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ABSTRACT

Nonlinear systems display a wide range of rich and varied dynamics which are usually modelled
in the framework of nonlinear dynamics and bifurcation theory. Adding dissipation to the system
fundamentally changes thedynamics of the systemand leads to the formationof evenmore inter-
esting solutions, such as attractive limit cycles which represent phase oscillators. In an ensemble
of coupledphase oscillators one canobserve the onset of a collective response under certain cou-
pling conditions, also known as synchronisation. Many e�ects that occur in nature have been at-
tributed to synchronisation. However, an experimental study of synchronisation in ensembles of
many coupled oscillators has proved challenging due to the lack of a suitable system. In this the-
sis, we report on the emergence of synchronisation in a driven-dissipative hot Rydberg vapour.
Two-photon EIT spectroscopy of Rydberg states reveals oscillations in the bulk transmission of
the probe laser by a thermal rubidium vapour at temperatures between 35 and 60 °C. Simula-
tions of the hot vapour system support the interpretation of the observed oscillatory response
as the onset of synchronisation in a driven-dissipative atomic system with global coupling via a
Rydberg atom density field. The appeal of this system is twofold. Firstly, its wide tunability and
fast oscillation frequencies on the order of 10 kHz allows for an exploration of the synchonisation
transition over a large parameter space. Secondly, the Rydberg vapour contains∼ O(109) atoms
in the beam volume and a somewhat lower number of constituent oscillators, which gives access
to a large number of coupled oscillators. Additionally, connections to continuous dissipative time
crystals and other phenomena can be drawn, which adds another layer of interest.

ZUSAMMENFASSUNG

Nichtlineare Systeme zeigen eineBandbreite an vielfältigenDynamiken, welchemeistens imRah-
men der Theorie nichtlinearer Systeme und Bifurkationstheorie untersucht werden. Wenn man
zu einem solchen System nun dissipative Elemente hinzufügt, dann können sich die daraus re-
sultierenden dynamischen Verhaltensweisen des Systems fundamental ändern. Unter anderem
können sich sogenannte limit cycles als Attraktoren ausbilden, sodass das System zur Klasse
der Phasenoszillatoren gehört. Viele in der Natur au�retenden E�ekte können als Synchroni-
sation von gekoppelten selbstoszillierenden Einheiten, den Phasenoszillatoren, verstanden wer-
den wobei das Ensemble einen kollektiven, synchronisierten Zustand einnimmt. Experimentell
ist es schwierig Ensembles mit einer großen Anzahl an gekoppelten Phasenoszillatoren zu un-
tersuchen, da entsprechende Systeme bisher fehlen. In dieser Arbeit stellen wir ein solches
System vor, nämlich ein kontinuierlich getriebenes, dissipatives warmes Rydberg-Gas. Zwei-
Photonen EIT-Spektroskopie von Rydbergzuständen zeigt Oszillationen in der Transmission des
probe-Lasers durch ein warmes Rubidiumgasmit Temperaturen im Bereich von 35 bis 60 °C. Sim-
ulationen der Prozesse im Rydberg-Gas unterstützen die Interpretation der beobachteten Oszil-
lationen als Signatur von Synchronisation der Atomzustände, wobei die Kopplung (indirekt) über
die Rydbergzustandsdichte erfolgt. Das hier vorgestellte System ist aus zwei Gründen besonders
interessant. Einerseits ermöglicht das System es einen weiten Parameterbereich zu erkunden,
da die Rydbergzustände sehr versatil und veränderbar sind, und die schnellen Oszillationsfre-
quenzen in der Größenordnung von 10 kHz schnell ausgelesenwerden können. ZumZweiten sind
etwa∼ O(109) Atome im aktiven Strahlvolumen enthalten, woduch eine große Anzahl an global
gekoppelten Oszilatoren untersucht werden kann. Außerdem können Verbindungen zur Physik
von kontinuierlichen, dissipativen Zeitkristallen sowie anderen bekannten E�ekten hergestellt
werden. Dies macht das System noch in einemweiteren Zusammenhang interessant.
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1 | INTRODUCTION

Have you ever sat in an audience and noticed the applause change from chaotic clapping to
a rhythmic pattern? Ever wondered why slightly detuned metronomes placed on a common
baseplate tick together, andwhy fireflies flash in unison? Orwhy an ensemble of Rydberg atoms
responds collectively to continuous driving, even though each atom individually is subject to
randommotion?
As di�erent as these situations may seem, the underlying processes are very similar. All in-

stances can be abstracted to an ensemble of constituents that undergo their own periodic pro-
cesses which, eventually, begin to align to a single, collective response. This alignment of the
periodic processes, however, does not happen by chance. The constituents cannot be thought
of as independent of each other, rather there is some form of interaction between them. In the
case of the audience this interaction is given by hearing the clapping of ones neighbor which
might cause one to adjust one’s own clapping pattern. As a result, a growing group of people
begin to clap in synchrony which, in turn, compels even more people to adjust to this pattern
until the entire crowd claps as one. This kind of process is a universal phenomenon known as
synchronisation1 [4, 5].
Synchronisation isubiquitous innatureandhasbeenemployed toexplain theexamplesabove,

but also many other processes such as pattern formation in chemical reactions [6–8] and the
strong vibrations of the Milennium bridge in London on its opening day2 [10]. A detailed un-
derstanding of the conditions required for the emergence of synchronisation is therefore key
to understanding many phenomena that occur in our environment. The mathematical study
of synchronisation has made many advances since the first discussions of the phenomenon by
Winfree [11] and, later, Yoshiki Kuramoto [12]. However, even thoughmany processes have been
describedusing the frameworkof nonlinear dynamics and synchronisation, it is still challenging
to probe and study the phenomenon for very large numbers of coupled oscillators. Ideally, the
test system would be easy to implement, simple to monitor, and have a set of widely tunable
parameters. For low numbers of oscillators, such experiments have been performed e.g. with
two pendula fixed to a common support [13] or metronomes placed on amoving baseplate [2].
For large numbers of coupled oscillators, the demands on the systemare hard to comeby – par-
ticularly the tunability of the coupling strength and the other parameters is di�icult to obtain in
generic systems.

1References for the examples mentioned above are: synchronisation of applause in an audience [1], of coupled
metronomes [2] and the flashing of fireflies [3].

2This interpretation is contested, mechanisms other than synchronisation could also be employed to explain the
strong lateral vibrations. See e.g. [9].
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CHAPTER 1. INTRODUCTION

In this thesis we report on the emergence of synchronisation in a driven-dissipative hot Ry-
dberg vapour. The system consists of an estimated ∼ O(107) coupled oscillators with widely
tunable paramters and coupling strengths. Additionally, the setup and monitoring of the sys-
tem is easily done in an atomic physics laboratory. The oscillation frequency on the order of
10 kHz permits real-time monitoring and quick feedback, as opposed to other known and con-
trolled instances of synchronisation like in the Belousov-Zhabotinsky reaction [14, 15].

To lead towards the experiment and provide an understanding of the mechanisms causing
the emergence of synchronisation in our system, the thesis starts with a description of the fun-
damental building blocks of our experiment. That is, the framework to describe interactions of
individual atomswith light isoutlined inChapter 2. Theexaggeratedpropertiesofhighly-excited
atomic states, so-called Rydberg atoms, is introduced in Chapter 3with a particular focus on the
strong second-order interactions between pairs of Rydberg atoms. These chapters set the pre-
requisites required for the remainder of the thesis, where a theoretical study and simulations of
a hot Rydberg vapour in Chapter 4 is followed by a presentation of the experimental results in
Chapter 5. We first show that a dissipative three-level system with a power-law shi� of the Ry-
dberg state is attracted towards limit cycles under certain conditions, and that interactions via
a global mean field lead to synchronisation of the dynamics of individual atoms in a hot vapour
simulation. As a result, oscillations of the bulk quantities of the driven-dissipative hot Rydberg
vapour are predicted. We then show the experimental observation of persistent oscillations in
the transmission of a probe laser in a three-level Rydberg EIT configuration. The behaviour of
the resulting oscillation regime with changes in the experimental parameters is presented and
possible mechanisms are discussed. Detailed calculations and derivations as well as further
information on the experimental setup can be found in the appendices.

Fig. 1.1: Schematic representationof thesynchronisationof threephaseoscillators. Thephasespace
trajectories of three phase oscillators are shown in the insets, with the dot indicating the state
of the sysem at a given time t. A coupling between the oscillators (gray) induces a force which
entrains the oscillators in frequency and phase on their limit cycles. As a result, synchronisation
emerges.
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2 | ATOM-LIGHT INTERACTION

The object of interest in this thesis is a driven-dissipative hot Rydberg vapour and some no-
table processes occurring therein. However, in order to understand the relevant phenomena
wemust first revisit the fundamentals of atom-light interactions. The semiclassical approxima-
tion and the resulting framework for a description of the atom-light system are introduced first,
and some well-known e�ects are discussed. This semiclassical treatment of an n-level system
is usually an idealisation of the actual situation, which presents itself asmore complex. Compli-
cations are, among others, Doppler broadening and associated motion-induced e�ects as well
as the complex level structure of atoms on the fine- and hyperfine level. These e�ects, and how
one can incorporate them into a semiclassical description of the light-matter interaction, are
therefore briefly mentioned at the end of the chapter.

2.1 SEMICLASSICAL APPROXIMATION

When working in the regime of quantum optics, one usually deals with single or few photons
and an ensemble of individual to many atoms [16]. In such a situation, both the atomic and
the photonic part of the system have to be quantised in order to provide a useful description
of the atom-photon system. For strongly driven systems in the many-photon limit, one needs
not quantise the photonic field in order to arrive at a useful description of the system [16]. The
resulting semiclassical approximation can account for e.g. the well-known e�ects of Rabi os-
cillation [17], electromagnetically induced transparency (EIT) [18], and Autler-Townes splitting
[19].
In the semiclassical approximation, light is treated as a classical field Ewhile the atomic com-

ponent is quantised into discrete energy states {|1〉 , |2〉 , ..., |n〉 , ...} as is encapsulated in the
single-atom Hamiltonian Ĥ0. These atomic states are coupled via resonant driving by the light
field, such that the photon energy matches the energy di�erence of the atomic states and a
population transfer is induced between the states. The dipole coupling strength between two
atomic levels is quantified via the Rabi frequency1 Ωij = 〈i| d̂ · Ê0 |j〉 /~, where d̂ = er̂ denotes
the dipole operator. Additionally, decay channels introduce dissipative dynamics into the sys-
tem and can fundamentally change the resulting behaviour. For the remainder of this thesis
we assume that the atomic basis is complete insofar as all decay occurs within the basis set
and no atomic population is lost. This is enshrined in the trace condition for the density matrix
tr(ρ̂) = 1.

1E0 denotes the amplitude of the electric field E, including spatial orientation.
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CHAPTER 2. ATOM-LIGHT INTERACTION

Fig. 2.1: Rabi oscillations and dressed states in a two-level system. The 2-level atom-light system is
shown schematically in (a) and the resulting dynamics in (b). In the case of no decay from the
excited state, Rabi oscillations persist (le�). These oscillations are damped and quickly fade out
when the decay is included (right). (c) The eigenenergies E± of the dressed states |±〉 and the
state admixture χ± = | 〈i|±〉 |2 for |i〉 ∈ {|g〉 , |e〉} are colour-encoded.

2.1.1 TWO-LEVEL SYSTEM, RABI OSCILLATIONS, AND DRESSED STATES
The simplest case is that of a two-level system with ground and excited states |g〉 and |e〉, re-
spectively, as shown in Figure 2.1 (a). The levels are coupled via a light field of Rabi frequencyΩ
and detuning2 ∆, and the excited state decays into the ground state at rate Γ. In the dipole and
rotatingwave approximations [16], the atom-light Hamiltonian is given by ĤAL = −d̂ · Ê0 which
results in an overall single-atom Hamiltonian

H = H0 +HAL =
~
2

(
0 Ω
Ω −2∆

)
. (2.1)

The coherent time evolution of the system is governed by the von Neumann equation3 [16] and
formulated in operator representation via the density matrix ρ̂

∂ρ̂

∂t
= − i

~

[
Ĥ, ρ̂

]
. (2.2)

As a result, one finds that a two-level system subject to constant driving undergoes Rabi oscil-
lations, as shown in Figure 2.1 (b). The population oscillation frequency is given by the e�ective
Rabi frequencyΩeff =

√
Ω2 + ∆2whichdependson thedetuning fromtheexcited state, as does

the magnitude of population that oscillates between the two states.
Analysing the Hamiltonian Ĥ reveals an interesting e�ect for strong coupling Ω. The light-

induced coupling of the bare atomic states produces a new set of eigenstates |±〉 of the Hamil-
tonian, the so-called dressed states, which are amixture of the bare states. Their corresponding
eigenenergies are given byE± = ~

2

(
−∆±

√
∆2 + Ω2

)
. On resonance where∆ = 0, the eigen-

states are not degenerate as one might initially expect, but have an energy splitting of Ω. This

2For an atomic transition of frequency ω0 and a driving field of frequency ω, the detuning ∆ from resonance is
defined as∆ = ω − ω0.

3At this stage, the time evolution can equivalently be described by the well-known Schrödinger equation. The
framework of the von Neumann equation is chosen here due to the introduction of dissipation and dephasing
later in the chapter.
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2.1. SEMICLASSICAL APPROXIMATION

results in an avoided crossing of the system’s eigenstates |±〉 as can be seen in Figure 2.1 (c).
Such dressing of a pair of atomic states via strong coupling has been observed in a wide range
of systems and has found applications in e.g. terahertz field sensing [20].

However, real-world systems rarely ever behave as neatly coherent aswas shownabove. Usu-
ally, the states are subject to decay and additional dephasing of the atomic cohrences, e.g. via
laser phase noise. This can be included by extending the von Neumann equation (2.2) with the
Lindblad superoperator [21]

D(ρ̂) =
∑
ij

(
Lij ρ̂L

†
ij −

1

2

[
L†ijLij, ρ̂

]
PB

)
(2.3)

where [·, ·]PB denotes the Poisson bracket. The operators L̂ij represent the decay channels for
i 6= j and thedephasingof atomic coherences for i = j. In bra-ket representation, theoperators
are denoted as Lij =

√
Γij |i〉 〈j| with Γij being the corresponding decay or dephasing rate.

The resulting time evolution of the density matrix is then determined by the quantum Liouville
(Lindblad) equation

∂ρ̂

∂t
= L(ρ̂) = − i

~

[
Ĥ, ρ̂

]
+D(ρ̂). (2.4)

Accounting for incohrent processes leads to significantly di�erent behaviour of the system.
Figure 2.1 (b) shows Rabi flopping of a two-level system without decay, this coherent dynamic
would continue infinitely if the system remained unperturbed. The right panel, however, shows
a systemsubject to decay from the excited to the ground state. This decay leads to strongdamp-
ing of the Rabi oscillations which eventually fade out such that the system is attracted toward a
steady state.
The damping of the coherent dynamics has caused experimentalists severe headaches over

the years, and many di�erent approaches have been trialled to increase the coherence time of
the experiments. Many of them are based on ultracold setups and selection of (meta-)stable
states as well as improving performance of the laser systems and field controls, though other
avenues have been explored as well [22, 23].

2.1.2 THREE-LEVEL SYSTEM AND ELECTROMAGNETICALLY INDUCED TRANSPARENCY
When adding a third level to the system, one finds another remarkable quantum mechanical
e�ect called electromagnetically induced transparency (EIT). The system can have any of the
three configurationsΞ, V orΛ, depending on the energetic configuration of the states [18]. Two
states are coupled to the third via dipole coupling, and the decay rates have to be set as ap-
propriate. Figure 2.2 (a) shows the schematic structure of a ladder (Ξ) configuration of states
where ground and excited state are coupled via the probe laser while the coupling laser drives
the |e〉 ↔ |r〉 transition.
When monitoring the transmission of the probe laser through an ensemble of such three-

level systems, one observes a sudden change in the probe transmission around two-photon
resonance. This is causedbydestructive interference of excitation pathways [18], resulting in re-
ducedabsorptionof theprobe laser. As a result, a so-calleddark state formswhich is completely
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CHAPTER 2. ATOM-LIGHT INTERACTION

Fig. 2.2: EIT and Autler-Townes splitting in a three-level ladder (Ξ) system. (a) shows a schematic
representation of a three-level Ξ system including the relevant decay rates. (b) The resulting
spectral response of the system is shown for di�erent probe powers inceasing towards the right.
The upper row of panels shows a scan of the probe laser detuning for fixed coupling laser de-
tunings∆cwhile the lower row shows the corresponding scan of the coupling laser detuning for
fixed∆p. The other system parameters are set toΩp/Γge = 0.02, Γer/Γge = 10−3 and Γgr = 0,
and no dephasing of the atomic populations or coherences was taken into account.

decoupled fromthe stronglydecaying intermediate state |e〉andcontainsonly the (meta-)stable
states |g〉 and |r〉. Figure 2.2 (b) shows the imaginary part of the electric susceptibilityχp, which
is ameasure for the absorption of the probe light by the vapour – and is therefore related to the
vapour’s transmission.
The response of the vapour and the resulting shape of the EIT resonance depends strongly

on the parameters of the system including decay rates, detunings, and coupling strengths. In-
creasing the couplingRabi frequency leads to an initial change in EIT amplitude at lowΩc before
the resonance begins to split as one enters the Autler-Townes split regime at high Ωc. In this
regime, the spectral separation of the EIT peaks grows linearly with coupling Rabi frequency
as is expected for a pair of dressed states. The strong dependence of the EIT resonance on the
coupling field strengths and state dressing by additional resonant fields has been utilised in ra-
diofrequency (rf) field measurement techniques [24] and atom-based broadband receivers [25,
26].
Another curiouse�ect, namely thatof slowand fast light [27], is linked toEIT since themedium

displays a strongly varying refractive index4 near two-photon resonance. Steep changes of the
refractive index at a given frequency lead to extreme group velocities5 at this frequency. This
e�ect has been used to slow light down to 17 m/s [28] by inducing a delay to a light pulse with
respect to one travelling outside the medium.
Such a continuous-wave (cw) scheme cannot, however, be used to stop light completely. If

one wishes to do so, one needs to employ an adiabatically pulsed scheme [29] where the pho-
ton is converted into an atomic spin-wave excitation [30–32]. This strongly coupled atom-light

4The complex refractive indexn of amedium is linked to the electric susceptibilityχ vian =
√

1 + χ. The electric
susceptibility is composed of the bulk properties of the medium determining the magnitude χ0, as well as the
microscopic properties derived from the density matrix ρwhich determine the shape of the resonance.

5Thegroupvelocityvgr of theprobe fieldat frequencyω canbecalculated fromthe real part of theprobe refractive

index np as vgr(ω) = c ·
(
np(ω) + ω

dnp

dω

)−1

. See also e.g. [18] for further details.
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2.1. SEMICLASSICAL APPROXIMATION

Fig. 2.3: Fine- and hyperfine structure of rubidium in a typical Ξ Rydberg system. The resolvable
hyperfine levels of the |5S1/2〉 ground state and |5P3/2〉 on the D2 transition of rubidium at 780
nm are shown in (a). Hyperfine state energy splitting values are given in MHz for the 85Rb (dark
orange) and 87Rb (light yellow) isotopes. The fine structure of the |nD〉 series is resolved in stan-
dard experiments for n 6 100 [43] while the |nS〉 state has just a single possible fine structure
value j = 1/2. The hyperfine structure splitting of Rydberg states is usually<MHz and therefore
not resolved in standard experiments. The transition to the |nLJ〉 Rydberg states has a wave-
length of around 480 nm. (b) shows an example coupling laser scan across the |35D〉 states of
the 85Rb isotope for a counterpropagating geometry. The spectrum reveals the fine-structure
splitting of the Rydberg state, rescaled by ×(λc/λp) due to Doppler mismatch, as well as the
hyperfine structure of the intermediate |5P3/2〉 state, rescaled by×(1− λc/λp) [43]. The probe
laser was locked ∆p/2π = −140 MHz below the |5S1/2, F = 3〉 ↔ |5P3/2, Fp = 4〉 D2 line of
85Rb.

system forms aquasiparticle called polaritonwhich inherits properties fromboth light andmat-
ter. Polaritons have been used for many applications, e.g. simulation of the Gross-Pitaevskii
equation [33], Bose-Einstein condensation [34, 35] at room temperature [36] and in thermal
equilibrium [37], coherent control of quantum states [38, 39], and the generation of an e�ective
interaction between photons [40–42].

EIT can thereforebeusedasa spectroscopic technique todetect atomic states via two-photon
resonance [43, 44], but can similarly be utilised as a tool in spatial imaging techniques [45].
Hot vapour EIT systems have been developed as useful tools for vector field measurements in
electrometry [46, 47] and magnetometry [48, 49]. Equivalently, the EIT dark state is used to
store and retrieve single photons on demand [50], thereby constituting the building block of a
deterministic single photon source, or as a quantummemory [51, 52]. In the experimental part
of this thesis, EIT is used as a spectroscopic method to coherently probe highly excited atomic
states, so-called Rydberg states.

9



CHAPTER 2. ATOM-LIGHT INTERACTION

Fig. 2.4: Electric dipole allowed transitions and intensity radiation patterns. (a) shows the di�er-
ent dipole-allowed transitions with respective angular momentum state changes on the fine-
structure level. The intensity radiationpatternofπ (olive) andσ± (red) electricdipole transitions
is shown in (b). The angle θ denotes the angle between quantisation axis and the observer, and
the radiation patterns have the angular dependencies Iπ ∝ sin2(θ) and Iσ ∝ (1 + cos2(θ)/2).

2.2 FINE- AND HYPERFINE STRUCTURE OF ATOMS

Experimentally, it may not be entirely straightforward to isolate n levels in an atomic system.
The fine- and hyperfine splitting6 of low-lying atomic states is comparably large, for instance
the rubidium ground state |5S1/2〉 is split on the order of gigahertz7 and the |5P3/2〉 state hy-
perfine splitting is still on the order of 100 MHz [54, 55]. However, this is not the case for highly
excited Rydberg states where the hyperfine structure scales with the e�ective principal quan-
tum number (n∗)−3 [56], and even the fine structure splitting cannot easily be resolved for very
highly excited states.
Figure 2.3 shows an example three-level EIT spectrum of a scan across the |35D〉 resonance

of 85Rb. The hyperfine structure of the intermediate |5P3/2, Fp〉 state is resolved but rescaled
by the Doppler mismatch of a counterpropagating geometry [43]. Only the fine structure of
the Rydberg state is resolved because the hyperfine energy splitting is much lower than the EIT
linewidth.
Applying external electric or magnetic fields li�s the degeneracy of the angular momentum

manifold via Stark and Zeeman splitting, respectively. This allows to address the specific angu-
lar momentum statesmj via frequency and polarisation matched coupling fields [57]. The po-
larisation of the light field with respect to the quantisation axis determines the transition that
is driven (π, σ±). It therefore addresses only pairs of states with amatching di�erence in orbital
angular momentum8, i.e. ∆mj = 0,±1 for electric dipole allowed transitions9. The di�erent

6The atomic fine structure originates in spin-orbit coupling to a total orbital angular momentum J while the hy-
perfine structure arises from an additional coupling with the nuclear angular momentum to the total angular
momentum F. More details on the coupling and limits of applicability of the di�erent quantum numbers can
be found in the literature, e.g. in [53].

7 85Rb has a ground-state hyperfine splitting of 3.0 GHz and 87Rb of 6.8 GHz [54, 55].
8This assumes an electric dipole transition. Higher-order electric transitions like quadrupole, or magnetic transi-
tions, can also be coupled but are usually much weaker and therefore neglected.

9The selection rules for electric dipole-allowed transitions state that ∆l = ±1, ∆j = 0,±1, and ∆mj = 0,±1
must be satisfied. Further conditions apply in certain cases, like e.g. (j = 0 ↔ j′ = 0) or (∆j = 0,∆mj = 0)
are forbidden.
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2.3. ADDITIONAL EFFECTS OCCURRING IN A HOT VAPOUR

Fig. 2.5: Motion-induced detuning and transit-time broadening in a hot vapour. Themotion-induced
Doppler detuning is shown schematically in (a) and the resulting detuning of a thermal ensem-
ble of rubidium atoms from the D2 line in (b). The thin lines indicate the rootmean square (rms)
velocity at di�erent temperatures and the inset shows vrms for rubidium. In (c), the e�ect of
transit-time broadening is shown. Excited atoms fly out of the beam volumewhile ground-state
atoms move in, leading to an e�ective decay from every excited state level to the ground state.
As shown in (c), the calculation of the transit-time decay rate Γtt is simplified by considering
only the 1/e2-radius of the beam.

transitions have di�erent spatial intensity radiation patterns with respect to the quantisation
axis, as shown in Figure 2.4 (b). This property is relevant to keep in mind when e.g. designing
imaging schemes for experiments or using optical pumping schemes.
The fine structure of atomic states aswell as the angular dependency of the electric dipole al-

lowed transitionswill be relevant again in Chapter 3. In the experimental Chapter 5, EIT scans of
a hot rubidium vapour akin to that in Fig. 2.3 will be shown, and the level structure of Rubidium
is of relevance.

2.3 ADDITIONAL EFFECTS OCCURRING IN A HOT VAPOUR

Thegeneric semiclassicaln-level treatment seems tobe fairly straightforward touse. Onewrites
down the equations of motion following from consideration of all possible coupling and decay
mechanisms, and then integratesor solves for the steadystate. The fine- andhyperfine structure
of the atoms complicates the situation a little as it introducesmore levels thatmight have to be
taken into account, depending on the polarisation-dependent coupling of states and possible
state shi�s due to electric or magnetic fields.
Nevertheless, the list of real-world complications is much longer. In a hot vapour, one addi-

tionally has to take the atomic motion into account which results in motion-induced detuning
and dephasing, transit-time broadening, and collision-induced ionisation [21]. As a result, the
response of a hot vapour looks significantly di�erent to that of an ultracold ensemble at similar
densities.
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CHAPTER 2. ATOM-LIGHT INTERACTION

Motion-induced detuning and dephasing

The Doppler e�ect is well-known from the perceived change in frequency of the horn of a pass-
ing ambulance. The very same e�ect occurs in a hot10 ensemble of atoms with a spread in ve-
locity relative to the direction of propagation of the light field. Due to the Doppler e�ect, the
light is detuned by∆ν = −k ·v for atomsmovingwith velocity vwith respect to the ones being
stationary in the lab frame. The laser’s wavevector k encodes the wavelength λ of the laser via
the relation |k| = 2π/λ, and additionally the direction of propagation of the light field.
Doppler detuning either has to be incorporated in the experiment or avoided by techniques

suchas saturatedabsorption (Doppler-free) spectroscopy. Additionally, di�erent formsofmotion-
induced dephasing have plagued experimentalists, e.g. in single-atom ultracold experiments
with optical tweezers or for the storage of quantum information in hot vapours. The solutions
to reduce the e�ect depend on the problem, cooling to the motional ground state can be im-
plemented in tweezer setups [58] while hot vapour spin wave experiments can utilise zero-
wavevector schemes [59]. Di�icult to control, however, is the e�ect of collisional dephasing
in hot vapours [21].

Transit-time broadening

Another consequence of atomic motion in hot vapour experiments is that atoms simply move
out of the interaction volume of the laser beam(s). This behaviour could be prevented by excit-
ing only a narrow class of atoms centered around the stationary velocity class [60, 61]. Without
employing such schemes, one has to take transit-time broadening into account. The resulting
e�ective decay rate Γtt can be approximately calculated for atoms with a velocity v perpendic-
ular to the laser’s direction of propagation to be

Γtt(v) ≈ v

w0

(2.5)

[21], where w0 denotes the 1/e2-beam waist of the light field. To get an approximate value for
the transit time broadening in a hot vapour, one can set the velocity v to the 2D RMS velocity
v2D RMS and set Γtt = Γtt(v2D RMS). As an estimate for the order of magnitude, one finds that
Γtt ∼ O(100kHz) for a rubidium vapour at room temperature and a beam diameter of 1 mm.

Collision-induced ionisation

It has been mentioned before that atomic collisions in hot vapours lead to dephasing of the
atomic coherences. They can also facilitate collision-induced state changes [62] or even ionise
highly-excited atomic states, so-called Rydberg states. This Rydberg to ground-state collisional
10As iswell known, statisticalmechanics links thevelocitydistributionofparticles in an (ideal) gas toa temperature
via theMaxwell-Boltzmann velocity distribution. In this framework, a cold ensemble is understood to have only
a very narrow spread of velocities while a hot ensemble has a correspondingly large spread. As a consequence,
themean velocity of the ensemble is irrelevant for the definition of hot and cold – only the spread in velocities is
relevant for the classification. The crossover between hot and cold arguably depends on the experimenter and
their research, a (not so) useful rule of thumb is to speak of a hot ensemblewhen themotion-induced detuning
leads to a sizeable change of the resulting dynamics.
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2.3. ADDITIONAL EFFECTS OCCURRING IN A HOT VAPOUR

cross section grows with the e�ective principal quantum number n∗ to the power of four [63]
and has been shown to lead to the build-up of a weak plasma in strongly-driven hot Rydberg
vapours [63–65].

Why, then, work in a hot vapour?

