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Abstract

Since it is important for many HFE analyses to know the amount of contamination in
an electron sample, it is the aim of this thesis to give an estimation of the hadronic
background in such a sample taken from Pb-Pb collisions at

√
SNN = 2.76 TeV, which

were performed at the LHC and measured with the ALICE detector. The focus is on
the most central collisions with a centrality of 0− 20% and on particle tracks with low
transverse momentum. Particle identification is done by using the sub detectors TPC,
TOF and TRD of ALICE. For this purpose, measured TPC dE/dx distributions of
protons, kaons pions and deuterons are used as templates and are fitted to the dE/dx
distribution of the analyzed electron sample, to obtain the amount of contamination.

Finally the dependence between hadronic contamination and momentum - transverse
momentum respectively - is obtained as numerical table and alternatively as a smooth
function for practical purposes.

In the first chapter a short introduction to the Quark-Gluon plasma is given. The
second one describes the different sub detectors used in this thesis. While the third
chapter explains the “weighted least squares method”, the fourth one focuses on how
the analyzed data are selected. In chapter five, a routine to estimate the hadronic back-
ground for different (transverse) momenta is developed and the usage of the templates
as energy loss distributions is explained. The results can be found in chapter six.

Zusammenfassung

Da es für viele HFE Analysesn wichtig ist, die Kontamination eines Datensatzes aus
Elektronen zu kennen, befasst sich diese Arbeit mit einer Abschätzung des hadronischen
Untergrundes in einem solchen Datensatz, der in Pb-Pb Kollisionen bei

√
SNN = 2.76

TeV im LHC entstanden ist und mit dem ALICE Detektor gemessen wurde. Es werden
Kollisionen mit 0− 20% Zentralität und Teilchen mit niedrigem Transversalimpuls un-
tersucht. Um die Teilchen zu identifizieren, werden die Subdetektoren TPC, TOF und
TRD von ALICE verwendet. Dazu werden gemessene TPC dE/dx Verteilungen - so
genannte “Templates” - von Protonen, Kaonen und Deuteronen genutzt, um diese an
die dE/dx Verteilung des Elektronen Datensatzes zu fitten und somit die Kontamination
von diesem abzuschätzen.

Das Ergebnis ist eine Tabelle mit der hadronischen Kontamination als Funktion des
Impulses, beziehungsweise des Transversalimpulses. Als Alternative gibt es dies - aus
praktischen Gründen - auch als stetige Funktion.

Eine kurze Einführung zum Quark-Gluonen Plasma findet sich im ersten Kapitel. Im
zweiten werden die in dieser Arbeit eingesetzten Subdetektoren beschrieben. Während
sich das dritte Kapitel mit der Methode der “gewichteten kleinsten Quadrate” befasst,
wird die Auswahl der zu analysierenden Daten in Kapitel vier behandelt. Im fünften
Kapitel wird eine Routine entwickelt, um den hadronischen Hintergrund für verschiedene
(Transversal-) Impulse zu bestimmen und der Einsatz der gemessenen “Templates” wird
erklärt. Die Ergebnisse werden in Kapitel sechs präsentiert.
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1 Introduction

A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider at CERN is

exploring a new state of matter at high energy densities in Pb-Pb collisions. This state

is called Quark-Gluon plasma and is expected to have occurred shortly after the Big

Bang. Therefore exploring it may give a better understanding of the evolution of our

early universe. Furthermore, the studies will improve our understanding of Quantum

Chromodynamics. There are a lot of effects that influence the behavior of the plasma, like

initial scattering, fluctuations in the density, hadronization and many others. Therefore

different observables are needed to study the Quark-Gluon plasma. One of those is

measuring heavy flavor particles, since properties of charm and beauty quarks shed

light on the properties of the plasma. One important approach is measuring electrons

from heavy flavor decays for instance. For this purpose it is important for Heavy-

Flavor-Electron (HFE) analyses to know how strong the measured electron candidates

are contaminated by other particles. For example the Cocktail-Method relies on the

subtraction of the background and so it is important to know the fraction of electron

candidates that are not electrons.

It is the aim of this thesis to estimate the relative amount of this contamination at low

transverse momentum. In the following section a short introduction to the Quark-Gluon

Plasma and why it is interesting to observe heavy flavor electrons is given. Chapter 2

contains an introduction to the detectors important for the present work and the concepts

of particle identification with these detectors. Chapter 3 describes the applied fitting

method.

The way of obtaining data and the main analysis with all results are presented in

sections 4 - 6.

1.1 Quark-Gluon Plasma

According to experimental observations quarks are bound in hadrons and cannot exist

freely in vacuum. This is described by the potential of the strong interaction between
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two color charges, which for large distances between two interacting partners increases

linearly with distance. Therefore an infinite amount of energy would be required to

separate those particles. If the energy of the system is increased, quark-antiquark pairs

form to create several color-neutral particles, so that charge carriers cannot be separated.

However, lattice calculations from Quantum Chromo Dynamics (QCD) predict a

phase transition for matter at high energy densities around 1 GeVfm−3 and a high

temperature[1]. This transition leads to a strongly interacting state of matter which is

called Quark-Gluon Plasma (QGP). In this state confinement becomes canceled out and

quarks are able to move freely inside the plasma. Nevertheless, the whole plasma has

to be color-neutral[2]. Besides deconfinement it is predicted that in the phase of plasma

the chiral symmetry of the Lagrangian is restored[3].

The hot and dense matter is expected to be created in Pb-Pb collisions where it evolves

over a very short time. It expands and by that cools down so that the energy density

decreases. Then the former deconfined quarks hadronize to form color-neutral hadrons.

1.2 Heavy Quarks as Probes of the QGP

Since the Quark-Gluon Plasma is not measurable directly, one has to observe particles

produced in the heavy ion collision that traverse the plasma and interact with it. Heavy

flavor quarks are interesting probes. A possible way to access them experimentally is

observing leptons, produced in heavy flavor decays. Charm and beauty quarks are due

to their high masses produced almost exclusively in the initial hard scatterings, so that

they experience the whole evolution of the QGP while traversing it. However, the top

quark is not an appropriate candidate, since it has a very short lifetime and decays

before it has traveled through the plasma over a significantly long distance[2]. Beauty

and charm are expected to interact measurably with the medium so that properties of

the QGP can be deduced - like the dependence of color charge and mass in partonic

energy loss inside the plasma. For example this can be achieved by comparing the in-

medium energy loss of heavy-flavor hadrons to hadrons with light quarks[16]. There

is inelastic energy loss due to gluon radiation caused by traversing partons similar to

bremsstrahlung and radiative energy loss. Also elastic loss of energy caused by collisions

contributes to the total energy loss[17].

Furthermore, measuring the production cross section of heavy-flavor (HF) quarks is a

good test for pertubative QCD (pQCD)[3]. Therefore observing heavy-flavor hadrons or

particles produced by them may give different insights into the probability and behavior
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of the Quark-Gluon Plasma. Of special interest for this analysis are electrons from heavy

flavor decays since their branching ratios are of order 10%[16]. On the other hand there

is a slight disadvantage of observing electrons: since neutrinos are not detectable, recon-

structing a full invariant mass from leptonic HF decays is impossible. Nevertheless it is

worth observing HF electrons due to their large branching ratios and the correspond-

ing high statistics. For this purpose this analysis deals with estimating the hadronic

contamination in electron samples.

7



2 Particle Identification with Different

Detectors

There are mainly two ways to identify particles. They can be distinguished by their

masses or by their difference in interaction with different sub-detector materials (calorime-

try), which is usually already incorporated in the design of most detectors[9]. For

calorimetry one typically arranges sub-detectors as shown in fig. 2.1. It depends on

the particle in which of the sub-detectors it interacts and produces a signal. For exam-

ple an electron can be identified by leaving a track in the tracking system and interacting

with the electromagnetic calorimeter which stops the electron in front of the hadronic

calorimeter. Therefore it does not leave a signal in the hadronic calorimeter. This

method is mainly used for photons and leptons[9].

Particle identification by mass is done by obtaining the momentum p = βγmc and the

velocity v = βc of a particle from observables that depend on v or p. The momentum

of a charged particle can be obtained from the curvature of its trajectory in a magnetic

field where the Lorentz force acts as centripetal force. The velocity can be determined

indirectly by different methods[9]:

• Cherenkov radiation

• Time-of-flight

• Energy loss by ionization

• Transition radiation

Cherenkov radiation is emitted when a particle traverses a medium faster than the speed

of light in this medium. The angle of the emitted radiation relative to the particle’s track

depends on its velocity[9]

cos(ΘC) =
1

βn
(2.1)

where n is the material’s refractive index.
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Figure 2.1: Concept of PID by difference in interaction[9]. Tracks of different particles
leave signals in different sub detectors. This allows to identify the species of
a particle corresponding to a track.

The other methods are explained in more detail in the section of the corresponding

detectors.

2.1 Gaseous Ionization Detectors and Energy Loss of

Traversing Particles

The concept of gaseous ionization detectors is to measure the energy loss per unit length
dE
dx

by ionization. Charged particles traversing the detector lose energy by ionizing the

gas inside. This leads to NI electron-ion-pairs over a distance x given by

NIW = x〈dE
dx
〉 (2.2)

where W is the average energy for creating electron-ion-pairs[9]. Those electrons can

further ionize the gas, which results in secondary electrons [4]. The ionization processes

can be described by inelastic Coulomb collisions where the traversing particle loses a

small amount of energy which excites or ionizes the involved atom.

