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Kurzfassung

Das elektromagnetische Kalorimeter des BABAR Detektors war bisher nur bis
zu Photonenergien von 1.5 GeV kalibriert. Oberhalb dieser Grenze wurde die
Energie von Photonen mit einer Monte Carlo Simulation bestimmt.

In dieser Arbeit werden Streuereignisse des Typs e+e− → µ+µ−γ benutzt um
erstmals eine Kalibration für den hochenergie Bereich des Kalorimeters durch-
zuführen. Dies ist möglich, da die Energie und Richtung der Photonen vollständig
durch die Energie und den Impuls der beiden Muonen bestimmt werden. Die sys-
tematischen Unsicherheiten der Kalibration betragen 0.3%. Die Energieauflösung
des Kalorimeters wird für den Energiebereich zwischen 2 und 7 GeV bestimmt
und mit der Monte Carlo Simulation verglichen.

Erstmals wird mit diesen Photonen ebenfalls die Rekonstruktion der Pho-
tonrichtung analysiert. Eine systematische Abweichung der rekonstruierten Pho-
tonrichtung von der wahren Richtung von bis zu 4 mrad wird beobachtet. In
der Monte Carlo Simulation wird sogar eine noch grössere Abweichung (bis zu
10 mrad) bestimmt. Eine Korrektur der Abweichungen wurde entwickelt und
getestet.

Abstract

In the past, the electromagnetic calorimeter of the BABAR detector was cal-
ibrated only up to photon energies of 1.5 GeV. Above this energy, the energy
determination for a photon cluster was using results from a Monte Carlo simula-
tion.

In this thesis, photons from events of the type e+e− → µ+µ−γ are used to
perform a calibration for the first time in the high energy range. This is possible
since the energy and direction of these photons is fully determined by the four
momenta of the two muons. The systematic uncertainty of the energy scale is
estimated to be 0.3%. The energy resolution of the electromagnetic calorimeter
is determined in the range between 2 and 7 GeV and compared to the prediction
of the Monte Carlo simulation.

In addition, the photons are used to study for the first time the reconstruction
of the photon direction. A systematic deviation of the reconstructed photon
direction from the estimate of the true direction of up to 4 mrad is found. In the
Monte Carlo simulation, an even larger deviation (up to 10 mrad) is observed. A
scheme to correct for these deviations is developed and tested.
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Chapter 1

Introduction

The SLAC B-Factory program, i.e. the BABAR experiment and the PEP-II col-
lider [1], was designed to explore the full spectrum of physics accessible with
B-mesons and τ -leptons. Initially, the emphasis was on the discovery of CP
violation [2] in the B-meson system. With the very large integrated luminos-
ity, approximately 300 fb−1 up to October 2005, processes with very small cross
sections become accessible. This allows over-constrained tests of the Cabbibo-
Kobayashi-Maskawa (CKM) Unitarity Triangle [3] and searches for physics be-
yond the standard model via loop decays.

In a typical B-decay, 5.5 photons are produced on average, mostly originating
from neutral pion decays. In order to fully reconstruct the B-decay, the energy
and the position of the neutral particles have to be measured. This is done in the
electromagnetic calorimeter (EMC) [1]. An expected photon energy spectrum for
generic B-decays is shown in Fig. 1.1 (a). In the center-of-mass (c.m.) system,
energies of up to 1 GeV are observed.

Some of the rare decays mentioned above involve high energetic photons in the
final state. Examples are B → π0π0 [4], which is needed to determine the angle
α of the CKM Unitarity Triangle, or the electroweak Penguin decay b → sγ [5],
which is one of the most promising candidates for searches for physics beyond
the standard model. The photon energy spectra for both decays are shown in
Fig. 1.1 (b) and (c) respectively. Energies of up to 4 GeV in the c.m. frame are
expected.

The cesium iodide calorimeter of the BABAR detector was designed to detect
electromagnetically interacting particles, provide electron identification and in-
formation about neutral hadrons. However, the electromagnetic calorimeter is
currently not calibrated for energies higher than 1.5 GeV. Above this threshold,
the calibration relies on information obtained from Monte Carlo simulations.
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Figure ���� Photon energy spectrum
in �a� generic B decays and �b� B�

�

���� events�

Figure ���� �� �dashed line� and B
meson reconstruction e�ciency �solid
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Photon E�ciency and Solid Angle Coverage
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TABLE IV: Branching fractions in bins of hadronic mass with
statistical and systematic errors. The bottom line shows the
total branching fraction obtained from the separate fit to the
data over the full M(Xs) range, and not from the sum of the
individual bins.

M(Xs) ( GeV) B(M(Xs))/100 MeV (10−6)

0.6 - 0.7 0.4 ± 0.5 + 0.1
− 0.1

0.7 - 0.8 0.3 ± 0.7 + 0.1
− 0.1

0.8 - 0.9 20.8 ± 1.2 + 1.3
− 1.3

0.9 - 1.0 19.6 ± 1.4 + 1.2
− 1.2

1.0 - 1.1 3.3 ± 1.2 + 0.6
− 0.6

1.1 - 1.2 6.2 ± 2.4 + 0.9
− 0.9

1.2 - 1.3 18.1 ± 3.4 + 1.9
− 1.9

1.3 - 1.4 27.6 ± 4.6 + 2.8
− 2.7

1.4 - 1.5 22.6 ± 5.0 + 2.5
− 2.5

1.5 - 1.6 29.8 ± 6.0 + 3.1
− 3.0

1.6 - 1.7 28.0 ± 7.2 + 3.3
− 3.1

1.7 - 1.8 26.9 ± 8.1 + 3.4
− 3.0

1.8 - 1.9 40.6 ± 9.7 + 6.1
− 5.0

1.9 - 2.0 8.0 ± 11.7 + 3.1
− 2.9

2.0 - 2.2 21.0 ± 9.6 + 5.9
− 4.0

2.2 - 2.4 26.1 ± 12.0 +10.5
− 6.7

2.4 - 2.6 28.0 ± 16.0 +16.2
− 9.7

2.6 - 2.8 −3.7 ± 18.8 + 4.4
− 4.5

B (10−6)

0.6 - 2.8 327.0 ± 18.0 +55.0
−40.0

The Standard Model predicts no isospin symmetry-
breaking from the dominant penguin diagram for B →
Xsγ. Isospin symmetry-breaking effects occur at order
Λ/mb in the heavy quark expansion [39], due to an-
nihilation contributions from four-quark operators, the
chromo-magnetic dipole operator and charm penguins.
For the exclusive decays B → K∗γ, the Standard Model
predicts a positive value of ∆0− between 5 and 10% [39],
but new physics beyond the Standard Model could en-
hance the isospin breaking effects. Measurements of the
B → K∗γ isospin asymmetry from BABAR and BELLE
are consistent with the predictions of the Standard Model
[28].

We split the 38 modes into charged and neutral B
decays, re-fit the data, and calculate the separate effi-
ciencies and total branching fractions. While the sig-
nal detection efficiencies are almost a factor of two lower
for the B− decays, the backgrounds and missing frac-
tions are symmetric. Comparing the charged and neu-
tral branching fraction measurements, using the lifetime
ratio, τ(B−)/τ(B0) = 1.086± 0.017 [33], and our recent
measurement of the production ratio of charged and neu-
tral B events at the Υ (4S), B0 /B− = 1.006±0.048 [40],

TABLE V: Branching fractions in bins of photon energy with
statistical and systematic errors.

Eγ ( GeV) B(Eγ)/100 MeV (10−6)

2.593 - 2.606 3.3 ± 4.0 + 0.8
− 0.8

2.579 - 2.593 1.9 ± 4.9 + 0.6
− 0.8

2.563 - 2.579 129.2 ± 7.2 + 8.1
− 8.1

2.545 - 2.563 108.9 ± 7.6 + 6.6
− 6.6

2.525 - 2.545 16.7 ± 6.2 + 3.2
− 3.2

2.503 - 2.525 28.6 ±11.1 + 4.1
− 4.1

2.480 - 2.503 76.3 ±14.4 + 8.0
− 7.8

2.454 - 2.480 107.8 ±17.9 +10.8
−10.6

2.427 - 2.454 82.4 ±18.1 + 9.2
− 8.9

2.397 - 2.427 101.6 ±20.3 +10.6
−10.1

2.366 - 2.397 89.5 ±22.9 +10.7
− 9.9

2.333 - 2.366 81.3 ±24.6 +10.3
− 9.1

2.298 - 2.333 115.8 ±27.6 +17.4
−14.1

2.261 - 2.298 21.8 ±31.6 + 8.3
− 7.8

2.181 - 2.261 52.7 ±24.2 +14.9
−10.1

2.094 - 2.181 60.0 ±27.6 +24.1
−15.5

1.999 - 2.094 59.0 ±33.8 +34.3
−20.5

1.897 - 1.999 −7.1 ±36.7 + 8.5
− 8.8

M (XS)  (GeV)Gamma

 Gamma energy  (GeV)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.80.6 0.8

1.9 2.2 2.3 2.52.0 2.1 2.4 2

.6
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FIG. 5: The hadronic mass spectrum (a), and the photon en-
ergy spectrum (b). The data points are compared to theoret-
ical predictions (histograms) obtained using the shape func-
tion (solid line) and kinetic (dashed line) schemes.

Figure 1.1: Expected c.m. photon energy spectra in (a) generic
B-decays, (b) B → π0π0 [6], and (c) expected and measured photon
energy spectrum of b → s γ [5]. Energies up to 4 GeV in the c.m.
frame are expected.

In this thesis, radiative muon pair events of the type

e+e− → µ+µ−γ (1.1)

are studied. In those events, the photon energy can be calculated from the muon
measurements, i.e. without any information from the calorimeter. This photon
estimate is used to calibrate the energy and position measurement of the calorime-
ter and to study the resolution of the energy and position measurement. Finally,
the minimum ionizing signal of muons can be used to analyze and calibrate the
EMC.

In the first part of this thesis, a cluster energy calibration for high energies is
presented using radiative muon pairs. It is possible to calibrate the calorimeter
with these events for energies between 400 MeV and 7 GeV. This calibration can
be combined with the existing low energy calibration of the BABAR EMC which
is performed with decays of neutral pions into two photons for energies between
70 MeV and 1.5 GeV.

The resolution of the reconstructed π0 invariant mass is dominated by the
photon energy resolution for low photon energies (Eγ . 0.7 GeV) and by the
angular resolution for higher energies (Eγ & 0.7 GeV). The π0 energy calibration
assumes a correct angular measurement of the photons. Therefore, the angular
reconstruction for photons is discussed in the second part of this thesis.



Chapter 2

Theory

In this thesis, hard photons radiated in the initial or final state are used to
calibrate the calorimeter. The process e+e− → µ+µ−γ can be calculated to a high
precision in QED. After presenting the cross section and radiation probability of
these photons, the basic mechanisms of energy deposition of charged and neutral
particles is discussed.

2.1 Initial and Final State Radiation

In principle, two different processes contribute in first order to the radiation of
hard photons in the data sample e+e− → µ+µ−γ. The photon can be radiated
in the initial state (ISR) by the beam electron or positron or it can be radiated
in the final state (FSR) by one of the muons. The Feynman graphs for both
processes are shown in Fig. 2.1.

Experimentally, both processes can not be distinguished. Theoretically, they
are different since the muon mass is approximately 200 times the electron mass.
However, for hard radiated photons at a collider with an energy of 10.58 GeV

(a) Initial state radiation (b) Final state radiation

Figure 2.1: Feynman diagram for the radiation of a photon in the
initial or final state.

11



12 CHAPTER 2. THEORY

in the c.m. system, lepton masses can be neglected. Thus, ISR and FSR have
identical cross sections. The calculation of the cross section will be performed for
ISR photons.

Hard initial state photons are radiated at all angles to the collision axis. The
ISR cross section σ(s), is obtained to first order as

dσ(s, x, θ)

dx
= W (s, x, θ) · σe+e−→µ+µ−(s(1− x)), (2.1)

where x = 2Eγ/
√
s, Eγ is the c.m. energy of the photon and

√
s is the total

c.m. energy. The probability of photon emission is described by the function
W (s, x, θ), which in first order is

W (s, x, θ) =
α

πx

(
2− 2x− x2

sin2θ
− x2

2

)
, (2.2)

where α is the fine structure constant and θ the ISR photon emission angle
in the c.m. system [7]. The first order calculation of W (s, x, θ) has an infrared
divergency assuming massless fermions. It is valid for θ � 0. More precise
equations taking next order processes into account are free from divergencies.
They can be found in [8].

ISR photons are emitted predominantly at small angles relative to the beam
axis. About 10% of the photons have c.m. polar angles in the range of the
acceptance of the BABAR detector.

The cross section of e+e− → µ+µ− is given by

σe+e−→µ+µ−(s) =
4πα2

3s
. (2.3)

This cross section is only valid at energies where lepton masses are negligible.
Numerically, the cross section of e+e− → µ+µ− is 86.8 nb/s (GeV2). If the muon
mass cannot be neglected, a helicity correction has to be applied. However, it lies
between 0.95 and 1.0 for s > 10 m2

µ [9].

The first order calculations presented here for cross section and radiation
probability show an infrared divergency for the photon and a divergency to small
photon angles.

2.2 Interactions of Particles with Matter

In this section, the interactions of charged and neutral particles with matter are
discussed. As events of the type e+e− → µ+µ−γ are studied in this thesis, the
section on energy deposition of charged particles will focus on muons and the
section on interaction of neutral particles will focus on photons.
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2.2.1 Charged Particles

Except for highly relativistic particles (for muons well above energies of 10 GeV),
the main contribution to energy loss in matter are ionization and atomic excita-
tion. The Bethe-Bloch formula [10] gives the average energy loss as

− dE

dx
= 4π

z2α2

β2

Zρ

AmNme

(
1

2
ln

2meβ
2γ2Tmax

I2
− β2 − δ

2

)
, (2.4)

where me, mN , α are the electron and nucleon masses and the fine structure
constant. The incoming particle properties are the charge z, the velocity β and
the gamma factor γ. Z, A, ρ and I are the charge and atomic number of the atoms
of the medium, the density and average ionization potential for the medium. The
factor δ denotes the density effect. It is a correction due to medium polarization.
Tmax denotes the maximal energy transfer in a single collision. For an incident
particle of mass M, and momentum Mβγc, kinematics give

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
. (2.5)

The ionization energy loss decreases with 1/β2 for increasing velocities until it
reaches a minimum for βγ ∼ 4. The particle is then called minimum ionizating.
Afterwards, it starts to rise logarithmically until it reaches a constant value (Fermi
plateau).

Fig. 2.2 shows the energy loss by muons incident on copper over nine orders
of magnitude of the muon momentum. In this thesis, muons with an energy of
0.4 to 10 GeV are studied. This corresponds to a dE/dx value near the minimum.
The typical value of energy losses by minimum ionizing particles are around
2 MeV/(g/cm2). In the BABAR calorimeter which consists of CsI(Tl), this value
corresponds to 6.6 MeV/cm or ∼200 MeV per crystal.

2.2.2 Neutral Particles

The interaction of neutral particles in matter are fundamentally different from
the ones of charged particles. The main interactions of photons are discussed in
the following.

Photoelectric Effect

The photoelectric effect involves the absorption of a photon by an atomic elec-
tron which then gets emitted by the atom. The cross section for this process
depends on the energy of the incident photon, it is the largest when the photon
energy approaches the binding energies of the atomic electrons. The photoelectric
cross section rises with Z5 (Z being the atomic number of the medium) and is
proportional to 1/E3.



14 CHAPTER 2. THEORY

2 27. Passage of particles through matter

27.2. Electronic energy loss by heavy particles [1–5]

Moderately relativistic charged particles other than electrons lose energy in matter
primarily by ionization and atomic excitation. The mean rate of energy loss (or stopping
power) is given by the Bethe-Bloch equation,

−dE
dx

= Kz2
Z

A

1
β2

[
1
2

ln
2mec

2β2γ2Tmax

I2
− β2 − δ

2

]
. (27.1)

Here Tmax is the maximum kinetic energy which can be imparted to a free electron in a
single collision, and the other variables are defined in Table 27.1. With K as defined in
Table 27.1 and A in g mol−1, the units are MeV g−1cm2.

In this form, the Bethe-Bloch equation describes the energy loss of pions in a material
such as copper to about 1% accuracy for energies between about 6 MeV and 6 GeV
(momenta between about 40 MeV/c and 6 GeV/c). At lower energies various corrections
discussed in Sec. 27.2.1 must be made. At higher energies, radiative effects begin to be
important. These limits of validity depend on both the effective atomic number of the
absorber and the mass of the slowing particle.
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June 17, 2004 10:26

Figure 2.2: Stopping power (=〈−dE/dx〉) for positive muons in
copper as a function of βγ = p/Mc. Solid curves indicate the to-
tal stopping power. Vertical bands indicate the boundaries between
different approximations [10].

Compton Scattering

Compton scattering is the scattering of photons on free electrons. As the binding
energy of electrons is small compared to that of passing near relativistic particles,
this process is relevant in most particle detectors. The cross section of Compton
scattering is proportional to 1/E. Closely related to the Compton scattering are
the Raleigh scattering which can be neglected at high energies.

Pair Production

The process of pair production involves the transformation of a photon into an
electron positron pair. In order to conserve momentum, the presence of a nu-
cleus as third body is necessary. Theoretically, pair production is connected to
bremsstrahlung by a simple substitution rule.

Pair production is the dominant interaction process for high energy photons
(above roughly 10 MeV). The characteristic amount of material traversed is called
a radiation length X0. It is defined as 7

9
of the mean free path for pair production

by a high energetic photon. This definition is due to the close connection to
bremsstrahlung: The radiation length X0 is as well defined for an electron of
energy E as −(dE/dx)brems = E / X0.
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2.2.3 Electromagnetic Showers

A high energetic photon in matter initiates an electromagnetic cascade as pair
production and bremsstrahlung generate more electrons and photons at lower
energies. Fig. 2.3 shows a schematic view of a electromagnetic shower.

Electromagnetic Shower.
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Figure 2.3: Schematic view of an electromagnetic shower. The
Electrons are marked with blue lines, the photons in red [11].

Secondary particles produced in the electromagnetic processes are again mainly
e+, e− and γ and most of the energy is consumed in particle production. The cas-
cade develops through repeated similar interactions. The maximum number of
particles, the shower maximum, is reached when the average energy per particle
becomes low enough to stop further multiplication. From this point, the shower
decays slowly through ionization losses for electrons or Compton scattering for
photons. This change is characterized by the critical energy ε in the absorber
material. ε is the electron energy for which the energy loss by radiation equals
the collision and ionization losses. It can be approximated as

ε ≈ 550MeV/Z , (2.6)

where Z is the atomic number of the medium.
The electromagnetic shower, to a good approximation, scales longitudinally

with the radiation length and laterally with the Moliere radius. The Moliere
radius is parameterized as

RM = 0.0265X0(Z + 1.2) . (2.7)

A cylinder with radius 3RM contains 99% of the energy of a shower. Experi-
mental results on the shower shape have been parameterized in the following way
[12]: The shower maximum is given as

tmax ≈ log(E/ε)− a [in units of X0], (2.8)

where E is the energy of the incident particle and a = 1.0 for e+ and e− and
a = 0.5 for photons. The shower depth for 95% containment is

t95% ≈ tmax + 0.08Z + 9.6 , (2.9)
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where t95% is given in units of the radiation length. The numerical values for
the quantities discussed for the BABAR CsI(Tl) calorimeter are given in table 2.1.
The crystals of the calorimeter are 16 - 17.5X0 long. It is seen that the shower
maximum is for all energies in the first half of the crystal. The distance with 95%
of the shower energy included is always outside the crystals.

