment. All data in this thesis was taken after
optimising on a weak probe EIT feature, which indicates optimised beam overlap.
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Fig. 5.5: Scaling of oscillation region with experimental parameters. The upper row shows the os-
cillation region with a coupling to the [79D5 ;) state at A. = 0 for three different probe Rabi
frequencies and three different vapour densities. The critical coupling Rabi frequency required
foran onset of oscillations reduces with increasing vapour temperature and therefore increasing
number density. In the lower row, the oscillation region is indicated for three different Rydberg
states at similar vapour tempteratures. One can clearly see different, spectrally independent
oscillation regimes in the [63 D5 5) data. Also, the onset of oscillations occurs at lower critical
coupling Rabi frequencies for higher-n Rydberg states.

Generally, it is observed that higher probe Rabi frequencies, higher-n Rydberg states and
higher vapour densities lead to a lower threshold coupling Rabi frequency (2. required to ob-
serve an onset of oscillations.

Furthermore, a different kind of splitting of the oscillation region has been observed for the
|77 D5 ,) state at high vapour temperatures, asis shown in Figure 5.6. Here, the oscillation region
suddenly breaks with a clear edge and a second oscillation region may form at the far side of the
break for higher coupling Rabi frequencies.
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Fig. 5.6: Sudden break in oscillation region for [77D; ;) state. (a) shows the oscillation region for
the |77D5 ;) state at a probe Rabi frequency of 2,/2r = 234 MHz and vapour temperature
T = (50.5 £ 0.5) °C for different coupling Rabi frequencies §2.. The oscillation region in the top
right corner is present only for one scan direction but not the other. (b) shows the traces corre-
sponding to the coupling Rabi frequencies 2. /27 indicated by the gray dashed lines in (a). The
corresponding values Q). /27 are indicated below the respective traces. Each pair of traces has
an arbitrary offset for better visibility.
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Fig. 5.7: Comparison of oscillation frequency in different regimes. (a) shows an example of the oscil-
lations in time for fixed coupling laser detuning A.. The coupling laser couples to the [50D5 5)
state with Q, = 27 x 191 MHz, Q. = 27 x 24 MHzand T" = (48.1 £ 0.2) °C. Panel (b) shows
the resulting spectral density of the time trace in (a). This is used to extract the oscillation fre-
quency. (c)-(e) show the oscillation frequency for various probe Rabi frequencies, for different
Rydberg states and vapour temperatures. At higher number densities the [63D5 ,) state shows
two spectrally separate regions with oscillations, compare also with Figure 5.9. The open blue
symbols show the oscillation frequency for the second oscillation region that does not exist in
the other datasets. Further details can be found in the main text.

5.2.3 OSCILLATION FREQUENCY SCALING

To get a better understanding of the scaling of the oscillation frequency with the Rabi frequen-
cies and the Rydberg-Rydberg interaction strength, a direct measurement of the oscillation fre-
quency was made. For these measurements, the coupling laser detuning was fixed such that
the system was inside the oscillation regime and a time trace of the probe laser transmission
through the vapour was captured, as shown in Figure 5.7 (a). Therefore, all external parameters
were kept constant for the duration of one measurement, which includes laser powers and de-
tunings, and vapour temperature. The response of the vapour shows an oscillatory behaviour
that is persistent in time and appears undamped on timescales as long as ten minutes. Oscil-
lation frequencies were inferred from the time traces by calculation of the Fourier spectrum of
the trace in Figure 5.7 (a). The oscillation frequency was taken to be the lowest frequency peak
in the spectral density | f (w)| which is not the DC component, as shown in (b).

The data for Figure 5.7 (c)-(e) was collected by performing this measurement for a range of
Rabi frequencies on the |50D55) (olive) and |63 Ds/2) (yellow, blue) states. The yellow and blue
data points are both for the |63 D5 ,) state but the yellow dataset was taken at a lower vapour
temperature, i.e. at lower atom number density. Olive and blue datasets were taken for similar
atom number densities but different Rydberg states. The blue dataset features not just one but
two oscillation regions with different oscillation frequencies. This second region lies closer to
theresonance with the j = 5/2 statein the spectrum. It does not occur in the other dataset from
that Rydberg state (yellow) and is therefore indicated with open symbols. The different shapes
of the symbols indicate different probe Rabi frequencies. Further example traces can be seenin
Figure 5.9.

Forsome datasets there seems to be atendency of increasing oscillation frequencies for higher
coupling laser powers, as can also be seen in the top row of Figure 5.9. Given the data, there
is no obvious relation between oscillation frequency and probe Rabi frequency. However, as
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Fig. 5.8: Change in frequency and shape of oscillations along scan. Example trace from the [43 D5 5)
state at 27 x 191 MHz probe Rabi frequency and 27 x 37 MHz coupling Rabi frequency at
T = (52.0 + 0.5) °C. The oscillations have generally been observed to change in shape along
the oscillation region. Observed shapes resemble sawtooth, sawtooth with steps in the flank,
modulus of cosine/cos? and triangular functions. The highlighted regions shown in the insets
have the same frequency width so one can see the change in oscillation frequency between the
regions.

mentioned before, the oscillation frequency varies within a single oscillation region. It there-
fore seems unreasonable to derive any conclusive interpretation from the data shown in Figure
5.7 (c)-(e). This invites a further, more systematic investigation of the phenomenon.

5.2.4 SHAPE AND FREQUENCY OF OSCILLATIONS ALONG SCAN

As remarked in the previous section, the oscillation frequency changes along the oscillation re-
gion. This change in oscillation frequency goes along with a change in shape of the oscillations,
as shown in Figure 5.8. It shows an enlargement of the four highlighted regions, each covering
the same frequency range. The oscillation shapes were observed to resemble sawtooth, saw-
tooth with steps in the rising flank, triangular, and modulus of cosine or cos? functions. Many
datasets, but not all, show the same order of shapes from negative towards positive detuning:
sawtooth, triangular, cosine-like.

Additionally, Figure 5.8 indicates the presence of two separate oscillation regions, sharing a
spectral boundary at A./27 ~ —45 MHz. The discrete change in oscillation frequency, as well
as the repeated occurrence of the sawtooth shape in the lower-frequency end of the rightmost
(olive) region, indicates that the two regions are indeed separate and independent of another.
In Figures 5.5 and 5.9 the occurrence of spectrally separate oscillation regions is also very clearly
visible.
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Fig. 5.9: Example traces in oscillation regime. The transmission of the vapour is shown for three differ-
ent probe Rabi frequencies €2, (columns) and four different coupling Rabi frequencies 2. (rows),
increasing to the right and bottom, respectively. The Rabi frequencies of the example traces are
indicated in the oscillation frequency plots in the top row. The colour coding and corresponding
datasets are the same as in Figure 5.7.
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5.3 INTERPRETATION OF THE EXPERIMENTAL RESULTS

The experimental results were presented without interpretation or context to allow the reader
to draw their own conclusions from the data. This section will provide the context for the exper-
iment and an interpretation of the data.

The most notable feature of the observed oscillations is that their occurrence is independent
of the coupling laser scan speed. This goes as far as that the oscillations persist in time when
fixing all controllable parameters including the coupling laser detuning, as shown in Figure 5.7.
The system is driven with constant laser powers and frequencies, therefore the oscillations can-
not occur as a consequence of external modulation. Additionally, the laser Rabi frequencies are
three orders of magnitude faster than the oscillation frequency. Hence, the oscillations do not
originate from periodic driving but emerge fundamentally from the system itself. This is also
supported by Figure 5.5 which shows that a variation of the vapour density changes the thresh-
old for an onset of oscillations without changes to the driving of the system.

Conclusively, we observe a system that is attracted toward a limit cycle in certain parame-
ter regimes. From this conclusion, several questions emerge that we will attempt to answer
with the tools developed in this thesis and the experimental data presented above. One may
now ask: What mechanism causes the occurrence of limit cycles in this system? How can we
interpret these oscillations from a physical perspective? And how is it that a hot vapour with
motion-induced dephasing of the different velocity classes of atoms still shows a clear, robust
oscillatory response rather than a superposition of many different limit cycles averaging out to
a noisy signal?

