
DISSERTATION
submitted to the

Combined Faculties for the Natural Sciences and Mathematics
of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

born in Frankfurt am Main

Oral examination: 14th January 2015





The search for τ → µµµ at
LHCb

Referees:
Prof. Dr. Ulrich Uwer

Prof. Dr. André Schöning



Abstract

The charged lepton flavour violating decay τ → µµµ is searched for, us-
ing the LHCb experiment. Violation of lepton flavour in the charged lep-
ton sector is unobserved to date. Within the Standard Model of particle
physics including neutrino oscillation, the branching fraction is expected
to be umeasureable small and an observation would be an unambiguous
sign for physics beyond the Standard Model.

Over 1011 τ leptons have been produced in proton-proton collisions
at LHCb during the first run of the LHC. Most of them in decays of Ds

mesons. Compared to previous experiments at electron-positron collid-
ers, the signature of τ → µµµ is harder to identify in hadronic collisions
and background processes are more abundant.

A multivariate event classification has been developed to distinguish
a possible signal from background events. The number of τ leptons pro-
duced in the LHCb acceptance is estimated by measuring the yield of
Ds → φ(µµ)π decays. The sensitivity reached by analysing LHCb data
corresponding to 3 fb−1 is sufficient to constrain the branching fraction
of τ → µµµ to be smaller than 7.1× 10−8 at 90 % confidence level.

Kurzfassung

Am LHCb Experiment wird nach dem Leptonfamilienzahl verletzenden
Zerfall τ → µµµ gesucht. Die Verletzung der Leptonfamilienzahl ist bei
geladenen Leptonen bisher nicht beobachtet worden. Auch unter Be-
rücksichtigung der Neutrinooszillation wird ein unbeobachtbar kleines
Verzweigungsverhältnis im Standardmodell der Teilchenphysik vorher
gesagt. Jegliche Beobachtung des Zerfalls wäre ein eindeutiges Zeichen
für Physik jenseits des Standardmodells.

Über 1011 τ Leptonen wurden in Proton-Proton Kollisionen bei LHCb
während der ersten Betriebsperiode des LHC produziert, die meisten
davon in Zerfällen von Ds Mesonen. Verglichen mit früheren Experimen-
ten, bei denen Elektron-Positron Kollisionen untersucht wurden, ist die
Signatur des τ → µµµ Zerfalls in hadronischen Kollisionen schwerer zu
identifizieren und Untergrundprozesse sind zahlreicher.

Um ein mögliches Signal von Untergrundereignissen zu unterschei-
den wurde eine multivariate Klassifizierung von Ereignissen entwickelt.
Die Anzahl an τ Leptonen, die in der LHCb Detektorakzeptanz produ-
ziert wurden, wird anhand der beobachteten Ds → φ(µµ)π Ereignisse
bestimmt. Die Analyse von LHCb Daten, die einer integrierten Lumino-
sität von 3 fb−1 entsprechen, ermöglicht es, Verzweigungsverhältnisse
von τ → µµµ, die größer als 7.1× 10−8 sind, bei einem 90 % Konfidenzin-
tervall auszuschließen.



Contents

Introduction v

1 Theoretical background 1

2 The LHCb experiment 15

3 Branching fraction limits in absence of a signal 33

4 τ production at LHCb 43

5 Analysis strategy 55

6 Event selection 63

7 Online event selection 71

8 Background processes to τ → µµµ 75

9 M3body development 79

10 Likelihood calibrations 95

11 Normalisation 109

12 Limits for the τ → µµµ decay 119

13 Model dependence 133

14 Conclusion 139

A Toy studies on classifier binning 141

B Statistics glossary 153

C Tag-and-probe and TISTOS 159

D b hadronisation at LHC 161

E τ production fractions 163

iii





Introduction

The principles of symmetries and conservation laws have been essential for the under-
standing of nature. The two are connected by the Noether’s theorem [1]. Symmetries
and gauge invariance are principles of the Standard Model of particle physics, which
describes today’s knowledge of fundamental particles and their interactions. Despite
its success, the Standard Model is believed to be only an effective theory which is valid
within the range which is probed by particle physics experiments today. It can how-
ever not explain the matter/anti-matter asymmetry in the universe, does not describe
gravity, or contains an explanation for dark matter.

To investigate the fundamental laws of particle physics further, the Large Hadron
Collider (LHC), situated at CERN, has been built. It is designed to collide proton
beams at centre-of-mass energies of up to

√
s = 14 TeV at four interaction points. One

of its experiment is the LHCb experiment, an experiment dedicated to investigate
beauty and charm particle decays. The during the first run of the LHC, from late
2009 to early 2013, protons have been collided at up to

√
s = 8 TeV and the LHCb

experiment collected data corresponding to an integrated luminosity of 3 fb−1.

Lepton flavour is an almost conserved quantity without a fundamental symmetry
protecting its conservation within the Standard Model. In extensions of the Standard
Model this lack of symmetry protection can lead to observable branching fractions for
lepton flavour violating decays, like the decay τ → µµµ.

Violation of lepton flavour in τ decays has been searched for at e+e− colliders and
the most stringent limits on the branching fraction B(τ → µµµ) have been set by the
B factories BaBar and Belle at the order of 10−8−10−7 [2]. For the decay τ → µµµ the
Belle collaboration reports B < 2.1× 10−8 [3].

In this work, the decay τ → µµµ is searched for using data collected by the LHCb
experiment during the first run of the Large Hadron Collider. An essential prerequi-
site for performing the search is a large τ production. At LHCb about 1011 τ leptons
have been produced during the first run of the LHC. It was still argued in the past
whether a search for τ → µµµ is possible at a hadron collider due to the large amount
of backgrounds in hadron collisions.

This work is organised in three parts. Firstly, an introductory part recapitulates
the theoretical background relevant for τ → µµµ (Chap. 1), gives a rough description
of the experiment (Chap. 2), and explains the statistics framework (Chap. 3) and the
mechanisms of τ production at LHC collisions (Chap. 4).

The second part explains the steps of the search for τ → µµµ at LHCb. These
are the search strategy (Chap. 5), the event selection (Chaps. 6 and 7), the back-
ground processes (Chap. 8), how these are discriminated from a possible signal with
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INTRODUCTION

multivariate classification techniques (Chap. 9) and the calibration of that discrim-
ination with Ds → φ(µµ)π and b → J/ψ(µµ)X decays (Chap. 10). Eventually, the
analysis’s normalisation factor is determined in Chap. 11 and the amount of residual
background events estimated in Sect. 12.1.

The results are presented in the third part. It contains the actual results in
Chap. 12 and a review of whether the result is applicable to any new physics model
in Chap. 13.

This work is part of the analyses presented by the LHCb collaboration in Refs. [4]
and [5]. The author of this thesis is one of the contact authors of both publications.
Both analyses were carried out in collaboration with members of LHCb and are in-
ternally documented in Refs. [6, 7, 8]. Two multivariate classifiers are used, M3body
and MPID, the former is developed for the present analysis and most of Chap. 9 is
dedicated to its development. Reference [5] and the present work differ in the multi-
variate classifier M3body. A classifier developed by the author is used in the present
work. The classifier in [5] is an upgrade of the classifier used here, it combines several
TMVA classifiers in an ensemble selection [9] with a MatrixNet boosted decision tree
[10].

The choice which classifier to describe in this work was made prior to the finalisa-
tion of the development of the classifier in [5]. Furthermore, the classifier choice must
be done in an unbiassing way, as outlined in Sect. 5.4. Since all Ds → φ(µµ)π decays
recorded by LHCb are used for the final calibration of M3body in [5], the classifier
choice cannot be done by means of the calibrated classifier performance: the classi-
fier choice must be independent of the final calibration and there is no independent
calibration data left.

Prior to the calibration, the performance difference of M3body in this work and
M3body in Ref. [5] is estimated to be 6 % ([8, 11]). The author regarded 6 % as small
enough to document his own classifier in the present document, not to change to the
classifier from [5] once this number was known.

Comparing the final result of [5] to that in Chap. 12, after unblinding of the signal
region, it appears that the analysis presented here observes a weaker exclusion limit
on B(τ → µµµ) than [5]. A breakdown of the contributions to this difference is given
at the end of Chap. 12. The largest part of the difference in the observed exclusion
limit is a Poissonian fluctuation of the observed event count.

The work presented in Chaps. 7, 9, 10, and 13 have been developed by the author
in the context of this thesis and the results of Chaps. 7, 10, and 13 entered in the
LHCb analysis [5]. Furthermore, the work in Chap. 4 is repeated with minor modi-
fications with respect to previous work by Jonathan Harrison. The author adapted
previous work by Basem Khanji in Sect. 12.1, and the methods in Chap. 12 have been
introduced in LHCb by the B0

s → µµ analysis group and have been adapted by the
author for the search for τ → µµµ.

vi
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Theoretical background

1.1 The Standard Model of particle physics

Today’s understanding of the fundamental particles and their interactions is described
by the Standard Model of particle physics [13, 14, 15]. The fundamental fermions are
either quarks or leptons. Both occur in three generations with two particles in each
generation. For each fermion, there exists an antifermion, too. The fermions are
listed in Tab. 1.1.

The quark generations are the up (u) and down (d) quark, the charm (c) and
strange (s) quark, and the top (t) and bottom (b) quark. One of each generation is
a “up type” quark and has the electric charge 2/3 e, the other member of each genera-
tion is a “down type” quark and has the electric charge −1/3 e. Each quark occurs as
left handed or as right handed particle. Furthermore, each quark occurs with three
different colour charges of the strong interaction.

In the lepton sector, there is a charged lepton with charge −e and an uncharged
neutrino in each lepton generation. The charged leptons are the electron (e), the
muon (µ), and the tau (τ ). The corresponding neutrinos are the electron neutrino (νe),
the muon neutrino (νµ), and the tau neutrino (ντ). The charged leptons occur as left
handed and right handed particles. The neutrinos are traditionally massless in the
Standard Model and occur only left handed. Leptons don’t carry colour charge.

The Standard Model is a gauge theory with the gauge group SU(3)c × SU(2)L ×
U(1)Y . Local gauge invariance is granted by the gauge fields. The excitations of these
gauge fields are gauge bosons. These are 8 gluons (g) for SU(3)c which couple to colour
charge. The gauge bosons of SU(2)L are the W(1,2,3) which are coupling to the weak

Table 1.1: Fermion content of the Standard Model and their electro-
weak charges, in natural units (c = ~ = e = 1).

particles J3 Y Q

left handed neutrinos (νe, νµ, ντ)L 1/2 −1 0

left handed charged leptons (e, µ, τ )L −1/2 −1 −1

right handed charged leptons (e, µ, τ )R 0 −2 −1

left handed up type quarks (u, c, t)L 1/2 1/3 2/3

left handed down type quarks (d, s,b)L −1/2 1/3 −1/3

right handed up type quarks (u, c, t)R 0 4/3 2/3

right handed down type quarks (d, s,b)R 0 −2/3 −1/3

1



1. THEORETICAL BACKGROUND

Figure 1.1: Illustration of the particle content of the Standard
Model of particle physics. Figure modified from [12]. The cur-
rent version indicates the fermion–boson couplings with the yel-
low backgrounds. The Yukawa couplings and the couplings of the
bosons among each other are not indicated.

isospin J of left handed fermions, and B, the gauge boson of U(1)Y which is coupling
to the fermions’ hypercharge Y .

The latter quantum numbers are related to the electric charge Q by the Gell-
Mann-Nishijima relationship

Q = J3 +
Y

2

where J3 is the projection of J.
The observable force mediator bosons are linear combinations of the gauge bosons

Wi and B, as determined by the weak mixing angle ϑW(
Aµ
Zµ

)
=

(
cosϑW sinϑW
− sinϑW cosϑW

)(
Bµ
W 3
µ

)
W±µ =

1√
2

(
W1

µ ±W2
µ

)
.

Since the W bosons couple to J, only left handed particles undergo weak processes
with W± bosons. Particles are converted into the other family member by emission
or absorption of a W± boson, e. g. uL → W+dL or W+µ− → νµ. Here, uL and dL
are eigenstates of the weak interaction. The weak eigenstates (flavour eigenstates)
of quarks do not coincide with the mass eigenstates as described by the Cabbibo-

2



1.1. The Standard Model of particle physics

Table 1.2: Lepton flavour quantum numbers of Standard Model
particles.

particle Le Lµ Lτ

e−, νe 1 0 0

e+, νe -1 0 0

µ−, νµ 0 1 0

µ+, νµ 0 -1 0

τ−, ντ 0 0 1

τ+, ντ 0 0 -1

quarks and bosons 0 0 0

Kobayashi-Maskawa (CKM) matrix

(
u c t

)
weak ·

d
s
b


weak

=
(
u c t

)
mass ·

Uud Uus Uub

Ucd Ucs Ucb

Utd Uts Utb


︸ ︷︷ ︸

CKM matrix

·

d
s
b


mass

.

The Z couples to left and right handed particles at different strength. Fermion-Z
vertices, in contrast to W vertices, do not alter a particle’s flavour. The latter holds
for photon vertices as well, while photons couple to left and right handed particles
equally strong because they have the same electric charge.

The lepton flavour numbers in Tab. 1.2 are assigned to the Standard Model parti-
cles. Couplings to Z and γ do not alter the particle type of a fermion and W couplings
only convert leptons within a lepton generation. Therefore, lepton flavour is con-
served in the electro-weak interaction. The strong interaction, see below, does not
involve leptons at all, and therefore cannot change lepton flavour. Lepton flavour
eigenstates can be defined to coincide with the mass eigenstates of charged leptons1.
Consequently, charged lepton propagators conserve lepton flavour. If neutrinos are
considered massless then the neutrino flavour eigenstates are mass eigenstates, too.
Therefore, in that case any neutrino propagator would conserve lepton flavour in the
Standard Model.

The additional so-called strong interaction is quantum chromodynamics, QCD [16,
17, 18]. The massless gauge bosons of the SU(3)c group are eight gluons which couple
to the quarks’ colour charge. While quarks carry a colour charge and antiquarks carry
an anticolour charge, the gluons carry one colour and one anticolour charge.

