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Abstract:

Within this Bachelor Thesis a method for the pressure and high voltage calibration of
the Transition Radiation Detector (TRD) of the ALICE experiment at CERN has been
developed. The final signal of the TRD should only depend on the particle and its energy
loss in the detector. The detected signal depends on pressure, high voltage settings, gas
composition and the geometry of each chamber. All those effects need therefore to be
understood in detail. Within a model the gain dependence on pressure was simulated.
Moreover I investigated the pressure and high voltage dependence by the usage of data
from a krypton calibration run and systematically described those dependencies. After
that it is possible to improve the present pressure calibration and find optimal high
voltage settings so that the variations of the output signals become minimal.

Kurzfassung:

Im Rahmen dieser Bachelorarbeit wurde die Druck- und Hochspannungskalibrierung des
Transition Radiation Detektors (TRD) des ALICE-Experiments am CERN verbessert.
Das Signal eines kalibrierten Detektors sollte nur von der Teilchenart und seiner Energie
abhängen, jedoch wird es auch von dem Druck, der eingestellten Hochspannung, der
Gaszusammensetzung und der Geometrie jeder Kammer beeinflusst. Mithilfe eines
Modells wurde die Druckabhängigkeit simuliert. Des Weiteren werde ich insbesondere
die Druck- und Hochspannungsabhängigkeit mithilfe von Daten aus dem Krypton-Run
untersuchen und systematisch beschreiben. Danach ist es möglich die aktuelle Druckkali-
bration zu verbessern und optimale Hochspannungswerte zu finden, sodass die Variationen
des Ausgangs-Signals minimiert werden.

This Bachelor Thesis has been carried out by Fabio Schlichtmann at the
Physikalisches Institut in Heidelberg

under the supervision of
Prof. Dr. Johanna Stachel
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1 Introduction: Heavy-Ion Physics

The Standard Model of particle physics tells us that our universe consists only of a few
elementary particles which can be divided in matter, quarks and leptons, and mediator
particles, called bosons [1]. These fundamental particles interact in four ways: By
strong, electromagnetic, weak and gravitational interaction. Every hadron we know
consists of elementary particles called quarks. There are six different quarks, that can
be distinguished by flavor: up, down, strange, charm, bottom, and top quark and their
antiparticles. Each quark posseses color charge (red, green or blue) that causes a strong
interaction and leads to the formation of hadrons. This interaction is mediated by gluons
that carry color and anticolor charge [2]. As described by quantum chromodynamics,
the force becomes asymptotically weaker if the energy increases. At low energies like
in a nucleon the interaction is so strong that this leads to a confinement of quarks and
gluons which means that quarks can not exist unbound. The potential between a heavy
quark-antiquark pair can be written as Vqq̄(r) = −4α/3r + Kr [3], while the first 1/r
term is the Coulomb like potential and the second one describes the constant force at
large distances. If the radius is increased, the energy stored in the flux tube is sufficient
to create a new quark-antiquark pair [4]. Thus it is impossible to separate quarks from
each other at low energies. This is an explanation for the experimental observation that
free quarks do not exist what is called confinement. However confinement is not yet
understood at a fundamental level. In contrast at high energies the strong coupling
constant α becomes smaller and thus quarks become asymptotically free [5].

A state with deconfined quarks and gluons is called the quark-gluon plasma (QGP) [6].
It is produced if nuclear matter reaches critical conditions in terms of temperature and
gluon density. In such an environment the quarks are screened from each other. A
QGP occured in the early time of our universe. In order to confirm theories of the
quantum chromodynamics or to get new results, the properties and the evolution of the
quark-gluon plasma has to be studied. In fact quantum chromodynamics can calculate
the interactions of single quarks but if we look at a thermalized many-body system it
is nearly impossible to compute all interactions by a model. This can be compared to
quantum electrodynamics that can describe a hydrogen atom or a more complex water
molecule but it can not deal with a many-body system like water, so it is not possible
yet to get detailed information about viscosity of water or the phase diagramm just
from the atomic theory. Analogous we can not only investigate the quark-gluon plasma
theoretically. Instead of that we want to measure for example the viscosity, transport
coefficients and the phase dependence from temperature and baryon density (chemical
potential) [7]. This can be studied for example by measuring the energy loss of particles
that go through a QGP, e.g. if a jet interacts with the plasma. Moreover the production
and quantities of the J/ψ meson are studied to learn something about dissociation and
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recombination of the heavy charm quarks in the QGP [8] [9]. Therefore especially the
e+e− decay channel is used to detect them. In order to investigate all those issues, of
course a QGP has to be created. A phase transition from the bound hadronic state to
the QGP can happen if there are critical conditions like high temperature, energy and
density [6]. This takes place when heavy nuclei collide, thus we will now look at heavy
ion collisions. Today, the Relativistic Heavy Ion Collider at Brookhaven and the Large
Hadron Collider (LHC) - described in the next chapter - do collider research on QGPs.
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2 The ALICE Experiment at CERN

2.1 CERN accelerators

The European Organization for Nuclear Research (Conseil Européen pour la Recherche
Nucléaire) known as CERN was founded in 1954 and is based in Geneva, Switzerland
[10]. It consists of 22 member states and approximately 3200 employees [11]. Over
time Cern invented lots of new techniques and as the most prominent one the World
Wide Web can be mentioned that was developed 1989 by Tim Berners-Lee, a British
Scientist who worked at CERN [12]. Moreover new detectors were developed like the
multiwire proportional chamber [13] that was awarded in 1992 by a Nobel Prize to
Cern staff researcher Georges Charpak and section 3.3 will deal with these multiwire
proportional chambers. Mainly CERN built various particle accelorators like for example
the Synchrocyclotron (SC) in 1957 or Linac 2 in 1978, an approximately 30 m long linear
accelerator that accelerates protons up to 50 MeV [14] and is still in use today. It consists
of cylindrical electrodes - also called Wideroe structure - that change frequently their
charge. Instead of the SC, today the more powerful Proton Synchrotron (PS) is used.
The PS is a ring accelerator that can increase the energy of protons up to 25 GeV and
those of lead ions up to 5.9 GeV/u [15]. Together with the Proton Synchrotron Booster
and the Super Proton Synchrotron (SPS), Linac 2 and PS build the preaccelerating
complex for the Large Hadron Collider (LHC) in proton mode. In lead mode, the ions
are firstly accelerated in the Low Energy Ion Ring (LEIR) and after that injected into
the PS and SPS until their energy is about 117 GeV/u and they finally enter the LHC
that will be described in section 2.2.

2.2 LHC overview

The LHC is the worlds biggest and most powerful accelerator located in an approximatley
26.7 km long tunnel 50 to 175 m below the surface close to Geneva [15]. It is built to
accelerate protons and ions close to light speed so that collisions gain centre of mass
energies up to

√
s = 14 TeV for proton-proton and

√
s = 5.02 TeV for lead-lead collisions

[16]. In order to keep the beam in a circle, strong magnetic fields are required and
therefore 1232 superconducting dipole magnets are installed which have to be cooled
down to 1.9 K and reach a maximum field strength of 8.36 T [15]. Before particles
enter the LHC they have to be preaccelerated. If they have reached a sufficient energy
of 450 GeV for p-p collisions, they are injected into the LHC in bunches of around
1011 protons (in proton mode) and a length of a few cm. Together there are up to
2508 bunches in the beam which circulate with a frequency of approximately 11 kHz.