Synchronisation

The last question is maybe the easiest one to answer. We have already established that the
system is attracted toward a limit cycle, but naively one would expect that every velocity class
of atoms is attracted towards a different limit cycle due to the motion-induced detuning. As a
result, the response of the vapour would be a noisy and incoherent signal, as shown in the lower
row of Figure 4.11. This is not what we observe, since we clearly find a single oscillatory signal.
The mechanism which prevents a noisy output is a global coupling between the different ve-
locity classes leading to synchronisation. This coupling between the different velocity classes
could be induced by Rydberg interactions between the different velocity classes, or the global
effects of Stark shifts induced by ionised Rydberg atoms. Other coupling mechanisms are also
possible. There is experimental evidence for the presence of a weak plasma in a hot vapour Ry-
dberg experiment under similar conditions as ours [63, 65], and Rydberg-Rydberg interactions
certainly also occur in our experimental regime. In Chapter 4, we have shown that both effects
could lead to the formation of limit cycles for different velocity classes, and provide their own
respective global coupling mechanisms.

The relevant point to stress here is that there must be a mechanism in the system which com-
bines the different limit cycles expected from the microscopic description of the hot vapour to
asingle and clear oscillatory signal of the bulk quantities. Such a mechanism is provided by the
synchronisation of the constituent oscillators through a global coupling force, irrespective of its
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nature. We therefore attribute the observation of robust and stable periodic oscillations to the
emergence of synchronisation in a driven-dissipative hot Rydberg vapour.

Possible mechanisms causing oscillations

One would then like to know which mechanism actually causes the occurrence of limit cy-
cles, and this question is not so easy to answer. In Chapter 4 we have shown that any Rydberg-
population dependent level shift, which can be mapped to a power law in the Rydberg density,
renders the system nonlinear and may cause Hopf bifurcations which can facilitate the occur-
rence of attractive limit cycles. Both the Rydberg interactions and the ion-induced Stark shifts of
the Rydberg level can be mapped onto a power law scaling®, but other mechanisms may equally
cause the system to be attracted towards limit cycles. In [190], it is proposed that limit cycles
arise from a competition for population between different energetically close states in the Ry-
dberg manifold. The authors of [191] propose spatial inhomogeneities and a resulting spatial
clustering of Rydberg atoms to induce limit cycles.

The second proposed mechanism, i.e. the cluster-induced limit cycles, is a theory which fits
well for the experimental parameters reported in [191]. However, the probe Rabi frequencies
used in this work are around one order of magnitude higher than in the reference, and an esti-
mation of expected Rydberg atom densities in our experiment shows that we are near or even
well inside the regime of saturated Rydberg densities due to the blockade effect. This spatial
clustering hypothesis therefore seems unlikely to capture the processes in our system under
strong driving. Additionally, the oscillations observed in [191] are transient rather than persis-
tent. They also scale differently to the ones reported here and in [190], where the experimental
conditions are similar to ours.

The authors of [190] cite a competition for Rydberg population between energetically close
levels as causing limit cycles. The theory, as presented in the paper, assumes a direct coupling of
ground and Rydberg state with an effective Rabi frequency (). In other words, the assumption
is made that one can eliminate the intermediate state dynamics, which tends to be a difficult
assumption to make in a hot vapor where Doppler shifts easily lead to effective detunings of
several linewidths I .. This assumption certainly does not hold for the experiments reported in
this work since the intermediate state detuning is only A, /27 = —140 MHz. This is easily sur-
passed by the 1D RMS velocity of rubidium atoms at 40°C, meaning that some velocity classes
experience significant population of the intermediate state which changes the dynamics of the
system. Nonetheless, the proposed mechanism of limit cycles being caused by competition for
Rydberg population of different m ; states within the Rydberg manifold is possible. In this inter-
pretation, it would also be the Rydberg interaction causing a global coupling between different
velocity classes so that synchronisation may occur®.

A further hint on the origin of limit cycles for a single velocity class is given by Figure 5.5,
showing the synchronisation regions for various Rydberg states, densities, and laser powers.

>The conditions for this mapping to a power law to be (approximately) accurate can be found in Appendices B
and C for Rydberg interactions and Stark shifts, respectively.

®In [190], the system has been studied theoretically only for a single velocity class. It would be interesting to
investigate the proposed model in a full hot vapour simulation to see how bistability and synchronisation be-
have when taking many velocity classes into account. Also, including the intermediate state in the theoretical
description might reveal further dynamics and would be relevant in the context of a full hot vapour treatment.
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Fig. 5.10: Pair interaction potentials and Stark shifts for 43D; ,, 50D; /5, 63D; , and 79D, states in
rubidium. The pair potentials (upper row) and Stark shifts (lower row) for the Rydberg states
in Figure 5.5. As can also be seen in the resulting pair potential, the [43D55) Rydberg pair
state has a FOrster resonance with the |[42F5 5 7/2), [44P55), and [45F5 /5 7/9) pair states. Pair
potential data is given for spatial orientation of the atoms along the quantisation axis. The
electric field polarisability increases with n.

The upper row shows the synchronisation region for various densities when coupling to the
|79D) states. It indicates a clear dependence on the vapour density and therefore on the Ry-
dberg atom spacing. This is consistent with any interpretation that uses Rydberg interactions
as mechanism where higher Rydberg densities lead to stronger facilitation of synchronisation
in the vapour, but it is similarly in agreement with the ion-induced Stark shift interpretation.

More interesting is the lower row of Figure 5.5 where the synchronisation regime is shown for
different Rydberg states withn = 43, 50, 63. One can clearly see that the threshold coupling Rabi
frequency required for an onset of oscillations is lower for higher principal quantum numbers n
at every probe Rabi frequency shown in the plot. The Rydberg states were chosen due to their
Cs interaction strengths since the |43Dj ,) state is on a Forster resonance, leading to stronger
van der Waals interactions than for the |50D5 ;) state. One might expect to see a trace of this in
the data in form of a lower critical coupling Rabi frequency marking the onset of oscillations - if
the limit cycles are caused by van der Waals interactions. No indication for this can be seen.

The observed lowering of the critical coupling Rabi frequency with higher n is consistent with
a plasma-induced Stark shift causing the occurrence of limit cycles. Reason being that higher n
states have a higher polarisability, as shown in Figure 5.10, and higher ionisation cross sections.
This leads to an earlier onset of oscillations for higher principal quantum numbers due to higher
global coupling strengths V.

It is yet too early to settle on one mechanism as cause of the limit cycles and more experi-
ments are required to answer this question with certainty.
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5.4 OPEN QUESTIONS, OUTLOOK, AND CONCLUSION

Several open questions remain, first and foremost the one regarding the origin of and mech-
anism behind the limit cycles. Different mechanisms have been proposed and can be tested
through further experiments.

The Rydberg interaction mechanism could be tested with a comparison of the |[43D5 ) state
tothe |42D5,,) at otherwiseidentical parameters. The van der Waals interaction of pairs of m ; =
5/2-state atoms differs by a factor of ~ 20 between these two neighboring states while the other
m; state pair interactions and the collisional cross-section for ionisation of Rydberg atoms is
very similar. Alternatively, addressing only the m; = 5/2 state and variation of the principal
quantum number between 42 and 43 should equally provide furtherinformation on the Rydberg
interaction dependence. If one observes oscillations while coupling only to a single (hyper-)fine
state, then this would also be a strong indication against the Rydberg population competition
mechanism assumed in [190]. It would also be interesting to look at the dependence of the onset
of synchronisation on the intermediate state detuning, and to compare attractive and repulsive
pair interactions.

Using an ultracold atomic vapour setup would allow the system to be studied without the
Doppler averaging across many velocity classes, so that the behaviour of a single velocity class
would become accessible. Additionally, as the plasma formation in a hot vapour is mostly in-
duced by collisional ionisation of Rydberg atoms, a frozen gas experiment would give access to
a plasma-free environment. These experiments usually also feature excellent electromagnetic
field control such that one could investigate the effects of external Stark shifts as well. Alterna-
tively, a weak DC field could be used in a hot vapour cell to quickly siphon off all charges from
the beam area and therefore remove the plasma from the beam region.

An electromagnetic field dependence opens an avenue to utilise the oscillations for electro-
magnetic field sensing, or to exert further control on the system by providing additional tunable
parameters. When using this platform to experimentally study the emergence of synchronisa-
tion in ensembles of large numbers of coupled oscillators, such an externally tunable parameter
might prove to be very useful.

We can conclude that the origin of the limit cycles in our system remains unclear at present.
Understanding the underlying mechanism would allow a better understanding of the system,
also when subject to additional fields, and improve predictability of the system’s response.

However, irrespective of the origin of the limit cycles, all currently proposed and studied
mechanisms have in common that the hot vapour system hosts a wide range of different veloc-
ity classes, each being attracted to different limit cycles. The frequency entrainment of the limit
cycles is caused by global mean-field coupling of all velocity classes, which eventually leads to
synchronisation and a single oscillatory response of the vapour. This oscillation of the probe
transmission through the vapour is robust and does not show any damping on timescales on
the order of minutes.