Two key features of QCD are confinement and asymptotic freedom. Confinement
is the property that quarks do not occur as free particles but are always confined
to hadron, i. e. mesons or baryons. The former are bound states of a quark and an
antiquark, the latter are bound states of three quarks. In both cases, the colours
of the quarks and antiquarks result in a colour neutral state. This is a result of

1The same is done for up type quarks in the quark sector.
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1. THEORETICAL BACKGROUND

the running coupling behaviour of αs, the coupling constant of QCD. At very low
momentum transfer, αs becomes large. At large momentum transfer, αs becomes
small and quarks become free particles.

Massive gauge bosons are incompatible with gauge invariance. The W and Z
bosons, and the massive fermions gain their masses through the Higgs mechanism
[19, 20, 21]. The crucial aspect of the Higgs field is its non vanishing vacuum ex-
pectation value. An excitation of the Higgs field was predicted to be observable as a
Higgs particle. The Higgs boson has been discovered at the LHC [22, 23]. The mass of
fermions is a consequence of the coupling strength of the Higgs to the fermion fields
(called Yukawa coupling).

Shortcomings of the Standard Model

The Standard Model is extremely successful at describing particle physics experimen-
tal data. It is still only an effective theory since it lacks a description of gravity and
does not contain dark matter or dark energy, which make up ∼ 95 % of the universe.
Additionally, the observed excess of matter over antimatter in the universe is not
explained [24, 25].

Another property2 of the Standard Model is hierarchy [26, 27, 28]. Radiative cor-
rections to the Higgs mass diverge quadratically and should therefore result in a very
large Higgs mass. The observed Higgs mass, however, is much smaller than these cor-
rections, which suggests that the Standard Model parameters must be fine tuned to
very high accuracy.

Neutrino oscillation

The results of all attempts to directly measure the mass of neutrinos so far resulted
only in upper limits consistent with vanishing neutrino masses. The discovery of
neutrino oscillation [29, 30, 31], however, implies that the neutrino mass differences
(mν

i
− mν

j
)2 are different from zero. It is thus indirectly established that at least

two neutrinos are massive. Furthermore, lepton mass and lepton flavour eigenstates
can be defined to coincide with each other either in the charged lepton sector or in
the neutrino sector, but not simultaneously. Similar to the CKM matrix in the quark
sector, the base change between neutrino mass eigenstates (ν1, ν2, ν3) and flavour
eigenstates (νe, νµ, ντ) is given by a unitary matrix.νeνµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


︸ ︷︷ ︸

PMNS matrix

·

ν1

ν2

ν3



The unitary matrix is the unitary PMNS matrix [32]. It has not been resolved yet,
whether neutrinos are their own antiparticles, ν ?

= ν . Fermions which are their own
antiparticles are called Majorana particles, as opposed to Dirac particles. If neutrinos
are Dirac particles, the PMNS matrix has the same number of degrees of freedom as
the CKM matrix. Otherwise there are two additional Majorana phases.

2Since it is often regarded a problematic property, the term hierarchy problem is used.
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1.1. The Standard Model of particle physics

τ− µ+
γ∗/Z

µ−

W−

νi

µ−

(a) Photonic penguin

τ− µ+
Z

µ−

νi

W−

µ−

(b) Z penguin

Figure 1.2: Feynman diagrams for τ → µµµ in the Standard Model
with massive neutrino. The neutrino mass ν(1,2,3) eigenstates do
not oscillate. In the interference of diagrams with different mass
eigenstates, the oscillation ντ → νµ appears.

τ → µµµ in the Standard Model

Given the shortcomings of the Standard Model, theories for physics beyond the Stan-
dard Model (BSM) have been suggested. One of the observables for which BSM mod-
els predict strong deviations from the Standard Model prediction in experimental
reach, is the branching fraction B(τ → µµµ).

In the Standard Model without neutrino oscillation, every propagator has a de-
fined lepton flavour and every vertex conserves lepton flavour. Therefore any per-
turbative Standard Model calculation, i. e. a finite combination of these vertices and
propagators, will therefore lead to B(τ → µµµ) = 0. Once considering neutrino os-
cillation, the neutrino propagators, as ν(1,2,3), do not have a defined lepton flavour
anymore and flavour change can occur as in the penguin diagrams in Fig. 1.2. Each
of the penguin diagrams is GIM suppressed. The amplitude of each penguin is pro-
portional to the corresponding PMNS matrix elements Uτ ,iU∗µ,i and has a kinematic
dependence

f

(
mν

i

mW

)
= 1 + a ·

m2
νi

m2
W

with an expansion coefficient a. Summing over all neutrino generations gives

A ∝
∑

Uτ ,iU
∗
µ,i

(
1 + a ·

m2
ν
i

m2
W

)

=
∑(

Uτ ,iU
∗
µ,i

)
︸ ︷︷ ︸

=0 unitarity of the PMNS matrix

+
∑(

a ·Uτ ,iU∗µ,i
m2
ν
i

m2
W

)
.

The first summand is zero due to the unitarity of the PMNS matrix. The sec-
ond summand is strongly suppressed; in a two flavour system, it would reduce to
a · b ·∆m2

νi/m
2
W , where b depends on the mixing angle3.

3In the 2 flavour case, the PMNS matrix reduces to a rotation matrix containing a single mixing angle.
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1. THEORETICAL BACKGROUND

τ−

γ

µ−

(a) effective τ → µγ vertex

τ−
µ+

µ−

γ∗

µ−

(b) τ → µγ contribution to τ → µµµ

Figure 1.3: Feynman diagram for τ → µγ in an effective theory and
the contribution of that diagram to τ → µµµ.

τ−

µ+

µ−

µ−

(a) effective 4 fermion ver-
tex

τ−
µ

µ

X0/X−−

µ

(b) tree level process

Figure 1.4: Feynman diagrams for effective theories contributing
to τ → µµµ which do not contribute to τ → µγ.

1.2 Models for physics beyond the Standard Model with
charged lepton flavour violation

Overviews over BSM models, which predict a significant deviation from the Standard
Model prediction for B(τ → µµµ), have been made from the experimental side by
several authors, e. g. [33, 34, 35, 36, 37, 38].

The implications of BSM models for τ → µµµ are often studied along with the
lepton flavour violating decay τ → µγ. If the latter decay is enhanced in a BSM
scenario, then τ → µµµ receives a contribution, too, when the photon is off-shell, as
shown in Fig. 1.3. The branching fraction is in the absence of additional τ → µµµ
diagrams expected to be larger for τ → µγ since the decay with three leptons in the
final state requires an additional γ∗µµ vertex.

The search for τ → µµµ is of particular interest to find evidence or rule out BSM
models in which B(τ → µµµ) is enhanced with respect to τ → µγ through diagrams
from which the latter decay does not arise, i. e. diagrams like Fig. 1.44.

It is pointed out that most of the theory papers referred to in this section have
been published prior to most LHC results. The discovery of the Higgs boson, the
measurement of B(B0

s → µµ), the measurement of the neutrino mixing angle sin θ13,
and the exclusions from searches for BSM effects are therefore not taken into account.
Where easily possible, it is commented whether the models in question have been
ruled out by recent findings.

4This argument has been given already by e. g. [39] or [40].
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1.2. Models for physics beyond the Standard Model with charged lepton flavour
violation

τ− µ+
γ∗/Z

µ−

X−

X0

µ−

(a) Photonic penguin

τ− µ+
Z

µ−

X0

X−

µ−

(b) Z penguin

Figure 1.5: Penguin diagrams for τ → µµµ in models with extended
particle content with respect to the Standard Model. The photonic
penguin can contribute to τ → µγ, too.

Table 1.3: Overview over BSM models which predict an enhanced
branching fraction for τ → µµµ. A value of 10−8 is given where the
current exclusion limit is used as model constrain already.

model maximal
B(τ → µµµ)

B(τ→µµµ)

B(τ→µγ) reference

Standard Model
+ neutrino oscillation 10−54 0.002 e. g. [44]

MSSM (photon dominant) 10−8 0.002 [45]

MSSM (Higgs dominant) 4 × 10−10 0.06 . . . 0.1 [46, 47]

R-parity violating SUSY 10−8 > 1 [48]

LHT 2 × 10−8 0.04 . . . 0.4 [49]

L-R symmetry 10−7 � 1 [50]

4th generation 7.1 × 10−8 0.06 . . . 2.2 [51]

Non-universal Z′

/ technicolor TC2 4 × 10−8 3 . . . 100 [52]

unparticles 10−3 possibly 103 [53]

As mentioned in [41, 42, 43] and [40, Note therein], the Z penguin, shown in
Fig. 1.5, is usually neglected although it can lead to a large modifications of the
branching fraction B(τ → µµµ) and modify the ratio B(τ → µµµ)/B(τ → µγ).

The models presented in this section are summarised in Tab. 1.3. For some models
the prediction for B(τ → µµµ) is out of experimental reach, in other cases the exper-
imental constraint for B(τ → µγ) implies that τ → µµµ will not be seen within this
model. An evidence for τ → µµµ is still possible due to effects of any of the other mod-
els. Conversely, those remaining models can be constrained or ruled out by improving
the exclusion limit for B(τ → µµµ).

Minimal Supersymmetric Standard Model (MSSM) without Higgs
mediation

Supersymmetry has been introduced as an attempt to solve the hierarchy problem by
introducing bosonic partners to all Standard Model fermions and fermionic partners
to the bosons.

7



1. THEORETICAL BACKGROUND

The decay amplitude for τ → µµµ is dominated by photonic diagrams, as shown
in Fig. 1.3 (b). Computations in [45] show that branching fractions up to the current
exclusion limits are possible within MSSM. In MSSM photonic diagrams are found to
dominate the decay amplitude [54] and the relation

B(`i → 3`j) '
α

3π

(
log

(
m2
`
i

m2
`
j

)
− 11

4

)
B(`i → `jγ)

' 0.002 · B(`i → `jγ)

is found.

MSSM with Higgs mediated LFV
As pointed out in [55], lepton flavour violation in MSSM may not only occur through
a photon penguin diagram, but may be due to a Higgs propagator, as in Fig. 1.4 (b).
However, already in [46], the constrains from B(B0

s → µµ) and B(` → `′γ) were found
to require B(τ → µµµ) . 4× 10−10.

R-parity violating SUSY
The Z penguin diagrams (Fig. 1.5 (b)), which cancel in the MSSM, do not cancel once
R-parity violation is possible, as derived in [48]. The existing limit on B(τ → µµµ)
already constrain the parameter space for trilinear R-parity violating couplings in
[48]. R-parity violation is reviewed in [56].

Little Higgs with T parity
The little Higgs model with T parity is an alternative to the MSSM. It requires less
parameters than MSSM and makes different predictions for charged lepton flavour
violation.

As explained in [57], “little Higgs models [58, 59, 60] were proposed as a solution
to the little hierarchy problem. In these models, the Higgs doublet field appears as
pseudo Nambu-Goldstone (NG) bosons of new strong dynamics at the cutoff scale.
[. . . ] In the littlest Higgs model with T parity (LHT) [61, 62], the model is extended to
have a Z2 parity so that the heavy gauge bosons assigned to be T-odd particles do not
directly couple with a pair of the SM fermions, and the phenomenological constraints
are somewhat relaxed.”

In [49] it is found that B(τ → µµµ) can be as large as 2 × 10−8, depending on the
scale of symmetry breaking. The ratio B(τ → µµµ)/B(τ → µγ) is between 0.04 and
0.4.

It must however be pointed out that the findings in [57] suggest that searches for
µ→ eee are better suited for probing LHT. Furthermore, as explained in [49], a large
value for B(τ → µµµ) requires a small value for the scale of symmetry breaking f .
In [63, Fig. 7], small values for f require a large mass of the Higgs boson mh �
500 GeV/c2.

Left-Right symmetric model
The Left-Right (LR) symmetric models are extensions of the Standard Model based
on the gauge group SU(3)c × SU(2)R × SU(2)L × U(1)B−L [64]. LR models introduce

8



1.3. Model independent description of the decay τ → µµµ

parity violation as a symmetry breaking and include right handed neutrinos for type
I or type II seesaw mechanisms.

The lepton flavour violating decay τ → µµµ is established in the LR model at tree
level level, τ± → H±±(µ±µ±)µ∓, as in Fig. 1.4 (b) with a doubly charged mediator.
This leads to an enhancement of B(τ → µµµ)� B(τ → µγ) and B(τ → µµµ) can be as
large as 10−7 while respecting the exclusion limits for τ → µγ, µ → eγ, and µ → eee,
[50]. Lepton flavour violating decays with mesons in the final state are not expected
in LR models.

Four generation models (SM4)
Extensions of the Standard Model introducing another generation of quarks and lep-
tons are considered interesting as they can release tension between electro-weak pre-
cision tests and the “heavy” Higgs mass [65].

It is found in [51] that SM4 can lead to a detectable branching fraction B(τ →
µµµ), as well as a detectable signature in other lepton flavour violating τ and µ de-
cays; with and without mesons in the final state. The predictions for lepton flavour
violation in meson decays are within the recent exclusion limits reported in [66], the
Higgs mass measurement however rules out this model [67].

Non-universal Z′ bosons in technicolor TC2 models
Extensions of the Standard Model gauge group introduce additional gauge bosons.
These must not necessarily be flavour universal. They are expected to contribute at
tree level to flavour changing neutral currents. In Ref. [52], the implications for a non-
universal Z′ in topcolour-assisted technicolor models (TC2) have been investigated.
Recently, Z′ models have been identified as possible explanations for the observed
tension with the Standard Model in analyses of flavour changing neutral currents in
the quark sector [68, 69].

The branching fraction B(τ → µµµ) is generally larger than B(τ → µγ) while
the actual ratio depends strongly on a free parameter of the model. Both branching
fractions are proportional to m−4

Z′ and the values given in Tab. 1.3 are valid for mZ′ =

1 TeV.

Unparticles
A hidden sector of unparticles is motivated by [70, 71]. The so-called Banks-Zaks
fields are supposed to be scale invariant and thus massless [53]. Assuming a coupling
between Standard Model particles and Banks-Zaks fields which leads to a behaviour
which is similar to the presence of d massless invisible particles, where d is non-
integral. The unparticles can either lead to tree level processes, as in Fig. 1.4 (b), or
in loop processes, as in Fig. 1.5 (a). The analysis in [53] finds that the current experi-
mental bound on B(τ → µµµ) constrains the unparticle parameter space, already.