The obvious solution to all themotion-induced problems is to go ultracold, such that the atoms
have a very narrow velocity distribution and basically do whatever one wants11. Miniaturised
cold atom sources have been developed [68], and the robustness of the devices has been in-
creased such that they are routinely sent into space as GPS time sources, or to produce Bose-
Einstein condensates (BECs) aboard the ISS [66]. The issue that remains, even for highly op-
timised and industrialised devices, is the need for an ultrahigh vacuum as well as cooling se-
quences. Practical factors additionally set limits on themaximum feasible vapour densities that
can be achieved in such a setup. All in all, these ultracoldmachines are highly useful for science
but presently tend to be rather too complicated and costly for everyday applications by low-end
users.
In the last few years, the fields of quantum communication and quantum sensing based on

atomic vapours have gained traction. This led to the development of many applications in the
fields of electromagnetic field sensing [20, 24, 69], biomedical imaging [70], telecommunication
[25, 26], and quantum state memories [29, 51, 52, 71]. All these technologies are currently, or
soon will be, made available on a large scale for many users. And many of the technologies
presently in transition to a large-scale user platform are built on hot vapour technologies. The
reason being simply that hot vapour setups are easier to build and maintain, more cost-and
resource-e�ective, and much more flexible to handle than their ultracold counterparts. The
motion-induced e�ects are currently the price to pay for the advantages of a hot vapour setup.
Dissipation in itself is not a problem, nor aremotion-induced e�ects. First and foremost they

are simply just a property of the system, and not even necessarily detrimental to a purpose.
Sometimes they do not matter very much unless one pushes an application towards limiting
cases. But dissipation can even be made actively useful as in dissipation-stabilised phases of
matter [72] like continuous dissipative time crystals [73].
One feature that many of the aforementioned hot vapour technologies have in common is

that they utilise Rydberg states and their exaggerated properties. The next section therefore
introduces Rydberg atomswith their extremeproperties, and provides some example use cases
to demonstrate the versatility of Rydberg atomic systems.

11They might not do everything one wants them to, and working in an ultracold environment poses its very own
challenges. What onedoeswin is an excellent control of the temperature of the atomic cloudwith temperatures
as cold as hundreds of pK [66], which is orders of magnitude below the temperature of the cosmic microwave
background at 2.7 K [67].
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3 | RYDBERG ATOMS

Rydberg atoms have been described as being the gentle giants of atomic physics [74], and this
unconventional description is certainly not unjustified. Even though there is no general conven-
tion onwhen one speaks of an excited atombeing in a Rydberg state, this name is typically used
for atoms with principal quantum number n ≥ 15. These highly excited atoms have spatially
huge electronic wavefunctions such that the excited electron is, on average, far displaced from
the nucleus which results in exaggerated atomic properties. Rydberg atoms are therefore being
used for a variety of applications ranging from radiofrequency (rf) field sensing [20, 24, 69] and
nonlinear optics [41, 75–78] to quantum computing [76, 79–81] and simulation [82, 83]. One key
property of Rydberg atoms utilised in many of the aforementioned fields and technologies is
the strong interaction between Rydberg atoms in close spatial proximity [84]. This interaction
can also be used to generate e�ective interactions between photons whenmapping them onto
Rydberg polaritons [40, 41, 85], leading to curious new states of light like photonic molecules
[86]. Ultimately, this approach could lead to the generation of photon-photon interactions on
demand.
It is therefore safe to say that Rydberg atoms are highly useful due to their extreme proper-

ties, particularly the strong interactions. This chapter will therefore introduce some of themost
notable properties of Rydberg atoms, with a focus on the interactions between Rydberg states,
and demonstrate the versatility of Rydberg atoms by discussing some example applications.

3.1 GENERAL PROPERTIES AND SCALING LAWS

Highly excited Rydberg states are weakly bound with a state energy just below the ionisation
threshold and the electron being on average far displaced from the atomic nucleus [74, 84].
The resulting exaggerated atomic properties can be computed particularly easily for hydrogen-
like atoms with a single valence electron – i.e. the alkali atoms like rubidium, for instance. In
these hydrogen-like atomsone finds that the binding energy of Rydberg states generally follows
a power law in the principal quantum number n scaling as n−2

? . The power law scaling is not
perfect in n, so one uses the e�ective principal quantum number n? = n − δn,l,j where the
energy defect1 δn,l,j has to be determined experimentally for the di�erent angular momentum
states [87–89].

1Theenergydefect arises fromtheexcitedelectronof lowangularmomentumstatespenetrating thenucleuswith
a small likelihood. Analytic expressions for the energy defect exist but the modified Rydberg-Ritz coe�icients
have to be determined experimentally. Experimental values for rubidium can be found in references [87–89].
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3.1. GENERAL PROPERTIES AND SCALING LAWS

Rydberg states featureparticularly longstate lifetimes scalingwithn3
? for lowangularmomen-

tum states andn5
? for so-called circular states [84], i.e. Rydberg states with l = n−1which have

only a single spontaneousdecay channel to energetically lower-lying stateswithn′ = n−1. This
results in long radiative lifetimes of the Rydberg states up to ∼ O(100 µs). One therefore also
speaks of metastable states since the radiative decay timescales are much longer than typical
ultracold experimental sequences. However, particularly in hot vapour experiments one finds
significant population redistribution due to blackbody radiation induced state changes [90, 91]
and atomic collisions. This populates not only energetically lower-lying states but also nearby
states higher up in the energy ladder and leads to additional dipole interactions in the vapour,
as well as to a reduction of the state lifetime. These blackbody radiation induced e�ects have
also been observed experimentally [92, 93].
The large spatial extent of the electronic wavefunction leads to an increased collisional cross

section scaling with n4
? [59, 63], as well as a strongly enhanced sensitivity to electromagnetic

fieldswith the polarisability of Rydberg states scaling asn7
? [84]. External electromagnetic fields

therefore provide an additional control parameter for the Rydberg state since one can easily
change the state energies by applying a field, and then e.g. tune transition wavelengths within
a certain range. This enhanced sensitivity to electromagnetic fields is also used in rf field sens-
ing and imaging techniques in the previously almost unaccessible terahertz (THz) region of the
electromagnetic spectrum.

3.1.1 EXAMPLE APPLICATION: RF FIELD SENSING

Rydberg atomshavebeenusedas sensors in rf vector electrometry [47] andmagnetometry [48],
thereby allowing ameasurement of electric ormagnetic rf fields including their magnitude and
polarisations. These atom-based radiofrequency field measurements have been shown to de-
tect THz radiation powers on the order of nW in hot vapour systems [20]. A recent preprint [94]
claims to have approached the standard quantum limit up to a factor of 2.6 for detection of mi-
crowave fields at∼ 37 GHzwith an optically thin sample of ultracold atoms. Setups operated at
room temperature greatly reduce the complexity and increases flexibility of the measurement
devices as opposed to ultracold atomic setups.
These rfmeasurementdetectionmethodso�enutilise a four-level schemeas shown in Figure

3.1 (a), where the two Rydberg states |r〉 and |r′〉 are dipole-coupled by the rf field. Low rf field
strengths (low Ωrf ) induce a change in the amplitude and shape of EIT resonance while strong
fields with high Rabi frequencies Ωrf lead to Autler-Townes (AT) splitting of the EIT resonance.
This crossover from EIT into the AT regime with increasingΩrf is shown in Figure 3.1 (b). Tuning
the detuning ∆rf of a strong rf field across resonance, on the other hand, reveals the avoided
crossing of the dressed states in the EIT spectra as shown in Figure 3.1 (c). Dipole transition
strengths beween Rydberg stateswith small di�erences in principal quantumnumbern tend to
be large due to the large overlap of the radialwavefunctions. This leads to highRabi frequencies
even for low field strengths and thereby enhances the sensitivity of the detectors.
The Rydberg atom-based rf detection schemes are of particular relevance in the terahertz

(THz) domain (0.3 - 3 THz), which is sandwiched between the range of electronic and optical
sensors and currently lacks e�icient detection schemes. This THz gap can be closed by atom-
based sensors since a multitude of transitions between Rydberg states lies within the THz do-
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CHAPTER 3. RYDBERG ATOMS

Fig. 3.1: RF field detection via EIT spectroscopy in a four-level scheme. For a four-level scheme, the
relevant levels are shown in (a). Coloured arrows indicate the transitions driven in the examples
shown in (b) and (c), where EIT was performed in a hot rubidium vapour with an additional mi-
crowave field coupling the Rydberg state |r〉 = |35D5/2〉 to a secondRydberg state |r′〉 = |34F 〉.
Furthermore, we have |g〉 = |5S1/2〉 and |e〉 = |5P3/2〉. (b) shows the transition from EIT to
Autler-Townes (AT) splitting when increasing themicrowave power for themicrowave driving to
the j′ = 7/2 state. In the AT split regime in (c), one can see the avoided crossing of energy lev-
els as the microwave frequency is swept across resonance with the |35D3/2〉 (le�, at ∆c = 0)
and |35D5/2〉 (right) states. Data was taken with a microwave power set to Pmw = −3 dBm, the
corresponding electric field amplitude in the vapour can be calculated from the splitting of the
states. One cannicely see the three |35D5/2〉 resonances split at the samemicrowave frequency,
and the weaker |35D3/2〉 resonances split at their same respective frequencies. The colourbar
applies to both (b) and (c).

main [59]. The THz frequencies accessible via two-photon detection schemes, as in 3.1 (a), are
shown in Figure 3.2 for the two most commonly used alkalis, namely rubidium (red) and ce-
sium (yellow). Recently, THz imaging schemes have been developed which utilise similar level
schemes as in rf field detection [95].

3.2 RYDBERG-RYDBERG INTERACTIONS

Another notable property of Rydberg atoms is the strong interaction between pairs of Rydberg
states in spatial proximity. The resulting interactions have been utilised in e.g. neutral atom
quantumcomputing schemes to implementCNOT (controlled-NOT) gates [96], inquantumsim-
ulation to e�ectively implement Ising and Heisenberg spin Hamiltonians [82] or simulate the
temporal evolution of systems governed by the Gross-Pitaevskii equation [33], and in quantum
optics to create optical nonlinearities at the single-photon level [41, 78].
In experiments with excitation into a single Rydberg state |n, l, j〉, like in the experiments dis-

cussed in this thesis, one finds the interactiondominatedby vanderWaals interaction2 between
identical atoms. However, we will start with a brief discussion of the underlying mechanism to

2The blackbody radiation induced population redistribution, as well as collisional state changes, can admix cer-
tain amounts of other Rydberg stateswhichmight be dipole-coupled to the target Rydberg state. For simplicity,
this e�ect will be assumed to be negligible.
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Fig. 3.2: THz transitions accessible with two-photon schemes for Rb and Cs. The THz transitions in
Rb (red) and Cs (yellow), which are accessible with two-photon detection schemes as in 3.1 (a),
are shown with their respective relative dipole matrix element |µTHz|.

explain the interactions on a fundamental level before the distance scaling of the interaction is
considered for di�erent regimes, and the resulting angular dependency is discussed in detail.

3.2.1 UNDERLYING MECHANISM: DIPOLE-DIPOLE INTERACTIONS

Rydberg atoms appear as electrically neutral at distances that are large compared to the spatial
extent of their electronicwavefunction. This leads to a vanishing direct Coulomb interaction be-
tween two spatially separated Rydberg atoms. However, Rydberg atoms do interact with each
other via dipole-dipole and weaker, higher-order electromagnetic interactions. They easily ac-
quire a permanent electric dipole moment when subject to an external electric field due to the
highpolarisability of Rydberg states [97]. Additionally, whenundergoing a state changeanatom
acquires a transient dipole moment for the duration of the transition between the states [16].
Two Rydberg atoms in spatial proximity can therefore interact via electromagnetic interactions,
for which retardation e�ects of the fields are negligible while in the near field regime3. The re-
sulting interaction can be calculated based on amultipole expansion [98, 99], which is well jus-
tified for non-overlapping charge distributions4. The leading term in the multipole expansion
describes the interaction of two dipoles and is given by

V̂
(i,j)

dd, cart(Rij) =
1

4πε0R3
ij

[
d̂i · d̂j − 3(d̂i · r ij)(d̂j · rij)

]
(3.1)

withRij = |Rij| denoting the absolute distance between the atoms (i, j) and rij = Rij/Rij the
corresponding unit direction. d̂i denotes the dipole operator acting on the i-th atom.
When performing a basis transformation from cartesian to spherical, with the quantisation

3WithkR� 1wherek denotes thewavevectorof the respective transitionandR thedistancebetween thenuclei.
4The minimum interatomic distance required for a validity of the approach can be estimated from the spatial
extent of the electronic wavefunctions and is given by the Le Roy radius rLR = 2

(
〈r̂2

1〉+ 〈r̂2
2〉
)
[59, 100]. For

states with non-vanishing angular momentum l 6= 0, however, it has been shown that the Le Roy radius may
be an underestimate for the lower bound of the regime of applicability of the power-law scaling in interaction
strength. An expression including the orientation of the orbital angular momenta has been proposed in [101].
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Fig. 3.3: Angular dependency of dipole interaction operator V̂dd. (a) shows the definition of the an-
gles θ and φ for a two-atom system in the spherical basis. The atoms are indicated in red. (b)
The absolute values of the angular dependencies of the dipole interaction operator V̂dd for dif-
ferent |∆M | = 0, 1, 2 are shown in the spherical basis. One finds the angular dependencies
Vdd(∆M = 0; θ) ∝ 1− 3 cos2(θ), Vdd(∆M = ±1; θ) ∝ sin(θ) cos(θ) and Vdd(∆M = ±2; θ) ∝
sin2(θ) The interaction is isotropic in φ in the spherical basis, up to a global phase.

axis assumed to be parallel to the z-axis5, one finds the dipole operators to be defined as

d̂0
l = d̂zl and d̂±l = ∓ 1√

2

(
d̂xl ± d̂

y
l

)
. (3.2)

The d̂0
l dipole operator conserves the magnetic quantum numbermj

6 while the d̂±l operators
change it by ±1. The dipole operators are therefore associated with π and σ± transitions, re-
spectively, as is shown in Figure 2.4. This change to a spherical basis leads to the equivalent
formulation of the dipole-dipole interaction operator V̂dd [102] as

V̂
(i,j)

dd, sph(Rij) =
1

4πε0R3
ij


(1− 3 cos2(θ))

[
d̂0
i d̂

0
j + 1

2
(d̂+
i d̂
−
j + d̂−i d̂

+
j )
]

− 3√
2

sin(θ) cos(θ)
[
eiφ(d̂0

i d̂
−
j + d̂−i d̂

0
j)− e−iφ(d̂0

i d̂
+
j + d̂+

i d̂
0
j)
]

−3
2

sin2(θ)
[
e2iφd̂−i d̂

−
j + e−2iφd̂+

i d̂
+
j

]
 .

(3.3)

The terms in theupper rowresult innochangeof themagneticquantumnumberM = m1 +m2

of the two-atom system, while the middle and lower row describe the processes leading to
∆M = ±1 and ∆M = ±2, respectively. As one can see, the angular dependency of the in-
teraction is determined by the resulting change in ∆M , as is also shown in Figure 3.3 (b). The
angles θ, φ are defined in Figure 3.3 (a) for clarity.

5The angle θ is defined as the angle enclosed by the quantisation axis q and the interatomic direction vector rij ,
i.e. θ = ](q, r). Secondly, externally applied electric and magnetic fields are assumed to be orientated along
the z-axis for simplicity, i.e. E = E0εz and B = B0εz .

6In the fine-structure basis, the quantum state of an atom is characterised by the state vector |n, l, j,mj〉 where
mj denotes the orientation of the orbital angular momentum j with respect to the quantisation axis.
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Fig. 3.4: Coupled pair state system and coupling-induced shi� of eigenstates from resonance. (a) A
schematic representation of the states |ri〉 and |r′i〉with the relevant dipole coupling is shown.
The resulting pair-state picture with the energy defect∆ = E(r′1, r

′
2)− E(r1, r2) and coupling

V is shown at the bottom. In (b), the energy eigenstates of the coupled pair-state system is
shownand the relative state admixture indicated. For a coupling strengthmuchweaker than the
energy defect, i.e. |V | � |∆|, the eigenstates are only weakly admixed and are approximatly
equal to the bare pair states. These limiting cases are indicated as dashed lines. (c) The energy
eigenvalues of the coupled pair-state system are shown for variation of the interaction strength
V relative to the energy defect∆. The coupled pair state can be excited by a field of bandwidth
B only within a certain range where |E±| ≤ B such that the coupled pair-state eigenenergy is
not shi�ed out of the excitation range of the field.

Now, let’s consider a pair of Rydberg atoms |r1, r2〉7 at distance R, with each atom dipole-
coupled to another Rydberg state |r′i〉. The pair state |r1, r2〉 then interacts with the pair state
|r′1, r′2〉 via the dipole-dipole interaction V (R) = 〈r′1, r′2|V̂dd(R)|r1, r2〉 = C3/R

3. The pair states
might be slightly o�-resonant, such that an energy defect ∆ = E(r′1, r

′
2) − E(r1, r2) remains.

In the pair-state basis {|r1, r2〉 , |r′1, r′2〉} the dynamics of the two-atom system is then governed
by the pair-interaction Hamiltonian8

Hpair
dd =

(
0 V (R)

V (R) ∆

)
(3.4)

which results in an oscillation back and forth between the two pair-states for su�iciently strong
coupling V (R) and small energy defects∆. The eigenenergies of the Hamiltonian are found to
beE± = (∆±

√
∆2 + 4V (R)2)/2 and the corresponding eigenstates are given by

|ε±〉 =
1√

α2
± + 1

(α± |r1, r2〉+ |r′1, r′2〉)

withα± = −(∆±
√

∆2 + 4V (R)2)/2V (R). For∆ = 0 the eigenstates |ε±〉 consist of a symmet-
ric superposition of |r1, r2〉 and |r′1, r′2〉 up to a factor of±1.

This Hamiltonian is similar to the two-level atom-light Hamiltonian discussed in Section 2.1.1,
which gave rise to the dressed state picture with the resulting eigenstates shi�ed in energy
7In the following, we will use |r〉 as a shorthand notation for the fine-structure state |n, l, j,mj〉.
8In this chapter we have set ~ = 1 for simplicity.
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around resonance for strong coupling fields Ω. In the case of interacting pair states, the cou-
pling strength between the near-resonant pair states is given by the dipole-dipole interaction
V (R), and the detuning from resonance by the energy di�erence∆ between the pair states. In
analogy to the dressed atom-light system, one also has to consider the eigenstates of the cou-
pled pair-state system in the near-resonant and o�-resonant limit cases.
For large energy defects compared to the pair-state coupling, i.e. |∆| � V (R), the eigen-

states are given by the bare pair states |r1, r2〉 and |r′1, r′2〉 with negligible state admixture, and
the eigenenergies E± correspond to the respective pair state energies. However, the situation
changes drastically for the case of strong coupling relative to the pair-state energy defect, i.e.
for V (R) � |∆|. In this regime one finds strong state admixture, i.e. the Rydberg atoms oscil-
late back and forth between the pairs |r1, r2〉 ↔ |r′1, r′2〉, and the eigenenergies of the coupled
system change relative to the uncoupled case.

The dipole-dipole interaction therefore couples two Rydberg pair states |r1, r2〉 and |r′1, r′2〉
if |r1〉 ↔ |r′1〉 and |r2〉 ↔ |r′2〉 are each dipole-coupled. Depending on the energy defect ∆
and the coupling strength V (R) this may lead to the formation of dressed states with shi�ed
eigenenergies relative to the initial bare state |r1, r2〉. As a consequence, resonant excitationof a
secondRydberg state |r2〉near |r1〉maynot be possible on the bare state resonance frequency if
the pair-state interaction shi�s the pair-state eigenenergies out of resonancewith the excitation
laser – an e�ect known as Rydberg blockade [103] and shown in Figure 3.4 (c).
Various interaction-induced e�ects occurring in the strongly coupled system have been ob-

served experimentally [103, 104], e.g. the fast oscillations between the pair states |r1, r2〉 and
|r′1, r′2〉 [102]. The general angular dependency of the dipole-dipole interaction has been shown
[105]and the typical angulardependency∝ (1−3 cos2(θ)) for an isolated transitionwith∆M = 0
has been demonstrated [102].
One cannowapply the tool developedabove to study the resulting interactionsbetweenRyd-

berg atoms. The states |r1〉 and |r2〉might be directly dipole coupled such that |r′1, r′2〉 = |r2, r1〉
which results in a vanishing energy defect ∆ = 0. Such degenerate pair states with vanishing
energy defect are said to be on Förster resonance. This resonant dipole-interaction induced
coupling leads to long-range scaling of the interaction strength ∝ 1/R3 and induces oscilla-
tions between the states |r1, r2〉 ↔ |r2, r1〉 with frequency V (R). If, however, the atoms are
coupled by V̂dd in a second-order process9, e.g. because they initially occupy the same Rydberg
state, then one can find di�erent regimes with ∝ 1/R3 or ∝ 1/R6 scalings in distance. Since
the experiment reported in this thesis excites only to a single Rydberg state, these second-order
interaction processes are dominant and we will proceed by having a closer look at those.

3.2.2 SECOND-ORDER INTERACTION PROCESSES

For two atoms with an orbital angular momentum di�erence∆l = |l1 − l2| ∈ {0, 2} the inter-
action mediated by V̂dd is of second order, e.g. for a pair of atoms initially in the same Rydberg
states |r1, r2〉 = |r, r〉. This means that the interaction process includes an intermediate, aux-
illary dipole-coupled pair state |r̃1, r̃2〉 as shown schematically in Figure 3.5 (a). The two-atom
9Higher-order electric coupling like e.g. dipole-quadrupole, or magnetic couplings between the two atoms are
usually orders of magnitude weaker than a second-order dipole-dipole coupling process [106].

20



3.2. RYDBERG-RYDBERG INTERACTIONS

Fig. 3.5: Second-order interaction in the van der Waals regime and Rydberg blockade e�ect. The
second order interaction process is shown schematically for the case of no state hpooing, i.e.
where |i〉 = |f〉, in the top le� and for the case of state hopping in the bottom right of panel
(a). Both processes ensure that the state energy of initial and final state, i.e. E(|i〉) andE(|f〉),
are identical. The intermediate state may have an energy defect ∆, though. Crossover of the
second-order interaction scaling in distance from ∝ R−3 to ∝ R−6 for R � RvdW and R �
RvdW respectively, is shown in (b). The resulting e�ect of Rydberg blockade is shown for the
van der Waals regime in (c), but occurs equally in the other regimes. Coupling of the |r〉 and
|r′〉 states leads to a distance-dependent shi� of the |r1, r2〉 pair state energy. For interatomic
distancesR < Rb below theblockade radius, the state energy is shi�edout of the range covered
by the excitation bandwidth B associated with the transition. This prevents an excitation of an
atom into the Rydberg state when being in close spatial proximity to another Rydberg atom.

system therefore undergoes the process10

|i〉 = |r1, r2〉
V̂dd−−→ |r̃1, r̃2〉

V̂dd−−→ |r′1, r′2〉 = |f〉 . (3.5)

The single-atom transitions |ri〉
di−→ |r̃i〉

d′i−→ |r′i〉 occurring in this process all have to be dipole-
allowed with di, d′i representing the respective dipole transition matrix elements. When con-
sidering the resulting scaling of the interaction with atomic distance R one finds two di�er-
ent power law scalings for di�erent distance regimes, separated by the van der Waals radius
RvdW = 3

√
|C3/∆| where the interaction-induced level shi� V (R) = C3/R

3 equals the pair
state energy defect ∆(r′1, r

′
2). For shorter distances R � RvdW the long-range interaction ∝

V (R) = C3/R
3 scales with n4

? while R � RvdW implies short-range interactions ∝ C6/R
6

whereC6 scales11 with n11
? [107].

Additionally, the interactions leads to the aforementioned Rydberg blockade e�ect – both in
the van der Waals and the dipole-coupled regime, where the interactions scale as∝ R−n with
n = 6 andn = 3, respectively. While the two atoms are further apart than the blockade radius
10For the following considerations the initial and final states do not necessarily have to be identical but could also
be interchanged. I.e. for |i〉 = |r1, r2〉 one always has |f〉 = |i〉 and, if dipole coupled, also |f〉 = |r2, r1〉 as
possible final states.

11The scalings ofC3 andC6 with e�ective principal quantum number n? can be estimated very easily. The dipole
matrix elements d1,2 between two nearby Rydberg states grow as n2

? while the corresponding energy defect
scales as n−3

? . Therefore,C3 ∝ d1d2 ∝ n4
? andC6 ∝ (d1d

′
1d2d

′
2)/∆ ∝ n11

? [84].
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Rb = n
√
Cn/B, the coupled pair-state eigenenergies lie within the range that can be excited by

the coupling field of bandwidth B12. Hence, both atoms can be excited into the Rydberg state
|rr〉. As the atoms move closer, the spatial dependency of V (R) ∝ R−n eventually shi�s the
pair state energy out of resonance with the excitation field, e�ectively inhibiting the excitation
of a second Rydberg atomwithin the radiusR ≤ Rb. Only the states |rg〉, |gr〉will be populated
in this scenario.

For a given initial pair state |r1, r2〉 there is usually a number of intermediate pair stateswhich
are somewherenear resonancewith the initial pair state, butwithanon-vanishingenergydefect
∆. Therefore, many intermediate pair states will contribute to the dynamics of the interaction
which is accounted for in the second-order interactionHamiltonian by summing over all dipole-
coupled intermediate pair states {|r̃1, r̃2〉} [106]

Ĥso(R) =
∑
{|r̃1,r̃2〉}

V̂dd(R) |r̃1, r̃2〉 〈r̃1, r̃2| V̂dd(R)

∆(r̃1, r̃2)
. (3.6)

The level shi�s induced by this second-order interaction also lead to the Rydberg blockade ef-
fect [108, 109], seealsoFigure3.5, and the resulting interactionhasbeenshowntobeanisotropic
in general [106, 109, 110]. However, even though a direct evaluation of Ĥso(R) is possible, it
does not providemuch intuition on the behaviour of the anisotropy. This spatial anisotropy can
be understood when considering the angular momenta of the most significantly contributing
intermediate pair states and the angular dependence of the dipole transitions involved in the
process, as will be shown in the next section.

3.2.3 STRUCTURE OF THE C6 INTERACTION COEFFICIENT

When being in the van der Waals regimewithR� RvdW , the interaction between two Rydberg
atoms in the same state scales asC6/R

6 ∝ n11
? . However, when calculating the interactions for

two Rydberg atoms with di�erent initial Rydberg states |n1, l1, j1,mj1〉 and |n2, l2, j2,mj2〉, one
finds that the 2Dmaps with varying (n1, n2) show very clear structures. This is shown in Figure
3.6 for the interaction of two PJ-states in rubidium with di�erent principal quantum numbers
ni. The angular dependency of the C6 coe�icients has been discussed from a technical perspec-
tive in [106] for n1 = n2, based on a study of the dominant angular momentum channels. This
section uses a similar angularmomentumchannel approach in order to provide an intuitive un-
derstanding of the angular dependency of the C6 coe�icients but allowing for n1 6= n2, and to
explain the structure formation observed in [111]. The resulting understanding of the C6 interac-
tion coe�icients is then used to discuss interesting pairs of pair states for the generation of an
on-demand e�ective interaction between two photons in Section 3.2.5.
For the readers interested in the details of the structures found in the interaction map, we

present an extended analysis of the di�erent contributions leading to the specific features in
the interactions. The main results of this section are summarised in Subsection 3.2.3.4.
12For simplicity, one usually sets the bandwidth B equal to the e�ective Rabi frequency Ωeff of the transition.
However, significant line broadening and other e�ects may broaden the bandwidth beyond the limit given by
Ωeff .
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Fig. 3.6: Structures in the C6 coe�icients of PJ-states in rubidium. The absolute values of
the total interaction coe�icient C6 for the interaction of two Rydberg atoms |r1, r2〉 with
|ri〉 = |niPJ ,mj = +J〉, i.e. with the same angular momentum quantum numbers l, j,mj

but varying principal quantum numbers ni, is plotted. J = 1/2 is shown in the le� pair of plots
and J = 3/2 on the right, both at the angles θ = 0, π/2 (le�, right subplot per pair). The colour-
bar applies to all plots. One can clearly see a strong structuring of the C6 coe�icients in form
of lines of strong/weak interactions apparent in the log-plot. The angular dependence of |C6| is
also apparent. For identical angular quantum numbers the C6 coe�icients are symmetric with
respect to an exchange of n1 and n2, as can also be seen in the symmetry of the plots with re-
spect to the axis defined by n1 = n2.

When having a closer look at a single second-order interaction process in (3.5)13

|i〉 = |r1, r2〉
d̂1d̂2−−→
V̂dd

|r̃1, r̃2〉
d̂′1d̂

′
2−−→

V̂dd

|r′1, r′2〉 = |f〉 , (3.7)

one finds that the overall interaction strength is determined by the dipole matrix elements

dαi = 〈ni, li, ji,mj,i|d̂αi |n′i, l′i, j′i,m′j,i〉 (3.8)

of the specific transitions in equation (3.7). α = 0,±1 relates to the electric field polarisations
drivingπ, σ± transitions, respectively. Furtheranalysisof thedipolematrix elementofanatomic
transition reveals that it canbe split into a radial andanangular part by use of theWigner-Eckart
theorem [112]. When suppressing the atom-index i, a dipole matrix element is given as

dα = 〈n′, l′, j′,m′j|d̂α|n, l, j,mj〉 = R(n, l, j; n′, l′, j′)Dα(j,mj; j
′,m′j) (3.9)

with the radial and angular parts [98, 106, 111]

R(n, l; n′, l′) = (−1)l
′√

(2l + 1)(2l′ + 1)

(
l 1 l′

0 0 0

) ∫ ∞
0

Rnl(r)erRn′l′(r) r
2dr (3.10)

and

Dα(l, j,mj; l
′, j′,m′j) = (−1)l+j+j

′+s−mj+1
√

(2j + 1)(2j′ + 1)

×
{
j 1 j′

l′ s l

}(
j 1 j′

−mj −α m′j

)
. (3.11)

13The transition type α = m′j − mj ∈ {0,±1} corresponds to the π, σ± transition driven by the field, and has
been absorbed in di, d′i for simplicity.
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The above equations use (:::) to notate the Wigner-3j symbol and {:::} for the Wigner-6j sym-
bol, while s denotes the electron spin. Rnl(r) denotes the radial wavefunction of the respective
state and depends only on n and l14. The coupling strength between the states |r〉, |r′〉 is mostly
determined by the radial coupling strengthRwhile the angular coupling is absorbed inDα.
Since the overall process described in equation (3.7) is of second order, the energy defect∆

also plays a decisive role in shaping the resulting strength of the interaction. The interplay of
these three ingredients - radial coupling strength, angular dependency, and energy defect – and
the resulting structure in the C6 coe�icients – are discussed in the following.