Quantity Value
X0 1.85 cm
RM 3.8 cm
ε 6.71 MeV

tmax(0.4 GeV) 3.6X0

t95% (0.4 GeV) 19.8X0

tmax(1 GeV) 4.5X0

t95% (1 GeV) 20.7X0

tmax(7 GeV) 6.5X0

t95%(7 GeV) 22.7X0

Table 2.1: Characteristic quantities for electromagnetic showers
for the BABAR calorimeter as discussed in the text. The values are
evaluated at typical energies occurring in this thesis.



Chapter 3

The BaBar Experiment

The primary goal of the BABAR detector is the precise measurement of CP vio-
lation, but the multi functional design of the detector allows a large number of
measurement in the B-meson and in related systems.

The accelerator PEP-II [1], described in the first section of this chapter, is
asymmetric e+e− collider operating at the Υ(4S) resonance. Together with the
BABAR detector, described in the second part of this chapter, it is called a B-
meson factory since the Υ(4S) decays to more than 96% into B-mesons. The
electromagnetic calorimeter, which is studied in this thesis, is described in the
third section of this chapter.

The experimental facilities are located within the Stanford Linear Accelerator
Center (SLAC) at Menlo Park near San Francisco, CA, USA.

3.1 The PEP-II Collider

The PEP-II collider operates at energies of 10.58 GeV in the center-of-momentum
(c.m.) frame. These energies lie within the Υ(4S) resonance.
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Figure 3.1: Linear accelerator and PEP-II storage ring. The
BABAR detector is located in the upper right of the storage ring.
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The main feature of PEP-II compared to other e+e− colliders is the asym-
metry. Electrons are accelerated in the High Energy Ring (HER) to energies of
∼9 GeV, positrons in the Low Energy Ring (LER) to energies of ∼3.1 GeV. This
results in a c.m. system with a boost of βγ=0.56. This boost is important for
the measurement of time dependent CP violation [4].

Fig. 3.1 shows a schematic view of the facility. The typical branching ratios
are of the order of 10−4 to 10−6. Thus, the collider needs to provide a very high
luminosity. Up to October 2005, an integrated luminosity of about 300 fb−1 of
data was taken.

The bunches collide head-on at the interaction point (IP). For each machine
run, the event vertices are averaged to determine the averaged beam position,
the beam spot. The uncertainties in the beam spot are of the order of a few µm
in the transverse plane and 100 µm along the collision axis.

3.2 The BaBar Detector

A short description of the BABAR detector is given. A more detailed discussion
of the detector and its components can be found in [1].

Fig. 3.2 shows a longitudinal view of the BABAR detector. The detector is
designed according to the boosted c.m. system. The interaction point is not at
the geometrical center of the detector. It is shifted towards the backward direction
which is defined by the outgoing low energy beam (left hand side in Fig. 3.2).

The components of the BABAR detector are arranged radially. The tracking
consists of a silicon vertex detector (SVT) and a drift chamber (DCH). The SVT
is located close to the beam pipe surrounded by the second tracking device, the
DCH. The next component is the Detector of Internally Reflected Cherenkov
Light (DIRC) which is mainly used to identify pions and kaons. Its photon
detection system is located at the backward end of the BaBar detector. The
Electromagnetic Calorimeter (EMC) is a crystal calorimeter with a forward end-
cap. It is the last sub-detector within the super-conducting magnet coil which
provides a 1.5 T magnetic field. The Instrumented Flux Return (IFR) is the
outermost component.

3.2.1 Silicon Vertex Tracker

The silicon vertex tracker (SVT), as shown in Fig. 3.3, is a part of the tracking
devices of the detector. It is built from cylindrical layers of double sided silicon
micro strip detectors.

The SVT covers the polar angle region from 20◦ to 150◦. The three inner
layers are critical for the measurement of the secondary vertices for the B-meson
decays. The two outer layers are important for the pattern recognition and the
low pt tracking. The arrangement of the strip sensors along the beam direction as
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of either the tracking system or the calorimeter
itself. The forward and backward acceptance
of the tracking system are constrained by compo-
nents of PEP-II, a pair of dipole magnets
(B1) followed by a pair of quadrupole magnets
(Q1). The vertex detector and these magnets are
placed inside a support tube (4:5 m long and
0:217 m inner diameter) that is cantilevered from
beamline supports. The central section of this tube
is fabricated from a carbon–fiber composite.
Since the average momentum of charged parti-

cles produced in B-meson decay is less than
1 GeV=c; the precision of the measured track
parameters is heavily influenced by multiple
Coulomb scattering. Similarly, the detection effi-
ciency and energy resolution of low energy
photons are severely impacted by material in front
of the calorimeter. Thus, special care has been
taken to keep material in the active volume of the
detector to a minimum. Fig. 3 shows the distribu-
tion of material in the various detector systems in
units of radiation lengths. Each curve indicates the

material that a high energy particle traverses
before it reaches the first active element of a
specific detector system.

2.1. Detector components

An overview of the coverage, the segmentation,
and performance of the BABAR detector systems
is presented in Table 1.
The charged particle tracking system is made of

two components, the silicon vertex tracker (SVT)
and the drift chamber (DCH).
The SVT has been designed to measure angles

and positions of charged particles just outside the
beam pipe. The SVT is composed of five layers of
double-sided silicon strip detectors that are
assembled from modules with readout at each
end, thus reducing the inactive material in the
acceptance volume. The inner three layers primar-
ily provide position and angle information for the
measurement of the vertex position. They are
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Figure 3.2: Schematic view of the longitudinal axis of the BABAR

detector. The 9 GeV electron beam enters from the left, the 3.1
GeV positron beam from the right.
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Figure 3.3: Front view of the silicon vertex tracker. The six-fold
symmetry of the three inner layers is seen.
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well as perpendicular to it allows the spatial measurement of the track directions
and angles with a high resolution.

The SVT is especially optimized for excellent vertex resolution and reaches a
precision of approximately 70 µm for a fully reconstructed B-meson decay.

3.2.2 Drift Chamber

The drift chamber (DCH) measures the tracks of charged particles and their
momenta. Additionally, the specific energy loss by ionization can be determined
and contributes up to momenta of 700 MeV/c to the particle identification. A
side view is shown in Fig. 3.4.

The DCH is a multi-wire chamber with an inner radius of 26.6 cm and an
outer radius of 80.9 cm. Its length is 280 cm. The DCH is composed of 40 layers
with small hexagonal cells. In 24 of the layers, the wires are placed at small angles
with respect to the z-axis. This provides longitudinal position information. The
20 µm-thick sense wires consist of gold plated tungsten-rhenium. The drift gas
is a mixture of helium and iso-butane in a ratio of 80 : 20.

The reconstruction of tracks is done with a Kalman filter which considers data
from the SVT and the DCH as well as the detector material and magnetic field.
The precision reached in momentum reconstruction is

σ(pt/pt) = (0.13± 0.001)% + (0.45± 0.003)%, (3.1)

where pt is the transverse momentum. The average resolution for single tracks is
given as 125 µm.
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Figure 3.4: Schematic view of the drift chamber. The center of
the chamber has an offset of 370 mm from the IP. The pattern of
axial (A) and stereo (U,V) layers is shown in the right hand side.
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3.2.3 Cherenkov Detector

The detector for internally reflected Cherenkov light (DIRC), shown in Fig. 3.5
is the most important particle identification device of the BABAR detector. It is
used to separate pions and kaons from B-meson decays. The π/K separation is
possible up to momenta of 4 GeV with a significance of 2.5σ.

The active detector material of the DIRC is constructed of 144 bars of fused
silica arranged in bar boxes in a polygonal barrel. The DIRC bars are used both
as radiators and as light pipes (see left hand side of Fig. 3.5). Charged particles
which traverse the DIRC-bars emit Cherenkov light in the angle θC with respect
to the direction of the particle track,

cosθC =
1

βn
=

√
1 + (m/p)2

n
, (3.2)

where m and p are mass and momentum of the particle respectively. n=1.453 is
the refractive index of the synthetic quartz medium. The photons are reflected
many times until they reach the stand off box, a tank of purified water. 10572
photo-multiplier-tubes (PMT) cover the inside of the surface of the standoff box,
where fractions of the Cherenkov rings are projected. They are shown for simu-
lated events in the right hand side of Fig. 3.5. A number of discrete ambiguities
is introduced through this system, whereas amount of material in-front of the
calorimeter is minimized (to about 0.2X0 for the DIRC). The ambiguities can be
resolved with additional information of the photon arrival time and sophisticated
pattern recognition algorithms.
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Figure 3.5: Left hand side: Working principle of the DIRC.
The Cherenkov light is internally reflected until it gets detected in
the water-filled readout reservoir. Right hand side: Fractions of
Cherenkov rings as registered by the PMT.
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3.2.4 Magnet Coil and IFR

All sub detector components are inside a toroidal super conducting magnet coil to
allow momentum measurement from track curvature. The BABAR magnet creates
a 1.5 T magnetic field parallel to the beam axis.

Outside the solenoid is the instrumented flux return (ISR). It consists of three
major parts, the barrel sector and forward and backward enddoors. At the barrel
region, 21 active resistive plate chambers (RPC) are installed, 18 in the enddors.
The IFR is designed to identify muons and neutral hadrons, e.g. K0

L.

3.3 The Electromagnetic Calorimeter

3.3.1 Purpose and Layout

The electromagnetic calorimeter (EMC) is designed to measure the energy, the
position and the transverse shape of showers with excellent efficiency. It is de-
signed to detect electrons and photons over the energy range of 20 MeV to 9 GeV
with high resolution. This allows the detection of photons from π0 and η decays as
well as from QED and radiative processes. Besides that, the EMC contributes via
E/p measurements to the electron identification for flavor tagging of neutral B-
mesons and via the shower shape analysis to the identification of neutral hadrons.
Furthermore, the EMC has to be compatible with the 1.5 T field of the solenoid
and operate reliably over the anticipated 10-year lifetime of the experiment.

To achieve these goals, a hermetic, total absorption calorimeter composed of
thallium doped cesium iodite crystals (CsI(Tl))) was chosen. The main advan-
tages are a very high light yield and good radiation hardness. This permits the
use of silicon photodiodes which operate reliably in magnetic fields for the read-
out of the scintillation light. Another advantage of CsI(Tl) crystals is the small
Moliere Radius (RM = 3.8 cm) and the short radiation length (X0 = 1.85 cm)
which allows a compact detector design for the measurement of fully contained
showers.

The energy resolution of a calorimeter as a function of energy can be param-
eterized to consist of two parts which are added quadratically: A constant part
to which electronics nonlinearities and non-uniformities are contributing as well
as calibration errors. The second, energy dependent part has a statistical nature
since the basic processes in an electromagnetic shower are statistical processes
as fluctuations in photon statistics, electronic noise and beam generated back-
ground. In crystal calorimeters, the energy dependent part of the resolution is
assumed to be proportional to 1/ 4

√
E due to photon statistics [31]. The target

energy resolution of the BABAR EMC was

σE

E
=

1%
4
√
E(GeV )

⊕ 1.2% (3.3)
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where both terms are added in quadrature.
The angular resolution is determined by the transverse crystal size and the

average distance to the interaction point. The target was to achieve

σθ = σφ =

(
3√

E(GeV )
+ 2

)
mrad (3.4)

at 90◦ incident angle to the beam direction.

3.3.2 Geometry

The EMC consists of a cylindrical barrel and a conical forward endcap. It has full
coverage in azimuth and extends in polar angle from 15.8◦ to 141.8◦ corresponding
to a solid angle coverage of 90% in the c.m. system. The barrel part consists of
5760 crystals which are ordered cylindrical around the beam axis. The radial
distance from the interaction point to the crystal front face is 92 cm. Along the
polar angle, the barrel is divided in 48 crystal rings. A longitudinal view along
the polar angle is shown in Fig. 3.6. Along the azimuthal angle, 120 crystals are
segmented. Each crystal is wrapped in an aluminum and a mylar foil. Thus,
between two crystals is about 130 µm of dead material. The crystals are ordered
into modules of 7 · 3 (θ ·φ) crystals. Those modules are wrapped with carbon fiber
tubes, in-between two modules is on average 1.3 mm of material. The modules
are bonded to an aluminum strong-back that is mounted on the external support.
By supporting the modules at the back, the material in front of the EMC is kept
to a minimum. A schematic view of the cylindrical barrel and the assembly of a

have a tapered trapezoidal cross-section. The
length of the crystals increases from 29:6 cm in
the backward to 32:4 cm in the forward direction
to limit the effects of shower leakage from
increasingly higher energy particles.
To minimize the probability of pre-showering,

the crystals are supported at the outer radius, with
only a thin gas seal at the front. The barrel and
outer five rings of the endcap have less than 0.3–
0:6X0 of material in front of the crystal faces. The
SVT support structure and electronics, as well as
the B1 dipole shadow the inner three rings of the
endcap, resulting in up to 3:0X0 for the innermost
ring. The principal purpose of the two innermost

rings is to enhance shower containment for
particles close to the acceptance limit.

9.2.2. Crystal fabrication and assembly
The crystals were grown in boules from a melt of

CsI salt doped with 0.1% thallium.41 They were
cut from the boules, machined into tapered
trapezoids (Fig. 62) to a tolerance of 7150 mm;
and then polished.42 The transverse dimensions of
the crystals for each of the 56 rings vary to achieve
the required hermetic coverage. The typical area of
the front face is 4:7� 4:7 cm2; while the back face
area is typically 6:1� 6:0 cm2: The crystals act not
only as a total-absorption scintillating medium,
but also as a light guide to collect light at the
photodiodes that are mounted on the rear surface.
At the polished crystal surface light is internally
reflected, and a small fraction is transmitted. The
transmitted light is recovered in part by wrapping
the crystal with two layers of diffuse white reflector
[51],43 each 165 mm thick. The uniformity of light

Fig. 61. A longitudinal cross-section of the EMC (only the top half is shown) indicating the arrangement of the 56 crystal rings. The

detector is axially symmetric around the z-axis. All dimensions are given in mm.

Table 12

Layout of the EMC, composed of 56 axially symmetric rings,

each consisting of CsI crystals of identical dimensions

y Interval Length # Crystals

(radians) ðX0Þ Rings /ring

Barrel

2.456–1.214 16.0 27 120

1.213–0.902 16.5 7 120

0.901–0.655 17.0 7 120

0.654–0.473 17.5 7 120

Endcap

0.469–0.398 17.5 3 120

0.397–0.327 17.5 3 100

0.326–0.301 17.5 1 80

0.300–0.277 16.5 1 80

41Aldrich-APL, Urbana, IL, USA. Chemetall GmbH,

Frankfurt, Germany.
42Shanghai Institute of Ceramics, Shanghai, P.R. China;

Beijing Glass Research Institute, Beijing, P.R. China; Hilger

Analytical, Margate, Kent, UK; Crismatec, Nemours, France;

Amcrys-H, Kharkov, Ukraine.
43TYVEK, registered trademark of E.I. DuPont de Nemours

& Co., Wilmington, DE, USA.
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Figure 3.6: Longitudinal view of the calorimeter. Only the top
half is shown. The numbering of the crystals goes from Iθ=1 (in
the very right) to Iθ=56 in the left end of the EMC.
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structures for the forward endcap. The barrel
support cylinder carries the load of the barrel
modules plus the forward endcap to the magnet
iron through four flexible supports. These sup-
ports decouple and dampen any acceleration
induced by movements of the magnet iron during
a potential earthquake.
The modules are built from tapered, trapezoidal

compartments made from carbon–fiber–epoxy com-
posite (CFC) with 300-mm-thick walls (Fig. 63).
Each compartment loosely holds a single wrapped
and instrumented crystal and thus assures that the
forces on the crystal surfaces never exceed its own
weight. Each module is surrounded by an addi-
tional layer of 300 mm CFC to provide additional
strength. The modules are bonded to an aluminum
strong-back that is mounted on the external
support. This scheme minimizes inter-crystal mate-
rials while exerting minimal force on the crystal
surfaces; this prevents deformations and surface
degradation that could compromise performance.
By supporting the modules at the back, the material
in front of the crystals is kept to a minimum.
The barrel section is divided into 280 separate

modules, each holding 21 crystals ð7� 3 in y� f).
After the insertion of the crystals, the aluminum
readout frames, which also stiffen the module, are

attached with thermally conducting epoxy to each
of the CFC compartments. The entire 100-kg-
module is then bolted and again thermally epoxied
to an aluminum strong-back. The strong-back
contains alignment features as well as channels
that couple into the cooling system. Each module
was installed into the 2.5-cm-thick, 4-m-long
aluminum support cylinder, and subsequently
aligned. On each of the thick annular end-flanges
this cylinder contains access ports for digitizing
electronics crates with associated cooling channels,
as well as mounting features and alignment dowels
for the forward endcap.
The endcap is constructed from 20 identical

CFC modules (each with 41 crystals), individually
aligned and bolted to one of two semi-circular
support structures. The endcap is split vertically
into two halves to facilitate access to the central
detector components.
The entire calorimeter is surrounded by a

double Faraday shield composed of two 1-mm-
thick aluminum sheets so that the diodes and
preamplifiers are further shielded from external
noise. This cage also serves as the environmental
barrier, allowing the slightly hygroscopic crystals
to reside in a dry, temperature controlled nitrogen
atmosphere.

Fig. 63. The EMC barrel support structure, with details on the modules and electronics crates (not to scale).
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Figure 3.7: The cylindrical barrel part of the EMC is shown. In
the upper right, a module with 3 · 7 crystals is shown.

module is shown in Fig. 3.7.
The endcap covers the forward area of the calorimeter. It consists of 820

crystals which are ordered circularly. The eight rings in the polar angle consist
of 80 (the innermost two rings), 100 (the next three rings) and 120 (outer three
rings) crystals respectively.

All crystals point with their front face to the interaction point. In order to
minimize losses in-between the crystals, a small non-projectivity is added in the
polar angle. The average size of this non-projectivity is 1.4 mrad.

The crystals are numbered with an index Iθ which in the polar angle,

1 ≤ Iθ ≤ 56 (3.5)

where Iθ= 1 is the very forward part of the endcap, the barrel part begins with
Iθ= 9 and the very backward part of the barrel is Iθ= 56. In the azimuthal angle,

0 ≤ Iφ ≤ 79/99/119 depending on Iθ. (3.6)

The material in-front of the EMC was minimized, depending on the polar
angle 0.3 - 0.6X0 of dead material are between the interaction point and the EMC.
In front of the first 3 rings in the endcap are about 3X0 of support structure.

3.3.3 Reconstruction of Clusters and Bumps

A particle which enters the EMC deposits, in general, energy in several crystals.
Such a group of crystals is called a cluster. The following algorithm is used to
reconstruct clusters from the information of individual crystals:
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1. The crystal with the highest energy of the cluster is called the seed. It is
required to have more than 5 MeV.

2. All adjacent crystals with energies above 1 MeV are added to the cluster.

3. The neighbors of each crystal with more than 3 MeV are added to the
cluster if their energy exceeds 1 MeV

4. The cluster energy is defined as the sum of the energy of all associated
crystals. The cluster energy is required to be more than 20 MeV in total
for the cluster to be accepted.

