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Abstract
In this thesis, three methods for calculating the decay-photon cocktail while taking radial

flow into account are compared. This is done by extrapolating the well known spectra
of π± and K± to obtain the ones of η, ω and η′ mesons, which are the main sources of
decay-photons. A cocktail from transverse mass scaling, which does not include radial flow,
serves as a baseline. In the first method, the η/π0 ratio is replaced by the K±/π± ratio due
to the similar masses of K± and η. This results in 1.05 times more decay-photons in the
range between 1 GeV and 4 GeV. A conclusion of this is that up to 30% of the direct photon
spectrum can be attributed to decay-photons. Secondly, a fit with the Tsallis-blastwave model
is attempted, but the result does not describe the data. Therefore this model is not suited
for extrapolation from this data. Finally, the spectrum is split up into one component that
incorporates all radial flow in a blastwave description and one component without radial
flow. Similarly to the first method, the decay-photon calculation using this two-component
model yields up to 1.05 times more decay-photons. The model was also fit to data from
PHENIX. Compared to mT scaling, the decay photon yield is up to 7% larger which also
results in 30% of direct photons attributed to decay-photons.

Kurzzusammenfassung
In dieser Arbeit werden drei Methoden zur Berechnung des Zerfallsphotonencocktails

unter Berücksichtigung des radialen Flusses verglichen. Hierzu werden aus bekannten
Spektren von π± und K± die Spektren von η, ω und η′ Mesonen, die die Hauptquellen
von Zerfallsphotonen sind, extrapoliert. Als Vergleichsgrundlage dient ein Cocktail aus
mT scaling, das die radiale Expansion nicht berücksichtigt. In der ersten Methode wird
das Verhältnis η/π0 aufgrund der ähnlichen Massen von K± und η durch das Verhältnis
K±/π± ersetzt. Dies führt zu 1.05 mal mehr Zerfallsphotonen im Bereich zwischen 1 GeV
und 4 GeV. Daraus lässt sich schließen, dass bis zu 30% des direkten Photonenspektrums
auf Zerfallsphotonen zurückzuführen sind. Zweitens wird ein Fit mit dem Tsallis-blastwave
Modell versucht, aber das Ergebnis beschreibt die Daten nicht. Daher eignet sich dieses
Modell nicht zur Extrapolation aus diesen Daten. Schließlich wird das Spektrum in eine
Komponente, die die gesamte radiale Strömung enthält und eine Komponente ohne radiale
Strömung aufgeteilt. Wie in der ersten Methode liefert die Zerfallsphotonenberechnung mit
diesem Zweikomponentenmodell bis zu 1.05 mal mehr Zerfallsphotonen. Es wird auch ein
Fit mit Messwerten der PHENIX Kollaboration durchgeführt. Im Vergleich zur mT scaling ist
die Ausbeute an Zerfallsphotonen um bis zu 7% höher, was ebenfalls zu 30% der direkten
Photonen führt, die auf Zerfallsphotonen zurückzuführen sind.
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1Introduction

Photons are excellent probes to study the system properties in heavy-ion collisions. They
are created at every stage of the collision and escape the medium with little interaction
since they only interact electromagnetically [1]. The conditions at their creation can be
directly studied through measurements of photons. For instance, thermal photons from
the thermalized Quark-Gluon Plasma (QGP) and Hadron Gas (HG) can be studied to learn
about the thermodynamics of these two stages in the collision. On the other hand, photons
from hadron decays, which originate outside the QGP phase, act as a background that has to
be subtracted from the total number of measured photons to obtain the spectrum of direct
photons. The decay-photon spectrum is usually obtained from Monte Carlo simulations in
which hadrons are decayed and the decay products are recorded. For accurate simulations,
the momenta of the hadrons have to follow the real momentum distributions, which are
often hard to measure. The η, ω and η′ mesons together with the π0 meson account for
the vast majority of decay-photons but measurements of the former three particles are not
detailed enough to directly obtain their momentum distributions. Instead, the distributions
must be extrapolated from measurements of other particles using models. These models
should include the collective radial flow of hadrons, which arises from the expansion of
the QGP and the HG perpendicular to the beam axis. Because the signal of direct photons
above the background of decay-photons is very small, a difference of a few percent in the
decay-photon spectrum can change the direct photon measurement by 20 - 30%. Often,
mT scaling, which neglects radial flow, is used to calculate the momentum distributions [2,
3].

In this thesis, different approaches that incorporate radial flow will be used to generate
decay-photons. First, the η/π0 ratio is substituted by the K±/π± ratio because of the
similar masses of η and K± as well as π0 and π±. This was partly done by the ALICE
collaboration [2]. Secondly, a fit of the Tsallis-blastwave model is attempted, which was
previously done by the STAR collaboration [4]. In the third approach the particle spectrum
is split into a compontent with and one without radial flow. The two components are then
treated separately for the extrapolation to other particles. The results of the decay-photon
calculations are compared to a reference calculation that purely uses mT scaling.

1.1 Kinematic Variables and Observables
In collider experiments, two beams of particles are accelerated to velocities close to the

speed of light and then brought to collision in distinct points. In relativistic collisions, the
positions and momenta are described using four-vectors [5]:
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1.1 Kinematic Variables and Observables Chapter 1 Introduction

xµ = (x0, x1, x2, x3) = (ct, x) (1.1)

pµ = (p0, p1, p2, p3) = (E/c, p) (1.2)

with the position x in euclidean space, the momentum p, the energy E =
√

m2 + p2 and
the speed of light c. From here on, a natural system of units is adopted where c = ~ = kB = 1,
which is customary in particle physics. This means that mass, energy and momentum have
the same dimensions, i.e. E2 = m2 + p2.

After a collision, the collision products are measured in detectors such as ALICE. There
are elastic collisions where the total energy of the two particles is conserved and the ingoing
particles are equal to the outgoing particles. On the other hand, there are inelastic collisions,
in which energy is deposited in the region in which the collision happens. Additional
particles can then be created from this deposited energy.

The products of a collision move away from the collision point and are measured by
different detectors. The result is the yield or momentum distribution d3N

d3p
, which is the

number of particles N in a momentum interval [p, p + dp]. Since dN
d3p

is not Lorentz invariant,
i.e. observers in different inertial frames measure different yields, usually the invariant yield
E d3N

d3p
is measured. Because the experiment is rotationally symmetric around the beam axis,

the momentum is split into a component along the beam axis, the longitudinal momentum
pL, and one perpendicular to the beam axis, the transverse momentum pT : p = pL + pT .
Because pT is perpendicular to the beam axis, it is also invariant under Lorentz boosts in
the direction of the beam axis. The longitudinal momentum is expressed using the rapidity
y with pL = |pL|:

y = 1
2 ln

(
E + pL

E − pL

)
. (1.3)

The rapidity changes by an additive constant when the reference frame is Lorentz boosted
in the longitudinal direction. As a consequence, the rapidity distribution is shifted by a
constant, but the shape is unchanged. Most particles are produced at y = 0, or mid-rapidity.
In collider experiments with fixed center of mass, this is the direction perpendicular to the
beam axis. Higher rapidity indicates a larger longitudinal velocity in this case.