3.2.3.1 ANGULAR DEPENDENCY AND ANGULAR MOMENTUM CHANNELS

The angular dependency of the total second-order process described by equation (3.6) can be
separated into several angular momentum channels characterised by the (l, j,mj) quantum
numbersof thesixatomic states involved in theprocess, i.e. of all threepair states |i〉 , |interm.〉 , |f〉.
Each of these angularmomentum channels is characterised by its own angular dependency. All
second-order processeswith the sameangularmomentumpathway |l1j1, l2j2〉 → |l̃1j̃1, l̃2j̃2〉 →
|l′1j′1, l′2j′2〉 are combined into a single channel coe�icient C

(l̃1j̃1,l̃2j̃2)
6 , such that one finds the re-

arranged second order interaction Hamiltonian to be given by

Ĥso(R, θ, φ) =
1

R6

∑
{(l̃ij̃i)}

∑
{(ñi)}

R1R2R′1R′2
∆(ñi, l̃i, j̃i)

M̂(l̃i, j̃i)

=
∑
{(l̃ij̃i)}

C
(l̃ij̃i)
6

R6
M̂(l̃i, j̃i). (3.12)

The index i is used as shorthand notation to indicate a dependence of the respective value from
both atoms, i.e. li = l1l2. The abbreviations R(′)

1 and R(′)
2 have been used for the radial cou-

pling strengths, where the prime indicates the |interm.〉 → |f〉 process. The energy defect
∆(ñi, l̃i, j̃i) is shorthand for

∆(ni, li, ji; ñi, l̃i, j̃i) = E(ñi, l̃i, j̃i)− E(ni, li, ji).

All angular dependency has been absorbed in the operator M̂(l̃i, j̃i), which will be analysed in
the next paragraph. This re-arrangement of the sumsmeans that we can now study the angular
dependency of the di�erent angular channels, weighted by their respective channel’s interac-
tion strength C(l̃ij̃i)

6 . For example, in the case of |i〉 = |f〉 = |n1P1/2, n2P1/2〉 one finds four
angular momentum channels with

|interm.〉 ∈ {|ñ1S1/2, ñ2S1/2〉 , |ñ1S1/2, ñ2D3/2〉 , |ñ1D3/2, ñ2S1/2〉 , |ñ1D3/2, ñ2D3/2〉}.

The resulting coe�icients C(l̃ij̃i)
6 constitute a sum over all possible intermediate state principal

quantum numbers (ñ1ñ2) and can easily be computed with the functions available in Python
14The radial wavefunction is completely characterised by the quantum numbers n and l, while the relative phase
of the wavefunction at (θ, φ) depends on the angular quantum numbers.
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Fig. 3.7: Basis rotation and angular dependency of |n1P1/2, n2P1/2〉 angular momentum channels.
(a) shows the initial (unprimed, le�) and rotated (primed, right) basis before and a�er rota-
tion byW†(θ, φ). The dipole interaction takes its simplest form in the primed coordinate frame
where the z′-axis and the internuclear axis align. The angular dependency of the four chan-
nels for the interaction of |n1P1/2, n2P1/2〉 withmj1 = mj2 = +1/2 is shown in (b). The in-
termediate states correspond to colour as follows: |ñ1S1/2, ñ2S1/2〉 (purple), |ñ1S1/2, ñ2D3/2〉
(green), |ñ1D3/2, ñ2S1/2〉 (blue, identical to green), |ñ1D3/2, ñ2D3/2〉 (yellow). The angle θ is
varied in range [0, 2π] while φ = 0 in plots (b) and (c). In (c), the angular dependency of the
|110P1/2, 110P1/2,mj1 = mj2 = 1/2〉 state of rubidium is shown. Dashed lines indicate neg-

ative values. The respective interaction coe�icients C(l̃ij̃i)
6 are: 230.9 THz µm6 (purple), -49.9

THz µm6 (blue, green), and -2.4 THz µm6 (yellow), with the colours of the angular channels as
in (b). The gray colour is the resulting angular dependency of |C6| as θ is varied. Note that the
small lobes stretching towards θ = 0, π have negative sign such that there exist angles θ0 where
C6(θ0, φ) = 0.

libraries such as ARC [98]. Structures of these coe�icients, and their dependence on the radial
coupling strength and energy defect, are discussed in the following twoSubsections 3.2.3.2 and
3.2.3.3.
To get an understanding of the angular dependency of M̂, one has to take another look at

the second-order process described by Ĥso(R). It inherits the angular dependency of the inter-
action from the dipole-dipole interaction V̂dd, which shows a complex pattern for a general set
of angles (θ, φ). The e�ective action of V̂dd becomes clearer when rotating into the framewhere
the internuclear axis and the quantisation axis q align in parallel. In this orientation, the dipole
interaction term takes its simplest form sinceM = mj1 +mj2 is conserved at this angle, so that
all terms in V̂dd with∆M > 0 vanish.
A rotation of the atomic state |n, l, j,mj〉 between two coordinate systems X and X̄ is per-

formed via theWigner (uppercase) D-matrices15 Ŵ(θ, φ) [106] such that |̄i〉 = Ŵ†(θ, φ) |i〉. Note
that theWigner D-matrices perform a rotation of the total orbital angularmomentumbasis and
depend only on the angular quantum numbers j,mj , and m̄j

16. Having performed the basis ro-

15Note that the Wigner (uppercase) D-matrices allow for an arbitrary 3D rotation about the angles (θ, φ). If the
interaction were fixed in the xz-plane, then one would use the Wigner (lowercase) d-matrices which allow for
rotation by a single degree of freedom θ [99].

16The representation of the projection of the total orbial angular momentummj changes as we change the basis
with respect to which we express the state. However, this transformation does not change the values n, l, j.
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tation, one can calculate the e�ect of the second-order dipole interactions in its simplest form
for θ = 0where∆M > 0 terms vanish, and then compute the projection of the resulting states
onto the rotated final state 〈f | Ŵ(θ, φ). Therefore,

C6(θ, φ) = 〈f |Ŵ(θ, φ) Ĥ(R, θ = 0, φ) Ŵ†(θ, φ)|i〉

=
∑
{(l̃ij̃i)}

C
(l̃ij̃i)
6

R6
〈f | Ŵ(θ, φ) D̂(l̃i, j̃i) Ŵ†(θ, φ) |i〉 (3.13)

D̂ is independent of (θ, φ), and is determined only by the angularmomentumpathwaysmj that
are allowed by the dipole selection rules for a given set of intermediate state angular momen-
tumquantumnumbers (l̃i, j̃i). The elements of D̂ are defined via the angular parts of the dipole
transitions

〈l′1j′1m′j1, l′2j′2m′j2|D̂(l̃ij̃i)|l1j1mj1, l2j2mj2〉

=
∑

{(m̃j1,m̃j2)}

 ∑
α∈{0,±1}

C(α)Dα(l1j1mj1, l̃1j̃1m̃j1)D−α(l2j2mj2, l̃2j̃2m̃j2)


 ∑
α′∈{0,±1}

C(α′)Dα′
(l̃1j̃1m̃j1, l

′
1j
′
1m
′
j1)D−α′

(l̃2j̃2m̃j2, l
′
2, j
′
2m
′
j2)

 (3.14)

with the di�erent polarisation coupling weights of V̂dd(θ = 0) implemented by

C(β) =

{
−2, β = 0

−1, β = ±1

as given in equation (3.3).
Theangular dependency thereforeboils down to theoverlapof the rotated final statewith the

rotated initial state subject to the angular momentum channel’s allowedmj interaction path-
ways. These interaction pathways may di�er between the angular momentum channels since
e.g. the pathway |mj = ±1/2〉 → |mj = ±3/2〉 → |mj = ±1/2〉 is possible for an intermediate
|D〉 state, but not for an |S〉 state. Figure 3.7 (a) shows the basis rotation protocol, and (b) the
angular dependencies of the angular channels for |n1P1/2, n2P1/2〉 states. An example for the
resulting angular dependency of |110P1/2, 110P1/2,mj1 = mj2 = 1/2〉 in rubidium is shown in
(c).

3.2.3.2 RADIAL COUPLING STRENGTH

The order of magnitude of the radial coupling strengthR is determined by the integral in equa-
tion (3.10), which depends only on the principal and orbital momentum quantum numbers n
and l. Generally, the radial overlap of two Rydberg states grows with increasing n, n′ and de-
creasing |∆n| = |n′ − n|. The coupling strength of two nearby Rydberg states scales as n2

? for
l� n [84].
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Fig. 3.8: Radial coupling strength for low-l dipole transitions in rubidium. The upper row shows the
value of the radial coupling strength for single-atom |nL〉 → |n′(L+ 1)〉 transitions relative to
the |nS〉 → |nP 〉 coupling strength in rubidium at three di�erent values of n = 50, 80, 110.
The value of the radial overlap integral is weighted towards∆n = n′ − n < 0, rendering these
transitionsmore likely than those with∆n ≥ 0. In the lower row, the value of the radial overlap
integral R(n, l; n′, l′) is shown for di�erent ∆n = 0,±1. For ∆n < 0, all channels follow the
well-known n2

? scaling law. However, for ∆n = 0 one can see a destructive resonance in the
overlap integral value for the |nP 〉 → |nD〉 channel, and for ∆n = +1 in the |nD〉 → |nF 〉
channel. For higher∆n > 1, the destructive resonance in the coupling strength of the |nD〉 →
|nF 〉 channel in rubidium moves to higher n. All values were calculated with ARC [98], which
utilises the Numerov method for computation of the radial overlap integrals.

However, the situation is not as simple as that as Figure 3.8 shows. The upper row shows the
relative radial overlap integral strength for |nL〉 → |n′(L+ 1)〉 transitions with L ∈ {S, P,D},
and one can see that the overlap integral is weighted towards∆n < 0 for all L. This behaviour
can be understood from the properties of the radial wavefunction Rnl(r). Each radial wave-
function has n− l − 1 nodes with an associated sign change along r at each node. For positive
∆n ≥ 0, the resulting change in the sign and node structure of the radial wavefunction Rn′l′

leads to destructive overlap of the two radial wavefunctions, and a lower integral value. Such
transitions with∆n > 0 are therefore weaker coupled than transitions with∆n < 0. The same
e�ect is also visible in the lower row of Figure 3.8 where the reduced value of the radial overlap
integral for∆n ≥ 0 can be seen in the destructive resonances of the data traces for L > 0. As
a consequence, transitions with ∆n < 0 and small ∆n ∼ O(1) generally have the strongest
radial coupling strengths. The general scaling of the radial coupling strength, however, follows
the well-known n2

? scaling – but attention has to be paid to the reduced coupling strengths for
∆n ≥ 0.
Since the whole second-order process includes a total of four transitions, the intraction re-

sulting from a given channel is strongest when all four dipole matrix elements, and therefore
all radial coupling strengthsR(′)

i , are large. The strongest interactions are hence found at pairs
of transitions between states with high n and comparably small changes in principal quantum
number∆n ∼ O(1).
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Fig. 3.9: Förster resonances of the angular momentum channels coupled to |n1P1/2, n2P1/2〉 in
rubidium. The di�erent angular momentum channels coupled to the |i〉 = |f〉 =
|n1P1/2, n2P1/2〉 have their own respective Förster resonance structure, as shown in the three
columns on the le�. Di�erent colours indicate the order∆n of the resonance, which is impor-
tant with respect to the radial coupling strength of the transitions. To complete the Förster res-
onance structure, one has to consider the permutated case of |r̃2, r̃1〉which occurs equally and
corresponds to a transposition of the plots at the n1 = n2 axis. In the non-symmetric channel
coupling via the |ñ1S1/2, ñ2D3/2〉 states one can see a line of very weak interactions between
the∆n1 = 0,∆n2 = −2,−3 resonances. This occurs because the coe�icient |C(l̃i,j̃i)

6 | changes
sign across this line, which is not distinguishable in this absolute value plot. Absolute values of
energy defects∆ and interaction strengths are given in GHz, and the legend in log space.

3.2.3.3 ENERGY DEFECT

The strongest pair interactions occur on Förster resonance where two pair states |r1, r2〉 and
|r′1, r′2〉 are (nearly) degenerate. Thiswell-knowne�ect has beenused to identify strongRydberg
self-interactions for the case where |r1〉 = |r2〉 = |r〉 [106]. However, Förster resonances also
occur for n1 6= n2, which is a case that might be particularly useful when selecting Rydberg
states while subject to further experimental constraints.
The angular channels couple the initial state to di�erent intermediate states, resulting in pat-

terns of the Förster resonances since di�erent (∆n1,∆n2) channelswill be nearly resonantwith
the initial state. This is shown in Figure 3.9 for the three angular channels of the |n1P1/2, n2P1/2〉
interaction that was already introduced in Figure 3.6. The three17 angular channels are deter-

17The fourth channel with intermediate state |n′1D3/2, n
′
2S1/2〉 can be derived from the |n′1S1/2, n

′
2D3/2〉 channel
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mined by the dipole selection rules, and in this case given by |n′1S1/2, n
′
2S1/2〉, |n′1S1/2, n

′
2D3/2〉,

and |n′1D3/2, n
′
2D3/2〉. For eachof the threechannels, the relevantFörster resonant intermediate

pair states are shown in the lower rows of Figure 3.9. The coloured segments indicate the abso-
lute value of the energy defect |∆| of the indicated order∆ni for the respective near-resonant
transitions.
In the case of the symmetric channels, one has to add the contribution of the case with per-

mutated n1 and n2 to arrive at the full picture presented in the top row, which is indicated by
the dashed black line in the respective panels. This is due to the symmetry of the energy defect
under exchange of n1 and n2. For the asymmetric channel coupling to one S and oneD state,
a permutation of states leads to the fourth’ channel |n′1D3/2, n

′
2S1/2〉 which corresponds to a

transposition of the respective plot at then1 = n2 axis. The contributions from this permutated
channel has to be taken into account as well when computing the total 2D map of interaction
channel strengths, but is not shown here for simplicity.
Identifying the energy defect resonance curves in the (n1, n2)-plot allows to find regions of

strong intractions also far away from the n1 = n2 axis. This knowledge is useful if one wants
to tune certain pair states into, or out of, resonance with the help of additional electromagnetic
fields to fine-tune interaction strengths. However, the energy defect is not the only quantity
that determines the interaction strengths. Di�erent orders of∆n-channels have di�erent radial
coupling strengths due to changes in the radial overlap of the states, as discussed previously.
Therefore, it is usually the channels with small changes in principal quantum numbers ∆n1,
∆n2 that contribute strongest to the interaction coe�icients. It may additionally happen that
a very strong Förster resonance occurs outside of the structure regions which leads to isolated
incidences of strong second-order interactions. The sign of the energy defect∆ determines the
sign of the resulting interaction.

3.2.3.4 STRUCTURES IN C6 MAPS

As we have seen in equation (3.13), the angular dependency of the second order interaction de-
pends on the interplay of the angular dependencies of the di�erent angular momentum chan-
nels and their relative weighting. The relative weightingsC(l̃ij̃i)

6 are a function of the radial cou-
pling strengths R(′)

j of the atomic transitions and the energy defect of the intermediate pair
state∆, as can also be seen in equation (3.12). The structures arising in the 2D map 3.6 for any
spatial orientation (θ, φ) therefore depend on the structures in theC(l̃ij̃i)

6 coe�icients and their
interplay at any given set of angles. This interplay between the channels is determined by the
angular dependency of each channel, which can, on a conceptional level, be reduced to the
overlap of initial and finalmj states subject to the second-order interaction.
Stronganisotropyof the interactions thereforeoccurswhenasingleangularmomentumchan-

nel dominates the interaction dynamics, but a cancellation of the angular dependency occurs
if the di�erent channels balance another. Strong domination of a single channel occurs on
Förster resonance of the given channel, as shown in Figure 3.10, though the resulting interac-
tion strength also crucially depends on the radial coupling of the single-atom transitionsR(′)

j .
The 2D interactionmaps can therefore be understoodwhen considering the interplay of the key

by permutation of the states and is threfore not counted separately here.
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ingredients: angular dependency of the angular momentum channels, and Förster resonant
pair states with their respective radial coupling strengths.
Furthermore, the sign of the interaction coe�icient, i.e. whether the interaction is attractive

or repulsive, is determined by the sign of the energy defect. Changes in sign of the energy defect
∆ occur near the Förster resonance lines and allow a further tailoring of the interaction.
State hopping, where the second-order interaction leads to (partial) exchange of quantum

numbers between the two atoms, is possiblewhenever the initial and final state quantumnum-
bers are dipole-coupled. In generic situations the probability to find the atoms with (partially)
exchanged quantum numbers is orders of magnitude lower than the process |i〉 → |f〉 = |i〉.
But in some situations where the respective radial coupling is strong, like e.g. for similar prin-
cipal quantum numbers n1 ≈ n2, state hopping may contribute significantly to the pair-state
dynamics. While being on Förster resonancewith any particular intermediate state, the second-
order process is not virtual but the intermediate state is actually populated. This leads to addi-
tional dipole-dipole interactions between the initial and intermediate pair states. These inter-
actions are not present in the van der Waals regime where the second-order process is virtual
and the intermediate state is not (significantly) populated due to the large energy defect∆.

3.2.3.5 FÖRSTER ZERO STATES IN DEGENERATE MANIFOLDS

An interesting case that deserves special mention due to its relevance for applications is that
of so-called Förster zero states [113] which can occur in degenerate manifolds of |mj〉 states.
In this case one finds that initial states, which might constitute of a superposition of |mj1,mj2〉
sublevels, couple onlyweakly to some angularmomentumchannels. These stateswere termed
Förster zero states and will be denoted as {|F 0

j 〉}j . For a given initial state |i〉, the overlap of
|i〉 = Ŵ†(θ, φ) |i〉with the Förster zero state(s) depends on the spatial orientation of the atoms
(θ, φ). There might be sets of angles for which the overlap with the zero state(s) is large while it
is small for other angles. Förster zero states do not occur if the intermediate state fulfills j̃i > ji
for both atoms, but for any other channels there may be at least one Förster zero state [106]. If
one seeks to avoid these (near) zeros inC6(θ, φ) for any set of angles, then one has to choose an
interaction that is dominated by the angular momentum channel satisfying j̃i > ji for i = 1, 2.
The presence of Förster zero states in any angular momentum channel can be detected by

studying the eigenvalues of D̂(l̃ij̃i). For the near-zero eigenvalues, one has a corresponding
numberof Förster zero stateswhichare givenby the respective eigenvectors. Apotential change
in sign of C6 can equally be detected from the eigenvalues, but this time of the full interaction∑

(l̃ij̃i)
C6(l̃ij̃i)D̂(l̃ij̃i). If eigenvalues of both signs exist, then there might be a change in sign

of C6 at angles {(θ0
j , φ

0
j)}j , conditional on the overlap of the initial state |i〉with the respective

eigenstates as the angles (θ, φ) are changed. An example for such a case with zero interaction
andachange in signofC6 is shown inFigure3.7 (c) for the |110P1/2, 110P1/2,mj1 = mj2 = +1/2〉
state, which is dominated by the intermediate state channel coupling to |ñ1S1/2ñ2S1/2〉.
This e�ect is of practical relevance since it results in varying C6 interaction strengths for en-

sembles with varying spatial orientations. For such ensembles, the Rydberg blockade radius is
therefore inconsistent and is determinedby theweakest interaction. For experimentswith large
clouds and randomly orientated atoms this e�ect has to be taken into account since Förster
zero states can crucially change the interaction dynamics. If one seeks reliable blockade, one is
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Fig. 3.10: Förster resonance structure and resulting angular dependency of C6(60S1/2, n2S1/2) in
rubidium. C6(60S1/2, n2S1/2) values are plotted in the upper central panel formj1 = mj2 =

+1/2 and θ = 0 (closed dot), θ = π/2 (open triangle). The corresponding values |C(l̃ij̃i)
6 |

of the angular momentum channels are plotted below and colour-coded as specified by the
coloured labels of the inset rows. The insets show the total radial coupling strength divided by
energy defect, resolved by intermediate state principal quantum numbers ñ1 and ñ2, for the
four angular channels separately. White lines indicate the values for which∆ni = 0, with the
insets orientated such that ñ1 on the horizontal and ñ2 on the vertical. Themagnitude and sign
of the respective (ñ1, ñ2) contributions are encoded in the colourbar. The Förster resonances
with∆ni = −1, 0 and varying orders of∆nj are visible in the insets and correspond to strong
angular dependencies ofC6. This is easily understoodwhen considering the spread in angular
momentum channel contributions on the resonances.
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therefore advised to choose states with the interactions dominated by the angular momentum
channel satisfying j̃i > ji for i = 1, 2. This channel is free of Förster zeros and therefore pro-
vides the required reliability of the blockade. Alternatively, one can get rid of the Förster zero
conditions by li�ing themj degeneracy through application of electromagnetic fields.

3.2.4 TUNABILITY OF INTERACTIONS WITH ELECTRIC AND MAGNETIC FIELDS

It has beenmentioned before that the strongest interactions occur on Förster resonance where
two degenerate pair states |r1, r2〉 and |r′1, r′2〉 are resonantly coupled via dipole intractionsme-
diatedby V̂dd(R). In this case, the interaction strengthwas shown to scale as∝ 1/R3 in distance,
which leads to long-range interactions. However, for any given initial pair state there is usually
only a very small number of state combinations that is (nearly) on Förster resonance. If one is re-
stricted to the use of certain initial pair states for experimental reasons, one can still try to arrive
at Förster resonance with a second pair state by applying additional electric or magnetic fields.
These fields do two important things at once – firstly, they li� the degeneracy of the |n, l, j〉
state manifold by adding anmj-dependent level shi�. Secondly, these level shi�s can be used
to fine-tune the residual energy defect between the |r1, r2〉 and |r′1, r′2〉pair states bymaking use
of di�erential Stark- or Zeeman shi�s of the di�erentmj states. This has been used in e.g. [102]
to isolate a single pair-state transition on themj fine-structure level.
For su�iciently weak fields such that (n, l, j) are still good quantum numbers, one can then

proceed in the calculation of the interaction strengths by taking the field-induced level shi�s
of themj states into account. One consequently finds the Förster resonances and extrema in
the interaction strength dependent on themj state and field strengths – di�erentmj states will
have their strongest interactions at di�erent field strengths. This tunability of the interaction
strength provides another tool to engineer interactions between neutral atoms on demand by
simply changing the strength and/or orientation of the externally applied electric or magnetic
fields.

3.2.5 EXAMPLE APPLICATION: PHOTON-PHOTON INTERACTION ON DEMAND

A fundamental understandingof the second-order interactionprocesses canbeutilised inmany
di�erent ways. For instance, it might be the case that one has to use certain Rydberg states
due to other experimental constraints, but the interactions are not particularly suitable for the
purpose. An analysis of the contributing interaction channels and mapping out potentially ac-
cessible Förster resonances allows to fine-tune and taylor the resulting Rydberg-Rydberg inter-
actions with externally applied electromagnetic fields. This can be used to enhance the inter-
actions by bringing a particular pair state into resonance, but it obviously works in the reverse
way as well by reducing resonant energy transfer when detuning a pair state from Förster res-
onance. Certain angular dependencies of the interaction can also be engineerd in this fashion,
which can then be exploited by use of appropriate spatial geometries. For example, a strong
angular dependency could be used for fast switching of the interaction strength in a 1D chain of
atoms by fast changes of the orientation of the quantisation axis.
Lastly, the 2D interactionmaps with their inherent resonances can also be used in a di�erent

fashion. By looking at the structure in e.g. Figure 3.6 one can identify pairs of pair states with re-
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spective interaction strengths varying by orders of magnitude18. Driving between such pairs of
pair states is thereforeanalternativeway togeneratea rapid change in interaction strength. This
scheme could be used to generate an e�ective on-demand interaction between two photons. It
has been mentiond in Chapter 2.1.2 that two photons e�ectively do not interact with another,
but when transferring a photon into a quasiparticle called polariton it inherits some properties
of matter. One of these inherited properties is the strong intraction between Rydberg atomic
states. Putting one and one together then provides a protocol to generate an e�ective inter-
action between to photons on demand: Initially, the two photons are transferred into Rydberg
polaritons with two distinct Rydberg states that interact only weakly. To induce the e�ective
interaction between the two photons one then transfers the Rydberg polaritons into a strongly
interactingpair state by applicationof a suitable coupling field to eachpolariton. Since this driv-
ing between the strongly andweakly interacting pair states occurs ondemandonehas obtained
all necessary ingredients and control tools required for the task. Eventually, the polaritons can
be released from their host medium and recovered in the form of photons.

18This is particularly pronounced for some pair states on higher-order resonances away from the n1 = n2 axis.
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As shown in the previous chapters, Rydberg atomic systems are known to have exceptional
properties due to the scaling of the Rydberg-Rydberg interaction with principal quantum num-
ber n. Interestingly, they also show behavior that is not naïvely expected for such systems. For
instance, optical bistability has been observed in hot Rydberg vapors [114]. Di�erent theoretical
models have been employed to explain the origin of the bistability and the resulting hysteresis
e�ects. Notably, both Rydberg-Rydberg interactions [115, 116] and plasma formation of ionised
Rydberg atoms [63] have been shown, theoretically, to lead to optical bistability in the response
of a vapour. In essence, both approaches have in common a non-linear interaction mechanism
which causes a change in the stability of the system and produces multiple steady state solu-
tions for a single set of external driving parameters.
There is recent experimental evidence showing that plasma formation occurs in a hot Ryd-

berg vapour in the strong driving regime [63, 117] and can account for much of the resulting
lineshapes [63]. The underlying e�ect is a line broadening due to Stark shi�s of the atomic lev-
els, caused by the surrounding ions. Due to the locally di�erent electric fields for every atom
in the vapour and the di�erent Doppler detunings due to atomic motion, simulations of such a
vapour become tedious and evade analytical solutions.
Based on the optical Bloch equations, we have set up a model including a generic nonlin-

ear Rydberg-density dependent level shi� of the Rydberg state. We were aiming for simplicity
of the model to eventually gain further insight into the role that Rydberg interactions and ion-
induced level shi�s play in the dynamics and response of a continuously driven hot vapour in
the strong driving regime. Therefore, we have not merely reproduced the methodology of the
plasma formation approach [63] but set up a simpler model which allows for a more intuitive
understanding of the resulting dynamics of the system.
The resultingmodel is first presented for an e�ective two-level system in Section 4.2.1 due to

the existence of partially analytical solutions for the resulting equations, and then extended to
a three-level model in Section 4.2.3. This treatment of a single velocity class is then extended
to a simulation of a hot vapour in Section 4.4. The chapter is completed by establishing links
to well-known phenomena such as ergodicity breaking and time crystals, but also to famous
models like the Kuramotomodel, in Section 4.5.
The sections on stability of steady states, Hopf bifurcation, and synchronisation put an em-

phasis on themathematical aspects of those phenomenawithin the framework of the theory of
dynamical systems and can be omitted by readers familiar with themathematical background.
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Fig. 4.1: Level schemes for 2-level and 3-level model. The two-level model consists of an atom with
ground state |g〉 and excited state |e〉, coupled by a field with Rabi frequency Ω and a detuning
∆ from resonance. The decay Γ represents a decay mode from |e〉 → |g〉, i.e. it is assumed
that there is no decay out of the basis states. In the three-level model, this assumption is also
made which leads to decay channels Γge,Γer and Γgr between the basis states {|g〉 , |e〉 , |r〉}.
The states |g〉 and |e〉 (|e〉 and |r〉) are coupled via a probe (coupling) field of Rabi frequencyΩp

(Ωc). In both models, the additional level shi� due to a power law interaction in V (ρee)
n and

V (ρrr)
n is indicated by the arrow and shi�ed state energy.

4.1 INTRODUCTION TO THE MODEL SYSTEMS

Based on the optical Bloch equations, one can set up the equations of motion for an n-level
system. This captures the coherent atom-light interaction processes, but does not account for
incoherent processes like dephasing or population decay. In a hot vapour, these mechanisms
play a significant role and so does the Doppler-shi� induced level detuning. These incoherent
processes are included in the model by adding dissipation and dephasing terms, and calculat-
ing the equations ofmotion via the quantumLiouville (Lindblad) equation (2.4). The incoherent
decay and dephasing1 rates originate from atomic state decay, collisional dephasing and decay,
transit timebroadening, anddephasing due to laser noise. Further e�ects such as power broad-
ening [118] could also be taken into account.
Furthermore, our model contains an additional Rydberg-population dependent level shi�

given byV ρnee andV ρnrr for the two- and three-levelmodel, respectively. The choices onemakes
for the coupling strength V and the power law scaling n determine the model. This allows to
model Rydberg-Rydberg interaction in the vapour and to approximate the plasma formation
model.
Without specifying these parameters any further one can find expressions determining the

steady state solutions of the model systems. For the sake of generality, those solutions will be
derived before further detailing and specifying the model by fixing the power law n and inter-
action parameter V . A discussion of the choice of those parameters is therefore deferred until
Section 4.3.