If two particles enter the calorimeter close to each other, it is possible that the
energy deposition takes place in one cluster with two local maxima. In this case
the cluster is splitted according to the weights of its single crystal information
into bumps with only one maximum each. The energy and the position of the
bump is associated to one single particle.

3.4 Energy Calibration of the Calorimeter

The calibration of the BABAR calorimeter is performed in three steps:

1. Electronics Calibration,
The electronics calibration corrects the pedestal offsets, determines the over-
all gain and removes non-linearities.

2. Single Crystal Calibration,
In this calibration step, the measured pulse height in a single crystal is
assigned to an energy. It also corrects variations in the light yield from
crystal to crystal and over time. The time dependence is mainly due to
radiation damage.

3. Cluster Calibration.
In the cluster energy calibration, energy losses which are not due to the
features of a single crystal are corrected. These energy losses are due to
interactions in front of the EMC, leakage behind the EMC and energy loss
in dead material in-between the crystals.

The three steps of the energy calibration of the EMC are discussed in more
detail in the following:

Electronics Calibration

The electronics calibration is performed by precision charge injection into the
preamplifier input. Initially up to 12% non-linearity were observed. These non-
linearities were traced to oscillations on the ADC cards that have since been
corrected. Remaining non-linearities are of the order of 2%.
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Single Crystal Calibration

The single crystal calibration is performed for two energies at opposite ends of
the dynamic range, the two measurements are combined by a logarithmic inter-
polation (line calibrator). For low energies, a radiative source spectrum is used
(Eγ = 6.13 MeV) whereas for high energies, electrons from Bhabha scattering are
used (E = 3 - 9 GeV).

For the radioactive source calibration, irradiated Fluorinert gets pumped
through thin walled aluminum pipes which are mounted right in front of the
crystals of the EMC. The Fluorinert decays via a radioactive decay chain,

19F + n → 16N + α (3.7)
16N → 16O∗ + e− + ν̄e (3.8)

16O∗ → 16O + γ (3.9)

under emission of a monoenergetic photon with the energy of 6.13 MeV. Fig. 3.8
shows a typical source spectrum, the peak at 6.13 MeV and two associated escape
peaks are seen [1].

prediction of a GEANT-based Monte Carlo
simulation [59]. For a large number of energy
clusters, a set of simultaneous linear equations
relates the measured to the expected energy and
thus permits the determination of a gain constant
for each crystal. In a 12-h run at a luminosity of
3� 1033 cm�2 s�1 some 200 e7 per crystal can be
accumulated, leading to a statistical error of
0.35%. This calibration has been performed about
once per month, and will be fully automated in the
future.

9.4.2. Cluster energy correction
The correction for energy loss due to shower

leakage and absorption is performed as a function
of cluster energy and polar angle. At low energy
ðEo0:8 GeVÞ; it is derived from p0 decays [60].
The true energy of the photon is expressed as a
product of the measured deposited energy and a
correction function which depends on ln E and
cos y: The algorithm constrains the two-photon
mass to the nominal p0 mass and iteratively finds
the coefficients of the correction function. The

typical corrections are of order 671%: The
uncertainty in the correction is due to systematic
uncertainties in the background estimation and the
fitting technique.
At higher energy ð0:8oEo9 GeVÞ the correc-

tion is estimated from single-photon Monte Carlo
simulations. A second technique using radiative
Bhabha events [61] is being developed. The beam
energy and the precise track momenta of the eþ

and e�; together with the direction of the radiative
photon, are used to fit the photon energy. This
fitted value is compared to the measured photon
energy to extract correction coefficients, again as a
function of ln E and cos y:

9.5. Monitoring

9.5.1. Environmental monitoring
The temperature is monitored by 256 thermal

sensors that are distributed over the calorimeter,
and has been maintained at 2070:51C: Dry
nitrogen is circulated throughout the detector to
stabilize the relative humidity at 170:5%.

9.5.2. Light-pulser system
The light response of the individual

crystals is measured daily using a light-pulser
system [62,63]. Spectrally filtered light from a
xenon flash lamp is transmitted through
optical fibers to the rear of each crystal. The light
pulse is similar in spectrum, rise-time and shape to
the scintillation light in the CsI(Tl) crystals. The
pulses are varied in intensity by neutral-density
filters, allowing a precise measurement of the
linearity of light collection, conversion to charge,
amplification, and digitization. The intensity is
monitored pulse-to-pulse by comparison to a
reference system with two radioactive sources,
241Am and 148Gd; that are attached to a small
CsI(Tl) crystal that is read out by both a
photodiode and a photomultiplier tube. The
system is stable to 0.15% over a period of one
week and has proven to be very valuable in
diagnosing problems. For example, the ability to
accurately vary the light intensity led to the
detection of non-linear response in the electronics
[62].

Fig. 66. A typical pulse-height spectrum recorded with the

radioactive source to calibrate the single-crystal energy scale of

the EMC. The spectrum shows the primary 6:13 MeV peak and
two associated escape peaks at 5.62 and 5:11 MeV: The solid
line represents a fit to the total spectrum, the dotted lines

indicate the contributions from the three individual photon

spectra.
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Figure 3.8: Measured and fitted spectrum of the radioactive source.
The dashed lines indicate the primary peak at 6.13 MeV (right hand
side) and two escape peaks [1].

The high energy single crystal calibration factors are determined from electrons
from Bhabha scattering,

e+e− → e+e−. (3.10)

The deposited energy Ek
dep of a final state electron k is purely determined by the

angle θlab between e+ and e−,

Ek
dep(θ) =

E2
tot − ~P 2

tot

2(Etot − |Ptot|cosθlab)
(3.11)
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where Etot and Ptot are the total energy and momentum in the laboratory system,
respectively. The energy deposited in each individual crystal is compared to a
prediction derived in a Monte Carlo simulation. This means that not only the
single crystal calibration factor can be determined, but also slight differences
between data and simulation of the crystals are taken out. A more detailed
description of the sophisticated algorithm can be found in [32].

The crystal response with electronics calibration and single crystal calibration
applied is called ei. The raw cluster energy, Eraw, is defined as the sum of the
single crystal calibrated energies ei,

Eraw =
∑

i

ei, (3.12)

where i is enumerating all crystals in the respective cluster.

3.4.1 Cluster Calibration

The cluster energy calibration corrects for energy loss due to shower leakage, dead
material in front of the calorimeter and in-between the crystals. The true energy
of a photon can be expressed as

photon energy = deposited energy + energy losses. (3.13)

The cluster calibration is obtained as a correction function c(E, θ) which de-
pends on the polar angle θ and the energy,

Ecal = Eraw · c(E, θ), (3.14)

where Ecal is the cluster calibrated energy, Eraw the raw energy as defined in
Eq. 3.12 and c(E, θ) is the calibration function.

On Simulation

The processes of energy loss in dead material are included in the simulation.
The generated energy describes therefore the single crystal energy ei. The raw
cluster energy is obtained from the generated single crystal energies. In order
to have the cluster energy in the simulation at the right scale, the raw energy
has to be corrected for these simulated energy losses. This is called Monte Carlo
calibration. Since Etrue is known from the generator, cMC(E, θ) can easily be
determined

cMC(E, θ) =
EMC

true

EMC
raw

. (3.15)
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On Data

For data, the situation is more complicated. It is necessary to find a physics pro-
cess which provides photons with known energies. Currently, the only mechanism
which is exploited is the decay π0 → γγ. The reconstructed two photon mass is
known to be

mγγ =
√

2Eγ,1Eγ,2(1− cosα) = 135.0MeV (3.16)

where Eγ is the photon energy and α the opening angle between the two photons.
This process produces clusters with an energy up to 1.5 GeV in the laboratory
frame [21]. At higher energies, the two photons are merged to one cluster and
the reconstruction of neutral pions becomes difficult.

For energies above 1.5 GeV, the BABAR calorimeter is not calibrated with data
from physics processes. Instead, one relies on the Monte Carlo simulation. In this
thesis, the process e+e− → µ+µ−γ will be used to develop a cluster calibration
for high energies.



Chapter 4

Event Selection and
Kinematic Fit

In this thesis, photons from radiative dimuon events, e+e− → µ+µ−γ, are used
to analyze and calibrate the electromagnetic calorimeter of the BABAR detector.
After a definition of the data sample and the Monte Carlo simulation data used,
the selection criteria for a clean event sample are described and the agreement of
the simulation with data is studied. Then, two methods to calculate the photon
energy without calorimeter information are presented: a four vector calculation
and a kinematic fit.

4.1 Data Sample

The data samples used in this thesis are briefly introduced in this section. The
data was taken in the years 1999 - 2004 by the BABAR detector.

4.1.1 Data Events

In the BABAR experiment, data acquisition is separated into machine runs lasting
about an hour and into run periods. Typically once a year there is a shutdown
of the detector of a few months. A run period is the set of many machine runs
without such a shutdown time in-between. The data taking from 1999 to 2004
was separated into 4 run periods, the fifth is currently in progress. During the
processing of data, each event is tagged according to its possible physics potential.
The events studied in this thesis are required to be classified as events containing
dimuons with a high probability. This technique speeds up subsequent physics
analyses of certain event topologies. A summary of the event numbers before
applying selection criteria is given in table 4.1.

29
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Run Period Data Simulation
1 18 ·106 events 14.5 ·106 events
2 61.5 ·106 events 43.5 ·106 events
3 29 ·106 events 10 ·106 events
4 80 ·106 events 60 ·106 events

Table 4.1: Data samples available before selection: For data, the
muon preselection is applied and the simulated events are the gen-
erated e+e− → µ+µ−γ events.

4.1.2 Simulated Events

In this thesis, simulated events from the SP5 and production cycle are used1. SP5
is the fifth revision of the BABAR Monte Carlo simulation using the KK2F event
generator [15] and GEANT4 [16] for the detector simulation.

The Monte Carlo simulation takes detector and background conditions (mea-
sured during data taking) into account which change over time. This means that
for each month of data acquisition roughly the same equivalent luminosity of
simulated Monte Carlo events is generated.

4.2 Event Selection

A series of selection criteria are applied to select a clean sample of e+e− → µ+µ−γ
events for data. Details of the criteria can be found in App. A. Additionally to
the pre-selection which chooses with high probability events containing muons,
the main steps are:

1. Track quality:
All tracks in the data sample are required to fulfill the requirements for a
well measured track.

2. Number of tracks:
The number of tracks (as defined above) has to be 2.

3. Muon selection:
One of the two tracks needs to be identified as a muon.

4. Sum of track charges:
The sum of the charges of all tracks (as defined above) has to be 0.

1The events simulated according to the detector conditions of the fourth run period are are
produced with SP6 simulation.
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5. Radiation angle:
In order to separate the photon from the muon signal, it is required that
the angle from the photon to the closest muon is more than 15◦.

6. Three particle final state:
To ensure clean three particle dynamics, the system is constrained to contain
only one high energetic photon with an energy larger than 50 MeV.

The only high energetic photon left in the data sample is assumed to be the
photon radiated in initial or final state radiation.

4.3 Phase Space

The distribution of photons in the energy angular plane is shown in Fig. 4.1 (a)
and (b) for simulation and data respectively. Both histograms are normalized to
equal area, as all figures which compare data and simulation in this section. The
projections to the axes are shown in (c) and (d). The barrel region is marked
with a solid line in Fig. 4.1 (c). In the EMC barrel region, the data is reasonably
well described by the simulation.

In Fig. 4.1 (d) the energy of the photon is shown. Deviations in the simulation
describing the data are seen at energies below 1.5 GeV, at higher energies, the
spectrum in data is very well described. Photons up to energies of 7 GeV are
used in this thesis.

The distribution of muons in the energy angular plane is shown in Fig. 4.2.
As expected from the boost, a correlation between the muon momentum and the
polar angle is seen. High energetic muons are emitted predominantly in forward
direction (small θ), lower energetic ones in backward direction (large θ).

4.3.1 Phase Space Reweighting

Discrepancies of the muon - photon population in the energy angular plane are
seen in Fig. 4.1 and 4.2. Especially for muons, the discrepancy has an influence
on the photon energy estimate discussed later. For calibration purposes, the
agreement between data and simulation is essential. Possible differences in the
muon distribution in the energy angular plane would affect the photon distribu-
tion which is used for calibration. To make sure not to depend on such differences,
the two-dimensional distribution in the energy angular plane in the simulation is
reweighted to the one in data. The reweighting is performed as follows:

1. The phase space is restricted to a common region in data and the simulation.
Thus, only muons in the barrel part of the calorimeter (i.e. with a polar
angle larger than 0.47 rad) and those with energies larger than 400 MeV
are studied.
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Figure 4.1: Distribution of the selected photons: Polar angle ver-
sus energy for (a) simulation and (b) data. In (c) and (d) projec-
tions to the axes are shown.
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Figure 4.2: Distribution of muons in the energy angular plane for
(a) simulation and (b) data. In (c) and (d) projections to the axes
are shown.
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Figure 4.3: Weighting factors for the population of events in the
energy angular plane. Only events with both muons in the barrel
part of the EMC are used (indicated with a solid line).
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Figure 4.4: Comparison of data and simulation after the reweight-
ing procedure for (a) the polar angle and (b) the momentum. The
reweighting works as expected.

2. In the simulation, the population of muons in the energy angular plane
in the common region is reweighted two-dimensionally to reproduce the
distribution in data. The weighting factors vary between 0.7 and 1.3 per
bin, being mostly between 0.9 and 1.1 per bin. They are shown in Fig. 4.3.

As shown in Fig. 4.4, the reweighting works as expected.

4.4 Agreement Between Data and Simulation

The quality of the Monte Carlo simulation describing the data after the reweight-
ing procedure is tested with several distributions. The muon accolinearity is
defined in the c.m. system as

accolinearity = α− 180◦ (4.1)

where α is the angle between the two muons in the c.m. system. The accolin-
earity is analyzed since the radiation of a high energetic photon implies a large
accolinearity of the muons. It is a test of the quality of the description of the
photon radiation in the simulation. The accolinearity is shown in Fig. 4.5 (a). For
accolinearities below 0.4 rad, deviations between data and simulation are seen.
For accolinearities, the description of the data by the simulation is good.

The noise is studied in Fig. 4.5 (b) and (c). In the simulation, measured
noise is mixed into simulated data. The energy spectrum of photons below 50
MeV can be found in Fig. 4.5 (b). The distribution is well described by the
simulation, deviations are on the level of 0.2%. The requirement of the cluster
finding algorithm (see section 3.3.3) that the total cluster energy is above 20 MeV
can be seen. The drop before the cutoff is an artefact of the binning. The
simulation describes the distribution well. Deviations are on the order of 10−2 to
10−4. The number of photons below the cutoff of 50 MeV is shown in Fig. 4.5 (c).
Considering the logarithmic scale, the simulation describes the data reasonably
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Figure 4.5: Comparison of data and simulated data: (a) Accol-
inearity of the muons in the c.m. system. (b) Energy spectrum of
photons with Eγ < 50 MeV. (c) Number of photons with Eγ < 50
MeV. Please note the logarithmic scale in (c). All distributions are
normalized to equal area (the normalization for (a) starts at the
second entry).

well. In both the energy spectrum and the number of photons, the simulation
provides a good description of the data.

4.5 Truth Matching in the Simulation

The process of truth matching for simulated events describes the association
of a reconstructed object in the calorimeter to a generator level object in the
Monte Carlo simulation.

For Charged Tracks

A track is reconstructed from hits in the SVT, the DCH and for muons in the IFR.
In the simulation, these hits are created from generator level hits which are in turn
created from generator level tracks (by the GEANT4 software). This means that
a given reconstructed track may be constructed from hits which originate from
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several different generator level tracks. The simulated track which contributed
most hits to the reconstructed track is truth-matched to the track. This track will
be referred to as generated track or true track.

For Neutral Clusters

A cluster is reconstructed from the energy deposited in one or more crystals in the
EMC. In the simulation, this energy may originate from one or more generator
level objects. The object which contributed most of the energy to a reconstructed
cluster is called truth matched to the cluster. The generated object which is truth
matched to the reconstructed photon is called the generated photon or the true
photon.

4.6 Peak Fit Procedure

Throughout this thesis, the peak positions of the asymmetric distributions have
to be determined in a stable, reproducible way. For calibration purposes, it is
important to determine the peak position as precise as possible and without
dependence on the fraction of events outside the central area of the distributions.
Therefore, the peak position of a given distribution is determined by an iterative
fitting procedure defined in this section.

The phenomenologically motivated Novosibirsk Function is used [22],

f(µ) = C exp

−1

2

 ln2
(
1 + sinh (τ

√
ln 4)

ln 4
(µ−µ0)

σ

)
τ 2

+ τ 2

 , (4.2)

where C is the normalization constant, µ the peak, σ the width and the parameter
τ describes the size of the asymmetry of the entries. For τ → 0, the Novosibirsk
Function turns into a Gaussian function. A nonzero τ allows to describe asym-
metric functions.

The fits are performed with a χ2 minimization using MINUIT [14] within the
ROOT framework. All errors quoted are the 1σ standard deviations as computed
by the fitting procedure, unless stated differently.

The fit range is limited to decouple the dependence on the number of entries
outside the central region of the distribution. In order to increase the stability of
the fitting procedure, it is performed iteratively:

1. The normalization constant, mean and RMS values are calculated from
the histogram and used as start values for minimization with a Gaussian
function. The Gaussian is fitted to the histogram in the range of [-3σ , 3σ]
around the peak.

2. The results from the Gaussian fit are used as start values for the Novosibirsk
Function which is then fitted in the limited range [-1.3σ , 1.3σ] around the
peak.
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3. The start values of the Novosibirsk Function are set to the fit results of step
two. It is fitted again in the range [-1.3σ , 1.3σ] around the peak to increase
the stability.

4. The final fit is initialized with the values from the last iteration step and
performed over a range dependent on the quantity which is intended to be
determined.

(i) If the peak position is of interest, the last iteration is performed over
a relatively small range of [-1.2σ , 1.2σ] around the peak.

(ii) If the width is of interest, the fit range has to be extended since the
fit has to cover values well below the half maximum in order to have
a well defined FWHM. The fit is performed in the range [-1.6σ , 1.6σ]
around the peak.

The fitting procedure described above gives a very stable determination of the
peak position and the width. Throughout this thesis, it will be used to determine
the peak and width of given distributions, unless stated otherwise.

Fig. 4.6 shows exemplarily the ratio of the momentum of a measured track
over the momentum of the truth matched track, preco/ptrue. The distribution
is fitted with the described algorithm. Sub-figures (a) and (b) display the two
ranges described in step 4, (i) and (ii).
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Figure 4.6: preco/ptrue for muons. The two fits shown are as
described, (a) for the determination of the peak position and (b) for
the FWHM.

4.7 Photon Energy Estimate

In the µµγ event sample, it is possible to calculate the photon energy from the
four vectors of the charged particles, i.e. the muons and the beam electrons.
In the energy range studied with the BABAR detector, charged particles can be
measured much more precisely than neutral ones. Therefore the calculation can
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be made without any calorimeter information. Thus, the estimate of energy and
momentum of the photon has no bias from the calorimeter. The easiest way to
calculate the photon energy is by a four vector calculation. This estimate can be
improved with a kinematic fit. After a discussion of the input variables for the
calculation, the different methods to calculate the photon properties are analyzed.

4.7.1 Input Variables

The photon energy is calculated from the measurement of the muon tracks in the
tracking system and from the beam parameters.