The three-level hot vapour simulation presented in Chapter 4 phenomenologically repro-
duces the experiment. This includes the occurrence of several spectrally separated synchro-
nisation regions, the resulting shapes of oscillations, and scalings with probe and coupling Rabi
frequencies and coupling strength. This scaling includes the changes in width of the oscilla-
tion region with changes in 2, or €2, see also Figure 5.4, and the earlier onset of oscillations at
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Fig. 5.11: Phase drift of oscillations in a single realisation. (a) The spectral density of the oscillations
reveals a clear oscillation frequency v, of 43.1 kHz. Two segments of the data trace are shown
in (b) with a background triangular waveform of frequency v, in dark gray. The drift in phase
between the two segments is clearly visible, and the lower segment (blue) also shows an ad-
ditional slight change in oscillation frequency. The extracted phases of the waveform over the
length of the entire sequence of 0.1s are shown in (c) and (d) with the coloured dots indicating
the segments of (b).

lower Q<™ for higher interaction strengths V. Hysteresis with the coupling laser scan direction
is also predicted by the hot vapour simulations and the model reproduces the experimentally
observed oscillation frequencies e.g. for the Rydberg interaction Hamiltonian at reasonable ex-
perimental parameters. Even though the origin of the limit cycles is still unclear and further
experimental and theoretical work has to be done to answer this question, we can conclude
that the major properties of the hot vapour model are also found in the experiment. These are
ergodicity breaking from optical bistability, as well as the emergence of synchronisation leading
to a non-equilibrium state of matter.

More difficult is a statement on the time crystallinity phase that is claimed in reference [190].
To experimentally demonstrate a time crystal it is necessary to show the freedom of phase in the
limit cycle for different realisations of the system. The idea is that, since the phase of the system
on the limit cycle is not fixed but pre-determined only by the initial conditions, then different in-
stances of realisations of the same system should differ in phase because initial conditions will
naturally vary on a microscopic level. However, in order to attribute a measured phase variance
to different realisations of the system, one first needs to show phase invariance of the system
within a single realisation. That means that for any one realisation, the phase of the oscillations
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with respect to a reference waveform at the oscillation frequency should be invariant. Devia-
tions of the phase in time hint at correlations and drifts with other experimental parameters
like, among others, laser powers and detunings. One expects that stable experimental condi-
tions are required to arrive at a system that is phase invariant in time for a single realisation -
so that the time crystal property can be shown.

Figure 5.11 shows that this is not the case for our experimental setup in the present form. The
extracted phase of the oscillations fluctuates over time for one long-term data trace, as shown
in (d). The resulting spread in phases is attributed to fluctuations in experimental parameters,
and the system is arguably not stable enough in time during a single realisation to be able to
infer phase freedom in the limit cycle from a variation of phases for different realisations. It
is therefore not possible to demonstrate a continuous driven-dissipative time crystal with the
experimental setup in its present state.

Updates to the experiment in the form of stabilisations of the experimental parameters is ex-
pected to improve on the phase drifts. In small systems with gapped many-body Hamiltonians
it might be possible to show the time crystalline phase of the system’s ground state even in
the presence of exprimental uncertainties and noise. For macroscopic systems of many con-
stituents and an effectively ungapped many-body Hamiltonian, it is currently unclear if time
crystallinity can conclusively be shown from an exprimental perspective’.

"Itis currently unclear whether it is experimentally feasible to stabilise the experimental parameters to the neces-
sary degree of stability in order to arrive at phase invariance on reasonably long timescales. In private commu-
nications, the authors of [190] indicated that they had also observed phase drift like it is shown in Figure 5.11 (d).
They mentioned that a certain level of phase diffusion might be a property of such time crystals. It is certainly
important to gain more clarity on this question, both from an experimental and a theoretical perspective.
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Synchronisation is at the heart of many effects occurring in nature but also in some particu-
lar physical, chemical, or biological systems. A fundamental understanding of synchronisation
from both a theoretical and an experimental perspective is therefore key to understanding the
behaviour of many systems in our environment. Due to a lack of suitable systems, it has to date
proven challenging to experimentally study the transition to synchronisation in systems that
provide a large number of constituent oscillators while also being widely tunable.

In Chapter 4 we have shown that an atomic three-level system subject to a level shift of the
Rydberg state, scaling with a power-law in Rydberg density, undergoes bifurcations. These bi-
furcations lead to multistability in the system and, for some parameter ranges, to the formation
of attractive limit cycles due to Hopf bifurcations. Systems caught by such limit cycle attractors
are phase oscillators where the phase within the limit cycle is free and therefore easily adjusted
by a force. Therefore, when coupling an ensemble of phase oscillators via a global mean field
one finds that the resulting force and back-action dynamics can result in synchronisation of the
ensemble for strong enough couplings.

In a hot vapour system with many velocity classes interacting via a global Rydberg density
mean field, we observe that synchronisation of the velocity classes occurs for strong enough
couplings between the velocity classes. This results in persistent oscillations of the bulk quanti-
ties of the simulated vapour. For instance, the simulations predict oscillations in the imaginary
part of the ground-excited state coherence p;e which is proportional to the transmission of a
vapour.

Experimentally, we find oscillations in the transmission of the probe laser through an atomic
vapour when performing two-photon EIT spectroscopy of Rydberg states in rubidium at temper-
aturesintherange of 35to 60 °C. The occurrence of these oscillations has been shown to depend
strongly on the experimental conditions, as detailed in Chapter 5. The wide range of Rydberg
atomic state properties, as outlined in Chapter 3, provides a tuning mechanism to change the
system parameters very easily. The state dependent van der Waals interaction Cs can be con-
trasted with the equally state dependent electric polarisability to try and find the mechanism
that causes the nonlinarity leading to the formation of limit cycles, and to understand how the
global coupling mechanism works. We attribute the oscillations in the probe transmission to the
emergence of synchonisation in our driven-dissipative hot Rydberg vapour since the hot vapour
simulation phenomenologically reproduces the experimentally observed behaviour.

In this thesis, we have reported on the emergence of synchonisation in a driven-dissipative

hot Rydberg vapour. The key features of this system allow to experimentally investigate the
onset of synchronisation in large ensembles of globally coupled oscillators. Additionally, the
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tunability of Rydberg states allow for targeted manipulation of the system parameters so that
large ranges of parameter space are accessible with this system. Therefore, an avenue has been
opened to easily explore and study the synchronisation transition in ensembles with large num-
bers of coupled phase oscillators. Improvements to the stability of the experimental parameters
is expected to improve the phase stability of the oscillations, thereby paving the way to exper-
imentally investigate the time crystal property of the oscillatory phase. However, open ques-
tions regarding the underlying mechanism causing the nonlinearity in the system remain and
are currently contested. Further theoretical and experimental research into the system will help
to establish the origin of the dominant driver of the nonlinearities.

We can therefore conclude that the reported results demonstrate the emergence of synchro-
nisation in a driven-dissipative hot Rydberg vapour and can be linked to continuous dissipative
time crystals, but we cannot yet establish the fundamental mechanism driving the system into
the oscillatory state. This thesis is therefore well-concluded with the following quote by Emma
Goldman:

"Finalities are for gods and governments, not for the human intellect.”
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A STEADY-STATE SOLUTIONS AND STABILITY
ANALYSIS FOR DRIVEN SYSTEMS

In this appendix, further details of the theoretical study of the effective 2-level and the three-
level model are given which leads to the results presented in Chapter 4. First, the equations of
motion for the effective 2-level and the 3-level model are set out in detail and the steady state so-
lutions are defined via the real zeros of a polynomial. The resulting steady states are discussed
for different scalings with n and their stability properties are analysed using the methods out-
lined in Chapter 4.

For the effective 2-level model, it is shown that Hopf bifurcation cannot occur while the three-
level model is shown to undergo Hopf bifurcation in certain parameter regimes.