1The models as presented here do not include dephasing of the coherences with rates γij , hence those are not
indicated in Figure 4.1. At the relevant positions in the text it ismentioned howone can easily extend themodel
to include dephasing.
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4.2 STEADY STATE SOLUTIONS FOR A SINGLE VELOCITY CLASS

The timeevolutionof our dissipativen-levelmodel system is governedby thequantumLiouville
(Lindblad) equation, as described in Chapter 2. The steady state solutions for a single velocity
class2 vi can be found by setting the le�-hand side of equation (2.4) to zero, i.e. ρ̇ = 0 for the n-
level density matrix ρ. Without further specification of the physical parameters, one can study
the steady state properties of the e�ective 2-level and the 3-level model. In some parameter
regimes, the resulting behavior will turn out to be qualitatively very di�erent for the 2- and 3-
level models.
Thee�ective2-levelmodelwill be studied first asan introduction to theapproachandmethod-

ology –andbecause it haspartially analytical solutions,whichmakes it very instructive to study.
For the three-level model, the presented approach no longer leads to (partially) analytical so-
lutions3 since there is no general expression for the roots of a polynomial of order> 4 in terms
of radicals, as stated by the Abel-Ru�ini theorem [121, 122]. However, the presented approach
leads to a much more e�icient calculation of the steady states of the system via the roots of a
polynomial, as opposed to a numeric integration of the system until a steady state is reached.
Additionally, the three-level model shows self-oscillation in certain parameter regimes, which
is one manifestation of the nonlinearity of the system for n 6= 0.

4.2.1 EFFECTIVE 2-LEVEL MODEL
Thee�ective two-levelmodel, shown inFigure4.1, is governedby thecoherentatom-lightHamil-
tonianHAL, the excited state population dependent level shi�Hshift

H = HAL +Hshift =
~
2

(
0 Ω

Ω −2∆̃

)
+ ~

(
0 0
0 V ρnee

)
(4.1)

where the ρnee in the HamiltonianHshift represents the expectation value, not an operator, and
the Lindblad termD(ρ)

D(ρ) =

(
Γρee −1

2
Γρge

−1
2
Γρeg −Γρee

)
. (4.2)

∆̃ includes the Doppler detuning of velocity class vi, i.e. is the e�ective detuning of this velocity
class from resonance, and Γ denotes the decay from |e〉 → |g〉. The resulting equations of
motion for the system follow from equation (2.4) as

ρ̇gg = − ΩpIm(ρge) + Γρee, (4.3a)
ρ̇ee = + ΩpIm(ρge)− Γρee, (4.3b)

ρ̇ge = − i

2
Ω(ρee − ρgg)−

1

2
Γρge − i

(
∆̃− V ρnee

)
ρge. (4.3c)

2For any single velocity class vi of atomsmoving along the direction of propagation of a light field, the respective
transition isDoppler shi�ed to ∆̃x = ∆x−kx·vi, where∆x denotes the transitiondetuning foratomsstationary
in the lab frame and kx the wave vector of the respective laser x.

3Analytical expressions exist for three-level EIT models without the additional Rydberg-population dependent
level shi�. Further details on EIT in three-level systems can be found in the initial proposal and experimental
paper [119, 120], and e.g. in this review on EIT [18].
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When finding the steady state solutions, i.e. a�er setting the time derivative on the le�-hand
side to zero, it is straightforward to reduce the above system of equations by reformulating the
populations4 in terms of real and imaginary part of the coherence ρge. We also make use of the
trace condition 1 =

∑
j ρjj which enshrines the conservation of population – and therefore

probability – over time for any n-level system. The steady state equations corresponding to
system (4.3) therefore boil down to two equations in R, one each for real and imaginary part
of the coherence5 ρge. These remaining two equations give the steady state solutions of system
(4.3) via

ρigg = ρiee = 0, (4.4a)

ρrgg = 1− ρree = 1− Ω

Γ
ρige, (4.4b)

ρree =
Ω

Γ
ρige, (4.4c)

ρrge =
2

Γ

[
∆̃− V

(
Ω

Γ
ρige

)n ]
ρige, (4.4d)

0 = (ρige)
2n+1

[
2

Γ
V 2

(
Ω

Γ

)2n
]
− (ρige)

n+1

[
4

Γ
V ∆̃

(
Ω

Γ

)n]
(4.4e)

+ ρige

[
Ω2 + 2∆̃2

Γ
+

Γ

2

]
− Ω

2
.

The roots of the polynomial (4.4e) in ρige determine the steady state solutions of system (4.3)
uniquely. A polynomial of order k with real coe�icients, as the one above, has k solutions in C
– this follows from the Fundamental Theorem of Algebra [123, 124], also known as d’Alembert’s
theorem.
However, since real and imaginary part of the coherence were treated separately, we expect

a physical solution to be a real solution of equation (4.4e). Also, not every real solution is nec-
essarily a physical solution. Havingmade use of the trace condition guarantees that all popula-
tions sum up to one for all possible solutions, but say a negative ground state population and
a correspondingly large excited state population would also sum up to one. This would be very
unphysical in light of our interpretation of the populations as being the probability of finding
the system in a given state uponmeasurement, i.e.

P (|i〉) = 〈i| ρ |i〉 = ρii. (4.5)

It is shown in Appendix A.1 that all real solutions of equation (4.4e) lie in the interval [0, Γ
Ω

]which
implies that the interpretation of those real solutions as state probabilities are always valid.
Without actually finding the roots of the polynomial we can already give a statement on the

maximumnumberof real solutions thatwecould expect to find. For the trivial caseof a constant
level shi� of the excited state, i.e. V 6= 0 and n = 0, one finds the steady state solution for
4The imaginary part of the populations is always zero since the density matrix is hermitian, i.e. ρ† = ρ ⇒
Im(ρii) = 0 ∀i ∈ [1, n] for any n-level system described by ρ.

5Wewill use the notationRe(ρkl) = ρrkl and Im(ρkl) = ρikl throughout the thesis.
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Fig. 4.2: Bistability in the 2-level model. (a) shows the steady state population in the excited state for
Ω/Γ = 1, V/Γ = −30 and n = 2. In (b), the dynamical evolution of system (4.3) towards
the stable steady states is shown for initial states |Ψ〉t=0 = (1 − x) |g〉 + x |e〉 with x ∈ [0, 1].
The detuning ∆̃ = −2 is chosen such that the system has three steady states, two of which are
attractive and one repulsive, and is indicated with the gray dashed line in (a). In (c), real and
imaginary part of the coherence ρge are shown for the time traces in (b).

ρige to be analytical with always exactly one solution to equation (4.4e) for all sets of external
parameters. In this case, the response of the system is just shi�ed in energy by a fixed value, but
otherwise remains identical to the unperturbed case.

n = 0 : ρige =
Ω/2

Ω2+2(∆̃−V )2

Γ
+ Γ

2

. (4.6)

When assuming a level shi� of the excited state linearly in ρee, i.e. when setting n = 1, the
situation changes fundamentally. The leading term of the polynomial (4.4e) is cubic with well-
known expressions for the roots. One now finds either one or three real solutions for a single set
of external parameters {Ω, ∆̃,Γ, V }. When having three real solutions, then all of themare phys-
ical in the sense that they allow for an interpretation of the populations as state probabilities.
However, not all three of the steady state solutions are stable.
Figure 4.2 (a) shows an example for such a case ofmultiple steady states in the 2-level system,

themiddle branch in the regionof three solutions is unstable. Thismeans that the systemwould
never dynamically develop into this steady state, unless it was initialised exactly in that state.
Any tiny deviation from the unstable steady state would lead to a dynamical evolution further
away from that state - towards a stable steady state, if that exists. Panel (b) in Figure 4.2 shows
how the di�erent initial states |Ψ〉t=0 = (1−x) |g〉+x |e〉develop towards one of the two stable
steady statesover time for the set of initial parametersmarkedby thegraydashed line in (a). The
time traces of (b) are plotted again in (c), but now in the space spanned by the coherence ρge.
The system always starts in ρge = 0 but is attracted towards two separate steady state values,
depending on the initial state of the system at t = 0.

A further point to note is that those sets of external parameters {Ω, ∆̃,Γ, V }, where the num-
ber – or nature – of the steady state solutions of a dynamical system changes, is called a bifur-
cation point. The mathematical field of bifurcation theory has led to a rich and varied study of
bifurcations in dynamical systems, and this thesis uses some of the results and findings of the
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Fig. 4.3: Scaling of the bistable region in the 2-level model. The bistable region is shown for a range
of detunings ∆̃/Γ, Rabi frequencies Ω/Γ, interaction strengths V/Γ, and n. A general increase
in the size of the bistable region with increasing interaction strength V and decreasing power n
is apparent.

field. However, for ease of reading a more mathematical treatment is deferred until the follow-
ing Section 4.2.2 on the stability analysis of steady states.

For anyn > 1, i.e. for a scaling of the excited state level shi� beyond linear in the excited state
population, one finds that the polynomial (4.4e) does not have a general analytical solution.
However, we can still state that there is a maximum of three steady state solutions of system
(4.3) for any given set of external parameters. This follows from Descartes’ rule of signs [125,
126] which states that a polynomial

P(λ) = αk λ
k + . . . + α1 λ + α0

of degree k over R has at maximum l ≤ k positive real roots with l being the number of sign
flips in the sequence of coe�icients {αj |αj ∈ R for 0 ≤ j ≤ k}6. Additionally, one always has a
minimumof one steady state solution since the polynomial is of an odd order. Figure 4.3 shows
the scaling of the bistable region with n ∈ {1, 2, 3} andΩ/Γ ∈ [0, 20] for di�erent values of the
interaction strength V/Γ. The detuning ∆̃/Γ is the so-called bifurcation parameter since this
parameter is varied and the system’s response is observed for any fixed set of {Ω, V,Γ, n}.
Computationally, it is considerably more e�icient to find the roots of the polynomial via nu-

merical methods than integrating system (4.3) until a steady state is reached. However, finding
all real roots of a polynomial can be tricky as common root finding algorithms do not guarantee
to find all real roots. There are algorithms based on Descartes’ rule of signs or Sturm’s theorem
which are complete insofar as they return all real roots of a polynomial. For reasons of com-
putation time and ease of implementation, we have used an alternative method to find all real
roots of the polynomial based on the companionmatrix. The companionmatrix [124] of a poly-
nomial has all roots of the polynomial inC as eigenvalues, and therefore also all the real ones.
In Python, the eigenvalues of a matrix can be computed e�iciently using numpy7.
6A corollary of this theorem can be applied to find themaximumpossible number of negative real roots by count-
ing the number of sign changes of the sequence whenmultiplying the odd coe�icients with−1.

7The numerical results have turned out to be stable and accurate within the parameter regimes of relevance for
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4.2.2 STABILITY ANALYSIS OF STEADY STATES IN DYNAMICAL SYSTEMS
Having established the number of possible steady state solutions of the e�ective two-level sys-
tem, we can now study the stability of those solutions. In a physical sense this is synonymous
to the question of whether or not the systemwill approach a steady state for a given initial state
- and which one, in case of several steady states. Here, we do not present the concepts in a
mathematically rigorous fashion but give a brief overview of the tools required for the stability
analysis of the steady states. A sound mathematical treatment of the problem can be found in
e.g. [127, 128].

When the timeevolutionof thestatexofadynamical system isgivenbyadi�erential equation

dx

dt
= Xµ(x) (4.7)

then the steady states8 of the system are those x0 ∈ U such that

Xµ(x0) = 0. (4.8)

Here, the setU is a suitable subset of the phase space of the systemand the subscriptµ denotes
the other parameters which the system may depend on. The di�erential equation (4.7) is a set
of equations of motion that do not explicitly depend on time t on the right-hand side.
For instance, when considering a dissipative system defined via

ρ̇ = − i

~
[H, ρ] + D(ρ)

then setting the le� hand side to zero, i.e. ρ̇ = 0, and solving for ρ results exactly in the set of
steady states of the system. Those are the set of points for which the corresponding flow Φt

µ

maps the points onto themselves, i.e. Φt
µ(x0) = x0 ∀t ∈ R.

A steady state x0 of the di�erential equation (4.7) can generally either be stable or unstable.
Broadly speaking, x0 is Lyapunov stable if there exists a neighborhood around x0 such that all
trajectories starting in this neighborhood always remain within a finite distance ε > 0 to x0

for all t > 0. This means, e�ectively, that every trajectory starting near the equilibrium point
x0 remains near the equilibrium for all time. A di�erent, stronger notion of stability is called
asymptotic stability. It refers to the situation where a su�iciently small perturbation δ from the
equilibrium point decays away as time evolves and the system returns to its equilibrium state
for t → ∞. Lyapunov stability is not as strict as asymptotoc stability since it does not require
convergence of the trajectory towards the equilibrium x0 in time, but it contains asymptotic
stability and can still be a useful concept since ε can be chosen very small. An unstable steady
state, then, is one where for an arbitrary neighborhood of x0 one finds at least one trajectory
that evolves away out of the neighborhood and does not return.

this thesis.
8We will use the terms steady state and equilibrium point interchangeably as they refer to the same state x0. A
fixed point of the corresponding flow Φtµ is equally a steady state ofXµ, but the reverse implication does not
necessarily hold.
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The stability of a steady state can be studied by considering the linearisation9 of the mapXµ

around the critical point x0. A steady state is asymptotically stable if the real part of all eigen-
values λj of the linearisation around x0 are negative. The steady state is unstable if at least one
eigenvalue satisfiesRe(λj) > 010.
The linearisation ofXµ at x0 is given by the Jacobi Jµ evaluated at x = x0

J [X](x0) = DxXµ|x=x0 (4.9)

Finding the eigenvalues of Jµ is equivalent to finding the roots of the characteristic polynomial
χµ[Jµ](λ). It can be useful to study the characteristic polynomial χµ instead of the Jacobi Jµ.
Reason being that several theorems on the roots of polynomials exist that may be of help for
deriving general statements on the stability of x0 without actually having to calculate the roots.

Using these tools one can now calculate the steady states x0 of a system and determine their
stability. In manymeasurements, physicists are not concerned with the dynamical evolution of
a system a�er initial stimulus but are rather interested in the steady states approached by the
system a�er some time t. The system will then be observed in the steady state it was attracted
to, given its initial conditions11. This dependence on the initial state of the system is also shown
in Figure 4.2 (b) and (c).

We have used the two-level approach as an introduction to the required mathematical tools
and as an illustration of the chosen approach to study the behavior of a single velocity class vi
for a given set of external parameters.
The e�ective 2-level approach has an analytical solution for the characteristic polynomial of

the linearisation, which permits an analytical study of the stability properties of the system. A
further discussion of the stability of the steady state solutions for this model can be found in
the Appendix A.1 but will not be discussed any further here as it does not produce time-periodic
solutions12 via Hopf bifurcation. The corresponding three-level model, however, leads to a very
di�erent type of steady state solutions since it undergoes Hopf bifurcation and produces said
time-periodic orbits. We will therefore now look at the three-level model and its properties.

4.2.3 3-LEVEL MODEL
In the two-levelmodel presented abovewe have simplified the o�en encountered situation of a
two-photon transitionby assuming a largedetuning∆p from the intermediate state. This allows
to neglect the population dynamics of the intermediate state |e〉 and justifies the use of a two-
level systemwith e�ective Rabi frequencyΩeff ∝ ΩpΩc/∆p.
9The Hartman-Grobman theorem [129] is applicable here and states that the stability of a hyperbolic equilibrium
point of a nonlinear system is locally the same as that of its linearisation around the equilibrium point. An
equilibrium point is hyperbolic if no eigenvalue of the linearisation evaluated at the equilibrium has a real part
equal to zero.

10If there exists at least on eigenvalue withRe(λ) = 0, then stability of the steady state cannot be determined by
use of the linearisation.

11Though it is technically possible to initialise a system in an unstable steady state, it will not be observed in that
state a�er some time t given that any small deviation from the state leads to the system evolving away from it
- and some degree of parameter fluctuations occurs even in the best experiments.

12This is shown in Appendix A.1.
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In a hot vapour, however, the Doppler detuning of the di�erent velocity classes can become
very large and easily reaches the same order of magnitude as typical detunings ∆p from the
intermediate state. A full three-level treatment of the system is therefore required in order to
also include the population dynamics of the intermediate state.

The three-level model shown in Figure 4.1 is described by the coherent atom-light interac-
tion of probe and coupling field, encoded inHAL, as well as the additional Rydberg-population
dependent detuning encapsulated byHshift

H = HAL +Hshift =
~
2

 0 Ωp 0

Ωp −2∆̃p Ωc

0 Ωc −2(∆̃p + ∆̃c)

+ ~

0 0 0
0 0 0
0 0 V ρnrr

 , (4.10)

where ρnrr inHshift is again an expectation value, not an operator, and the incoherent processes,
resulting in

Dtot.(ρ) =

Γgeρee + Γgrρrr −Γge

2
ρge −Γgr+Γer

2
ρgr

−Γge

2
ρeg −Γgeρee + Γerρrr −Γge+Γer+Γgr

2
ρer

−Γgr+Γer

2
ρrg −Γge+Γer+Γgr

2
ρre −(Γgr + Γer)ρrr

 . (4.11)

If themodel is to be extended to include additional dephasing of the coherences γij , then those
are simply added to the respective incoherent terms via (Dtot.)(i,j) → (Dtot.)(i,j) + γijρij . In this
notation, ∆̃x again denotes the e�ective detuning of the velocity class of interest, i.e. including
the motion-induced Doppler detuning. The resulting equations of motion follow as

ρ̇gg = − ΩpIm(ρge) + Γgeρee + Γgrρrr, (4.12a)
ρ̇ee = + ΩpIm(ρge)− ΩcIm(ρer)− Γgeρee + Γerρrr, (4.12b)
ρ̇rr = + ΩcIm(ρer)− (Γgr + Γer)ρrr, (4.12c)

ρ̇ge = − i

2
Ωp(ρee − ρgg) +

i

2
Ωcρgr − i∆̃pρge −

Γge
2
ρge, (4.12d)

ρ̇er = − i

2
Ωc(ρrr − ρee)−

i

2
Ωpρgr − i

(
∆̃c − V (ρrr)

n
)
ρer (4.12e)

− Γge + Γer + Γgr
2

ρer,

ρ̇gr = − i

2
Ωpρer +

i

2
Ωcρge −

Γgr + Γer
2

ρgr − i
(

∆̃p + ∆̃c − V (ρrr)
n
)
ρrg. (4.12f)

As in the two-level case, one can define the steady state solutions of system (4.12) via the roots
of a polynomial in the imaginary part of the coherence ρer by using the trace condition and her-
miticity of the densitymatrix ρ. The resulting expressions are rather longish and complicated, a
summary and description of the necessary steps as well as a complete expression of the results
are therefore given in in the Appendix A.2.
However, a brief look at the general form of the polynomial defining the steady state values

is of interest here. For a Rydberg-population induced detuning scaling to the power of n, i.e.
V (ρrr)

n, one finds that the resulting polynomialP(ρier) is of the form

P(ρier) =
∑
k∈X

αk(ρ
i
er)

k (4.13)
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Fig. 4.4: Multiplebifurcations in the3-levelmodel. For bothpanels, the systemparameterswere set to
Ωc/Γge = 0.5, ∆̃p/Γge = −0.75, Γer/Γge = 10−5, Γgr/Γge = 10−2 and n = 3. The probe Rabi
frequencies areΩp/Γge = 2 in (a) andΩp/Γge = 5 in (b) while the interaction strength V/Γge is
varied identically between 0 and -75 in both plots. In (b), the strong probe Rabi frequency leads
to dressed states but with di�erent weights due to the intermediate state detuning ∆̃p 6= 0.

withX = {4n + 1, 3n + 1, 2n + 1, 2n, n + 1, n, 1, 0}. Due to the complexity of the expressions
defining the coe�icients αk we have calculated the steady states of system 4.12 numerically by
finding the roots of P(ρier) = 0 via the companion matrix. For all parameter regimes tested,
there has always beenaminimumof one real, positive solution. Additionally, all steady state so-
lutions obtained from thepolynomial (4.13) have satisfied the requirement 0 ≤ ρrgg, ρ

r
ee, ρ

r
rr ≤ 1.

The resulting steady state solutions can therefore be interpreted as physical and the popula-
tions ρjj as state probabilities since the trace condition was initially used as a constraint on the
system.
In the parameter regimes that have been studied numerically, we can therefore state that this

approachalways returns at least onephysical solution and, applyingDescartes’ rule of signs, we
can additionally state that the number of real, positive solutions cannot exceed seven. The case
n = 0 obviously returns a single steady state solution for any set of external parameters. For
other values of n ∈ N+, up to five steady states have been observed for certain values of the
system parameters {Ωx,∆x, V,Γij}.
An example for the onset of bistability with increasing interaction strength V is shown in Fig-

ure 4.4 (a). The steady states for the same parameters but with a stronger probe Rabi frequency
Ωp is shown in Figure 4.4 (b). Here, the strong probe leads to formation of dressed states as one
can see in the steady state response of system (4.12). For large interaction strengths V , this can
produce up to five steady states for one set of external parameters {Ωx,∆x, V,Γij}.

The observation of bifurcations in the model immediately invokes the question of the sta-
bility of the resulting steady states. When studying the two-level model we had observed that
regions of multiple steady states produce stable and unstable solutions. A similar behaviour
is observed in the three-level model, but the stability of the steady states now shows a more
complex behaviour.
Figure 4.5 shows two situations where bifurcations occur. For the set of system parameters

chosen in 4.5 (a), the resulting bifurcation leads to the central steady state being unstable since
one eigenvalue has a positive real part. This is also the case for the set of parameters cho-
sen for 4.5 (b). However, the ‘upper’ steady state undergoes an additional bifurcation where
a complex conjugate pair of eigenvalues crosses the imaginary axis upon change of the bifur-

43



CHAPTER 4. THEORETICAL MODEL

Fig. 4.5: Hopf bifurcation in the 3-level model. The steady states and corresponding eigenvalues λi of
the three-level system are shown for Ωc/Γge = 1.5, ∆̃p/Γge = −5, V/Γge = −15, Γer/Γge =
10−5, Γgr/Γge = 10−2 and n = 2. The top row corresponds toΩp/Γge = 0.3while the bottom
row shows the situation for Ωp/Γge = 1.3. In the spectra shown in the le� column, the unsta-
ble (middle) steady state is indicated in olive while the limit cycle region is marked in dark red.
The three panels on the right show the eigenvalues of the linearisation corresponding to the
respective steady states.

cation parameter ∆̃c. Such a type of bifurcation is known as a Hopf bifurcation which can lead
to the formation of limit cycles, giving rise to curious dynamics of the system. An example for
such a case where system (4.12) is globally attracted to a stable limit cycle for any initial state
|Ψ〉t=0 = (1− x) |g〉+ x |r〉 is shown in Figure 4.6.

It is a well-known result from theoretical research in the context of (open) quantum systems
that nonlinear systems can approach limit cycles [130, 131] within certain parameter regimes.
These self-oscillations are nowadays understood as apossiblemanifestation of the nonlinearity
of a system. Famous examples for the occurrence of limit cycles in very di�erent contexts are
theLotka-Volterramodel [132, 133] and the vanderPol oscillator [134]. Other interestingobjects,
such as the Mandelbrot set, are also connected to bifurcation theory.

4.2.4 HOPF BIFURCATION
As mentioned before, a bifurcation occurs when the number or nature of the steady state solu-
tions change upon variation of the bifurcation parameter. In the two-level model, we have en-
countered saddle-node bifurcations which occurredwhen the number of steady state solutions
changedbetweenone and three. Suchbifurcations are o�enencountered in systemsdisplaying
hysteresis e�ects. Saddle-node bifurcations also occur in the three-level model, as can be seen
in the figures above and is also shown explicitly in Figure 4.8.
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Fig. 4.6: Limit cycles in the 3-level model. The spectrum in (a) shows the instable steady state in
olive and the limit cycle region in dark red. (b) shows the attraction of the system towards the
limit cycle for the two-photon detuning ∆̃/Γge = −0.9 and di�erent initial state preparations
|Ψ〉t=0 = (1−x) |g〉+x |r〉with x ∈ [0, 1]. The coherence ρer corresponding to the time traces
from (b) is shown in (c). All traces approach the same limit cycle a�er a short time, though
with a relative o�set in time. The system parameters are set to Ωp/Γge = 3.8, Ωc/Γge = 2,
∆̃p/Γge = 0, Γer/Γge = 10−5 and Γgr/Γge = 10−2, V/Γge = −12 and n = 3.

However, the interesting additional feature of the three-level system is that one also finds a
di�erent type of bifurcation in themodel, the aforementionedHopf bifurcation. Such aHopf bi-
furcation features a complex conjugate pair of eigenvalues λj of the linearisation13 Jµ crossing
the imaginary axis14 upon variation of the bifurcation parameter, as shown in Figure 4.5. This
immediately implies that the corresponding steady state becomes unstable, but the limit cycle
branching o� at a Hopf bifurcation point may be stable or unstable . In the case of limit cycles,
stable means that all trajectories within a neighbourhood of the limit cycle stay in the neigh-
bourhood of the limit cycle as time tends towards infinity, or even converge to it. Therefore,
a stable limit cycle is yet another example for an attractor in a dynamical system - similar to a
Lyapunov stable steady state. One can depict the unstable limit cycle as repelling trajectories in
its neighborhood. This is not the mathematical definition of unstable limit cycles but it serves
as an intuitive picture. The stability of a limit cycle can be determined by looking at the sign of
the first Lyapunov coe�icient, the reader is referred to e.g. [135, 136] for further details.

An example for the limit cycle changing in size and shape upon variation of the bifurcation
parameter ∆̃ = ∆̃p + ∆̃c is shown in Figure 4.7. The size of the limit cycle increases with grow-
ing distance to the bifurcation point ζ0, which lies at that end of the limit cycle region closer to
two-photon resonance15 (yellow). At the far end (blue) of the region indicated in the steady state
plot, the limit cycle becomes very large and eventually looses stability. In the bistable region of

13The linearisation Jµ evaluated at the equilibrium point x0(ζ), which depends continuously on the bifurcation
parameter ζ.

14The Hartman-Grobman theorem is not applicable at the Hopf bifurcation point itself. However, except for the
set of Hopf bifurcation points the theorem applies and one can study the stability of the linearisation to give
statements on the stability of the nonlinear system in a neighbourhood of the equilibrium point.

15This is one of many indicators that the Hopf bifurcations are subcritical for V < 0. On can further determine
whether aHopf bifurcation is sub- or supercritical by considering aquantity called the first Lyapunov coe�icient
[136].

45



CHAPTER 4. THEORETICAL MODEL

Fig. 4.7: Shape of limit cycles for variation of the bifurcation parameter. The limit cycles approached
by system (4.12) is shown in slices of the system’s phase space for di�erent two-photon detun-
ings ∆̃/Γge. The spectrumon the le� shows the steady state solutions in gray and the limit cycle
region shaded by colour. For di�erent detunings, coded by colour as in the spectrum, the limit
cycles are shown in phase space slices for the coherences ρge, ρer and ρgr. The system parame-
ters are the same as in Figure 4.6.

this example, the lower steady states are asymptotically stable, the middle branch consists of
unstable steady states and the upper branch is similarly unstable, including the correspond-
ing limit cycles. However, it is not always the case that the limit cycles are unstable within the
bistable/multistable region of the model.
It should be stressed that a limit cycle is not in any form an oscillation between the stable

steady states of a system for multiple steady states. Instead, for a limit cycle to occur, a steady
state must loose stability and from this steady state value a limit cycle branches o� at the bifur-
cation point. The limit cycle is separate fromany other steady states in the system, which is also
why globally attractive limit cycles can exist as the only attractors in a system.

Physically, a limit cycle corresponds to self-oscillations of a systemwithout an external, peri-
odic drive. Only by virtue of the system’s nonlinearity it is attracted toward a time-periodic orbit
that is robust to small fluctuations of the systemparameters16. The important point to highlight
here is the absence of periodicity in the drive, so the time-periodic response of the system is not
enforced on the system from the outside by an applied force but emerges fundamentally from
the nonlinearity of the system.
Hopf bifurcations are the mechanism behind the emergence of self-oscillations in the three-

level model. In the next section, the behavior of the limit cycle region and the resulting orbits is
presented in some detail.

4.2.5 BEHAVIOR OF THE LIMIT CYCLE REGION IN THE 3-LEVEL MODEL
As we have seen in the previous sections, the 3-level model shows interesting behavior and
has properties which the simplified, e�ective 2-level model does not have. Due to the lack of
analytical expressions for the 3-level approach, no equations were derived for the onset of the
bistable or limit cycle regions. However, some interesting properties of the 3-level model will
be shown to motivate a further study of this model.
16This robustness to small fluctuations in the system parameters is highly relevant for actual experimental obser-
vations of self-oscillations in the response of a system!
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Fig. 4.8: Scaling of bistable and limit cycle regions in the 3-level model. For increasing coupling Rabi
frequenciesΩc, the bistable/multistable region (top row) and limit cycle region (bottom row) is
shown for power law scalingsn ∈ [1, 2, 3] and interaction strengthsV/Γge ∈ [−25,−50,−100].
The remaining system parameters are set toΩp/Γge = 3, ∆̃p/Γge = −3.5,Γer/Γge = 10−5 and
Γgr/Γge = 10−2.

Firstly, it is interesting to have a look at the onset of the bistable and the limit cycle regions,
respectively. Figure 4.8 exemplarily shows the scaling of those regions for various interaction
strengths, with all other parameters held constant. One can see that both regions grow in size
with increasing interaction strength V/Γge, but remain somewhat similar in shape. The onset
of bistability and limit cycles depends on the interaction strength. For increasing V the onset
of either bifurcation is observed at lower coupling Rabi frequenciesΩc for fixed probe Rabi fre-
quencies Ωp. Additionally, the onset of bistability occurs for lower coupling Rabi frequencies
than the onset of limit cycle formation. These two observations have been made throughout
for every set of system parameters that were tested17.