3



The LHC consists of two beam pipes in vacuum and the bunches orbit clockwise and
anticlockwise so that they collide at four points every 25 ns which leads to a collision rate
of 6× 108 collisions/s [17]. At the collision points the detectors CMS, LHCb, ATLAS
and ALICE are placed. The CMS experiment studies in general the supersymmetry,
the collision of heavy ions and has discovered the Higgs boson. LHCb inspects the
decays of hadrons that contain a bottom or charm quark and measures precisely their
CP-violation. Similar physic contents as in CMS are studied in the ATLAS experiment.
ALICE will be described more detailed in section 2.3.

2.3 The ALICE experiment

ALICE (A Large Ion Collider Experiment) is a part of the LHC facility at CERN. It is the
worlds biggest experiment optimized to study heavy ion collisions at high centre of mass
energies [18]. Overall the ALICE detector has a length of 26 m, is 16 m in diameter and
its mass is about 10 000 t [19]. The central barrel is located inside a magnetic field of 0.5 T
produced by solenoid magnet - see fig. 2.1. As described in section 2.2, protons and lead
ions collide at the position of the ALICE detector. Due to the resulting high temperature
and energy density about 8000 times per second (in Pb-Pb mode) a quark-gluon plasma
is produced, that is expected to be similar to the conditions shortly (10−6 s) after the
Big Bang. ALICE is able to observe the remnants of the plasma and study its properties
that are important topics in quantum chromodynamics. Since a direct observation of the
plasma is not possible due to its short lifetime of about 3× 10−23 s [20], created particles
like electrons, pions and photons are measured. The properites of these particles, like
mass and momentum, are determined by several specialized detectors as explained in
section 2.3.1.

2.3.1 Detectors

In order to distinguish and observe the produced particles, ALICE consists of various
subdetectors as shown in fig. 2.1. They will be briefly described in the following. The
Inner Tracking System (ITS) measures the exact position of the collision point by six
cylindrical layers of silicon detectors. After that the Time Projection Chamber (TPC)
[21], a large volume of 88 m3 filled with a gas mixture of Ne-CO2 or Ar-CO2, measures
the track. Charged particle ionize the gas inside the TPC along their trajectory and
the created electrons drift towards the end plates of the cylinder due to an electric drift
field of 400 V/cm. Close to the plates there are anode wires that cause an avalanche
process and the produced positive ions induce a current signal on the pad plane where it
is read out and then the track can be reconstructed. Moreover the magnetic field leads
to a curvature of the tracks that is used to calculate the momentum of the particles.
The next detector in a distance of 2.95 to 3.69 m [22] from the beam is the Transition
Radiation Detector, that will be explained more detailed in section 2.3.2. Furthermore
there is a Time of Flight (TOF) detector that is used to determine the velocity of the
particles. Other detectors are the High Momentum Particle Identification Detector and
various calorimeters.
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2.3.2 TRD

The TRDs main purpose is to distinguish electrons and positrons from other charged
particles by using the emission of transition radiation that is emitted when the particle
crosses many layers of thin materials; this process will be described in a more detailed
way in section 3.4.

The whole TRD consists of 521 detector modules, each containing a radiator and a
readout chamber. They are ordered in 18 supermodules in azimuthal direction and each
of them consists of 6 detector layers subdivided into 5 stacks in beam direction as shown
in fig. 2.2. Each detector has 144 cathode pads in azimuthal-direction and between 14 to
16 pads in beam-direction so that in total there are about 1.16·106 readout channels. [23]

In order to understand the behaviour of the detector we have to look closer at the
readout chambers. Mechanically the chambers are 37 mm long while 30 mm are the drift
region and 7 mm are the amplification region that is separated by the cathode wire plane.
The whole chamber is filled with a gas mixture of 85% Xe and 15% CO2 [22]. Due to
unavoidable small leaks it is not possible to have an exactly constant gas composition.
This has a significant effect on the detector output as we will see later. The pressure
inside the chamber follows the ambient pressure with a maximum overpressure of 1 mbar.
This causes, that the output is pressure dependent, as we will show in a model in
chapter 4 and with our experimental results in chapter 5. Moreover the pad plane and
the wires can be deformed due to gravitation or other effects. This changes the electric
field inside the amplification region and thus also has an influence on the output.

In order to understand how the TRD works the physics background of gas detectors
will be explained in the next chapter in a more detailed way.
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Figure 2.1: The detectors of the ALICE experiment are shown schematically . One can
see the TRD and the outer magnet. For size comparison there are two human
beings [24].

Figure 2.2: Right: The 18 sectors and 5 stacks in z-direction. In the upper part there is
one supermodule consisting of 6 layers [23].
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3 Gas detectors

3.1 General principle

There are different types of gas detectors: A basic one is the Geiger counter, which simply
detects ionizing radiation. Others are more complex and allow the measurement of
particle tracks and their specific energy loss like the TPC or the TRD. The basic principle
of gas detectors is similar: Charged particles go through a drift volume and ionize a gas
via energy loss which is described by the Bethe-Bloch formula 3.1. The generated charges
drift in an electric field towards an anode wire that causes amplification. Then the signal
and its position is measured [25]. First the energy loss of a particle that goes through
matter will be described.

3.2 Bethe-Bloch formula

The mean rate of energy loss of particles that go through matter can be classically
estimated by the calculation of Bohr. This calculation was expanded for relativistic
quantum mechanics in 1932 by Hans Bethe which lead to the Bethe-Bloch formula [26] :

− dE

dx
= Kz2Z

A

1

β2

[1

2
ln

2mec
2β2γ2Wmax(M)

I2
− β2 − δ(βγ)

2

]
(3.1)

In this formula z is the charge number of the incident particle, Z the atomic number
of the absorber, A the molecular atomic absorber mass, Wmax the maximum energy
transfer in a single collision (that is mass and energy dependent), I the mean excitation
energy and δ is the density effect correction. In principle it is not easy to calculate I, thus
estimates based on experimental data are widely used. The density effects takes into
account that if the particle’s energy increases, the electric field flattens due to relativistic
effects and furthermore real media become polarized what limits this field extension. It is
remarkable that the Bethe-Bloch formula does not depend on the mass of the projectile
particle. The unit of dE/dx is given in MeVg−1cm2. If we are interested in the energy
loss for a given material the equation needs to be multiplied with the density ρ; especially
for gases the pressure dependence of the Bethe-Bloch formula is important. We have to
keep in mind that the Bethe-Bloch formula only calculates the mean rate, so actually
the energy loss is Landau distributed and the most probable loss is smaller than the
mean.

This equation is valid for particles in an energy range of 0.1 < βγ < 1000 and is
accurate in the order of a few percent. However for electrons the Bethe equation can not
be used because their low mass leads to a more significant energy loss by Bremsstrahlung
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that is not regarded in the formula and furthermore they are not distinguishable from
valence electrons.

The 1
β2 term shows us that slower particles lose more energy. We can find a minimum

value of dE/dx at βγ ≈ 4 and particles that have an energy in the range of the minimum
are called Minimum Ionizing Particles (MIPs). If the speed of the particle is increased
then radiation effects like Bremsstrahlung, e+e− pair production and photonuclear
interactions become more important, thus above approximately βγ = 1000 the Bethe-
Bloch formula is not correct any more [26]. So we have to consider that this forumula
can only be used for moderately relativistic particles but fortunately the particles we
want to inspect are in the velocity range which is described by Bethe-Bloch formula.