Typically, the average energy loss can be described according to the Bethe-Bloch

formula. However, the formula has to be modified to describe the signal of the detector,
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Figure 2.2: TPC signal of tracks of different particle species. The lines correspond to
the average energy loss of the track of particles.[11]

since large energy losses, contained in the calculation of the average energy loss, do not

contribute to the measured energy loss of a track. Instead they lead to a δ electron which

is knocked out of an atom and can be measured as a stand-alone track, so that they do

not contribute to the measured mean energy loss of a track. Therefore [19] introduces an

energy cut-off for calculating the average energy loss. The modified Bethe-Bloch formula

can be described according to [8] as

〈dE
dx
〉 ∝ C1

β2
log(C2βγ − β2 − C3) (2.3)

which depends on the velocity of a particle. Here Ci are detector dependent constants[8].

In fig. 2.2 one can see the characteristics of this formula. For low velocities the energy

loss behaves like 1/β2 and ends up in the region of minimum ionization. For higher βγ

the relativistic rise dominates and follows log(βγ) until it is suppressed by the density

effect correction which is represented by C3 [9]. This region is the so called Fermi plateau.

For the primary ionization the Rutherford cross section describes the interaction for

energies above the highest atomic binding energy[9](
dσ

dE

)
Ruth

∝ 1

E2
. (2.4)
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This shows that electrons from primary ionization with high energies are suppressed,

but there is still a probability that they exist and can further ionize the gas so that

secondary electrons are produced.

2.2 Setup of the ALICE Detector

In the ALICE detector the TPC and TRD are gaseous ionization detectors as described

in the previous section. This section first gives an overview of the total setup and then

investigates in further details the TPC, TRD and TOF.

Figure 2.3: Setup of ALICE detector[18]

In fig. 2.3 the different sub detectors of ALICE are shown. The following passage

focuses on detectors used in this analysis. The description is ordered from the inner to

the outer sub detectors. Closest to the beam pipe the Inner Tracking System (ITS) is

mounted. It is used to reconstruct the primary vertex, secondary vertices and to improve

the resolution for momentum and angular reconstructions from TPC[8].

Next to the ITS is the Time Projection Chamber (TPC), which is the main tracking

device of the experiment. Besides track reconstruction and momentum measurements

it also provides PID by measurement of the specific energy loss of a particle traversing

the gas in the TPC.
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Figure 2.4: Setup of TPC[9]

The following detector is the Transition Radiation Detector (TRD) which is especially

designed to distinguish electrons from pions over a momentum range from 1 GeV/c up

to 100 GeV/c making use of the fact, that only electrons create transition radiation in

this kinematic regime.

The TRD is followed by the Time of Flight (TOF) detector which is important for PID

when the signals of pions, kaons and protons overlap in the TPC. Measuring the velocity

via the time-of-flight and the track length yields an additional feature to discriminate

between those particles.

There are also two electromagnetic calorimeters called EMCAL and PHOS. They can

be used to identify photons and measure their 4-momentum. For electron identification

they can be used as well.

Furthermore, there are other detectors which are important for event characterization

and are described in [1] and [8] in more detail.

The magnetic field is created by a large solenoid and has a strength of 0.5 Tesla so

that the observation of particles with low transverse momentum is possible[2].

2.3 Time Projection Chamber

The setup of the Time Projection Chamber can be seen in fig. 2.4. The field cage is

a hollow cylinder whose axis is parallel to the beam axis. In 2010 - when the data for
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this analysis were taken - it was filled with a Ne-CO2-N2 gas mixture (90-10-5)[10]. The

active volume has an inner radius of 85 cm, an outer radius of 250 cm and a length of 500

cm. The cage is separated into two halves by a thin membrane - the central electrode,

which is at a potential of 100 kV. Together with a voltage dividing network on the

surface of the outer and inner cylinder it creates an electric field of about 400 V/cm

parallel to the beam axis[9]. Therefore electrons - created by ionization from traversing

particles - drift towards the end-caps, where readout detectors are mounted. When the

electrons reach the readout anode wires, an avalanche is produced and the signal gets

amplified, which is read out by cathode pads via the induced potential change[10].

In front of the readout wires a gating grid is installed which prevents ions from entering

the drift volume. It opens when the system is triggered so that electrons from ionization

can pass. Since the produced ions drift with a much lower velocity than the electrons,

they cannot enter the drift volume, so that they do not influence the signal in the read

out region[9].

From the position of the readout pads a two dimensional projection of a particles

trajectory on the TPC’s end caps can be reconstructed from the deposited charge clusters

from ionization by calculating the cluster’s center of gravity.

The drift velocity can be calculated depending on the electric and magnetic fields as[4]

v =
eτ

m(1 + ω2τ 2)

(
E +

ωτ

B
(E ×B) +

ω2τ 2

B2
(E ·B)B

)
, (2.5)

where ω = eB/m is the Larmor frequency and τ is the mean collision time. Since the

magnetic field is parallel to the electric field the second term equals zero and the third is

independent of B. In good approximation the electric field is homogeneous and therefore

the drift velocity is constant. Therefore a measure of the drift time of electrons from

ionization and the 2D projection of the track allow to reconstruct the three dimensional

trajectory of a particle[2][4].

A helix-fit runs on the reconstructed particles track to get the parameters of the track

- such as the curvature - from which one obtains the kinematics[8].

Shape of Energy Loss Distributions of Particles traversing the TPC-Detector

The amount of energy that a track loses while traversing the Gas inside the TPC is a

random variable with a distribution called straggling function[7] (or Landau distribu-

tion). This distribution can be obtained from the detector by measuring the energy

losses of many tracks of the same particle species. However, since there are always dif-
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ferent particles traversing the TPC, the measured energy loss spectrum will contain the

sum of straggling functions corresponding to different particle species. Those straggling

functions will be observed in small momentum or transverse momentum bins.

For the track of a single particle the measured energy loss is the sum over all clusters,

made up by ionization. To understand the shape of the distribution for a single track,

first consider the energy loss distribution σ(∆) of a single particle for a single collision

with energy loss ∆. The distributions for more collisions can be calculated iteratively

by convolution[7]

σ∗n(∆) =

∫ ∆

0

σ(E) · σ∗n−1(∆− E)dE. (2.6)

This formula describes the probability that a particle loses energy ∆ by producing a

cluster by n collisions. Using the Rutherford cross section this leads to the Landau

distribution L(∆)[7]. However, the measured distributions differ from this one, since the

Rutherford cross section is not a good approximation for all detector gases[7].

The energy loss distributions - which can be described by straggling functions[7] -

have a large tail that might be removed for practical purposes. Typically one applies

a truncated mean cut, which consists of omitting a certain number of the clusters with

highest energy loss of each track. A simple simulation of this is shown in figure 2.5. For

illustration a signal out of many tracks - consisting of 100 clusters each - was created.

For each cluster a random value from a Landau was sampled to simulate a random

charge deposition. For a more accurate method see [7]. In the black histogram the total

energy loss of many tracks was binned. In the blue one a truncated mean cut has been

applied on the clusters. For every track the 40% highest clusters have been omitted and

the rest has been summed up so that the large tail has been removed. Furthermore, one

can see that there is a shift of the maximum.

With truncation the signal’s shape is similar to a Gaussian[11]. Therefore PID is

possible by fitting Gaussian distributions for every particle species to data. However,

for being more accurate in [2] an alternative description of the signal is presented. There

it is assumed that in good approximation the truncation can be described by a Landau

distribution multiplied by a truncation factor depending on the energy loss ∆ of a track.

The factor represents the probability that the track contains no clusters above a certain

threshold, which is motivated by assuming introducing a thresholds and cutting all

clusters above this threshold is equivalent to cutting of the 40% highest clusters of a

track. With some statistical considerations one ends up at a falling exponential for the
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Figure 2.5: Monte Carlo simulation to show the effect of the truncated mean cut on
the signal’s shape: the large tail of the sampled Landau distribution (black)
is removed and the shape becomes more like a Gaussian but with shifted
maximum (blue).

truncation factor so that the signal is described as[2]

f(∆) = A · L(∆;µ, σ) · exp(−α ·∆), (2.7)

where µ and σ describe the Landau’s most probable value and the width of the peak.

The normalization refers to A and α is a free parameter that determines how strongly

the Landau’s tail is removed.

2.4 Time of Flight Detector

Particle identification by ionization becomes problematic when the lines from Bethe-

Bloch curve for different particles cross each other. In this case additional information

about the particles’ velocities can be provided by the Time of Flight detector, which

consists of an array of Multi-gap Resistive Plate Chambers for precise time measure-

ments.
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From the time-of-flight t and the length of the trajectory L one obtains an expression

for the particle’s mass depending on its momentum p by combining

β =
L

tc
β =

1√(
mc
p

)2

+ 1

⇒ m =
p

c

√(
ct

L

)
− 1. (2.8)

Together with the momentum measurement from the track reconstruction PID is possi-

ble.