Furthermore, it has been observed that the limit cycle is stable and globally attractive where
the limit cycle region does not overlap with the multistable region. In case of an overlap of
the two bifurcations, the limit cycle is no longer globally attractive and tends to loose stability
further away fromtheHopfbifurcationpoint. Also, the sizeof the limit cycle growsand itsperiod
reduces with increasing distance to the bifurcation point ζ0.
It was also found that several Hopf bifurcations can occur upon variation of the bifurcation

parameter ∆̃c. An example for such a scenario is shown in Figure 4.9 where the steady state
values for ρrrr are shown in (a). The eigenvalues, plotted in panel (b), show very clearly that the
two Hopf bifurcations on the lower branch (teal) are caused by di�erent pairs of eigenvalues
crossing the imaginary axis. Only the set of limit cycles closer to zero detuning is stable. The

17It should be noted that the model was investigated only for n ∈ N+ for reasons of implementation of the root-
finding algorithm for the polynomial defining the steady states of the system. The behavior of the model for
non-integer power law scalings in n or, more interestingly, for negative n, may be quite di�erent.

47



CHAPTER 4. THEORETICAL MODEL

Fig. 4.9: Two separate spectral regions with globally attractive limit cycles. The steady state values
for ρrrr are shown in (a), red indicates limit cycle regions and olive an unstable steady state.
The eigenvalues of the linearisation corresponding to the lower (teal), middle (red) and upper
(yellow) branch are shown in (b). Panel (c) shows the long-term trajectories of the system for the
detunings ∆̃ = ∆̃p+∆̃c indicated in (a). Thesametrajectoriesare represented in (d) in the space
spanned by the coherence ρer. The system parameters are set to Ωp/Γge = 3, Ωc/Γge = 4.4,
∆̃p/Γge = 0, V/Γge = −100, n = 3, Γer/Γge = 10−5 and Γgr/Γge = 10−2.

limit cycle branching o� where the eigenvalues shown in yellow cross the imaginary axis are
stable as well. The time traces in (c) also show that both separate limit cycle regions are stable,
and in this example even globally attractive at their respective detunings ∆̃. Here, the third limit
cycle region on the lower branch is unstable. The dotted line shows a trace from the limit of the
region of stable orbits for the second stable limit cycle region.
This example shows that for di�erent detunings ∆̃ one can obtain spectrally separate regions

of globally attractive limit cycles for certain system parameters. However, in most cases with
several limit cycle regions it has been observed that at most one region produces stable limit
cycles.

Lastly, it is interesting to have a closer look at the limit cycles themselves. Figure 4.10 shows
how the period of the limit cycle, aswell as their shape, changes across the region of stable limit
cycles. Near the Hopf bifurcation, the trajectory is smaller and the period is shorter as expected
from bifurcation theory [127]. As can also be seen in Figure 4.9, the limit cycles become more
complicated and take on complex shapes before they loose stability, which can be seen in the
orbit shapes as well as in the time-dependent behavior of the coherences.

4.3 SCALING OF INTERACTION TERM

So far, the models have been studied as they are, i.e. without justifying a particular choice for
the power law scaling n of the population-dependent detuning18 V · (ρnxx. We aim at modelling
a system that is known to interact via Rydberg-Rydberg interactions and may be ionised such
that a plasma forms around the atoms, causing a Stark shi�-inducedbackaction on the Rydberg
state.
18With ρxx we denote the population of the level highest in the ladder, i.e. x = e for the two-level model and
x = r for the three-level model. In this section we will describe the three-level model - but the interaction
scaling approximation works identical for the two-level model.
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Fig. 4.10: Temporal shape of limit cycle at di�erent detunings. The temporal shape of the limit cy-
cles approached by system (4.12) is shown for di�erent two-photon detunings ∆̃/Γge. The
spectrum on the le� shows the instable steady state in olive and the limit cycle region in dark
red. The region shaded in gray is the spectral region where the limit cycles are stable. For
the three detunings indicated in the spectrum, the renormalised coherence ρier (solid) and ρige
(dotted) are plotted over time. The system parameters are set to Ωp/Γge = 3.8, Ωc/Γge = 2,
∆̃p/Γge = 0, V/Γge = −30, n = 3, Γer/Γge = 10−5 and Γgr/Γge = 10−2.

We will start by considering Rydberg-Rydberg interactions in the van der Waals regime. The
corresponding many-body interaction Hamiltonian features an atom-atom interaction scaling
with interatomic distance as r−6

kl for a pair of atoms (k, l), and is given by

H(k)
int. = −~

2

∑
l 6=k

C
(k,l)
6

r6
kl

|r〉kk 〈r| ⊗ |r〉ll 〈r| . (4.14)

From the derivation presented in Appendix B we know that the interaction Hamiltonian can be
approximated19 by the expression

HvdW
int. = −4πρv

3
I(θ,φ)

√
~ΩC6ρ

2
rr |r〉 〈r| (4.15)

to arrive at e�ective single-body equations of motion.
Therefore, to model van der Waals interactions between Rydberg atoms in the vapour, one

sets n = 2 and V = 4πρv
3
I(θ,φ)

√
~ΩC6. For simplicity, one can assume the Rydberg-Rydberg

interaction to be isotropic which sets I(θ,φ) = 4π. The three-level model then follows directly
from the above approximation of the many-body Hamiltonian for van der Waals interactions.

If, on the other hand, the dynamics of the level shi�s in the vapour are dominated by Stark
shi�s of the Rydberg state due to collisional ionisation of Rydberg atoms, the power law scaling
was shown in Appendix C to be given by n = 4/3 for su�iciently low Rydberg populations. The
Stark shi� results in a scaling V ∝ −αN 4/3

tot (ρrrr)
4/3.

19The assumptionsmade in the approximation in Appendix B are that of amean fieldmodel, therefore neglecting
direct two-body correlations or entanglement, and secondly the assumption of similarity of all atoms,meaning
that - statistically - the situation will be the same for whichever atom in the ensemble, allowing to reduce the
many-body case to a set of single-body equations of motion.
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With thesemotivations for a ρrr-dependent power law scaling of the Rydberg state detuning,
we can now consider the additional complications arising from the motion of the atoms. This
leads us to a full hot vapour simulation of the Rydberg system.

4.4 HOT VAPOUR SIMULATION FOR ALL VELOCITY CLASSES

So far, we have been looking at a single velocity class vi and how the atoms within this veloc-
ity class interact with one another via Rydberg density-dependent interactions. The resulting
dynamics within this velocity class strongly depend on the detuning of the atoms from the in-
termediate and Rydberg states, as well as on the other system parameters.
However, assuming only a single velocity class must fail in the description of a hot vapour.

As an example, the thermal energy of a rubidium atom at 1 K corresponds to a kinetic energy
which is equivalent to v ≈ 14m/s. At 780 nm - the wavelength of the Rb D2 line - this is equal to
a detuning of∆ ≈ 18 MHz, which is roughly half the natural linewidth of the transition. This is
very much.
Therefore, if onewants to simulate a hot vapour it becomes necessary to take the full range of

velocity classes of the atoms in the vapour into account. Furthermore, one has to deal with the
additional complication that all velocity classes interact with one another through the shared
Rydberg-Rydberg interaction and all feel the same plasma bath. Single velocity classes can no
longerbe treatedas separateentitiesbuthave tobe regardedaspart of onevapour composedof
many di�erent velocity classes, all acting under the influence of a sharedRydberg atomdensity.
To include this shared interaction, it does not su�ice to just look at many velocity classes and
sumover theirweighted responseover time. Ananalytical treatmentof theproblemnowresults
in a set of integro-di�erential equations which are harder to deal with as compared to standard
ODEs. The system is therefore studied numerically with an adapted integration scheme. In or-
der to account for the resulting dynamics of the entire vapour one has to include the Rydberg-
density dependent level shi� in every integration step. This implies that standard integration
schemes are unsuitable and have to bemodified for this purpose.
To this end,wehave implementedastepwiseRunge-Kutta integrator20 in amatrix-based fash-

ion in python. The equations of motion (4.12) were written in the form

ρ{vi}(tj+1) =M{vi}(ρ{vi}(tj)) · ρ{vi}(tj)

withM{vi}(ρ{vi}(tj)) ∈ R(9,9,Nvel) andρ{vi}(tj) ∈ R(9,Nvel)21.Nvel denotes thenumberof velocity
classes in the velocity class22 partition {vi}i with respective velocity class weights {p(vi)}i and
bin width {∆vi}i. ThematrixM{vi}(ρ(tj)) depends on the detunings specific for every velocity
class vk ∈ {vi}i and on the weighted Rydberg state population in the vapour at time tj , and
therefore has to be updated for every time step tj → tj+1. ForNvel velocity classes the Rydberg-
density dependent level shi�∆shift(tj) has to be adjusted by taking the weighted sum over all
velocity classes.
20Runge-Kutta 4 (rk4), [137].
21This uses the fact that ρijj = 0. An implementation including the imaginary part of the populations is also pos-
sible, but unnecessary and computationally more expensive.

22Throughout the remainder of the thesis we will assume that probe and coupling laser are propagating in one
dimension, i.e. are co- or counterpropagating, such that only one spatial degree of freedom is of relevance.

50



4.4. HOT VAPOUR SIMULATION FOR ALL VELOCITY CLASSES

Fig. 4.11: Thermal vapour simulation leading to time-periodic response. The time evolution of a sys-
tem initially in |g〉⊗Nvel is shown for the case of a vapour with velocity classes interacting via
the shared Rydberg atom density (upper row, a) and a vapour composed of self-interacting ve-
locity classes (lower row, b). The system parameters are Ωp = 6Γge, Ωc = 4Γge, ∆p = 0,
∆c = −11Γge, Γer = 10−6Γge, Γgr = 10−3Γge and n = 2. The velocity class detunings corre-
spond toaRbgasatT = 48◦Cwithcounterpropagatingprobeandcouplingbeamsatλp = 780
nm and λc = 480 nm. The simulation usesNvel = 101 velocity classes with equal population
weight, shown in colour in all plots and rescaling by (×Nvel/5). The solid black line shows the
total vapour response.

As a result, one obtains the time evolution of the 9 × Nvel-dimensional state vector ρ{vi}(tj)
which encodes the state vector ρ{vi}(tj) for all velocity classes simultaneously23.
Figure 4.11 shows an example for an interacting (a) and a noninteracting (b) sample. Nonin-

teracting here means that every velocity class evolves under its own interaction but does not
experience the Rydberg density of the other velocity classes. The black solid lines in each panel
shows the resulting Rydberg state population integrated over all velocity classes. As one can
see, the resulting behavior of the two cases is significantly di�erent. In the noninteracting case,
some velocity class approach limit cycles, but each with its own frequency and phase. The re-

23This integration scheme is slow for large numbers of velocity classes and long timescales, making it a bit in-
convenient to use. To properly simulate a thermal vapour, Nvel ∼ O(100) are usually required. For a linear
spacing of velocity classes in {vi} and large probe and coupling Rabi frequencies on the order of Γge, around
Nvel ≈ 300 − 500 velocity classes are required. If one chooses a spacing linear in the velocity class popu-
lations {p(v)}, this number reduces to Nvel ≈ 100 − 200. To further speed up the code, one can employ
additional tricks such as the introduction of a cuto� weighted Rydberg state population at cuto� time tc. All
velocity classes with weighted Rydberg populations below the bar are regarded as contributing insignificantly
and taken to be constant for future integration steps. This reduces the computational costs of a single inte-
gration step and is e�ective particularly for cases of many noncontributing velocity classes. Overall, the time
required to run a single integration canbe spedupbymore thanoneorder ofmagnitude, bringing computation
times down to� 1 minute per run while keeping deviations from the full thermal vapour integration negligi-
bly small. An implementation of adaptive step size Runge-Kutta integrations with Fehlberg (RKF45) [138] and
Dormand-Prince (RKDP) [139] pairs has been trialled as well. However, the additional function evaluations and
calculations required for the error estimate have slowed the evaluationsmore than an adaption of step size has
sped it up for the parameter range of interest.
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sulting Rydberg state population of the vapour therefore does not show any distinctive oscilla-
tory feature due to the averaging over all velocity classes.
If the velocity classes interact with one another through the shared Rydberg density as in

Figure 4.11 (a), one observes a very di�erent behavior. Some velocity classes initially begin to
oscillate at their own frequencies, but a�er some time the velocity classes eventually oscillate
in lockstep with each other at a single frequency. This behaviour is known as synchronisation
and is briefly discussed in Section 4.4.1 below. It is noteworthy that the frequency of the result-
ing oscillations are orders of magnitude di�erent than the laser Rabi frequencies or interaction
strength. In this example, the oscillation frequency ωosc is smaller than Γge, but it holds that
Ωp,Ωc > Γge and V � Γge. It is therefore very obvious that the oscillation phenomenon arises
fundamentally from the system properties rather than being imprinted on the system by some
external drive or force.

4.4.1 SYNCHRONISATION

It has been observed in Figure 4.11 (a) that some velocity classes initially begin to oscillate at
their own natural frequency ω(vj). A�er a transient phase the populations begin to oscillate in
lockstepwith a fixed phase relation to each other, leading tomacroscopic oscillations in the hot
vapour’s bulk quantities. This e�ect can be understood in the framework of synchronisation,
which is described in detail in e.g. [140].
Synchronisation isaprocess that canoccurbetweenself-oscillating systems24where thephase,

frequency and/or amplitude of the self-sustained oscillators are adjusted towards synchrony.
Mechanisms for synchronisation can either be a direct coupling between self-oscillating sys-
tems or coupling via an external force, e.g. the day-night cycle on planet earth forcing most
people to adapt a 24 h rhythm even though individual circadian rhythms vary. The nature and
directionality of this coupling may vary, which leads to the observation of di�erent forms of
synchronisation.
In systems like the hot vapour model considered above, one finds a scenario where many

self-sustained phase oscillators with slightly di�erent natural frequenciesω(vj) are coupled via
a global25mean field. Thismean field is, of course, the total Rydberg atompopulation ρrrr of the
vapour and is composedof theRydbergpopulationsof all velocity classes. It leads tobackaction
on the Rydberg state by Rydberg population-dependent level shi�s. The oscillation of themean
field therefore arises from the oscillation in Rydberg population due to some velocity classes
being attracted towards limit cycles, i.e. self-oscillating states. It maintains the periodicity by
enforcing a synchronisation of the oscillationswithin the ensemble of velocity classes via global
coupling by a periodic shi� in Rydberg state energy.

24It is crucial here that the system is self-oscillating rather than driven by an external force. If the system were
driven externally, then the phase of the system (i.e. the position on the limit cycle at a given time t) is locked
onto the phase of the external drive. This makes phase synchronisation impossible as two driven oscillators
cannot adjust their phases to oscillate in synchrony. Self-oscillating systems, on the other hand, are not forced
into any given phase on the limit cycle at a given time such that the phase can easily be adjusted by a coupling
or a force. It should also be mentioned, again, that self-oscillation is a feature of some nonlinear systems.

25Since the atoms in the di�erent velocity classes should, on average, be distributed uniformly across the vapour
onemayassume that the contributionof a single velocity class to themean fielddependsonlyon theamplitude
of the velocity class’s population and is global.
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Fig. 4.12: Local and global attractiveness of the hot vapour system. The steady states and limit cy-
cles approached by the thermal vapour system are shown for the initial states |g〉⊗Nvel (·) and
|e〉⊗Nvel (x). Error bars indicate the oscillation amplitude. The time evolution of the hot vapour
system is shown in the ρge-space in the right panel and the resulting limit cycles in the inset.
Systemparameters are the sameas inFigure4.11, except for the coupling laserdetuning∆c/Γge
being varied in the range [−20, 10].

Examples of globally coupled phase oscillators have been studied in abundance in recent
years, starting with the works of Winfree [11] and Kuramoto [12]. The list of systems stretches
from coupled laser arrays [141–143] and Josephson junctions [144] to the synchronous flashing
of fireflies [3] and the synchronisation of the chirps of snowy tree crickets [145].
Interesting to note is that several other e�ects can take place within the framework of syn-

chronisation. For instance, in certainparameter regimes it is possible that only a subset of phase
oscillators synchronises, which is known as partial synchronisation [4, 5, 146]. Also, for inhomo-
geneous global coupling where the coupling strength depends on e.g. the spatial separation
between oscillators, clustering of synchronised oscillators can occur. This means that the oscil-
lators within a cluster are synchronised, but the di�erent clustersmay have di�erent oscillation
frequencies [140].

Therefore, the naïvely rather unexpected occurrence of macroscopic oscillations in the hot
vapour simulation arises from synchronisation of the initially independent oscillations of the
Rydbergpopulationof somevelocity classes,mediatedviaglobal coupling through thevapour’s
Rydberg atomdensity. Certain conditionsmust bemet for the occurrence of synchronisation [4,
140]. This leads to the onset of a self-sustained oscillatory phase in the vapour without external
periodic forcing or driving. Important is the realisation that the synchronised oscillations donot
decay away in time but would continue perpetually.

4.4.2 BEHAVIOUR OF THE LIMIT CYCLE REGION IN HOT VAPOUR SIMULATIONS
Using the full hot vapour integration scheme, one can now study the resulting behavior of the
system26, from lineshapes to the occurrence of pronounced population oscillations.
26It tends to be a little di�icult to find an oscillation regime in the hot vapour when not knowing where to look. It
turned out that the hot vapour simulation tends to be in a synchronised phase if the stationary single velocity
classmodel with the e�ective interaction Veff = V · (ρrrr)

n−1 is in an oscillatory regime. Here, ρrrr denotes the
total vapour Rydberg density and has to be estimated.
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Fig. 4.13: Example limit cycle shapes in hot vapour system. The limit cycles approachedby the system
are shown for the values indicated with gray dashed lines in the spectrum (le�). The central
plot inset shows the phase space approached by the system for t > 4000Γ−1

ge , with the system
not approaching either limit cycle or steady state for∆c = −3Γge within this integration time.
One can clearly see di�erent shapes of the oscillations and also that the oscillation region is
interrupted at ∆c = −2Γge. The system parameters are Ωp = 1.5Γge, Ωc = 1Γge, ∆p = 0,
∆c/Γge ∈ [−7, 7], Γer = 10−6Γge, Γgr = 10−3Γge, V = −300 and n = 2. The velocity class
detunings correspond to a Rb gas at T = 48◦C with counterpropagating probe and coupling
beams atλp = 780 nmandλc = 480 nm. The simulation usesNvel = 101 velocity classeswith
equal population weight.

The first point to note is that the full hot vapour system equally knows locally and globally at-
tractive solutions, as shown in Figure 4.12. The le� panel shows the spectrumwhen varying the
coupling laser detuning across resonance, once with the initial state being |g〉⊗Nvel (·) and once
for |e〉⊗Nvel (x). The bars indicate the magnitude of the oscillations in Rydberg state population
ρrrr, if present. The corresponding temporal evolution towards the steady state or limit cycles is
shown in the right plot in the space spanned by ρrge and ρige. The existence of locally and globally
attractive states is relevant formodelling experimental sequences such as a coupling laser scan,
or when giving statements on the presence of limit cycles at given system parameters.
Similar to the single-velocity case displayed in Figure 4.10, the frequency and shape of the

limit cycle in the synchronised state change as one changes the bifurcation parameter ∆̃c. This
is shown in Figure 4.13 where the Rydberg population is shown in time for the three detunings
indicated in the spectrum. Additionally, one can see that the limit cycle region is interrupted
at ∆̃c/Γge = −1.5 and does not approach a closed orbit within tΓge < 5000 for ∆̃c/Γge =
−2.5. This case is reminiscent of a systemnear a strange attractor, the orbits are each somewhat
similar and appear periodic, but are not perfectly so.
For the same system parameters, Figure 4.14 (a) shows in detail which velocity classes con-

tribute to the oscillations. The colour of the velocity class corresponds to the total detuning
from two-photon resonance of the respective velocity class (red: red detuned, yellow: on reso-
nance, blue: blue detuned). One can see that the spectral region where frequency entrainment
leads to large relative oscillation amplitudes of the individual velocity classes is very narrow
and changes with detuning ∆c. This explains the di�erent limit cycle shapes and frequencies
observed in Figure 4.13. In (b), it is shown that for fixed detuning∆c/Γge = 1 the width of this
entrainment region depends on the interaction strength and forms a triangular shape reminis-
cent of an Arnold tongue. Additionally, the full hot vapour system also preserves ‘knowledge’ of
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Fig. 4.14: Contributing velocity classes, oscillation frequency entrainment, and phase freedom in
limit cycle of thermal vapour system. For the same model parameters as in Figure 4.13, the
amplitude of the entrained velocity classes relative to the mean value is shown in (a) for the
oscillation region. The central plot (b) shows the relative amplitudes of the velocity classes
at fixed detuning ∆c/Γge = 1 for varying interaction strengths V/Γge ∈ [0,−1000]. The
increase in width of the frequency entrainment region with increasing V is visible. At the
same detuning, (c) shows the limit cycle in ρrrr and in ρer-space (inset) for di�erent initial
|Ψ〉t=0 = (1 − x) |g〉⊗Nvel + x |e〉⊗Nvel , demonstrating that the phase in the limit cycle de-
pends on the initial state of the system. (x = 0 : blue, x = 1 : green)

the initial state as shown in (c) since the phase of the system in the limit cycle depends on the
initial state of the system. This behavior is typical for self-oscillating and synchronising systems.

Generally, it was observed that the oscillation frequency increases with increasing Rabi fre-
quencies, and depends rather weakly on the interaction strength V . No oscillations occur for
large ratios of decay rates to Rabi frequencies, i.e. the decay must be su�iciently small to facil-
itate an oscillation regime. Also, a minimum coupling Rabi frequency must be given for oscilla-
tions to occur but this critical value depends on the other system parameters. Synchronisation
can occur in regionswith equal and di�erent signs ofV and∆c though the contributing velocity
classes, and therefore the amplitude of the oscillations, vary.
Concluding this brief study of the thermal vapour approach it should be noted that the be-

havior of the systemdepends strongly on the external parameters27 aswell as on the initial state
of the system. Numerical investigations of this system is feasible on standard computers when
minimising thecomputational requirementsof thecode, allowinganexplorationof the system’s
behavior. It has been shown that the three-level model and the thermal vapour system display
rich nonlinear dynamics. We will therefore now turn our attention to the connection of these
model systems to already establishedmodels and phenomena.

27For comparison, in our thermal vapour experiment we routinely work in the following regime:
∆p = −2π× (140MHz) [147],∆c ∈ 2π× ([-250,100 ]MHz), peak Rabi frequenciesΩp ∈ 2π× ([90, 200]MHz) and
Ωc ∈ 2π× ([0, 24]MHz) [98]which results in e�ective 2-photonRabi frequencies up toΩmax.eff = 2π× (16.4MHz).
Γge = 2π× (6.07 MHz) [55] is the D2 line decay rate of 87Rb, Γer ≤ 2π× (5 kHz) due to radiative decay [98], and
the decay Γgr ≈ 2π× (643 kHz) is the sum of Rydberg state lifetime and transit time induced broadening [21].
Temperatures vary in ranges of 35 - 60 deg. Celsius, the van der Waals coe�icient |C6| ∈ [15, 4037] GHz (µm)6
[98] and resulting blockade radii in range rb ∈ [3.9, 9.5] µm. The Rydberg atom fraction fRyd. was around the
saturation threshold. The coupling laser scan rate is of order 10 GHz/s.
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4.5 RELATION TO OTHER MODELS, EFFECTS, AND PHENOMENA

The three-level and thermal vapourmodel, aspresentedabove, and thee�ectsoccurring therein,
namely self-sustained oscillation and synchronisation, are very interesting to study in their own
rights. Additionally, these connect themodels towell established phenomenawhichwill briefly
be mentioned below. The breaking of ergodicity by multistable classical systems is discussed
in Section 4.5.1 and the transition from an equilibrium state to a synchronised state in the hot
vapour system is related to generalised Kuramoto models and the nonequilibrium synchroni-
sation transition occurring therein in Section 4.5.3. The closely related phenomenon of time
crystals is briefly mentioned in Section 4.5.2.

4.5.1 ERGODICITY BREAKING

The ergodic hypothesis, i.e. the assumption that equivalence holds between the time average
of a typical trajectory and the ensemble average of the system, is a cornerstone of statistical
physics. However, the notion of ergodicity breaking has received much attention since the un-
expected finding of Fermi, Pasta, Ulam and Tsinghou (FPUT) in 1955 that a system of a few non-
linearly coupled oscillators on a 1D chain with fixed boundary conditions did not equilibrate
within the accessible timescales [148]. On the contrary, the chain showed almost perfect recur-
rence to the initial state, i.e. (quasi-) periodic motion. This result raised questions on ergodicity
and thermalisation in their model, i.e. the relaxation of a far-from-equilibrium state towards
equilibrium and the equipartition of energy between the normal modes of the system28.
Returning to ergodicity, since the FPUT simulations it hasbeen found that ergodicity breaking

occurs in a significant number of classical nonlinear systems [151]. For a classical system with
two di�erent attractive equilibrium states29, ergodicity breaking is very easily established [151].
Compare two (typical) trajectories, one from each basin of attraction of the two equilibria. One
finds that the time average of the two necessarily di�ers - and those are each di�erent to the
ensemble average in thermal equilibrium30.
It is therefore straightforward to construct ergodicity breaking systems in the classical case,

one basically just needs a su�iciently nonlinear systemwith a bistable phase [151]. In the quan-
tum regime, the question is mostly studied through the lens of the eigenstate thermalisation
hypothesis (ETH) and is still a matter of active research [152, 153].

The bi- or multistable regions of the 2- and 3-level model for a single velocity class there-
fore imply ergodicity breaking by the system, and similarly so for the bistable regions in the hot
vapour model with a finite number of velocity classesNvel.

28Later, it has been established that the FPUT model indeed thermalises for their initial conditions, just on
timescales much longer than they had studied [149–151].

29As a reminder, in the context of dynamical systems an equilibrium state is defined as a steady state and the
systemwill develop in time towards the attractive ones.

30...given that each basin of attraction has a nonzeromeasure. The ergodic hypothesis is formulated for a dynami-
cal system, i.e. the triplet (Γ, µ,Φt)with the system’sphase spaceΓ,measureµdefinedonΓand timeevolution
mapΦ at time t. For a more detailed definition of each, see e.g. [151].
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4.5.2 TIME CRYSTALS

In 2012, the question has been raisedwhether time translation symmetry (TTS) could be broken
in a classical [154] or a quantummechanical [155] framework, and the quantumversionwas put
on a more solid theoretical footing in 2016 [156, 157]. Such systems were coined time crystals,
in analogy to spatially periodic structures called crystals, and were to possess a time-periodic
structure. Soon a�er, the first reports of the experimental observation of discrete, i.e. periodi-
cally driven, Floquet time crystals emerged [158, 159].
Generally, one can distinguish di�erent types of time crystals [160, 161]. Discrete time crys-

tals arise in periodically driven systemswhere the system responds at an integermultiple of the
drive period, thereby being both periodic in time and breaking discrete TTS. This type of time
crystal is predicted to occur in some many-body localised systems [157]. The first two experi-
mental reports of time crystals used closed quantum systems and were of this discrete kind.
Initially, it was thought that one had to carefully avoid dissipative channels in the system in

order to find time crystalline states. However, this had been disproved theoretically [162] and
experimentally [73, 163]. Additionally, it has been found that dissipative systems also allow for
breaking of continuous TTS [164, 165], and first experimental realisations of a continuous dissi-
pative time crystal have been reported in 2022 [166, 167]. In April this year (2023), a continuous
time crystalline state has been observed at room temperature via periodic changes in the trans-
mission of an optical metamaterial [168] and a preprint reports time crystalline behavior in the
response of a semiconductor [169].

Following the strict definition of a time crystal as a "stable, conservative, macroscopic clock"
given in [170], we cannot speak of a time crystalline phase occurring in the 3-level model or
the hot vapour system. Others have relaxed the requirements for time crystals to also include
open [171] and finite-body [172] systems. It therefore remains for the reader to decide whether
or not they classify the 3-level model, or its hot vapour extension, as a time crystal . In any
way, the phenomena are closely related and a thorough investigation of the hot vapour system
in the limit Nvel → ∞ is of interest. The discussion of boundary time crystals [173] and their
subsequent classification as genuine many-body phases of matter [174] are also of particular
interest with respect to the system presented in this work.

4.5.3 KURAMOTO MODEL AND NONEQUILIBRIUM PHASE TRANSITIONS

The Kuramoto model describes the synchronisation of self-sustained oscillators with di�erent
natural frequencies ωj , interacting via global coupling [12]. For the Kuramoto model itself, the
mechanism leading to self-oscillations is of no concern but it is taken to be a natural property
of each oscillator. Of relevance is only the existence of a global mean field that each oscillator
couples to and is influenced by. As a result, the oscillators begin to synchronise within a cer-
tain range of natural frequencies, which has been found to depend crucially on the coupling
strength V between the oscillators, such that Arnold tongues form. This onset of synchronisa-
tion is regarded to be a nonequilibriumphase transition [175–177] froman equilibrium state to a
(partially) synchronised, nonequilibrium state. The case of partial synchronisation occurs even
for self-sustained oscillators with the same natural frequency ω0 if the coupling is su�iciently
nonlinear, and is sometimes also referred to as self-organisation [146].
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Though the original model assumes a certain form of coupling between the individual oscil-
lators, generalisations of the Kuramotomodel have been proposed and their ability to produce
(partially) synchronised stateshasbeenshown [4, 5, 177, 178]. Experimentally, the first- [179] and
second-order [8] phase transitions to a synchronised state have beendemonstrated, and for en-
trainment of two [180] andmany [8] coupled oscillators, the formation of an Arnold tongue has
been observed. Synchronisation of an ensemble of quanumoscillators has also been predicted
[181].