1.3 Model independent description of the decay τ → µµµ

The search for τ → µµµ in this work cannot be conducted without assumptions on
the decay kinematics of the decay. Instead of conducting a search for individual mod-
els presented above, a model independent description is utilised to obtain a general
description and derive exclusion limits which constrain any of the above models. The
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1. THEORETICAL BACKGROUND

description by [72] is used in this work. To allow literal quotation of the results in
[72], the usual convention c = ~ = 1 applies.

It is argued that for unpolarised τ leptons, the possible contributions from scalar,
pseudoscalar, vector, and axial couplings can be Fierz rearranged to vector couplings.
This leaves three vector coupling operators with different helicity structures. They all
correspond to the Feynman diagram in Fig. 1.4 (a). The three operators have different
chirality combinations, indicated by L for left handed leptons and R for right handed
leptons.

H
(LL)(LL)
eff = g

(LL)(LL)
V

(µ̄LγµτL)(µ̄Lγ
µµL)

Λ2

H
(RR)(RR)
eff = g

(RR)(RR)
V

(µ̄RγµτR)(µ̄Rγ
µµR)

Λ2

H
(LL)(RR)
eff = g

(LL)(RR)
V

(µ̄LγµτL)(µ̄Rγ
µµR)

Λ2
+ g

(RR)(LL)
V

(µ̄RγµτR)(µ̄Lγ
µµL)

Λ2︸ ︷︷ ︸
=:H

(LL)(RR)

eff,2

Here, g are coupling strengths, Λ is the new Physics scale. The operators H(RR)(RR)
eff

and H
(LL)(RR)
eff,2 turn out to be suppressed by the smallness of the muon mass. The

relevant operators are thus

H
(LL)(LL)
eff = g

(LL)(LL)
V

(µ̄LγµτL)(µ̄Lγ
µµL)

Λ2

H
(LL)(RR)
eff = g

(LL)(RR)
V

(µ̄LγµτL)(µ̄Rγ
µµR)

Λ2

Due to the different helicity structures of the operators, the interference between
these operators is suppressed by m2

µ/m2
τ . The resulting phase space distributions are

given by

d2Γ
(LL)(LL)
V

dm2
+− dm2

−−
=
|g(LL)(LL)
V |2

Λ4

(m2
τ −m2

µ)2 − (2m2
−− −m2

τ − 3m2
µ)2

256π3m3
τ

d2Γ
(LL)(RR)
V

dm2
+−dm2

−−
=
|g(LL)(RR)
V |2

Λ4

[
(m2

τ −m2
µ)2 − 4m2

µ (m2
τ +m2

µ −m2
−−)

512π3m3
τ

−
(2m2

+−′ −m2
τ − 3m2

µ)2 + (2m2
+− −m2

τ − 3m2
µ)2

1024π3m3
τ

]
.

Here, mτ and mµ are the rest masses of the corresponding particles, m−− is the
invariant mass of the same charge dimuon system, m+− is the invariant mass of
one of the opposite sign dimuon systems, and m+−′ is the invariant mass of the other
opposite sign dimuon system. The latter is not a free parameter and given by m2

+−′ =
m2
τ + 3m2

µ −m2
−− −m2

+−. The distributions are shown in Fig. 1.6.
The contribution from Fig. 1.3 (b) must not be ignored. The operator is

Hrad
eff =

e

4π

v

Λ2

∑
h,s

g
(s,h)
rad (µ̄(−iσµν)τ s)F

µν .

The sum
∑
h,s

ranges over the two possible chirality combinations, (h, s) = (L,R)

and (h, s) = (R,L). The corresponding phase space distribution is shown in Fig. 1.7
and is given by

10
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Figure 1.6: Phase space distributions for τ → µµµ with effec-
tive vector couplings. The (LL)(LL) chirality combination has a
broad maximum around m2

−− ≈ 1.5 GeV2 and is independent of
the opposite sign masses. The (LL)(RR) has a maximum around
m2

+− ≈ 1.5 GeV2 which results in favouring small m2
−− due to the

kinematic constrains. Figure taken from [72].
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Figure 1.7: Phase space distribution for a photon penguin domi-

nated τ → µµµ decay, d2Γ
(LR)

rad
dm2

+−dm2
−−

. The opposite charge muon pair
has a small invariant mass – a consequence of the photon pole.
Figure taken from [72].
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Figure 1.8: Phase space distribution of the interference terms of
the photonic contribution to τ → µµµ with the vector couplings.
Both distributions depend mainly on m−−, the m+− dependence
is not visible on this scale. The interference with the (LL)(LL)
chirality configuration affects mainly the high m−− range while
the interference with the (LL)(RR) chirality configuration affects
the low m−− range. Figure taken from [72].

d2Γ
(LR)
rad

dm2
+−dm2

−−
= α2

em
|g(LR)

rad |2 v2

Λ4

[
m2
µ (m2

τ −m2
µ)2

128π3m3
τ

(
1

m4
+−′

+
1

m4
+−

)

+
m2
µ(m4

τ − 3m2
τm

2
µ + 2m4

µ)

128π3m2
+−′ m

2
+−m3

τ

+
(m2

+−′ +m2
+−)(m4

−− +m4
+−′ +m4

+− − 6m2
µ(m2

µ +m2
τ ))

256π3m2
+−′ m

2
+−m3

τ

+
2m2
−− − 3m2

µ

128π3m3
τ

]

The radiative operator can interfere with the vector couplingsH(LL)(LL)
eff andH(LL)(RR)

eff .
The interference results in the phase space distributions shown in Fig. 1.8 and given
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by

d2Γ
(LL)(LL)
mix

dm2
+−dm2

−−
= αem

2 vRe[g
(LL)(LL)
V g

∗(LR)
rad ]

Λ4

×
[
m2
−− − 3m2

µ

64π3m2
τ

+
m2
µ(m2

τ −m2
µ)(m2

+−′ +m2
+−)

128π3m2
τ m

2
+−′ m

2
+−

]
d2Γ

(LL)(RR)
mix

dm2
+−dm2

−−
= αem

2 vRe[g
(LL)(RR)
V g

∗(LR)
rad ]

Λ4

×
[
m2
τ −m2

−− − 3m2
µ

256π3m2
τ

+
m2
µ(m2

τ −m2
µ)(m2

+−′ +m2
+−)

256π3m2
τ m

2
+−′ m

2
+−

]
.

For the present work, it is assumed that τ → µµµ has a constant phase space dis-
tribution; i. e. a search for τ → µµµ according to d2Γ

dm2
+−dm2

−−
= const is performed. This

phase space distribution is simulated, and the results are valid for this distribution
because the determination of the event selection efficiency depends on the simulated
phase space distribution. Exclusion limits for B(τ → µµµ) in the effective description
presented here, are given in Chap. 13.

1.4 Placement of τ → µµµ within other lepton flavour
violating decays

Charged lepton flavour violation can be thought of in many decays as outlined in
Sect. 1.5. The decay investigated in this work is one out many lepton flavour violating
lepton decays. The relevance of searching for τ → µµµ shall briefly be compared
to other decay channels. The decays τ → µγ and τ → µµµ have been compared
throughout Sect. 1.2.

The decay τ → µµµ is only one out of six τ → `j`k`l decays. It is stated in [48]
that final states with different lepton flavours are typically suppressed with respect
to equal final state flavours by combinatorial factors. Surprisingly, the opposite is
reported in [45] for MSSM, where τ → µee is enhanced by a factor 4 over τ → µµµ due
to phase space factors. From the experimental side, however, background processes
are not expected for j = k 6= l, which might make the final states µ±µ±e∓ and e±e±µ∓

more desirable to search for. At the B factories background processes are almost
absent and due to comparable reconstruction efficiencies for muons and electrons the
sensitivities for all final states are about equal. At LHCb, the reconstruction and
identification efficiency as well as the momentum resolution for electrons does not
reach that of muons, the three muon final state is thus expected to provide the best
sensitivity.

The branching fraction B(µ → eee) is experimentally much better constrained
than τ → µµµ. One might therefore assume that its constrains to BSM theories are
much better. This however strongly depends on the model: as stated above, the LHT
model is found to be better constrainable by µ → eee. In other models, the strong
exclusion of µ → eee is still compatible with a detectable τ → µµµ signal, e. g. in the
LR model or R-partiy violating SUSY. For Higgs mediated LFV in MSSM ([47]), the
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expectations are

B(τ → µµµ) ≈ (1× 10−7) ·
(

tanβ

60

)6

·
(

100 GeV/c2

mA

)4

B(µ→ eee) ≈ (5× 10−14) ·
(

tanβ

60

)6

·
(

100 GeV/c2

mA

)4

B(τ → µµµ)

B(µ→ eee)
≈ 2 · 106.

The current experimental limits are in the ratio Limit(B(τ → µµµ))/Limit(B(µ →
eee)) ≈ 2 · 104, which implies that the discovery potential would be better for τ decays
than for µ decays, if the large tanβ range was not already strongly constrained by
flavour changing neutral current measurements of B0

s → µµ, [44].
Generally, lepton flavour violation in τ and µ decays is related to different model

parameters. Therefore theory papers concentrate on the ratios B(`→ `′`′`′)/B(`→ `′)
instead of ratios of different lepton flavour transitions like B(µ→ eee)/B(τ → µµµ).

As explained in [73], searches for τ → µh and τ → µhh′ are complementary to the
pure leptonic final state. The operators contributing to semileptonic final states are
not constrained by the exclusion limits on B(τ → `j`k`l) and vice versa.

1.5 Current status on lepton flavour violation with τ → µ
transitions

In the neutrino sector, the first direct νµ to ντ transition has been observed by the
OPERA collaboration in 2010. By now only three further events have been reported
[74]. The appearance of ντ from solar neutrinos has been seen by Super-Kamiokande,
too [75].

In the charged lepton sector, the direct transitions τ → µγ and τ → µµµ have
been searched for, but no evidence has been reported so far. The best experimental
exclusion limits are reported by the B factories BaBar and Belle:

B(τ → µγ) < 4.4× 10−8 by BaBar, [76]

B(τ → µγ) < 4.5× 10−8 by Belle, [77]; soon to be updated [78].

In addition to the violation of τ lepton flavour in lepton decays, lepton flavour
can also be violated in hadron or gauge boson decays. The latest result has been
published by the BaBar collaboration searching for B→ hτ±`∓, [79]. Exclusion limits
on Υ→ τµ, J/ψ → τµ, as well as Z→ τµ can be found in [80].

The investigation of Higgs boson decays is rapidly evolving. Recently the CMS
collaboration announced a 2.5σ excess of the H→ τµ branching fraction [81].
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The LHCb experiment

The LHCb experiment is one of the experiments at the Large Hadron Collider at
CERN. A comprehensive detector description can be found in [82], the physics ob-
jectives are described in [83]. A review of the measurements by LHCb and their im-
plications for particle physics are summarised in [84]. Here, short description of the
LHCb detector is given. While [82] has been published prior LHC operations, the first
run of LHC has ended in the meanwhile and a performance review is being prepared
[85] and partially available for subsystems [86, 87, 88, 89, 90, 91, 92, 93, 94]. These
reviews of LHCb operations are considered here, too.

2.1 Implications of physics objectives on the detector design

The LHCb detector is designed to serve the needs of flavour physics analyses. At the
LHC, heavy flavour hadrons are produced with a large boost in the forward direction,
i. e. at small polar angles with respect to the beam axis. The LHCb detector is thus

Figure 2.1: Layout of the LHCb detector. Figure taken from [95].
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2. THE LHCB EXPERIMENT

designed as a forward spectrometer along the beam axis, shown in Fig. 2.1. The
subsystems are explained in the following sections. This involves a good acceptance
for boosted heavy flavour hadron decays and an accurate decay time measurement. A
large boost of the hadron leads to a large flight distance of the heavy flavour hadron
from the primary vertex to the decay vertex and thus a small relative uncertainty on
the flight distance.

The coordinate system of LHCb is defined with respect to the nominal LHC inter-
action point. The beam axis defines the z-axis. The y-axis is chosen to point vertically
upwards, in the plane perpendicular to the z-axis. The x-axis is then defined to result
in a right handed Cartesian coordinate system; i. e. when standing at the interac-
tion point and looking along the beam axis into the spectrometer, the x-axis points to
the left. The azimuth, ϕ, and polar angle, ϑ, are defined according to the standard
definition of spherical coordinates.

The direction from the interaction point along the beam axis through the spec-
trometer is called downstream. The opposite direction, towards the interaction point
is called upstream. Accordingly, the magnet is the border of the so-called upstream
region and the downstream region. The upstream region hosts the vertex locator
(VELO), a first RICH detector (RICH1) and a first tracking station (TT). The down-
stream region hosts three more tracking stations, a second RICH detector (RICH2),
the calorimeter system and the muon stations.

2.2 LHC operations

Proton beams are injected at 450 GeV from CERN’s accelerator chain into both di-
rections of the LHC ring. Throughout data taking in 2011 and 2012, protons were
injected in bunches separated by 50 ns, twice as much as designed. Once the desired
number of bunches is circulating in the LHC, the beam energy was increased up to
7 TeV in 2011 and 8 TeV in 2012. During the acceleration, the beams are kept on
non-intersecting orbits. After reaching the target energy, the beam optics magnetic
fields are adjusted to let the beams intersect at the interaction points of the LHC
experiments.

The sequence of injecting protons into the LHC, accelerating them, and letting
them collide is called a fill. A fill is ended by deflecting the beam out of the beam
pipe onto the LHC beam dump which is either done because the safety of the LHC
requires it or because the LHC beam current becomes so low that it is advantageous
(for the integrated luminosity) to dump and re-inject the beam.

The beam current reduces during a fill as protons which collide in the experiments
“leave” the beam, but also interactions with collimators or interaction with residual
gas in the beam pipe reduce the number of protons. This would normally lead to a con-
tinuous reduction of the interaction rate. At LHCb the beams are displaced vertically
with respect to each other, to lower the instantaneous luminosity. The displacement
is reduced during a fill to cancel the reduction of the beam current and maintain a
constant instantaneous luminosity (luminosity levelling). This is only possible until
the beams are not vertically displaced anymore, from this point on, the interaction
rate decreases. This happened in roughly one fifth of all fills during 2011 and 2012.