To estimate the separation power between two particle species A and B with same

momentum, one has to look at the time resolution[9]

|tA − tB| =
L

c

∣∣∣∣∣
√

1 +

(
mAc

p

)2

−

√
1 +

(
mBc

p

)2
∣∣∣∣∣ (2.9)

and expand it for p� mc so that√
1 +

(
mc

p

)2

≈ 1 +
m2c2

2p2
(2.10)

holds and therefore the separation power becomes

n =
|tA − tB|
σTOF

≈ Lc

2p2σTOF

|m2
A −m2

B|. (2.11)

This shows that PID with TOF becomes problematic for particles with high momentum

and where the masses differ little. This will be seen exemplary for electrons and pions

in chapter 5. For the separation of pions and kaons according to[11] TOF works well up

to 2.56 GeV/c and for protons up to 4 GeV/c, which will be enough for my purposes.

Although the TOF’s signal has a tail, the detector’s response function is modeled as

Gaussian[8] and can be described by

gi(t) ∼
1

σ
exp

(
−(t− texp

i )2

2σ2

)
(2.12)

for the i-th mass hypothesis. The expected time texp
i is obtained during the reconstruc-

tion of the track by summing up the TOF increments ∆tk from all track segments k in

the reconstruction process[8]. They are obtained by local estimates pk for the momentum
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and the track length increment ∆lk via

∆tk =
√
p2
k +m2

i

∆lk
pk

. (2.13)

The width of the response function is given by σ2 = σ2
TOF +σ2

rec which includes the time

resolution σ2
TOF and the errors σ2

rec on reconstructing L and p.

In this setup one can identify particles by nσi-TOF-cuts where a particle is said to

be of the corresponding type to the i-th mass hypothesis when its TOF-signal is within

a region of ±nσi around the expected signal texp
i . In this analysis 3σ-TOF-cuts will be

applied since this reduces the background without losing too much statistics.

2.5 Transition Radiation Detector

The Transition Radiation Detector has a good separation power between pions and elec-

trons over a momentum range from 1 to 100 GeV/c[14]. This will be helpful to estimate

the pion contamination. As explained in a previous section, the separation power of

TOF decreases with higher momenta. This will mainly affect pions and electrons in the

data sample of this thesis and therefore TRD will be used for a better separation. On

the other hand, in 2010, when the data this analysis uses, were taken, only seven out

of 18 of the super-modules were installed. Therefore using the TRD will lead to a loss

of statistics. This is one reason why the TRD will not be used for the current heavy

flavor electron analyses, but for other samples used in this analysis, where statistics play

a minor role, the TRD is the tool of choice.

A relativistic particle with Lorentz-factor γ ≥ 1000 has a chance to produce a photon

while traversing the interface of two media with different dielectric constants. In the

above mentioned momentum range only electrons have such a Lorentz-factor due to

their low mass[14]. Therefore detecting transition radiation (TR) is characteristic of

electrons.

In order to understand how this concept is realized, one may have a look at the set-up

of a TRD layer as shown in fig. 2.6. It consists of a radiator, a drift region and the

amplification region made up by anode wires and cathode pads. The drift chamber is

filled with a gas mixture of Xe and CO2 (85− 15)[11]. Therefore the TRD is a gaseous

ionization detector as described in section 2.1. Besides the ionization from traversing

particles the TRD detects the TR photons which are absorbed by the gas due to the

high atomic number of its components[11]. All clusters from ionization drift towards the
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Figure 2.6: Schematic view of one layer of TRD[12]. A traversing particle produces
charge clusters by ionization of the gas inside. Those drift towards the am-
plification region - due to an electric field - where the deposited charge is read
out. Furthermore, electrons have a chance to produce a transition radiation
(TR) photon. It is absorbed by the gas close to the radiator, so that a cluster
with more charge than for an electron without a TR photon is produced.

anode wires where the signal is amplified and read out by the cathode pads. Their size

is designed so that 2-3 pads detect one cluster whose position then is reconstructed by

its center of gravity.

The deposited charge is collected and read out with a frequency of 10 MHz corre-

sponding to a sampling interval of 100 ns. Since the drift time of the clusters is larger,

the distance between the point where a cluster was produced and the read out region can

be reconstructed, as can be seen in fig. 2.7. The average pulse height of the TRD signal

in a layer for electrons and pions is shown in dependence of the drift time. For electrons

there are two peaks. The first, which has to be close to the readout region due to the

short drift time, is a result of the fact that near the anode wires charge moves from two

sides towards them. So the signal from this region is much higher. The second peak,
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Figure 2.7: Average pulse height of the TRD signal in a layer for pions and electrons. It
shows the dependence between the average signal produced by a cluster and
the time the electrons from the cluster need to drift towards the read-out
region. The larger the drift time the closer to the radiator a cluster has been
produced.[13]

which has to correspond to clusters next to the radiator - that have a long drift time -

arises due to the transition radiation produced by an electron. In comparison with fig.

2.6 one actually sees that TR photons are absorbed close to the radiator. Therefore the

second curve in fig. 2.7 for the pions - which do not emit transition radiation - only

shows the first peak and not the second one. The plateau is due to energy deposit from

the particles while traversing the gas inside the drift chamber. With those information

one is able to distinguish also other particle types by their characteristic energy loss as

described in section 2.1.

To assure that the probability of producing a TR photon by an electron is high enough,

one could increase the amount of interfaces in the radiator which is made of polypropy-

lene fibers and foam[14], but this would lead to a much bigger radiator so that the TR

photon might be absorbed by the radiator itself and would not be detected. To avoid

this, six detector layers of the kind that can be seen in fig. 2.6 are stacked upon each

other to increase the chance to detect TR photons.
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2.6 Particle Identification with TRD

There are mainly four methods to identify particles with the TRD[11]:

• Truncated Mean Cut (TM)

• Neural network (NN)

• One-dimensional likelihood on total integrated charge LQ1D

• Two-dimensional likelihood on total integrated charge LQ2D

In this analysis only the last method will be applied. Therefore just both likelihood

methods will be explained in the following.

For the LQ1D method one defines a likelihood[8] for a track being an electron or pion

respectively by

L =
Pe

Pe + Pπ
with Pe = ΠN

i=1P (Xi|e) and Pπ = ΠN
i=1P (Xi|π) (2.14)

where P (Xi|e) denotes the probability that the total deposited charge Xi in layer i

belongs to an traversing electron. N is the total number of layers.

Since the energy loss of electrons and pions becomes more and more similar with

higher momentum due to the relativistic rise of the Bethe-Bloch curve for pions, the

total integrated charge may not only be a sufficient variable for the likelihood. Instead

one can use additional information from fig. 2.7. Since the TRD is able to localize the

cluster’s distance to the radiator one can use the TR peak for electron identification

more precisely by dividing the signal - shown in fig. 2.7 - into two halves for each layer.

For every layer and every half, the probability that the signal in the corresponding half

belongs to a traversing electron (a pion respectively) is determined and assembled to

a likelihood similar to (2.14)[8]. This leads to the LQ2D method which uses the total

integrated charge and the transition radiation to identify particles. A likelihood for

protons, muons, and kaons is obtained in a similar way.
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3 Fitting with Weighted Least Squares

Method

The main tool of this analysis will be fitting analytic functions and measured histograms

to data. Therefore this section explains the background of the applied fitting method

which is deduced from the maximum likelihood method.

For a given set of data {(yi, xi) |i = 1...n} one assumes a model y = f (x, λ)

that describes the dependency between y and x depending on the parameters λ. Let

P ({(yi, xi)}|λ) be the probability to measure the data set {(yi, xi)} for given λ. How-

ever, in the following P ({(yi, xi)}|λ) is interpreted as a likelihood of λ. With a mea-

sured set we can fix (yi, xi)∀i = 1...n and maximize P with respect to λ, which gives us

the most likely parameters under assumption that the considered model describes the

measured data correctly.

If the measurement of one data point is statistically independent of all others

P ({(yi, xi)}|λ) = Πn
i=1Pi ((yi, xi)|λ) (3.1)

holds, where Pi ((yi, xi)|λ) is the probability to measure the pair (yi, xi). Since the

logarithm is a monotonic function, solving

n∑
i=1

∂ lnPi ((yi, xi)|λ)

∂λj
= 0 ∀j (3.2)

yields a local maximum of P ({(yi, xi)}|λ), if the maximum exists.

Now consider that (3.1) holds and

Pi ((yi, xi)|λ) =
1

σi
√

2π
exp

(
−(yi − f(xi, λ))2

2σ2
i

)
(3.3)

the yi are normally distributed where f(xi, λ) determines the expectation values and σi

is the uncertainty of the measured yi. For example xi can label the bins of a histogram
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and yi is the number of counts in bin i. Then σi is the error on the counts in bin i. The

assumption that the measured values are Gaussian distributed in every bin is a good

approximation according to the central limit theorem if the number of counts in every

bin is large. Otherwise a Poisson distribution has to be chosen.

Plugging (3.3) into (3.2) leads to

∂

∂λj

n∑
i=1

(yi − f(xi, λ))2

σ2
i

= 0 ∀j, (3.4)

which is also known as “weighted least squares” or “χ2-method”. It minimizes the

weighted difference between measured data and values predicted by a model. If f is

linear in λj ∀j, some simple algebraic conversions reduce (3.4) to solving an equivalent

linear equation system. Otherwise, f can be linearized by a series expansion in λj around

an initial value and (3.4) is solved by iterating the point around which it is expanded.

The convergence of this process is only guaranteed by an appropriate choice of an initial

point[21].
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4 Data Samples and Applied Cuts

The analyzed data consist of Pb-Pb collisions at
√
sNN = 2.76 TeV taken in 2010. This

analysis concentrates on a centrality from 0 − 20%. Since it is focused on heavy-flavor

electrons (HFE), the standard cuts from the HFE-group have been applied and are

described briefly in the following.