3.3 Multi-wire proportional chamber

3.3.1 Design

A single wire counter can detect radiation and measure its energy but to get the position
and track of a particle over a large area one needs multi-wire proportional chambers.
Generally it is built by lots of parallel anode wires that are at a positive potential
inbetween two cathodes [25]. The electric field close to the wires is a radial field but
at larger distances it is nearly homogeneous. To improve the homogeneity of the (drift)
field in some detectors like the ALICE TRD there are also cathode wires that separate
the drift region from the amplification region [22]. The cathode is divided into small
stripes perpendicular to the wires so that the induced signal in the wire and cathode
allows to determine the position of the particle - see section 3.3.2. Now we want to look
how the signal in a drift chamber detector is generated.

3.3.2 Signal generation

If the particle crosses the drift region this leads to ionization as described in section 3.2.
The induced primary clusters drift because of the electric field toward the anode wires
with a nearly constant drift velocity due to collisions with gas atoms [25]. Because the
velocity is constant a measurement of the drift time allows the calculation of the point
of ionization. During the drift, the primary electrons lose energy due to collisions and
some electrons are completely lost due to recombination of electrons and ions or electron
attachment [25] but this effect is only in the order of 10 %. If we are interested in the
exact ionization position we have to consider diffusion that leads to a spread of the
charge cloud. As mentioned above the electric field close to the wire is a radial field
that is proportional to 1

r thus it is very large in the vicinity of the wire. Because of
that electrons gain sufficient energy so that they can ionize atoms and this generates
secundary electrons which can again lead to ionization. This process is an electron
avalanche that leads to an amplification of the signal in the order of 104− 105 [25]. The
number of electrons as a function of the distance from the centre of the wire (r) can be
described by an exponential function with the Townsend coefficient as parameter [28]. I
will discuss this in more detailed in chapter 4 where I model the number of electrons as

8



a function of r by considering the attenuation effects in the drift chamber as well as the
amplification by the Townsend coefficient.

The readout of the signal can be done in different ways. Some multi-wire proportional
chambers measure the current in the anode wire or the induced signal on the cathode
pads after the positive ions drifted to it. Furthermore it is possible to detect the image
charge that the electric field of the positive ions induce on the cathode [23]. A general
advantage of the cathode pad readout is the good spatial resolution. To improve this
resulution the so called center of gravity method is used that utilizes the signals of more
than one pad to localize the center of ionization with an accurancy of approximately 50
µm [25].

3.4 Transition Radiation Detector

In this section I will describe the principle of a Transition Radiation Detector (TRD) and
more specifically refer to the TRD of the ALICE experiment [22]. If a highly relativistic
charged particle crosses the boundary between two media of different dielectric constants,
a photon can be emitted. Its energy is proportional to the Lorentz factor γ. Those
photons ionize the gas in addition to the charged particle, which leads to an average
larger signal. Thus it is possible to discriminate the faster electrons especially from
pions. In order to increase the possibility of producing a photon, we use stacks of a few
hundred foils in the radiator. After that both the TR photon and the particle have to be
detected in the chamber. In fig. 3.1 you can see two particles that cross the drift region
and produce primary clusters along their path. Additionally the electron generates
transition radiation that causes another cluster at the beginning of the drift region. In
order to absorb the photon, xenon is used because its absorption length is in the order of
1 cm so that the photons are mainly absorbed directly at the beginning of the drift region
and lead to ionization. As a consequence the signal vs time as plotted in fig. 3.2 will
show a peak at later times if we look at electrons that cause transition radiation because
the TR photons are generated most distant from the anode wires so that their cluster
will appear later at the anode wire. That’s one possibility to distinguish for example
pions from electrons. Furthermore the average pulse height is lower for pions because
of their lower energy loss in the regarded momentum range. One could suggest that
thus it might be quite easy to distinguish particles and measure their correct properties
but that presupposes that every detector gives the same output for every condition.
However the signal of a gas detector depends on different parameters: pressure, high
voltage settings, gas composition and variations in the electric field due to geometrical
reasons. As a consequence a complex calibration of the TRD is necessary. In this thesis
an improvement of the present TRD calibration is discussed. First of all I want to
understand the pressure dependence of the gain that is modeled in chapter 4.
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Figure 3.1: A pion and electron crossing the TRD. In the drift region both of them ionize
the gas and generate clusters which drift towards the anode wires. Because
the electron produces transition radiation and these photons are absorbed
directly in the gas there is another cluster for electrons [23].

Figure 3.2: The average output signal is shown for electrons with and without transition
radiation (TR) and for pions. The amplification peak shows up at ≈ 0.5µs
If we look at electrons with TR then a second peak is clearly visible [23].
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4 Model of pressure dependence of the gain

Experimental results show us [29], that the gain is inversely dependent on pressure. In
the following the processes inside the detector are modelled in order to be able to explain
the pressure dependence.

4.1 Four sub-ranges for gain generation

• If a particle flies through the detector it generates electrons through ionization
during the whole distance.

First we want to look only at the electrons that are generated within the first
5 mm. Their number increases linearly with distance as described by the Bethe
formula. It is also linearly pressure dependent as explained in section 3.2 because
ρ ∝ pressure if we assume the ideal gas law. So, at an increased pressure, the
straight line that describes the number of electrons as a function of distance has a
higher slope.

• After that the number of electrons is attenuated because they are absorbed mainly
by O2 [22]:

N(tdrift) = N(0) · exp(−p · p(02) · Catt · tdrift), (4.1)

while p is the total pressure, p(O2) the partial pressure, Catt the attachment
coefficient (that depends on gas mixture) and tdrift the drift time. It is also pressure
dependent, thus approximately N∝ exp(−p2). For higher pressures the attenuation
is stronger (see formula) but the main attenuation is quite small for TR-detectors
(in the order of 10 %) because the drift distance is usually only a few centimetres.
Therefore this exponential attenuation can not explain why the experiment shows
us that the signal decreases with increasing pressure.

• We have to consider other effects: Close to the anode wire starts an avalanche
process which is described by the Townsend coefficient [28]:

ln(G) =

∫ b

a
αdr, (4.2)

where G is the attenuation factor and α is the Townsend coefficient. The integration
has to be done from the surface of the wire a to a distance where the electric field is
so weak b that it doesn’t contribute to the amplification any more. This Townsend
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coefficient has to be divided into two coefficients α1 and α2 for ranges more distant
and really close to the wire [28]. In order to distinguish these ranges we define λi
the electron path that is required to gain enough energy to ionize atoms. If we are
close to the wire, then λi becomes smaller due to the high electric field and λ > λi.
In this range the Townsend coefficient is α2:

α2 =
1

λ
= nσ ∝ p (4.3)

while n is the particle density, σ is the total cross section and p is the pressure.

• More distant from the wire λ < λi thus usually an electron can not ionize a gas
molecule within its free path. We have to think about the chance that the free
path is longer than λi and multiply it by the number of mean free paths per unit
length. This is done in α1:

α1 =
1

λ
· exp

(
−λi
λ

)
=

1

λ
· exp(− Vi

λE
) (4.4)

Vi is the effective ionizing potential and E the electric field.

Because λ = 1
nσ and n ∝ p the second Townsend coefficient rises linearly with pressure,

but the first one decreases with higher pressure. Thus the first Townsend coefficient can
explain the inverse pressure dependence of the gain.
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(a) Produced electrons by ionization in the
first 5mm.

(b) Attenuation due to oxygen in the drift
region.

(c) Amplification because of first Townsend
coefficient.