The intersection of the beams is chosen such that the beams are separated 7.5 m
from the interaction region1, not to let protons collide in other points than the nominal

1Bunches are separated by 15 m at 50 ns bunch spacing. Since the beams “move” in opposite directions,
a bunch “meets” the next bunch from the opposite beam after 7.5 m.
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interaction points.
The data set analysed in this work corresponds to (1.01± 0.01) fb−1 taken in 2011

at
√
s = 7 TeV and (1.99± 0.02) fb−1 taken in 2012 at

√
s = 8 TeV.

2.3 LHCb subsystems

Magnet

The LHCb spectrometer magnet is a dipole magnet with a magnetic field perpendic-
ular to the beam axis. Charged particles are deflected in the magnetic field. The
deflection depends on the particles’ momenta and their charges. The electric current
in the magnet coil is regularly reversed. Trajectories of positively charged particles
with one magnet polarity are almost identical to negatively charged particles’ trajec-
tories with the opposite magnet polarity. The reversal reduces the effect of detection
asymmetries on studies of CP violation [96]. For the present analysis, possible detec-
tor asymmetries are assumed to be irrelevant and the data taken with both polarities
is combined. For consistency of simulated events with the actually data taking, how-
ever, half of all simulated events have been simulated with either polarity.

The spectrometer magnet deflects the LHC beam, too. Due to the large momentum
of the protons of the LHC beam, their deflection is small and the beam remains within
the beam pipe. The LHCb magnet’s deflection is compensated by additional magnets
outside the LHCb cavern along the beam pipe.

Vertex Locator

The LHCb vertex locator (VELO) is a silicon strip detector built in r-ϕ geometry; i. e.
ϕ-sensors with approximately radial strips (i. e. approximately constant ϕ coordinate
along the strip), and r-sensors with strips which are shaped as circle segments, each
of them covering 1/8 of a circle. Its performance is reviewed in [88]. To achieve the best
possible vertex resolution, it is built as close as possible to the beam line. In contrast
to other LHC experiments, it is not built around the LHC beam pipe, instead the
VELO replaces the beam pipe and only a thin corrugated foil, the RF foil, separates
the sensors from the beam. The RF foil provides shielding against RF pickup from
the LHC beam and prevents possible outgasings from the detector modules to reach
the LHC beam.

The VELO sensors are retracted, away from the beam axis, when the particles are
injected into the LHC and during acceleration to provide a larger aperture for the
beam.

Two of the VELO stations, the pile-up unit, were designed with only r sensors and
the capability to be read out at 40 MHz for consideration in the hardware trigger. A
simplified vertex finding algorithm, implemented in hardware, would have identified
events with more than one primary interaction, to veto these. Eventually, it has been
decided to consider these pile-up events as good events for physics analyses – the
average number of visible interactions is about 2 in the 2011 and 2012 data.

TT

Downstream of RICH1, a tracking station, the so-called TT is situated, a large area
silicon strip detector. It detects charged particles, especially decay products of strange
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(a) Photograph

(b) Schematic

Figure 2.2: The VELO as shown in [88].

particles which decay outside of the VELO and thus cannot be detected in the VELO.
Given the fringe field of the nearby dipole magnet, charged particle tracks which are
detected in the VELO and in the TT have a measurable curvature.

The layout of the TT is shown in Fig. 2.3. The strips are all approximately oriented
in y-direction and thus provide a measurement of the x coordinate of a track at the
TT. Those detector layers which are exactly parallel to the y-direction are therefore
called x-layers. Due to the orientation of the magnetic field, the slope in the y-z plane
is approximately constant and thus the measurement in the VELO sufficient; i. e. the
y-z slope resolution cannot be improved by further measurements. The x-coordinate
is of interest because it is not constrained by the measurement in the VELO due to the
deflection in the magnetic field. Therefore, the x-measurement leads to a momentum
estimate. The measurement with the stereo layers – those layers which are tilted by
5◦ with respect to the y-direction – provides a confirmation, whether hits in the TT
are compatible with a track extrapolation from the VELO in the y-z plane.

Inner Tracker

The tracking detectors downstream of the detector are arranged in three stations
(T stations). The part close to the beam pipe, where the particle flux is high, is covered
by a silicon strip detector, the Inner tracker (IT). There are four active layers in each
T station, the first and the last with strips in y-direction (x-layers), and the inner two
tilted by ±5◦, as in the TT.

Due to the position of the IT, its readout electronics and cooling infrastructure are
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Figure 2.3: Schematic of the layout of the TT. The TT comprises two
tracking stations, each with one layer of silicon strips along the y-
direction, and one stereo layer, where the strips are tilted by ±5◦

in the x-y plane with respect to the y-direction. The figure appears
in various theses describing LHCb, the original source could not be
identified. The figure does not appear in the LHCb technical design
reports or [82].

Figure 2.4: Arrangement of the TT and the T station trackers. The
OT is shown in turquoise, the IT and TT in purple. Figure taken
from [82].
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Figure 2.5: The Outer tracker. (a) Module cross section. (b) Ar-
rangement of OT straw-tube modules in layers and stations. The
observant reader will notice that one of the two innermost modules
in each layer is more narrow than the others, the narrow module
is always situated in the negative-x range half of the detector due
to spatial constrains by the LHCb cavern. This is different to the
deprecated, but still often quoted, design in [82]. Figure taken from
[94].

placed in the detector acceptance and contribute significantly to the material budget.
The IT is the first detector which is not orthogonal to the z-axis – the z-axis is not
horizontal2 and the detectors downstream of the magnet are installed along the grav-
itational field for mechanical reasons. The occupancy of the IT reaches 2.5 % close to
the beam pipe and the IT has a hit resolution of 50 µm in the direction orthogonal to
the strips.

All silicon trackers at LHCb (VELO, TT, and IT) record the pulse height of the
hits.

Outer Tracker

The largest part of the T stations is covered by the Outer tracker (OT), a straw tube
drift detector [94], shown in Fig. 2.5. Similar to the IT, there are two x layers and two
stereo layers in each T station. Differently to the IT, each of these detector layers is
made of two layers of straw tubes. The measurement of drift times3 in the straw tubes
determines the distance of a charged particle’s track to the anode wire. The resulting
hit resolution is commonly reported to be 205 µm, an improved detector alignment

2Due to geological constraints, the LEP/LHC tunnel is inclined.
3The OT has no pulse height readout. It measures the time of hits with respect to the bunch crossing

signal instead.
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Figure 2.6: Drift time spectrum in the OT. The time between the
LHC clock signal and the first signal in an Outer Tracker straw is
histogrammed for different bunch spacings (left) and in the absence
of a collision (right). For the drift time spectrum at 75 ns bunch
spacing, the drift time spectrum without spillover or after-pulse
is visible. The shape is the result of the distance-to-anode-wire
to drift-time relation, resolution effects, and clock noise, which is
visible at the vertical lines. The spectra at 50 ns contain additional
contributions from spill-over – best visible at high TDC counts –
and after-pulses, which result in a larger number of measurements
at small drift times. Figure taken from [94].

with fine granular alignment of the OT monolayers may result in a hit resolution of
179 µm in the future [97].

The OT electronics measures one drift time per bunch crossing if a hit is present.
Since the hit occupancy reaches 20 % in the innermost modules, a substantial amount
of straws with two hits has to be expected. For a given particle track the measured
drift time may thus be incorrect, but instead “belong” to a different particle. The track
fit at LHCb can therefore ignore drift time measurement if it is found incompatible
with the track. Instead of ignoring the hit entirely, the straw is then assumed as a
binary object. The introduction of this feature lead to a homogeneous distribution of
the track fit χ2/ndf, independent of the pile-up or whether a particle is tracked in the
IT or in the OT.

Drift times in the OT are up to 35 ns, which is sufficient not to observe hits from
the previous or following bunch crossing in an event. Due to the drift time resolution
and the presence of after-pulses the picture changes. Figure 2.6 shows the drift time
spectrum in the OT. At 75 ns bunch spacing, after-pulses are not present, the excess
at 50 ns bunch spacing is due to these after-pulses. When no bunches intersect but
there was collision present 50 ns ago, the red drift time spectrum in Fig. 2.6 (b) can
be observed, this shows the after-pulse spectrum isolated. At 25 ns bunch spacing,
so-called spill-over hits are observed. This may become the standard in future LHCb
data.

2.4 Track reconstruction

Tracks are the fundamental reconstruction objects of LHCb analyses. Therefore their
reconstruction is explained given emphasis in the following paragraphs.

21



2. THE LHCB EXPERIMENT

Figure 2.7: Schematic top-view of the tracking detectors and the
track types at LHCb. Figure taken from [98].

The track reconstruction at LHCb has been described in e. g. [98, Chap. 3], [87,
Sect. 3], [85, Sect. 2.2], and the references therein. Figure 2.7 illustrates the tracking
detectors, the curvature of charged particles’ tracks in the magnetic field of the dipole
magnet, and the definitions of track types at LHCb. For the analysis presented in
this work, only long tracks are of interest; their reconstruction is, however, not inde-
pendent of the reconstruction of other track types, due to the selection of “best” tracks
(see below). This section focuses on the reconstruction steps relevant for the present
analysis. Unless stated differently, extrapolations mentioned throughout this sec-
tion always assume the laws of electrodynamics and respect the curvature of charged
particles’ trajectories in magnetic fields.

The search for charged particles’ tracks begins in the VELO, where tracks are
straight lines. Stable particles of interest are mostly produced close to the z-axis,
either in the primary interaction point or as decay products of long lived particles
which are produced in the forward direction. Straight lines intersecting the z-axis are
straight in the r-z projection of cylinder coordinates. Measurements in the r-sensors
of the VELO are therefore used in a first pattern recognition step to find VELO tracks.
Thereby tracks are found which originate from the primary interaction point or from
decays of long lived particles, if they decay close to the z-axis4. Subsequently, hits in
the ϕ sensors are associated to the r-z tracks. The small angle of the ϕ-strips with
respect to exact lines of constant ϕ resolves the ambiguity in case two r-z tracks are
reconstructed in the same octant.

The laws of electrodynamics allow to compute a particle’s trajectory once a single
point on the trajectory (~x), the momentum vector (~p) at that point, and the charge
(q) are known. To be more precise, ~p and q can be reduced to ~p/|p| and q/|p|. A VELO
track measures ~x and ~p/|p|, but not q/|p|. A single measurement in the x-z plane5

4This leads to a decrease in reconstruction efficiency with increased decay time, as explained in [99].
5To first order, the y−z projection of a track is a straight line, independent of the particle’s momentum.
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2.4. Track reconstruction

Figure 2.8: Illustration of the optical model, that the magnet is a
single plane and charged particles’ trajectories are straight lines
elsewhere: The solid line shows the actual trajectory of a particle
in LHCb, the dashed line shows the straight line extrapolations of
the T station segment and VELO segment into the magnet. Figure
modified from [98].

downstream of the magnetic field is sufficient to establish a momentum hypothesis.
Based on the momentum estimate from every hit in the T stations, a Hough transform
[100, 101] is applied to the hits in the T stations. Hits following the track model with
the assigned momentum hypothesis are hereby transformed to the same point. A long
track through the T stations is thus found as a cluster of hits in the Hough plane. This
track finding strategy is used in the software trigger, too, and called forward tracking
in [85].

T tracks are searched for by fitting a parabola through all three-station combina-
tions of hits in x layers of the T stations. The parabola’s parameters are constrained
to the parameter range observed in simulated events for particles originating in the
primary interaction point. Unless enough additional hits are found in the T stations
around the parabola, the track candidate is rejected. Otherwise, hits in the stereo
layers which are compatible with the x-z track candidate are added to contribute in-
formation about the position of the track in y. An origin of the track near the nominal
interaction point in the y-z plane is assumed in this stage again.

A second long track finding algorithm applies an optical model. In this optical
model, the magnetic field is a single plane. Straight line extrapolations of VELO
tracks and T tracks into the dipole intersect in the bending plane if they reconstruct
the same particle, as illustrated in Fig. 2.8. To increase the track finding efficiency
beyond the efficiency of the forward tracking, VELO tracks and T tracks which are
compatible with this optical method are combined to long tracks.
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VELO tracks can be extrapolated as a straight line into the TT. For not too low
particle momenta, hits from that exact particle which was found as VELO track can
be found close to the track extrapolation. If this is the case, these hits are added to
the VELO track to build an upstream track.

Using the optical model again, T tracks can be extrapolated straight to the mag-
net’s bending plane. Hits in the TT can be found close to a straight line from this
bending-plane point to the nominal interaction point if the particle originated from
a decay vertex in the VELO or RICH1. This upgrades the T track to a downstream
track.

If hits in the TT are found around the interpolation of a long track into the TT,
these hits are added to the track, to improve the track parameter estimation.

A final selection of “best” tracks is made from the tracks found by all these meth-
ods. If two different tracks are built from (partially) the same detector hits, the
“longest” is kept, e. g. long tracks are preferred over downstream tracks, which are
preferred over T tracks, long tracks with TT hits are preferred over long track with-
out TT hits. The criterion is slightly loosened for track types which are generically
difficult to compare. In this case a momentum difference criterion is used. E. g. long
tracks and downstream tracks are supposed to reconstructed the same particle if they
“share” half of their hits in the T stations and at least one of the following two condi-
tions is met: at least one common TT hit or their ∆q/p is within 5 · 10−6. To determine
the particle momentum and trajectory, the tracks are fitted with a Kalman filter fit
[102]. Only tracks which can be fitted with a good fit quality, χ2/ndf < 3, qualify as
“best”; i. e. if a correctly reconstructed downstream track is built from the same hits
in the T stations as a fake long track6, the bad fit quality of the long track will identify
the downstream track as “better” track.

For the remaining tracks are compared by computing their relative entropy [103]
given by their Shannon information content. For two tracks i, it is computed from
their track parameters ~x = (x, y, px/p, py/p, q/p) computed by the track fit and from the
covariance matrix C estimated by the track fit:

D(1, 2) = Tr
[
(C1 − C2)(C−1

2 − C−1
1 )
]

+ (x1 − x2)T (C−1
1 + C−1

2 )(x1 − x2).