With the transverse momentum and the rapidity, the invariant yield can be written as

E
d3N

d3p = d3N

pT dφ dpT dy

= d2N

2πpT dpT dy
.

(1.4)

2



1.2 Heavy-Ion Collisions Chapter 1 Introduction

where pT = |pT | in the denominator. The invariant yield can also be expressed as a
function of the transverse mass mT =

√
m2 + p2

T . The coordinate transformation pT → mT

does not change the invariant yield: 1
pT

d2N
dpT dy = 1

mT

d2N
dmT dy .

1.2 Heavy-Ion Collisions
At everyday temperatures and energy densities, quarks can only be found in bound states,

the hadrons. If the energy density exceeds a few GeV fm−3, a phase transition is predicted
to occur [6]: similar to the transition in which ice cubes melt into water, the quarks in
hadrons become deconfined to form a medium, called the Quark-Gluon-Plasma (QGP).

To achieve an energy density sufficient to create a QGP, two beams of nuclei with large
mass numbers A, like lead at the Large Hadron Collider (LHC) (APb = 208 [7]) or gold
at the Relativistic Heavy-Ion Collider (RHIC) (AAu = 197 [8]) are collided. In inelastic
collisions, the kinetic energy of the nuclei is deposited in the central region. The energy
density in the central region in heavy-ion collisions is increased compared to proton-proton
collisions at similar central of mass energy: there are more nucleon nucleon collisions due
to the higher mass number in a small volume. Each of these nucleons can collide with
multiple nucleons from the other nucleus, which further increases the energy deposited.
Because the nuclei move at a velocity close to the speed of light, they are highly Lorentz-
contracted in the lab frame. This means that two colliding nuclei form flat disks instead
of spheres in the lab frame, which leads to many nucleon nucleon collisions in a small
amount of time and in close proximity [9, p.2]. As the leftovers of the nuclei recede in their
respective beam directions, the QGP is formed and thermalizes at about τ0 = 1 fm/c after
secondary scatterings in the collision region. It expands due to the high density gradient
between the QGP and the surrounding space and finally cools down. As it cools down, the
temperature drops below the chemical freeze-out temperature Tc ≈ 156 MeV [10] and the
system transitions from the QGP phase to a HG. This process is shown in Fig. 1.1.

Due to the large energy density and temperature, the mean free path of particles in the
collision is sufficiently small to be described by ideal hydrodynamics [11].
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1.2 Heavy-Ion Collisions Chapter 1 Introduction
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Figure 1.1: Evolution of a heavy-ion collision [12]

Because collective flow arises from the hydrodynamic evolution, it is not sufficient to
treat a heavy-ion collision as many separate nucleon-nucleon collisions. One collective
effect is the azimutal anisotropy [11]: the overlap of two nuclei colliding in a not exacly
central collision with an impact parameter (the distance between the centers of the nuclei
in the transverse plane) b > 0 is not a circle, but more almond shaped (Fig. 1.2a). Because
the hot region is now not isotropic, neither is the pressure gradient which acts on the
momentum distribution via hydrodynamical equations of motion. The yield is then not
independent of the azimutal angle ϕ which can be quantified by expanding the yield using
Fourier coefficients vn as

dN

dϕ
∝ 1 + 2v1 cos(ϕ − Ψ) + 2v2 cos(2(ϕ − Ψ)) + · · · (1.5)

with the angle (ϕ − Ψ) between the reaction plane, whose orientation can be different for
every collision, and the recorded particle (see Fig. 1.2a). The flow parameters vn depend
on pT and contain information about the collective effects. In particular, v2 characterizes
the amount of elliptic flow.
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Figure 1.2: a) almond shaped collision region, b) illustration of Fourier coefficients v2, v3 in Eq.(1.5)
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1.3 A Large Ion Collider Experiment Chapter 1 Introduction

1.3 A Large Ion Collider Experiment
A Large Ion Collider Experiment (ALICE) [13] is the dedicated heavy-ion collider exper-

iment at the Large Hadron Collider (LHC) [14] at CERN [15]. Its focus lies on the study
of the strong interaction in the Standard Model. It was designed to measure large charged
particle multiplicities of up to dNch/ dy ≈ 8000 in heavy-ion collisions with good particle
indentification using multiple separate detectors. Tracking and particle identification is done
by the Inner Tracking System (ITS) and Time-Projection Chamber (TPC) near the beam axis
e.g. by the specific energy loss dE/ dx.

Photons can be reconstructed using the Photon Conversion Method by measuring the
tracks of electron-positron pairs from γ + Z → e+ + e− + Z with the TPC or the ITS [2].
Alternatively, the photons can be measured directly by the two electromagnetic calorimeters,
the PHOton Spectrometer (PHOS) and the ElectroMagnetic Calorimeter, EMCal. PHOS is
designed to measure photons at low pT such as thermal photons while EMCal has a worse
energy resolution, but can measure photons at high pT .

1.4 Photons as Electromagnetic Probes
Since quarks are deconfined in the QGP, the bound states of quarks, hadrons, are only

produced at the freeze-out surface, which is the boundary between the hot QGP and the
cold surrounding space [16]. This is similar to hot water in a closed container: at the water
surface, the vapour always condenses with a temperature of 100 ◦C at a pressure of 1 atm,
giving no information about the vapour further away from the water surface. Photons,
on the other hand, are also produced in the QGP and the HG at all stages of the collision
for example in π+-π− annihiliation (π+ + π− → ρ0 + γ) in the HG or in quark-antiquark
annihilation (q + q̄ → g + γ) or quark-gluon Compton scattering (q + g → q + γ) in the QGP
[17].

The production rate and momentum distribution of photons from the two latter reactions
depend on the momentum distributions of the quarks and gluons and thus also on the
thermodynamical state of the QGP. Because photons only interact via the electromagnetic
interaction, their mean free path is larger than the fireball and they escape the medium
unscathed after they are created. They then also contain information about every stage of
the collision, not only about the freeze-out surface of the QGP.