Muons

The muons are measured in the tracking devices (i.e. vertex detector, drift and
muon chamber) with a very high accuracy. The momentum and position resolu-
tion of the tracking system is discussed in section 3.2.2.

The final state of the event sample studied in this thesis consists of two muons
and one high energetic photon. The momenta of the muons and the photon energy
are anti-correlated. The precision of the photon energy estimate depends on the
momentum resolution of the muon tracks associated with the photon. Thus,
the momentum resolution (the sigma of preco/ptrue ) is studied as a function of
the reconstructed photon energy (Eraw) in the simulation. The distribution of
preco/ptrue is shown in Fig. 4.6 as an example for the fitting procedure for the
photon energy range of 0.4 to 0.6 GeV. In Fig. 4.7, the width of this distribution
is shown as a function of the reconstructed photon energy.

Over the whole range studied, the momentum resolution in Monte Carlo sim-
ulation decreases from 0.9% - 0.5% with increasing photon energy from 400 MeV
to 7 GeV. This decrease in momentum resolution is easily understood since with
increasing photon energy the muon momentum decreases and thus the measure-
ment of the drift chamber becomes more precise.

Systematic deviations between data and simulation as well as possible biases
can be studied using the decay J/Ψ → µµ. The known mass of the J/Ψ is
compared with the reconstructed dimuon mass. This study has been performed by
R. Nogovski [13]. Systematic deviations in the Monte Carlo simulation describing
the momentum measurement of charged particles in data are found to be at the
level of 0.1%.

Beam Parameters

The beam parameters of the PEP-II storage ring are calculated from the total
magnetic bending strength and the average deviations of the accelerating fre-
quencies from their central values. The RMS energy spreads of the LER and
HER beams are 2.3 and 5.5 MeV respectively [1]. That corresponds to a relative
spread of 0.07 and 0.06% respectively.
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Figure 4.7: Tracking resolution for muons as a function of photon
energy.

4.7.2 Four Vector Estimate

In principle it is straight forward to calculate the four vector of the photon pγ

from the measured four vectors of the two muon tracks and the beam parameters,

pγ = (pe+ + pe−)− (pµ+ + pµ−), (4.3)

where pγ denotes the four vector of the photon, pe the four vectors of the beam
particles and pµ the four vectors of the muons. However, this naive equation does
not take into account the finite resolution of the tracking devices. Thus, (pγ)

2 is
not necessarily zero as expected for massless photons.

The photon deduced from four vector calculation has to be matched to a
reconstructed photon. With the event selection discussed is section 4.2, only one
photon with an energy higher than 50 MeV is present in the sample. Since only
hard radiative photons are studied in this thesis, the reconstructed high energetic
photon is taken to be the photon radiated from the muons and thus the photon
calculated in the four vector estimate.

When comparing the calculated photon with generator level information, the
estimated photon is matched first with the reconstructed one. In a second step,
a generated photon is truth matched to the reconstructed photon. Thus, the
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matching between the calculated and the generated photon is done indirectly
using the reconstructed one.

In Fig. 4.8 (a), the photon energy estimate of the four vector addition is
shown as a function of the generator level energy. The majority of the events
populates the diagonal, meaning the calculated photon is a good estimate for the
reconstructed one. However, roughly 5% of the events are seen off the diagonal.
A significant amount of photons is wrongly predicted to have a high energy.
In this case, a high energetic photon gets emitted outside the acceptance of the
calorimeter and hence a lower energetic photon is mistaken as the photon radiated
by the muons. Thus, the calculated photon is not matched to the radiated photon,
but to another, low energetic photon.

An accumulation of photons generated with a high energy with almost zero
energy predicted is seen as well. In these cases, a high energetic photon which is
not produced in initial state radiation seems to be present in the sample. This
high energetic photon gets matched to the calculated one.

4.7.3 Kinematic Fit

The four vector calculation of the photon properties can be improved using a
kinematic fit. The kinematic fit is based on an iterative χ2 minimization. The
external constraints are introduced using the concept of Lagrange multipliers [19]:

χ2 = (~P − ~P0)
TV −1(~P − ~P0) + 2λ~f(~P ), (4.4)

where V is the covariance matrix, ~P the fit momentum vector, ~P0 the expected
momentum vector and ~f(~P ) the constraint function. The vectors are column
vectors including the vectors of all particles. The expected momentum vector
is the measured track momentum for the muons. For the photon, the above
described four vector estimate is used. The covariance matrix V consists of the
individual error matrices for the charged and neutral particles participating in
the fit. The covariance matrix of the photon is estimated from the covariance
matrices of the charged particles2.

The following conditions are used as constraints:

1. The invariant mass of the fitted photon is set to zero, the masses of the
charged tracks are set to the muon mass,

2. the total energy in the c.m. frame is set to the measured beam energy and

3. the fitted particles are constrained to originate from the beam spot.

2The method of determining the covariance matrix of the photon is not rigorously correct
since the resulting matrix is correlated with the muon covariance matrices. The errors of the
photon are therefore not calculated correctly within the kinematic fit. However, the following
discussion shows that a clear improvement of the estimate of the photon energy is achieved by
using the kinematic fit.
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The energy calculated by the kinematic fit is shown in Fig. 4.8 (b) as a function
of the generated energy. The accumulations seen beside the diagonal are almost
identical to those seen in the four vector calculation. This is expected since they
are due to a mismatch between the calculated and the reconstructed photon.
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Figure 4.8: Correlation of calculated and generated energy for (a)
four vector estimate and (b) kinematic fit. No cuts to improve the
estimate are applied, but all cuts of the event selection.

4.7.4 Fit Quality

In some cases, as discussed in section 4.7.2, either the assumption of a µµγ final
state failed, or the association of the calculated with the reconstructed photon
did not work. Thus, the photon estimate can be improved by additional selection
criteria to rule out those cases:

1. The χ2/dof of the kinematic fit is required to be smaller than 2.0, where
dof denotes the degrees of freedom of the fit. This guarantees that the
assumption of the event structure is fulfilled reasonably well.

2. The calculated energy has to be between 30% and 200% of the reconstructed
energy. This guarantees that the calculated photon energy is in the right
order of magnitude. The requirement is kept loose to minimize the bias
introduced from the energy measurement.

3. The calculated position is required to be within 15 cm of the reconstructed
one. The value of 15 cm corresponds roughly to four crystal sizes. This
requirement guarantees that the calculated photon position is in the right
region of the EMC. This requirement is kept loose enough to minimize
systematic effects.

In Fig. 4.9 the calculated photon energy is shown as a function of the generated
one with the requirements 2 and 3 applied for the four vector calculation and
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with all three requirement applied for the kinematic fit. The accumulations seen
in Fig. 4.8 have vanished. Both the kinematic fit and the four vector addition
estimate the energy with entries to energies estimated too high. However, the
fraction of these events is small.
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Figure 4.9: Correlation of calculated and generated energy for (a)
four vector addition and (b) kinematic fit. All cuts for the fit quality
are applied. The accumulations seen in Fig. 4.8 have vanished.

In Fig. 4.10 the ratio of the estimated over the generated energy is shown
for two different ranges in the generated energy, 0.4 GeV < Etrue < 2 GeV in
Fig. 4.10 (a) and 2 GeV < Etrue < 4 GeV in Fig. 4.10 (b). The calculation using
the kinematic fit is drawn as black histogram and the four vector calculation
in red. Both distributions are normalized to equal area. It is clearly seen that
the kinematic fit gives a much better estimate for the generated energy. The
improvement is mainly due to the additional information of the particle masses
in the kinematic fit. Thus, the calculation of the photon properties with the
kinematic fit is used throughout this thesis to estimate the photon properties.

The data sample available with all selections for the event type and the quality
of the photon estimate applied is shown in table 4.2.

Run Period Data Simulation
1 378 ·103 events 414 ·103 events
2 1034 ·103 events 1298 ·103 events
3 549 ·103 events 224 ·103 events
4 1472 ·103 events 1543 ·103 events

Table 4.2: Number of photons available after all selection cuts.
Except for the run period 3, the simulated events are more than
data events.

An estimate for the quality of the fit and selection procedure is the peak
position of the ratio of Efit/Etrue. It is shown in Fig. 4.11 (a) as a function of the
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Figure 4.10: Ratio of calculated over generated energy for the
kinematic fit (black) and the four vector calculation (red). Two
ranges in the generated energy are shown. The distributions are
normalized to equal area. The kinematic fit gives a much better
estimate for the generated energy than the four vector calculation.

energy and in Fig. 4.11 (b) as a function of the polar angle for an energy range
of 0.4 to 2 GeV. In both figures, the peak position is with an accuracy of 0.1%
at 1.0. That means that the calculated energy is a very good estimate for the
generated one.

In Fig. 4.12 (a), the width of the ratio Efit/Etrue is shown as a function of the
photon energy. With increasing energies the fit resolution gets better. At energies
below 400 MeV, the energy calculated by the fit deviates from the true energy
and the resolution of the calculated energy is worse than 4%. Therefore, only
energies above this value are considered for calibration. In the region between
0.4 and 2 GeV, the kinematic fit works as estimate for the true energy, but the
finite resolution has to be considered. At photon energies above 2.0 GeV, the
resolution of the fit estimate is negligible. In Fig. 4.12 (b) the width is shown
as a function of the polar angle for the energy range of 400 MeV - 2.0 GeV.
Throughout the whole range, it has a non-negligible value.

The position calculated with the kinematic fit is tested with the ratio θfit / θtrue

in Fig. 4.13 (a) as a function of the energy and (b) as a function of the polar angle.
As for the energy, the fit estimate is excellent for energies above 400 MeV and
has no bias over the polar angle range.
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Figure 4.11: Photon energy calculated with the kinematic fit over
generated energy. (a) As a function of the photon energy. (b) As
a function of the photon polar angle. The energy range of 0.4 -
2.0 GeV is chosen here. The peak positions agrees within 0.1%
with 1.0.

 [GeV]raw
γE

0 1 2 3 4 5 6 7 8

) 
[%

]
tr

ue
 / 

E
fi

t
(Eσ

0

1

2

3

4

5

6

7

8

(a) σ(Eγ
fit/Eγ

true) Vs. energy
 Indexθ

0 10 20 30 40 50 60

) 
[%

]
tr

ue
 / 

E
fi

t
(Eσ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b) σ(Eγ
fit/Eγ

true) Vs. θ
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Figure 4.13: Peak position of θfit / θtrue (a) versus photon energy
and (b) versus the photon polar angle for energies of 2 - 4 GeV.
For energies above 400 MeV and over the whole polar angle, the
kinematic fit provides an excellent estimate for the generated angle.

4.8 Summary

With the criteria presented, it is possible to select a well defined sample of

e+e− → µ+µ−γ (4.5)

events. The Monte Carlo simulation has proven to describe the data in all ob-
served quantities.

The energy and the polar angle of the radiated photon can be calculated
using only the beam parameters and the muon momenta measured in the tracking
devices. The photon properties can be estimated by a four vector calculation, but
due to a finite detector resolution, the invariant mass of the calculated particle
is not necessarily zero as expected for massless photons. This calculation can
be improved using a kinematic fitting procedure with the additional information
of the particle masses and the constraint that particles originate from the beam
spot.

A sample is chosen where the association between the calculated, the recon-
structed and for simulation the generated photon works reliably. The calculation
using the kinematic fit has proven to estimate the photon energy and position
with a minimal bias. The energy range usable for the kinematic fit is 400 MeV
to 7 GeV. Between 400 MeV and 2 GeV, the kinematic fit has some uncertainties
calculating the photon properties due to the finite tracking resolution. Above
2.0 GeV, the calculation gives an excellent estimate for the photon energy and
position.
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Chapter 5

Photon Energy Measurement

The electromagnetic calorimeter is the only device which allows to reconstruct
photons in the BABAR detector. In order to measure photons at the right energy
scale, an energy calibration is needed.

After a short discussion of the energy response of the calorimeter, a new cluster
energy calibration using events of the type e+e− → µ+µ−γ is presented. With
these events, it is possible to perform a calibration purely based on data up to
energies of 7 GeV. The calibration is based on the energy of the radiated photon,
calculated with a kinematic fit. This calculation has a finite resolution due to the
tracking uncertainties. Therefore, the calibration cannot be taken directly from
the comparison of measured and calculated energy. Instead, the uncalibrated
data has to be normalized to the simulation. As discussed in section 3.3.3, the
generated energy has to be corrected for simulated energy losses, which is called
calibration of the simulation. The data can than be normalized to the simulation.
After the cluster energy calibration is performed, systematic uncertainties are
discussed.

In the second part of this chapter, the energy resolution of the calorimeter is
determined for the high energy region.

5.1 Calorimeter Energy Response

As discussed in section 3.4, the energy calibration procedure of the EMC is sep-
arated into three steps:

1. Electronics calibration,

2. Single crystal calibration and

3. Cluster calibration.

This chapter focuses on the high energy part of the cluster energy calibration.
To perform a calibration, the raw energy is compared with an estimate, where

47
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Eraw =
∑

i ei and ei is the energy of the crystal i (the result of calibration step 2).
In case of simulated events, this estimate can be the energy of the simulated pho-
ton on generator level, Etrue. In order to study the raw energy in the simulation,
the ratio Eraw/Etrue is analyzed.

Fig. 5.1 shows this ratio in two different energy ranges. The peak position
is about 5% below 1.0 since not all of the photon energy is contained in the
active material of the calorimeter (see section 3.4 for a detailed discussion). The
distribution is not Gaussian in shape, it has entries outside the central area to
lower energies. They are due to photons which have lost more energy in front of
the calorimeter, e.g. those which started showering in the DIRC.

true / ErawE
0.8 0.85 0.9 0.95 1 1.05

E
nt

ri
es

 p
er

 b
in

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) 0.8 - 1.3 GeV
true / ErawE

0.8 0.85 0.9 0.95 1 1.05

E
nt

ri
es

 p
er

 b
in

1000

2000

3000

4000

5000

6000

(b) 3.0 - 4.0 GeV

Figure 5.1: Energy response of the calorimeter in µµγ simulation:
Eraw/Etrue for low and high photon energies.

The µµγ data sample, provides photons with known energies for both data and
simulation (see section 4.7.3). The raw energy can be compared with an estimate
from the kinematic fit, Efit. The ratio Eraw/Efit is shown in Fig. 5.2 data and
simulation in the same two energy ranges as in Fig. 5.1. The calorimeter response
in data is not perfectly described in the simulation. The peak position is about
1% higher in the simulation for both energy ranges. The number of entries at
low energies is overestimated in the simulation. The width of the distribution at
lower energies has a significant contribution due to the resolution of the kinematic
fit. Thus, the asymmetry of the energy response is washed out. As discussed in
section 4.7.1, the input variables for the calculation of Efit agree on a level better
than 0.1%. Therefore the differences seen in the ratio Eraw/Efit are due to a
different calorimeter response in data and simulation, not to a difference in the
estimate of the fit.

Since the energy response of the EMC differs for data and Monte Carlo sim-
ulation, the cluster energy has to be calibrated separately for data and the sim-
ulation.
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Figure 5.2: Energy response of the calorimeter for data and sim-
ulation: Eraw/Efit for low and high energies (normalized to equal
area). Systematic deviations in the peak position are seen in both
energy ranges, in the high energy range the shape is clearly differ-
ent as well. For low energies, the fit resolution gives a significant
contribution to the width.

5.2 Cluster Energy Calibration

After introducing calibration algorithm, the cluster energy calibration for simu-
lation and data will be discussed. At the end, the derived parameterization of
the calibration function is verified.

5.2.1 Calibration Algorithm

In order to increase the stability of the calibration factors, the photon energy
is shifted to the correct peak values, not to the correct mean. The peak is not
influenced by entries outside the central area as the mean is. Calibrating the
peak yields to a correct most probable value whereas calibrating the mean would
yield in a photon energy which is on average correct.

Determination of the Calibration Factors

The fit estimate has a finite resolution (see section 4.7.4) which implies that the
calibration factor in data cannot simply be derived from the ratio Eraw/Efit.
Instead, the energy in data has to be normalized to the simulation. Therefore,
the measured energy in the simulation is corrected for the energy losses first,
using the generated energy. This is called the calibration of the simulation.

Dependencies of the Calibration Factors

The time dependence of the calibration factors due to radiation damage is cov-
ered by the single crystal calibration. In order to correct possible other time
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dependencies, the calibration factors are obtained for each of the four run peri-
ods separately.

The cluster calibration factor will depend on the energy since the shower depth
increases proportional to the logarithm of the energy and thus leakage behind the
crystal becomes more important at higher energies. It will as well depend on the
polar angle since the material distribution in front of the EMC differs with θ.
Since the EMC is completely symmetric in φ, no dependence on azimuthal angle
is expected.

The cluster calibration factors are derived in bins of energy (Eraw) and polar
angle (θ). The number of events in the µµγ sample is not sufficient to derive the
calibration in two dimensions. Also, it cannot be assumed that the calibration
function factorizes in energy and polar angle dependent parts. Therefore, the
polar angle dependent part of the calibration function is determined in three bins
of the energy.

The energy calibration is performed in two steps: After the calibration of the
energy dependence, the dependence on the polar angle is corrected. The total
calibration function c(E, θ) is then defined as

c(E, θ) = c1(E) · cE2 (θ) (5.1)

where c1(E) is only the energy dependent part and cE2 (θ) is the polar angle de-
pendent part which is derived in three bins of energy.

The energy dependent calibration function c1(E) is obtained as a fit of the
calibration factors obtained in 8 bins of the energy. The energy bins are chosen
to have approximately equal statistics (see Fig. 4.1 for the photon phase space),
therefore their size increases with increasing energy. The bins are shown in ta-
ble 5.1.

The dependence on the polar angle is determined in 8 bins in the polar angle
as well as in three energy bins. The polar angle bins are chosen equal to the
module structure of the EMC described in section 3.3.2. The energy range of
0.4 - 4.0 GeV is divided into three bins. For energies above 4.0 GeV, the photons
don’t cover the whole calorimeter and thus a polar angle dependent calibration
is not possible. To correct the cluster energy of these photons, the correction
obtained in the 2.0 - 4.0 GeV energy bin is used. The bins of the polar angle
dependent calibration are shown in table 5.1.

The determination of the cluster energy calibration is performed in 8 + 3 · 8
bins, 8 bins for the energy dependent calibration function and 3 · 8 bins for the
calibration function dependent on the polar angle which is taken in three energy
bins.

5.2.2 Simulation

The Monte Carlo cluster calibration is performed with generator level informa-
tion. That is, the Monte Carlo calibration function is obtained from the peak
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energy dependence theta dependence
bin energy [GeV] bin energy [GeV] bin Iθ
0 0.4 - 0.6 0 0.4 - 1.0 0 1 - 8
1 0.6 - 0.8 1 1.0 - 2.0 1 9 - 15
2 0.8 - 1.3 2 2.0 - 4.0 2 16 - 22
3 1.3 - 2.0 3 23 - 29
4 2.0 - 3.0 4 30 - 36
5 3.0 - 4.0 5 37 - 43
6 4.0 - 5.0 6 44 - 50
7 5.0 - 7.0 7 51 - 56

Table 5.1: Bins used in the energy dependent calibration are shown
in the left hand side of the table. The bins used for the polar angle
dependent calibration are shown on the right hand side. The endcap,
Iθ = 1 - 8, is treated separately.

position of the ratio of the reconstructed over the generated energy,

cMC(E, θ) =
1

peak(EMC
raw /E

MC
true)

, (5.2)

where EMC
raw denotes the reconstructed energy without the cluster calibration ap-

plied and peak() denotes the peak position of the given distribution. The peak
position is determined with the algorithm discussed in section 4.6.