The model as well as the calculations of the steady states make no assumptions on the laser
powers, the results are therefore valid also in the strong probe regime. We assume the parame-
ters to be in the following regimes: I, 2 € R, A,V € R,and n € Ny unless stated otherwise

A.1  EFFECTIVE 2-LEVEL SYSTEM

Treating real and imaginary part of the density matrix elements separately, the equations of
motion for the effective 2-level model read

Equations of motion

Prg = = Uy + TpL, (A12)
Pog =Lple; (A.1b)
Pee =2y — Tl (A1c)
fio= —Tpi,, (A1d)
. 1 7 7 1 T A T \N %

pge = §Q(pe - pgg) - §Fpge + (A - V(pee) ) pge’ (A'1e)
-q 1 T T 1 i A r \n 7

Pge = — §Q<pee - pgg) - érpge - <A - V(pee) > Pges (Alf)

where we have made use of the fact that p%; = 0 to simplify Vo7, to V/(p.,)". Using the trace
condition 1 = Zj p; and hermiticity of the density matrix as constraints, one can generally
reduce this set of equations from six to three as stated in equations (4.3).
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Steady state solutions

The steady states of the effective 2-level model are determined by finding the steady states of
the Lindblad equation. This is equivalent to solving the above system of equations for pil =0
in R. The resulting steady state solutions for all elements of the density matrix are determined
by the roots of the polynomial

: 2 0\ . 4 (Q\"
— i \2n+1 = 2 o _ 7 \n+1 - A o
0= |52 (1) ] | va (3 ]
- (A.2)
Ly 0% +2A2 N I Q
Poe | 7T 2| 2
The steady state values of the other elements of the density matrix follow via
Pog = Pee = 0, (A.33)
T T Q i
Pag =1 = Pee =1 = T Pge; (A.3b)
T Q 7
Pee = fpgw (A3C)
2 [~ . o\" .
p;e = F |:Ap;e -V (f) (p;e)n+1:| : (A?’d)

The roots of the polynomial (A.2) depend on the value of n, i.e. on the power law scaling of the
population-dependent level shift. Analytic solutions exist for n € {0,1}, and for n = 0 this is
given by

0/2

(A
Pge = Q2+2(A—V)

) (A.4)
2 r
T + 2

For n = 1 the three solutions are given by the well known roots of a cubic. The results are
either a single real solution plus a complex-conjugate pair, or three real solutions.

For higher n, the order of the polynomial (A.2) is > 5 and does not have a generic analytic so-
lution. However, using Descartes’ rule of signs [125] we know that a maximum of three positive
real roots of the polynomial exists and, generally, always a minimum of one. For a physical inter-
pretation of the populations as state probabilities we require a solution pge to liein the interval
p. € 10, 5, as can be seen from equation (A.3c).

It will now be shown that, for all n € N, the roots lie in the interval [0, ] and that there is
always a minimum of one root. For this, we define the polynomial

n\ 2
F;+%2+(A_v(¥x))] (A5)

so that we recover equation (A.2) when setting P(x) = 0. In fact, this polynomial is a simple
reformulation of (A.2), which means that studying this polynomial gives information on the so-
lutions of equation (A.2). Also, as we are interested in real solutions only, we demand that z € R.

Q 2




A.1. EFFECTIVE 2-LEVEL SYSTEM

The term in square brackets of the polynomial (A.5) is always positive, it therefore follows
immediately that P(z) < 0¥z < 0. Also, for non-vanishing system parameters €, I" it always
holds

r 1 /Q? 417
=== 2(A —V)? :
P (Q) q ( 5t ( V) ) >0
Forany {2, T'}, the term in square brackets is bounded from below by I'? /4 +? /2, so one finds
that for P(z) < 0it must hold that

__or T
TSomeare o

Therefore, P(z) > 0Vz > §.

This result now guarantees that all real roots of the polynomial P lie in the interval [0, 5] as
is required for interpretation of the populations as probabilities, and guarantees the existence
of at least one root since P(x) < 0forz < 0and P(z) > 0forz > I'/Q2. From Descartes’ rule

of signs we know that there is exactly one root for sign(V') # sign(A) and either one or three
otherwise.

Afast numeric method to calculate all roots of a polynomial in C utilizes the companion matrix
of the polynomial of order k&

PA) = apx A" 4+ ...+ a1 A + ao.

The companion matrix C(P) is defined as the (k — 1) x (k — 1)-dimensional square matrix

00 0 —a/ay
10 0 —ai/ag

cP)=|[0 1 0 —as/ay |, (A.6)
00 ... 1 —ozk_l/ozk

A useful property of the companion matrix is that its characteristic polynomial x[C(P)](\) is
equal to our initial polynomial () but normalised, i.e. X[C(P)](\) = ag,..1P(A). The eigen-
values \; of C(P) are equal to the roots of its characteristic polynomial x and therefore identical
to the roots of our polynomial P.

Fast numerical algorithms for the calculation of eigenvectors and eigenvalues exist, and we
have not encountered stability issues of the numerical algorithms for the companion matrices
resulting from our system parameters. It should be noted that the values for the density matrix
elements obtained with the steady state approach presented above are in excellent agreement
with the values for the attractive steady states obtained from time integration of the equations
of motion (A.1).

Onecanalsosetntoavaluen ¢ Nandequation (A.2) remains valid. However, in order to use
the companion matrix to calculate the steady state values, one must be able to re-formulate the
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equation as a polynomial with integer coefficients of p;e. Therefore, if one wishes to study a case
with n ¢ N one has to re-formulate the polynomial (A.2) accordingly or employ an alternative
method to find all real roots.

Stability of the steady states

Applying the stability analysis presented in Section 4.2.2 to the effective 2-level approach de-
scribed in Section 4.2.1, one finds the linearisation of the map

O:R® = RO x> ®(x)  with X = (P, Py, Phs Pees Pes Pye)

given by J = (8)( ) K For the remaining discussion we will fix the steady state py. Evaluation

of Jat po = (py.0: Pog.0 Pre.0s Prcos P Pacn)» @S defined through equations (A.2) and (A.3),
results in

0 0 T 0 0 -0
0 0 0 I 0 0
0 0 I 0 0 Q
Ty | 0 o | T 0 0
M(p()) a B ; QP;E,O n—1 Q r A B ng
0 2 nV Pgeo T 2 2 V{—
b oo cgome (M) (Arv(B)) o carv(Ze)

The corresponding characteristic polynomial, equally evaluated at the steady state pg&o

A3 42077
2 A2 512 pge() 9 ngeO 2n
XTI = A2 (T + 2) )\<Q + A% 4 372~ 2(n + VA (Hes ) + (20 + 1)V () )

£<4A2+292+F2—8(n+1)m( Drye0 ) +4(2n + V2 (e e )2”)

(A.8)

This polynomial can now be studied following the analysis for the stability of a steady state
defined via pgao. The three eigenvalues that are independent of the particular steady state value
of p. o arise from the over-determinedness of the system of equations (A.1) when using the addi-
tional constraints of hermiticity of p and the trace condition. With these constraints, the system
(A.1) is actually a system determined by three independent variables which is reflected by the
cubic factor of the characteristic polynomial (A.8) that determines the remaining three eigen-
values of the linearisation .J.

The steady state is asymptotically stable if the real part of all j eigenvalues is smaller than
zero, i.e. \; < 0. In our case, this applies only to the three eigenvalues that are dependent on
the particular steady state py, i.e. the ones determined by the cubic in square brackets in (A.8).
This is because the term in square brackets is equal to the charactristic polynomial one obtains
when applying the trace condition and hermiticity of the density matrix to reduce the initial set
of six equations (A.1) to a set of three equations in the three variables p; , oy, and pge.




A.2. 3-LEVEL SYSTEM

To analyse the stability of the steady states for p;e,o we use the Routh-Hurwitz criterion [192]
since it allows to give statements on the stability of a steady state without an explicit expression
for the steady state, as is the case for our system when n > 2. Since the relevant characteristic
polynomial of the linearisation J is a cubic

X[JIA) = A% + azX® + a1 X + ag

the criterion states that all eigenvalues \; of J have a negative real part except for a purely imag-
inary pairiff' ay > 0, a9 > 0and asa; — ay = 0. In this case, a Hopf bifurcation occurs. If the last
condition is changed to asa; — ag > 0, then all eigenvalues have a negative real part and the
steady state is stable.

From the cubic factor of the polynomial (A.8) one sees immediately that a; = 2I" > 0 is
satisfied whenever I' > 0, i.e. whenever there is a non-vanishing decay from the excited state
le). In physical terms this is equivalent to demanding that the system is dissipative.

Looking at the term aya; — ag, one finds this to be equal to asa; — ag = ag + T'(Q% 4 2T'?), see
also [131]. The condition aya; — ag = 0 will never be satisfied since the condition ¢y > 0 must
also be met for a Hopf bifurcation to occurand I', 2 € R,.. We can therefore conclude that the
two-level model does not undergo a Hopf bifurcation for all choices of model parameters.