To obtain a good signal quality, for every track a minimum number of 110 - out of 189

maximally detectable - produced clusters in the TPC is required, from which at least

80 have to be usable for PID. Furthermore, the ratio between the expected number of

findable clusters - predicted by geometrical considerations - and actually found clusters

has to be larger than 60%. In addition there have to be at least four clusters in the

Inner Tracking System. Both cuts lead to an improvement of the track quality.

The ITS is also used to suppress electrons which are not from heavy flavor decays.

Therefore for every track a signal in the first two layers of the ITS is required. This

assures that electrons originate from processes close to the vertex and not from pair

production by a photon at outer radii, so that the number of background electrons is

reduced.

4.1 Centrality

Centrality describes the overlap between the two nuclei during a collision. There is

a strong correlation between high multiplicity and large overlap of the nuclei. This

quantity depends on the impact parameter b and is defined by

c(b) =

∫ b
0
dσ
db′
db′∫∞

0
dσ
db′
db′

=
1

σAA

∫ b

0

dσ

db′
db′ (4.1)

where σAA is the total hadronic cross section in AA-collisions[11]. To replace the impact

parameter b with quantities, which are easier to access experimentally, one can make

an approximation under the assumption that the mean multiplicity at mid rapidity

increases monotonically with the overlap region or, respectively, the zero degree energy

23



decreases[11]. Therefore one can replace the impact parameter with those quantities

and can further switch between cross section and the number of observed particles -

corrected for trigger effects and non hadronic background - which leads to the equation

c ≈ 1

Nev

∫ ∞
Nch

dn

dN ′ch
dN ′ch ≈

1

Nev

∫ EZDC

0

dn

dE ′ZDC

dE ′ZDC (4.2)

whereNev is the number of total events, Nch is the largest multiplicity of charged particles

and EZDC is the smallest zero degree energy[11].

For most central collisions there will be a small impact parameter which according

to (4.1) leads to small centralities. Therefore centralities of 0 − 20% are called most

central. From (4.2) one can deduce characteristics of samples with small centralities.

For low c the integral has to be small, which is achieved by a high multiplicity Nch. On

the other hand low Nch corresponds to centralities around 90− 100%, which shows that

more peripheral collisions behave similar to p-Pb collisions.

In this thesis data from 0− 20% centrality are analyzed. Therefore one could expect,

that there will be a larger background than in p-Pb collisions. However, the method

which will be developed in the following can be applied for other centralities, too.

Figure 4.1: TPC signal after 3σ TOF-cut around the electron expectation. Due to the
high abundance of pions relative to electrons and the separation power of
TOF - which decreases with increasing momentum - they dominate this
sample. There is a large bulge - marked red - which will be discussed in
chapter 5.
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Figure 4.2: Time-of-Flight signal in σe plotted against the momentum. One can see the
lines of different particle species: the large red area corresponds to pions. At
a TOF signal of 0 σe one can see the electron line starting to overlap with
pions at p > 0.7 GeV/c.

4.2 TOF-Cuts and Data Sample

The Time of Flight detector can be used for PID as described in section 2.4. Since a

sample of electrons with reduced background is needed, a 3σe cut around the electron

expectation value is applied. Then the TPC signal in nσe and the total momentum - for

later analysis the transverse momentum - are stored in a histogram as can be seen in fig.

4.1. Comparing this to the Bethe-Bloch curves from fig. 2.2 one can see the electron

line around 0 above the pion line. Also the lines from kaons and protons can be seen

clearly.

Taking into account that a TOF-cut has been applied one would expect by looking

at the TOF signal in fig. 4.2 that only pions - represented by the huge red area - and

electrons around 0± 3 should be in this sample. However, there are TOF mismatches of

other particles, so that a wrong time-of-flight is assigned to the particle’s track. Therefore

also protons, kaons and deuterons can be found in the TPC signal after the TOF-cut in

fig. 4.1 has been applied.

The deuterons can hardly be seen, since they are covered by the large bulge above the

electron line over a momentum range from 0.5 to 2.5 GeV/c but they are expected to

cross the electron line at a momentum of about 2 GeV/c. Furthermore, protons cross

at 1 GeV/c and kaons around 0.5 GeV/c (see fig. 2.2).
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It is the aim of this analysis to estimate the contamination in these crossing regions for

every particle species and the contamination from pions, which approach from below the

electron line with increasing momentum. As can be seen in fig. 4.2, for low momentum

the separation power between electrons and pions of the Time of Flight detector is quite

good but for higher momenta the pion and electron distributions overlap more and more

as expected from eq. (2.11).

Since in the HFE analyses electrons are selected by the TPC from the nσe interval

[0, 3], which keeps pion contamination low[15], the contaminations for the different par-

ticles in this specific interval will be estimated. However, the method which is described

in this thesis could also be applied to any other interval. Furthermore, it is interesting to

know what kind of particles make up the large bulge and how strongly they contaminate

the electrons.

26



5 Estimating Contamination with

different Fit Models

The contamination of the electron sample in the nσe interval from 0 to 3 is estimated

for every transverse momentum bin for every particle species. The reason to choose

the transverse momentum, is that other analyses - which rely on the estimation of

contamination - observe transverse momentum. However, as will be seen, choosing the

transverse momentum will make PID more complicated, so that the contamination has

to be determined in dependence of the momentum and has to be converted afterwards.

For every transverse momentum bin in the histogram of fig. 4.1 the projection on the

ordinate will be analyzed. Therefore different models will be fitted to the energy loss

distributions so that they can be dealt with separately for each particle species.

5.1 Fitting multiple Gaussians

The simplest approach is fitting a Gaussian distribution for every particle species. For

a transverse momentum above 0.6 GeV/c kaons are expected to be covered by pions.

Figure 5.1: Fitting three Gaussian-Distributions to data in different pT . Obviously this
leads to poor results that have to be improved.
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Therefore in fig.5.1 Gaussians have been fitted for electrons, pions and protons. In

both plots one can see a dip between the pion and the electron peak, which leads to

the assumption that a Gaussian does not describe pions well, because the Gaussian is

symmetric around its mean value and a Landau is still asymmetric after truncation.

Furthermore, one might expect that - due to the choice of transforming the TPC

signal in nσ electron - the Gaussian for electrons should have a mean value of 0 and a

width of 1. This does not hold in this case, as can be seen in the left side of fig. 5.1.

The fitted electron distribution is wider than the measured distribution and has a width

of (1.248± 0.003), which is a result of the wrongly described right shoulder. The proton

distribution does not describe the shoulder very well. Therefore the fit routine widens

the electron Gaussian to compensate this.

In the right plot one can see that the description of protons by a Gaussian becomes

worse for lower transverse momentum. To fit the shoulder the routine chooses a very

large width for the Gaussian, which leads to a strong overestimation of the protons. At

pT = 0.6 GeV/c no protons should have a TPC signal crossing the pion line as can be

seen in fig. 4.1. Therefore one can conclude, that - in certain transverse momentum bins

- fitting a Gaussian for protons can lead to false results. Hence, another distribution has

to be found which describes protons more precisely.

5.2 Proton Distribution

To get a better description of the shape of the proton distribution one can use the good

separation power for protons of the time-of-flight detector (see. sec. 2.4) and take a

sample with a 3σp TOF cut around the proton line. From this sample the distribution at

pT = (0.6±0.1) GeV/c is shown in fig. 5.2 together with the corresponding contaminated

electron sample. As in the shown distributions different TOF-cuts have been applied,

the distribution for protons has been scaled for better comparison, so that different

numbers of total tracks in the two samples are taken into account. One can see that the

large shoulder is reproduced well on the right, but close to the electron peak there is

still background left, which must come from other sources. Furthermore, there are also

misidentified pions and kaons in the proton sample, as can be seen on the left magenta

peak, which is positioned around the expected energy loss for pions. The tail of this

peak is made up of kaons which according to the Bethe-Bloch formula have to be next

to the pions at this transverse momentum.
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Figure 5.2: Proton distribution at pT = (0.6 ± 0.1) GeV/c selected by 3σp TOF cut
around the proton line, which is scaled for better comparison to the data for
which contamination is analyzed.

However, as described in section 2.3 the response function of the TPC should be similar

to a Gaussian. As can be seen clearly, this does not hold for this proton sample. This

can be explained by the fact that all protons in this sample have the same transverse

momentum but not the same absolute momentum. According to (2.3) the mean energy

loss depends on βγ = p/m and therefore this sample contains protons with different

average energy losses, which widens the distribution.

Taking the proton distribution for particles which are all in the same momentum bin

leads to a much more Gaussian like shape as can be seen in fig. 5.3. It can be concluded

that it is more reasonable to use the momentum for particle identification instead of pT

and this is why the analysis will be done in p and the results will be converted afterwards.

Now after changing to momentum one might suggest to use a Gaussian distribution for

the protons, but another aspect is, that the proton contamination has to be estimated

at momenta where the distributions of electrons and protons overlap. Independent of

the shape of the proton distribution, it is nearly completely covered by the electron

distribution around momenta near 1 GeV/c. Therefore the fit routine will get prob-

lems minimizing χ2, since the fit-parameters of electrons and protons will be strongly

correlated. Every change that amplifies the protons could be replaced by amplifying
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Figure 5.3: Proton distribution selected by 3σp TOF cut around the proton line at p =
0.8 GeV/c. Misidentified pions and kaons can be seen. The kaons are mostly
covered by pions, but one can recognize them at the right shoulder of the
left peak. The shape of the proton distribution - which refers to the right
peak - is more Gaussian compared to fig. 5.2.

electrons, because they dominate the protons. On the other hand, the routine could

interchange the two distributions and try to fit the proton distribution to the shape

corresponding to electrons, so that the protons seem to dominate the electrons. In both

cases the routine may converge, but will not yield reasonable results in terms of proton

contamination.