In order to cancel systematic effects, the Monte Carlo calibration is performed
using a method as close as possible to the calibration in data. It is done with the
µµγ simulation in the same binning used in data. As discussed in section 4.3, no
significant differences in the phase space multiplicity of the muons exist between
data and simulation.

The calibration function, cMC(E, θ), is determined assuming that it factor-
izes in parts according to Eq. 5.1. Thus, the cluster energy calibration in the
Monte Carlo simulation is divided in two steps. The energy dependence is deter-
mined before the polar angle dependence.

Energy Dependence

The energy dependent calibration function c1,MC(E) is determined from the peak
of the distribution of reconstructed over the generated energy. The peak position
is obtained using the method described in section 4.6.

The energy dependent calibration factors determined according to Eq. 5.2 are
shown as a function of the logarithm of the energy in Fig. 5.3. All errors are
statistical errors only. A third order polynomial is fitted to the points. This
function is taken as the calibration function c1,MC(E). It rises slowly to higher
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Figure 5.3: Simulation of µµγ data: Calibration function cMC
1 (E)

as function of the logarithm of the energy for the four different run
periods. Note the logarithmic scale, −1 corresponds to 400 MeV
and +2 to 7 GeV.

energies. The overall scale of the calibration function changed for about 0.3%
between the run periods. This is due to a change of the electronics read out
algorithm after the run periods 1 and 3, which is included in the Monte Carlo
simulation.

The rise at higher energies is due to the logarithmic increase of the penetration
depth of the shower center with the energy and thus leakage behind the crystals
becomes more important at high energies. The increase at low energies is due to
the increasing relative energy loss in front of the EMC for lower energies.

Polar Angle Dependence

The calibration function c1,MC(E) is applied to the reconstructed energy to cor-
rect for the energy dependence. The corrected cluster energy, is then calibrated
for the dependence of the polar angle.

Three different calibration functions for the three energy bins are determined.
Each function is fitted as third order polynomial to the calibration factors deter-
mined using Eq. 5.2. In Fig. 5.4, the calibration factors cE2,MC(θ) are shown as a
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Figure 5.4: Simulation: Calibration factor cE2,MC(θ) as function
of the θ index for the 4 different run periods. The colors indicate
the energy range: blue for 0.4 - 1.0 GeV, red for 1.0 - 2.0 GeV
and green for 2.0 - 4.0 GeV. The calibration function shows no
dependence on energy as well as no dependence on the run period.

function of the crystal θ index.
Within the statistical significance, no dependence on the energy is seen. This

indicates that the calibration function factorizes in energy and polar angle depen-
dent parts. Within the significance, no difference between the four run periods is
seen either.

Results of the Monte Carlo Calibration

In order to test the parameterization of the Monte Carlo calibration, the complete
calibration function

cMC = c1,MC(E) · cE2,MC(θ) (5.3)

is applied to the reconstructed energy. The ratio of the cluster energy calibrated
and the generated energy is determined to test the calibration. In Fig. 5.5 (a) -
(d) the peak position is shown as a function of the logarithm of the energy. The
peak positions are at 1.0 with a deviation of less than 0.1%. The dependence of
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the peak positions on the polar angle is sown in Fig. 5.5 (e) - (h). For the test
of the parameterization, the polar angle is not divided in energy bins. The peak
position is at 1.0 with a spread of 0.1 - 0.2% which is well within the statistical
significance.

It can be concluded that the Monte Carlo simulation is calibrated to the
correct peak position. The data can be normalized to the simulation in the next
step.

Study of the Fit Bias

For the energy calibration in data, the ratio of reconstructed over fitted energy
has to be evaluated. That is, the ratio of two broad, asymmetric distributions is
taken. Thus, the peak position of the ratio gets shifted. This shift in the peak
position due to the finite resolution of the the kinematic fit will be studied in the
Monte Carlo simulation in the following. For a more descriptive understanding
of the effect, the distributions involved are shown exemplarily in Fig. 5.6 (a) -
(c) for the lowest energy bin, 400 to 600 MeV. The effect is the largest here since
the resolution of the estimate of the kinematic fit is large at low photon energies.
Arrows indicate the peak position.

In Fig. 5.6 (a) the distribution of the calibrated over the generated energy is
shown. The distribution has a large number of entries outside the central area
o lower energies which is due to energy losses outside of the calorimeter. The
peak position is at 1.0. In Fig. 5.6 (b), the estimate of the kinematic fit over the
generated energy is shown. The distribution is symmetric with a peak position
at 1.0. The width of this distribution is the resolution of the fit. Taking the
ratio of the calibrated over the fitted energy, as shown in Fig. 5.6 (c) results in a
distribution with a peak position lower than 1.0. This is the result of the division
of two extended distributions. Note that

peak(
Ecal

Efit

) 6=
peak( Ecal

Etrue
)

peak(
Efit

Etrue
)
, (5.4)

where Ecal denotes the cluster calibrated energy (as discussed in section 5.2.2),
Etrue the generator energy and Efit the energy calculated using the kinematic fit.
The peak position of the given distributions is denoted by peak().

In Fig. 5.6 (d), the peak position of the three distributions described above is
shown as a function of the logarithm of the energy. In the lowest energy bin, 400
to 600 MeV, the shift of the peak position is 1.6%. With increasing energy the
shift becomes less important.

The uncertainties in the energy calculated of the kinematic fit introduce a bias
in the ratio of reconstructed over fitted energy. This bias has to be corrected.
The calibration factor for data is obtained as a shift of the peak position in data
to the peak position of the calibrated simulation. The calibration factor for data
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Figure 5.5: Peak positions of the ratio of calibrated and generated
energy. (a) - (d) as a function of energy and (e) - (h) as a function
of the crystal index in θ. All peak positions are in agreement with
1.0, the spread is of the order of 0.1 - 0.2 % versus the polar angle
and smaller than 0.1% versus the energy.
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Figure 5.6: Simulation of µµγ data: Example for the shift of the
peak due to the finite width of the fitted energy for the energy range
400 - 600 MeV: (a)-(c) The peak of the calibrated over the generated
energy is at 1.0 as well as the one of the fitted over the generated
energy, but the peak position of the calibrated energy over the fit
estimate is shifted. (d) Peak positions as a function of energy.

is thus defined as the double ratio Monte Carlo over data,

cdata(E, θ) =
peak

(
EMC

cal /E
MC
fit

)
peak

(
Edata

raw /E
data
fit

) , (5.5)

where cdata(E,θ) is the complete calibration factor for data. EMC
cal denotes the

cluster calibrated energy in the simulation, Edata
raw the raw energy in data and

E
MC/data
fit the energy calculated by the kinematic fit for simulation and data re-

spectively. With this method, the bias observed as a shifted peak due to the
resolution of Efit is taken into account.

Test of the Bias Correction Strategy

The calibration scheme for data, Eq. 5.5, can be tested in Monte Carlo using
generator information. The cluster calibration factor is obtained in two different
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ways: Firstly, it is taken straight from the ratio of the uncalibrated energy over
the generated value,

cMC(E, θ) =
1

peak(EMC
raw /E

MC
true)

, (5.6)

as the calibration is done for the Monte Carlo simulation. Secondly, it is calcu-
lated using a double ratio analogue to the one defined in Eq. 5.5 (as implemented
for the cluster calibration in data),

c̃MC(E, θ) =
peak(EMC

cal /E
MC
fit )

peak(EMC
raw /E

MC
fit )

(5.7)

where both the calibrated and un-calibrated energy is taken from the simulation.
In this way, the unfolding of the shift of the calibration factor due to the fit
resolution can be tested. The difference of the two calibration factors is a measure
for systematic uncertainties in the calibration procedure.

Fig. 5.7 shows the calibration factors determined in the two different ways as
a function of the logarithm of the energy. The Monte Carlo data for the four run
periods is shown in the sub-figures 5.7 (a) - (d). Within the statistical errors, the
calibration factors agree for all run periods. No systematic deviation between the
two schemes is observed. The variations between the points are a measure for
the systematic uncertainties of the calibration procedure, which is at most 0.1%.
For the run periods with low event numbers, run 1 and 3, the variations between
the two algorithms are statistically dominated.

In summary, the unfolding of the uncertainties of the energy estimate by the
kinematic fit gives a very well defined peak position. Any further systematic errors
of the calibration factors are due to differences between data and Monte Carlo
simulation. Those differences and their implications are studied in section 5.3.

5.2.3 Data

As discussed in section 4.7.4, the photon energy can be calculated using a kine-
matic fit without any calorimeter information for energies above 400 MeV. The
tracking measurement is not sufficient to estimate the photon energy below 400 MeV.
Above this energy, a bias correction is necessary. As discussed in the previous
section, evaluating the ratio simulation over data cancels the bias due to the finite
resolution of the tracking measurement (assuming the same tracking resolution).

The calibration for data is determined in the same bins as the Monte Carlo
calibration, it is splitted in an energy and a polar angle dependent part,

cdata = c1,data(E) · cE2,data(θ). (5.8)
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Figure 5.7: Monte Carlo simulation study of the calibration
scheme. The energy calibration factors are obtained in two differ-
ent ways: Firstly using generator information (blue markers) and
secondly using the double ratio c̃MC(E, θ) as defined in Eq. 5.5 (red
markers). Both techniques agree within the fit errors.
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Energy Dependence

The energy dependent part of the calibration function c1,data(E) is determined
from the double ratio (Eq. 5.5) in bins of the logarithm of the energy. In Fig. 5.8
this is shown for the four run periods. A third order polynomial is fitted to the
points. The run periods 2-4 show only a small energy dependence. It varies for
about 0.5% over the full range.

The calibration function obtained from the first data taking period of the
BABAR detector has a completely different shape compared to the run periods 2-
4. The calibration factors vary with a sinusoidal shape. It is assumed that this
behavior is an artefact of data taking problems in the first run period. It is not
reproduced by the Monte Carlo simulation.
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Figure 5.8: Energy dependent calibration factor for data,
c1,data(E). The double ratio according to Eq. 5.5 is drawn as a
function of the logarithm of the energy. Significant differences be-
tween the runs are seen, the obtained calibration factors for run 1
show variations of 1.5%.

The third order polynomial fit describes the data points for the run periods 2 -
4 very well. Run period 1 has to be treated differently. The calibration function
is defined piecewise: The first and the last bin are set constant to the value of the
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calibration factor determined for particular bin. The fitted polynomial is used
for the inner bins.

Polar Angle Dependence

In order to determine the polar angle dependent calibration function cE2,data(θ) in
data, the energy dependent calibration function c1,data(E) is applied first.

Fig 5.9 shows the calibration factors cE2,data(θ) as a function of the polar angle.
The three energy ranges studied are indicated with colors: The lowest energy bin,
0.4 - 1.0 GeV, is drawn in blue, the middle bin 1.0 - 2.0 GeV in red and the high
energy bin, 2.0 -4.0 GeV in green.

A clear dependence on the polar angle is seen throughout all four run periods.
The variation of the calibration function over θ is 2.5% in the run periods 3 and
4, 2% in the second run period and up to 5% in the first run period. An energy
dependence is seen as well.
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Figure 5.9: Polar angle dependent calibration factor for data,
cE2,data(θ). The double ratio according to Eq. 5.5 is shown as a func-
tion of the crystal index in θ. The figures (a) - (d) show the four
different run periods. A change of the calibration factor between the
runs as well as an energy dependence is seen.
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The shape of the polar angle dependence is similar in the run periods 2 - 4.
The calibration function has maxima in forward and backward barrel (small and
large Iθ respectively). The minimum depends on the energy range: In the lowest
energy bin it is shifted backwards in comparison to higher energies. The rise in
forward direction is increases with decreasing energy.

The shape in the first run period is completely different. It has a maximum
in forward direction, relative maxima and minima in between and drops down in
backward direction. The energy dependence of cE2,data(θ) is on the level of several
percent, i.e. larger than the overall variation over the θ in the other run periods.
As well as in the discussion of the energy dependence, the different behavior of the
first data taking period is assumed to be an artefact of a different configuration
of the BABAR detector.

Over all four run periods, the three different energy ranges of cE2,data(θ) differ
significantly. Thus, the calibration function in data does not factorize.

The Monte Carlo simulation does not reproduce the difference between the
calibration functions on a scale of several percent, depending on the run period.
The energy dependence of the calibration function cE2,data(θ) is not reproduced by
the simulation either.

5.2.4 Test of the Calibration

The cluster energy calibration for data is obtained as the product of the energy
and the θ dependent parts of the calibration function: cdata = c1,data(E)·cE2,data(θ).
In order to test the calibration, the parameterization is applied. Thus, a double
ratio similar to Eq. 5.5 is defined,

∆peak
E =

peak(EMC
cal /E

MC
fit )

peak(Edata
cal /E

data
fit )

, (5.9)

where Ecal denotes the cluster calibrated energy for data and Monte Carlo
respectively and Efit the energy calculated with the kinematic fit. The ratio of
the peaks of the two distributions is taken.

The double ratio ∆peak
E is expected to be at 1.0 over the whole energy range

and over the polar angle if the cluster energy is well calibrated. It was shown
in section 5.2.2 that the calibrated Monte Carlo cluster energy reproduces the
correct energy scale within a statistical uncertainty of 0.1%. Therefore, possible
deviations of ∆peak

E from 1.0 have to be due to a not correctly calibrated cluster
energy in data.

The double ratio ∆peak
E is shown in Fig. 5.10 for the four run periods. In the

subfigures (a) - (d) the double ratio is taken as a function of the energy, in the
subfigures (e) - (h) as a function of the polar angle. The double ratio of the
calibrated energies shows no dependence on energy, polar angle or run period.
A remaining difference of the description of the data by the simulation is of the
order of 0.1% for the run periods 2 to 4 and 0.5% for run period 1.
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Figure 5.10: (a) - (d): Double ratio ∆peak
E as defined in Eq. 5.9

as a function of ln(E). The calibrated cluster energy peaks at 1.0
with deviations of the order of 0.1% and 1% for the run periods 2-4
and 1 respectively. (e) - (h): ∆peak

E as a function of θ. The cluster
energy is calibrated to a level of 0.2% and 0.5% for the run periods
2,4 and 1,3 respectively.
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The dependence on polar angle scatters more, but no systematic dependence
can be seen. The deviations of the double ratio from 1.0 are of the order of 0.2%
for the high statistics run periods 2 and 4 and 0.4% for the low statistics run
periods 1 and 3. These deviations are well within the statistical significance of
the calibration factors.

The energy calibration obtained from µµγ events works reliably for the energy
range of 400 MeV to 7 GeV. The energy dependence of the calibration factors
in the polar angle seen in data is not described by Monte Carlo. The calibration
corrects for it.

Systematic studies of the calibration factors are presented in the next section.
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5.3 Systematic Studies of the Calibration

The calibration method using µµγ events relies on the quality of the Monte Carlo
detector simulation describing the data. In addition to the studies presented in
section 4.4, several other sources of systematic uncertainties will be studied in
this section.

Firstly, the width and asymmetries of the distributions involved are discussed.
Next, the constraint that the particles involved in the kinematic fit originate
from the beam spot, the momentum measurement in the drift chamber as well as
the determination of the beam parameters are studied. Before concluding with
a summary of the systematic uncertainties, the uncertainty introduced by the
algorithm to determine the peak position is analyzed.

5.3.1 Shape of the Distributions in Data and Simulation

In the calibration, the double ratio simulation over data of the ratios reconstructed
over fitted energy as defined in Eq. 5.5 is used to determine the calibration factor.
For both data and simulation, the ratio of two distributions with finite resolution
is taken. The peak position depends on:

1. the width of the calculated energy, σ(Efit),

2. the asymmetric number of events outside the central area of the distribution
in the calculated energy, τ(Efit),

3. the width of reconstructed energy, σ(Eraw) and

4. the asymmetric number of events outside the central area of the distribution
in the reconstructed energy, τ(Eraw).

It is well known that the width and the number of entries outside the central
area of the distribution are different in data and simulation (see Fig. 5.2). The
width of the distributions contributing to the double ratio is studied first. The
double ratio

∆FWHM
E =

FWHM
(
EMC

raw /E
MC
fit

)
FWHM

(
Edata

raw /E
data
fit

) (5.10)

is defined, where the full-width-half-maximum of the specified ratios is deter-
mined. It gives the deviation in width between data and simulation. Observed
differences can originate either from differences in the reconstructed energy be-
tween data and simulation or from differences in the fitted energy. Given the
available information, these two possibilities cannot be distinguished. However,
the input quantities of the photon calculation are known to agree on a level of
better than 0.1% (see section 4.7.1).
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As shown in section 5.2.3, the peak positions of the reconstructed energy in the
simulation differs from the data values by about 1%. The double ratio ∆FWHM

E

is corrected for this.
The double ratio ∆FWHM

E is shown in Fig. 5.11 as a function of the energy.
Within the significance, no energy dependence is seen. The average deviations
between data and simulation are approximately 15% in the run periods 2 to 4
and approximately 25% in run period 1.
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Figure 5.11: Corrected double ratio of the width, ∆FWHM
E as de-

fined in Eq. 5.10. The width is in the simulation over all run periods
15 - 25 % smaller than in data.

The better energy resolution in the simulation is not understood. It may be
due to

1. an underestimation in the detector simulation of the material distribution
in front of the EMC or

2. the cutoff implemented in the simulation of low energetic photons may not
perfectly be tuned.

The implications of this difference on the calibration factor will be studied at
the end of this section.
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Furthermore, the asymmetric τ of the distributions contributing to the double
ratio influence the peak position of Eraw/Efit. The estimate by the kinematic fit
has an asymmetric number of entries outside the central part. Therefore, the
asymmetries of the raw energy cannot be studied using the ratio Eraw/Efit. In
order to give an estimate of the effect of the outliers on the calibration factor, a
difference of 15% between data and simulation is assumed.

Effects on the Calibration Factor

The effect of differences between the response function of the EMC and the sim-
ulation can be studied using a toy Monte Carlo simulation [23]. The energy
response of photons is parameterized using a single photon simulation. This
parameterization allows to change the response, specially the contributions of
events outside the central area and of the resolution. The effect of changes in the
quantities σ(Efit), τ(Efit), σ(Eraw) and τ(Eraw) on the calibration factor can be
simulated. By this, a correction for the measured resolution difference of 15%
between data and simulation is determined. The energy dependent correction
function δsyst(E) is shown in Fig. 5.12. The corrections are only significant in
the energy range below 1 GeV. These corrections reflect the differences in the
description of the data by the Monte Carlo simulation and have to be applied to
the calibration function for data obtained from the µµγ dataset.
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Figure 5.12: Total correction δsyst for the calibration factor
cdata(E, θ). The correction is at maximum 0.6% [24].

5.3.2 Charged Particle Measurement

The photon four vectors are calculated using the kinematic fit without any calorime-
ter information. The four vectors of the muons as well as the beam parameters
are used as input quantities.

The muon momentum is measured in the tracking system, as discussed in
section 3.2.2. The quality of the simulation describing the data is better than
0.1% (see section 4.7.1). It can be concluded that besides the effect due to the
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finite tracking resolution, which is taken into account by the calibration scheme,
there is no bias of the kinematic fit due to the momentum measurement.