This result is critical for the comparison of the effective 2-level model and the 3-level model,
and should therefore be highlighted. An effective two-level system described by (A.1) undergoes
saddle-node bifurcations [127] when the number of steady state solutions changes between one
and three, but it does not undergo a Hopf bifurcation. Therefore, we do not expect any time-
periodic solutions (limit cycles) to be observed in a dissipative Hamiltonian system that is de-
termined by the equations of motion detailed in (A.1).

Regarding the stability of the equilibrium points defined by (A.2), the condition asa; —ag > 0
is satisfied whenever ag + ['(Q? + 2I'?) > 0. The last property to check is therefore whether
ap > 0 since it then follows that ay + I'(2% + 2I'?) > 0 given that we have assumed I', Q2 € R ,..
ag > 0 requires that

r( . _ Q0 1" Qpi 1"
ao =7 <4A2 +202 +T% - 8(n+ 1)VA [%] +4(2n + 1)V? [%} )

= 2 <292 +1?% 44 {A ~-V (gpge)q : {A —(2n+ 1)V (gpg)nb > 0.

This is always satisfied for the case of sign(V') # sign(A), which is also the case where only a
single steady state solution exists. Therefore, this one solution must be attractive. For the case

of multiple steady states, which may occur if sign(A) = sign(V'), the stability of a steady state
Pge,o is tested by verifying whether or not above inequality holds.

A.2  3-LEVEL SYSTEM

The three-level system outlined in Section 4.2.3 is studied using the same procedure as out-
lined above for the effective 2-level model. However, even though it is still technically possible

lif and only if
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to write down the coefficients of the steady state polynomials and the characteristic polynomial
of the linearisation, it becomes unfeasible in reality. Therefore, the equations of motion are pre-
sented and a closed-form expression for the steady state polynomial in terms of newly defined
coefficients is given such that the results are reproducible.

The resulting steady state solutions and their stability are therefore studied numerically, us-
ing the methods presented in the obove section on the effective 2-level model.

Equations of Motion

The equations of motion of this model, separated by real and imaginary part for each element
of the density matrix, read

Pgg = — Qpp;e + Lgepte + Lgrorr, (A.9a)
Py = + Tgeple + Tgrpl, (A.9b)
ﬂge =+ Qpp;e - Qcpér - F!]@pZe + FeTp:m (A'9C)
p;e - = Fgeplee + Fe’l‘p;ra (A.9d)
Prr = + Qeper = Lgr + Ler) s (A.9e)
Prr = — (Lgr + Ler)prys (A.9f)
. Q, . 4 Q. . - r

Pe = + = (Pec = Pgg) = 5 Par + BpPlpe = = Pes (A.9g)
. Q Q . ,

p;e - - 7p(p£e - p;g) + {pgr - Appge - %p;ev (A9h)
. Qe ; Q, . ~ ; lge+Ter +T .
pgr =+ 76(:0}/’7" - pzee) + 7pplg7‘ + (AC - V(p;:r)n)pler - ;T - p;“? (A.91)
i Q Q ~ DPge +Ter +Tg .
pfar = = 70(1077:7’ - 1026) - %pgr - (AC - V(p:r)n)p;” - ;T - pfi?"’ (Agj)
. Q, Qe Iy +T ~ ~ s i

Por =+ o Per = 5 Pge =~ P+ (Bp+ Be = V(7,)") Pl (A.9K)
¥ Q Q Lyr +Ter ~ ~

Por = = 5 Per + 5 Pge =~ Py — (Bp + Be = V(pr,)") 0l (A.9l)

Again, we have used the fact that the imaginary part of the populationsis zero due to hermiticity
of the density matrix to simplify V' (p,-)" to V(pl,.)". In this three-level case, one finds that the
time-evolution of the system is actually determined by eight equations instead of the twelve
given above. This reduction in equations comes from the hermiticity of the density matrix p,
implying that p, = 0, and the trace condition which removes another degree of freedom from
the system of equations.

Steady state solutions

In order to determine the steady state solutions of the system, we again set the time derivative
of the density matrix elements, i.e. the left hand side of (A.9), to zero and solve in R. The result is
more tedious to obtain due to the number of equationsinvolved, butitis again possible to derive
a polynomial in p’_ which determines the steady states through its roots, and express the other
density matrix elements via p . To find this polynomial, one first expresses the populations via
the coherences

Vi



A.2. 3-LEVEL SYSTEM

Q, . Q r
ro=1—-—2Ly - —  (1-= A.10a
pgg Fge pge I‘er + Fgr ( Fge) Pers ( )
1 .
== Q. — A.10b
pee Fge ( ppge er + Fgr ) ( )
Q. ;
Prr =T T Per (A.10¢)
er gr
0 =phy = Pec = Prrs (A.10d)

and then solves the remaining (non-linear) system of six equations of the coherences

0 = —a1pl,  +aspl, ‘ —agpl, )

0 = +by —bipge —bapy, +0ape.  +bs0y, ,

0 = 4 +C3p£r +C4p;r +06p§]7" (A -”)
0 Fdopye —dspe, —dape, +dspy, , ' '
0 = —€20 Feiper  —CsPy  tespy,

0 = +f1Pge —J30e; —fspg  — 6Py )

The coefficients are indexed by column from 0 (leftmost) to 6 (rightmost), and from a (top) to f
(bottom) row. In the following, only the coefficients z; will be used as indicated above to avoid

clutter. WithV’' =V (Q— ) one obtains the coefficients defined as

Tertly per
Ty X Q.
a; = 29 as = A, a5 = -
Q . T,
by = -2 b= A by = (2 4 2
0= 1 P 2 <2 +Fge)
00, (T, 1 Q.
by = —F < — = by = —<
F6T+Fg7‘ Fge 2 2
r re.+1, ~ Q
C3 = ge & Tl C4:(Ac—vl) 6 = —=
2 2
Q,Q -
dy = 2 ds = (2.~ V")
2 or,, 3
1/ @ (T, Q
=5 . 1 Lge + e + Ty, ds = ==
d4 2 (Fer +Fg7" (Fge " ) " ! - " ! > ’ 2
QC Q Fr+rer X X
62—7 64:711 65:!]T 66:<AP+AC—V,)
Qe Q ~ < Ly + e
f1:7 f3:7p fs=(A,+A. =V fGZQT

When solving this system of equations one must be careful with the terms containing V"’ since
this is proportional to (pi, )™ and renders the system of equations (A.11) nonlinear for n # 0.

Vil
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With the additional definitions

a (& a e
bZ:b4—(b2+b1—2)—4 b;:b5+(bs+bl_2>_5
aq €9 a1 €2
a a (& C (&
bZ:bl—ﬁ— (bg+b1—2)—6 dZ:d4+d3_4_d2_4
aq aq ()] Cs €2
€ C € C ag €
d;zd5—|—d2—5 dZ:d3—6_d2_6 fI:f3_4_f1_2_4
€9 C3 ) C3 ay 2

a9 €5 Qe Ce a2 €g
fi=f+fH—— fo=fc+h—+fi——fi——
ai €s ai C3 ay €2

for reduction of the length of the expressions, one arrives at the following polynomial in p
which defines the steady state solutions of the three-level system. The polynomial is given by

0= bods (fsds — f5ds)

+ pl, [(b3ds — bsdy) (feds — f3dg) — (fids — f5dy) (bgds — b3dg)]
and the steady state values of the remaining coherences follow as
T 1 % 7
Pge =~ (a2pge - a6pgr> ’ (A.15a)
1
7 1 % T %
Poe =— (eapl, — espy, + esply) (A.15b)
2
o = (caplr + coply) (A15¢)
3
T 1 * g * g
pg’f‘ = — E (d4p€7' + d6pgr) 9 (A.15d)
5
; * *d* - * *d* i
p:]?" == |:f6 _de_§:| (f4 _f5d_:<1) Per> (A15e)
5 5

with the populations already defined above in equations (A.10).
If one wants to include dephasing of the coherences, one simply has to re-define the appro-
priate coefficients and proceed as before.

The polyonmial (A.14), defining the steady state values, is of the form

P(pzer) - Z ak(pir>k
keN
with N = {4n+1,3n+1,2n+1,2n,n+1,n,1,0},and s therefore of order max(4n+1,1).
This polynomial has eight terms which allows for a maximum of seven sign flips in the sequence
of coefficients. Hence, a maximum of seven positive, real roots exist according to Descartes’ rule
of signs.

2Distinguishing these cases becomes relevant if one studies the system for negative n, for instance.