To avoid these problems one might use experimental data describing the shape of the

proton distribution.

5.3 Fitting with Experimental Data as Template

The idea behind this method is identifying the particles one wants to describe in another

data set with different PID cuts and use the resulting distribution for the fit routine.

Those templates can be obtained for kaons, protons and deuterons in the same way as in

section 5.2 by applying 3σ TOF-cuts respectively around the particles expectation values

for every momentum bin. However, it must be assured that the same transformation of

units is used as in the data which are to be analyzed. So the TPC nσe− signal has to be

obtained in dependency of the momentum, which can be seen for protons in fig. 5.4. In
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Figure 5.4: Selecting protons with a 3σp TOF to get templates for their energy loss
distributions in every momentum bin. An amount of misidentified particles
remains.

this figure protons can be identified by the red area, but there are again misidentified

kaons, electrons and pions as can be seen by the other lines. Protons will dominate the

templates in the relevant momentum region, but due to the high multiplicity there will

be a contribution from pions. In practice this will not affect the contamination in the

dE/dx interval [0, 3] significantly, since there is - relative to the number of protons - less

background in the template. The same effect is true for deuterons and kaons.

However, this method only works, if the shape of the particles’ energy loss distributions

of the TPC is not being changed by different TOF-cuts. The shapes of the templates

have to be similar to the shapes of the misidentified particles in the analyzed data.

One might think that, if a particle is misidentified by TOF, or identified correctly, is

independent of the particle’s energy loss in the TPC. Therefore misidentified particles are

distributed the same way as in the template and therefore should have a similar shape.

Then the only difference between the template and the distribution in data would be

due to statistical fluctuations.

On the other hand, tracks with higher uncertainty in the reconstruction may be more

likely to be misidentified by the TOF detector and therefore their TPC energy loss

distribution may differ from the template. This has to be investigated further for a

more precise estimate on contamination. However, in the following it is assumed that
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Figure 5.5: Fitting with templates for protons and kaons. Although the protons are
described well, a shoulder on the right of the electron peak still remains.

differences between the templates’ shapes and the energy loss distributions in the data

sample are slight.

Since pions and electrons can’t be separated well by TOF as discussed in section 2.4

their energy loss distributions have to be described in a different way. In the previous

section it has also been shown that their distribution is asymmetric and since the con-

tamination in the TPC dE
dx

interval [0, 3] is estimated, an accurate description of the

tail of the pion distribution is necessary. Therefore describing the pion distribution as a

Gaussian is not sufficient. Instead, one can use the model of the truncated Landau from

equation (2.7) which according to [2] works well for pions. Since the asymmetric part

of the distribution of electrons is not relevant in the above mentioned interval, electrons

are described by a Gaussian in the following.

For every p-bin it is now possible to get an energy loss distribution for each particle

species. Those templates can be fitted to the data with the TOF-cut on electrons to get

all particle distributions separately. Therefore the function

f(∆) = Aπ · L (∆;µπ, σπ) · exp(−α ·∆) + Ae− ·G(∆;µe− , σe−)

+Ap+ · P (∆) + Ak ·K(∆) + Ad ·D(∆)
(5.1)

will be fitted by varying the parameters A, µ, and σ, where ∆ refers to the total energy

loss dE/dx after truncation, P (∆) describes the proton, K(∆) the kaon and D(∆)

the deuteron template. In the following the Ax are called scaling factor. If a particle

species is in a certain momentum region not expected to have energy loss in the dE/dx
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interval from -15 to 15, or if its distribution is totally covered by pions (see fig. 4.1), the

corresponding scaling factor Ax is set to be zero. This leads to a higher stability of the

fit routine. The result can be seen in Fig. 5.5.

While for p = 0.8 GeV/c the right shoulder can be described by the proton template,

for lower momentum this does not hold. This leads to two conclusions. On the one hand

there must be other particles than protons which contribute to this shoulder and on the

other hand if they can be seen at 0.6 GeV/c they may also exist at 0.8 GeV/c and higher

momentum but are covered by the proton distribution. Therefore the amount of protons

would be overestimated and the amount of other particles underestimated. Furthermore,

the shape of the distribution from the unidentified particles is yet unknown and has to

be determined for correct background estimation.

5.4 Contamination of Templates

The templates used in the previous section are not pure samples of one particle species

as can be seen in fig. 5.5. Therefore, it is important to check if the templates are

significantly contaminated. For this purpose the templates are obtained with the same

cuts as described in sec. 5.3, but this time data are taken from Monte Carlo simulations.

By that it is possible to obtain two templates for each particle species. For the first

template T1(∆′, p) a 3σ TOF-cut around the expectation value of the species is applied.

Here ∆′ refers to the value of the TPC (dE
dx
− 〈dE

dx
〉e)/σexp and p to the momentum. For

the second template T2(∆′, p) - additionally to the 3σ TOF-cut - it is required that every

track has to belong to the particular particle species according to Monte Carlo Truth.

Since the TPC dE/dx interval [0, 3] is investigated in this thesis, the contamination of

the templates is estimated over this interval at fixed momentum. The relative difference

d(p) = 1−
∫ 3

0
T2(∆′, p)d∆′∫ 3

0
T1(∆′, p)d∆′

(5.2)

corresponds to the relative contamination in [0, 3] of the template from Monte Carlo

simulations. The uncertainty of d(p) can be obtained from error propagation. Since the

templates are histograms, the integral in (5.2) is numerically represented as
∑

i Tx(∆i, p).

Furthermore the uncertainty of Tx in bin i is given by ∆(Tx(∆i, p)) =
√
Tx(∆i, p).
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Figure 5.6: Relative contamination of templates from Monte Carlo simulations. The left
plot shows the relative amount of particles which are in the TPC dE/dx
interval [0, 3] of the proton template, but are not protons. The right plot
shows the same for kaons.

Therefore, one obtains the uncertainty of the integral as

∆Ix ≡ ∆
(∫ 3

0
Tx(∆

′, p)d∆′
)

=
√∑

i(∆(Tx(∆i, p)))2

=
√∑

i Tx(∆i, p) =
√∫ 3

0
Tx(∆′, p)d∆′.

(5.3)

This leads to the uncertainty of d(p)

∆d

d
=

√(
∆I1

I1

)2

+

(
∆I2

I2

)2

=

√
1

I1

+
1

I2

, where Ix =

∫ 3

0

Tx(∆
′, p)d∆′. (5.4)

The results are presented in fig. 5.6. One can see that for protons and kaons the

contamination is low over a large momentum range, but rises suddenly for higher p. The

same holds for the uncertainties. Looking at (5.4), one finds that the error increases with

decreasing Ix. This means the uncertainty increases with decreasing number of tracks in

the interval [0, 3]. From this observation one could expect that the contamination of the

template is not significant until the number of tracks in the particular interval is small.

Another consideration leads to the same conclusion. Assuming that the total amount

of contamination of the kaon template is nearly constant over the displayed momentum

range, the relative amount in the observed interval will increase, if there are fewer kaons

in this interval. By looking at the TPC signal in fig. 4.1 one finds that indeed the

amount of kaons in the TPC dE/dx interval [0, 3] decreases for momenta higher than

0.55 GeV/c. The same holds for protons.
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Figure 5.7: TPC signal after cut on active volume. The large background above the
electron line is not removed.

Therefore, one can expect that the contamination of the template is not significant

until there is only a small amount of the given particle species in the observed dE/dx

interval. This will be confirmed when the amount of protons and kaons in the electron

sample is determined. Then one will see that the momenta regions, where the contam-

ination of the templates would be significant, are those regions where the amount of

kaons - protons respectively - is small in the particular interval of the electron sample.

Since the TOF signal is implemented quite well in Monte Carlo simulation, one can

assume from the previous discussion, that the templates - obtained from experimental

data - are not contaminated significantly over the momenta regions, where they are used

to describe the contamination of the electron sample.

5.5 Cut on Active Volume

Since the data in fig. 5.5 are taken at low momentum, the unidentified particles cannot

be deuterons. Furthermore, the distributions of protons and kaons can be seen in the

plot and the shoulder in the left histogram cannot be described by them. According to

the Bethe-Bloch formula shown in fig. 2.2 no other particle species is expected to have

an energy loss of this amount at p = 0.6 GeV/c. Therefore one may suppose that the

shoulder is a result of detector effects.

In most central Pb-Pb collisions - corresponding to very high multiplicity - there

may be particles traversing the TPC close to each other and therefore some of the

resulting clusters may overlap and cannot be resolved and assigned to the corresponding

tracks correctly. Those tracks would have higher energy losses than expected for the
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corresponding particle species also after truncation. Assuming that there is a significant

amount of such tracks, this could explain the observed shoulder.

It would be reasonable if those overlapping clusters occur at the edges of the multi

wire proportional chambers of the TPC where the spatial resolution is not as good as

in the rest of the detector and where the amplification of the signal differs. In this case

data might be improved by using cuts on the active volume in the TPC. However, as

can be seen in fig. 5.7 this does not reduce the large background that corresponds to

the observed shoulders. Therefore overlapping clusters may not only be near the edges

of the multi wire proportional chambers.