(d) Amplification due to second Townsend
coefficient.

Figure 4.1: One can see the 4 different processes that influence the number of electrons
for 3 different pressures. The normal pressure range goes approximately from
950 mbar (black) to 990 mbar (red). In order to show the effects better an
extreme pressure value of 1200 mbar (green) is plotted as well. In (d) the
value of each curve at x=33.49 mm (surface of the wire with radius 10µm)
is mainly important for us because it is proportional to the gain that is
measured.

The model is based on formula 3.1, 4.1, 4.2 and the two Townsend coefficients. In the
following is described how the parameters for the model were determined in order to fit
the experimental results.

We know that within 1 cm approximately 275 electrons are generated [22] due to energy
loss, so the number of electrons as a function of distance was written as N(x) = mpx
with the pressure p, distance x, and the parameter m. This is plotted in fig. 4.1a for
three different pressures. I estimated the attenuation as N(x) = A · exp(Bp2x) and set
the parameter A so that at x=5 mm the value fits to the number of produced electrons
by energy loss. This is a simplified procedure because the electrons that were directly
produced at x=0 are also attenuated during the first 5 mm but in fact this is negligible
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since the attenuation is only in the order of 10 % and not the relevant effect for the
pressure dependence. The attenuation can be seen in fig. 4.1b

In the model the amplification due to the first Townsend coefficient starts at the
beginning of the amplification region of x=30 mm but a significant amplification can
only be seen in the last 1 mm thus only this range is plotted in 4.1c and 4.1d. Now for
small steps in ∆x the amplification factor M is calculated by the integral 4.2 with α = α1

and so iterative the number of electrons is estimated. The first Townsend coefficient used
in this calculation is estimated by α1 = p ·A · exp(−B/S) while A and B are parameters
and S = E/p. E is the electric radial field that can be calculated: E ∝ HV/r.

In nearly the same way fig. 4.1d was created by using α2 and performing the iterative
calculation in the range closer to the wire.

The most important result of this model can be seen in 4.1d. Although at higher
pressures more electrons are produced due to the higher primary ionization and the
amplification by the second Townsend coefficient is stronger we get a lower number of
final electrons for higher pressures. This happens due to the first Townsend coefficient
that is inversely pressure dependent and can explain our experimental result that the
gain decreases with increasing pressure. That will be studied in more detail in section 4.2.

4.2 Gain vs pressure

We are interested in the final number of electrons, which is proportional to the gain, as
a function of pressure.
Each of the 4 processes depends on the pressure in different ways. The first Townsend
coefficient α1 ∝ p · exp(−p) has to be integrated while the integral ranges depend on the
pressure as well, because λ = λ(p) while λi is constant. Moreover we are interested in the
pressure dependences for different TRD pads. At a reference pressure they have different
gains due to the variance of the electric field. This field varies because of geometrical
reasons or different high voltages. Due to that we estimated, as discussed in chapter 4,
the gain as a function of pressure numerically and varied the high voltage in order to
simulate a variation of the E-field: This is shown in fig. 4.2.
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Figure 4.2: Pressure dependence of the final number of electrons for three different E-
field strengths. The dashed red line is a straight line to guide the eye.

As we see, the pressure has a significant effect on the gain and furthermore the gain
varies in a different way if we start at a different gain at a reference pressure. The curves
seem to be exponential ones although as described above various effects contribute.
Actually the real pressure range is smaller than shown in fig. 4.2 so that it is also
possible to approach the curves as straight lines with different y-intercept and slope. As
shown later it is even better to treat them as exponential curves of the type Nfinal(p) =
A · exp(Bp). Then we need to discuss whether A and B are both free parameters or if
we should fix the slope B.

4.3 Linear and exponential fit

First of all we vary in the model the electric field in continuos steps to get data points
for the number of final electrons Nfinal at different pressures for various electric fields.

If we look at fig. 4.2 in a closer, more realistic pressure range, we see that the curves
seems to be approximately linear. That is the reason why we first try a linear fit. Every
linear fit results in a different slope and y-intercept. In a wider pressure range a clear
deviation from a straight line is observed. Due to the exponential behaviour of the first
Townsend coefficient, an exponential fit is also used. In fig. 4.3 one can see the data points
for four example high voltages with exponential and linear fits. In the given pressure
range both fits are a good description of the simulated points because the straight line
fits only deviate by maximum 0.3% from the data points and the exponential fit only
by less than 0.1%. Our result is that the slopes (B) of the exponentials are exactly the
same while the coefficients A vary. This is a significant advantage and simplification
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over the straight-line fits. The result that the slopes are constant is not trivial because
the two Townsend coefficients depend on the electric field strength and furthermore the
integration limits change as well. A qualitative explanation would be that B describes all
processes that influence the gain but they do not depend on the electric field. Instead of
that the electric field only changes the gain at a reference pressure so that in our model
only A is changed. We have to be careful with that result because as I mentioned before
the model simplifies a few. As a major result for experimental data we keep in mind that
in the model the gain dependence on pressure can be fitted with an exponential curve
and furthermore if we change the E-field then the slope of these exponentials should stay
the same.

Figure 4.3: Simulated gain vs pressure for 4 different electric fields with fits. In the left
part one can see the linear fits while on the right part the exponential fits
are shown.
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5 Pressure calibration

In the past the pressure correction was done once for the whole TRD. After that it
was improved and applied to each of the 521 detectors by averaging the gain of each
chamber [30] [31]. However the gains within each detector vary significantly as will
be shown below. This causes that the pressure dependences are different due to the
exponential curves and also the ratio between pads changes. Therefore it would be
optimal to do a pressure correction as presented in chapter 4 for every single pad. The
calibration is done by using Krypton decay data, as described in section 5.1.

5.1 Krypton calibration theory

In order to get data for the calibration, a Krypton run was done at the beginning of
the year 2018 data taking period. For detailed information see [32]. During the run
83Rb was placed into the gas stream. It decays into metastable m83Kr by β decay [33].
This Krypton disperses through the whole TRD gas volume so that it is distributed
simultaneously. Actually the lifetime of 2.64 h of m83Kr is good because it is short
enough so that the chamber can operate normally after a few lifetimes, but long enough
to be distributed in all chambers.

The kryton run lasted from 17th to 26th of March 2018. In the first two days the
solenoid magnet was turned off so these runs are not used in the following. From run
id 283781 to 283889 the first supermodules were filled and then until run id 284036 the
second supermodules were measured. In this period of time the pressure and the gas
composition changed so that the data can be used for pressure calibration. On 26th of
March the high voltage was varied while the pressure was nearly constant so these data
will become important in chapter 6.

Krypton decays most probably to the level of 41.55 keV as shown in fig. 5.1. Then
there is a cascade decay via the 9.39 keV level. Due to the short lifetime of this level
the summed decay energy is collected in one cluster [32]. The emitted electrons have a
concrete energy loss in the TRD so that they can be used for calibration purposes. A
cluster finder is used to sum up the recorded charges of different pads to clusters. Then
Krypton spectra are recorded for each pad. The background is rejected by using the
timing information of the clusters [34] see fig. 5.2. Moreover it is checked that there
is no calibration offset. In the following the position of the main krypton peak that
corresponds to the 41.55 keV electrons will be used.
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Figure 5.1: Energy levels of Rb and Kr. The most probable decay is that from 562.0 keV
to 41.55 keV [33].