This relative entropy is small for tracks with similar track parameters. From each
two tracks within a relative entropy of 5 000 or less, the track with more hits (or the
better fit quality in the case of equally many hits) is kept which reduces the track
finding efficiency by two per mille at a residual rate of doubly reconstructed tracks of
three per mille [104].

The rejection of reconstructed tracks which do not correspond to any charged par-
ticle, fake tracks, may not be sufficient when using only the aforementioned χ2/ndf.
A neural network has been trained to identify fake tracks. Input variables to this
network are mainly the fit χ2 contributions in the subdetectors, the number of outlier
hits which were not considered in the track fit, the χ2 contribution of combining the
segments in the upstream region with the downstream region, and the number of ac-
tive detector elements through which the track passes but in which no hit is observed.
Also the number of ignored drift time measurements enters the neural network. The
response is calibrated on simulated events to be the fake track acceptance rate. E. g.
30 % of all fake tracks pass a selection of Mfake track < 0.3. The inefficiency – not
accepting good tracks – is at the percent level for this requirement.

6i. e. where the hits in VELO are from a different particle than those in the T stations
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2.4. Track reconstruction

Figure 2.9: Schematic of the RICH detectors: side view of RICH1
(left) and top view of RICH2 (right). Figure rearranged from [82]
as inspired by [38].

Ring Imaging Cherenkov Detector

Downstream of the VELO, a first ring imaging Cherenkov detector (RICH1) is situ-
ated. Charged particles emit Cherenkov light in two radiators if they are faster than
the speed of light in the radiator material. The focusing optics of a mirror system fo-
cuses the Cherenkov photons of a particle to a ring in the focus plane where they are
detected by hybrid photon detectors [105]. A second single-radiator RICH is placed
between the T stations and the calorimeter system (RICH2). The three radiators pro-
vide particle identification in different ranges of particle momenta, together covering
the entire range of interest for LHCb.

Based on the observed photon pattern in the RICH detectors, an event likelihood
of particle hypotheses is computed and maximised. A particle hypothesis is assigned
to each reconstructed track, for it being a pion, kaon, proton, or muon. The likelihood
for the observed hit pattern is computed for the expected Cherenkov angles for the
measured track momenta. The event likelihood is maximised by changing the parti-
cle hypotheses for the tracks until a maximum is found. Starting from the maximal
likelihood mass-hypotheses configuration, the likelihood loss for each single hypoth-
esis change is computed to quantify how much more likely a track is a particle of its
assigned hypothesis with respect to an alternative hypothesis [90].

This procedure is not equivalent to reconstructing Cherenkov rings and the mea-
surement of their radii, the likelihood computation considers only possible Cheren-
kov angles for the four particle hypotheses (π,K,p, µ). The ring of a hypothetical
300 MeV/c2 particle would remain unobserved. Consequently there is no unambigu-
ous ordering of particle hypothesis likelihoods, as shown in [90, Fig. 16].

Cherenkov angles are measured for detector performance studies. For isolated
tracks, which are defined to be so far away from other tracks that their Cherenkov
rings cannot intersect, a measurement of the Cherenkov radius has been performed
in [90] to illustrate the Cherenkov angle resolution of RICH2. The result in Fig. 2.10
shows a clear separation of the four particle species. It is remarkable that the RICH
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Momentum (GeV/c)

2

Figure 2.10: Reconstructed Cherenkov angle as a function of track
momentum in the gas radiator of RICH1. Figure taken from [90].

Figure 2.11: Schematic of the calorimeter system at LHCb. The z-
scale of the SPD and PS are exaggerated. Figure taken from [38].

distinguishes muons from pions to some extent, despite the wide-spread belief that
RICH detectors could not contribute to pion-muon separation.

Calorimeters

The calorimeter system [89], shown in Fig. 2.11, absorbs particles, except muons and
neutrinos, and measures their energy deposit. For the present analysis, the main
purpose of the calorimeter system is therefore to filter charged particles. Hadrons
and electrons are filtered out, muons pass the filtering and reach the muon system.
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2.4. Track reconstruction

The calorimeter system consists of four subdetectors, a scintillator pad detec-
tor (SPD), a preshower detector (PS), an electromagnetic calorimeter (ECAL), and
a hadronic calorimeter (HCAL). The layout is projective with respect to the nominal
interaction point, i. e. the transverse size of the subsystems increases linearly with
their distance to the nominal interaction point. The sizes of individual detector cells
scale with increasing distance to the interaction point accordingly. The SPD, PS, and
ECAL are divided into three regions of different granularity. Close to the z axis, where
the particle multiplicity is highest, the detector cells are smallest, in the outer region
the cells are largest. The HCAL is divided into two regions of different granularity.

The subdivision into SPD, PS, and ECAL provides the possibility to analyse the
longitudinal shower profile of electromagnetic showers. E. g. showers of neutral par-
ticles begin in the lead plate between SPD and PS, the absence/presence of a hit in
the SPD separates neutral particle showers from charged particle showers.

The ECAL and HCAL are shashlik calorimeters, i. e. successive scintillator and
absorber (lead or iron) plates. Light signals in the scintillators are collected by
wavelength-shifting fibres and guided to photomultiplier tubes or multi-anode pho-
tomultiplier tubes. The gains of the calorimeter cells are adjusted to achieve that the
calorimeter’s response is a measure of ET := E · sinϑ because the hardware trigger
is selecting signatures according to their transverse energy. The angle ϑ is the polar
angle of the position of the calorimeter cell7.

The energy resolution of the calorimeters is given in [89] as:(
σ(E)

E

)
ECAL

=
(9.0± 0.5) %√

E/GeV
⊕ (0.8± 0.2) %⊕ 0.003

E/GeV · sinϑ(
σ(E)

E

)
HCAL

=
(69± 5) %√
E/GeV

⊕ (9± 2) %.

The first term is due to the stochastic nature of showers, the second due to residual
mis-calibrations, non-linearities, and other effects, and the third term is due to noise
of the electronics.

Muon chambers

The muon system [91] comprises five stations, named M1 to M5, as shown in Fig. 2.12.
The first, M1, plays a special role. It is placed in front of the calorimeter system
and thus detects any charged particle, not only muons. Therefore, M1 cannot serve
particle identification purposes. It is used in the hardware trigger to improve the
momentum estimate. M1 is not used in the event reconstruction8.

The muon stations are divided into four regions of different granularity, to account
for the higher/lower particle density close-to/far-from the beam axis. The regions are
designed projectively with respect to the nominal interaction point. Iron absorbers
of 80 cm thickness are placed between muon stations. The stations themselves are
multi-wire proportional chambers for all stations and regions except for the inner-
most region of M1, where triple-GEM detectors [106] are used.

For every track, hits in the muon chambers are searched for in a field of inter-
est around the track extrapolation into the muon system. The field of interests are
parametrised as a function of the track momentum and tracks are identified as muons

7For charged particles this implies the assumption of negligible deflection in the magnetic field.
8Up to corner cases of detector performance studies, e. g. [87].
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(a) side view (b) front view

Figure 2.12: Layout of the LHCb muon system. Figure taken from
[82].

if hits are found in M2 and M3 for 3 GeV/c < p < 6 GeV/c, an additional hit in M4
or M5 is required up to 10 GeV/c, and hits in all four stations are required above
10 GeV/c.

This muon identification serves as a muon pre-selection [93]. For further quantifi-
cation of the track’s likelihood to be a muon, the mean squared distance of the muon
hits to the track extrapolation is computed. The distance of these hits to other tracks
in the event is a measure for the misidentification likelihood.

2.5 Particle identification

Eventually, the information from the particle identification systems is combined. In
this work, the ProbNN variables ([85]) are used. They are neural networks, one for
the identification of each of electrons, muons, pions, kaons, protons, and fake tracks.
The muon network is named MPID for unified typesetting in this work. The neural
network is only evaluated for tracks passing the muon pre-selection, described in the
previous section. The following input quantities are used byMPID:

• The track’s likelihood to be a muon, by means of the distance of hits in the muon
chambers from the track extrapolation.

• The likelihood of these muon chamber hits to originate from a different track, by
means of the distance of these muon chamber hits from other charged particle
track extrapolations.

• The number of charged particle tracks compatible with these muon chamber
hits.
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2.6. Trigger system

• The information which of the three RICH radiators have been used in the RICH
identification of the track.

• The information whether the track momentum is above the threshold for Che-
renkov radiation for different mass hypotheses.

• The different mass hypotheses likelihood differences in the RICH identification
(for the muon, pion, kaon, proton, electron, and the below-threshold hypothe-
ses).

• The information whether the track is in the acceptance of the calorimeter sub-
systems.

• The energy deposit in the ECAL and HCAL at the track extrapolation, to eval-
uate the compatibility with a minimum ionising particle.

• dE/dx from the VELO ADC measurements.

Given that the behaviour of all these variables depends not only on the true origin
of track, but depend on the track momentum and the accuracy to which the track
position in the PID detectors is estimated, also variables of the track reconstruction
are used. Additionally, a track does not necessarily correspond to a charged particle,
but might be a fake track. The tracking variables used inMPID are:

• The track momentum

• The track transverse momentum

• The track fit χ2/ndf

• The number of degrees of freedom in the track figure

• The likelihood that the track is a fake trackMfake track

This neural network particle identification is expected to provide better muon from
non-muon separation. Furthermore, the present analysis’s aim is not to separate
muons from a single other particle type, but all other particle types (including fake
tracks). In ∆ logL, several discriminations would have been needed to be applied
(∆ logL(µ − π),∆ logL(µ −K), . . . ), whileMPID allows the usage of a single discrimi-
nation criterion.

The true performance of MPID becomes visible after its calibration – the particle
identification is subject of significant differences between simulated and real events,
as shown in Fig. 10.8. The background of the present analysis is shown in Fig. 10.9
for comparison. The background is extremely concentrated at small MPID response
values.

2.6 Trigger system

The trigger system consists of two stages [86, 92]. A hardware trigger system is
designed to evaluate information from the calorimeters and the muon chambers at
40 MHz input rate. If the hardware trigger accepts a proton-proton collision, then
the detector is read out, at a maximum rate of 1 MHz. A fast event reconstruction
is then done in a computing farm (“event filter farm”, EFF), to select events for later
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Figure 2.13: Schematic of the momentum determination in the
hardware muon trigger. Figure taken from [98].

analyses. The software trigger output rate9 has been 3 kHz in 2011. To not leave the
computing farm unused in the time between LHC fills, events were buffered in 2012
[107]; i. e. the software trigger spent more computing time for the analysis of events
than available at an input rate of 1 MHz. Consequently, evaluation of events contin-
ued after the end of a fill until the event buffer was drained. The resulting output
rate of the software trigger, normalised to the fill duration, reached 5 kHz.

Hardware stage

Most detector components of LHCb can be read out at a maximum rate of 1 MHz
while proton bunches cross each other at the LHCb interaction point at a 20 MHz
frequency10. The actual bunch crossing rate is lower than this frequency, as explained
in the footnote on this page. The muon system and the calorimeters can be read out at
up to 40 MHz. A custom built electronic system decides by means of the information
from these subdetectors, whether the entire detector is read out and its data is sent
to the EFF, or not.

A positive trigger decision requires a hadronic shower with ET > 3.5 GeV, an elec-
tromagnetic shower with ET > 2.5 GeV, or one or two muon tracks. For muon tracks,
the track slope in the x-z plane and the assumption that the muon originates in the
primary interaction region constrain the curvature in the magnetic field and thus de-
termine the muon momentum, as illustrated in Fig. 2.13 and explained in more detail
in [95]. The muon hardware trigger requires one muon with pT > 1.48 GeV/c or two
muons with √pT,1 · pT,2 > 1.296 GeV/c. There is no requirement that the two muons
must have opposite charge.

These thresholds refer to the 2011 data taking period. In the 2012 data taking pe-
riod, the thresholds were raised to adapt to the higher instantaneous luminosity and

9Different definitions of the output rate exist in the literature because not only events relevant for
physics analyses are stored – an additional part of the output bandwidth is spent for calibration, monitor-
ing, and luminosity measurement purposes.

10The RF frequency of the LHC is actually 40 MHz. At a bunch spacing of 50 ns, however, every second
well of the RF wave is not occupied by a proton bunch. Additionally, gaps between bunch trains decrease
the bunch crossing rate even below the bunch crossing frequency.
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higher collision energy in 2012. The thresholds were raised to 3 GeV for the hadronic
trigger, 3 GeV for the electromagnetic trigger, 1.76 GeV/c for the single muon trigger,
and 1.6 GeV/c for the di-muon trigger.

Software stage

The software trigger is subdivided into two main components, HLT1 and HLT2. In
each stage various so-called trigger lines are run. Each line in HLT1 runs its own
reconstruction and applies a simple selection. In general a single muon or hadron
track with a non-vanishing impact parameter with respect to the primary vertex is
required. If an event is accepted by at least one HLT1 line, the event is passed on to
HLT2. For more details about the HLT1 lines, see [86]. A full event reconstruction is
done in HLT2, which is simplified with respect to the offline reconstruction due to the
constraints of the available computing resources in the EFF. The HLT2 applies about
300 different event selections.

While the bandwidth of the trigger stages becomes smaller with each stage, the
selection requirements are not restricted throughout the trigger system; e. g. the
transverse momentum requirement for the 2012 single muon hardware trigger is
1.76 GeV/c, but only 1 GeV/c in the subsequent HLT1. This inconsistency has advan-
tages as explained in the following example. Events which contain B → µX decays,
where the muon may have a transverse momentum of, for example, “only” 1.2 GeV/c
can be accepted if a higher momentum prompt muon is present in the event, i. e. one
muon “triggers” the hardware trigger and another muon “triggers” the software trig-
ger. Lowering the pT threshold in the hardware trigger to consistency with HLT1
would not be possible within the available bandwidth.