There are multiple sources of photons in a heavy-ion collision such as the thermal
radiation of the QGP itself, the thermal radiation of the HG after the freeze-out and decays of
other particles into photons such as π0 → γγ. Photons from particle decays (decay-photons
γdec) make up the vast majority of the measured inclusive photon yield γinc = γdir +γdec, but
they contain little information about the QGP as they are produced from hadron decays. The
photons that do not originate from decays are called direct photons γdir. The decay-photon
yield acts as a background to the signal of direct photons and has to be subtracted from
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1.4 Photons as Electromagnetic Probes Chapter 1 Introduction

the direct photon yield. γdec can be obtained in Monte Carlo simulations where various
hadrons are decayed and the produced photons are recorded [2, 3]. This is also called
the decay-photon cocktail simulation because there are many ‘ingredients’ (photons from
many different hadrons) that make up the spectrum. For the Monte Carlo simulation,
the momentum distributions of the to-be-decayed hadrons are crucial as the momentum
distributions of decay products depend on the ones of the mother particles. In case of the η,
ω and η′ mesons, where only little data is available , the momentum distributions must be
extrapolated from available data of other particles. In this thesis, different approaches for
this will be carried out and compared.

In practice, the direct photon excess is characterized by the double ratio

Rγ = γinc/π0

γdec/π0 = γinc
γdec

= γdec + γdir
γdec

= 1 + γdir
γdec

(1.6)

because the division by the π0 spectrum in the enumerator and denominator cancels out
some of the systematic uncertainties [2]. A double ratio Rγ > 1 indicates a direct-photon
signal which becomes smaller as Rγ approaches 1. The direct photon yield is then retrieved
using

γdir = γinc − γdec =
(

1 − 1
Rγ

)
γinc. (1.7)

In measurements [2, 3], Rγ was ≈1.1-1.3 for the most central collisions at low pT . In this
thesis, the decay-photon yield γdec will be calculated in different scenarios which changes Rγ

in Eq.(1.6). Since the inclusive photon spectrum is measured, only γdec in the denominator
is modified. An increased decay-photon yield γ̃dec = (1 + ε)γdec results in

R̃γ = γdec + γdir
γ̃dec

= γdec + γdir
(1 + ε)γdec

= Rγ

1 + ε
(1.8)

Not only the yield of direct photons can be measured, but also their elliptic flow coefficient
v2. When comparing the direct photon yields and the direct photon v2 to predictions from
models, it was noticed [18] that the theory cannot describe the two quantities simultaneously
in measurements at RHIC. This is shown in Fig. 1.3 and has been dubbed the ‘direct photon
flow puzzle’ [19] or ‘photon flow puzzle’ [18]. In ALICE measurements, this discrepancy is
much smaller [20].

Furthermore, the results from the STAR collaboration are much closer to the theory than
the ones from the PHENIX collaboration even though the measurements were both done at
RHIC and should be therefore similar. One difference between these two measurements is
the method to obtain the unknown momentum distributions of hadrons for the decay-photon
simulaton: while the PHENIX collaboration used mT scaling (1.5), the STAR collaboration
used Tsallis-blastwave fits (1.7)
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Figure 1.3: Direct photon flow puzzle: a) direct photon invariant yield, b) direct photon v2

1.5 Transverse Mass Scaling
It has been observed [21, 22] that the invariant yields of many particles as functions of

the transverse mass

mT =
√

p2
T + m2 (1.9)

can be described by a universal function u of the transverse mass:

dN

pT dpT
= CXu(mT ) (1.10)

This behaviour is called transverse mass- or mT scaling. A parametrization of a well
known spectrum like the one of charged pions ,fπ, can be used to obtain the invariant yield
of a particle X with mass mX , fX :

fX(pT ) = CXfπ
(√

p2
T + m2

X − m2
π

)
(1.11)

with mT scaling factors CX . These factors are usually obtained in experiments by
measuring the ratio X/π0 at high pT or by simulating proton-proton collisions and measuring
the particle ratios at high pT [19].
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1.6 Blastwave Model Chapter 1 Introduction

mT scaling is commonly used to predict the invariant yields of particles for which there is
little data for use in decay-photon yield calculations [23, 3]. In Au+Au collisions, deviations
from mT scaling have been attributed to the presence of radial flow [24].

1.6 Blastwave Model
One attempt to describe invariant yields from collisions with radial flow is provided in

Ref. [25]. The authors start out with the invariant spectrum of particles from a stationary
source with uniform temperature T , which follows a Boltzmann distribution:

d3N

dy dφ mT dmT
∝ E exp (−E/T ) (1.12)

To account for transverse flow, a radial velocity profile βr(r) for radii up to the surface of
the fireball with radius R is assumed:

βr(r) = βs

(
r

R

)n

(1.13)

with the velocity at the surface of the expanding medium βs and the exponent n which
determines the shape of the profile. The individual thermal sources are now Lorentz-boosted
according to their velocity βr(r) and rapidity y. The particles emitted by the boosted sources
have, on average, higher momenta than the ones from stationary sources, which increases
the invariant yield at higher pT . The boost is larger for heavier particles than for light ones
[26]. The resulting spectrum after boosting and integrating over φ and y is:

dN

mT dmT
∝
∫ R

0
r dr mT I0

(
pT sinh ρ

T

)
K1

(
mT cosh ρ

T

)
(1.14)

with ρ = tanh−1(βr(r)) and I0, K1 modified Bessel functions of first and second kind.
For stationary sources, i.e. βr = 0, I0(...) = 1 and Eq.(1.14) only depends on mT , which
means that mT scaling becomes applicable. Therefore, a deviation from mT scaling can be
seen as a sign for collective flow [27]. The free parameters in Eq.(1.14) are n, βs, T as well
as the normalization.

Eq.(1.12) describes only the primary hadrons, not the decay products of other hadrons.
This ‘feeddown’ from heavy to lighter particles has to be considered when using Eq.(1.14)
to describe measurements.
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1.7 Tsallis-Blastwave Model Chapter 1 Introduction

1.7 Tsallis-Blastwave Model
The Tsallis distribution generalizes the Boltzmann distribution by introducing a parameter

q, which describes the degree of non-equilibrium in the emitting source. With the Tsallis
distribution, the invariant yield becomes

d2N

dy mT dmT
∝
(

1 + q − 1
T

mT

)−1/(q−1)
. (1.15)

For q → 1 and mT = E for y = 0, this reduces to the Boltzmann distribution in Eq.(1.12).
Applying the same procedure as before, the authors in Ref. [28] arrive at

dN

mT dmT
∝ mT

∫ +Y

−Y
cosh ydy

∫ +π

−π
dφ

∫ R

0
rdr(

1 + q − 1
T

(mT cosh y cosh ρ − pT sinh ρ cos φ)
)−1/(q−1) (1.16)

with a velocity profile βr(r) and ρ like before. This [−Y, +Y ] is a small interval around
zero. The largest contribution comes from particles with rapidities y ≈ 0. Therefore
integration in some rapidity interval [−Y, +Y ] is enough to get a good approximation for
the integral over all rapidities in (−∞, +∞).
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2Baseline: Transverse Mass Scaling

To judge the particle cocktail and to see the effects of the different methods on the particle
composition, a reference cocktail is needed. As ALICE and PHENIX at least partly use mT

scaling for the prediction of the spectra, the reference is also calculated by extrapolating a
parametrization of the π0 yield to other particles using mT scaling.