The hot vapour system described in Section 4.4 shows the prerequisites of a generalised Ku-
ramotomodel: In certain parameter regimes, it produces self-sustainedoscillators (thedi�erent
velocity classes vj) with a certain spread of natural frequencies ωj , which are globally coupled
via a mean field (the total Rydberg atom density ρrrr of the vapour). Similar to the nonequilib-
rium phase transition in the Kuramoto model, a transition to a synchronised state is observed
upon variation of the bifurcation parameter ∆c. The similarities between the thermal vapour
system of this work and generalised Kuramotomodels are strikingly clear.

4.6 CLOSING REMARKS

In a hot Rydberg vapour, many processes happen at once that complicate an intuitive under-
standing of the system. Motion-induced detuning leads to a wide range of dynamics within the
vapour even for fixed laser detunings. Rydberg interactions as well as collision-induced ionisa-
tion processes cause even richer dynamics in such a system by introducing strong nonlineari-
ties. It is therefore di�icult to develop an understanding of this complex system and intuit its
response to external driving.
To this end, we have provided a simplified description of a hot Rydberg vapour based on the

optical Bloch equations, with the assumptions thatmany-body correlations can be neglected in
this environment due to the many sources of incoherence. The resulting steady state solutions
for a single velocity class can be computed via the roots of a polynomial, which provides a fast
and e�icient method to find the steady state solutions of the system.
We have shown that an e�ective two-level system may posess a bistable phase where two

attractive steady state solutions exist. In the three-level model, one additionally finds the sys-
tem to be attracted towards limit cycles for certain conditions where a Hopf bifurcation occurs.
These limit cycles arise fundamentally from the nonlinearity of the system, but equally require
dissipative processes for their occurrence andmaintenance.
To take into account the prevalence of many di�erent velocity classes in a hot vapour, the

three-level model was extended to a full hot vapour simulation. In this process, the di�erent
velocity classes are originally attracted towards di�erent limit cycles. The global coupling of
the velocity classes through a shared Rydberg density eventually leads to frequency and phase
entrainment of the limit cycles, and synchronisation emerges in the system. This leads to the
remarkable result that a single, clear and robust oscillation of the vapour’s bulk quantities is
predicted by this model.
These oscillations are connected to a time crystalline state, brought about and stabilised by

the nonlinearity, dissipation, and coupling in the model system. The properties of this system
are highly interesting to study experimentally since it provides access to a truly large number
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of coupled oscillators and therefore allows to investigate the emergence of synchronisation in
such large ensembles.
In the followingchapterwe reporton theemergenceof synchronisation inadriven-dissipative

hotRydberg vapour suchas theone studied theoretically. Besides thealreadywell-knownbista-
bility and hysteresis in such a system, we also find robust oscillations in the transmission of the
probe laser through the vapour. These oscillations arise from synchronisation in the vapour,
though the underlying mechanism causing the occurrence of limit cycles is disputed and cur-
rently unknown.
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As shown in the previous Chapter 4, a driven-dissipative Rydberg vapour with nonlinearities
is predicted to show very unexpected behaviour in the response to constant external driving.
Beyond the optical bistability and hysteresis e�ects shown in Figure 5.1 (a), we have observed
persistent oscillations in the response of a hot vapour of rubidium atoms. As shown in Figure
5.1 (b), the transmission of the vapour changes periodically within a certain parameter regime
when scanning the coupling laser through the two-photon resonance (main plot), and when
fixing coupling and probe laser in the oscillation regime.
In this chapter, the experimental setup is presented before the observed dependence of the

oscillations on the system parameters is discussed. The presence of oscillations in the probe
laser transmission depends on the settings of the external parameters and the Rydberg state
properties, i.e. the Rabi frequencies, detunings and interaction strengths. The average inter-
action strength experinced by an atom depends on the Rydberg state as well as on the vapour
density and therefore also on temperature. The occurrence and frequency of the oscillations in
the response of the vapour were investigated for di�erent Rydberg states, various coupling and
probe Rabi frequencies, and a range of vapour densities. In Section 5.2, the experimentally ob-
serveddependenceof the oscillations on the external parameters is presented. The subsequent
Section 5.3 then relates the observations to the three-level hot vapourmodel and discusses the
experimental results in light of the relevant experiments, concepts, and literature.

Fig. 5.1: Bistability, hysteresis, and oscillations in the response of a thermal vapour. Panel (a) shows
a trace where optical bistability and the resulting hysteresis e�ect are visible as the coupling
laser is scanned across two-photon resonance with a Rydberg state. The sudden jump in the
vapour’s transmission is dependent on the coupling laser scan direction. (b) shows an example
for the occurrence of oscillations on the resonancewing. The inset shows an enlargement of the
oscillation region indicated by the gray dashed lines. The y-o�set has been added for clarity.
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Fig. 5.2: Experimental setup and relevant level schemeof rubidium. (a) The probe and coupling laser
light at 780 nm and 480 nm, respectively, are collimated by fiber couplers before passing a half-
waveplate (λ/2) and a polarising beamsplitter (PBS). The subsequent acousto-optic modulator
(AOM) and aperture are used for remote control of the beam powers. Dichroic mirrors are used
to combine the counterpropagating lasers on a shared beam path across the rubidium cell. The
probe laser is detected by a photodiode (PD) which generates the measured voltage signal. (b)
shows the generic level scheme of rubidiumwith the states that can be addressed via 2-photon
excitation.

5.1 EXPERIMENTAL SETUP

Th experimental setup used in this work is shown in Figure 5.2. A glass cell of 4 cm length is
filled with rubidium at natural abundance1 and held at constant vapour temperature which can
be varied between 20 and 60 °C. In this work, the vapour temperature was varied in the range
of 35 to 60 °C. The vapour is probed with a probe laser on the rubidium D2 line at 780.2 nm
via detection of the transmission of the vapour, using two-photon EIT spectroscopy. The probe
laser is locked at 2π×140 MHz below the closed transition |5S1/2, F = 2〉 ↔ |5P3/2, F = 3〉 of
87Rb [147] via modulation transfer spectroscopy (MTS) [182, 183]. The optical lock signal is fed
into a PID controller for frequency stabilisation.
A counterpropagating coupling laser at ∼ 480 nm couples the intermediate state to a Ryd-

berg state, which is either an |nS〉 or |nD〉 state. The coupling light is derived from the seed
laser’s fundamental light at ∼ 960 nm via second harmonic generation in a nonlinear crystal.
The fundamental light of the coupling laser is locked to an ultranarrow, ultrastable cavity via
sideband locking with an electro-optic modulator (EOM) [184, 185]. The error signal is gener-
ated from the cavity reflection spectrum with the Pound-Drever-Hall (PDH) error signal gener-
ation scheme [186, 187]. Using the EOM sideband allows to lock the laser to an arbitrary point
in the cavity spectrum. Scanning the sideband frequency then scans the laser lock point across
the frequency spectrum. Further details on the newly installed coupling laser and the updated
cavity lock can be found in Appendices E and F.
The polarisation of the probe and coupling lasers is cleaned a�er exiting the fiber by use of

polarising beamsplitters (PBS) and then set to the desired orientation bymanual adjustment of
a half-waveplate (λ/2). Finally, the laser powers supplied to the experiment are remotely con-

1Natural abundance of rubidium is 28% of 87Rb and 72% of 85Rb. The 87Rb isotope was used in this work.
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Fig. 5.3: Onset of oscillations with increasing coupling Rabi frequency. For a fixed probe Rabi fre-
quencyΩp, the coupling Rabi frequencyΩc is increased and the normalised photodiode signal
is shown. A�er the appearance of bistability in the vapour response, one can see an onset of
oscillations for even higher coupling Rabi frequenciesΩc. The probe transition Rabi frequency
is Ωp = 2π × 191 MHz for this dataset, the Rydberg state was |43D5/2〉 and the measurement
was taken at a vapour temperature ofT = (52.0±0.5) °C. This corresponds to a number density
of 87Rb atoms of ρ87Rb = (4.7 ± 0.2) · 1010 cm−3 [98, 189]. Each trace was given an individual
y-o�set for better visibility.

trolled via acousto-optic modulators (AOMs), which deflect power into higher orders propagat-
ing at slightly di�erent angles such that they are dumped by an aperture.

Beam waists of up to 1 mm and di�erent probe to coupling beam waist ratios wp/wc = 0.5, 2
have been tried and no dependence of the oscillations on the beamwaists has been observed.
The data presented in this thesis was taken for probe and coupling beamwaists ofwp= 390 µm
and wc = 440 µm respectively, unless specifically stated otherwise. Typical probe laser powers
for the experiment were in the range of 50− 600 µW, while the coupling laser power is usually
varied over a range of 25− 300mW. This corresponds to Rabi frequencies2 ofΩp/2π in the range
of 95 to 330 MHz andΩc/2π ≤ 35MHz.
For radiofrequency (rf) field sensing and similar applications oneusually keeps the laser pow-

ers below the saturation intensity3, particularly the probe laser power. This is to avoid – or at
least tominimise – e�ects like electron shelving and power broadening [118]. The strong driving
regime is therefore rather seldomly used in hot vapour applications. For the beamwaists spec-
ified above, one leaves the weak probe regime at roughly 18 µW, or just below Ωp = 2π × 60
MHz.
When scanning the coupling laser across two-photon resonance, we have observed that in-

creasing the coupling laser power to give higher Rabi frequencies o�en leads to an onset of
bistability in the vapour response before entering the oscillation regime at even higher Rabi
frequencies, as shown in Figure 5.3. Bistability refers to the sudden change in the vapour trans-
mission where the system jumps from one stable state to another. The width of the oscillation
region increases with increasing Rabi frequency as can clearly be seen in Figure 5.3. The depen-
dence of the oscillations on the experimental parameters is presented in the following section.

2Rabi frequencies always state the peak Rabi frequency for a TEM00 (Gaussian) mode.
3The saturation intensity is usually a good benchmark for whether or not one is in the weak probe regime, even
though one should generally be careful when defining a weak probe threshold [188].
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Fig. 5.4: Scaling of oscillation regimewith Rabi frequencies. The occurrence of the oscillation regime
is shown for for varyingprobe (a) and coupling (b) laser powerswith the respective other param-
eters kept constant. The coupling laser coupled to the |50D3/2〉 Rydberg state at ∆c = 0 MHz
and the |50D5/2〉 state at∆c = 2π× 93MHz. The coupling Rabi frequency was kept constant at
Ωc = 2π×18MHz in (a) and the probe Rabi frequency atΩp = 2π×160MHz in (b), respectively.

5.2 BEHAVIOUR AND SCALING OF OSCILLATION REGION WITH EXPERI-
MENTAL PARAMETERS

In this section, the observed typical behaviour of the oscillations and the scaling of the oscilla-
tion region with the various experimental parameters is presented. The underlyingmechanism
causing the oscillations is currently disputed in literature, with two other works on this type
of oscillations emerging during the completion of this thesis [190, 191]. In [190], it is proposed
that limit cycles arise from a competition for population between di�erent energetically close
states in the Rydberg manifold. The authors of [191] propose that spatial inhomogeneities and
a resulting spatial clustering of Rydberg atoms induce limit cycles.
The data in this Section is therefore presented as is with a purely descriptive approach to the

phenomenon. Scalings of the width of the oscillation region with changes in Rabi frequency
are discussed in Section 5.2.1 while the dependence on Rydberg state, and vapor temperature
is shown in Section 5.2.2. The frequency of the oscillations is studied in Section 5.2.3 and we
take a brief look at the shape of the oscillations along the scan in Section 5.2.4. A contextual
discussion and interpretation of the results follows in Section 5.3.

5.2.1 DEPENDENCE OF OSCILLATIONS ON RABI FREQUENCIES

Figure 5.4 shows typical traces when scanning the coupling laser through two-photon reso-
nance with a Rydberg state and increasing the Rabi frequency on one of the two transitions.
All other experimental parameters were held constant. Within a certain parameter regime, os-
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cillations occur in the transmission of the probe laser through the vapour4.
In Fig. 5.4 (a), the probe laser Rabi frequency is increased from the bottom to the top trace.

Eventually, an oscillation region becomes clearly visible but the width of the region and the os-
cillation frequency reducewith increasing probepower. A�er crossing a threshold probepower,
no oscillations remain in the response of the vapour.
The width of the oscillation region scales inversely when changing the coupling Rabi fre-

quency since theoscillation regionopenswith increasingΩc. A�ermeetinga threshold coupling
Rabi frequency, slow oscillations occur in the response of the vapour. The oscillation frequency
and width of the region increases with increasing coupling power, as can be seen in Figure 5.4
(b). When increasing the coupling Rabi frequency even further, the oscillations become too fast
to be distinguishable from noise in the scans. However, one can still see an edge, or plateau,
near the |50D3/2〉 state at∆c = 0MHz in the spectrum.

This general behaviourwas consistently observed for di�erent Rydberg states andatomnum-
ber densities. However, the oscillation frequency is not always constant within one oscillation
region, as one can see in some of the traces in Figure 5.4. For that reason, speaking of ‘the os-
cillations’ and of a single oscillation frequency does not capture the entire picture but is a sim-
plification that is done here for ease of discussion. It is important to keep in mind, though, that
the observations in the lab aremore complex than that. Further example traces demonstrating
this behaviour are shown in Figures 5.8 and 5.9.

5.2.2 SCALING WITH VAPOUR DENSITY AND RYDBERG STATE

It has been mentioned before that the presence of oscillations depends on the external experi-
mental parameters, and that several oscillation regionsmay form. It is therefore very interesting
toanalyse thedata fromadi�erentperspectiveby identifying the spectral regionswhereoscilla-
tions occur for di�erent combinations of experimental parameters. Thismay help to shed some
light on the underlying mechanism causing the occurrence of oscillations.
Example results are shown in Figure 5.5, the upper row shows the spectral regions in which

oscillations are observed when coupling to the |79D〉 states at di�erent Rabi frequencies and
three di�erent densities. For fixed probe Rabi frequency Ωp one can observe an onset of oscil-
lations at lower coupling Rabi frequencies for higher temperatures and therefore vapour densi-
ties. Clearly, one can infer a dependence of the presence of oscillations on the vapour density.
The lower row of Figure 5.5 shows the oscillation regimewhen addressing three di�erent Ry-

dberg states at similar vapour densities. Here, the onset of ocillations occurs at lower coupling
Rabi frequencies for higher Rydberg states and otherwise similar experimental parameters. It is
interesting to note that the vanderWaals interaction |43D5/2〉 state is larger thanof the |50D5/2〉
state due to a near Förster resonance [106] with the |42F5/2,7/2〉, |44P3/2〉, and |45F5/2,7/2〉 pair-
states. The C6 value of the |63D5/2〉 state is a factor 10 higher than that of the |50D5/2〉 state.
Additionally, the formation of spectrally separate regions can clearly be seen in the dataset for
the |63D5/2〉 state.

4In this example, no bistability occurs before or a�er the oscillation regime. The presence or absence of a bistabil-
ity edge depends on the external parameters, including beam alignment. All data in this thesis was taken a�er
optimising on a weak probe EIT feature, which indicates optimised beam overlap.
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Fig. 5.5: Scaling of oscillation region with experimental parameters. The upper row shows the os-
cillation region with a coupling to the |79D5/2〉 state at ∆c = 0 for three di�erent probe Rabi
frequencies and three di�erent vapour densities. The critical coupling Rabi frequency required
for anonsetof oscillations reduceswith increasing vapour temperatureand therefore increasing
number density. In the lower row, the oscillation region is indicated for three di�erent Rydberg
states at similar vapour tempteratures. One can clearly see di�erent, spectrally independent
oscillation regimes in the |63D5/2〉 data. Also, the onset of oscillations occurs at lower critical
coupling Rabi frequencies for higher-n Rydberg states.

Generally, it is observed that higher probe Rabi frequencies, higher-n Rydberg states and
higher vapour densities lead to a lower threshold coupling Rabi frequency Ωc required to ob-
serve an onset of oscillations.
Furthermore, a di�erent kind of splitting of the oscillation region has been observed for the
|77D5/2〉 stateathighvapour temperatures, as is shown inFigure5.6. Here, theoscillation region
suddenly breakswith a clear edge and a secondoscillation regionmay format the far side of the
break for higher coupling Rabi frequencies.

Fig. 5.6: Sudden break in oscillation region for |77D5/2〉 state. (a) shows the oscillation region for
the |77D5/2〉 state at a probe Rabi frequency of Ωp/2π = 234 MHz and vapour temperature
T = (50.5± 0.5) °C for di�erent coupling Rabi frequenciesΩc. The oscillation region in the top
right corner is present only for one scan direction but not the other. (b) shows the traces corre-
sponding to the coupling Rabi frequenciesΩc/2π indicated by the gray dashed lines in (a). The
corresponding values Ωc/2π are indicated below the respective traces. Each pair of traces has
an arbitrary o�set for better visibility.
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Fig. 5.7: Comparison of oscillation frequency in di�erent regimes. (a) shows an example of the oscil-
lations in time for fixed coupling laser detuning∆c. The coupling laser couples to the |50D5/2〉
state with Ωp = 2π × 191 MHz, Ωc = 2π × 24 MHz and T = (48.1 ± 0.2) °C. Panel (b) shows
the resulting spectral density of the time trace in (a). This is used to extract the oscillation fre-
quency. (c)-(e) show the oscillation frequency for various probe Rabi frequencies, for di�erent
Rydberg states and vapour temperatures. At higher number densities the |63D5/2〉 state shows
two spectrally separate regions with oscillations, compare also with Figure 5.9. The open blue
symbols show the oscillation frequency for the second oscillation region that does not exist in
the other datasets. Further details can be found in the main text.

5.2.3 OSCILLATION FREQUENCY SCALING

To get a better understanding of the scaling of the oscillation frequency with the Rabi frequen-
cies and the Rydberg-Rydberg interaction strength, a direct measurement of the oscillation fre-
quency was made. For these measurements, the coupling laser detuning was fixed such that
the system was inside the oscillation regime and a time trace of the probe laser transmission
through the vapour was captured, as shown in Figure 5.7 (a). Therefore, all external parameters
were kept constant for the duration of one measurement, which includes laser powers and de-
tunings, and vapour temperature. The response of the vapour shows an oscillatory behaviour
that is persistent in time and appears undamped on timescales as long as ten minutes. Oscil-
lation frequencies were inferred from the time traces by calculation of the Fourier spectrum of
the trace in Figure 5.7 (a). The oscillation frequency was taken to be the lowest frequency peak
in the spectral density |f̂(ω)|which is not the DC component, as shown in (b).
The data for Figure 5.7 (c)-(e) was collected by performing this measurement for a range of

Rabi frequencies on the |50D5/2〉 (olive) and |63D5/2〉 (yellow, blue) states. The yellow and blue
data points are both for the |63D5/2〉 state but the yellow dataset was taken at a lower vapour
temperature, i.e. at lower atom number density. Olive and blue datasets were taken for similar
atom number densities but di�erent Rydberg states. The blue dataset features not just one but
two oscillation regions with di�erent oscillation frequencies. This second region lies closer to
the resonancewith the j = 5/2 state in the spectrum. It does not occur in theother dataset from
that Rydberg state (yellow) and is therefore indicated with open symbols. The di�erent shapes
of the symbols indicate di�erent probe Rabi frequencies. Further example traces can be seen in
Figure 5.9.
For somedatasets there seems tobea tendencyof increasingoscillation frequencies forhigher

coupling laser powers, as can also be seen in the top row of Figure 5.9. Given the data, there
is no obvious relation between oscillation frequency and probe Rabi frequency. However, as
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Fig. 5.8: Change in frequency and shape of oscillations along scan. Example trace from the |43D5/2〉
state at 2π × 191 MHz probe Rabi frequency and 2π × 37 MHz coupling Rabi frequency at
T = (52.0 ± 0.5) °C. The oscillations have generally been observed to change in shape along
the oscillation region. Observed shapes resemble sawtooth, sawtooth with steps in the flank,
modulus of cosine/cos2 and triangular functions. The highlighted regions shown in the insets
have the same frequency width so one can see the change in oscillation frequency between the
regions.

mentioned before, the oscillation frequency varies within a single oscillation region. It there-
fore seems unreasonable to derive any conclusive interpretation from the data shown in Figure
5.7 (c)-(e). This invites a further, more systematic investigation of the phenomenon.

5.2.4 SHAPE AND FREQUENCY OF OSCILLATIONS ALONG SCAN
As remarked in the previous section, the oscillation frequency changes along the oscillation re-
gion. This change in oscillation frequency goes alongwith a change in shape of the oscillations,
as shown in Figure 5.8. It shows an enlargement of the four highlighted regions, each covering
the same frequency range. The oscillation shapes were observed to resemble sawtooth, saw-
tooth with steps in the rising flank, triangular, and modulus of cosine or cos2 functions. Many
datasets, but not all, show the same order of shapes from negative towards positive detuning:
sawtooth, triangular, cosine-like.
Additionally, Figure 5.8 indicates the presence of two separate oscillation regions, sharing a

spectral boundary at∆c/2π ≈ −45 MHz. The discrete change in oscillation frequency, as well
as the repeated occurrence of the sawtooth shape in the lower-frequency end of the rightmost
(olive) region, indicates that the two regions are indeed separate and independent of another.
In Figures 5.5 and5.9 theoccurrenceof spectrally separate oscillation regions is also very clearly
visible.
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Fig. 5.9: Example traces in oscillation regime. The transmission of the vapour is shown for three di�er-
ent probeRabi frequenciesΩp (columns) and four di�erent couplingRabi frequenciesΩc (rows),
increasing to the right and bottom, respectively. The Rabi frequencies of the example traces are
indicated in the oscillation frequency plots in the top row. The colour coding and corresponding
datasets are the same as in Figure 5.7.
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5.3 INTERPRETATION OF THE EXPERIMENTAL RESULTS

The experimental results were presented without interpretation or context to allow the reader
to draw their own conclusions from the data. This sectionwill provide the context for the exper-
iment and an interpretation of the data.

Themost notable feature of the observed oscillations is that their occurrence is independent
of the coupling laser scan speed. This goes as far as that the oscillations persist in time when
fixing all controllable parameters including the coupling laser detuning, as shown in Figure 5.7.
The system is drivenwith constant laser powers and frequencies, therefore the oscillations can-
not occur as a consequence of externalmodulation. Additionally, the laser Rabi frequencies are
three orders of magnitude faster than the oscillation frequency. Hence, the oscillations do not
originate from periodic driving but emerge fundamentally from the system itself. This is also
supported by Figure 5.5 which shows that a variation of the vapour density changes the thresh-
old for an onset of oscillations without changes to the driving of the system.
Conclusively, we observe a system that is attracted toward a limit cycle in certain parame-

ter regimes. From this conclusion, several questions emerge that we will attempt to answer
with the tools developed in this thesis and the experimental data presented above. One may
now ask: What mechanism causes the occurrence of limit cycles in this system? How can we
interpret these oscillations from a physical perspective? And how is it that a hot vapour with
motion-induced dephasing of the di�erent velocity classes of atoms still shows a clear, robust
oscillatory response rather than a superposition of many di�erent limit cycles averaging out to
a noisy signal?

Synchronisation

The last question is maybe the easiest one to answer. We have already established that the
system is attracted toward a limit cycle, but naïvely one would expect that every velocity class
of atoms is attracted towards a di�erent limit cycle due to the motion-induced detuning. As a
result, the response of the vapourwould be anoisy and incoherent signal, as shown in the lower
row of Figure 4.11. This is not what we observe, since we clearly find a single oscillatory signal.
The mechanism which prevents a noisy output is a global coupling between the di�erent ve-
locity classes leading to synchronisation. This coupling between the di�erent velocity classes
could be induced by Rydberg interactions between the di�erent velocity classes, or the global
e�ects of Stark shi�s induced by ionised Rydberg atoms. Other coupling mechanisms are also
possible. There is experimental evidence for the presence of a weak plasma in a hot vapour Ry-
dberg experiment under similar conditions as ours [63, 65], and Rydberg-Rydberg interactions
certainly also occur in our experimental regime. In Chapter 4, we have shown that both e�ects
could lead to the formation of limit cycles for di�erent velocity classes, and provide their own
respective global coupling mechanisms.
The relevant point to stress here is that theremust be amechanism in the systemwhich com-

bines the di�erent limit cycles expected from the microscopic description of the hot vapour to
a single and clear oscillatory signal of the bulk quantities. Such amechanism is provided by the
synchronisation of the constituent oscillators through a global coupling force, irrespective of its
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nature. We therefore attribute the observation of robust and stable periodic oscillations to the
emergence of synchronisation in a driven-dissipative hot Rydberg vapour.

Possible mechanisms causing oscillations

One would then like to know which mechanism actually causes the occurrence of limit cy-
cles, and this question is not so easy to answer. In Chapter 4 we have shown that any Rydberg-
population dependent level shi�, which can bemapped to a power law in the Rydberg density,
renders the system nonlinear and may cause Hopf bifurcations which can facilitate the occur-
rence of attractive limit cycles. Both theRydberg interactions and the ion-inducedStark shi�s of
theRydberg level canbemappedonto apower law scaling5, but othermechanismsmayequally
cause the system to be attracted towards limit cycles. In [190], it is proposed that limit cycles
arise from a competition for population between di�erent energetically close states in the Ry-
dberg manifold. The authors of [191] propose spatial inhomogeneities and a resulting spatial
clustering of Rydberg atoms to induce limit cycles.
The second proposed mechanism, i.e. the cluster-induced limit cycles, is a theory which fits

well for the experimental parameters reported in [191]. However, the probe Rabi frequencies
used in this work are around one order of magnitude higher than in the reference, and an esti-
mation of expected Rydberg atom densities in our experiment shows that we are near or even
well inside the regime of saturated Rydberg densities due to the blockade e�ect. This spatial
clustering hypothesis therefore seems unlikely to capture the processes in our system under
strong driving. Additionally, the oscillations observed in [191] are transient rather than persis-
tent. They also scale di�erently to the ones reported here and in [190], where the experimental
conditions are similar to ours.
The authors of [190] cite a competition for Rydberg population between energetically close

levels as causing limit cycles. The theory, aspresented in thepaper, assumesadirect couplingof
ground and Rydberg state with an e�ective Rabi frequency Ω. In other words, the assumption
is made that one can eliminate the intermediate state dynamics, which tends to be a di�icult
assumption to make in a hot vapor where Doppler shi�s easily lead to e�ective detunings of
several linewidthsΓge. This assumption certainly does not hold for the experiments reported in
this work since the intermediate state detuning is only ∆p/2π = −140 MHz. This is easily sur-
passed by the 1D RMS velocity of rubidium atoms at 40°C, meaning that some velocity classes
experience significant population of the intermediate state which changes the dynamics of the
system. Nonetheless, the proposedmechanism of limit cycles being caused by competition for
Rydberg population of di�erentmJ states within the Rydbergmanifold is possible. In this inter-
pretation, it would also be the Rydberg interaction causing a global coupling between di�erent
velocity classes so that synchronisation may occur6.
A further hint on the origin of limit cycles for a single velocity class is given by Figure 5.5,

showing the synchronisation regions for various Rydberg states, densities, and laser powers.

5The conditions for this mapping to a power law to be (approximately) accurate can be found in Appendices B
and C for Rydberg interactions and Stark shi�s, respectively.

6In [190], the system has been studied theoretically only for a single velocity class. It would be interesting to
investigate the proposed model in a full hot vapour simulation to see how bistability and synchronisation be-
have when taking many velocity classes into account. Also, including the intermediate state in the theoretical
descriptionmight reveal further dynamics and would be relevant in the context of a full hot vapour treatment.
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Fig. 5.10: Pair interaction potentials and Stark shi�s for 43D5/2, 50D5/2, 63D5/2 and 79D5/2 states in
rubidium. The pair potentials (upper row) and Stark shi�s (lower row) for the Rydberg states
in Figure 5.5. As can also be seen in the resulting pair potential, the |43D5/2〉 Rydberg pair
state has a Förster resonance with the |42F5/2,7/2〉, |44P3/2〉, and |45F5/2,7/2〉 pair states. Pair
potential data is given for spatial orientation of the atoms along the quantisation axis. The
electric field polarisability increases with n.