The same is true for the selections applied by analyses to the recorded data. The
efficiency of the trigger system is commonly defined as the probability to accept an
event in the trigger system, if the event fulfils the selection requirements of an anal-
ysis. If selection requirements were more restrictive than the trigger requirement,
these efficiencies would have to be ≡ 100 %. The advantage of applying selections
which are less restrictive than the trigger is to access signal candidates below the
trigger thresholds if there is an independent signature in the event leading to a posi-
tive trigger decision.

Assume and event e which is accepted by trigger line L and contains a three track
combination c = (t1, t2, t3) which fulfils the event selection in Chap. 6. There are three
ways11 in which the positive trigger decision of L is related to the τ → µµµ candidate
c.

TOS: The three tracks t1,2,3 are sufficient to fulfil the requirements of L. This in-
cludes cases where a proper subset of t1,2,3 is sufficient to trigger L. (Triggered
On Signal)

TIS: Another set of tracks T which is independent of c (i. e. ti /∈ T ) is sufficient to fulfil
the requirements of L, e. g. for single track triggers. (Triggered Independent
Signal)

TOB: Neither c nor any independent set of tracks is sufficient to fulfil the require-
ments of L. But the combination of ti with more tracks from the event is suffi-

11See [108] for a detailed explanation of the abbreviations and the application of the former two.
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cient. This includes cases where a proper subset of t1,2,3 and other tracks trigger
L. (Triggered On Both)

Additionally, if L finds multiple candidates in e, combinations of the above are
possible. The trigger lines have been used in various configurations throughout data
taking, to adapt to increasing computing resources or to incorporate improvements of
the reconstruction software. Due to the luminosity levelling (see above) a change of
the trigger configuration is not necessary during a fill. The trigger lines relevant for
the present analysis are explained in Chap. 7.

2.7 Simulation

In the simulation, pp collisions are generated using Pythia [109, 110] with a spe-
cific LHCb configuration [111]. Decays of hadronic particles are described by Evt-
Gen [112], in which final-state radiation is generated using Photos [113]. The inter-
action of the generated particles with the detector and its response are implemented
using the Geant toolkit [114, 115] as described in [116]. The decay τ → µµµ is simu-
lated as a phase space decay of a spin-less particles into spin-less particles, i. e. with
a constant Dalitz distribution.
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3

Branching fraction limits in absence of a signal

This chapter gives a general explanation how an upper limit on a branching fraction
is obtained in case no signal events are observed. The statistics framework is the CLs
method1 [117] in the mclimit implementation [118] using a simple likelihood ratio.

3.1 The fraction of decays and its branching fraction

A branching fraction B is the fraction of a given set of particles of size Ntot which is
expected to undergo a certain decay Nexp. In the present case:

Nexp(τ → µµµ) = B(τ → µµµ)×Ntot(τ ). (3.1)

In practice, a real τ → µµµ decay can only be observed2 at a probability ε � 1,
called efficiency.

Nexp.det.(τ → µµµ) = ε ·Nexp(τ → µµµ) (3.2)

It is matter of statistics to define an estimate for the expected number of observed
τ → µµµ decays. The most trivial approach is to use the observed mean as an estimate
for the true mean; i. e. the number of observed decays Nobs(τ → µµµ).

Best(τ → µµµ) =
Nobs(τ → µµµ)

εNtot(τ )
(3.3)

In the absence of observed signal events (Nobs = 0), or in the absence of a sig-
nificant number of signal events, upper limits are set for the branching fraction. In
Poissonian statistics, the upper limit UL on the expectation value of can be taken from
tables. For Nobs = 0 and a 90 % confidence level, UL is 2.3025. Equation 3.3 reads for
upper limits:

B(τ → µµµ) <
UL(τ → µµµ)

εNtot(τ )
, (3.4)

=: α× UL(τ → µµµ). (3.5)

The proportionality factor α is also referred to as normalisation factor.

1The letters “CLs” are used as the name of the method, the CLs method, and as a name for a variable
which is used in the method, the CLs variable.

2abbreviated with “det.” for detection to avoid confusion with the actual observed event count in an
experiment
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The normalisation factor measures an experiment’s capability to observe a decay,
it combines the number of particles to begin with and the efficiency to observe an de-
cay given that it occurred. Obviously, a small normalisation factor is desirable and the
sensitivity is a linear function of α. The normalisation factor allows to compute the
expected number of τ → µµµ decays visible to the experiment by rewriting Eqs. 3.1,
3.2, and 3.5 to

Nexp.det.(τ ) = ε · B(τ → µµµ)×Ntot(τ )

Nexp.det.(τ ) = B(τ → µµµ)× α−1. (3.6)

In other words, the normalisation factor is the branching fraction of exactly one ex-
pected visible decay. It is emphasised, that in this simple case, the sensitivity depends
linearly on the efficiency (as contained in α).

The computation of UL can be found in Appendix B.3. This description is not ap-
plicable to the present analysis because of the presence of backgrounds. The implica-
tions of the presence of backgrounds for the statistical treatment of UL are illustrated
in the next section.

3.2 Presence of backgrounds

Several possible treatments of background events in the determination of an upper
limit on a branching fraction have been suggested in the literature. The CLs method
suggested by [117] is one of the methods considered state-of-the-art. How the CLs
method is used in the present analysis3 is described in Sect. 3.5.

Naïvely, when b background events are expected the number of observed back-
ground events will be within b±

√
b events4. A conservative interpretation of actually

observing what is expected – i. e. b events – is therefore that b−
√
b background events

and
√
b true τ → µµµ decays occurred. From two experiments with the same normal-

isation factor, the one with less expected background events will thus have the better
sensitivity. Furthermore, a large normalisation factor can be overcompensated if only
very few background events are expected.

3.3 Background discrimination

Given that a small number of background events can overcompensate a large normal-
isation factor, an experiment can benefit from artificially decreasing its efficiency if
this is compensated by a sufficient reduction of background events. In addition to the
term efficiency, the term background efficiency is used throughout this document for
the probability that a background event passes the selection requirement. The letter
ξ is used as short form.

“The use of multivariate classifiers has become commonplace in particle physics.”5

A multivariate classifier is a real-valued function of several candidate properties; the
values of the function are called response, in this document M is used for both, the
multivariate classifier and its response. Typically,M is designed to be withing [0, 1].

3It is pointed out in [119] that the term “CLs method” only describes a part of the statistics framework
and further information must be given to unambiguously specify what is done.

4Modelling the event count as a Poissonian process, the variance σ2 of the event count is equal to the
expectation value. For large expectation values, the ±1σ interval has the desirable coverage of 68 %.

5Quoting the abstract of [120]. The usage and outlook of multivariate methods in particle physics can
be found in [121, 122, 123].

34



3.4. Event classification

For the purpose of background discrimination, the responses for signal events are
desired to be large, while background event responses are desired to be small:

ε(M > x) > ξ(M > x) ∀x.

The simplest application of a multivariate classifier is a selection criterion x1 and
evaluating the event count only in events with M > x1. This reduces the efficiency
of the analysis εmax ↘ ε1 with respect to an analysis without any selection beyond
having reconstructed a candidate. A formula to determine the optimal value for x1 is
given in [124] by FOMPunzi. It is given in Appendix A.3.1.

3.4 Event classification

An analysis strategy can be optimised beyond the application of a multivariate event
selection. Assuming the data with M > x1 have been analysed, an experiment can
also investigate the complementary data with M < x1. I. e. two experiments are
performed:

E1 analyses data withM > x1

E2 analyses data withM < x1.

The efficiencies of the two experiments are ε1 and εmax − ε1. The first experiment,
E1, can be assumed to be optimal: a multivariate event selection is applied with an
optimal selection value x1, and therefore E1 cannot be improved further. The other
experiment, E2, will have less sensitivity than E1, but not vanishing sensitivity, and
E2 has not been optimised. When combining the results of E1 and E2 an improvement
over the single experiment E1 can be achieved. The combination of experiments is
explained in Sect. 3.6.

The argument of applying a multivariate event selection in the first place holds for
E2. In other words, E2 can be improved by introducing a selection requirementM >
x2. The value can be optimised with FOMPunzi, again. Since FOMPunzi is protected
against divergence to vanishing efficiency, the value of x2 must turn out different
from x1 (The data of E2 is pre-selected with M < x1 and ε(x2 < M < x1) = 0 for
x1 = x2). One arrives at:

E1 analyses data withM > x1 with an efficiency ε1

E2 analyses data with x2 <M < x1 with an efficiency ε2.

The efficiencies are bound by the original experiments efficiency ε1 + ε2 � εmax. And
there is a data set withM < x2 “left over” which can be analysed. Iterating further
(and setting x0 := 1) one arrives at N experiments

Ei analyses data with xi <M < xi−1 with an efficiency εi.

Adding a last non-optimal experiment with xN+1 := 0 one achieves “completeness”∑N+1
i=1 εi = εmax. The contribution of the last experiment is tiny once N is suffi-

ciently large. Furthermore, practical aspects like constrained computing resources
are strong arguments against EN+1 and only the best N data ranges are analysed:∑N
i=1 εi . εmax.
The individual data sets with xi < M < xi−1 can be called classes, which moti-

vates the word “multivariate classifier”. The division of a large data set into classes
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3. BRANCHING FRACTION LIMITS IN ABSENCE OF A SIGNAL

by means of a classifier is consequently an event classification. An alternative nam-
ing is the word bin for the individual ranges of the M response. The values xi are
consequently called bin boundaries.

The above assumption, that E1 is optimal, is only partially correct. The experi-
mentE1 can not be improved as an individual experiment. The derivation of FOMPunzi,
however, assumes that the data which is not selected byM > x1 will not be analysed
at all. But once E1 is combined with E2, it turns out that a larger value for x1 would
have reached a better combined sensitivity, as shown in numeric examples in Appen-
dix A. Consequently, a fully optimal combined analysis will have larger values xi for
all bin boundaries than in the motivational example here.

3.5 The CLs method

Abstractly speaking, the purpose of recording and investigating data for the search
for τ → µµµ is to distinguish whether the data is an evidence for either the hypothesis
“τ → µµµ occurs at a pre-defined branching fraction B” or the hypothesis “τ → µµµ
does not occur, there is only background”6. I. e. one branching fraction hypothesis is
tested at a time (test hypothesis). The restriction of testing only one hypothesis is
dropped at the very end of this section.

It is shown in [126] that the best way of doing so is the computation of the likeli-
hood ratio

λ =
PH1

(~x)

PH0(~x)
,

where Hi are the respective hypotheses, ~x is the observed data, and PHi(~x) is the
probability to observe the data ~x under the hypothesis Hi. For easier distinction,
instead of PHi the notation Lb and Ls+b is used for the hypothesis of vanishing B(τ →
µµµ) (b for “background”) and the hypothesis of the presence of a signal (s + b for
“signal and background”), respectively.

The data observed which is relevant for the search for τ → µµµ is the number
of observed events; ~x = n. The numbers of expected background events and sig-
nal events are part of the probability functions. For each branching fraction, one
likelihood ratio λ needs to be defined to reject or not reject that branching fraction
hypothesis. For an analysis using event classification, as motivated in Sect. 3.4, ~x is
a vector of observed events in each bin: ~x = (n1, n2, . . . ).

Motivated by Gaussian approximation of probabilities by the central limit theo-
rem, instead of λ itself one uses

Qobs = −2 lnλ = −2 ln
Ls+b(~x)

Lb(~x)
.

Q is called test statistics and takes small values7 for data which is more likely occur
under the s + b hypothesis than under the b hypothesis, the index obs indicates that
it is the observed value of Q and not the variable of the probability density function
under a hypothesis.

Different test statistics are possible as well. The most simple one would be the
number of observed events. Q has the advantage that it is additive. Combining anal-
yses from two experiments, the combined test statistics is the sum of the individual

6This is not to be confused with profile likelihood ratio methods, [125].
7In the sense that “x is more negative than y” counts as “smaller”, too.
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Figure 3.1: Example of the distribution of Q values under the s+ b
hypothesis and the b hypothesis for a fixed branching fraction. The
integrals CLs+b and 1− CLs are indicated as well.

test statistics. As previously described by [127, Sect. 3.1-3.2], Q of an analysis which
is performed in bins, is the sum of the Q values of the bins. Moreover, Q is invari-
ant under increasing the number of bins by randomly splitting a bin into two bins
(see Eq. B.1). Studying Q values allows to compare analysis strategies with different
numbers of bins.

The s + b hypothesis is usually rejected if Qobs is larger than a critical value Qcrit
which is chosen such that the probability of observing a Q value larger or equal to
Qcrit under the s+ b hypothesis is 1− c, where c is the pre-defined, desired confidence
level. The probability of observing a Q value larger or equal to Qobs value under the
s+ b hypothesis is called CLs+b:

CLs+b := P(Q ≥ Qobs|s+ b)

An illustration is given in Fig. 3.1. It is visible, that CLs+b takes small values if Qobs
is in the range of typical values as expected under the background hypothesis.

It is argued in [117] that this leads to false rejections at a rate of 1 − c, even
if there was no sensitivity to distinguish between b and s + b. This behaviour is
undesired, although it is perfectly correct and unavoidable in frequentist statistics.
The CLs method ([117, 128]) is an ad-hoc correction. In addition to the CLs+b value,
the corresponding value for the b hypothesis is defined; 1 − CLb is the probability of
observing a Q value larger or equal to Qobs value under the b hypothesis.

1− CLb := P(Q ≥ Qobs|b)

The variable which the decision of rejecting s+ b is then based on is

CLs :=
CLs+b

1− CLb
, (3.7)

which is treated like CLs+b above: s + b is rejected if CLs is smaller than 1 − c. In
the extreme case, where there is no sensitivity to distinguish the hypotheses, 1−CLb
and CLs+b are equal, CLs = 1, which will never lead to a rejection in the case of no
sensitivity.
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3. BRANCHING FRACTION LIMITS IN ABSENCE OF A SIGNAL

Figure 3.2: Example for CLs as a function of B(τ → µµµ). There
is no sensitivity for very small branching fractions, where CLs is
1, and large branching fractions can certainly be excluded, where
CLs takes very small values. In between the upper limit on the
branching fraction depends on the desired confidence level.