2.1 Neutral Pion Parametrization
The π0 parametrization is obtained by a fit to the invariant yield in Ref. [29] with the two-

component model described in Chapter 5 (Eq.(5.3)) instead of the given parametrization in
the paper. The new parametrization does not increase as steeply for pT → 0 and therefore
gives reasonable particle ratios for low pT instead of ratios very close to zero, which would
give rise to artifacts in the cocktail generation. The fit and parameters are shown in Appendix
7.2.

2.2 Cocktail Generation
For the cocktail generation, a ROOT [30] script by [31] was used and extended to include

other methods of obtaining X/π0 ratios for other hadrons X. The script takes as input a
parametrization of the neutral pion spectrum (dN/ dpT )π0 as well as parametrizations of
the particle ratios (dN/dpT )X / (dN/dpT )π0 . A list of hadrons, which should be decayed,
has to be specified as well. Previous cocktail calculations (see Fig. 2.1, [19]) showed that
the contributions from π0, η, ω and η′ mesons make up most of the decay-photon yield.
About 80% of decay-photons originate from π0 decays. The second largest contribution
(≈10 − 15%) comes from decays of η mesons. Photons from ω meson decays make up about
2% and the ones from η′ make up less than 1% of the total decay-photon yield. Decays of
other particles contribute less than 0.1%.

Because of this and in order to speed up the computation, only these four particles are
considered here. In the main loop of the cocktail generator, pT , φ and the rapidity y are
sampled from a uniform distribution at each iteration. pT ranges from 0 to 30 GeV, φ from 0
to 2π and y from −1.5 to 1.5. One of each of the four mesons is generated with the sampled
kinematic variables. Each of the particles is assigned a weight

wX(pT ) = (dN/ dpT )π0
(dN/ dpT )X

(dN/ dpT )π0
. (2.1)
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2.2 Cocktail Generation Chapter 2 Baseline: Transverse Mass Scaling

Figure 2.1: Contributions to decay-photon cocktail, calculated in [19]

Using the weights instead of sampling pT directly from the momentum distribution
(dN/ dpT )π0 speeds up the generation considerably: the particle yields at momenta close to
zero are many orders of magnitude larger than those at for example 8 GeV (see Fig. 5.1).
For every particle at low pT , one would on average have to generate on the order of 104

particles to get photons from hadrons with pT > 5 GeV. With weights, the whole pT range
can be sampled quickly and accurately.

In the next step, the mesons are decayed into other particles using the PYTHIA8 [32]
decayer. The photons resulting from the decays are then written into separate histograms
for each particle species with the weights from above.
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Figure 2.2: Reference cocktail using mT scaling

For visualization, the photon yields are split up according to the particle species that
they originated from and then divided by the sum of all photons to show how much they
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2.2 Cocktail Generation Chapter 2 Baseline: Transverse Mass Scaling

contribute to the overall yield in Fig. 2.2. This baseline cocktail of the four most relevant
particles is similar to the one in Fig. 2.1. The mT scaling factors are Cη = 0.46, Cω = 0.81
and Cη′ = 0.4 [19].
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3Kaon-Pion Ratio as Approximation

3.1 Description
The previous cocktail calculation showed that the contribution of η mesons to the decay-

photon cocktail is the second largest after the one from π0. Because measurements of π0

spectra [29, 33] are detailed enough to be directly parametrized, the spectrum of the η

meson is the most important one to predict accurately. In contrast to the η meson, the
charged kaons K± are abundant and more easily measured in heavy-ion collisions. Due
to their similar masses (mη = 547.9 MeV, mK± = 493.7 MeV [34]), it is assumed that their
invariant yields have similar shapes and that they are similarly affected by radial flow. This
opens up the possibility to use the well measured kaon spectrum and its ratio to the pion
yield in place of the η spectrum for which there is much less data available. Via the same
reasoning, the π0 yield is also replaced by the yield of the charged pions π± as their masses
are almost identical: mπ0 = 135.0 MeV, mπ± = 139.6 MeV [34].

For this, the invariant yields for π± and K± are taken from [23] for 0-20% centrality in
order to compare the results to the Rγ in Ref. [2]. Dividing the invariant yields then gives
the K±/π± ratio that is needed for the cocktail generator. In order to get a parametrization
of the ratio, a fit is done with the quotient of two functions of the form

( dN

pT dpT

)
X

(pT ) = N1 exp

βpT −
√

p2
T + m2

X

Tkin
√

1 − β2

+ CXN2

(
1 + p2

T

p2
0

)−n

(3.1)

where N1, N2 are normalizations, Tkin is the kinetic freezeout temperature, β is a flow
velocity, mX is the particle mass, CX is the mT scaling factor for particle X and p0 and n

are parameters for the Hagedorn term. For kaons and pions, the corresponding masses are
fixed and Cπ = 1 is set because the invariant pion yield is the reference for all particles.
CK is given by the best fit and all other parameters are common for the enumerator and
denominator functions.

Because the K±/π± ratio is used immediately as the η/π0 ratio, the analytic form of the
parametrization is not important as long as the fit describes the data reasonably well.

The measured ratios and and the best fit is plotted in Fig. 3.1. For comparison, the ratio
obtained from mT scaling the invariant π0 yield fπ using
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3.2 Cocktail Simulation Chapter 3 Kaon-Pion Ratio as Approximation

K±

π± = CK

fπ
(√

p2
T + m2

K − m2
π

)
fπ (pT ) (3.2)

is also shown in Fig. 3.1. As was already seen in Ref. [23], the kaon-to-pion ratio shows
a distinct peak around pT ≈ 2 − 3 GeV which is reflected in the parametrization. The ratio
from mT scaling on the other hand does not show this feature. Because of this, the ratio at
≈ 2.5 GeV is about 30% larger in the new model than it is with mT scaling.
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Figure 3.1: K±/π± ratio with best fit (Eq.(3.1)) and ratio from mT scaling for comparison

To be consistent with measured η/π ratios at high pT , the mT scaling factor of the η

meson (Cη = 0.46 [33]) is used in the cocktail generator instead of the one for kaons.