Figure 5.2: The pulse height spectrum of one detector before (grey) and after (red)
background rejection [34]. One can see the main krypton peak at 41.6 keV
and other peaks - for detailed information see [32].
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5.2 Mean gain variation

At the beginning we study the main krypton peak position distribution for all TRD
pads. For this the main krypton peak is fitted with a Gaussian, as shown in fig. 5.3.

Figure 5.3: An example krypton spectrum of one pad is shown. A Gaussian fit (in red)
was done in order to get the mean of the main Krypton peak. The arrow
shows the maximum bin that was used as start parameter for µ and the blue
line shows the start parameter σ. The fit result is listed.

The mean of the Gaussian for each pad is plotted in fig. 5.4.
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Figure 5.4: The mean position of the main krypton peak is plotted for all pads. One can
see the variation over a large range (2000-5000 ADC counts) even within a
detector [34].

The variation of the pulse height values (in ADC counts) shows that it is not sufficient
to calibrate each detector as a whole, because in that case one would use the mean of
the pulse height at a reference pressure value to do the calibration. But in fact the pads
with different gain will depend on pressure in another way (as described in chapter 4)
so that the result will deviate significantly.
In order to get to an improved calibration we will first look at a single detector.

5.3 Single detector

We first look at a single detector - for example detector 11. As one can see in fig. 5.5a and
fig. 5.5b the gains within one single detector can vary over a large range, probably due
to geometrical reasons like the bending of the cathode plane that influence the electric
field. Now we divide the pulse height distribution in 3 categories so that each category
has the same number of pads - see fig. 5.5b and additionally fig. 8.1. In order to study
the pressure dependence we do the Gaussian fits for runs with different pressures and
look at the gain for each category. More precisely we sum up the Krypton spectra of all
pads of one category at a single pressure value in order to get sufficient data. Then we
perform a Gaussian fit that gives us the gain for the main krypton peak. This is done
for different pressure values and the data points we get are plotted in fig. 5.6. Because
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the dependence seems to be linear a straight line fit for each category is done. As one
can see the curves have a different slope as descriped in section 4.2. This motivates us
to do the pressure calibration in that way.

xTRD

(a) The gain values of the main krypton peak
are plotted for detector 11. We can see that
they vary within the detector. Furthermore
the higher pulse heights can be found in the
middle of the detector what demonstrates
us that the variation is due to geometrical
reasons.

(b) The gain variation within detector 11 is
plotted as a 1D histogramm. One can see
that the ADC range is quite big. The
relative rms of 15.1 % meets the technical
design report. We divide it in 3 categories
as indicated by the lines.

Figure 5.6: The gain of the main krypton peak for each category for different pressure
values. The curves are straight line fits. An enlarged x-axis range was chosen
in order to show that the straight lines aren’t parallel.
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5.4 All detectors

As a next step the procedure as described in section 5.3 is generalized: We look at
the gain variation for each detector and partition it into 5 gain categories so that each
category has the same number of pads. The variation and separation is shown for some
example detectors in fig. 5.7. One has to keep in mind that the categories correspond
to the gain but they were made for each detector independently so that a category does
not mean the same gain range for each detector. That is the reason why one can not
directly compare categories of different detectors. In fig. 5.8 one can see the result of
the categorization. Generally this plot looks similar to fig. 5.4 but instead of a gain as
value we now have a concrete category for each pad.

Figure 5.7: The gain variation for some example detectors. Due to geometry each
detector is different. Every chamber is partitioned in gain categories with
the same number of pads as indicated by different colors.
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Figure 5.8: Distribution of the five ADC categories for all TRD detectors.

We now choose more than 3 categories in order to increase the precision. The best
way to do the pressure calibration would be to do it for every pad on its own, but there
is not a sufficiently large data set to get a good krypton spectrum for every pad and
pressure value. Thus we look at one detector and sum up the krypton spectra of each
catergory at one pressure value like it was done before. More than 5 categories are of
course possible, but would not significantly improve the result.

Now we want to study the pressure dependence of the gain and therefore find the
main krypton peak by a Gaussian fit . First it was checked whether the fit worked and
moreover if some pads were defect so that they fire continously. As an effect the resulting
krypton spectra had to much background and had to be filtered out by looking at the
number of entries - see for example fig. 8.4.

One systematic uncertainity is that the peak position does not exactly represent the
mean of the peaks of each pad because they were summed up. We try to estimate this
uncertainty by calculating the relative difference of the maximum bin position to the
mean of the Gaussian - see section 5.7 and fig. 5.16.

With the Gaussian fit we get the gain for each detector, category and pressure. The
gain vs. pressure is shown for some example detectors in fig. 5.9.

23



Figure 5.9: For some example detectors gain vs pressure is shown for the five ADC
categories. The solid lines are straight line fits and the dashed red lines are
exponential fits.

In fig. 5.9 straight lines and exponential fits are shown. Theoretically an exponential
fit would be the better description, but as one can see a straight line fit is precise as
well. It will be discussed in more detail in section 5.6.

5.5 Gas composition

We know that during the Krypton run the gas compostion wasn’t constant and this
might have an influence on the gain and furthermore on the way the gain changes. Thus
we look at the gas compostion.

In fig. 5.10 one can see how CO2, Xe, N2, O2 and H2O change with run id (time).
Furthermore the pressure is plotted and it is obvious that H2O and O2 follow the pressure.
There is a step for N2, Xe and CO2 due to a gas leak during the run and we assume
that this has a major influence on the gain although the gas composition changed only
in the order of 0.1% or less. In order to exclude the influence of the gas composition on
the gain we chose ranges in which the composition doesn’t change a lot. For section 5.6
we used 6 ranges (shown in the H2O plot) and for section 5.7 only two ranges C and D
were used because there the gas compostion was more constant. Range C is before the
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mentioned step and D after it. Moreover the relative fractions of H2O and O2 are quite
constant in both ranges.

Figure 5.10: During the krypton run the gas composition changed and this is shown here
for the main gas components. Furthermore one can see how the pressure is
changing. The big black line shows the two different periods of calibration
runs when half of the supermodules where filled and the dashed lines mark
ranges C and D that are relevant for section 5.7.
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5.6 Straight line fit

We first do a straight line fit withouth considering the gas compostion. The procedure
is shown in fig. 5.9. Then we look closer at the parameters slope s and y-intercept b of
the curves. We found that the y-intercept goes linear with slope. This can be seen in
fig. 5.11. The units of y-intercept [ADC counts] and slope [ADC counts mbar−1] are not
shown in the following graphs for simplification.

Figure 5.11: Fit parameters slope s and y-intercept b for all detectors. The colors mark
the supermodules that had different gas compositions. A straight line fit to
all data points is shown by the dashed blue line.
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Figure 5.12: The slope of category 2 is plotted against the detector number. We see that
the supermodules (marked with colors) have differenent slopes due to the
different gas compositions.

Our first thought was that the ratio r = y-intercept
slope might be constant but this is not

the case since the straight line fit (fig. 5.11 in blue) does not go through the origin and
furthermore it looks like there are actually more straight lines which overlap around
s = −15. This can be explained by the gas composition which influences the gain. We
know that the supermodules had different gas compositions during the krypton run - see
5.10. The supermodules with lower xenon (higher nitrogen) composition have a higher
absolute slope what can also be seen in fig. 5.12 and they are marked in red.