VIl
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General expressions for all eight coefficients «; exists and can easily be obtained with the help
of symbolic mathmatics programs like Mathematica. The expressions for most coefficients are,
however, too long to present them here.

The steady state values were calculated with an implementation of the companion matrix
approach in Python, therefore only systems with n € Ny could be studied numerically.

Stability of the steady states

For the linearisation of the map and the resulting characteristic polynomial, the same holds
as for the steady state polynomial: in principle, it is possible to write down an analytic closed-
form expression, but they become too tedious to work with. Therefore, the linearisation was
implemented in Python and the eigenvalues were obtained using numpy functions.

The steady state values calculated via the polynomial (A.14) were again in excellent agreement
with the values for the locally attractive steady states of the system obtained by numerical in-
tegration of the equations of motion. Therefore, the polynomial procedure is not just reliable
but also much preferrable as it is computationally significantly less expensive and faster than
integration of the system. Additionally, it returns information on all steady states of the system
and not just the locally attractive ones.



B INTERACTION HAMILTONIAN FORVAN DER
WAALS-TYPE INTERACTIONS

When being in the van der Waals interaction regime', the Rydberg-Rydberg interaction scales as
Cs /18, for a pair of atoms (k, 1) at distance ry,. Therefore, the system’s many-body Hamiltonian
including two-body interactions is given as

i, = > (L + 1) (B.1)
k

with the interaction? term for atom k defined as

(k) h i
Hine, = 5 Z N ") (Tl @ )y, (] (B.2)
1k

For few particles, the full quantum dynamics can be computed on classical supercomputers.
However, due to the exponential growth of Hilbert space with the number of particles, this task
quickly becomes unfeasible. One solution to this problem is to use quantum simulators, that
is quantum systems which ’naturally’ implement the Hamiltonian of interest in a system that is
easier to handle than the eoriginal one. Given the restrictions of such a quantum simulator and
further questions such as experimental imperfections or impact of finite size effects, there has
been a lot of work done on the theoretical side to complement quantum simulators by approx-
imating the behaviour of quantum systems such that larger system sizes become handleabl for
classical computers. One approximation often done in the literature is the mean-field approxi-
mation, where one replaces the two-body correlator

e (r| ® Z )y (7]

1This requires that the average spacing between Rydberg atoms is larger than the LeRoy radius, which is a measure
for the distance two atoms must have such that their Rydberg state wavefunctions do not overlap.

This interaction between pairs of atomsin the cloud can generate entanglement, causing the many-body density
matrix p to loose the block-diagonal structure pc,—o = @™ which is a property of non-interacting systems.



with the expectation value for the density operator?, i.e. Al — <n$f2>p = pM This approxi-
mation changes the interaction Hamiltonian to a mean-field Hamiltonian

k

£k kl

This expression is still comparably complex since one has to compute the full sum in the interac-
tion part of the Hamiltonian for every time step and every sample run. The mean-field approach
isemployedine.g. the dTWA formalism, which allows to simulate several thousands of particles
at once [193].

From the form of equation (B.3), one can now proceed in two different ways to further simplify
the system*.

Nearest-neighbor interaction at average Rydberg atom spacing

The first, very simplistic approach assumes that the interaction with the nearest neighbor Ryd-
berg atom contributes much stronger than all other interactions, such that interactions with Ry-
dberg atoms other than the nearest neighbor can be neglected. The second assumption is that
the nearest Rydberg atomis found at the average Rydberg atom spacing” (rrya.) = g(prRyd)*l/i”,
where p, denotes the vapour density and fg,q the fraction of atoms in the Rydberg state. Assum-
ing the fraction of atoms in the Rydberg state to be uniform across the vapour, this is then equal
to the expectation value of the Rydberg state for atom k.
Given the assumptions above, the simplified mean-field interaction Hamiltonian is given by

(k) h 9 0 ) 3
Hiny. = D) 17 g (7 5 Copy, (Pw ) . (B.4)

To work with this expression without having to deal with all £ atoms in the sample, we make
the last approximation of removing the sum over all £ atoms in the many-body Hamiltonian and
justify this by stating that, statistically, the situation will be the same for all atoms and therefore
it suffices to consider a single one. This leads to the following, final formulation of the simplified
mean-field Hamiltonian

h (9
Htot. = HAL - |T> <’l“’ 5 (g) CGpv prr (BS)

When adding the incoherent decay and dephasing terms through the Lindblad operator terms,

one can identify this approach with the three-level model with the parametersn = 3and V =

g (%)6 Cep2. The unit check for this approximation is positive, V has the unit of an energy in Hz.

3The density operator of the I-th atom A" is defind as 2!} = |r),, (| such that <n§Q> =Tr [ (l)p(l)} = o and

p" = Trjzlp).

“Note that we were interested in a practical and handleable approach to the problem, and not the most accurate
form one could find.

5This equation comes from the expression for the average distance of atoms in a uniform random sample with
density py, (r) = §(py)~"/? [194].

X
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Statistical distribution of Rydberg atoms with uniform density

Above expression for the interaction Hamiltonian has successfully reduced the scope of the
problem from a full-grown N-particle many-body problem to an effective one-body equation
of motion. However, the assumptions of only nearest-neighbour interaction, and the nearest-
neighbour atom distance being the average spacing of Rydberg atoms in the vapour, are both
very crude.

One can better represent the situation by considering the statistical distribution of interatomic
distances in a cloud of uniform density p,. An expression for the probability of finding n atoms
within distance r of the central atom in a d-dimensional space has been derived in Appendix
D for the large particle limit. There, it is found that the probability of finding exactly n atoms
within radius r of the atom of interest is given by the Poisson distribution

: L,
P,(n) := Poisson,(n) = M exp(—p)

wherethe mean® 1i(r) = 3mp,r* inR®and p, denotes the density of interest, i.e. the atomic den-
sity or Rydberg atom density. The likelyhood of finding exactly n atom(s) in the shell of radius r
and thickness dr — 0 follows by taking the derivative of the above, i.e.

Pu(r) (n)dr = d% %u(r)” exp(_u(r))] dr

= <d dff")) [Puy(n = 1) = Py (n)] dr.

=

For future calculations it is relevant to note that the Poisson distribution is normalised for every
p > 0suchthatl =Y P,(n).

The interaction V' (r;) contributed by atoms in the shell [r;, r; + Ar;] can be approximated by
the sum

Ar; (B.7)

Tj € [T‘Z‘,Ti—l-ATi]

V(T’Z’>A7’i = Z gg

—~ 70
j 1

for Ar; — 0. With the statistical distribution of atoms given in equation (B.6), one can immedi-

®In the general case for d-dimensions, one finds that u(r) = pB, in R? with B,. the closed, d-dimensional ball of
radius r around the origin. Soford = 1 : p(r) = 2p,r,ford = 2 : u(r) = wpr? andford = 3 : p(r) =
4 3
TP, e

Xl



ately calculate the interaction strength contributed by atoms at distance r for dr — 0 via

_ C
V(r)dr :r_‘? Z NPy (n)dr

n>1

<d%“(7‘)) > [7Puy(n = 1) = Py (m)] dr

n>1

_ G
- <d%“(7")) D1+ 1)Pucy(n) = Y0Py ()| dr (B.8)

TG
L n>0 n>0

= % (%H(T‘)) > Pun(n)

Ln>0
_Cs (d
C6 (dr/L(r)) dr

where the sumovern > 0inthe second-to-last line evaluates to 1. The total interaction strength
induced on the atom by its environment then follows by integration over space where we as-
sumethat V = V(r) - V(0, ¢) is separable into a radial and an angular component. Then, one
finds for three-dimensional space with y(r) = 3mp,r* that

- /Oﬂde/:ﬂdw(e,@ / arv ()

ro QC%
:_[(9,(25)/ dr 4mp,r 5 (B.9)

T1

dr

r2

4 .
= - §W0x061(9,¢) r?

T1

The upper bound ry is theoretically given by infinity, and the lower bound must be greater than
zero'. A reasonable choice for ry, given the problem we are dealing with, is to set r; equal to
the Rydberg blockade radius, as no second atom can be excited into the Rydberg state within
the blockade radius and hence this volume is empty of particles contributing to a Rydberg-

interction induced level shift IV anyways. In future, the lower bound r; will therefore be chosen
to match the blockade radius ry, i.e. 1y = r, = (%)1/6. The Rabi frequency € in the expres-

sion for the blockade radius r;, denotes the two-level effective Rabi frequency 2 = % and the
resulting interaction experienced by an atom in the vapour then follows as

_ 4 _ 4
V= 571'[):206](97(;5) -7y 3= gﬂ—pvprrf(ﬁ,(j)) hCg1. (B.10)

The resulting intraction part of the Hamiltonian is then given by

41 p,
Hoy = — 3” Lig.0)\/TQ2Cp2, |r) (] (B.11)

"Else, one runs into an infinity which is very unphysical and is a speciality of QFTs and the likes.