3.2 Cocktail Simulation
With this η/π0 ratio, the cocktail generator is run for 108 particles. For every meson, the

decay-photon yield from this model is divided by the yield from the reference cocktail that
uses mT scaling and plotted in Fig. 3.2a. Because only the η meson yield is modified here,
the yields from other hadrons are unchanged. The photon yield from η mesons increases at
1 − 4 GeV because of the increased η/π0 ratio in Fig. 3.1. At 2 GeV, the number of photons
from η decays increases to ≈1.35 times the reference yield. Because photons from η decays
account for ≈15% of all decay-photons, this increases the decay-photon yield γdec by 5%
compared to the reference as seen in Fig. 3.2b.
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Figure 3.2: Ratio of decay-photon yield from K±/π± ratio to the one from mT scaling. (a) by
particle species, (b) in total

This change affects the direct photon excess Rγ as shown in Section 1.4. Rγ was measured
at ALICE and published in Ref. [2] and is shown in Fig. 3.3 for the 0-20% centrality class. The
measured Rγ for ≈ 2 GeV is ≈1.1. In Ref. [2] the average of mT scaling and the ratio of K0

S

to π0 was used. Because the K0
S has a mass of 497.6 MeV [34], the K0

S/π± ratio should have
approximately the same shape as the K±/π± ratio. To check this qualitatively, the K0

S yield
for

√
sNN = 2.76 TeV is taken from [35]. The measurements of K0

S and π± have different
binnings and it is therefore not possible to directly calculate the K0

S/π± ratio on every data
point. The π±, K± and K0

S invariant spectra therefore are linearly interpolated (i.e. the
points are connected by straight lines) and the ratios are calculated using the interpolation.
One side effect of this are artifacts in the plot at higher pT : at high momenta, the bins are
much wider than at low momenta. In the middle of the wide bins, the interpolation does
not describe the data well and a new data point in the enumerator (the kaon spectrum)
or the denominator (the pion spectrum) creates a large kink in the curve. At low pT , the
momentum bins are much smaller and the kinks are less noticeable. For easier comparison,
the K0

S yield is multiplied by a constant such that the ratios are equal at high pT and both
ratios are plotted in Fig. 3.4. The peak that is clearly visible in the K±/π± ratio seems to be
much smaller for K0

S mesons although one would expect the momentum distributions to
look very similar if the shape mostly depends on the mass.

Because the average of the cocktail calculations from mT scaling and the ratio from
K0

S was used in Ref. [2], less than half of the increase in decay-photons from Fig. 3.2b is
accounted for. If the decay-photon yield at pT = 2 GeV was 3% higher than the one used
in Ref. [2], the photon excess Rγ would go down from ≈1.1 to ≈1.07. In other words,
Rγ − 1 = γdir/γdec decreases from ≈0.10 to ≈0.07. The direct photon yield would thus
decrease by about 30%.
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Figure 3.3: Direct photon excess Rγ at ALICE [2]
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4Tsallis-Blastwave Fits

The procedure to predict unknown particle yields using a Tsallis-blastwave model (Chapter
1.7) is as follows: First, the function for the invariant yield (Eq.(4.1)) from the model is
fit to measured spectra for various particles. For different particle species, the mass and
normalization are different, all other parameters are common for all particles.

dN

pT dpT
=A mT

∫ +Y

−Y
cosh ydy

∫ +π

−π
dφ

∫ R

0
rdr(

1 + q − 1
T

(mT cosh y cosh ρ − pT sinh ρ cos φ)
)−1/(q−1) (4.1)

After obtaining the parameters, the unknown yields are predicted by replacing the mass
in Eq.(4.1) by the mass of the desired particle. This yield is then divided by the yield for
π0 from this same model. The ratio is then scaled such that it matches the measured ratio
X/π0 at pT = 5 GeV. With this ratio, a cocktail generation can then be done.

In [28], the authors find that the mesons and baryons form two separate groups with
two sets of common best fit parameters. Therefore, it makes sense to only fit mesons as the
four particles whose decay products constitute the vast majority of the decay photon yield,
the π0, η, ω and η′, are all mesons. The most readily available measurements of mesons are
those of π± and K±. To these yields from ALICE [23], a fit is done and plotted in Fig. 4.1.

The fit did not converge to a reasonable result over the whole region. The fit range was
then adjusted to give a good χ2/d.o.f. while taking as much of the data into account as
possible. Outside of the range 1 GeV < pT < 4.5 GeV, the fit does not describe the data
anymore. This is clearly a problem as matching at 5 GeV is not possible now. The data / fit
plot in Fig. 4.1b also shows that even in the fit range where the data is relatively close to
the fit, the yield of the kaons is mostly larger than the fit and the one of pions is equal or
slighty smaller. In Fig. 4.2, the ratio of the functions in Fig. 4.1a is shown together with
the data. The ratio should closely resemble the data, but the plot shows that this fit barely
describes the data in the fit range and does not describe the data at all outside of the fit
range. Doing a cocktail simulation with particle ratios derived from this fit would not give
realistic results. If the prediction of known particle momentum distributions does not follow
the data there is no reason to assume that the predictions of particle yields of unknown
particles are anywhere close to the real yields.
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Chapter 4 Tsallis-Blastwave Fits

The model can not describe the bump in the K±/π± should not be used for decay-
photon calculations. To incorporate flow for particles other than the η, another method is
necessary.
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Figure 4.1: Simultaneous fit to π± and K± invariant yields using Tsallis-blastwave model. (a) data
with best fit functions, (b) data / fit
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5Two Component Model

5.1 Description of the Model
Another approach is to split the invariant yield into one soft component, fsoft, for low

pT with radial flow and one hard component, fhard, for high pT without radial flow:
f(pT ) = fsoft(pT ) + fhard(pT ) [31]. For the soft component, the blastwave model from
Eq.(1.14) is used. For the hard component, the chosen parametrization is the sum of two
Hagedorn-type terms

fhard(pT ) = A1

(
1 + mT

p1

)−n1

+ A2

(
1 + mT

p2

)−n2

(5.1)

The exact form of the fhard is not crucial as long as it describes the data since mT scaling
is used as an empirical observation. Other spectral shapes such as A (1 + mT /p0)−n or
A
(
1 + m2

T /p2
0
)−n resulted in worse fits which is why the above form was used. To illustrate

the two-component model, the sum is fit to the invariant yield of charged pions from [23]
and the components are plotted separately with the parameters obtained from the fit in
Fig. 5.1. In addition, the fraction of the soft and hard component with respect to the sum
are shown in Fig. 5.2. One can see that for low pT (below 1 GeV), the soft component
dominates. At pT → 0 GeV, the soft components comprises 90% of the spectrum. For high
pT (above ≈ 4 GeV) the contribution from the soft component drops to many orders of
magnitude below that of the hard component.