As a next step we want to investigate the influence of the gas composition in a closer
way and therefore we divide it in 6 ranges as shown in fig. 5.10b. Then we make the
graph gain vs. pressure again but now not only for each detector and category but also
for each gas composition range. After that again straight line fits are made but now for
approximately constant gas compositions and you get again slope s and y-intercept b
of these linears. After that the y-intercept vs slope is plotted and each gas composition
range is marked by different colors. The result is shown in fig. 5.13. One has to pay
attention that the curves are shifted in order to distinguish them. Apparently the gas
composition has an influence on the curves especially on the variation of higher or lower
slopes. Due to limited data, the gas compostion can not be analyzed in more detail
using only the krypton data.

To sum it up although there is an influence of the gas composition it is possible to do
a global fit in the y-intercept b vs slope s graph that will be later used in equation 5.2
because fortunately the curves in fig. 5.13 don’t diverify that much. Anyway as will be
shown in the next section an exponential fit is the better description.
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Figure 5.13: For each gas composition range the y-intercept vs slope is plotted. The
curves are shifted for better visibility. The red dashed line is a straight line
fit for all data points (also shifted) and the bottom graph shows the ratio
between the global fit and single data points.

By this fit we get the parameters slope m and y-intercept c. In order to avoid
misunderstandings I sum it up: In the gain vs. pressure graph we do linear fits as
shown in fig. 5.9 and get fit parameters slope s and y-intercept b. Then we plot them
against each other and do a straight line fit that describes their correlation. This straight
line has two fit parameters slope m and y-intercept c. These parameters can already be
used to do a pressure correction independently of the gas composition. The correction
would work in this way:

If we have the gain at a given pressure g(pref ) = gref we know that the pressure
dependence can be estimated as straight line (through the point (pref/gref ). So:

g(p) = s · p+ b (5.1)

while s is the slope an b is the y-intercept but we do not know these parameters yet.
Anyway it is possible to simply calculate them with our result of 5.13 because the
straight line (red dashed line in fig. 5.13) gives us the dependence of the two parameters
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y-intercept b and slope s:

b(s) = m · s+ c (5.2)

g = s · p+m · s+ c (5.3)

g = s · (p+m) + c (5.4)

s =
g − c
p+m

(5.5)

b = g − s · p = g − g − c
p+m

· p (5.6)

We can insert p = pref and g = gref .
Now it is possible to chose a reference pressure value and calculate the gain of each

pad at this pressure. Then at a different pressure p1 we can simply do the correction

by multiplication of the gain with
g(pref )
g(p1) and one can calculate g(p1) with formula 5.1.

The unknown parameters s and b can be derived from 5.5 and 5.6.

The above described procedure is not optimal for various reasons: The effect that the
y-intercept b goes linear with the slope s seems to be only a geometrical effect because
our pressure range (950 mbar - 980 mbar) is quite far away from the origin so that a shift
of the gain doesn’t play a role compared to a change of the slope. The slope is hence
strongly correlated with the y-intercept. Furthermore the gas compostions strongly
influence the parameter c but this parameter is important if we want to calculate s in
5.5. These are the reasons why it is not optimal to do a pressure correction in this way.

Thus we will now try an exponential fit as described in section 5.7.

5.7 Exponential fit

If we want to find the pressure dependency of the gain it makes sense to first exclude the
influence of the gas composition. That’s the reason why we look at fig. 5.10 again and
now chose only two ranges C and D so that the gas composition doesn’t change a lot,
especially the Xe and N2 composition that are assumed to have a large influence. These
two ranges are shown with dashed black lines in fig. 5.10. Like we did it for the linear
fits, graphs of gain vs pressure are made for each detector, category and range so that an
exponential fit of the type: g(p) = A · exp(Bp) can be done. First of all we did the fits
with free parameters A and B for each fit but in fact like it was discussed in the model
chapter 4.2 it makes sense to assume a constant parameter B at least for each chamber
and gas composition. Theoretically the slope B shouldn’t change for different categories
and detectors but it may depend on the gas composition because this wasn’t considered
in the model. In order to verify whether it is valid to assume that B is constant and how
it depends on the gas composition we now look at the result of the ”free” fit. In figure
5.14 one can see the variation of the parameter B for the two gas compostions.
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Figure 5.14: The variation of the slope for the free exponential fits in gas composition
range C (left) and range D (right). We recognize that the distributions are
shifted and for range C the width is bigger.

It is remarkable that the mean slope changes with gas composition and even for one
range the variation of the slope is not small. Moreover range D has a smaller distribution
maybe due to the fact that more data points are included.

Because we want to check whether a fixed parameter B is a good description a
simultaneous fit for each detector was done. This means that for the five categories
of one detector five fits are done but the parameter B must be the same and only A can
vary between the categories. One can see the result in fig. 5.15.

Figure 5.15: After the simultaneous fit we get the slope B of the exponentials that is
plotted here for the two ranges. The shift of the distributions due to the
different gas compostions is clearly visible.

One can see clearly that the gas composition influences the slope because the mean of
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the distributions are shifted. Compared to fig. 5.14 the distributions look quite similar.
This justifies the assumption of a fixed B for each detector. Later and in fig. 5.17 we
will discuss the quality of the fit by looking at χ2/NDF .

Actually now it has to be checked if a fixed slope for each gas compostion is still
a good description. Therefore we look at the mean of the histograms for each range:
srangeC = −0.00431± 0.00065 and srangeD = −0.00521± 0.00033.

Then an exponential fit with fixed slope for each gas composition range is done. In
order to see whether this worked we look at the fits and furthermore calculate χ2/ndf
for the free fit, simultaneous fit, fit with fixed slope for each gas compostion and fit with
completely fixed B. This one can see in figure 5.17.

Unfortunately we know that the gas composition influences the slope but can not
exactly describe in what way it does. In order to study the behaviour we would need
more data like for example a Krypton run with systematically changed gas compositions
or alternatively we could use collision data but have to do a pressure and HV-correction
in order to study the gas composition dependence. This is out of scope for this thesis
and because data like a Krypton run for gas compositions are not available the gas
composition can not be used as a parameter in our calibration so we can not find out
how the slope changes with the gas composition. Furthermore the gas composition is
quite complex because lots of gases play a role - see fig. 5.10 and only xenon and N2 are
considered here.

In order to find a pragmatic solution now it is checked whether a fixed slope can be used
even if the gas composition changes. Therefore the mean smean = −0.00483 ± 0.00066
of the slopes in krypton run is used to do a fit for all detectors and categories.

Before discussing the quality of the fits it is necessary to think about errors: The
data points in the graphs gain vs pressure come from gaussian fits, so their statistical
uncertainity is the error of the fit parameter µ that is quite small as one can see for
example in fig. 5.3. Due to the large data size it is therefore negligible compared to a
systematic error that has to be determined. As discussed earlier, the main systematics
is most likely coming from the fact that many pads with slightly different gains are
summed up. The mean and maximum is therefore not identical anymore. This is used
to estimate a systematic error by calculating the relative difference of the maximum bin
to the mean of the Gaussian. In fig. 5.16 one can see the distribution of this relative
error. The relative rms of the curve is 1.2% and this is used as systematic error in
the following. Because the systematic error is bigger than the statistical one it is not
completely correct to talk about χ2 but anyway it can be used to discuss the quality of
the fit.

Now it has to be decided whether it is allowed to fix B by looking at χ2/ndf in
comparison to the other fits. As one can see in fig. 5.17, χ2/ndf doesn’t differ significantly
regarding different fits. This can also be seen by the mean that is plotted on the left
side. First of all it is suprising that the lowest mean is given by the fit with fixed B
for ranges but this can be explained by the fact that there is only one parameter left
so ndf = Npoints − Nparams can become bigger. Examples for all four kinds of fits are
shown in fig. 5.18. As one can see all of them are a good description for the data. In
general the conclusion is that it is possible to use a fit with completely fixed B because
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the quality of the fit is still good as shown by the χ2/ndf values and the mean of it
compared especially to the free fit.