The second input of the kinematic fit is the beam information. The beam
parameters are known up to 0.07 and 0.06% for the low energy ring and the
high energy one respectively (section 4.7.1). This precision is better than the one
achieved in the tracking devices. The influence of the uncertainties of the beam
parameters does not lead to any systematic effects seen in the kinematic fitting
of the photon energy.

5.3.3 Uncertainty in Beam Spot

The kinematic fit uses the constraint that all particles must originate from the
beam spot. In data, the beam spot is determined by averaging the event vertices
of each machine run. In the simulation, however, the beam spot is fixed to one
point. Hence, the influence of these differences needs to be studied. In data, the
RMS spread of the beam spot is about 100 µm along the beam axis and a few
µm transverse to it.

The change of the peak position of Efit/Etrue with a variation of the beam
spot is studied. In the test performed here, the beam spot is shifted for each
event by 2 and 5 standard deviations respectively.

Since it was necessary to reprocess the data with a shifted beam spot, the
tests in this section are performed using a sample with less events than those
used for the calibration. The sample was chosen such that the peak position is
well defined.

In Fig. 5.13 the peak position of Efit/Etrue is shown as a function of the energy.
In Fig. 5.13 (a) the beam spot is shifted in direction of the beam axis and in (b)
perpendicular to it by two and five standard deviations respectively. Within the
statistical uncertainties, no influence on the peak position of the variations of the
beam spot is seen.

It can be concluded that systematic uncertainties in the determination of the
beam spot would not result in a bias of the kinematic fit.

5.3.4 Peak Fit Procedure

The algorithm to determine the peak position of the distributions used for the
calibration is described in section 4.6. The range of the fit region is limited. The
systematic uncertainty introduced by this specific algorithm can be estimated
with variations of the fit procedure. The peak position changes by maximally
0.1% with variations of the peak determination algorithm. The systematic error
of the calibration factors is minimized because they are measured as ratio of two
quantities where the method to determine the peak position is the same.
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Figure 5.13: Peak position of Efit/Etrue as a function of the gen-
erator energy. The peak position is shown with no variation in blue
circles, with a variation of 2σ in red triangles and in green triangles
for a variation of 5σ. No significant change is seen.

5.3.5 Summary of Systematic Uncertainties

The systematic uncertainties in the determination of the calibration function have
been estimated. They are found to be as follows:

• The influence of differences in the response function of the EMC on the cali-
bration function is determined from variations as described in section 5.3.1.
The unmeasured τ is assumed vary within 15%, the uncertainty in the
determination of the resolution is 3%. Within these changes, the calibra-
tion function changes by maximally 0.2%. This is taken as systematic
uncertainty due to differences in the response function between data and
simulation.

• The contribution from the muon momentum measurement is below 0.1%.

• Variations in the beam spot give within the significance no effect on the fit
estimate.

• The systematic uncertainty originating from the peak fit determination was
found to be 0.1%.

The single contributions to the systematic uncertainty are added quadratically
since they are assumed to be uncorrelated. This yields in a total systematic
uncertainty of 0.3% which is added quadratically to the statistical uncertainties.
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5.4 Energy Resolution

Using the µµγ data sample, the energy resolution of the EMC can be measured for
high energy photons. The energy resolution σ(E)/E of the calorimeter is assumed
to be of the form (see section 3.3.1 for a discussion of this parameterization)

σ(E)

E
=

(
a

4
√
E/GeV

⊕ b

)
%, (5.11)

where a and b are the coefficients for the energy dependent and the constant term
respectively. Both terms are added quadratically.

The energy resolution can be determined from the width of the distribution of
Ecal/Efit. However, the resolution of Efit due to the uncertainties in the tracking
measurement has to be taken into account. This is studied in the simulation in
Fig. 5.14. The full-width-half-maximum of the distributions of Ecal/Etrue, which
is the energy resolution of the calorimeter, and Ecal/Efit, which is the energy
resolution convoluted with the fit resolution are shown.

For energies below 2 GeV, the estimate using the fitted energy is wrong by
more than 1.5%. At energies between 2 and 3 GeV, it is too high by 0.3% and
above this energy the contribution of the fit resolution is negligible. The energy
resolution is determined for photon energies above 2 GeV. In the energy range of
2 to 3 GeV, an systematic uncertainty of 0.3% is added.
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Figure 5.14: FWHM of the distributions of Ecal/Etrue and
Ecal/Efit in red circles and blue squares respectively. For low en-
ergies, the fit contribution is clearly seen. The energy resolution is
reasonably well described above 2.0 GeV.

The energy resolution is defined as the sigma of the distribution, i.e. as

σ =
FWHM(Ecal

Efit
)√

4ln(4)
, (5.12)

where FWHM denotes the full-width-half-maximum of the distribution. The
factor

√
4ln(4) originates from the relation between the FWHM and sigma of a

normal distribution.
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In Fig. 5.15 (a) the energy resolution obtained from the µµγ dataset is shown
as a function of the energy. A dashed line indicates the energy above which the
measurements are used to determine the resolution. The resolution is determined
by a fit of a function of the type of Eq. 5.11. It is only performed in the energy
range above 2.0 GeV. The values obtained from the fit for data and Monte Carlo
simulation are shown in the left hand side of table 5.2.

In Fig. 5.15 (b) the range used to fit the energy resolution is magnified. The
parameterization given in an earlier EMC performance study (NIM paper) [1]
is drawn in dashed line. Compared to this measurement, the resolution of the
NIM parameterization is too large. The simulated energy resolution is somewhat
better than the resolution of the reconstructed energy. This may be due to a
wrongly simulated material distribution in front of the calorimeter.

However, it has to be emphasized that the resolution measurement at high
energies is clearly not sufficient to determine a parameterization in energy depen-
dent and constant term as discussed in section 3.3.1. In order to have a better
handle on the energy dependence of the resolution, the µµγ dataset has to be
combined with low energy measurements. A possible candidate is the decay of
the Σ baryon, work in this area is in progress [17].

Dataset This measurement NIM parameterization
Data a [%] 2.74±0.61 2.32±0.30

b [%] 0.57±1.45 1.85±0.12
Simulation a [%] 2.73±0.09

b [%] 0.0 ±2.07

Table 5.2: Energy resolution determined in this measurement and
parameterization given in the NIM paper [1].
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Figure 5.15: The energy resolution is shown as a function of the
energy. A dashed line indicates the region above which the fit bias
is negligible. (a) over the full range covered by the µµγ dataset. (b)
zoomed into the region where the fit is done. The parameterization
according to the NIM paper is drawn in as well (b).

5.5 Summary

For the first time in the BABAR experiment, a cluster energy calibration for ener-
gies above 1.5 GeV was derived from physics processes. Kinematically constrained
photons from the reaction e+e− → µ+µ−γ are used for the calibration. The de-
pendence on energy and polar angle is calibrated separately for the four different
periods of data taking. The calibration technique uses the uncalibrated data
which is normalized to the calibrated response in the simulation. This algorithm
takes the finite resolution of the calculated energy into account. The obtained
calibration function reproduces the correct energy within a statistical uncertainty
of 0.1 - 0.4% for the energy range up to 7 GeV.

Systematic effects of the µµγ calibration scheme have been studied. As an
important aspect, the width of the reconstructed over the fitted energy was found
to be 15 - 25 % smaller in the Monte Carlo simulation than in data. The effect
of this difference on the calibration factor was studied and a correction applied.
The overall systematic error was found to be 0.3%.

The energy resolution of the calorimeter has been determined in the energy
range of 2 - 7 GeV. In data, it was measured to be

σ(E)

E
=

(
(2.74± 0.61)

4
√
E/GeV

⊕ (0.57± 1.45)

)
%. (5.13)

In the simulation, the energy resolution has been determined the same way as in
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data. It was found to be

σ(E)

E
=

(
(2.73± 0.09)

4
√
E/GeV

⊕ (0.0± 2.07)

)
%. (5.14)

which is better than the resolution in data. However, as seen in the large errors,
the high energy part measured with µµγ events is not sufficient to determine the
parameterization in a constant and an energy dependent part.

The cluster calibration scheme using µµγ events is to be combined with the
cluster calibration obtained from neutral pion decays which covers the low energy
spectrum. For the combination of the µµγ and the π0 calibration, systematic
effects in both datasets have to be studied carefully. For the µµγ dataset, this
has been discussed in section 5.3.

Neutral pions are reconstructed from two photons. At photon energies below
0.7 GeV, the resolution of the reconstructed invariant mass of the π0 is dominated
by the energy resolution. At higher photon energies, the position measurement
dominates. Hence, a possible bias in the position reconstruction of photons results
in a systematic error in the cluster energy calibration function of the π0 calibration
in the energy range above 0.7 GeV. The µµγ dataset can also be used to study
the position reconstruction of photons in the calorimeter. This is discussed in the
next section.



Chapter 6

Photon Position Reconstruction

One of the tasks of the electromagnetic calorimeter is the position measurement
of photons which is the topic of this chapter. Data from the fourth run period of
data taking and the associated Monte Carlo simulation is used in this chapter if
not stated differently.

After a discussion of the position reconstruction algorithm, the dependence
of the position reconstruction on the polar angle is studied on a large scale, not
looking at structures inside single crystals. Afterwards, systematic deviations of
the reconstructed to the true photon position inside single crystals are analyzed
and a correction scheme for these deviations is developed.

Any bias in the position measurement could result in systematic shifts of
kinematic variables, e.g. four vectors of neutral pions, and introduce systematic
shifts in physics results. Therefore, possible biases have to be studied carefully
and must be corrected if possible.

6.1 Position Reconstruction Algorithm

In general, the shower induced by a photon entering the calorimeter spreads over
many crystals. Since the BABAR calorimeter is not longitudinally segmented, only
the transverse position of the photon can be measured. A weighted average of
the crystal position in a shower is used to determine the transverse position. The
weight with which a crystal enters depends on the energy the shower deposits in
it. Several different approaches exist for the weighting model:

The easiest ansatz is to use a linear weighting model. The position ~x of a
photon is reconstructed to be

~x =
n∑

i=1

~xi
Ei∑n

j=1Ej

, (6.1)

where ~xi denotes the central position of the crystal front face in which the energy
Ei is deposited in. The sum includes all crystals of the cluster.

73
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A different approach, the logarithmic weighting, reduces the weight of the
most energetic crystals and enhances the lower energy ones. It takes the expo-
nential structure of the shower in transverse direction into account. The position
~x of the photon gets reconstructed as1

~x =
n∑

i=1

~xi max(0, a+ ln(
Ei∑n
i=1Ei

)). (6.2)

The sum includes all crystals of the cluster, a is the cutoff parameter which
guarantees that the logarithm gets a positive argument and removes crystals
with very low energy.

The position reconstruction algorithms can be studied in the simulation.
Fig. 6.1 compares the linear and the logarithmic weighting function used for
position reconstruction. In the case of linear weighting, Fig. 6.1 (a), the recon-
structed polar angle (θemc) drawn as a function of the generated value (θtrue) has
a big tilt compared to the ideal correlation line. In contrast to that, the loga-
rithmic weighting, Fig. 6.1 (b), has a much smaller systematic deviation from the
ideal correlation.

The algorithm used in the BABAR experiment for position reconstruction was
optimized in single photon Monte Carlo [18]. Logarithmic weighting with a cutoff
parameter of a = 4.0 is used for data production. That means, only crystals with
a deposited energy of more than 1.8% of the total cluster energy are considered
to calculate the photon position.
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Figure 6.1: Simulation with Iθ = 19 and 0.4 < Eγ< 2.0 GeV. In
the linear weighting (a), the reconstructed and the true position are
not as well correlated as in the logarithmic weighting (b). [25]

Fig. 6.2 shows the number of crystal rings2 contributing to the photon position
reconstruction in the e+e− → µ+µ−γ dataset. For the polar angle determination,

1The algorithm described in Eq. 6.1 and Eq. 6.2 reconstructs the cluster position two-
dimensionally. The radial component is fixed to be 12.5 cm.

2More precisely: The number of different indices in θ and φ respectively.
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(b) φ: 0.4 - 2.0 GeV
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(d) φ: 2.0 - 4.0 GeV
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(e) θ: 4.0 - 6.0 GeV
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Figure 6.2: Number of crystal rings per cluster above the 1.8%
threshold used for position reconstruction. The number of crystals
is shown in θ and φ as well as in different energy bins.
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there is a significant number of events with only one crystal above cutoff in one
direction. For these crystals the reconstructed position is set equal to the crystal
center. This results in an artificial peak at the crystal center (seen in Fig. 6.1).
There are more events with one crystal in the simulation than in data.

6.1.1 Position Estimate Using the Kinematic Fit

For µµγ events, the position of the photon can be calculated using the kinematic
fit. As shown in section 4.7.4, θfit is reproducing the generated value with good
accuracy.

The correlation of the angle calculated with the kinematic fit is shown as a
function of the generated value in Fig. 6.3. The crystal rings with indices Iθ = 20 -
25 are chosen as an example. This corresponds to the central part of the barrel.
A diagonal line of ideal correlation (where θfit = θtrue) and crystal boundaries
are drawn as well. No crystal structure is seen. The angular estimate of the
kinematic fit has entries outside the central area to high and low angles.
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Figure 6.3: Estimate of the kinematic fit (θfit) as function of the
generated angle, (θtrue). No crystal structure is seen.

6.2 Position Reconstruction on Module Level

Two different aspects of the position reconstruction are studied on a large scale,
that means averaged over several crystals in azimuthal or polar angle. First, the
quality of the angular reconstruction in data is compared with the simulation.
Second, the angular resolution is studied.

6.2.1 Reconstructed Angles in Data and Simulation

The quality of the Monte Carlo simulation describing the position reconstruction
in data is studied with the peak position of the distribution of reconstructed over
the fitted polar angle (θemc/θfit). In order to avoid systematic deviations due to
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the finite fit resolution (see discussion in section 5.2.2), the double ratio ∆peak
θ is

defined in analogy to Eq. 5.5,

∆peak
θ =

peak(θMC
emc/θ

MC
fit )

peak(θdata
emc /θ

data
fit )

, (6.3)

where θemc is the position reconstructed using the weighted mean discussed in
section 6.1 and θfit is the estimate for the photon polar angle from the kinematic
fit for data and simulation respectively. In Fig. 6.4, the double ratio as defined in
Eq. 6.3 is shown as a function of the θ index for all four run periods. The position
is reconstructed with deviations between data and simulation of less than 0.5%
in forward barrel and deviations of the order of 0.1% in the central and backward
barrel.

It has to be emphasized that this shows only the accuracy to which the simula-
tion describes the data. This does not imply that the absolute scale is determined
to the same accuracy.
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Figure 6.4: Ratio of simulation over data: ∆peak
θ as defined in

Eq. 6.3 for all four run periods. Deviations between simulation and
data of smaller than 0.5% are seen.
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6.2.2 Position Resolution

To measure the resolution, the difference

θef = θemc − θfit (6.4)

of the reconstructed angle (θemc) and the angle calculated with the kinematic fit
(θfit) is studied. This results in a distribution which has a peak value around zero.
The angular resolution σ(θef ) is then defined as the full-width-half-maximum of
θef over 2.355 (analogue to section 5.4).

Unfolding the Resolution of the Fitted Angle

The photon position as obtained from the kinematic fit has a finite resolution.
Similarly to the energy measurement in chapter 5.2.3, the fit resolution improves
with increasing energies. Compared to the energy measurement, the situation
here is much simpler: The resolution distributions are to a good approximation
symmetric (see Appendix B) and can be described by a Gaussian. The width of
θef = θemc − θfit is a convolution of the resolution of the calorimeter σ(θet) and
the resolution of the kinematic fit σ(θft). Assuming Gaussian error propagation,
σ(θef ) can be written as

σ(θef ) =

√
σ(θet)

2 + σ(θft)
2, (6.5)

where θet = θemc − θtrue and θft = θfit − θtrue. The measured resolution of the
calorimeter, σEMC(θ), can be obtained from the width of θef by subtracting the
fit resolution quadratically,

σEMC(θ) ≈
√
σ(θef )

2 − σ(θft)
2, (6.6)

where σ(θef ) is measured in both data and simulation separately and σ(θft),
the fit resolution, is taken from the simulation. This assumes that the tracking
resolution in data is described by the simulation. The quadratic subtraction
remains an estimate since the resolution distributions are not entirely Gaussian.

The unfolding derived in Eq. 6.6 can be tested in the simulation. Ideally,
the unfolded resolution σEMC(θ) would equal the calorimeter resolution σ(θet).
Fig. 6.5 shows σ(θef ), σ(θet) and the proper calorimeter resolution σEMC(θ) as a
function of the energy.

σEMC(θ) is used to determine the resolution for energies above 1.3 GeV. The
systematic error introduced by the unfolding is approximated from the difference
between σ(θet) and σEMC(θ). In the energy range of 1.3 to 2.0 GeV, it is assigned
to be 1.5 mrad. For higher energies, the quadratic subtraction works better and
a systematic error of 0.5 mrad is assigned.

In the following, the quadratic subtraction of the fit resolution is used to
determine the angular resolution for the polar and azimuthal angle.
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Figure 6.5: Study of σ(θ) Vs. energy for the central barrel in the
simulation. The contribution of the fit resolution is clearly seen in
σ(θef ). The proper calorimeter resolution σEMC(θ) describes the
true resolution reasonably well for energies above 1.3 GeV.

Resolution of the Polar Angle

In the calorimeter, the polar angle is not measured directly3. For physics analyses,
the resolution of the measurement of azimuthal and polar angle are needed. By
measuring σ(θ), a dependency on the distance rEMC between the interaction
point to the calorimeter is introduced,

σ(θ) ≈ σ(z)/rEMC , (6.7)

where σ(θ) and σ(z) denote the resolution in angular and spatial measurement
respectively. The distance rEMC enhances or suppresses the measured quanti-
ties. The calorimeter is divided in four different areas with approximately equal
distance rEMC . As the calorimeter is constructed completely symmetric in φ, no
dependence on the azimuthal angle is expected. Additionally, as described in sec-
tion 3.3.2, the material distribution in front of the calorimeter differs significantly
with polar angle.

In order to account for these effects, the calorimeter is divided into four sec-
tions in the polar angle. They are defined as follows:

1. Endcap: This includes the crystals with the θ crystal index Iθ= 1 - 8

2. Forward barrel: This includes the first three modules in the EMC barrel,
i.e. crystals with Iθ= 9 - 30

3. Central barrel: This includes the next two modules in the EMC barrel, i.e.
crystals with Iθ= 31 - 44

4. Backward barrel: This includes the last two modules in the EMC barrel,
i.e. crystals with Iθ= 44 - 56

3 The quantities measured directly in the calorimeter are given by the symmetry of the
detector, i.e. in cylindrical coordinates for the barrel (see section 3.3.2).
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The energy dependence of the angular resolution is assumed to consist of an
energy dependent and a constant part. It is parameterized as

σ(θ) =

(
a√

E(GeV )
+ b

)
mrad, (6.8)

where a and b are determined separately for the four divisions of the calorimeter.
In Fig. 6.6 the measured angular resolution σEMC(θ) determined with the

quadratical subtraction (Eq. 6.6) is shown as a function of the energy for data
and simulation for the four divisions of the EMC. The resolution is determined
from a fit of Eq. 6.8 to the measured points. The change of the resolution over
the four divisions is dominated by the change of the distance to the interaction
point.

The measured coefficients of the angular resolution can be found in table 6.1.
The angular resolution is in all ranges in data better than in simulation. This is
expected from the measurement of the shower width described in section 5.3.1:
The position resolution of a crystal calorimeter depends on the effective crystal
size, i.e. on the ratio of the crystal size to the shower width. Since the transverse
shower size is smaller in the simulation, the effective crystal size is bigger and
hence the position resolution is worse.