It is pointed out, that the CLs method only rejects (or does not reject) the s + b
hypothesis for a fixed branching fraction. When searching for an upper limit on B(τ →
µµµ), the smallest branching fraction which can be rejected is interpreted as upper
limit. This means, that for several branching fraction hypotheses CLs is computed,
as illustrated in Fig. 3.2.

3.6 Nuisance parameters

The CLs method still leaves freedom about the actual computation of Ls+b and Lb, as
well as the computation of CLs+b and CLb. Natural choices for the former are Poisson
probabilities. The combination of several bins is done by multiplying the individual
probabilities, as motivated by [128]

Ls+b =
∏
i

(si + bi)
ni

ni!
e−(si+bi)

Lb =
∏
i

(bi)
ni

ni!
e−bi

where i ranges over the analysis bins, bi is the number of expected background events
in bin i, si is the expectation for the number of observable τ → µµµ decays in bin i
assuming a certain branching fraction, and ni is the number of observed events in bin
i.

In practice, there are no certain background expectations bi. The true mean of
background events is estimated8 by an estimate b̂i with some error σbi . Furthermore,
even setting B(τ → µµµ) to a fixed value for the s + b hypothesis does not fix si due
to the uncertainty on Ntot(τ ) and the efficiency, i. e. the normalisation factor. There is
an efficiency for each analysis bin, εi.

The number of expected background events and the true efficiencies are so-called
nuisance parameters. Their deviation from their estimated values is denoted by ~ϑ.

8Consequently, from here on the cumbersome formulation of “estimated number of expected back-
ground events” is used.
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3.7. Expected sensitivity

The full test statistics is therefore

Qobs(~ϑ) = −2 ln
Ls+b(~x, ~ϑ)

Lb(~x, ~ϑ)
.

The original description of the statistical method used in this analysis is given
in [118]. The possibility of profiling and marginalising the nuisance parameters, de-
scribed in [118], are not used because that requires significantly more computing
resources and no sensitivity improvement is expected.

For this analysis, ~ϑ is fixed to the expected value for the definition of Q, i. e. the
uncertainties on ~ϑ is not considered in the computation of Ls+b and Lb.

Qobs = −2 ln
Ls+b(~x, ~ϑ = 0)

Lb(~x, ~ϑ = 0)
.

No systematic error is introduced by fixing the nuisance parameters in the compu-
tation of Qobs as long as the integration of the Q distribution considers the nuisance
parameters, i. e. the computation of CLs+b and CLb. The computation of CLs+b and
CLb is done by Monte Carlo integration, i. e. a large number of pseudo-experiments is
generated.

CLb: For each pseudo-experiment, the number of observed events xi is generated
as a Poissonian random number with mean bi. The expected number of background
events bi is itself a random number in each pseudo-experiment; it is Gaussian dis-
tributed around the estimated number of expected background events b̂i and with a
width as the estimated uncertainty of the estimated expected background level σ̂b.
Then, CLb is the fraction of pseudo-experiments in which Q is larger than Qobs.

CLs+b: For CLs+b, the Poissonian random number xi is generated for a mean bi+si;
where bi is defined as before and si is the number of expected signal events; it is a
Gaussian random number with mean B × α−1

i and width B × σα−1
i

, i. e. the fluctuated
mean of τ → µµµ decays in that bin as computed by Eq. 3.6, using the estimated
normalisation factor (uncertainties stem from the efficiency determination, but also
from the estimation of Ntot(τ )).

To keep the expected numbers of signal and background events positive, the afore-
mentioned Gaussian distributions are truncated at zero because negative numbers
of expected events are unphysical. The truncation is implemented by rejecting the
Gaussian random numbers bi or si if they are negative and generating a new random
number. The truncated Gaussian distribution thereby becomes

g(x) = N
{

1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
∀x > 0

0 ∀x ≤ 0

where N is a normalisation factor to ensure 1 =
∞∫
0

dx g(x).

3.7 Expected sensitivity

In addition to the actual result – the observed exclusion limit – also the expected
exclusion limits are reported when publishing the outcome of a rare decay search. The
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3. BRANCHING FRACTION LIMITS IN ABSENCE OF A SIGNAL

Figure 3.3: a) For each branching fraction, percentiles of the ex-
pected CLs distribution indicate the boundaries of the range of a
given coverage. The blue dot indicates the median of the CLs dis-
tribution for the indicated branching fraction test hypothesis. The
yellow dots indicate the 16 % and 84 % percentiles of the CLs dis-
tribution for that test hypothesis. The CLs distribution is gener-
ated for the absence of a signal. b) The same, evaluated for several
branching fraction test hypotheses, the yellow lines can be read
horizontally for the 1σ range in which the exclusion level is ex-
pected. c) In addition to the 1σ coverage in yellow, the 2σ coverage
is shown in green, additionally. The black line is the observed CLs
value as a function of the test hypothesis’s branching fraction.

expected exclusion limit is based on a hypothesis which is assumed (expected) to be
true. Under this hypothesis, pseudo-experiments are generated as for the treatment
of the nuisance parameters. In the case of τ → µµµ, these are pseudo-experiments
containing only background events.

The observed CLs distribution from the pseudo-experiments is then interpreted as
an expectation for the outcome of the experiment, by determining percentiles of the
distribution. A centred 68 % coverage interval is the range between the percentiles
at 16 % and at 84 %. Therefore, the 1σ range in which CLs is expected, is the range
between these percentiles. This is illustrated in Fig. 3.3 a). In the illustrated example,
a 90 % confidence level is investigated, half of the pseudo-experiments had a CLs value
larger than 0.1, the expected CLs value (in blue) is thus 0.1. At the 1σ level, CLs is
expected to be within the two yellow markers.

Applying these definitions to a whole range of branching fraction hypotheses, the
upper limit on B(τ → µµµ) is at the 1σ level expected to be larger than the branching
fraction, for which CLs is expected to be larger than 1− c at the 1σ level. In Fig. 3.3 b)
this is where the lower yellow line intersects the 1− c line. The upper limit on B(τ →
µµµ) is furthermore expected to be smaller than the smallest branching fraction for
which CLs is expected to be smaller than 1−c at the 1σ level. This is where the upper
yellow line intersects the 1− c line. This means that the upper limit is expected to be
within the intersections of the yellow lines with the 1− c line.

The full information about the sensitivity and the outcome of the experiment is
given in figures like Fig. 3.3 c). Not only the expected 1σ range of CLs values as a
function of B(τ → µµµ) is shown as the yellow band, but also the observed values in
black, the 0σ expected range (the median of the expected CLs distribution) in blue,
and the 2σ expected range in green. In the example the exclusion limit turned out
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slightly worse than the expected exclusion limit, but still within the expected range.

3.8 Model dependence

A statement of the kind B(τ → µµµ) < X does not contain any model dependence.
Moreover, any of the models introduced in Sect. 1.2 predicts a value for B(τ → µµµ).
One would therefore expect that an upper limit on B(τ → µµµ) can immediately be
used to rule out models which predict a higher value. This assumption is not cor-
rect! The introduction of efficiencies in Eq. 3.2 is not model independent because the
efficiency typically depends on the dimuon invariant masses and appears integrated
over the Dalitz plot in Eq. 3.2. This integration can only be done assuming a Dalitz
distribution.

Correspondingly, the upper limit on B(τ → µµµ) determined in the present doc-
ument is only valid for New Physics models which predict a flat phase space distri-
bution of the decay products. This model will be referred to as the nominal analy-
sis. Exclusion limits for the Dalitz distributions introduced in Sect. 1.3 are given in
Chap. 13.
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4

τ production at LHCb

Proton collisions are governed by strong interaction processes. Most particles pro-
duced in proton-proton collisions are therefore hadrons. The production of τ leptons
is dominated by secondary processes. This chapter describes the processes relevant
for τ lepton production at LHCb.

Terminology Whenever a production mode is written as X → τ , it is assumed
that X is produced in the primary pp interaction vertex. E. g. the τ source Ds is not
meant to include Ds originating in b hadron decays. Particles produced in the primary
interaction vertex are called prompt particles. When both components, prompt and
non-prompt production, are addressed, this will be called the inclusive production.

Throughout this section charge conjugation and charge conservation are implied.
E. g. Ds → τντ is written instead of D+

s → τ+ντ and D−s → τ−ντ . The D± mesons will
still be written as D+, with a charge indicated, to avoid possible confusion with D0.

4.1 Heavy flavour τ production

Ds→ τντ production of τ leptons
The largest part of the τ leptons produced at LHCb comes from leptonic Ds decays.
Their production cross section has been measured by the LHCb collaboration to be
σ(Ds) = (197± 31) µb [129]. The only Ds → τX decay is the leptonic decay shown in
Fig. 4.1. The Ds→ τντ branching fraction is (5.43± 0.31) %, averaged by [80] from the
measurements by the BaBar and CLEO collaborations.

The expected τ production cross section for Ds → τ transitions within the LHCb
acceptance is thus

σ(pp→ τ +X)Ds
= (10.7± 1.8) µb.

D+→ τντ production of τ leptons
Similarly to the previous decay channel, τ leptons can be produced in D+ decays. The
decay D+→ τντ is unobserved, so far. The branching fraction is therefore computed.

The decay width for any charged pseudo-scalar meson to lepton decay is

Γ(P → `ν) =
G2
F

8π
f2
Pm

2
`MP

(
1−

m2
`

M2
P

)2

|Vq
1
q

2
|2, (4.1)
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W+

s/d

D+
s /D

+

c

ντ

τ+

Figure 4.1: Feynman diagram of the leptonic D+
s → τντ and D+ →

τντ decay.

where GF is the Fermi coupling constant, P denotes the pseudo-scalar meson, MP

its mass, fP the meson’s decay constant, m` the final state lepton mass, Vq
1
q

2
the

CKM matrix element for the meson’s quark flavours. Only the mass dependence,
Γ(P → `ν) ∝ m2

`(1−m2
`/M

2
P )2, is relevant, here.

The D+ → µνµ branching fraction is (3.82 ± 0.33) × 10−4 [130]. Using the above
expression to calculate the ratio of decay widths for decays to µ leptons to τ leptons,
it is found that

B(D+→ τντ) =
m2
τ

(
M2

D+ −m2
τ

)2

m2
µ

(
M2

D+ −m2
µ

)2 × B(D+→ µνµ) (4.2)

= (1.02± 0.09)× 10−3. (4.3)

This is in agreement with the exclusion limit B(D+ → τντ) < 1.2 × 10−3 reported in
[130].

The D+ production cross section has been measured by the LHCb collaboration
in [129]. It is (645± 74) µb. The expected τ production cross section, for τ from D+

decays is therefore

σ(pp→ τ +X)D+ = (0.66± 0.10) µb.

Charm cross section extrapolation
The charm production cross section has been measured in the phase space pT <
8 GeV/c. From the pT dependence of the production cross section in [129] it is as-
sumed that the cross section of charm mesons with pT > 8 GeV/c can be neglected.

Charm production cross section measurements have not been performed at LHCb
for
√
s = 8 TeV. Simulations of pp collisions using Pythia show that the charm cross

section scales with the centre-of-mass energy, i. e. σ(cc,8 TeV)/σ(cc,7 TeV) ≈ 8/7.
Using the uncertainties on the proton structure functions in the simulation to

assess the uncertainty of the scaling factor, it is found that the uncertainty on the
scaling factor is negligible with respect to the charm cross section measurement at
7 TeV.

b→ τX production of τ leptons
Branching fractions for b hadron decays into a τ lepton are not available for all b-
flavoured particle. There are, however, inclusive measurements of B(b → τ−ντX)
measured at LEP and averaged in [80] to (24.1± 2.3)× 10−3. This branching fraction
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4.1. Heavy flavour τ production

is valid for the present analysis, if the hadronisation fractions at LHC and LEP are
similar.

It has been found in [131] that the b hadronisation for light spectator mesons is
in agreement with the value reported in [80, page 1105]. The production of B+

c is
compatible with the exclusion limits on B+

c production at LEP. The measurements
of the b hadronisation to baryons, see [132] for the latest result, is different in LHC
collisions than in e+e− collisions at the Z resonance1. The effect is neglected here,
assuming B(Λb→ τX) ≈ B(B→ τX). See Appendix D for an approximate calculation
of the effect of the Λb hadronisation and the B+

c production.
The b production cross section in the LHCb acceptance has been measured by the

LHCb collaboration in [133]. It amounts to2

σ(bb) = (49± 8) µb.

The resulting expected τ cross section is

σ(pp→ τ +X)b = 2 · (1.2± 0.2) µb

where the factor 2 accounts for the pair production of b quarks.
At
√
s = 8 TeV the b production measurement from [134] is used3. The τ produc-

tion cross section from b decays is

σ(pp→ τ +X)b = (2.7± 0.4) µb.

The cross section measurements are accessing the phase space where the b hadron
decays into a J/ψ with transverse momentum range below 14 GeV/c. Given the pT
distributions in [133] and [134], it is concluded that the fraction of b hadrons not
within that transverse momentum range is insignificant.

b→ D±(s)→ τ± production

The b hadrons created in LHC collisions can not only directly decay into τ leptons,
but also decay into lighter hadrons which then decay into τ leptons. The only non-b
flavoured hadrons which are heavier than τ leptons are c flavoured hadrons. As-
suming baryon number conservation, the Λ+

c cannot decay into a τ due to the small
mass difference mΛ+

c
−mp < mτ . The relevant b → D contributions to the τ lepton

production are

B(b→ D+X) = (23.3± 1.7) %

B(b→ D−X) unobserved

B(b→ D+
sX) = (14.7± 2.1) %

B(b→ D−sX) = (10.1± 3.1) %.

1c. f. [2, Sect. 3.1.3]
2Using Eq. (12) and the factor α4π from [133].
3Dividing the 4π cross section in [134] by the factor α4π from that reference.
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With the above D+
(s) → τντ branching fraction the b → D±(s) → τ± branching fractions

are evaluated to

B(b→ τ+X)D+ = (2.38± 0.27)× 10−4

B(b→ τ−X)D− n/a

B(b→ τ+X)D+
s

= (8.0± 1.2)× 10−3

B(b→ τ−X)D−s
= (5.5± 1.7)× 10−3.