After obtaining the parameters (normalization of the pion spectrum, βs, T and n) for the
blastwave model (e.g. from a fit to the pion yield), unknown spectra can be predicted by
replacing the mass and multiplying the normalization by the factor AX such that the ratios
of particle densities match the ones predicted from the statistical model (Appendix 7.1):

AX := NX

Nπ
≈ m2

πK2(mπ/Tkin)
m2

XK2(mX/Tkin)
m2

XK2(mX/Tchem)
m2

πK2(mπ/Tchem) (5.2)

Tkin and Tchem are the kinetic and chemical freeze-out temperatures. After the fireball
cools down below Tchem, the inelastic collisions cease and the particle composition becomes
fixed. When it cools down below Tkin, elastic collisions stop and the momentum distributions
are fixed [36]. Tchem has been determined to be 156 MeV [10] and Tkin is the fit parameter
in the blastwave model.

The statistical model describes the amount of primary particles produced in the collision,
but not the measured particle yields which also include decay products. This process,
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5.1 Description of the Model Chapter 5 Two Component Model

in which heavy particles contribute to the yields of lighter particles by decays, is called
feeddown. Feeddown can be simulated by creating primary particles of many different
species with momentum distributions discribed by the blastwave model in Eq.(1.14) and
letting them decay e.g. using PYTHIA8. One can then calculate the fraction of primary
particles to primary + secondary particles. This fraction is approximately constant and the
ratio of primary fractions of a hadron X to the one of neutral pions seems to be approximately
the mT scaling factor CX [31]. Therefore, the soft component is also multiplied by CX to
account for feeddown.

For the hard component, mT scaling is used because the radial flow is assumed to be
accounted for in the soft component. Because the hard component accounts for almost all
of the yield at high momenta (see Fig. 5.1), the normalization of fhard is multiplied by the
mT scaling factor which is the ratio X/π0 for high pT .

In short, the procedure to go from a measured π spectrum to the spectrum of another
hadron X is:

fhard(pT ) → CX fhard(
√

p2
T + m2

X − m2
π)

fsoft(pT ; mπ) → AX CX fsoft(pT ; mX)
(5.3)

It is important to always check that the contribution of the soft component dominates at
low pT after fitting: if the hard component is too large at low momenta, it is questionable
whether collective flow is necessary to describe the collision.

In Pb-Pb collisions at LHC and Au-Au collisions at RHIC, it is assumed that a radial flow
is present [5]. Under this assumption, the soft component should contribute a significant
fraction of the yield at low pT . If it does not, a part of the spectrum with flow is attributed to
the hard component that does not incorporate flow. In the extrapolation to other particles,
the flow is therefore underestimated. In the case that the data is well described by the hard
component without flow, this model reduces to mT scaling since the part that contains all
the flow is negligible. It is relatively arbitrary how large the hard component can be at low
pT before becoming problematic, which is a weakness of this model.

To get parameters that are compatible with the four particle species, a simultaneous fit to
charged pions and kaons (from [23]) is done. The fit function is

f(pT ) = CX (AX fsoft(pT ; A, mX , n, βs, T )

+fhard(pT ; A1, p1, n1, A2, p2, n2))
(5.4)
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5.2 Comparison With Data Chapter 5 Two Component Model

Cπ was set to 1 since all particles are modified in reference to the pion yields and
CK is fixed to the ratio obtained in Chapter 3 from the data, CK = 0.485, for faster fit
convergence.

The result is plotted in Fig. 5.3. Aside from the very low pT region below 0.5 GeV, the fit
describes the data well up to 8 GeV for both particles with the same set of parameters.
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Figure 5.3: Two component fit to charged π± and K±

With the parameters from the fit, the invariant yield of the η meson and its ratio to the π0

yield can be predicted. It is plotted together with the one from mT scaling and the K±/π±

ratio parametrization in Fig. 5.4.

Because the two-component model describes the π± and the K± data very well, and the
shape of the η spectrum is very similar to the K spectrum due to their similar masses, the
η/π0 ratio also shows a bump at around 2.5 GeV.

Unlike the K±/π± ratio, the two-component model can be used for the other relevant
particles (ω, η′) as well. The resulting ratios are multiplied by a constant so that the ratios
are roughly equal at high pT for comparison and plotted in Fig. 5.5. The plot shows that the
peak that was seen in the K±/π± ratio moves to higher momenta with increasing particle
mass. One explanation is that heavier particles are more effected by flow than lighter
particles in the blastwave model. The factor AX from the statistical model is smaller for
higher masses and supresses the soft component. The spectrum from the two-component
model resembles mT scaling more and more if the hard component dominates over the
whole range. Therefore the bump becomes smaller for heavier particles: the highest point
in the η′/π0 ratio is only slightly above the constant value at high pT .

5.2 Comparison With Data
To assess the validity of the predictions from this model, X/π0 ratios can be predicted for

particles other than pions and kaons. The data for mesons is rather sparse: there exist some
measurements for η mesons [37, 38], but the results have much larger uncertainties than
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Figure 5.6: η/π0 ratios at a) ALICE [37] and b) PHENIX [26] with measurements

the ones for charged kaons and pions. The measurements at ALICE [37] are shown together
with the prediction from mT scaling and the two-component model in Fig. 5.6a.

They show no major disagreement with the prediction: they also show the bump at 3 GeV
are sometimes larger and sometimes smaller than the prediction, which is expected if the
errors are gaussian and the data follows the model. The measurements are described just as
well by the measured K±/π± ratio because the prediction for the η is very similar to the
one for kaons.

The same procedure, i.e. the fit of the model to charged pion and kaon spectra was
repeated with data from PHENIX at RHIC [26], which is also a heavy-ion collider experiment
similar to ALICE. In the fit, the K±/π± at high pT was fixed to aid the fit convergence
because there were no K± measurements above 4 GeV. Fig. 5.6b shows the measurements
in Au-Au collisions from PHENIX with the prediction from the two-component model and
mT scaling.

Here, mT scaling describes the data well, as the PHENIX collaboration already noticed
[26]. The two-component model, which includes radial flow in the soft component, is a
worse description of the data. This looks like there is no radial or little radial flow for η

mesons at PHENIX and calls into question whether such a model with collective radial flow
is needed to describe the data at PHENIX. On the other hand, the creation of the QGP at
RHIC [39] and its expansion would suggest that radial flow is present in the collisions and
would have to be factored in for any fit to the data.

5.3 Cocktail Simulation for Pb-Pb at ALICE
The cocktail simulation is repeated with the hadron/π0 ratios for Pb-Pb collisions with a

center-of-mass energy
√

sNN = 2.76 TeV at ALICE. The photon yields divided by the reference
yields are shown in Fig. 5.7. The η, ω and η′ yields are now higher as expected from Fig.
5.5. Separately, they increase from η, ω and η′ increase to up to 1.3 times the yields from
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mT scaling. With increasing mass, the peak moves to higher momenta as indicated in Fig.
5.5.