The upper row shows the synchronisation region for various densities when coupling to the
|79D〉 states. It indicates a clear dependence on the vapour density and therefore on the Ry-
dberg atom spacing. This is consistent with any interpretation that uses Rydberg interactions
as mechanism where higher Rydberg densities lead to stronger facilitation of synchronisation
in the vapour, but it is similarly in agreement with the ion-induced Stark shi� interpretation.
More interesting is the lower row of Figure 5.5 where the synchronisation regime is shown for

di�erentRydberg stateswithn = 43, 50, 63. Onecanclearly see that the thresholdcouplingRabi
frequency required for an onset of oscillations is lower for higher principal quantumnumbers n
at every probe Rabi frequency shown in the plot. The Rydberg states were chosen due to their
C6 interaction strengths since the |43D5/2〉 state is on a Förster resonance, leading to stronger
van der Waals interactions than for the |50D5/2〉 state. Onemight expect to see a trace of this in
the data in form of a lower critical coupling Rabi frequencymarking the onset of oscillations – if
the limit cycles are caused by van der Waals interactions. No indication for this can be seen.
The observed lowering of the critical coupling Rabi frequencywith highern is consistentwith

a plasma-induced Stark shi� causing the occurrence of limit cycles. Reason being that higher n
states have a higher polarisability, as shown in Figure 5.10, and higher ionisation cross sections.
This leads to an earlier onset of oscillations for higher principal quantumnumbers due to higher
global coupling strengths V .
It is yet too early to settle on one mechanism as cause of the limit cycles and more experi-

ments are required to answer this question with certainty.
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5.4 OPEN QUESTIONS, OUTLOOK, AND CONCLUSION

Several open questions remain, first and foremost the one regarding the origin of and mech-
anism behind the limit cycles. Di�erent mechanisms have been proposed and can be tested
through further experiments.
The Rydberg interaction mechanism could be tested with a comparison of the |43D5/2〉 state

to the |42D5/2〉atotherwise identicalparameters. ThevanderWaals interactionofpairsofmJ =
5/2-state atomsdi�ers by a factor of≈ 20between these twoneighboring stateswhile the other
mj state pair interactions and the collisional cross-section for ionisation of Rydberg atoms is
very similar. Alternatively, addressing only the mJ = 5/2 state and variation of the principal
quantumnumberbetween42and43shouldequallyprovide further informationon theRydberg
interaction dependence. If one observes oscillationswhile coupling only to a single (hyper-)fine
state, then this would also be a strong indication against the Rydberg population competition
mechanismassumed in [190]. Itwouldalsobe interesting to lookat thedependenceof theonset
of synchronisation on the intermediate state detuning, and to compare attractive and repulsive
pair interactions.
Using an ultracold atomic vapour setup would allow the system to be studied without the

Doppler averaging across many velocity classes, so that the behaviour of a single velocity class
would become accessible. Additionally, as the plasma formation in a hot vapour is mostly in-
duced by collisional ionisation of Rydberg atoms, a frozen gas experiment would give access to
a plasma-free environment. These experiments usually also feature excellent electromagnetic
field control such that one could investigate the e�ects of external Stark shi�s as well. Alterna-
tively, a weak DC field could be used in a hot vapour cell to quickly siphon o� all charges from
the beam area and therefore remove the plasma from the beam region.
An electromagnetic field dependence opens an avenue to utilise the oscillations for electro-

magnetic field sensing, or to exert further control on the systembyproviding additional tunable
parameters. When using this platform to experimentally study the emergence of synchronisa-
tion in ensembles of large numbers of coupledoscillators, such an externally tunable parameter
might prove to be very useful.
We can conclude that the origin of the limit cycles in our system remains unclear at present.

Understanding the underlying mechanism would allow a better understanding of the system,
also when subject to additional fields, and improve predictability of the system’s response.
However, irrespective of the origin of the limit cycles, all currently proposed and studied

mechanisms have in common that the hot vapour system hosts a wide range of di�erent veloc-
ity classes, each being attracted to di�erent limit cycles. The frequency entrainment of the limit
cycles is caused by global mean-field coupling of all velocity classes, which eventually leads to
synchronisation and a single oscillatory response of the vapour. This oscillation of the probe
transmission through the vapour is robust and does not show any damping on timescales on
the order of minutes.
The three-level hot vapour simulation presented in Chapter 4 phenomenologically repro-

duces the experiment. This includes the occurrence of several spectrally separated synchro-
nisation regions, the resulting shapes of oscillations, and scalingswith probe and coupling Rabi
frequencies and coupling strength. This scaling includes the changes in width of the oscilla-
tion region with changes inΩp orΩc, see also Figure 5.4, and the earlier onset of oscillations at
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Fig. 5.11: Phase dri� of oscillations in a single realisation. (a) The spectral density of the oscillations
reveals a clear oscillation frequency νosc of 43.1 kHz. Two segments of the data trace are shown
in (b) with a background triangular waveform of frequency νosc in dark gray. The dri� in phase
between the two segments is clearly visible, and the lower segment (blue) also shows an ad-
ditional slight change in oscillation frequency. The extracted phases of the waveform over the
length of the entire sequence of 0.1 s are shown in (c) and (d) with the coloured dots indicating
the segments of (b).

lowerΩcrit.
c for higher interaction strengths V . Hysteresis with the coupling laser scan direction

is also predicted by the hot vapour simulations and the model reproduces the experimentally
observed oscillation frequencies e.g. for the Rydberg interaction Hamiltonian at reasonable ex-
perimental parameters. Even though the origin of the limit cycles is still unclear and further
experimental and theoretical work has to be done to answer this question, we can conclude
that the major properties of the hot vapour model are also found in the experiment. These are
ergodicity breaking fromoptical bistability, aswell as the emergence of synchronisation leading
to a non-equilibrium state of matter.

More di�icult is a statement on the time crystallinity phase that is claimed in reference [190].
To experimentally demonstrate a time crystal it is necessary to show the freedomofphase in the
limit cycle for di�erent realisations of the system. The idea is that, since the phase of the system
on the limit cycle is not fixed but pre-determined only by the initial conditions, then di�erent in-
stances of realisations of the same system should di�er in phase because initial conditions will
naturally vary on amicroscopic level. However, in order to attribute ameasured phase variance
to di�erent realisations of the system, one first needs to show phase invariance of the system
within a single realisation. Thatmeans that for any one realisation, the phase of the oscillations
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with respect to a reference waveform at the oscillation frequency should be invariant. Devia-
tions of the phase in time hint at correlations and dri�s with other experimental parameters
like, among others, laser powers and detunings. One expects that stable experimental condi-
tions are required to arrive at a system that is phase invariant in time for a single realisation –
so that the time crystal property can be shown.
Figure 5.11 shows that this is not the case for our experimental setup in the present form. The

extracted phase of the oscillations fluctuates over time for one long-term data trace, as shown
in (d). The resulting spread in phases is attributed to fluctuations in experimental parameters,
and the system is arguably not stable enough in time during a single realisation to be able to
infer phase freedom in the limit cycle from a variation of phases for di�erent realisations. It
is therefore not possible to demonstrate a continuous driven-dissipative time crystal with the
experimental setup in its present state.
Updates to the experiment in the form of stabilisations of the experimental parameters is ex-

pected to improve on the phase dri�s. In small systems with gapped many-body Hamiltonians
it might be possible to show the time crystalline phase of the system’s ground state even in
the presence of exprimental uncertainties and noise. For macroscopic systems of many con-
stituents and an e�ectively ungapped many-body Hamiltonian, it is currently unclear if time
crystallinity can conclusively be shown from an exprimental perspective7.

7It is currently unclearwhether it is experimentally feasible to stabilise the experimental parameters to the neces-
sary degree of stability in order to arrive at phase invariance on reasonably long timescales. In private commu-
nications, the authors of [190] indicated that they had also observedphase dri� like it is shown in Figure 5.11 (d).
They mentioned that a certain level of phase di�usion might be a property of such time crystals. It is certainly
important to gain more clarity on this question, both from an experimental and a theoretical perspective.
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Synchronisation is at the heart of many e�ects occurring in nature but also in some particu-
lar physical, chemical, or biological systems. A fundamental understanding of synchronisation
from both a theoretical and an experimental perspective is therefore key to understanding the
behaviour of many systems in our environment. Due to a lack of suitable systems, it has to date
proven challenging to experimentally study the transition to synchronisation in systems that
provide a large number of constituent oscillators while also being widely tunable.
In Chapter 4 we have shown that an atomic three-level system subject to a level shi� of the

Rydberg state, scaling with a power-law in Rydberg density, undergoes bifurcations. These bi-
furcations lead tomultistability in the system and, for some parameter ranges, to the formation
of attractive limit cycles due to Hopf bifurcations. Systems caught by such limit cycle attractors
are phase oscillators where the phasewithin the limit cycle is free and therefore easily adjusted
by a force. Therefore, when coupling an ensemble of phase oscillators via a global mean field
one finds that the resulting force and back-action dynamics can result in synchronisation of the
ensemble for strong enough couplings.
In a hot vapour system with many velocity classes interacting via a global Rydberg density

mean field, we observe that synchronisation of the velocity classes occurs for strong enough
couplings between the velocity classes. This results in persistent oscillations of the bulk quanti-
ties of the simulated vapour. For instance, the simulations predict oscillations in the imaginary
part of the ground-excited state coherence ρige which is proportional to the transmission of a
vapour.
Experimentally, we find oscillations in the transmission of the probe laser through an atomic

vapourwhenperforming two-photonEIT spectroscopyof Rydberg states in rubidiumat temper-
atures in the rangeof 35 to60 °C. Theoccurrenceof theseoscillationshasbeen shown todepend
strongly on the experimental conditions, as detailed in Chapter 5. The wide range of Rydberg
atomic state properties, as outlined in Chapter 3, provides a tuning mechanism to change the
system parameters very easily. The state dependent van der Waals interaction C6 can be con-
trasted with the equally state dependent electric polarisability to try and find the mechanism
that causes the nonlinarity leading to the formation of limit cycles, and to understand how the
global couplingmechanismworks. Weattribute theoscillations in theprobe transmission to the
emergence of synchonisation in our driven-dissipative hot Rydberg vapour since the hot vapour
simulation phenomenologically reproduces the experimentally observed behaviour.

In this thesis, we have reported on the emergence of synchonisation in a driven-dissipative
hot Rydberg vapour. The key features of this system allow to experimentally investigate the
onset of synchronisation in large ensembles of globally coupled oscillators. Additionally, the
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tunability of Rydberg states allow for targeted manipulation of the system parameters so that
large ranges of parameter space are accessible with this system. Therefore, an avenue has been
opened to easily explore and study the synchronisation transition in ensembleswith large num-
bers of coupledphaseoscillators. Improvements to the stability of the experimental parameters
is expected to improve the phase stability of the oscillations, thereby paving the way to exper-
imentally investigate the time crystal property of the oscillatory phase. However, open ques-
tions regarding the underlying mechanism causing the nonlinearity in the system remain and
are currently contested. Further theoretical and experimental research into the systemwill help
to establish the origin of the dominant driver of the nonlinearities.
We can therefore conclude that the reported results demonstrate the emergence of synchro-

nisation in a driven-dissipative hot Rydberg vapour and can be linked to continuous dissipative
time crystals, but we cannot yet establish the fundamental mechanism driving the system into
the oscillatory state. This thesis is therefore well-concluded with the following quote by Emma
Goldman:

"Finalities are for gods and governments, not for the human intellect."
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A | STEADY-STATESOLUTIONSANDSTABILITY
ANALYSIS FOR DRIVEN SYSTEMS

In this appendix, further details of the theoretical study of the e�ective 2-level and the three-
level model are given which leads to the results presented in Chapter 4. First, the equations of
motion for thee�ective 2-level and the3-levelmodel are set out indetail and the steady state so-
lutions are defined via the real zeros of a polynomial. The resulting steady states are discussed
for di�erent scalings with n and their stability properties are analysed using the methods out-
lined in Chapter 4.
For the e�ective 2-levelmodel, it is shown thatHopf bifurcation cannot occurwhile the three-

level model is shown to undergo Hopf bifurcation in certain parameter regimes.
The model as well as the calculations of the steady states make no assumptions on the laser

powers, the results are therefore valid also in the strong probe regime. We assume the parame-
ters to be in the following regimes: Γ,Ω ∈ R+, ∆̃, V ∈ R, and n ∈ N0 unless stated otherwise

A.1 EFFECTIVE 2-LEVEL SYSTEM

Treating real and imaginary part of the density matrix elements separately, the equations of
motion for the e�ective 2-level model read

Equations of motion

ρ̇rgg = − Ωρige + Γρree, (A.1a)
ρ̇igg = Γρiee, (A.1b)
ρ̇ree = Ωρige − Γρree, (A.1c)
ρ̇iee = − Γρiee, (A.1d)

ρ̇rge =
1

2
Ω(ρiee − ρigg)−

1

2
Γρrge +

(
∆̃− V (ρree)

n
)
ρige, (A.1e)

ρ̇ige = − 1

2
Ω(ρree − ρrgg)−

1

2
Γρige −

(
∆̃− V (ρree)

n
)
ρrge, (A.1f)

where we have made use of the fact that ρijj = 0 to simplify V ρnee to V (ρree)
n. Using the trace

condition 1 =
∑

j ρj and hermiticity of the density matrix as constraints, one can generally
reduce this set of equations from six to three as stated in equations (4.3).
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Steady state solutions

The steady states of the e�ective 2-level model are determined by finding the steady states of
the Lindblad equation. This is equivalent to solving the above system of equations for ρ̇jkl = 0
inR. The resulting steady state solutions for all elements of the density matrix are determined
by the roots of the polynomial

0 = (ρige)
2n+1

[
2

Γ
V 2

(
Ω

Γ

)2n
]
− (ρige)

n+1

[
4

Γ
V ∆̃

(
Ω

Γ

)n]

+ ρige

[
Ω2 + 2∆̃2

Γ
+

Γ

2

]
− Ω

2
.

(A.2)

The steady state values of the other elements of the density matrix follow via

ρigg = ρiee = 0, (A.3a)

ρrgg = 1− ρree = 1− Ω

Γ
ρige, (A.3b)

ρree =
Ω

Γ
ρige, (A.3c)

ρrge =
2

Γ

[
∆̃ρige − V

(
Ω

Γ

)n
(ρige)

n+1

]
. (A.3d)

The roots of the polynomial (A.2) depend on the value of n, i.e. on the power law scaling of the
population-dependent level shi�. Analytic solutions exist for n ∈ {0, 1}, and for n = 0 this is
given by

ρige =
Ω/2

Ω2+2(∆̃−V )2

Γ
+ Γ

2

. (A.4)

For n = 1 the three solutions are given by the well known roots of a cubic. The results are
either a single real solution plus a complex-conjugate pair, or three real solutions.
For higher n, the order of the polynomial (A.2) is≥ 5 and does not have a generic analytic so-

lution. However, using Descartes’ rule of signs [125] we know that a maximum of three positive
real roots of thepolynomial exists and, generally, always aminimumof one. For a physical inter-
pretation of the populations as state probabilities we require a solution ρige to lie in the interval
ρige ∈ [0, Γ

Ω
], as can be seen from equation (A.3c).

It will now be shown that, for all n ∈ N, the roots lie in the interval [0, Γ
Ω

] and that there is
always a minimum of one root. For this, we define the polynomial

P(x) = −Ω

2
+ x · 2

Γ

[
Γ2

4
+

Ω2

2
+

(
∆̃− V

(
Ω

Γ
x

)n)2
]

(A.5)

so that we recover equation (A.2) when setting P(x) = 0. In fact, this polynomial is a simple
reformulation of (A.2), which means that studying this polynomial gives information on the so-
lutionsof equation (A.2). Also, asweare interested in real solutionsonly,wedemand thatx ∈ R.
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The term in square brackets of the polynomial (A.5) is always positive, it therefore follows
immediately that P(x) < 0 ∀x ≤ 0. Also, for non-vanishing system parameters Ω,Γ it always
holds

P
(

Γ

Ω

)
=

1

Ω

(
Ω2 + Γ2

2
+ 2(∆− V )2

)
> 0.

For any {Ω,Γ}, the term in square brackets is bounded frombelowbyΓ2/4+Ω2/2, so one finds
that forP(x) < 0 it must hold that

x <
ΩΓ

2Ω2 + Γ2
<

Γ

Ω
.

Therefore,P(x) > 0 ∀x ≥ Γ
Ω
.

This result now guarantees that all real roots of the polynomial P lie in the interval [0, Γ
Ω

] as
is required for interpretation of the populations as probabilities, and guarantees the existence
of at least one root since P(x) < 0 for x < 0 and P(x) > 0 for x > Γ/Ω. From Descartes’ rule
of signs we know that there is exactly one root for sign(V ) 6= sign(∆̃) and either one or three
otherwise.

A fastnumericmethod tocalculateall rootsof apolynomial inCutilizes thecompanionmatrix
of the polynomial of order k

P(λ) = αk λ
k + . . . + α1 λ + α0.

The companionmatrix C(P) is defined as the (k − 1)× (k − 1)-dimensional square matrix

C(P) =


0 0 . . . 0 −α0/αk
1 0 . . . 0 −α1/αk
0 1 . . . 0 −α2/αk
...

... . . . ...
...

0 0 . . . 1 −αk−1/αk

 . (A.6)

A useful property of the companion matrix is that its characteristic polynomial χ[C(P)](λ) is
equal to our initial polynomial P(λ) but normalised, i.e. χ[C(P)](λ) = α−1

2n+1P(λ). The eigen-
valuesλi of C(P) are equal to the roots of its characteristic polynomialχ and therefore identical
to the roots of our polynomialP .
Fast numerical algorithms for the calculation of eigenvectors and eigenvalues exist, and we

have not encountered stability issues of the numerical algorithms for the companion matrices
resulting from our system parameters. It should be noted that the values for the density matrix
elements obtained with the steady state approach presented above are in excellent agreement
with the values for the attractive steady states obtained from time integration of the equations
of motion (A.1).

One can also setn to a valuen /∈ N and equation (A.2) remains valid. However, in order to use
the companionmatrix to calculate the steady state values, onemust be able to re-formulate the
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equation as apolynomialwith integer coe�icients ofρige. Therefore, if onewishes to study a case
with n /∈ N one has to re-formulate the polynomial (A.2) accordingly or employ an alternative
method to find all real roots.

Stability of the steady states

Applying the stability analysis presented in Section 4.2.2 to the e�ective 2-level approach de-
scribed in Section 4.2.1, one finds the linearisation of the map

Φ : R6 → R6, x 7→ Φ(x) with x = (ρrgg, ρ
i
gg, ρ

r
e, ρ

i
ee, ρ

r
ge, ρ

i
ge)

given by J =
(
∂Φi

∂xj

)
i,j
. For the remaining discussion we will fix the steady state ρ0. Evaluation

of J at ρ0 = (ρrgg,0, ρ
i
gg,0, ρ

r
ee,0, ρ

i
ee,0, ρ

r
ge,0, ρ

i
ge,0), as defined through equations (A.2) and (A.3),

results in

Jµ(ρ0) =



0 0 Γ 0 0 −Ω
0 0 0 Γ 0 0
0 0 −Γ 0 0 Ω
0 0 0 −Γ 0 0

0 −Ω
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(
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Γ

)n−1
Ω
2 −Γ
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Γ
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Ω
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(
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Γ

)n)
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(
Ωρige,0

Γ

)n
−Γ

2


(A.7)

The corresponding characteristic polynomial, equally evaluated at the steady state ρige,0

χ[J ](λ) = λ2 (Γ + λ)


λ3 + 2λ2Γ

+λ

(
Ω2 + ∆̃2 + 5

4Γ2 − 2(n+ 1)V ∆̃
(

Ωρige,0
Γ

)n
+ (2n+ 1)V 2

(
Ωρige,0

Γ

)2n
)

+Γ
4

(
4∆̃2 + 2Ω2 + Γ2 − 8(n+ 1)V ∆̃

(
Ωρige,0

Γ

)n
+ 4(2n+ 1)V 2

(
Ωρige,0

Γ

)2n
)
 .

(A.8)

This polynomial can now be studied following the analysis for the stability of a steady state
defined via ρige,0. The three eigenvalues that are independent of the particular steady state value
ofρige,0 arise from theover-determinednessof the systemof equations (A.1)whenusing theaddi-
tional constraints of hermiticity of ρ and the trace condition. With these constraints, the system
(A.1) is actually a system determined by three independent variables which is reflected by the
cubic factor of the characteristic polynomial (A.8) that determines the remaining three eigen-
values of the linearisation J .
The steady state is asymptotically stable if the real part of all j eigenvalues is smaller than

zero, i.e. λj < 0. In our case, this applies only to the three eigenvalues that are dependent on
the particular steady state ρ0, i.e. the ones determined by the cubic in square brackets in (A.8).
This is because the term in square brackets is equal to the charactristic polynomial one obtains
when applying the trace condition and hermiticity of the density matrix to reduce the initial set
of six equations (A.1) to a set of three equations in the three variables ρrgg, ρrge, and ρige.
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To analyse the stability of the steady states for ρige,0 we use the Routh-Hurwitz criterion [192]
since it allows to give statements on the stability of a steady statewithout an explicit expression
for the steady state, as is the case for our system when n ≥ 2. Since the relevant characteristic
polynomial of the linearisation J is a cubic

χ[J ](λ) = λ3 + a2λ
2 + a1λ+ a0

the criterion states that all eigenvaluesλj ofJ have a negative real part except for a purely imag-
inary pair i�1 a2 > 0, a0 > 0 and a2a1− a0 = 0. In this case, a Hopf bifurcation occurs. If the last
condition is changed to a2a1 − a0 > 0, then all eigenvalues have a negative real part and the
steady state is stable.
From the cubic factor of the polynomial (A.8) one sees immediately that a2 = 2Γ > 0 is

satisfied whenever Γ > 0, i.e. whenever there is a non-vanishing decay from the excited state
|e〉. In physical terms this is equivalent to demanding that the system is dissipative.
Looking at the term a2a1− a0, one finds this to be equal to a2a1− a0 = a0 + Γ(Ω2 + 2Γ2), see

also [131]. The condition a2a1 − a0 = 0 will never be satisfied since the condition a0 > 0must
also be met for a Hopf bifurcation to occur and Γ,Ω ∈ R+. We can therefore conclude that the
two-level model does not undergo a Hopf bifurcation for all choices of model parameters.
This result is critical for the comparison of the e�ective 2-level model and the 3-level model,

and should therefore be highlighted. An e�ective two-level systemdescribed by (A.1) undergoes
saddle-nodebifurcations [127]when thenumber of steady state solutions changes betweenone
and three, but it does not undergo a Hopf bifurcation. Therefore, we do not expect any time-
periodic solutions (limit cycles) to be observed in a dissipative Hamiltonian system that is de-
termined by the equations of motion detailed in (A.1).

Regarding the stability of the equilibrium points defined by (A.2), the condition a2a1−a0 > 0
is satisfied whenever a0 + Γ(Ω2 + 2Γ2) > 0. The last property to check is therefore whether
a0 > 0 since it then follows that a0 + Γ(Ω2 + 2Γ2) > 0 given that we have assumed Γ,Ω ∈ R+.
a0 > 0 requires that

a0 =
Γ

4

(
4∆̃2 + 2Ω2 + Γ2 − 8(n+ 1)V ∆̃

[
Ωρige,0

Γ

]n
+ 4(2n+ 1)V 2

[
Ωρige,0

Γ

]2n
)

=
Γ

4

(
2Ω2 + Γ2 + 4

[
∆̃− V

(
Ω

Γ
ρige

)n]
·
[
∆̃− (2n+ 1)V

(
Ω

Γ
ρige

)n])
> 0.

This is always satisfied for the case of sign(V ) 6= sign(∆̃), which is also the case where only a
single steady state solution exists. Therefore, this one solution must be attractive. For the case
of multiple steady states, which may occur if sign(∆̃) = sign(V ), the stability of a steady state
ρige,0 is tested by verifying whether or not above inequality holds.

A.2 3-LEVEL SYSTEM

The three-level system outlined in Section 4.2.3 is studied using the same procedure as out-
lined above for the e�ective 2-level model. However, even though it is still technically possible
1if and only if
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towrite down the coe�icients of the steady state polynomials and the characteristic polynomial
of the linearisation, it becomes unfeasible in reality. Therefore, the equations ofmotion are pre-
sented and a closed-form expression for the steady state polynomial in terms of newly defined
coe�icients is given such that the results are reproducible.
The resulting steady state solutions and their stability are therefore studied numerically, us-

ing the methods presented in the obove section on the e�ective 2-level model.

Equations of Motion

The equations of motion of this model, separated by real and imaginary part for each element
of the density matrix, read

ρ̇rgg = − Ωpρ
i
ge + Γgeρ

r
ee + Γgrρ

r
rr, (A.9a)

ρ̇igg = + Γgeρ
i
ee + Γgrρ

i
rr, (A.9b)

ρ̇ree = + Ωpρ
i
ge − Ωcρ

i
er − Γgeρ

r
ee + Γerρ

r
rr, (A.9c)

ρ̇iee = − Γgeρ
i
ee + Γerρ

i
rr, (A.9d)

ρ̇rrr = + Ωcρ
i
er − (Γgr + Γer)ρ

r
rr, (A.9e)

ρ̇irr = − (Γgr + Γer)ρ
i
rr, (A.9f)

ρ̇rge = +
Ωp

2
(ρiee − ρigg)−

Ωc

2
ρigr + ∆̃pρ

i
ge −

Γge
2
ρrge, (A.9g)

ρ̇ige = − Ωp

2
(ρree − ρrgg) +

Ωc

2
ρrgr − ∆̃pρ

r
ge −

Γge
2
ρige, (A.9h)

ρ̇rer = +
Ωc

2
(ρirr − ρiee) +

Ωp

2
ρigr + (∆̃c − V (ρrrr)

n)ρier −
Γge + Γer + Γgr

2
ρrer, (A.9i)

ρ̇ier = − Ωc

2
(ρrrr − ρree)−

Ωp

2
ρrgr − (∆̃c − V (ρrrr)

n)ρrer −
Γge + Γer + Γgr

2
ρier, (A.9j)

ρ̇rgr = +
Ωp

2
ρier −

Ωc

2
ρige −

Γgr + Γer
2

ρrgr + (∆̃p + ∆̃c − V (ρrrr)
n)ρigr, (A.9k)

ρ̇igr = − Ωp

2
ρrer +

Ωc

2
ρrge −

Γgr + Γer
2

ρigr − (∆̃p + ∆̃c − V (ρrrr)
n)ρrgr. (A.9l)

Again, wehaveused the fact that the imaginary part of thepopulations is zero due tohermiticity
of the density matrix to simplify V (ρrr)

n to V (ρrrr)
n. In this three-level case, one finds that the

time-evolution of the system is actually determined by eight equations instead of the twelve
given above. This reduction in equations comes from the hermiticity of the density matrix ρ,
implying that ρikk = 0, and the trace condition which removes another degree of freedom from
the system of equations.

Steady state solutions

In order to determine the steady state solutions of the system, we again set the time derivative
of the densitymatrix elements, i.e. the le� hand side of (A.9), to zero and solve inR. The result is
more tedious toobtaindue to thenumberof equations involved, but it is againpossible toderive
a polynomial in ρier which determines the steady states through its roots, and express the other
density matrix elements via ρier. To find this polynomial, one first expresses the populations via
the coherences
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ρrgg =1− Ωp

Γge
ρige −

Ωc

Γer + Γgr

(
1− Γgr

Γge

)
ρier, (A.10a)

ρree =
1

Γge

(
Ωpρ

i
ge − Ωc

Γgr
Γer + Γgr

ρier

)
, (A.10b)

ρrrr =
Ωc

Γer + Γgr
ρier, (A.10c)

0 =ρigg = ρiee = ρirr, (A.10d)

and then solves the remaining (non-linear) system of six equations of the coherences

0 = −a1ρ
r
ge +a2ρ

i
ge −a6ρ

i
gr

0 = +b0 −b1ρ
r
ge −b2ρ

i
ge +b4ρ

i
er +b5ρ

r
gr

0 = +c3ρ
r
er +c4ρ

i
er +c6ρ

i
gr

0 = +d2ρ
i
ge −d3ρ

r
er −d4ρ

i
er +d5ρ

r
gr

0 = −e2ρ
i
ge +e4ρ

i
er −e5ρ

r
gr +e6ρ

i
gr

0 = +f1ρ
r
ge −f3ρ

r
er −f5ρ

r
gr −f6ρ

i
gr


. (A.11)

The coe�icients are indexed by column from 0 (le�most) to 6 (rightmost), and from a (top) to f
(bottom) row. In the following, only the coe�icients xj will be used as indicated above to avoid
clutter. With V ′ = V

(
Ωc

Γer+Γgr
ρier

)n
one obtains the coe�icients defined as

a1 =
Γge
2

a2 = ∆̃p a6 =
Ωc

2

b0 =
Ωp

2
b1 = ∆̃p b2 =

(
Γge
2

+
Ω2
p

Γge

)
b4 =

ΩpΩc

Γer + Γgr

(
Γgr
Γ ge

− 1

2

)
b5 =

Ωc

2

c3 =
Γge + Γer + Γgr

2
c4 = (∆̃c − V ′) c6 =

Ωp

2

d2 =
ΩpΩc

2Γge
d3 =

(
∆̃c − V ′

)
d4 =

1

2

(
Ω2
c

Γer + Γgr

(
Γgr
Γge

+ 1

)
+ Γge + Γer + Γgr

)
d5 =

Ωp

2

e2 =
Ωc

2
e4 =

Ωp

2
e5 =

Γgr + Γer
2

e6 = (∆̃p + ∆̃c − V ′)

f1 =
Ωc

2
f3 =

Ωp

2
f5 = (∆̃p + ∆̃c − V ′) f6 =

Γgr + Γer
2

When solving this system of equations one must be careful with the terms containing V ′ since
this is proportional to (ρier)

n and renders the system of equations (A.11) nonlinear for n 6= 0.
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APPENDIX A. STEADY-STATE SOLUTIONS AND STABILITY ANALYSIS FOR DRIVEN SYSTEMS

With the additional definitions

b∗4 = b4 −
(
b2 + b1

a2

a1

)
e4

e2

b∗5 = b5 +

(
bs + b1

a2

a1

)
e5

e2

b∗6 = b1
a6

a1

−
(
b2 + b1

a2

a1

)
e6

e2

d∗4 = d4 + d3
c4

c3

− d2
e4

e2

d∗5 = d5 + d2
e5

e2

d∗6 = d3
c6

c3

− d2
e6

e2

f ∗4 = f3
c4

c3

− f1
a2

a1

e4

2

f ∗5 = f5 + f1
a2

a1

e5

e2

f ∗6 = f6 + f1
a6

a1

+ f3
c6

c3

− f1
a2

a1

e6

e2

for reduction of the length of the expressions, one arrives at the following polynomial in ρier
which defines the steady state solutions of the three-level system. The polynomial is given by

0 = +b0d
∗
5 (f ∗6d

∗
5 − f ∗5d∗6)

+ ρier [(b∗4d
∗
5 − b∗5d∗4) (f ∗6d

∗
5 − f ∗5d∗6)− (f ∗4d

∗
5 − f ∗5d∗4) (b∗6d

∗
5 − b∗5d∗6)] ,

(A.14)

and the steady state values of the remaining coherences follow as

ρrge =
1

a1

(
a2ρ

i
ge − a6ρ

i
gr

)
, (A.15a)

ρige =
1

e2

(
e4ρ

i
er − e5ρ

r
gr + e6ρ

i
gr

)
, (A.15b)

ρrer =
1

c3

(
c4ρ

i
er + c6ρ

i
rg

)
, (A.15c)

ρrgr =− 1

d∗5

(
d∗4ρ

i
er + d∗6ρ

i
gr

)
, (A.15d)

ρigr =−
[
f ∗6 − f ∗5

d∗6
d∗5

]−1(
f ∗4 − f ∗5

d∗4
d∗5

)
ρier, (A.15e)

with the populations already defined above in equations (A.10).
If one wants to include dephasing of the coherences, one simply has to re-define the appro-

priate coe�icients and proceed as before.