5.6 A Template for Pions

As the active volume cut did not yield the desired results, another solution has to be

found, which describes the shoulder instead of removing it. Due to the high multiplicity

of pions it is reasonable to assume that statistically the majority of overlapping clus-

ters belong to tracks corresponding to pions. However, the time-of-flight detector has

difficulties separating electrons and pions, but by looking at fig. 4.2 one may suggest

that cutting on the TOF interval [−3,−1] will lead to a sample where pions are more

stronlgy separated from electrons as after a 3σ TOF-cut.

As one can see in the right plot of fig. 5.8 the cut actually removed the bulge but

not kaons and protons. The left plot shows a pure pion sample within a 3σe TOF cut

around the electron expectation value from Monte Carlo Truth, in which the bulge is

represented well. Therefore one can conclude that the observed shoulders in fig. 5.5

should be described by a distribution for pions. However, both models that have been

used - Gaussian and Landau times falling exponential - do not describe the shoulder,

because they do not include the effect of the overlapping clusters.

As described in section 2.6 the TRD provides methods to separate electrons and pions.

Besides the standard cuts and the 3σe TOF-cut the TRD will be used to reject electrons

in the data set from which a template for pions will be obtained. Therefore the LQ2D

method is used and all tracks with an electron probability larger than 10% are rejected.

The resulting distribution has less statistic significance than the sample that is analyzed

as discussed in section 2.5. However, it is enough for using it as template. It is displayed

as the brown histogram in fig. 5.9.

Similar to the templates selected by the TOF detector, the usage of the TRD may

influence the shape of the template for pions. By rejecting electrons as described above
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Figure 5.8: Left: Pure pion sample within a 3σe TOF cut around the electron expectation
value from Monte Carlo Truth. This sample also shows a bulge similar to
to the one in the electron sample in fig. 4.1. Right: Separating electrons
from pions with a TOF-cut on [−3,−1]σe removes the large bulge, but also
reduces statistics strongly.

there is still a probability that some electrons remain within the template. On the other

hand some pions may be rejected.

If the tracks of pions - with overlapping clusters in the TPC - also have overlapping

clusters in the TRD, the energy loss of a track in the TPC and in the TRD may be

correlated. Hence, there can be a correlation between the LQ2D likelihood and the

TPC signal of the track, so that the probability that a pion is rejected or an electron is

not rejected is correlated with the energy loss in the TPC of the corresponding track.

This could influence the shape of the energy loss distribution in the template and one

has to further investigate this for less uncertainty in the estimate on contamination.

In equation (5.1) the modified Landau distribution is replaced by the pion template

with the scaling factor as free parameter. Fitting this function to data results to fig.

5.9. One can see that due to the pions’ tail there is much more pion contamination in

the interval [0, 3] than expected from a truncated Landau model. Looking at the pion

peak one finds that the template differs a little from the data represented by the black

line. This difference is due to statistical fluctuations in the template and the data set

and will be discussed later.

However, looking at the right plot, one finds that the pion tail does not fully describe

the shoulder on the right of the electron peak. This may have different reasons. The pions

contained in the tail of the distribution are expected to have tracks with overlapping

clusters in the TPC (see sec. 5.5). This could influence the matching of the tracks when

leaving the TPC and entering the TRD. Therefore those tracks may be suppressed if

the TRD is used for the pion template.
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Figure 5.9: Fitting a Gaussian distribution for electrons and templates for all other par-
ticle species. The left plot shows the fitted distributions at p = 0.8 GeV/c,
the right plot at p = 0.6 GeV/c. In the right plot one can see, that the
tail of the pion distribution does not fully describe the shoulder next to the
electron peak.

Another explanation for the underrepresented pion tail may be that the tracks with

overlapping clusters in the TPC also have overlapping clusters in the TRD, because

the two tracks - which correspond to the overlapping clusters - may traverse the TRD

close to each other. This would lead to a TRD signal with higher energy loss than

expected for pions. By that the two-dimensional likelihood (LQ2D), that one of those

tracks corresponds to an electron, would be larger than the likelihood for the track

corresponding to a pion. This would be crucial at momenta below 1 GeV/c, because

in this kinematic regime the separation power of the TRD is not as good as for higher

momenta. As a result of this, pion tracks with overlapping clusters may be identified as

electrons by the TRD and therefore are rejected from the pion template.

In fact, the effect of having a template with underestimated tail can be seen for

momenta below 0.9 GeV/c. This leads to an underestimation of the pion contamination

of the electron sample.

To avoid this, the TPC dE/dx range - on which the templates are fitted - can be

changed from the total range ([-15,15]) to a smaller range from -1 to 15. This would

assure that the pion tail is fitted to the shoulder next to the electrons and therefore

the amount of pions is not underestimated anymore. Instead it will be overestimated,

because an electron contamination in the pion template still remains, as discussed in

this section. In section 6.1.1 it will be reconsidered how to obtain uncertainties due to

the discussed difficulties, but until then the fit-range will still be from -15 to 15, taking

into account that pions will be underestimated.
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5.7 Obtaining an Estimate on the Contamination of the

Pion Template Caused by Electrons

As discussed in the previous section, the contamination of the pion template due to

electrons - which have not been rejected by the TRD - influence the estimate of the

amount of pions in the electron sample. Since the TRD response is not implemented

well in Monte Carlo simulations, the method to approximate the contamination of the

template as described in section 5.4 does not work in the case of the pion template.

Instead one might estimate the order of magnitude of the contamination made up by

electrons as follows.

It would be a reasonable assumption that, if there were no electrons in the template,

the tail of the pion distribution (see fig. 5.9 brown markers) is monotonically decreasing.

Thus one may remove step by step some electrons from the contaminated template until

monotony is broken. Then the amount of removed electrons would be slightly higher

than the actual contamination of the template. Therefore this amount could serve as an

upper limit for the electron contamination of the pion template.

This can be done by taking into account that electrons should have a Gaussian dis-

tribution centered at zero with width equals one, because of the choice of transforming

the TPC signal as described in the previous sections. Therefore, one can increase the

scaling factor A of this Gaussian step by step and subtract it from the pion template

until the tail of the pion distribution is no longer monotonically. Then the relative

amount of subtracted electrons ∆Tπ - which refers to the relative contamination of the

pion template Tπ(∆) - can be obtained as

∆Tπ =

∫ 3

0
A · exp(−∆′2)d∆′∫ 3

0
Tπ(∆′)d∆′

, (5.5)

where it is integrated over the observed TPC dE/dx interval [0, 3]. This is shown for

the pion template at p = 0.6 GeV/c in fig. 5.7. The blue histogram

h(∆) = Tπ(∆)− A · exp(−∆2) (5.6)

corresponds to the pion template after subtracting a Gaussian. The scaling factor A of

the Gaussian is chosen to be the smallest factor, so that

h(∆)− h(∆′) + 3σ < 0, where σ2 = h(∆) + h(∆′) (5.7)
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Figure 5.10: The black histogram shows the pion template with electron contamina-
tion. The blue histogram shows the pion template subtracted by a Gaus-
sian which has been scaled step by step until the pion tail is no longer
monotonically.

for at least one ∆ ∈ [0, 2] and at least one ∆′ ∈ [∆,∆ + 0.4]. This means that monotony

is broken for at least one point. Furthermore, including the propagated uncertainty of

the histogram σ with a factor of three assures, that monotony is not broken due to

statistical fluctuations. Restricting ∆′ to be smaller than ∆ + 0.4 makes sure that bins

with very small statistics are not taken into account.

This method is applied to all momentum bins up to 2 GeV/c, so that one obtains an

approximation of the relative contamination of the pion template ∆Tπ for each momen-

tum bin. The average of these

〈∆Tπ〉 = (10± 2)% (5.8)

gives an estimate of the contamination of the pion template caused by electrons and will

be propagated to the uncertainty of the hadronic background of the analyzed electron

sample. The uncertainty of ±2% refers to the standard deviation of the average.

5.8 Contamination at Energy Loss Crossing Lines

Since pions dominate the sample, the fit with a template always converges, because the

scaling factor as free parameter can be obtained from the ratio between the pion peaks
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from data and template. For other particles this is not possible in regions where the

lines of the energy loss of different particles cross (see fig. 2.2 and 4.1). As described in

section 5.3, the fit routine will lead to false results or does not converge. Therefore it

would be a great advantage if one could fix the scaling factor of distributions in crossing

regions.

This can be motivated by the assumption - made in section 5.3 - that the 3σ TOF-cuts

around the expectation of a particle species should not influence the shape of the energy

loss distributions significantly. The scaling factor is only needed to correct for different

numbers of particle tracks in the template and the electron sample. Hence, the scaling

factor Ax represents the fraction between the number of tracks of the corresponding

particle species in the data sample Nx,D and in the template Nx,T (see [20]). One can

assume, that while the number of tracks - both in the template and the elctron sample

- varies with momentum, the fraction does not, because the variation cancels out. By

that, it is reasonable to fix the scaling factor.