The errors determined from the fit are quite large since the systematic un-
certainties introduced with the unfolding of the finite width are approximated
conservatively.

EMC Region Data Simulation
endcap a [mrad] 4.20±2.23 5.86±0.39

b [mrad] 0.39±1.03 0±3.11
forward barrel a [mrad] 8.75±2.89 10.12±0.49

b [mrad] 0.05±1.91 0.0 ±2.27
central barrel a [mrad] 5.17±3.60 6.86±3.74

b [mrad] 4.88±1.79 5.07±1.83
backward barrel a [mrad] 1.31±5.54 3.23±0.04

b [mrad] 6.03±3.20 5.38±3.48

Table 6.1: Measured coefficients of the angular resolution in θ.
The change over the divisions in the polar angle is dominated by
the changing distance rEMC.

Resolution of the Azimuthal Angle

The resolution of the azimuthal angular measurement σEMC(φ) is determined
analogue to Eq. 6.6. Due to the change of material distribution over θ, the res-
olution of the azimuthal angle is determined in the same divisions as σEMC(θ).
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Figure 6.6: Measured resolution of the polar angle (σEMC(θ),
Eq. 6.6) as a function of energy for data (full circles) and sim-
ulation (open circles). The four divisions of the EMC are shown as
sub-figures (a) to (d). The change of the angular resolution over
the polar angle is dominated by the change in rEMC.

However, the calorimeter is symmetric in φ and thus no dependence on the loca-
tion in the calorimeter is observed.

In Fig. 6.7, σEMC(φ) is shown as a function of the energy. The resolution is
determined from a fit to the measured points. It is performed in the range of 1.3
to 7.0 GeV in the forward and central barrel and up to 4.0 GeV in the backward
barrel. The limited range in the backward barrel is due to the photon phase space
(see Fig 4.1). Table 6.2 shows the measured coefficients of angular resolution of
the azimuthal angle.

Given the large errors of the parameterizations, no significant change of σEMC(φ)
with the divisions is observed. Within the significance, the simulation describes
the resolution in data. It is not completely understood why the clear difference
between the simulation and data seen in the polar angle is not observed in the
azimuthal angle. A hint to understand this may be the bigger difference in the
number of crystals used for position reconstruction between data and simulation
(Fig. 6.2).
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Figure 6.7: Measured resolution of the azimuthal angle σEMC(φ)
as a function of energy for data and simulation. The sub-figures (a)
- (c) denote the different divisions of the barrel part of the calorime-
ter. The simulation describes the data within the significance.

EMC Region Data Simulation
forward barrel a [mrad] 5.48±2.51 6.12±0.40

b [mrad] 0.14±2.44 0.0 ±0.97
central barrel a [mrad] 5.03±0.38 5.33±0.38

b [mrad] 0.0±2.07 0.0±0.68
backward barrel a [mrad] 5.59±0.63 5.82±0.64

b [mrad] 0.0±2.56 0.0±1.40

Table 6.2: Measured coefficients of the angular resolution in φ.
The resolution is within the significance equal between data and
simulation as well as for the divisions of the EMC.
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6.3 Position Measurement Inside Single Crystals

In this section, deviations of the reconstructed to the true photon position inside
single crystals are studied. This can be done independently for data and simu-
lation using θfit. Therefore, a possible correction can be obtained separately for
both datasets using the same method.

6.3.1 Qualitative Discussion

Using Generator Level Information

In order to study the sub-crystal position measurement, the angle reconstructed
in the calorimeter (θemc) is compared with the generated angle (θtrue) as shown
in Fig. 6.8. Ideally, one would expect a diagonal line washed out with the resolu-
tion. However, as already seen in Fig. 6.1, the position reconstruction algorithm
introduces a systematic deviation depending on the position relative to the edges
of the crystal.

The reconstructed polar angle, correlated with the true angle in the simulation
is shown in Fig. 6.8. Crystals with indices Iθ=20-25 are chosen as an example.
This corresponds to the central part of the calorimeter, the same features are
seen everywhere in the EMC. The crystal boundaries are drawn as solid lines, a
dashed diagonal line shows the ideal correlation (θemc = θtrue).
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Figure 6.8: Simulation of µµγ data: Crystals in the central barrel
with indices Iθ = 20 - 25: θemc versus θtrue. The solid lines cor-
respond to the crystal boundaries on each axis, the dashed line to
the ideal correlation. Deviations from a straight line, the so called
S-shape, are clearly visible for each crystal.

The shape of the deviation shown in Fig. 6.8 is sinusoidal. There is no devia-
tion observable at the crystal center whereas the deviation is maximal at about
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1/3 and 2/3 of the crystal front face. At the crystal edges, the deviation reduces
to a minimum again. In the following, this deviation is called S-shaped.

The systematic deviation seen in the position reconstruction algorithm agrees
qualitatively with earlier Monte Carlo studies [20].

Using the Kinematic Fit

The structures inside single crystals can be studied using the photon angle calcu-
lated with the kinematic fit. As shown in section 6.1.1, θfit provides an excellent
estimate for the position of the generated particle. It will be used in the following
to estimate the true photon position.

In Fig. 6.9, θemc is drawn as a function of θfit for simulation and data in two
energy ranges. The S-shape structure introduced by the position reconstruction
algorithm is clearly visible. However, the structure is smeared out due to un-
certainties of the kinematic fit. Using θfit instead of θtrue, the S-shape deviation
looks more like a linear tilt, than like the sinusoidal deviation observed using gen-
erator level information. The tails seen in Fig. 6.9 are due to tails in the estimate
of the kinematic fit describing the true (generator level) angle. The effect in data
is much smaller than in the simulation, but there is clearly a systematic crystal
structure visible.

The band structure seen in the tails of Fig. 6.9 is due to the requirement that
the reconstructed and the calculated position agree within 15 cm (see section
4.7.4). Beside the uncertainties introduced, the kinematic fit provides a good
handle to study structures of the position reconstruction inside single crystals.

A very fundamental way to study the position reconstruction is to draw the
reconstructed angle in a histogram binned fine enough to see a crystal structure.
This is done in Fig. 6.10 for data and simulation. Solid lines indicate the crystal
boundaries. A crystal structure is clearly visible as well as a big difference in
position reconstruction between data and simulation. The size of the gaps be-
tween two crystals is significantly larger in the simulation than in data. This is
consistent with the observation that the S-shape deviation is more emphasized
in the simulation. A larger systematic deviation in the reconstructed angle re-
sults in the projection in a more pronounced crystal structure. For the rest of
this chapter, this effect will be quantified and possible correction schemes will be
developed.

6.3.2 Quantitative Discussion

In order to quantify and correct the observed deviation on the crystal front face,
the crystal structure seen in Fig. 6.9 can be divided in slices and the peak positions
of the resulting distributions are determined by a fitting procedure.

The S-shape is measured quantitatively in the energy interval of 2.0 to 4.0 GeV.
In this range, the photons still cover the whole calorimeter and the estimate of
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Figure 6.9: Correlation of the θemc and θfit for data and simula-
tion. As an example, crystals with indices Iθ= 20-25 are chosen.
The same features are seen everywhere in the EMC. A deviation
from the ideal correlation can be observed. The effect is larger in
the simulation than in data.

the kinematic fit is well correlated with the true angle. At higher energies, the
kinematic fit gives excellent estimate, but the photon phase space is restricted to
the forward area. At lower energies the uncertainties in the kinematic fit lead to
a poor estimate of the true angle.

The procedure is the following: Each of the 56 θ-crystal rings is divided in 10
equidistant slices. In total, there are 10 · 56 slices. The events are then binned in
these slices in θfit. In each slice, θemc is drawn in a histogram. This results in a
distribution of the reconstructed angle for each slice in the fitted angle, as shown
as an example for Iθ = 19 in Fig. 6.11. The peak position of this distribution is
determined by a fit using a Novosibirsk function (see Eq. 4.2 for details).

The peak position obtained from the peak fit procedure is shown in Fig. 6.11
is drawn versus the center of the slice in θfit. This results in a correlation of the
reconstructed angle with the angle calculated with the kinematic fit for each of
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Figure 6.10: Histogram of θemc in simulation and data. Exemplar-
ily, crystals with indices Iθ = 20 - 25 are shown. A crystal structure
is clearly visible, in simulation it is more pronounced than in data.

the 56 θ-crystal rings.
Fig. 6.12 shows the peak position of the reconstructed polar angle as a function

of θfit for data and simulation. The size of the sub crystal deviation is expected to
be different along θ-direction, dependent on the distance to the interaction point
and on the material distribution in front of the EMC. As an example, four crystal
rings in different areas of the calorimeter have been chosen: The forward barrel
(Iθ= 15, 25), central barrel (Iθ= 35) and the backward barrel (Iθ= 45). In both
data and simulation, the S-shape deviation is clearly visible. When comparing
Fig. 6.12 (a) for the simulation and (b) for data the difference is striking: The
effect is very strong in simulation and quite weak in data.

It is expected that the effect is stronger in the simulation since the shower is
about 15% narrower (see section 5.3.1) and hence less crystals are involved in the
position reconstruction. This can be seen as well in Fig. 6.2 which shows that the
number of crystals used in the position reconstruction algorithm is significantly
smaller in the simulation than in data.

The dependence of θemc on θfit is fitted with

fi(θfit) = a0 · θ3
fit + a1 · θ2

fit + a2 · θfit + a3 (6.9)

where the fi(θfit) are the fit functions for all 56 θ-rings with parameters aj which
are determined for each crystal ring separately. The following constraints are put
on the fit function:

1. The fit function is required to satisfy

fi(θfit) = θfit (6.10)

at the boundaries of each crystal. This is motivated with the observations
using generator level information (section 6.3.1, Fig. 6.8) and ensures fur-
thermore a continuous transition between the crystals.
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Figure 6.11: Exemplarily shown is the crystal with Iθ = 19 in the
simulation. Subfigures 1 - 10 denote the ten slices of the crystal,
calculated in θfit.

2. It is required that Eq 6.10 is satisfied at the crystal center. This ensures a
symmetric parameterization.

The overall size of the sub crystal deviation can be quantified using the func-
tion fi(θfit). A quantity δS

i called amplitude is introduced,

δS
i = |AMAX

1 |+ |AMAX
2 | (6.11)

where AMAX
1 and AMAX

2 are the amplitudes of fi(θfit) relative to the ideal corre-
lation line (which satisfies g(θfit) = θfit) in the first and second half of the crystal
respectively. AMAX

1 and AMAX
2 are drawn as red arrows in the lower left figure of

Fig. 6.12 (a). The quantity δS
i measures the maximal size of the deviation in the

position reconstruction for the ith crystal ring.
The size of the S-shape deviation of the reconstructed angle studied using the

kinematic fit, δS
i (θemc/θfit) is determined for each θ-index separately. It is shown

in Fig. 6.13 (a) for the simulation. It increases from ∼4mrad in the forward part
of the detector to ∼10mrad in the center and decreases afterwards again. The
variations are quite large. In data, Fig. 6.13 (b), δS

i (θemc/θfit) is significantly
smaller increasing from ∼2mrad to ∼4mrad in the central barrel. For both data
and simulation, the increase of the amplitude is due to the changing distance.
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Figure 6.12: θemc versus θfit for (a) simulation and (b) data (2.0 -
4.0 GeV). Four crystal rings are selected as an example. A diagonal
line (dashed) as ideal correlation line is drawn as well as the crystal
boundaries (solid).
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An effect of the same size gets enhanced in the central barrel by the ratio of the
distances rEMC between the interaction point and the cluster centroid.
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Figure 6.13: 2.0 - 4.0 GeV: δS
i (θemc/θfit) for simulation and data

as a function of the θ-crystal index. A correlation of the amplitude
with the polar angle is visible with a maximum at the central barrel
(Iθ=37).

Systematic Study of θfit

It has to be shown that the sub-crystal structure seen in Fig. 6.12 and 6.13 is
not due to a bias in θfit. Therefore, the amplitude δS

i (θfit/θtrue) of the angle
calculated with the kinematic fit versus the generated angle is studied. It is
shown as a function of the θ-index in Fig. 6.14.

Within the significance, no position dependent systematic effect in θfit is
observed. The variations in the distribution of δS

i (θfit/θtrue) are a measure for
the systematic error introduced by the kinematic fit as measure for the true angle.
It can be approximated conservatively from Fig. 6.14 as ±1 mrad, being constant
over the polar angle. This value will be assigned to the measurement of the
amplitude, i.e. to the size of the S-shape deviation.

6.4 Correction of the Sub-Crystal Deviation

There are two principally different ways to study the influence of a correction
for the S-shape deviation depending on the input parameter of the correction
function: A correction function can be developed using the calculation with the
kinematic fit as input or using the reconstructed angle itself as input.

Using fit information is intrinsically much easier since the input quantity is
well known. It is a good method to study the feasibility of a correction for the
sub-crystal structure and to analyze the influence of the S-shape deviation on
the resolution. Unfortunately, in order to develop a correction, the calculation
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Figure 6.14: MC 2 - 4 GeV: δS
i (θfit/θtrue) versus the θ-index.

The kinematic fit estimates the sub-crystal position without a de-
pendency on the polar angle, but with variations of about ±1 mrad.

using the kinematic fit cannot be used. A correction can be developed using the
reconstructed angle as input. This is more complicated since the input quantity
of the correction has uncertainties itself.

The correction functions are determined depending on the polar angle for
the crystal rings Iθ=4-50. In the three most forward rings, Iθ= 1-3 there are
about three radiation lengths material in front of the crystals and the signal is
therefore bad compared to the rest of the calorimeter. In the most backward
rings, Iθ= 51-56, due to kinematics the event number is not sufficient to perform
a correction (see chapter 4.1 for the photon phase space). These crystal rings
are left uncorrected. This leaves 47 crystal rings in the polar angle to perform a
correction for.

6.4.1 Systematic Study Using Fit Information

In this chapter, an additive correction for the S-shape deviation is studied. The
correction depends on the calculation by the kinematic fit. The difference between
the measured angle and the expectation is calledmean shift, ∆θemc

fit and is defined
as

∆θemc
fit = θemc − θfit (6.12)

where this difference is taken in each of the 10 slices per crystal ring described in
chapter 6.3.2.

The mean shift is shown in Fig. 6.15 exemplarily for four different crystals in
the forward (Iθ = 9, 25), central (Iθ = 35) and backward (Iθ = 45) barrel part
of the calorimeter for data and simulation. In the simulation, the amplitude is
about 5 mrad in the central barrel dropping to smaller values in the very forward
barrel (Iθ = 9). In data, the amplitude of the mean shift is significantly smaller.

The correction function is defined by a constrained third order polynomial
fit to the mean shift. The constraints are similar to those described for Eq. 6.9,
∆θemc

fit is required to be zero at the crystal boundaries and at the center. The fit
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Figure 6.15: Mean shift ∆θemc
fit for 2.0 - 4.0 GeV: The Difference

of the reconstructed polar angle to the ideal correlation line is drawn
as a function of the fitted angle.
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describes the measured points reasonably well (see App. C for a χ2 distribution)
with a tendency to underestimate the effect. In Fig. 6.12 (a) and (b), it is
seen that the assumption of a vanishing correction at the crystal boundaries is
doubtful. However, since the edges of a crystal have some signal pollution of the
neighbor crystals and the sinusoidal shape is seen using generator information,
this constraint of the fit is kept. A continuous transition between the crystals
seems to be more reasonable as well.

The correction procedure is as follows: For each event, the crystal index in θ
and the relative position on the crystal face is determined from the angle esti-
mated by the kinematic fit. According to the crystal index, a mean shift correction
function is chosen. This function is evaluated at the specified relative position
in the crystal. The functional value of the correction function gives the offset of
the reconstructed angle to the true angle (approximated with the kinematic fit).
In order to correct for the effect, this offset is subtracted from the reconstructed
angle. As mentioned before, the crystal rings Iθ = 1− 3 and Iθ = 51− 56 are left
uncorrected.

Results of the Mean Shift Correction

A histogram of the reconstructed polar angle with the mean shift correction
applied is shown in Fig. 6.16 as black line for the rings 20 < Iθ < 25. The
uncorrected polar angle is drawn as red, dashed line. The ratio of peaks to gaps
is a measure for the quality of the angular reconstruction.

In the simulation, the gaps between the crystals are reduced by the correc-
tion, leaving a distribution with less emphasized structures. However, a crystal
structure is still clearly visible. While for data, the correction has only a small
effect, the agreement between data and simulation improves drastically.

The mean shift correction results in a flattened amplitude as shown in Fig. 6.17
for corrected and uncorrected datasets in data and simulation. The amplitude
δS
i (θemc/θfit) for the simulation is reduced from maximally 10 mrad with a strong

dependence on the polar angle to an average effect of 3 mrad with a maximum
at ∼4 mrad. The dependence on the polar angle has vanished as well. For data
the original effect is much smaller as shown in Fig. 6.17 (b). Still, the mean
shift correction reduces the amplitude to an average size of ∼1.5 mrad. The
improvement in the agreement between data and simulation is clearly seen.

With the correction of the S-shape deviation using the kinematic fit, the sub-
crystal deviation in the angular reconstruction is reduced significantly. The effect
on the angular resolution is studied in Fig. 6.18. The calorimeter is divided in
four sections, as introduced in section 6.2.2, represented in the sub-figures (a) -
(d). The resolution has improved for all four divisions. Especially the simulated
values, where the mean shift is significantly larger than in data, the improvement
in resolution is clearly seen. The measured resolution is determined with the
procedure described in section 6.2.2. For a better clearness, the fit functions
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Figure 6.16: Histogram of the polar angle reconstruction in simu-
lation and data for the energy range of 2.0 - 4.0 GeV, exemplarily
for the crystals Iθ = 20 − 25. The red dashed histogram is without
a correction applied, the solid black one is the mean shift corrected
histogram. In the correction, the gaps between the crystals reduce.
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Figure 6.17: 2.0 - 4.0 GeV: Corrected and uncorrected amplitude
for the simulation and data. The correction shown is the mean
shift correction determined dependent on the calculation with the
kinematic fit. A clear reduction of the amplitude can be observed
for the simulation.
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(d) σEMC(θ): backward barrel

Figure 6.18: Resolution of the polar angle with the mean shift
correction. The four figures represent the different divisions of the
calorimeter as defined in chapter 6.2.2. With the correction ap-
plied, the resolution is improved and the agreement of data and the
simulation improved as well.

are not drawn in Fig. 6.18. A summary of the coefficients of the fitted angular
resolution is given table 6.3.

The presented correction reduces the sub-crystal deviation, improves the an-
gular resolution and leads to a better description of the data by the simulation.
It has to be emphasized that this study relies on the calculated photon position,
it can therefore only be seen as study of the effects of the sub crystal deviation
on position reconstruction.