The polyonmial (A.14), defining the steady state values, is of the form

P(ρier) =
∑
k∈N

αk(ρ
i
er)

k

withN = {4n+1, 3n+1, 2n+1, 2n, n+1, n, 1, 0}, and is therefore of ordermax(4n+1, 1)2.
This polynomial has eight termswhich allows for amaximumof seven sign flips in the sequence
of coe�icients. Hence, amaximumof sevenpositive, real roots exist according toDescartes’ rule
of signs.
2Distinguishing these cases becomes relevant if one studies the system for negative n, for instance.
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A.2. 3-LEVEL SYSTEM

General expressions for all eight coe�icientsαj exists and caneasily beobtainedwith thehelp
of symbolic mathmatics programs like Mathematica. The expressions for most coe�icients are,
however, too long to present them here.
The steady state values were calculated with an implementation of the companion matrix

approach in Python, therefore only systems with n ∈ N0 could be studied numerically.

Stability of the steady states

For the linearisation of the map and the resulting characteristic polynomial, the same holds
as for the steady state polynomial: in principle, it is possible to write down an analytic closed-
form expression, but they become too tedious to work with. Therefore, the linearisation was
implemented in Python and the eigenvalues were obtained using numpy functions.
The steady state values calculatedvia thepolynomial (A.14)wereagain inexcellent agreement

with the values for the locally attractive steady states of the system obtained by numerical in-
tegration of the equations of motion. Therefore, the polynomial procedure is not just reliable
but also much preferrable as it is computationally significantly less expensive and faster than
integration of the system. Additionally, it returns information on all steady states of the system
and not just the locally attractive ones.
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B | INTERACTIONHAMILTONIANFORVANDER
WAALS-TYPE INTERACTIONS

When being in the van derWaals interaction regime1, the Rydberg-Rydberg interaction scales as
C6/r

6
kl for a pair of atoms (k, l) at distance rkl. Therefore, the system’s many-body Hamiltonian

including two-body interactions is given as

Htot. =
∑
k

(
H(k)
AL +H(k)

int.

)
(B.1)

with the interaction2 term for atom k defined as

H(k)
int. = −~

2

∑
l 6=k

C
(k,l)
6

r6
kl

|r〉kk 〈r| ⊗ |r〉ll 〈r| . (B.2)

For few particles, the full quantum dynamics can be computed on classical supercomputers.
However, due to the exponential growth of Hilbert space with the number of particles, this task
quickly becomes unfeasible. One solution to this problem is to use quantum simulators, that
is quantum systems which ’naturally’ implement the Hamiltonian of interest in a system that is
easier to handle than the eoriginal one. Given the restrictions of such a quantum simulator and
further questions such as experimental imperfections or impact of finite size e�ects, there has
been a lot of work done on the theoretical side to complement quantum simulators by approx-
imating the behaviour of quantum systems such that larger system sizes become handleabl for
classical computers. One approximation o�en done in the literature is the mean-field approxi-
mation, where one replaces the two-body correlator

|r〉kk 〈r| ⊗
∑
l

|r〉ll 〈r|

1This requires that theaveragespacingbetweenRydbergatoms is larger than theLeRoy radius,which isameasure
for the distance two atomsmust have such that their Rydberg state wavefunctions do not overlap.

2This interactionbetweenpairs of atoms in the cloud cangenerate entanglement, causing themany-bodydensity
matrix ρ to loose the block-diagonal structure ρC6=0 = ⊗kρ(k) which is a property of non-interacting systems.
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with the expectation value for the density operator3, i.e. n̂(l)
rr → 〈n̂(l)

rr 〉ρ(l) = ρ
(l)
rr . This approxi-

mation changes the interaction Hamiltonian to a mean-field Hamiltonian

H(k)
int. = −~

2
|r〉kk 〈r|

∑
l 6=k

C
(k,l)
6

r6
kl

ρ(l)
rr . (B.3)

This expression is still comparably complex since one has to compute the full sum in the interac-
tion part of theHamiltonian for every time step and every sample run. Themean-field approach
is employed in e.g. thedTWA formalism,which allows to simulate several thousandsof particles
at once [193].
Fromthe formof equation (B.3), one cannowproceed in twodi�erentways to further simplify

the system4.

Nearest-neighbor interaction at average Rydberg atom spacing

The first, very simplistic approach assumes that the interaction with the nearest neighbor Ryd-
berg atomcontributesmuch stronger than all other interactions, such that interactionswith Ry-
dberg atoms other than the nearest neighbor can be neglected. The second assumption is that
thenearestRydbergatomis foundat theaverageRydbergatomspacing5 〈rRyd.〉 = 5

9
(ρvfRyd)

−1/3,
whereρv denotes the vapourdensity and fRyd the fractionof atoms in theRydberg state. Assum-
ing the fraction of atoms in the Rydberg state to be uniform across the vapour, this is then equal
to the expectation value of the Rydberg state for atom k.
Given the assumptions above, the simplified mean-field interaction Hamiltonian is given by

H(k)
int. = −~

2
|r〉kk 〈r|

(
9

5

)6

C6ρ
2
v

(
ρ(k)
rr

)3
. (B.4)

To work with this expression without having to deal with all k atoms in the sample, we make
the last approximation of removing the sumover all k atoms in themany-bodyHamiltonian and
justify this by stating that, statistically, the situationwill be the same for all atoms and therefore
it su�ices to consider a single one. This leads to the following, final formulation of the simplified
mean-field Hamiltonian

Htot. = HAL − |r〉 〈r|
~
2

(
9

5

)6

C6ρ
2
v ρ

3
rr. (B.5)

When adding the incoherent decay and dephasing terms through the Lindblad operator terms,
one can identify this approach with the three-level model with the parameters n = 3 and V =
~
2

(
9
5

)6
C6ρ

2
v. The unit check for this approximation is positive, V has the unit of an energy in Hz.

3The density operator of the l-th atom n̂
(l)
rr is defind as n̂

(l)
rr = |r〉ll 〈r| such that 〈n̂

(l)
rr 〉ρ = Tr

[
n̂

(l)
rr ρ(l)

]
= ρ

(l)
rr and

ρ(l) = Trj 6=l[ρ].
4Note that we were interested in a practical and handleable approach to the problem, and not themost accurate
form one could find.

5This equation comes from the expression for the average distance of atoms in a uniform random sample with
density ρv , 〈r〉 = 5

9 (ρv)
−1/3 [194].
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APPENDIX B. INTERACTION HAMILTONIAN FOR VAN DER WAALS-TYPE INTERACTIONS

Statistical distribution of Rydberg atoms with uniform density

Above expression for the interaction Hamiltonian has successfully reduced the scope of the
problem from a full-grown N -particle many-body problem to an e�ective one-body equation
of motion. However, the assumptions of only nearest-neighbour interaction, and the nearest-
neighbour atom distance being the average spacing of Rydberg atoms in the vapour, are both
very crude.
Onecanbetter represent thesituationbyconsidering thestatisticaldistributionof interatomic

distances in a cloud of uniform density ρv. An expression for the probability of finding n atoms
within distance r of the central atom in a d-dimensional space has been derived in Appendix
D for the large particle limit. There, it is found that the probability of finding exactly n atoms
within radius r of the atom of interest is given by the Poisson distribution

Pµ(n) := Poissonµ(n) =
1

n!
µn exp(−µ)

where themean6 µ(r) = 4
3
πρxr

3 inR3 andρx denotes thedensityof interest, i.e. theatomicden-
sity or Rydberg atom density. The likelyhood of finding exactly n atom(s) in the shell of radius r
and thickness dr → 0 follows by taking the derivative of the above, i.e.

pµ(r)(n)dr =
d

dr

[
1

n!
µ(r)n exp(−µ(r))

]
dr

=

(
n

µ(r)
− 1

)(
d

dr
µ(r)

)
Pµ(r)(n) dr

=

(
d µ(r)

dr

)
·
[
Pµ(r)(n− 1)− Pµ(r)(n)

]
dr.

(B.6)

For future calculations it is relevant to note that the Poisson distribution is normalised for every
µ > 0 such that 1 =

∑
n

Pµ(n).

The interaction V (ri) contributed by atoms in the shell [ri, ri + ∆ri] can be approximated by
the sum

V (ri)∆ri =
∑
j

C6

r6
i

∣∣∣∣
rj∈[ri,ri+∆ri]

∆ri (B.7)

for∆ri → 0. With the statistical distribution of atoms given in equation (B.6), one can immedi-

6In the general case for d-dimensions, one finds that µ(r) = ρB̄r inRd with B̄r the closed, d-dimensional ball of
radius r around the origin. So for d = 1 : µ(r) = 2ρxr, for d = 2 : µ(r) = πρxr

2 and for d = 3 : µ(r) =
4
3πρxr

3, ...
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ately calculate the interaction strength contributed by atoms at distance r for dr → 0 via

V̄ (r)dr =
C6

r6

∑
n≥1

npµ(r)(n)dr

=
C6

r6

(
d

dr
µ(r)

)∑
n≥1

[
nPµ(r)(n− 1)− nPµ(r)(n)

]
dr

=
C6

r6

(
d

dr
µ(r)

)[∑
n≥0

(n+ 1)Pµ(r)(n)−
∑
n≥0

nPµ(r)(n)

]
dr

=
C6

r6

(
d

dr
µ(r)

)[∑
n≥0

Pµ(r)(n)

]
dr

=
C6

r6

(
d

dr
µ(r)

)
dr

(B.8)

where the sumovern ≥ 0 in the second-to-last line evaluates to 1. The total interaction strength
induced on the atom by its environment then follows by integration over space where we as-
sume that V̄ = V̄ (r) · V̄ (θ, φ) is separable into a radial and an angular component. Then, one
finds for three-dimensional space with µ(r) = 4

3
πρxr

3 that

V̄ =

∫ π

0

dθ

∫ 2π

0

dφ V̄ (θ, φ)

∫ r2

r1

drV̄ (r)

= I(θ,φ)

∫ r2

r1

dr 4πρxr
2C6

r6

= − 4

3
πρxC6I(θ,φ) · r−3

∣∣∣∣r2
r1

.

(B.9)

The upper bound r2 is theoretically given by infinity, and the lower boundmust be greater than
zero7. A reasonable choice for r1, given the problem we are dealing with, is to set r1 equal to
the Rydberg blockade radius, as no second atom can be excited into the Rydberg state within
the blockade radius and hence this volume is empty of particles contributing to a Rydberg-
interction induced level shi� V̄ anyways. In future, the lower bound r1 will therefore be chosen
to match the blockade radius rb, i.e. r1 = rb =

(
C6

Ω

)1/6. The Rabi frequency Ω in the expres-
sion for the blockade radius rb denotes the two-level e�ective Rabi frequencyΩ = ΩpΩc

2∆
and the

resulting interaction experienced by an atom in the vapour then follows as

V̄ =
4

3
πρxC6I(θ,φ) · r−3

b =
4

3
πρvρrrI(θ,φ)

√
~C6Ω. (B.10)

The resulting intraction part of the Hamiltonian is then given by

Hint. = −4πρv
3

I(θ,φ)

√
~ΩC6ρ

2
rr |r〉 〈r| (B.11)

7Else, one runs into an infinity which is very unphysical and is a speciality of QFTs and the likes.
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APPENDIX B. INTERACTION HAMILTONIAN FOR VAN DER WAALS-TYPE INTERACTIONS

where the second factor of ρrr follows from equation (B.3). In the idealised case of angular
dependence-free Rydberg-Rydberg interactions, the integral I(θ,φ) evaluates to 4π. For reasons
of simplicity, this will be assumed for future calculations. Also, the unit check for this result is
equally positive, the interaction term contributes an energy in the unit Hz.

The resulting scaling of the interaction strength is only quadratic in the Rydberg state popu-
lation, rather than cubic as in the very crude derivation presented above. In this derivation, the
Rydbergblockadee�ect is partially taken into account by setting the lowerboundof the integral
in (B.9) to the blockade radius rb. Therefore, the interactionwill in future be assumed to followa
square power law in ρrr and the interaction Hamiltonian be given by equation (B.11). However,
one should bear in mind that the probability of finding n particles at distance r as derived in
Appendix D holds for Rydberg atoms only in the regime far from saturation of the Rydberg atom
density.
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C | APPROXIMATION OF THE PLASMA MODEL

In [63], the authors have proposed plasma formation due to ionisation of Rydberg atoms in the
thermal vapour as the main mechanism leading to bistability. The lineshapes resulting from
their theory match the presented data well, additionally they present some experimental evi-
dence indicating the presence of a plasma in their hot Rydberg vapour.
The procedure to determine the steady state presented in [63] does not provide a route to an

intuitive understanding of the system’s dynamics. It does, however, provide a phenomenologi-
cal explanation for a mechanism underlying the bistability observed in hot Rydberg vapours. It
is threfore interesting to see if we can model the plasma formation approach and study it with
our methods.
Themodel proposed in [63] includes an additional population of ions as a fourth level, which

we haven’t included in the three-level model. Therefore, the steady state ion population has to
be re-expressed in terms of the Rydberg state population and the resulting Stark shi� given as a
function of ρrrr. Further details on themodel itself can be found in [63] and appendices thereof.
We will here derive the scaling of the level shi� resulting from Stark e�ects due to the presence
of ions, but will not discuss their model in detail.

The level shi� due to Stark e�ects is assumed to be given by the average of the Stark shi�
∆S(E)atagiven field strengthE, weightedby theprobabilityPN (E)of finding this field strength
given an ion densityNion. I.e.

∆̄S =

∫ ∞
0

dEPNion
(E)∆S(E). (C.1)

The probability distribution for the charge-inducedmicrofields

PNion
(E)dE =

1

QH

H
(
E

QH

)
dE (C.2)

is determined by the Holtsmark [195] probability distributionH(β), which is extensively used in
plasma physics to describe the fields created by the charged particles in a plasma. The Holts-
mark distribution is defined as

H(β) =
2β

π

∫ ∞
0

dx x sin(βx) exp(−x3/2). (C.3)

Analytic expressions for theHoltsmark distribution exist [196], but the behaviour of the function
is no more intuitive in the analytic than in the integral form. The normal field QH depends on
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APPENDIX C. APPROXIMATION OF THE PLASMA MODEL

Fig. C.1: Electric microfield strength distribution induced by di�erent charge densities. The proba-
bility of finding a given electric field strengthE is shown for various charge densitiesNion. For
the experimental parameters of this thesis, only electric fields withE � 1 V/cm have significant
probabilities of occurrence.

the ion densityNion and is defined as

QH =
e

2ε0

(
4

15
Nion

)2/3

(C.4)

with the elementary charge e, vacuumpermittivity of free space ε0 and ion densityNion in 1/m3.
The plasma-induced electric field distribution is shown in figure C.1 and is�1 V/cm for the ex-
perimental parameters in this thesis.

In [197], an analytic approximation of the average Stark shi� ∆̄S depending of the ion number
densityNc is given to scale as

∆̄S(Nion) ∝ −αN 4/3
ion (C.5)

with α denoting the polarisability of the respective Rydberg state.
This simplifies theproblemsignificantly sinceweneednowonly findanexpression for the ion

number densityNion in terms of the Rydberg population ρrrr and find the appropriate power law
scaling for ∆̄s ∝ (ρrrr)

n. We start with the expression for the ion densityNion or, equivalently,
the ion state population ρrion sinceNion = ρrionNtot, in terms of the Rydberg state population ρrrr.
In the steady state, we have

Γd ρion = Γi ρ
r
rr (C.6)

with the decay rates

Γd ≈ 2Γt =
2

ω

√
kBT

πmionln(2)
,

Γi =Ntot

√
8kBT

π

(
σg

√
2

mion

+ σe
1
√
me

ρrion

)
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The variables are defined1 and reasonable values given in [63]. Since the one summand in the
decay rate Γi depends on the ion state population, we have to re-formulate equation C.6 as

ρrr = a1
ρrion

1 + a2ρrion
(C.8)

with

a1 =
2Γt

σgNtot

√
πmion

16kBT
=

1

2
√
ln(2)wNtotσg

and a2 =
σe
σg

√
mion

2me

.

For the heavier alkalis, and at principal quantum number around n = 50, one finds a2 ≈ 5000.
Therefore, the fraction in ρion can be expanded in a Taylor expansion2 around zero, resulting in
the polynomial

ρrrr = a1

(
ρrion − a2(ρrion)2

)
. (C.9)

Only the smaller valued root of this polynomial leads to a physically interpretable result with
ρrion ∈ [0, 1] and is given by another Taylor expansion3 to second order.

ρion =
1

2a2

(
1−

√
1− 4a2

a1

ρrrr

)
≈ 1

a1

ρrrr +
1

4a1

(ρrrr)
2 +O

(
(ρrrr)

3
)

(C.10)

Plugging this back into equation C.5 for the average Stark shi�, we find the expression

∆̄S(ρrrr) ∝ − αN
4/3
tot (ρrion)4/3 (C.11a)

≈ − αN 4/3
tot

(
1

a1

ρrrr +
1

4a1

(ρrrr)
2

)4/3

(C.11b)

≈ − α(
Ntotρrrr
a1

)4/3

(
1 +

1

3
ρrrr +O((ρrrr)

2)

)
(C.11c)

where the last step is another approximation. For small Rydberg state populations such that the
Taylor approximations hold, the Stark shi� induced detuning o� the Rydberg state can be well
approximated as scaling with a power law n = 4/3.

1Here, Ntot denotes the ground state density, on the order of 1010 − 1012 1/(cm)3; ω the minimal beam waist,
usually on order of 0.1− 1mm; kB the Boltzmann constant and T the temperature in K, for hot vapour systems
on the order of 300 - 400 K;mion andme themasses of the ionic core and electron, respectively; σg = 0.06σgeo
and σe = (1 − 10)σgeo denote the ionisation cross section of Rydberg atoms with ground state atoms and
electrons, respectively. σgeo = πa2

0(n∗)4 denotes the geometric cross section of the Rydberg state with Bohr
radius a0 and e�ective principal quantum number n∗.

2The Taylor converges since ρrion ≤ 1
310−4 for the experimental parameters in [63] such that the convergence

criterion |a2| < 1/|ρrion| of the Taylor series is satisfied.
3This Taylor expansion converges as well since we find, for reasonable experimental parameters, that a1 ≈ 200
and ρrrr ≈ 2.8 · 10−3 such that the convergence criterion is again satisfied.
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D | SPATIALDISTRIBUTIONOFATOMS INATHER-
MAL VAPOUR

In a thermal vapourwith randomdistribution of particles, one canderive the probability of find-
ing exactlyn particleswithin distance r of an initial particle. One has tomake the assumption of
a uniform spatial probability distribution, i.e. that a particle has equal likelyhoodof being found
at any given position in space, which implies a uniform particle number density. An expression
for this is derived in the following.

Starting with a fixed volume Vtot containing a total number of atoms Ntot, one defines the
particle number density via Ntot = ρVtot. Since the probability of finding a single atom in a
volume V is uniform over all space, it is given by pv = p(V ) = V/Vtot. The probability of finding
n particles within a d-dimensional sphere of radius r and the remainingNtot−n particles in the
remaining volume Vtot/V (where / here denotes the mathematical exclusion), is

P (exactly n particles in volume Vd) =

(
Ntot

n

)
(pv)

n (1− pv)Ntot−n (D.1)

with pv being the probability of finding a particle within the d-dimensional volume Vd, i.e. pv =
Vd/Vtot. Substituting the values for pv, one finds

p(n; Vd, ρ) =
Ntot!

n!(Ntot − n)!

(
Vd
Vtot

)n(
1− Vd

Vtot

)Ntot−n

=
1

n!
Ntot · ... · (Ntot − n+ 1)

(
ρVd
Ntot

)n(
1− ρVd

Ntot

)Ntot−n

.

For the large particle limit with n � N whereN → ∞, the above expression is approximated
by

p(n; Vd, ρ)
Ntot�n≈ 1

n!
Nn
tot

(
ρVd
Ntot

)n(
1− ρVd

Ntot

)Ntot

Ntot→∞→ 1

n!
(ρVd)

n exp (−ρVd)

= Poissonµ(n) with µ = ρVd. (D.2)

In the limitNtot → ∞ in the second step, one keeps the density ρ = Ntot/Vtot constant which
is identical to just appending more and more volume with constant density in all directions of
space.
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The result is a Poissonian distribution Pµ(n) for the particle number within the volume Vd,
weighted by the mean µ(r) = ρVd(r) - which is equal to the average number of particles in the
volume. The resulting form is coherent with the fact that the Poissonian distribution describes
a distribution of uncorrelated events with uniform probability of occurrence, as was initially as-
sumed for the particle distribution. As is well known, the Poissonian distribution is normalised
in the sum over particle number n for any given µ ≥ 0, the expectation value for number of
particles within the volume is given by µ = ρVd and the standard deviation by σ =

√
µ. This is

shown in Figure D.1 (b).
When calculating the statisical distribution of neighboring Rydberg atoms, one has to take

the Rydberg blockade into accountwhich gives a radius rbwithinwhich one cannot excite a sec-
ond Rydberg atom (see also Chapter 3). In the saturated regime [198], the neighboring Rydberg
atoms are packed densely. However, far from the saturation regimewe expect the probability of
finding exactly n Rydberg atoms within a shell to scale almost identical as for the case without
blockade. This approach does not account for the blockade volume of the other Rydberg atoms
and is therefore approximately valid only in the regime where the average Rydberg atom spac-
ing rav is much larger than the blockade radius, i.e. rav � rb. The e�ect of Rydberg blockade on
the distribution of neighboring Rydbrg atoms was taken into account in [199].
In the regime far from saturation, the resulting probabilities for finding exactly n Rydberg

atoms within a sphere of radius r therefore depends on the density ρ and the dimension d of
the problem. An example for the 2-dimensional case is shown in Figure D.1 (c). For the purposes
of this thesis, we are interested in the number of particles within a sphere of radius r in three
dimensions. Therefore, we set µ3D(r) = 4

3
πρr3 for any further calulations.

Fig. D.1: Spatial distribution of particles in d dimensions. (a) shows an illustration of the nearest-
neighbor distance problem for the case of d = 2. In (b), the probability of finding exactly
n particles in a spherical volume defined by µ = ρVd are shown and the resulting re-scaled
radii r′ = rρ1/d are plotted above the graph for the dimensions d ∈ {1, 2, 3}. The scaling of
pn(n, r; rb, ρ)with the ratio of density ρ to blockade radius rb is shown in (c) for n ∈ {0, 1, 2, 3}.

XIX



E | NEW TA-SHG LASER@ 480 NM

A second, new coupling laser for future experiments with two di�erent Rydberg states was in-
stalled on the laser table. The laser is a TA-SHG pro at 960/480 nm from Toptica with 480 nm
output powers of up to ∼ 1.2 W. The laser was named Margit1, which is an old German name
meaning child of light.

The seed laser diode at 960 nm is locked to an ultrastable high-finesse cavity via error signal
generation using the cavity reflection spectrum together with a PDH scheme. Further details on
the laser lock are given in Appendix F.

Due to the high output powers, the lasermust be handledwith care. When focussing the laser
beamdown to lower beamwaists onemust be careful not to destroy conventional optics as the
laser can easily exceed the standard energy density damage thresholds.

Scattering losses in optical fibers are significant at these short wavelengths of∼480 nm. This
problem occurs predominantly at high laser powers, but also leads to generally lower coupling
e�iciencies. A maximum coupling e�iciency of 66% has been achieved for up to 600 mW inci-
dent power. When re-doing the fiber coupling it is paramount to reduce the incident laser power
toaminimum. Otherwise, thehighpowersmaybe focussedanywhereon the surfaceof the fiber
which causes the fiber head to degrade from heat. Similarly, when operating the fiber at high
incident powers, a slow heat-induced degradation of the surface can occur even for optimum
beam alignment. If the surface has degraded, a simple polishing of the fiber head with a fiber
polishing kit repairs most damage.
Nonetheless, toachieve long lifetimesof the fiber it has tobehandledwithgreat careandonly

asmuchpower as necessary for the experiment shouldbe sent through the fiber. The remaining
surplus power can easily be guided into a beam dump.

1A�er the first person was stung by the high power beam it has been agreed by the lab crew that the laser’s nick-
name, being the second syllable of it’s name, is very appropriate.
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F | CAVITY LOCK

Fig. F.1: Schematics of cavity lock. The schematic structure of a sideband cavity lock is shown in (a),
further details can be found in the main text. Panel (b) shows the TEM mode spectrum trans-
mitted through the cavity. The generated error signal with the inset showing a zoom-in of one
EOM-generated sideband is shown in (c). We use FALCs from Toptica to generate the error signal
that is eventually fed back to the laser diode.

Ina three-level excitationscheme, thecoupling laserhas tobe lockedontoor scanned through
the two-photon resonance. Two-photon EIT locks [200, 201] are an option, but require compa-
rablymuch coupling laser powerwhichmight not be available. Therefore, the standard solution
is to use cavities to generate an artificial atomic resonance which can similarly be used for the
generation of an error signal. The fundamental light at ∼ 960 nm of the existing (old) TA-SHG
pro laser system had therefore been locked to an ultrastable, ultralow expansion (ULE) refer-
ence cavity. Details on the cavity and the previous lock of the old laser system can be found in
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APPENDIX F. CAVITY LOCK

Fig. F.2: Optical setup of cavity lock for two lasers at ∼ 960 nm. The beam paths for the old (teal)
and new (yellow) TA-SHG pro laser systems are shown and the relevant parts are specified in
the graph. We use fiber-coupled EOMs of the PMxxx series from Jenoptik. Since both lasers are
polarised perpendicularly, the reflected light falls only on a single reflection photodetectors and
the polarising optics for spatial mode imaging of the light transmitted through the cavity can
select either of the two lasers.

the PhD thesis of Nicholas Spong [147]. Since the cavity spectrum does not necessarily match
the desired frequency for the lock point, one has to lock onto the sideband of an electro-optic
modulator (EOM) instead. The frequency of the sideband can be adjusted as required, which
allows for an arbitrary lock point in the spectrum [184, 185]. An example for the cavity spectrum
of the ULE cavity and the error signal generated from the TEM00 mode and EOM sidebands are
shown in Figure F.1 (b) and (c), respectively. A schematic representation of a cavity lock is shown
in Figure F.1 (a).

Details on the principle of a sideband lock can be found in e.g. [184, 185]. It might be relevant
to note, though, that the sideband lock can also be used to scan the coupling laser through
resonance in a controllable fashion as a sideband scan lock.

For this, the sideband frequency fSB is scanned slowly which changes the frequency of the
zerocrossingof theerror signal generatedby thesideband. Wehave found thata tweakingof the
FALC settings for error signal generation towards a more aggressive lock allows for larger scan
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Fig. F.3: Electronics setup of cavity lock. The wiring of the electronics and the parts are specified in
the graph. All electronic parts are from MiniCircuits, the fiber-coupled phase modulators from
Jenoptik.

widths and faster scan rates. Themaximumstable operationwehave achieved1with a sideband
scan lockwas for scan rates of 0.1 MHz / 10ms over scan ranges of 140MHz of fundamental light,
i.e. 280 MHz at∼ 480 nm.

It is easily possible to lock multiple lasers onto the same cavity2, e.g. when the wavelengths
of the lasers are di�erent enough to separate the light with dichroic mirrors. Since both the old
and new TA-SHG pro operate at ∼ 960 nm fundamental light, we have distinguished them by
polarisation instead. The 50:50 beamsplitter used to combine the lasers onto the same beam
path leads to 75% losses of the incident light until detection. For our systems, this was not an
issue aswe receive enoughpickup light from the960nmdiode to still get strong enougha signal
on thephotodetectors. The resulting cross-talkbetween the lasers is∼ 1%of the incidentpower
a�er the EOMs, which is negligibly small and did not have a detrimental e�ect on the quality of
the locks.
The optical setup used to lock both lasers onto the same cavity is shown in Figure F.2 and the

laser polarisations aswell as the relevant parts are specified. The corresponding board carrying
the electronics with part specification is shown in Figure F.3.

1Themaximumscan ranges and scan speedwill depend on the specifics of the electronics, error signal generator,
laser diode and signal quality. The quality of the signal and optimisation of the generated error signal are key
for obtaining stable and fast scans over large scan ranges without loosing the laser out of the lock. It is then
even possible to scan across higher-order TEM cavity modes without unlocking of the laser.

2As long as the lasers fall within the wavelength range of the cavity mirror’s coating. If the lasers fall outside the
specified range of the coating one can still use the cavity for locking as long as one gets a decent spectrum. Just
try, youmight actually be lucky!
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