Xl
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where the second factor of p,.,. follows from equation (B.3). In the idealised case of angular
dependence-free Rydberg-Rydberg interactions, the integral /(y 4) evaluates to 4. For reasons
of simplicity, this will be assumed for future calculations. Also, the unit check for this result is
equally positive, the interaction term contributes an energy in the unit Hz.

The resulting scaling of the interaction strength is only quadratic in the Rydberg state popu-
lation, rather than cubic as in the very crude derivation presented above. In this derivation, the
Rydberg blockade effect is partially taken into account by setting the lower bound of the integral
in (B.9) to the blockade radius r,. Therefore, the interaction will in future be assumed to follow a
square power law in p,. and the interaction Hamiltonian be given by equation (B.11). However,
one should bear in mind that the probability of finding n particles at distance r as derived in
Appendix D holds for Rydberg atoms only in the regime far from saturation of the Rydberg atom
density.

XV



C APPROXIMATION OF THE PLASMA MODEL

In [63], the authors have proposed plasma formation due to ionisation of Rydberg atoms in the
thermal vapour as the main mechanism leading to bistability. The lineshapes resulting from
their theory match the presented data well, additionally they present some experimental evi-
dence indicating the presence of a plasma in their hot Rydberg vapour.

The procedure to determine the steady state presented in [63] does not provide a route to an
intuitive understanding of the system’s dynamics. It does, however, provide a phenomenologi-
cal explanation for a mechanism underlying the bistability observed in hot Rydberg vapours. It
is threfore interesting to see if we can model the plasma formation approach and study it with
our methods.

The model proposed in [63] includes an additional population of ions as a fourth level, which
we haven’tincluded in the three-level model. Therefore, the steady state ion population has to
be re-expressed in terms of the Rydberg state population and the resulting Stark shift given asa
function of pJ,.. Further details on the model itself can be found in [63] and appendices thereof.
We will here derive the scaling of the level shift resulting from Stark effects due to the presence
of ions, but will not discuss their model in detail.

The level shift due to Stark effects is assumed to be given by the average of the Stark shift

Ag(F)atagivenfield strength E, weighted by the probability Py/(E) of finding this field strength
given an ion density NV,,. |.e.

Ag = / dEPy,, (E)Ag(E). (C.)
0
The probability distribution for the charge-induced microfields
Py, (E)dE = L’;‘—[ <£> dE (C.2)

is determined by the Holtsmark [195] probability distribution 7 (3), which is extensively used in
plasma physics to describe the fields created by the charged particles in a plasma. The Holts-
mark distribution is defined as

2 (o)
H(B) = —B/ dx x sin(Bz) exp(—*/?). (C.3)
™ Jo
Analytic expressions for the Holtsmark distribution exist [196], but the behaviour of the function

is no more intuitive in the analytic than in the integral form. The normal field Q) depends on
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APPENDIX C. APPROXIMATION OF THE PLASMA MODEL
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Fig. C.1: Electric microfield strength distribution induced by different charge densities. The proba-
bility of finding a given electric field strength E is shown for various charge densities N;o,,. For
the experimental parameters of this thesis, only electric fields with E' < 1V/cm have significant
probabilities of occurrence.

the ion density \V;,,, and is defined as

e 4 2/3
Qu =5 (1540 ) (c.4

with the elementary charge e, vacuum permittivity of free space ¢y and ion density N;,,, in 1/m3.
The plasma-induced electric field distribution is shown in figure C.1 and is <1 V/cm for the ex-
perimental parameters in this thesis.

In [197], an analytic approximation of the average Stark shift Ag depending of the ion number
density V. is given to scale as

AS('/\/;OTL) X —Oé./\/4/3 (CS)

on

with a denoting the polarisability of the respective Rydberg state.

This simplifies the problem significantly since we need now only find an expression for the ion
number density \V;,, in terms of the Rydberg population p!, and find the appropriate power law
scaling for A, o (pr,.)"™. We start with the expression for the ion density N;,, or, equivalently,
the ion state population pi, . since N, = pl..Niot, in terms of the Rydberg state population ..

In the steady state, we have

Fd Pion = FZ P:r (C6)

with the decay rates

2 kgT
I'y=2I'y = — L
w \| ™Menln(2)
|8kgT 2 1
Fi - -/\/;fot b (ag + Oe p:on)
™ Mion vV Mme
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The variables are defined' and reasonable values given in [63]. Since the one summand in the
decay rate I'; depends on the ion state population, we have to re-formulate equation C.6 as

pwn
gy Lien c.8
P ]- + anwn ( )
with
2Ft TMon and Oe Mion
a1 = — 11 o = — .
YT 0N\ 16k5T 2,/In(2)wN;eo, S\ 2me

For the heavier alkalis, and at principal quantum number around n = 50, one finds a, ~ 5000.
Therefore, the fraction in p;,,, can be expanded in a Taylor expansion” around zero, resulting in
the polynomial

p: =a (pmn - a2(p;0n)2) : (C9)

Only the smaller valued root of this polynomial leads to a physically interpretable result with
ph. € 10,1] and is given by another Taylor expansion® to second order.

1 4a2 1 1 ) ,
on = — [1—4/1— ~ ()2 O (o c.10
pim = 5= ( 205, ) = b 4 O () (c10)

Plugging this back into equation C.5 for the average Stark shift, we find the expression

As(ph) o< — aNi2 (o) (C.1a)
] 4/3
~ - t4043 ( 7“7“ + 4_(prr) ) (CTIb)
ap
- 1
~ - a(Metbhyis (1 fie O<<p:T>2>) g
1

where the last step is another approximation. For small Rydberg state populations such that the
Taylor approximations hold, the Stark shift induced detuning off the Rydberg state can be well
approximated as scaling with a power law n = /.

"Here, NV, denotes the ground state density, on the order of 10!% — 10'2 1/(cm)?; w the minimal beam waist,
usually on order of 0.1 — 1 mm; kg the Boltzmann constant and T the temperature in K, for hot vapour systems
on the order of 300 - 400 K; m;,,, and m. the masses of the ionic core and electron, respectively; 0y = 0.060 40
and o, = (1 — 10)og4., denote the ionisation cross section of Rydberg atoms with ground state atoms and
electrons, respectively. 0,., = ma2(nx)* denotes the geometric cross section of the Rydberg state with Bohr
radius ag and effective principal quantum number nx.

2The Taylor converges since pl,,, < %10*4 for the experimental parameters in [63] such that the convergence
criterion |az| < 1/|pL,,,| of the Taylor series is satisfied.

3This Taylor expansion converges as well since we find, for reasonable experimental parameters, that a; ~ 200
and pl',. ~ 2.8 - 1073 such that the convergence criterion is again satisfied.
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D SPATIAL DISTRIBUTION OFATOMS IN ATHER-
MAL VAPOUR

In athermal vapour with random distribution of particles, one can derive the probability of find-
ing exactly n particles within distance r of an initial particle. One has to make the assumption of
a uniform spatial probability distribution, i.e. that a particle has equal likelyhood of being found
at any given position in space, which implies a uniform particle number density. An expression
for this is derived in the following.

Starting with a fixed volume V;,; containing a total number of atoms V,,;, one defines the
particle number density via N;,; = pVin. Since the probability of finding a single atom in a
volume V is uniform over all space, it is given by p, = p(V') = V/V,,. The probability of finding
n particles within a d-dimensional sphere of radius  and the remaining V,,; — n particles in the
remaining volume V;,;/V' (where / here denotes the mathematical exclusion), is

Nio
P(exactly n particles in volume Vy) = ( 7tz t) (po)™ (1 — py)Neer— (D.1)

with p, being the probability of finding a particle within the d-dimensional volume V, i.e. p, =
Vi/Vier. Substituting the values for p,, one finds

Nl (Va\"(,_ Yo\
. - _ ttetr [ T4 1—
p(m Ya, p) n!<Nt0t - n)! (Vtot) ( %ot)

1 Vi\" v\ Vet
= — Nigt oo (Niot =+ 1) (pd) (1—pd) .

For the large particle limit with n << N where N — oo, the above expression is approximated

by
Negesn 1 pVa\" oV \ Vet
p(n; Vg, p) R o Ny (m) <1 N, t)

Niot—00 ]' n
T (pVa)" exp (—pVa)
= Poisson,(n) with = pVy. (D.2)
In the limit V,,; — oo in the second step, one keeps the density p = N, /V;o constant which
is identical to just appending more and more volume with constant density in all directions of
space.
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The result is a Poissonian distribution P,(n) for the particle number within the volume V7,
weighted by the mean p(r) = pVy(r) - which is equal to the average number of particles in the
volume. The resulting form is coherent with the fact that the Poissonian distribution describes
adistribution of uncorrelated events with uniform probability of occurrence, as was initially as-
sumed for the particle distribution. As is well known, the Poissonian distribution is normalised
in the sum over particle number n for any given . > 0, the expectation value for number of
particles within the volume is given by ;1 = pV; and the standard deviation by o = ,/p. This is
shown in Figure D.1 (b).