From these observations, it is possible to conclude that the differences in
position reconstruction between data and Monte Carlo simulation are due to a
big part to the different deviations on the sub-crystal level. A more fundamental
approach to eliminate the difference between data and the simulation would be to
correct for the origin of this difference. That would mean to broaden the shower
width in the Monte Carlo simulation.
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Uncorrected Corrected
EMC region Data Simulation Data Simulation

endcap a [mrad] 4.20±2.23 5.86±0.39 4.77±0.19 4.95±0.19
b [mrad] 0.39±1.03 0±3.11 0.0±0.27 0±2.82

forward barrel a [mrad] 8.75±2.89 10.12±0.49 7.37±1.54 7.18±1.54
b [mrad] 0.05±1.91 0.0 ±2.27 0.50±0.77 0.57 ±0.73

central barrel a [mrad] 5.17±3.60 6.86±3.74 5.73±1.35 4.30±1.18
b [mrad] 4.88±1.79 5.07±1.83 4.20±0.70 4.12±0.63

backward barrel a [mrad] 1.31±5.54 3.23±0.04 5.32±2.33 4.92±2.17
b [mrad] 6.03±3.20 5.38±3.48 3.35±1.45 2.21±1.35

Table 6.3: σ(θ) for a corrected and an uncorrected dataset. With
the correction applied, the resolution improves more in the simula-
tion and the agreement between data and simulation improves.

6.4.2 Correction of the Sub Crystal Deviations

In order to develop a correction scheme which is usable for an arbitrary dataset, a
correction has to be defined which depends only on the reconstructed angle θemc.
For this, the functional dependence discussed in section 6.3.2 is used.

The correction proceeds as follows: The S-shape deviation is fitted for each
crystal ring in data and simulation separately using the fit function Eq. 6.9 with
constraints (see Fig. 6.12). The crystals used for the correction include, as in the
last section, crystal rings with Iθ = 4 - 50. There are 47 correction functions
which obey a relation of the form:

θemc = fi(θfit) ≈ fi(θtrue) (6.13)

where fi is fitted correction function for the ith crystal ring. That means the
reconstructed angle is a S-like function of the angle calculated with the kinematic
fit, and thus of the true angle. It can be inverted analytically using cardanos
formulas [27]. The inverted function is the correction function. It is applied to
the reconstructed angle:

f−1
i (θemc) = θfit ≈ θtrue (6.14)

where f−1
i (θemc) is the correction function which is to be applied to the recon-

structed angle yielding to an angle corrected for the sub crystal deviation.

Results of the Correction

Unlike in section 6.4.1, the input quantity θemc of the correction function has un-
certainties itself. These uncertainties of the angular measurement smear out the
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Figure 6.19: Histogram of the polar angle reconstruction in the
simulation and data for the energy range of 2.0 - 4.0 GeV. The red
dashed histogram is without a correction applied, the solid black one
is the corrected histogram. In data, the crystal structure vanishes
completely whereas being reduced significantly in the simulation.

correction and the results are not expected to reach the improvements obtained
for the systematic study using θfit.

The reconstructed polar angle is histogrammed in Fig. 6.19. The uncorrected
histogram is drawn in dashed, red line and the corrected one in solid black line.
The crystal structure vanishes completely in data. For the simulation, the struc-
ture is reduced significantly. An accumulation of entries is seen at the gaps
between the entries.

In Fig. 6.20, the amplitude of the S-shape deviation δS
i (θemc/θfit) is drawn as

function of the polar angle. The correlation of the amplitude with the polar angle
vanished after the correction. A broad distribution with a mean around 3-4 mrad
in the simulation and around 1-2 mrad in data remains.

The effect of the S-shape correction on the position resolution is studied in
Fig. 6.21. Overall, the resolution does not improve due to the correction. This
was expected since the uncertainty of the position measurement is folded into
the resolution when the S-shape correction is applied. However, the systematic
difference in position reconstruction between data and simulation is corrected.
The dependence on the polar angle of the observed deviation is corrected.
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Figure 6.20: 2.0 - 4.0 GeV: Corrected and uncorrected amplitude
for simulation and data. The correction shown is the correction
dependent on the reconstructed angle. A clear reduction of the am-
plitude is seen for both data and the simulation.
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(c) σEMC(θ): central barrel
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Figure 6.21: Resolution of the polar angle for data and simulation.
The applied correction is independent of the calculation with the
kinematic fit. No improvement is seen within the significance.
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6.5 Summary

The position reconstruction of the BABAR calorimeter has been studied. On the
crystal level, the simulation was found to describe the data with an accuracy of
0.1-0.5%.

The angular resolution of the BABAR calorimeter has for the first time been
measured directly for photons in data and Monte Carlo simulation. It was deter-
mined in four regions f the calorimeter. Over the whole calorimeter, the angular
resolution is better in data than in the simulation. This can be understood taking
the smaller width of generated showers into account.

It was found that the position reconstruction has a systematic deviation de-
pendent on the position relative to the edges of the crystal. The size of this effect
is dependent on the polar angle, being maximally 10 mrad. It is much more
distinct in the simulation. In a feasibility study, a correction for this deviation is
developed, relying on the position calculated with the kinematic fit. The influ-
ence of the deviation on the angular resolution is studied, it was found to improve
after the correction. Furthermore, the agreement between data and simulation is
very good after the correction.

A correction scheme for the observed deviation was developed. Due to the
uncertainty in the reconstructed angle, no improvement in the position resolution
is found. However, the sub-crystal deviation is corrected and the agreement
between data and simulation is improved.



Chapter 7

Calibration with Minimal
Ionizing Muons

Muons from the final state of the process e+e− → µ+µ−γ are studied in this
chapter. Muons at energies between 2 and 9 GeV, are close to the minimal value
of energy deposition according to the Bethe Bloch formula (see Eq. 2.4), they are
called minimum ionizing particles (MIP). The energy deposited by a muon in the
EMC is of the order of 200 MeV.

The minimal ionizing signal of muons is used as an alternative approach to
study the performance of the EMC. Muons are very abundant and their momen-
tum is well measured by the tracking devices. In contrast to electromagnetic
showers, the energy deposition is localized, making it possible to study the prop-
erties of single crystals. However, the longitudinal energy deposition is in contrast
to electromagnetic showers homogenous. In this chapter, the energy deposition
of muons in the calorimeter is used to study the energy measured in individual
crystal rings.

7.1 Single Crystal Calibration

The local attributes of a single crystal are easily accessible with MIPs, in contrast
to electromagnetic showers where a cluster of many crystals is studied. As addi-
tional requirement is set that the muon signal creates clusters with one crystal
only. In order to increase the number of events, crystal rings in the polar angle
are studied in this section.

The average energy loss dE/dx of muons can be calculated using the Bethe-
Bloch formula (see Eq. 2.4). In the EMC, dE/dx can be measured from the
energy deposition of muons in the crystals. It is approximated by

〈dE
dx
〉 ≈ Eraw

l
, (7.1)

where l denotes the crystal length. A summary of the crystal lengths can be

99
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Iθ length [cm]
1 30.5

2-8 32.5
9-15 32.55
16-22 31.62
23-29 30.69
30-56 29.76

Table 7.1: Length of the crystals according to the index in the
polar angle.

found in table 7.1.
The measured dE/dx does not equal the value calculated using the Bethe-

Bloch formula. The muons are required to deposit energy only in one crystal.
This excludes the high energetic outliers which have a significant influence on
the mean of the deposited energy (but do not affect the peak position). The
Bethe-Bloch formula determines the mean of the energy loss. Therefore, the
value calculated using the Bethe-Bloch formula does not describe the energy
deposition as it is studied here1. Only the relative response of individual crystal
rings is determined.

Fig. 7.1 shows the deposited raw energy (with single crystal calibration ap-
plied, section 3.4) exemplarily for two crystal rings in the polar angle. The peak
position is determined with a fit of a Novosibirsk function (Eq. 4.2) according to
the algorithm described in section 4.6.
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(b) Iθ= 40

Figure 7.1: Energy deposition (Eraw) by muons, exemplarily
shown for Iθ= 20 and Iθ= 40. The fit to determine the peak position
is shown as well.

The peak position determined from Fig. 7.1 divided by the crystal length is

1It is found that the Bethe-Bloch formula describes the energy deposition of muon in the
EMC if the requirement of one crystal is released.
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Figure 7.2: Eraw over crystal length as a function of Iθ. The
data (close circles) show variations of the order of 1%, whereas in
simulation (open circles) only small variations in forward direction
are seen. The overall slope can be assigned to the relativistic rise
of the energy deposition. It is not well described by the simulation.

shown in Fig. 7.2 as a function of the crystal index in the polar angle for simulation
and data. Two features are seen: The slope of the deposited energy in data is
not described by the simulation and the measured response of the crystal rings
shows crystal to crystal variations at the 1% level. Since the muon momentum
is correlated with the polar angle (see Fig. 4.2), the slope seen in Fig. 7.2 can be
understood to originate from the relativistic rise in the Bethe-Bloch formula. The
observed differences in the single crystal response can be used to deduce single
crystal correction. The deviations from the expectation have to be determined.
As discussed above, the deposited energy cannot be normalized to the Bethe-
Bloch formula.

The energy deposition of each event has to be normalized to the average
energy deposited at its momentum. The deposited energy over the crystal length
is thus drawn as a function of the momentum in Fig. 7.3 for both simulation (a)
and data (b). It is fitted with a third order polynomial fMC/data(pµ),

fMC/data(pµ) = peak

(
Eraw

l
(pµ)

)
(7.2)

which is determined separately for simulation and data. It describes the momen-
tum dependence of the energy deposition well (χ2/dof = 0.2 for simulation and
1.75 for data). In data, the increase of the deposited energy with the momentum
is roughly 7%. This is not described in the simulation, where the momentum
dependence is of the order of 4%. In order to study systematic deviations in
the response between the crystal rings, the deposited energy is normalized to the
corresponding value of fMC/data(pµ).

The energy deposition of muons per unit length is normalized to fMC/data,

∆peak
µ (Iθ) = peak

(
Eraw

l · fMC,data(pµ)

)
, (7.3)
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Figure 7.3: dE/dx approximated by Eraw / l as a function of the
energy for (a) simulation and (b) data. The energy dependence in
data is not described in the simulation. The function fMC/data(pµ)
is fitted to the points.

where the peak position is determined in dependence of the θ-index, and f is taken
separately for data and simulation. It is a measure for the relative response of
the crystal rings. In the simulation, Fig. 7.4 (a), deviations of ∆peak

µ (Iθ) from 1.0
in forward direction of the order of 0.3% are seen. In data, Fig. 7.4 (b), ∆peak

µ (Iθ)
shows crystal to crystal variations of the order of ±1% over the whole range in
the polar angle. This variation hint to differences between the crystals according
to their θ-index. The observed deviations of ∆peak

µ (Iθ) from 1.0 can be used as
single crystal calibration factors to correct the different crystal to crystal response
along the polar angle.
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Figure 7.4: Single crystal response ∆peak
µ (Iθ) normalized to the

momentum dependent energy loss (a) for simulation. Some vari-
ations of the order of 0.3% are seen in forward direction. (b) for
data. Variations in the crystal response of the order of ±1% are
seen.

7.2 Cluster Calibration with MIPs

The longitudinal deposition of energy is different for muons compared to photons.
Therefore, the relative single crystal calibration obtained in the last section can
be compared to the one obtained from photons.

An approach is to determine the response for photon clusters over the po-
lar angle and compare it with ∆peak

µ (Iθ). In order to account for the finite fit
resolution, the double ratio simulation over data,

∆peak
γ (Iθ) =

peak(EMC
cal /E

MC
fit )

peak(Edata
cal /E

data
fit )

,

analogue to Eq. 5.9 is taken. To increase the number of events, a combined
dataset of the run periods 2 to 4 is used2. Since in general a shower is extended
over many crystals, the crystal with the center of gravity of the shower is taken
as the position in the polar angle.

The double ratio simulation over data is shown in Fig. 7.5 (a) as a function of
the polar angle. Variations on the level of 0.5% are are seen. In order to compare
∆peak

γ (Iθ) with ∆peak
µ (Iθ), both are drawn in Fig. 7.5 (b) as correlation. Clearly,

both quantities are not correlated. The measured crystal to crystal variations in
∆peak

µ (Iθ) are not directly transferable to photon clusters.
The difference in the longitudinal energy deposition for muons and photons

together with light yield variations along the crystal do not allow to calibrate the
single crystal response with muons.

2 It can be shown that the crystal to crystal structures seen in ∆peak
µ (Iθ) persist over the

run periods 2 - 4 [33].
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Figure 7.6: Energy resolution with and without single crystal cor-
rection. The correction slightly worsens the resolution for photons.

The quality of the calibration using muons can be evaluated by recalculating
the cluster energies of the photons. If ∆peak

µ (Iθ) was transferable to photons, the
energy resolution determined for the corrected clusters should improve. Fig. 7.6
shows the energy resolution, as discussed in section 5.4, for the uncorrected and
the corrected cluster. Since each individual resolution value with the correction
applied is larger than the uncorrected one, the calibration using MIPs does not
improve the constant contribution to the resolution. However, within the errors,
no significant difference in resolution between corrected and uncorrected cluster
energies is found.
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7.3 Results

The energy deposition in the calorimeter is fundamentally different for electro-
magnetic showers and for minimal ionizing particles. For showers, the energy
deposition is longitudinally localized, depending on the incident energy. The
shower maximum is always well in the first half of the crystal (see table 2.1). The
situation with muons is completely different: The energy deposition of a muon is
given as integral over the whole longitudinal axis of the crystal. The light yield
of the crystals changes over the longitudinal axis. Design requirement for the
BABAR calorimeter were a maximal change of light yield of ±3% in the front half
of the crystal and ±5% in the rear half. Light yield changes measured before
assembly of the EMC are in this order of magnitude (see App. D for the light
yield of some sample crystals). The variations measured before assembly have
changed significantly due to radiation damage, specially in the first half of the
crystals. Given these changes in light yield, it is not obvious how to translate the
crystal response measured with muons to the one for clusters. Using corrections
obtained from muon measurements directly, as it is done in this section, is clearly
not appropriate.

7.4 Summary

Muons can be used as a tool to study the calorimeter response on a level of single
crystal rings. Unfortunately, the response measured with muons is not directly
transferable to the response to photons. The different distribution of energy
deposition along the longitudinal axis of the crystal together with the change of
light yield along this axis is the reason for that.

In order to calibrate the EMC for electromagnetic showers using measurements
with muons, a more sophisticated ansatz has to be taken. This could include a
model for the change of light yield over the crystal.
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Chapter 8

Conclusion and Outlook

Photons from radiative muon pairs,

e+e− → µ+µ−γ (8.1)

have proven to be an excellent tool to study the photon reconstruction in the
electromagnetic calorimeter as well as to measure the resolution of angle and
energy reconstruction.

The energy and the angle of the radiated photon are calculated with a kine-
matic fit, without using any calorimeter information. The fit provides an excellent
estimate for energy and angle of the photon for energies above 400 MeV.

Using the above photons, it was for the first time possible to derive a cluster
energy calibration for photon energies above 1.5 GeV. The dependence on energy
and polar angle is calibrated separately for the four periods of data taking. The
obtained calibration functions reproduce the correct energies within a 0.1%-0.4%
statistical uncertainty. In addition there is a 0.3% systematic uncertainty of the
energy scale.

Using photons with energies above 2 GeV, the energy dependent resolution
function has been determined to be

σ(E)

E
=

(
(2.74± 0.61)

4
√
E/GeV

⊕ (0.57± 1.45)

)
%. (8.2)

The resolution obtained in the Monte Carlo simulation was found to be smaller
than in data. As indicated by the large statistical errors, the high energy photons
are not sufficient to determine the two terms of the resolution function (1/ 4

√
E

term, constant term) independently.

It was for the first time possible to determine the angular resolution of the
BABAR calorimeter for photons in a direct way for data as well as for the Monte Carlo
simulation. Over the whole calorimeter, the obtained angular resolution in data
is better than in the Monte Carlo simulation. This can be understood taking into
account the smaller shower width in the simulation.
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The photon position reconstruction of the BABAR calorimeter has been stud-
ied. A systematic deviation of the reconstructed from the true photon position
inside the crystals was found. The size of this effect depends on the polar an-
gle and reaches up to 10 mrad for the simulation. In data, the deviation is
significantly smaller. A position correction was developed and leads to a good
correlation of the reconstructed and true position. The agreement between data
and simulation is significantly improved.

Minimal ionizing signals of muons can be used as a tool to study the calorime-
ter response on a level of single crystal rings. The studies demonstrate that the
response measured with muons is not directly transferable to the response to
photons. The reason for this is the different distribution of energy deposition
along the longitudinal axis of the crystal together with the change of light yield
along this axis. Therefore, a calibration for photons cannot be determined from
the energy deposition of muons in a direct way.

Outlook

The cluster energy calibration obtained from µµγ events, valid for large energies,
is combined with the calibration using π0 decays, which exists only for low photon
energies (Eγ < 1.5 GeV). The combined energy dependent calibration factors
are shown in Fig. 8.1. It should be noted that the calibration using π0 → γγ
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Figure 8.1: Combined energy calibration factors obtained from
π0 → γγ and e+e− → µ+µ−γ [34].

decays suffers at high photon energies larger systematic uncertainties than the
presented calibration with kinematically constrained photons. Because of the
limited resolution, the latter method is unfortunately not applicable to small
photon energies.

A reaction which provides constrained photons at low energies is the decay
Σ → Λγ (Eγ = 76.96 MeV in c.m. system). It provides photons in a range
between 50 and 400 MeV in the laboratory.
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Appendix A

Detailed Selection Criteria

Muon Pre-Selection

In order to be preselected as a event with muons, the requirements for the BPC
Muon tag bit have to be fulfilled. A detailed description of this very loose muon
selection can be found in [28]. The selection rate on all events is 5.05%.

Track Quality

A well measured track fulfills the BABAR Good Tracks Loose list. In detail, that
means:

1. Minimum transverse momentum of 0.1 GeV,

2. at least 12 hits in the drift chamber and

3. pass within 10 cm of the beam spot in z and 1.5 cm in x-y.

Muon Selection

A well reconstructed muon fulfills the requirement of the BABAR Mu Very Loose
list. In detail, that means [29]:

1. The calorimeter energy is Ecal < 0.5 GeV,

2. the number of IFR hit layers NL > 2

3. the difference between the number of expected interaction length to the
number of number of traversed interaction lengths, ∆λ > 2.5,

4. the number of traversed interaction lengths λ > 2,

5. the continuity of the track in the IFR, Tc > 0.1,

6. the average multiplicity of hit strips per layer, m̄ < 10 and

7. its standard deviation σm < 6.
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Appendix B

Distributions to Measure the
Angular Resolution
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Figure B.1: Data: Distribution of θrf of the reconstructed minus
the fitted angle in bins of the energy. The shape of the distribution
can be approximated to be Gaussian.
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Figure B.2: µµγ Simulation: Distribution of θrf of the recon-
structed minus the fitted angle in bins of the energy. The shape of
the distribution can be approximated to be Gaussian.
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χ2 Distributions
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Figure C.1: Fit quality of the 560 fits to determine the relative
position (as shown as an example in Fig. 6.11) for simulation and
data: In the ideal case, the χ2 / dof should have a peak at one.
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Figure C.2: Fit quality for the 47 fits as discussed for Fig. 6.12:
In the ideal case, the χ2 / dof should have a peak at one. In the
simulation, the fit describes the data slightly better than in data.
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Figure C.3: Fit quality for the 47 fits as discussed for Fig. 6.15:
In the simulation, the fit describes the data reasonably well whereas
in data, the fitting function does not describe the measured values
properly.



Appendix D

Crystal Light Yield

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure D.1: Relative light yield before assembly of the EMC for
nine randomly chosen crystals. The front face is at the right hand
side of each figure. The lines drawn in red are the design limitations
on the uniformity, the points are measurements with a radioactive
source scan [30].
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