Figure 5.16: The distribution of the relative systematic error in a histogramm. The
standard deviation of 1.2% is used as systematic error in the following.

Figure 5.17: χ2/ndf is plotted for 4 kinds of fits. Furthermore the left stripes show the
mean for each fit.
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Figure 5.18: Four kinds of fits for detector 11.
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5.8 Pressure correction of the gain

Because it is possible to describe the pressure dependence by an exponential function
with only one free parameter A, a pressure correction can be done in the following way:

With a pad and its gain gref at a pressure value pref which is given by the Krypton
calibration, one can calculate the curve that describes the pressure dependence of this
pad.

g(p) = A · exp(Bp) (5.7)

gref = Aref · exp(−0.00483 · pref ) (5.8)

Aref =
gref

exp(−0.00483 · pref
) (5.9)

And now one can easily correct a measured gain gmeasured at a pressure p1 to the gain
at a reference pressure pref :

gcorrected = gmeasured ·
g(pref )

g(p1)
(5.10)

So it is possible to eliminate the pressure dependence by calculation. Anyway the gains
still vary because of geometrical reasons as described by the categories and furthermore
it depends on the high voltage. The next chapter will be about this dependency.
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6 High voltage calibration

In the previous chapter the pressure dependence of the gain is considered and as a result
we got an exponential dependence of gain with pressure. Furthermore we found that
the slope of these exponentials can be estimated as constant. Due to these results it is
possible to do a pressure correction.

In the following we want to study the high voltage (HV) dependence of the gain.

6.1 Gain vs high voltage

In general we did it analogously to the pressure dependence: We used the same categories
and instead of different pressure values we used the ADC spectra which were taken during
the high voltage scan. Fortunately the pressure during the HV scan was approximately
constant so that a pressure correction of the data has not to be done. The procedure
of the HV scan for one detector can be seen in fig. 6.1. There are seven different HV
settings each with one, two or four runs. The high voltage varied in a range from −15 V
up to 30 V around the nominal setting.

Again we summed up the spectra for each category, did Gaussian fits, got the pulse
height of the main krypton peak and plotted it against the high voltage value. In
some cases the ADC krypton spectrum was biased because of single pads that fired
continuously. Thus we had to find theses spectra by looking at the number of entries
and sort them out. One can see the result for some example detectors in fig. 6.2.
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Figure 6.1: Procedure of the HV scan for one example detector. The black line shows
the normal HV setting and the arrows demonstrate how the high voltage was
varied.

Figure 6.2: The gain increases linearly with high voltage. One can see that the slopes
change with the gain category.
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The gain increases approximately linearly with higher voltage. Thus linear fits were
done in fig. 6.2 and now we know how the high voltage setting influences the gain for
each detector and category. One can describe the gain as a function of high voltage:
g(HV ) = sHV ·HV +yHV while sHV and yHV depend on the detector and the category.
In section 6.2 it is described how the high voltage can be used to do a pressure correction
directly. In section 6.3 we try to find the optimal HV settings so that the gain variations
are minimized.

6.2 Pressure correction by HV adjustment

As mentioned above a pressure correction by adjusting the high voltage will be reviewed.

6.2.1 Example calculation

First of all an example calculation is done. For a single pad it is possible to correct the
pressure change by an HV adjustment:

If the gain at the reference pressure p1 is known and the pressure is changed to p2

there is a change in gain ∆g. By the approximation g(p) = A ·exp(Bp) one can calculate
∆g = A · exp(Bp2)−A · exp(Bp1).
In order to compensate it by a HV change:

∆g = −∆gHV (6.1)

A · (exp(Bp2)− exp(Bp1)) = −sHV · (HV2 −HV1) (6.2)

HV2 = − A

sHV
· (exp(Bp2)− exp(Bp1)) +HV1 (6.3)

However a high voltage correction is only possible for a whole TRD detector module and
not for single pads. Due to that we have to examine if the high voltage change is the same
for every pad. That’s in general not the case because A and sHV depend on the gain of
the pad or in other words on the category. But it might be possible that A

sHV
is constant.

In order to check this I first look at one detector for example at detector 176 - see fig. 6.2.
If you choose category 0 (black line) at HV1 = 1500 V then its gain is 2835 ADC counts.
During the HV scan the pressure was at p = 968.7 mbar so one can calculate Acat0:
Acat0 = 2835/exp(pB) = 3.733 · 105. Analogously it can be done for category 4 (red
line) also at 1500V: g=3719 ADC counts and Acat4 = 3719/exp(pB) = 4.897 · 105. The
slopes of the HV curve are known from our fit: sHVcat0 = 26.42 and sHVcat4 = 35.58. So
now one can calculate A

sHV
for both pads and check whether they are approximately the

same.

Acat0

sHVcat0
= 14129 (6.4)

Acat4

sHVcat4
= 13762 (6.5)

Apparently they are nearly the same because the deviation is only around 3%. So
fortunately if one goes from category 0 to 4, the positive slope change in the HV seems
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to compensate the change of parameter A. Of course this is not sufficient to prove that
a pressure correction can be done in that way because it is only an example. Thus
we want to try a pressure correction by high voltage now for all pads (represented by
categories) of one detector and after that for all detectors. Therefore we look at the gain
distributions.

6.2.2 Correction for all detectors

First one detector e.g. 11 is chosen and gain vs pressure like in fig. 5.9 is used to get
∆gain=∆g for each category due to a pressure change. As an example a pressure change
from p1=953.6 mbar to p2=963.6 mbar is applied and in this case the gain change wasn’t
calculated by the formula because you can simply use the measured data. Then one have
to calculate a ∆HV that will correct ∆g and this can be done with formula 6.1 if you use
as ∆g the one from category 2 for example and apply the sHV for each category we get
from fig. 6.2. Then the gain after the correction by the HV adjustment can be calculated
and compared to the gain before the pressure change. This is shown in fig. 6.3. If one
changes the pressure then the gain changes for each category from the black to the blue
value. After that the HV correction is done and the calculated gain is shown by the red
circles. One can see that the deviation is so small that the positions of the red markers
is nearly indistinguishable of those from the black ones so the HV correction is really
precise.

Of course this was only one example detector so the same has to be done for each other
detector and category. In order to check the quality of the correction one can calculate
the ratio gp1/gHV corrected for each detector and category. Then the mean of it (summed
up and divided by 5) is a quality criterium for the correction. Before doing that we had
to sort out the detectors that don’t work. In fig. 6.4 the mean ratio for each detector is
plotted against the detector number and as expected it is very close to one except for
three outliers. That shows that a pressure correction by HV adjustment is possible with
this new method.
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Figure 6.3: For detector 11 one can see the gain at an initial pressure p1=953.6 mbar
(black dots) and after a pressure change to p2=963.6 mbar. Then we calculate
a HV adjustment so that the pressure is corrected and calculate the resulting
gain (red circles).