At very low pT , the decay-photon spectrum is smaller than the one from mT scaling. This
can be interpreted as the photons being boosted from low pT to higher momenta in the
collective flow.

Because the ω and η′ mesons contribute much less to the decay-photon yield than the η

meson (Fig. 2.2), most of the increase in overall decay-photons in Fig. 5.7b comes from the
change of the η/π0 ratio. The decay-photon yield goes up to ≈1.05 times the yield from
mT scaling which is similar to the result from the K±/π± ratio. The direct photon yield
therefore also decreases by about 30% in this model.
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Figure 5.7: Change of decay-photon yield
γdec, new

γdec, mT scaling
for two-component model. (a) by particle

species, (b) in total

5.4 Cocktail Simulation for Au-Au at PHENIX
Regardless of the discrepancy between the η/π0 ratio from measurements and the model,

the same procedure using the two-component model is now applied to the measurements
in Au+Au collisions with a center-of-mass energy of

√
sNN = 200 GeV at PHENIX although

the results are likely not realistic because the η/π0 ratio is well described by mT scaling.
It is particularly interesting to compare the results from this model to the published ones
because firstly, only mT scaling was used which makes the comparison straightforward and
secondly, the direct photon flow puzzle (see Chapter 1.4) and the discrepancy between the
results from STAR and PHENIX (Fig. 1.3) indicate that the direct photon yield at RHIC is
not completely understood [18].
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First, the parameters for the soft and hard components are obtained by a simultaneous
fit to K± and π± spectra from [40]. The fit is shown in Fig. 5.8 and the parameters are in
Appendix 7.2. The extrapolation to other particle ratios is shown in Fig. 5.9. The peaks
in the hadron/π0 ratios are now higher: the η/π0 ratio goes up to 0.6 whereas the highest
point in the calculation for Pb-Pb is at approximately 0.55. In addition to this, the peaks of
the heavier particles are more pronounced than in the Pb-Pb calculation. The reason for
this is that in the PHENIX measurements, the invariant yield declines much more steeply
for increasing momentum. If now 1% of particles are boosted up in momentum from p0

by some momentum ∆p, the boosted particles make up a large fraction of all particles at
p0 + ∆p. Therefore the X/π0 ratio increases more than at ALICE.

0 1 2 3 4 5 6
 / (GeV / c)

T
p

4−10

3−10

2−10

1−10

1

10

210

in
v.

 y
ie

ld

 < 8.0 GeV
T

, K for 0.5 GeV < pπTwo component fit to 

±π
±K

 < 8.0 GeV
T

, K for 0.5 GeV < pπTwo component fit to 

(a) Simultaneous fit of two-component model to
π± and K±

0 1 2 3 4 5 6
 / (GeV / c)

T
p

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

D
at

a 
/ F

it

 < 8.0 GeV
T

, K for 0.5 GeV < pπTwo component residuals from fit to 

±π
±K

 < 8.0 GeV
T

, K for 0.5 GeV < pπTwo component residuals from fit to 

(b) Data / fit

Figure 5.8: Two component fit to charged π± and K± from PHENIX [40]

This is also reflected in the change of the decay-photon yield for PHENIX shown in Fig.
5.10. It increases by 7% compared to mT scaling in this model. The Rγ published by the
PHENIX collaboration in Ref. [3] is shown in Fig. 5.11. It is ≈1.3 in the range between
1 GeV and 4 GeV for 0-20% centrality which is much larger than at ALICE (Fig. 3.3). At
3 GeV, Rγ would decrease to ≈1.2, which means that about a third of the direct photon
signal could be attributed to decay-photons in this model.
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6Summary and Discussion

Four different methods for predicting unknown particle yields in Pb-Pb collisions are com-
pared: mT scaling, taking the K±/π± ratio as an approximation for the η/π0 ratio, Tsallis-
blastwave fits and a two-component model. The fit from the Tsallis-blastwave model does
not describe the known charged pion and kaon yield and is not usable for extrapolation to
other particles.

Because kaons have masses similar to η mesons, it is assumed that they are similarly
affected by collective radial flow and the η/π0 is substituted by K±/π±. The K0

S , which
also has a similar mass, was already used in cocktail calculations at ALICE [2] although the
authors took the average of mT scaling and the ratio from K0

S as the η/π0 ratio. Radial flow
was therefore already partly incorporated. When comparing the K±/π± and the K0

S/π±

ratios, the ratio with charged kaons show a larger peak than the ratio with neutral kaons
even though the masses of K± and K0

S are almost identical. The reason for this difference
is unclear, but this means that in the cocktail calculation in Ref. [2] fewer η mesons were
decayed than if the K±/π± had been used. Compared to mT scaling, the K±/π± ratio
is up to ≈40% larger between 1 GeV and and 5 GeV. After accounting for the averaging
and the difference between K0

S and K±, this translates to an increase of the decay photon
yield by up to 5% at about ≈2 GeV. Almost a third of direct photons at this momentum
could be attributed to decay-photons instead of direct photons. This method works well
for the η meson because it is simple and matches the measured η/π0 ratio reasonably well.
The severe limitation is that this can only be applied to the η because all other particles
have masses that differ by a lot from the one of charged kaons. For the ω and η′, another
approach is necessary.

In the two-component model, the spectrum of charged pions and kaons is fit with the sum
of a blastwave component for low pT and two Hagedorn type terms for high pT . To predict
the η, ω and η′ spectra, the mass and normalization in the soft component are changed
and mT scaling is done in the hard component. The fit describes the charged pion and
kaon spectra well and the prediction for the η spectrum shows no major disagreement
with measurements at ALICE. The prediction for η from this model is very close to the
measured K±/π± ratio. For heavier mesons, the boost due to radial flow is larger and the
peak in the ratio to π0 moves to higher pT while the ratio decreases at low pT . With the
contributions from η, ω and η′, the decay photon yield goes up by a factor up to ≈1.07 at
2 GeV in this model. Here, also a third of previously assigned direct photons would now be
attributed to decay-photons at this momentum if this decay-photon calculation was used.
These two results show that even a difference by a few percent in the decay-photon cocktail
can drastically change the direct photon measurements.
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The η/π0 ratio from the two-component model was very close to the K±/π± ratio, which
was expected due to the similar masses. For the η meson, this model is therefore very
similar to the first one. The strength of this approach is that it can also be used for ω and
η′ mesons, although assessing the accuracy of these predictions is difficult due to very few
measurements.