When calculating the statisical distribution of neighboring Rydberg atoms, one has to take
the Rydberg blockade into account which gives a radius r;, within which one cannot excite a sec-
ond Rydberg atom (see also Chapter 3). In the saturated regime [198], the neighboring Rydberg
atoms are packed densely. However, far from the saturation regime we expect the probability of
finding exactly n Rydberg atoms within a shell to scale almost identical as for the case without
blockade. This approach does not account for the blockade volume of the other Rydberg atoms
and is therefore approximately valid only in the regime where the average Rydberg atom spac-
ing 7., is much larger than the blockade radius, i.e. r,, > r;,. The effect of Rydberg blockade on
the distribution of neighboring Rydbrg atoms was taken into account in [199].

In the regime far from saturation, the resulting probabilities for finding exactly n Rydberg
atoms within a sphere of radius r therefore depends on the density p and the dimension d of
the problem. An example for the 2-dimensional case is shown in Figure D.1 (c). For the purposes
of this thesis, we are interested in the number of particles within a sphere of radius r in three
dimensions. Therefore, we set psp(r) = §7r,07~3 for any further calulations.

re-scaled radius r' = rp'/d
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! 1 1
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Fig. D.1: Spatial distribution of particles in d dimensions. (a) shows an illustration of the nearest-

neighbor distance problem for the case of d = 2. In (b), the probability of finding exactly

n particles in a spherical volume defined by = pV; are shown and the resulting re-scaled

radii 7 = rp'/? are plotted above the graph for the dimensions d € {1,2,3}. The scaling of

pn(n, 737, p) With the ratio of density p to blockade radius 74 is shown in (c) forn € {0, 1,2, 3}.
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E NEwW TA-SHG LASER @ 480 NM

A second, new coupling laser for future experiments with two different Rydberg states was in-
stalled on the laser table. The laser is a TA-SHG pro at 960/480 nm from Toptica with 480 nm
output powers of up to ~ 1.2 W. The laser was named Margit', which is an old German name
meaning child of light.

The seed laser diode at 960 nm is locked to an ultrastable high-finesse cavity via error signal
generation using the cavity reflection spectrum together with a PDH scheme. Further details on
the laser lock are given in Appendix F.

Due to the high output powers, the laser must be handled with care. When focussing the laser
beam down to lower beam waists one must be careful not to destroy conventional optics as the
laser can easily exceed the standard energy density damage thresholds.

Scattering losses in optical fibers are significant at these short wavelengths of ~480 nm. This
problem occurs predominantly at high laser powers, but also leads to generally lower coupling
efficiencies. A maximum coupling efficiency of 66% has been achieved for up to 600 mW inci-
dent power. When re-doing the fiber couplingitis paramount to reduce the incident laser power
toaminimum. Otherwise, the high powers may be focussed anywhere on the surface of the fiber
which causes the fiber head to degrade from heat. Similarly, when operating the fiber at high
incident powers, a slow heat-induced degradation of the surface can occur even for optimum
beam alignment. If the surface has degraded, a simple polishing of the fiber head with a fiber
polishing kit repairs most damage.

Nonetheless, to achieve long lifetimes of the fiber it has to be handled with great care and only
as much power as necessary for the experiment should be sent through the fiber. The remaining
surplus power can easily be guided into a beam dump.

1After the first person was stung by the high power beam it has been agreed by the lab crew that the laser’s nick-
name, being the second syllable of it’s name, is very appropriate.
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2 CAVITY LOCK
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Fig. F.1: Schematics of cavity lock. The schematic structure of a sideband cavity lock is shown in (a),
further details can be found in the main text. Panel (b) shows the TEM mode spectrum trans-
mitted through the cavity. The generated error signal with the inset showing a zoom-in of one
EOM-generated sideband is shown in (c). We use FALCs from Toptica to generate the error signal
that is eventually fed back to the laser diode.

In athree-level excitation scheme, the coupling laser has to be locked onto or scanned through
the two-photon resonance. Two-photon EIT locks [200, 201] are an option, but require compa-
rably much coupling laser power which might not be available. Therefore, the standard solution
is to use cavities to generate an artificial atomic resonance which can similarly be used for the
generation of an error signal. The fundamental light at ~ 960 nm of the existing (old) TA-SHG
pro laser system had therefore been locked to an ultrastable, ultralow expansion (ULE) refer-
ence cavity. Details on the cavity and the previous lock of the old laser system can be found in
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APPENDIX F. CAVITY LOCK
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Fig. F.2: Optical setup of cavity lock for two lasers at ~ 960 nm. The beam paths for the old (teal)
and new (yellow) TA-SHG pro laser systems are shown and the relevant parts are specified in
the graph. We use fiber-coupled EOMs of the PMxxx series from Jenoptik. Since both lasers are
polarised perpendicularly, the reflected light falls only on a single reflection photodetectors and
the polarising optics for spatial mode imaging of the light transmitted through the cavity can
select either of the two lasers.

the PhD thesis of Nicholas Spong [147]. Since the cavity spectrum does not necessarily match
the desired frequency for the lock point, one has to lock onto the sideband of an electro-optic
modulator (EOM) instead. The frequency of the sideband can be adjusted as required, which
allows for an arbitrary lock point in the spectrum [184, 185]. An example for the cavity spectrum
of the ULE cavity and the error signal generated from the TEMy, mode and EOM sidebands are
shown in Figure F.1 (b) and (c), respectively. Aschematic representation of a cavity lock is shown
in Figure F.1 (a).

Details on the principle of a sideband lock can be found in e.g. [184, 185]. It might be relevant
to note, though, that the sideband lock can also be used to scan the coupling laser through
resonance in a controllable fashion as a sideband scan lock.

For this, the sideband frequency fsp is scanned slowly which changes the frequency of the
zero crossing of the error signal generated by the sideband. We have found that a tweaking of the
FALC settings for error signal generation towards a more aggressive lock allows for larger scan
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Fig. F.3: Electronics setup of cavity lock. The wiring of the electronics and the parts are specified in
the graph. All electronic parts are from MiniCircuits, the fiber-coupled phase modulators from
Jenoptik.

widths and faster scan rates. The maximum stable operation we have achieved' with a sideband
scan lock was for scan rates of 0.1 MHz / 10 ms over scan ranges of 140 MHz of fundamental light,
i.e. 280 MHz at ~ 480 nm.

It is easily possible to lock multiple lasers onto the same cavity?, e.g. when the wavelengths
of the lasers are different enough to separate the light with dichroic mirrors. Since both the old
and new TA-SHG pro operate at ~ 960 nm fundamental light, we have distinguished them by
polarisation instead. The 50:50 beamsplitter used to combine the lasers onto the same beam
path leads to 75% losses of the incident light until detection. For our systems, this was not an
issue as we receive enough pickup light from the 960 nm diode to still get strong enough a signal
on the photodetectors. Theresulting cross-talk between the lasersis ~ 1% of the incident power
after the EOMs, which is negligibly small and did not have a detrimental effect on the quality of
the locks.

The optical setup used to lock both lasers onto the same cavity is shown in Figure F.2 and the
laser polarisations as well as the relevant parts are specified. The corresponding board carrying
the electronics with part specification is shown in Figure F.3.

The maximum scan ranges and scan speed will depend on the specifics of the electronics, error signal generator,
laser diode and signal quality. The quality of the signal and optimisation of the generated error signal are key
for obtaining stable and fast scans over large scan ranges without loosing the laser out of the lock. It is then
even possible to scan across higher-order TEM cavity modes without unlocking of the laser.

2As long as the lasers fall within the wavelength range of the cavity mirror’s coating. If the lasers fall outside the
specified range of the coating one can still use the cavity for locking as long as one gets a decent spectrum. Just
try, you might actually be lucky!
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