In a first step the scaling factor of the proton distribution is determined in momentum

bins between 0.6 and 0.82 GeV/c where the distribution of protons is not covered by

distributions from other particles. The scaling factor is plotted against the momentum

in fig. 5.11 Since the scaling factor is nearly constant, it can be fixed with the average

Figure 5.11: Scaling factor of proton distribution at momenta where no lines from energy
loss of other particles cross. The scaling factor is in good approximation
constant. Errors obtained from the fit routine are too small to be seen.

scaling factor - taken from the factors in fig. 5.11 - for fitting in higher momentum bins,

where the proton distribution is covered by electrons. The standard deviation of the

shown sample can be propagated to the statistical uncertainty of the contamination.
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Figure 5.12: Scaling factors of kaon (left) and deuteron (right) templates from fitting in
different momentum bins, where the corresponding energy loss distributions
are not covered by the electron peak.

A similar approach for kaons and deuterons is desirable. However, as can be seen in

fig. 5.12 this is more complicated than for protons. There are only four momentum bins

that can be used for obtaining the scaling factor. For p < 0.4 GeV/c there is not enough

statistics in the main sample to fit the kaon template and for p > 0.48 GeV/c the kaons

are covered by the electron distribution. This is also the reason for the rise of the scaling

factor at 0.47 GeV/c. In this momentum bin the scaling factor is overestimated, because

only a small part of the template is not covered by electrons and contributes to the total

fit.

The average scaling factor could only be taken from those four bins. This results in a

larger standard deviation than for the protons.

The momentum range where deuteron templates can be fitted is larger, but there are

not many deuterons in the main sample. Therefore statistics are low and fluctuations

influence the value for the scaling factor obtained from the fit routine. This can be seen

in the large uncertainties for the scaling factor which are returned from the routine.

However, within these uncertainties the scaling factor can be assumed to be constant

and fixed for fits at higher momenta.
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6 Results

With the final setup from section 5 the fit routine can be applied to all momentum bins

from 0.4 up to 3 GeV/c. The fit function consists of a Gaussian for electrons, a template

for pions with varying scaling factor as free parameter and templates for kaons, protons

and deuterons with fixed scaling factors. With overall four free parameters this function

leads to fast and stable fits.

One could use the same routine for higher momenta, but then the Gaussian for elec-

trons has to be fixed, since the pion distributions will overlap with the electrons more

and more with increasing momentum (see fig. 4.1). For momenta higher than 2 GeV/c

it is already necessary to introduce limits for the width as fit parameter of the Gaussian.

Those limits are taken to be 0.9 for the lower limit and 1.1 for the upper limit, since -

due to the choice of transforming the TPC signal in nσ electrons - the width of the elec-

tron distribution is expected to be 1. Otherwise the routine would yield not reasonable

results.

6.1 Contamination in Dependence of Momentum

The fit routine can be applied to every momentum bin. By that one obtains the energy

loss distributions for all of the observed particle species separately and it is possible to

estimate the corresponding contamination. Therefore, every distribution (represented in

a histogram) is integrated over the TPC dE/dx interval [0, 3], which yields the amount

of particles of the corresponding type times the width of the TPC dE/dx bins. The

result is divided by the integral with same borders over the data sample, so that the

factor corresponding to the width of the bins cancels out and one obtains the relative

amount of contamination. For more clarity the fractions of contamination are presented

in two plots in fig. 6.1.

As expected the peaks of the fractions are at positions where the energy loss curves

from electrons and the corresponding other particle species cross. The kaon contamina-
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Figure 6.1: Fraction of the contaminating particles in the observed interval [0,3] nσe in
dependence of momentum. Left: Fraction of protons and kaons. Right: Frac-
tion of pions and deuterons. The momentum binning has been widened for
p > 2 GeV/c to obtain higher statistics. The boxes indicate the systematic
uncertainty.

tion shows a maximum around 0.5 GeV/c with about 6% and the protons just below 1

GeV/c with approximately 12− 13%.

Due to the decreasing separation power between electrons and pions with increasing

momentum, the TOF detector cannot distinguish them and therefore the pion contam-

ination increases rapidly between 0.5 and 1 GeV/c.

6.1.1 Statistical and Systematic Uncertainties

The statistical uncertainty for the fraction of pions is calculated by error propagation

of the uncertainty on the estimation of the templates scaling factor from the fit routine.

Therefore the error is very small and hardly visible in the plots.

For the other particle species the scaling factor has been fixed, so that there is no

uncertainty from the fit routine. Since the fixed value was the average of the results

from different fits, the standard deviation was used for error propagation instead.

The systematical uncertainties include two aspects. The first takes into account, that

the templates are contaminated themselves as it was shown in section 5.3 and in fig. 5.5.

For proton, kaon and deuteron templates this is not critical. Even the amount of pions

in those templates is small enough and does not contribute relevantly to the estimated

contamination of protons, kaons and deuterons. However, the pion template contains a

relevant amount of protons and kaons, since the TRD rejected electrons only. This leads

to an overestimation of pions and an underestimation of the other particles.
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Therefore, another pion template is created and this time the TRD uses the LQ2D

method to reject also kaons and protons with a likelihood larger than 10%. The problem

with this method, is that none of those particles produces transition radiation, so that

the TRD can distinguish them only by their energy loss. This becomes problematic in

the momentum regions were particles have similar energy losses. Therefore, using the

TRD to cut out protons and kaons in those regions will also cut out pions, so this pion

template will underestimate the amount of pions. However, the fit routine compensates

the cut out pions with a higher scaling factor of the proton or kaon template respectively,

which leads to an overestimation of the other particles.

With this information, the systematic uncertainty due to the kaon and proton con-

tamination in the pion template can be calculated. Fitting with the new pion template

yields another estimation of contamination similar to the one shown in fig. 6.1, but with

less pion and more proton and kaon contamination. The routine can only be run up to

1.2 GeV/c, since then the TRD cannot distinguish protons and pions. However, it is

possible to get the differences (∆fx)dif in the fractions between the first fit and this one

for each kind of particle (except deuterons).

This difference approximates the uncertainty due to the kaon and proton contamina-

tion in the pion template. For this reason, the discussed over- and underestimation of

proton and kaon contamination is included in the systematic uncertainties (of protons

and kaons) which are set to be (∆fx)dif.

This will be also taken into account for calculating the systematic uncertainty of the

pion contamination, but in this case the electron contamination of the pion template

has to be included, too. For this purpose the averaged relative electron contamination

〈∆Tπ〉 - estimated in section 5.7 - has to be propagated as follows

((∆fπ)cont)
2 = ((∆fπ)dif)

2 + (〈∆Tπ〉 · fπ(p))2 (6.1)

As the second template works only up to 1.2 GeV/c, for higher momentum (∆fπ)dif has

been chosen to be the maximum of |(∆fπ)dif| in the range p ≤ 1.2 GeV/c.

The second aspect - contained in the systematical uncertainties - is the fact that fit

routine does not fully describe the pion tail as can be seen in fig. 5.9. This leads to an

underestimation of the pions. To approximate the uncertainty due to this underestima-

tion, the contamination is estimated once again for all momentum bins below 0.9 GeV/c

with the pion template, which is obtained by rejecting protons, kaons and electrons.
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This time the fit-range is chosen to be the TPC dE/dx interval [−1, 15] as described in

section 5.6. Then the contaminations of all particle species are summed up to f(p)over.

Since the results from the beginning of this section - shown in fig. 6.1 - underestimate

the total contamination, the difference to the overestimated contamination f(p)over gives

a good approximation to the systematical uncertainty. However, f(p)over is determined

for p < 0.9 GeV/c, because the pion template - used for this purpose - only works for

low momenta as described previously. Hence, the systematic uncertainty of the pion

contamination fπ is calculated as

(∆fπ)sys =
√

((∆fπ)cont)2 + (〈|f(p)over − f(p)under|〉)2, (6.2)

where

〈|f(p)over − f(p)under|〉 =
∑
p

|f(p)over − f(p)under|
N

≈ 1.8% (6.3)

is the average difference between the overestimated and the underestimated fraction

(note: this is an absolute difference). It is summed over all N = 25 momentum bins

from 0.4 GeV/c to 0.9 GeV/c.

The systematic uncertainties of the proton, kaon and deuteron contamination are

neither influenced by the electron contamination of the pion template nor by the effect

of the underestimation of the pion tail. Therefore, the systematic uncertainties of the

contamination of this particle species are set to be the differences (∆fx)dif between

the respective contaminations which are estimated by using different pion templates as

discussed previously.

6.1.2 Total Contamination

For most Heavy Flavor analyses it is more important to know the total hadronic con-

tamination than the contamination of single particle species. Therefore, the problem

that the pion template itself is contaminated by protons and kaons becomes less crucial,

because they also contribute to the total hadronic contamination. Thus the contami-

nation of the pion template caused by electrons and the underestimated pion tail are

the only relevant systematic uncertainties of the total hadronic contamination, which is

calculated as

(∆ftot)sys =
√

((∆fπ)dif)2 + (〈|f(p)over − f(p)under|〉)2, (6.4)
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Figure 6.2: Total hadronic contamination in dependence of the momentum. The red
boxes indicate the systematic uncertainty.

where (∆fπ)dif is the same as in equation (6.2) and 〈|f(p)over − f(p)under|〉 is given by

(6.3). For momenta above 1 GeV/c (∆ftot)sys has a value about 2.4% (note: this is an

absolute uncertainty).

The total hadronic contamination with the systematic uncertainties calculated as in

(6.4) can be seen in fig. 6.2.

6.2 Contamination in Dependence of Transverse

Momentum

Since for some analyses the contamination in dependence of the transverse momentum

is important, in this chapter the estimated contamination is converted from p to pT .