Figure 6.4: For every detector we sum up the ratio of the gains at an inital pressure
divided by the gains after pressure correction for each category and calculate
the mean of it.
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6.3 HV adjustment for each chamber

As described before one can correct the gain changes caused by changes in the ambient
pressure by a HV adjustment. Furthermore it is possible to find an optimal high voltage
setting, so that each chamber nearly has the same gain. Due to the fact that the gains
within a chamber vary and one can only adjust the HV for each detector it is impossible
to calibrate every detector exactly to the same gain (at one pressure). In fact we have
to look at the deviations of the pads from the desired gain and minimize it by varying
the HV. We used a desired gain of 3100 ADC counts and summed up the deviations ∆
gi for each category i:

∆G =

√√√√ 5∑
i=0

|∆gi|2 (6.6)

∆gi is the deviation of category i from the desired gain at a chosen high voltage. So
the minimum of ∆G gives us the optimal HV for each chamber. We did that for each
detector and the optimal high voltage as well as the change of the HV is plotted in
fig. 6.6

In order to see how much the gain variance was improved one considers ∆G/G for
each detector as shown in fig. 6.5 (middle part) and calculates the mean of it (dashed
line). In order to compare it with the unadjusted HV therefore also the gain deviations
have to be calculated but in this case one has to think about which reference gain to
take. It makes sense to calculate the deviations from the mean gain of the whole TRD,
that first has to be calculated. This mean gain is 3371 ADC and now ∆G is calculated
for the unadjusted HV as shown in fig. 6.5 (upper part). If one compares the two plots
the mean gain deviation as well as the rms was decreased by adjusting the HV, so the
adjustment was successful. Moreover the ratio (lower part) is usually smaller than 1
what means that for each detector the adjustment lowered ∆G. As one can see by the
mean of the ratio that is about 0.9 the optimization is in the order of 10 %.

Furthermore we want to think about the optimal reference gain, because 3100 ADC
counts was chosen randomly. Therefore the procedure above was repeated for different
reference gains and the minimum of mean gain deviation and rms was calculated. The
result is shown in fig. 6.7. As one can see, there is a minimum in each plot but in fact
it does not really matter because the differences are quite small. Thus a desired gain of
3371 ADC was chosen which is identical to the mean gain before adjustment. Then the
steps described above were repeated and again one gets as result the optimal HV setting
as shown in fig. 8.7a and the HV change compared to the former HV setting fig. 8.7b
as well as delta gain for each detector fig. 8.9. So the calculated optimal high voltages
were implemented for the 2018 run and are currently in use.
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Figure 6.5: Top: Relative gain deviations from the mean gain with unadjusted HV. The
grey shaded region is the rms. Middle: Relative gain deviations from our
desired gain of 3100 ADC counts but with our calculated and adjusted HV.
The mean and the the rms is lower than in the upper part. Bottom: The
ratio of middle over top.
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(a) Optimized HV to achieve a mean gain of
3100 ADC counts. The value for detectors
which do not work is set to 1400V.

(b) Relative voltage adjustment to get the
optimal gains. Because 3100 ADC counts
as desired gain is quite low nearly all HVs
have to be lowered in order to achieve this
gain.

Figure 6.6

(a) Mean gain deviation plotted against the
reference gain. There is a minimum but the
change is quite small.

(b) The rms is plotted against the reference
gain we choose.

Figure 6.7
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Figure 6.8: Gains of category 2 for each detector without and with adjusted HV at
pressure p=986.7 mbar.

In fig. 6.8 there are the gains of category 2 for each detector. For the unadjusted
high voltages the gains are shifted to the pressure p=986.7 mbar during the HV run so
that they are comparable to those with adjusted HV. The gains with adjusted HV are
calculated by the straight line fits shown in fig. 6.2 using the optimal HV settings - see
fig. 8.7a.

As one can see in fig. 6.8, before the HV adjustment there was a Θ-structure probably
due to a not working path length correction. One have to consider the full trajectory of
a particle crossing the detector. So for each stack there is a different path length due
to the angle Θ and thus the charge deposited in the detectors depends on Θ. Because
each supermodule consists of 6 layers and 5 stacks there is a repetition of the structure
after 30 detectors - see also fig. 8.8 The adjustment of the HV leads to a significant
improvement of the gain deviations as shown by the decreased spread of the red dots.
So by minimizing the gain deviations by adjusting the high voltage settings it is possible
to effectively correct for the Θ-structure. Moreover the exponential behaviour of the
gain with pressure - described in section 5.7 can be used to calculate the gain change
with pressure and it can be corrected by an HV adjustment as explained in section 6.2.
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7 Summary

First a model was developed that is qualitatively able to calculate the final number of
electrons per traversing particle inside the TRD (that is proportional to the gain) and
explain the inverse pressure dependence of the gain due to the first Townsend coefficient.
Moreover for the simulated data linear and exponential fits were made to describe the
pressure dependence. As a result we got that an exponential fit with fixed slope is the
best description.

Then krypton data are used to study the pressure dependence. We divided all detector
modules in gain categories because pads with different gains depend on pressure in a
different way. For these categories we summed up the kryton spectra and did Gaussian
fits in order to get data of gains at various pressures. After that linear and exponential
fits were done. Both fits are possible but in fact it is an advantage to use exponential fits
because on the one hand they fit to the model and on the other hand we can use only
one fit parameter as discussed later. As we showed the gas composition has an influence
on the gain and furthermore on the slope of the exponentials but anyway it is possible
to use a fixed slope with acceptable precision so that only one parameter is left that can
be calculated easily. With that in hand a calibration can be done.

Furthermore the high voltage dependence of the gain was studied. The increase of
the gain with high voltage is approximated by straight line fits. Then it is shown that a
pressure correction can be done by a high voltage adjustment. Moreover with the former
HV settings the gains of the detectors differ and a Θ-structure is visible. By calculating
optimal high voltage settings it is possible to minimize the gain deviations and correct the
Θ-structure. So we can achieve a significant improvement in run 3 by adjusting the HV
in order to decrease gain deviations and furthermore correct the pressure dependence of
the gain by changing the high voltage. With that method the HV settings were already
improved for the year 2018 data taking.
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8 Appendix

Because actually some plots weren’t shown in the main part of the Bachelor Thesis they
will be presented here.

Figure 8.1: The division of detector 11 in 3 categories. Obviously the pads with different
gains are not randomly distributed but geometrically together.
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Figure 8.2: The division of the gain distributions in categories like in fig. 5.7.

Figure 8.3: Krypton spectra of detector 12 and category 0 for different run ids. In red
there is the Gaussian fit for the main krypton peak.
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Figure 8.4: In detector 8 and category 0 there is at least one defect pad that fires
continously what can be seen by the high number of counts. Thus this
spectrum had to be sorted out.

Figure 8.5: Gain vs. pressure like in fig. 5.9 but for more example detectors.
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Figure 8.6: The gain increases linearly with high voltage as already shown in fig. 6.2.
One can see gain vs HV here for more example detectors with straight line
fits.

(a) It is the same plot as 6.6a but with 3371 as
reference gain.

(b) Delta HV is plotted. In comparison to 6.6b
now the HVs for some detectors have to be
increased.

Figure 8.7
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Figure 8.8: If we look closer at fig. 8.7b then we can see a structure for each supermodule
(shown by the vertical lines).
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Figure 8.9: In general this is the same figure as fig. 6.5 but with 3371 ADC counts as
reference gain that is the actual mean gain of all detectors. We see again
the decreasement of mean ∆G/G and rms. An improvement of ∝10% can
be estimated.

50



Figure 8.10: Me in front of the ALICE detectors.
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Figure 8.11: The TRD supermodule 6 was removed after we had uncabled it.
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