A complete cocktail simulation requires baryons such as the Σ0 in addition to mesons.
Because baryons and fermions have different mT spectra, a new set of parameters would
be necessary because their mT spectra are different. Since very heavy particles firstly
only contribute a small fraction of the decay photon cocktail, a change in the predicted
momentum distribution of particles other than the four mesons discussed in this thesis gives
an almost identical decay-photon spectrum. One should therefore concentrate on the lighter
particles, which contribute the most photons.

One drawback is that it is not clear to what extent the hard component contributes at
very low pT . Conceptually, one would expect that the low pT region is dominated by the
soft component with radial flow in heavy-ion collisions. When comparing the prediction
with the η measurements from PHENIX, it looks like there is almost no flow and the hard
component makes up most of the spectrum.

Nonetheless, I think that the two-component model is better suited for decay photon
calculations than mT scaling and the substitution by K±/π±. It reduces to mT scaling if
the data shows no radial flow. The η/π0 ratio from the two-component model is similar to
the K±/π± because the modification due to the mass difference is small. This modification
based on theory and previous observations likely improves the prediction.

One possible improvement would be to incorporate the effect of feeddown in the soft
component. Currently, feeddown is taken to be independent of the transverse momentum. A
feeddown simulation could be done with many particle species following e.g. the blastwave
model. With the fraction of primary and secondary particles from this simulation, the soft
component could be corrected to also include the feeddown products.
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7Appendix

7.1 Blastwave normalization
The derivation of the normalization is partly shown in [41]: in a grand canonical

ensemble, the logarithm of the partition function for particle species i is given by

ln Zi = V gi

2π2

∫ ∞

0
±p2 dp ln

(
1 ± exp

(
−Ei − µi

Tchem

))
(7.1)

with the volume V, the chemical freeze-out temperature Tchem, the spin degeneracy
gi = 2J + 1, the energy Ei =

√
p2

i + m2
i and ‘+’ for fermions, ‘-’ for bosons. The particle

density for species i is then

Ni = −Tchem
V

∂ ln Zi

∂µi

= gi

2π

∫ ∞

0

p2 dp

exp (Ei − µi) /Tchem ± 1

= gi

2π2 m2
i Tchem

∞∑
k=1

∓1k+1

k

(
eµi/Tchem

)k
K2

(
kmi

Tchem

)
≈ gi

2π2 m2
i TchemK2 (mi/Tchem) with k > 1 terms neglected and µi ≈ 0

(7.2)

The ratio of two particle densities Ni and Nj is then

Ni

Nj
≈ m2

i K2(mi/Tchem)
m2

jK2(mj/Tchem)
(7.3)

On the other hand, the particle density is given by

NX

V
= 1

V

∫∫∫
dφ dy pT dpT

d3nX

dφ dy pT dpT
(7.4)

= 2π

V

∫∫
dy pT dpT

d2n

dy pT dpT
(7.5)

In collisions, the fireball not only expands radially, but also longitudinally. This can be
taken into account by splitting up the hot region into small sources i that are boosted in the
z-direction by some rapidity ∆yi. If g(y) is the rapidity distribution of a stationary source,
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then the distribution in the lab-frame is g(y + ∆yi) since a Lorentz boost only changes the
rapidity by a constant. The detector at mid-rapidity only recieves the particles with y = 0.
With 0 = y + ∆yi, contribution of the boosted source is proportional to g(−∆yi). In the limit
of infinitesimally small sources, this is equivalent to integrating over the rapidity distribution
g(∆y).

Therefore the ratio of particles at mid-rapidity should be the same as the one that is
obtained by integrating over the whole rapidity range:

NX

Nπ

∣∣∣∣
y=0

=

∫∫
dy pT dpT

d2NX

dy pT dpT∫∫
dy pT dpT

d2Nπ

dy pT dpT

(7.6)

A factor AX is introduced to include the change in the normalization. The soft component
of a particle X is then AX · fX(pT ). One can work out that integrating over the soft
component gives

∫
pT fX(pT ) dpT ∝ m2

XK2(mX/Tkin) (7.7)

where Tkin is the temperature parameter in the blastwave model. Equations 7.3, 7.6 and
7.7 together then result in

NX

Nπ

∣∣∣∣
y=0

= NX

Nπ
=

∫∫
dy pT dpT

d2NX

dy pT dpT∫∫
dy pT dpT

d2Nπ

dy pT dpT

(7.8)

≈ AX
m2

XK2(mX/Tkin)
m2

πK2(mπ/Tkin) (7.9)

!= m2
XK2(mX/Tchem)

m2
πK2(mπ/Tchem) (7.10)

Then AX is given by

AX = nX

nπ
≈ m2

πK2(mπ/Tkin)
m2

XK2(mX/Tkin)
m2

XK2(mX/Tchem)
m2

πK2(mπ/Tchem) (7.11)
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7.2 Fit results

π0 parametrization

0 1 2 3 4 5 6 7 8
 / GeV

T
p

3−10

2−10

1−10

1

10

210

310

T
dp

T
dN

 / 
p  data0π

Two-component fit

Figure 7.1: Parametrization of π0 spectrum with fit from two component model

Table 7.1: Parameters of fit in Fig. 7.1

CX 1
A 1.757e+04
βS 7.891e-01
T 1.500e-01
n 7.120e-01
A1 3.180e-01
p1 4.550e+01
n1 4.796e+01
A2 0
p2 -
n2 -

Here, the fit worked well enough without the second term in Eq.(5.1). A2 was fixed to
zero eliminating that term.
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K±/π± parametrization
The fit function is

K±

π± (pT ) = N1

exp
(

βpT −
√

p2
T +m2

K

Tkin
√

1−β2

)
+ CKN2

(
1 + p2

T

p2
0

)−n

exp
(

βpT −
√

p2
T +m2

π

Tkin
√

1−β2

)
+ N2

(
1 + p2

T

p2
0

)−n . (7.12)

The result of the fit were the parameters:

Table 7.2: Parameters of fit in Fig. 3.1

N1 0.991
β 0.904
Tkin 0.176
CK 0.497
N2 2.08e+05
p0 0.218
n -1.203

Tsallis-Blastwave parameters

Table 7.3: Parameters of fit in Fig. 3.1

q 1.062
T 0.109
β 0.454

Two-component parameters for ALICE

Table 7.4: Parameters of fit to ALICE invariant yields in Fig. 5.3

A 1.76e+5
β 0.878
T 0.094
n 0.760
A1 0.665
p1 5.667
n1 8.940
A2 139.2
p2 8.034
n2 22.50
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Two-component parameters for PHENIX

Table 7.5: Parameters of fit to PHENIX invariant yields in Fig. 5.8

A 1.01e+4
β 0.885
T 0.108
n 0.796
A1 1.290
p1 9.862
n1 20.0
A2 1566.9
p2 5.875
n2 30.0
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