This is done by integrating the fraction fx(p) over the observed pseudorapidity range

−0.8 < η < 0.8 weighted with the phase space density ρ(η) of η

f(p)→ f̃(pT ) =

∫ 0.8

−0.8

dηf(p(η, pT ))ρ(η). (6.5)
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This neglects, that the separation power of the detectors - used for obtaining the tem-

plates and data - depends on the pseudorapidity. This dependence would have influ-

ence on the contamination, so that f ≡ f(p(η, pT ), η) becomes directly dependent of η.

However, in the following it is assumed, that this effect is negligible and therefore one

considers only the dependence of p, pT and η which is given by

p(η, pT ) = pT cosh(η). (6.6)

The phase space density ρ(η) can be obtained from the phase space density of the rapid-

ity ρ(y). Therefore it is assumed that the density of rapidity is nearly constant in the

observed region. For more precise results one could actually use a measured pseudora-

pidity distribution. One could also check the difference between the assumed constant

rapidity distribution and a measured one to obtain an estimate of the uncertainty caused

by assuming ρ(y) = const.

To obtain ρ(η) from ρ(y) the Jacobian is needed

ρ(η) = ρ(y)
dy

dη
, (6.7)

where

dy

dη
=

(√
m2 + p2

T cosh2(η) + pT sinh(η)

)−1
 p2

T cosh(η) sinh(η)√
m2 + p2

T cosh2(η)
+ pT cosh(η)

 .

(6.8)

From this one can normalize ρ(η) and compute the integral in (6.5) numerically. The

results can be seen in fig. 6.3.

In comparison to the momentum dependence of contamination in fig. 6.1 the distri-

butions for kaons, protons and deuterons are widened and smaller than before. This can

be confirmed by comparing the proton template in fig. 5.2 with the one in fig. 5.3. In pT

bins the templates are much wider than in p bins as discussed in section 5.2. Therefor

the proton distribution will overlap for more pT bins with the electron distribution than

for p bins. However, the total contamination of protons over all bins has to be the same

in p and pT , so a wider distribution yields a smaller maximum. The same is true for

kaons and deuterons. Also for pions one can see that contamination has spread over a

larger interval.
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Figure 6.3: Fraction of the contaminating particles in the observed interval [0,3] nσe in
dependence of transverse momentum. The red boxes indicate the systematic
uncertainty.

Statistical uncertainties from the contamination in p are propagated as

(∆f̃x)(pT ) =

(∫ 0.8

−0.8

dη ((∆fx)(η, pT ) · ρ(η))2

)1/2

. (6.9)

Since the systematic uncertainties of fx(pi) and fx(pk) are correlated for momentum bins

pi and pk which are close to each other, the systematic uncertainty has to be propagated

as

(∆f̃x)sys(pT ) =

∫ 0.8

−0.8

dη(∆fx)sys(η, pT ) · ρ(η). (6.10)

6.3 Obtaining Contamination as a Smooth Function

For practical purposes one might prefer to have the amount of contamination as a smooth

function of momentum or transverse momentum respectively. A function would be easier

to implement in other analyses for instance. Since it is very hard to calculate an analytic

expression for the contamination, the function is approximated by fitting a generalized

normal distribution to the obtained data in fig. 6.1. Although the generalized normal

distribution might not be physically correct, it leads to a good description of data and

can be used in analyses if one needs to implement the estimated contamination in a

simple but efficient way. It is a good approximation, because the difference between the

fitted function and data is not significant compared to the systematic uncertainties.
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The generalized normal distribution can be defined as

f(x) =
exp(−y

2

2σ2 )

σ
√

2π(α− κ(x− µ))
, where y =

{
x−µ
α

if κ = 0

− 1
κ

log(1− κ(x−µ)
α

) else
(6.11)

The Greek letters refer to free parameters which will be obtained by the fit routine.

Fitting this function to the estimated results for protons, kaons and deuterons leads to

good approximations of the corresponding contamination as can be seen in fig. 6.4.

The fit provides the necessary parameters of the generalized normal distribution in

(6.11). The parameters are presented in table 6.1, so that it is possible to reproduce the

contamination for protons, kaons and deuterons as smooth function.

To describe the contamination due to pions, a modified Fermi distribution has been

chosen

f(x) = N ·
(

1− 1

exp(x−µ
T

) + 1

)
. (6.12)

The parameters N , µ, and T are obtained from fitting this distribution to the fraction

of pion contamination, which can be seen in fig. 6.4 and table 6.2.

In this setup one is able to describe the total hadronic contamination as the sum of

three generalized normal distributions (6.11) and the modified Fermi distribution (6.12)

using the estimated parameters. For this purpose one can assume a systematic uncer-

tainty of 2.4% (note: this is an absolute value) on the estimated fraction of contamination

for every momentum (see sec. 6.1.2).
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Figure 6.4: Fitting generalized normal distributions to the estimated contamination of
protons (1st row), kaons (2nd row), deuterons (3rd row) and fitting a mod-
ified Fermi distribution to the contamination of pions (4th row). The left
plots show the fitted contamination in dependence of momentum; the right
ones in dependence of transversal momentum.
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p :
species µ α κ σ
protons 9.66 · 10−1 8.3 −17 1.03 · 10−2

kaons 5.02 · 10−1 18 −120 2.4 · 10−3

deuterons 1.93 21 −13 8.5 · 10−3

pT :
species µ α κ σ
protons 8.85 · 10−3 11.7 −8.8 9.3 · 10−3

kaons 4.6 · 10−1 26 1.52 2.1 · 10−3

deuterons 1.77 29 −6.1 8.1 · 10−3

Table 6.1: Parameters of generalized normal distributions of equation (6.11), which has
been fitted to data represented in fig. 6.4. The distributions approximate the
fraction of protons, kaons and deuterons contaminating the electron sample.
The first table shows the parameters for the contamination in dependence of
momentum; the second table shows the parameters for the contamination in
dependence of transverse momentum.

pions N µ T
p 1.42 · 10−1 0.9 1.2 · 10−1

pT 1.42 · 10−1 0.8 1.3 · 10−1

Table 6.2: Parameters of modified Fermi distribution of equation (6.12) to describe pion
contamination in dependence of momentum and transverse momentum.
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7 Summary and Outlook

In this thesis a routine to estimate the hadronic contamination in an electron sample

has been developed. Particle identification is done by fitting measured energy loss distri-

butions of different particle species to data of the electron sample. Those distributions

- called templates - are obtained by selecting the particular particle species by cuts on

the TOF signal. Particularly the distribution of pions is selected with the TRD.

The routine scales the templates to fit them to data. Since the scaling is nearly con-

stant over a large momentum range for protons, kaons and deuterons, the scaling factor

can be fixed to its average value. This makes it possible to estimate the contamination in

momentum intervals, where the energy loss distributions of electrons and other particles

overlap completely. Furthermore, fixing the scaling factor leads to a more stable and

faster fit routine.

Data from Monte Carlo simulations are used to check how strongly the templates are

contaminated themselves. In fact the contamination of the proton and the kaon template

is negligible. Since deuterons are not implemented in those Monte Carlo simulations,

the contamination of their template cannot be checked this way. The same holds for the

pion template, because the TRD response is not implemented sufficiently well in Monte

Carlo simulations. However, the uncertainty on the hadronic contamination due to an

impure pion template is approximated by using templates with different cuts to obtain

an overestimated and an underestimated fraction of hadronic contamination.

The main result of this thesis is the estimated hadronic contamination in dependence

of momentum and transverse momentum (fig. 6.1 and fig. 6.3). While the contamination

depending on momentum is obtained directly from the routine, the contamination de-

pending on transverse momentum is obtained by conversion from p to pT and integrating

over the observed pseudorapidity range.

Furthermore, the momentum dependence of the contamination (transverse momentum

respectively) can be approximated by smooth functions, which have been fitted to the

estimated contamination. Therefore, Heavy Flavor electron analyses can make use of
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the knowledge about the contamination in a simple way. They just have to implement

the functions as described in chapter 6.3.

However, there is still something to improve. The contamination of the pion template

could be checked via Monte Carlo simulations. Therefore the TRD response has to be

implemented and the simulations have to reproduce the actual TRD signal well.

Furthermore, using the TRD leads to a rejection of pions in the corresponding template

as discussed in chapter 5.6. It seems to be the tracks that make up the pion tail,

which are more strongly rejected than other pions. This leads to an underestimation of

contamination. Therefore it could be checked if there is a correlation between the TRD

signal and the TPC signal of the rejected tracks. This could imply that the rejected

tracks - which have a higher energy loss in the TPC than expected for pions - would also

have a higher energy loss in the TRD because of overlapping clusters in both detectors.

On the other hand, one could also check whether the pion tracks - that contain over-

lapping clusters - are rejected because a TRD signal for the tracks is required. This could

imply that the matching of those tracks when leaving the TPC and entering the TRD

is problematic, due to a bad resolution which could be a consequence of the overlapping

clusters.

It is also possible that the pion template could be improved by having more tracks

making up the pion distribution. This can be achieved by analyzing data, which have

been taken after 2010, when more supermodules of the TRD were installed.

As a conclusion, one can say that a major improvement of the estimated hadronic

contamination has to include a correction of the pion template. However, removing the

pion tail in the electron sample, could also improve the results. The pion template may

then be replaced by the truncated Landau distribution.
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