With the above b cross section the expected τ production through b→ c transitions is

σ(pp→ τ +X)b→D±,7 TeV = (23± 4) nb

σ(pp→ τ +X)b→D±s ,7 TeV = (1.32± 0.36) µb

σ(pp→ τ +X)b→D±,8 TeV = (26± 4) nb

σ(pp→ τ +X)b→D±s ,8 TeV = (1.48± 0.37) µb.

τ production from charmonium decays

Additionally to the decays of hadrons with a single c or b quark, τ leptons can also
occur in the decay of quarkonium resonances. The J/ψ → τ+τ− decay is not possible
due to energy conservation. The lightest quarkonium which can decay into two τ
leptons is the ψ(2S) with B(ψ(2S)→ τ+τ−) = (3.1± 0.4)× 10−3, [135].

The production cross section at
√
s = 7 TeV is (1.44± 0.32) µb for ψ(2S) produced

in the primary interaction, and (0.25± 0.02) µb for b→ ψ(2S) production, as reported
by LHCb in [136]. The resulting expected τ cross section is, with a factor 2 to take the
production of 2 τ per ψ(2S) into account,

σ(pp→ τX)ψ(2S) = 2 · (4.5± 1.1) nb

σ(pp→ τX)b → ψ(2S) = 2 · (0.78± 0.12) nb.

No cross section measurement at
√
s = 8 TeV is known to the author, given the

insignificant contribution of τ production in charmonium decays with respect to the
D production, no attempts is made to obtain an estimate for 8 TeV collision energy.

τ production from bottomonium decays

The Υ(nS) → ττ branching fractions are listed in [80], but the ratio of branching
fractions B(Υ→ ττ )/B(Υ→ µµ) is measured at higher accuracy and is more suitable
for the present study, given that the Υ production cross section at LHCb is measured
in Υ→ µµ decay.

The product of the branching fraction Υ → µµ times the production cross section
has been measured at LHCb at 7 TeV [137] and 8 TeV [134].

The cross section measurements and branching fractions are summarised in Tab. 4.1.
Again, the LHCb cross section measurements are limited to pT < 15 GeV/c. The re-
sulting expected τ cross sections are listed in Tabs. 4.2 and 4.3, where a factor 2 is
taken into account for the number of τ in the final state.
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Table 4.1: σ(pp→ ττX)Υ contributions.

resonance
B(Υ→ττ )

B(Υ→µµ)
σ(pp→ΥX)
×B(Υ→µµ)

√
s = 7 TeV

Υ(1S) 1.008 ± 0.023 (2.29± 0.30) nb

Υ(2S) 1.04 ± 0.06 (0.56± 0.07) nb

Υ(3S) 1.05 ± 0.09 (0.28± 0.04) nb
√
s = 8 TeV

Υ(1S) 1.008 ± 0.023 (3.24± 0.23) nb

Υ(2S) 1.04 ± 0.06 (0.76± 0.05) nb

Υ(3S) 1.05 ± 0.09 (0.369± 0.027) nb

γ∗/Z

p

p

τ+

τ−

Figure 4.2: Drell-Yan production of τ leptons.

4.2 Electroweak τ production

Additionally to the τ production in hadron decays, there is a contribution from virtual
photons, weak gauge bosons, or Higgs decays. The latter is ignored in this work be-
cause of its rather small contribution, the others are addressed in this section. These,
so called, electro-weak processes are usually measured at large lepton momenta, for
the present analysis, the low momentum regime is important as well, therefore cor-
rections to the measured values are made to assess the τ production cross section.

Drell-Yan processes

Virtual photons and Z bosons can be produced in proton-proton collisions through qq
annihilation. The boson can then decay into a lepton pair (Drell-Yan process), shown
in Fig. 4.2.

The Drell-Yan cross section of µ pairs has been measured by LHCb [138]. The
cross section in the LHCb acceptance is (0.64± 0.12) nb for dimuon invariant masses
between 5 GeV/c2 and 40 GeV/c2 with transverse muon momenta > 1 GeV/c. For
dimuon invariant masses between 40 GeV/c2 and 120 GeV/c2 it amounts to (24± 6) pb
with transverse muon momenta > 3 GeV/c.

The different rest masses of µ leptons and τ leptons needs to be taken into account
and the following effects are estimated to extrapolate to the phase space accessible
for the present analysis. Leptons with a transverse momentum below 1 GeV/c are rel-
evant, Drell-Yan events with only one lepton in the acceptance need to be considered,
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the invariant mass ranges above 120 GeV/c2 and below 5 GeV/c2 contain additional
leptons.

Simulated Drell-Yan processes are used which have been generated as pp →
γ∗/Z + X → µµ + X events with mµµ > 2 GeV/c2; at least one muon in the approxi-
mate LHCb acceptance, 2 < ηµ < 5; and at least one of the muons with a transverse
momentum larger than 1 GeV/c. For the first part of the following corrections, it is
additionally required that the second muon is within the approximate LHCb accep-
tance.

Close to the τ threshold a significant correction to the m`` distribution of the sim-
ulated processes is necessary. Under the assumption that the annihilating quarks
are massless and that QCD corrections to the qqγ∗ vertex are identical for the µ
and τ final state, the mass dependence of the Drell-Yan process is described by the
QED cross section σ(e+e− → ``). In the limit of small e and µ masses, the τ mass
dependence of the tree level QED cross section is given by a phase space factor, a
spinor-structure term, and the Sommerfeld-Sakharov factor, Fc. With the Mandel-
stam variable s = m2

``
, the correction is4

R :=
σ(e+e−→ τ+τ−)

σ(e+e−→ µ+µ−)

R = R0 ·Fc + higher order corrections

R0 =
√

1− 4m2
τ /s ·

(
1−

2m2
τ

s

)
,

where the first factor of R0 is the available phase factor, the second is due to the
spinor structure of the QED matrix element; mτ is the τ rest mass and Fc is given by

Fc =
πα/

√
1− 4m2

τ /s

1− exp
(
−πα/

√
1− 4m2

τ /s
) .

It parametrises the Coulomb attraction between the τ leptons. Higher order correc-
tions are not considered here. R is used to weight the simulated events. To correctly
assess the statistical power of the weighted sample, the weights are normalised with

wi = weff ·Ri

weff :=

∑
i

Ri∑
i

R2
i

,

where the sum ranges over all simulated events. The resulting invariant ditau mass
distribution is shown in Fig. 4.3. Averaging R over the simulated events with
5 GeV/c2 < m`` < 120 GeV/c2 a suppression of 0.776± 0.001 is expected.

The transverse momentum distribution of simulated Drell-Yan processes is shown
in Fig. 4.4. In Fig. 4.4 (b) is visible that the requirement that one of the leptons
must have a transverse momentum > 1 GeV/c in the simulation does not introduce a
discontinuity of the pT distribution. It is concluded that the phase space which is not
simulated is negligible for τ leptons in the final state.

4The cross section has been computed by several authors, the formula here is taken from [139].
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Figure 4.3: Simulated invariant ditau mass distribution in the
wide mass range including the Z resonance and a zoom into the
threshold region.

The measured Drell-Yan cross section is valid for processes where both leptons
have a transverse momentum larger than 1 GeV/c. Averaged over the full spectrum,
the probability that both τ are in the measured phase space, pT > 1 GeV/c for m`` <

40 GeV/c2 or pT > 5 GeV/c for m`` > 40 GeV/c2, is (96.05± 0.11) %.
Using the simulation, it is found that (22.25±0.24) % of all γ∗/Z→ τ+τ− processes

are not within the measured invariant mass range, from 5 GeV/c2 to 120 GeV/c2.
The reported Drell-Yan cross section is thus changed to

σ(pp→ γ∗/Z +X → τ+τ− +X) =
0.776 ·σmeasured

0.9605 · 0.7775
= (0.74± 0.12) nb

Since there are two τ leptons produced in each Drell-Yan process, the cross section
has to be multiplied by two:

σ(τ from Drell-Yan) = 2× σ(Drell-Yan).

This, however, is still not fully valid because the Drell-Yan cross section only considers
Drell-Yan processes with both leptons in the detector acceptance.

The effect from Drell-Yan events with only one lepton in the η acceptance is esti-
mated using the simulated Drell-Yan events, removing the requirement of the second
muon to be within the acceptance. There are about as many events where one lepton
is in the LHCb acceptance as events where both leptons are in the LHCb acceptance.

σ(one Drell-Yan τ in acceptance) ≈ σ(two Drell-Yan τ in acceptance)

The single τ Drell-Yan cross section is therefore assumed to be not larger than three
times the above value because of

σ(one or two Drell-Yan τ in acceptance) = σ(two Drell-Yan τ in acceptance)︸ ︷︷ ︸
contributes two leptons

+ σ(one Drell-Yan τ in acceptance)︸ ︷︷ ︸
contributes one leptons

.
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Figure 4.4: Lepton transverse momentum distribution of γ∗/Z →
τ+τ− processes. The larger transverse momentum on the abscissa,
the smaller on the ordinate. In (b) the one-dimensional distribution
of the larger transverse lepton momentum is overlaid, in (c) the
10 % and 2 % percentiles are overlaid. I. e. for each high-pT value,
the line indicates below which low-pT value 10 % (2 %) of the events
are events are.
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Figure 4.5: Transverse τ momentum distribution for simulated
W → τντ decays close to edge of the simulated phase space at
pT > 4 GeV/c. The small amount of entries below the threshold
is due to the presence of multiple W → τντ decays in an event. One
is sufficient to fulfil the simulation requirement.

The expected τ cross section from Drell-Yan processes is then

σ(pp→ τ +X)Drell-Yan = (2.2± 0.4) nb.

W → τντ

The W cross section is in the LHCb acceptance is reported in [140, 141]. The com-
bined W+ and W− cross section is (1.51± 0.05) nb (Ref. [141] has not been available
at the time of writing, the values are taken from the corresponding internal documen-
tation in [142]) for W → `ν decays with a transverse lepton momentum larger than
20 GeV/c.

To extrapolate the result into the low transverse momentum region, a simulated
W → τντ sample is used, which serves for background studies in [142]. The sample
is generated for transverse τ momenta larger than 4 GeV/c. The fraction of τ with
a transverse momentum larger than 20 GeV/c in the simulated sample is 81.2 %, the
W → τντ cross section thus increases to (1.86± 0.06) nb for transverse lepton mo-
menta larger than 4 GeV/c.

The fraction of τ with a transverse momentum smaller than 4 GeV/c is estimated
as follows. The lepton pT distribution is assumed to be proportional to pT for pT < 20 GeV/c,
judged by eye from Fig. 4.5. Under this assumption, that the proportionality is a
smooth continuation until 0, the amount of τ with pT < 4 GeV/c is a third of those
with 4 GeV/c < pT < 8 GeV/c. This rule-of-thumb calculation is considered to be suf-
ficiently correct for the present work because it turns out that the contribution of τ
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4. τ PRODUCTION AT LHCB

from W decays is over a factor 10 000 smaller than the total τ cross section. About
2.5 % of all simulated W decays have transverse τ momenta between 4 GeV/c and
8 GeV/c. The cross section is therefore increased by another 0.84 % to

σ(pp→ τ +X)W = (1.88± 0.06) nb.

4.3 τ polarisation

A possible polarisation of τ leptons can introduce a model dependence of the anal-
ysis as explained in Sect. 3.8. The polarisation is suggested in [36] to discriminate
between New Physics scenarios once τ → µµµ is observed. This has been suggested
for an analysis at CMS. In that analysis, the analysed τ leptons originate from gauge
boson decays.

In the present analysis, τ leptons originating from Ds decays are the major con-
tribution. Since Ds is a pseudo-scalar particle, the distribution of τ is isotropic in the
Ds rest frame and the spin orientation is along (against) the τ+ (τ−) flight direction
in the Ds rest frame. The τ spin projection on any direction in the Ds rest frame is
zero when averaging over the decay distribution. Boosting into the lab frame does not
alter the average polarisation. The τ leptons selected at LHCb are thus unpolarised,
assuming that the detection efficiency does not depend on the τ flight direction in the
Ds rest frame.

4.4 Summary

The production of τ leptons at LHCb is dominated by Ds → τντ decays. The second
largest contribution are b → τX decays. The smallest considerable contribution are
from D+→ τντ decays, which are not observed yet. Its branching fraction is calculated
considering phase space suppression and helicity enhancement with respect to D+→
µνµ.

Only the τ production in Ds and D+ decays – both prompt and from b decays – and
production b→ τ decays are considered in the remainder of this analysis.

The production cross sections depend on the collision’s centre-of-mass energy. For
collisions at

√
s = 7 TeV production cross section measurements of heavy flavour

hadrons is used to determine the τ production. Simulated collisions are used to ex-
trapolate the charm production cross section to

√
s = 8 TeV.

An overview over the τ production channels at LHCb is given in Tabs. 4.2 and 4.3
for
√
s = 7 TeV and

√
s = 8 TeV respectively. The majority, from heavy flavour modes,

contributes unpolarised τ leptons.
The relative fractions of production channels

fhτ :=
σ(pp→ h(τX)Y )

σ(pp→ τX)

will be abbreviated as production fractions. If h is a charm meson, only prompt charm
mesons are referred to. Production of τ leptons from non-prompt charm mesons will
be written as f

b→Xc

τ . If both, prompt and non-prompt charm mesons are meant, the
addition “incl.” is added, e. g. f incl.Ds

τ .
The study has originally been carried out by Jonathan Harrison [38, 143]. With

respect to that reference, the contributions from ψ(2S), Υ, Z, and W decays have been
revised and the Drell-Yan process has been added to the consideration.
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4.4. Summary

Table 4.2: Summarised τ production cross sections at the LHC for
2 < y < 4.5 of the parent hadron (heavy flavour mode) or the lepton
(electroweak modes), at

√
s = 7 TeV. The cross section uncertain-

ties are partially correlated. The correlation is considered in the
sums of cross sections. The modes of the lower block (given in nb)
are neglected in the remainder of this work. The sum of cross sec-
tions of the channels considered in this analysis (first sum) and the
sum of cross sections of all channels (last row) are indeed identi-
cal within the given rounding precision. The production fractions
and their uncertainties are computed considering the correlation
among the cross section uncertainties. The production fractions fτ
deviate from those in Appendix E, because the calculation there
is performed within the simulated detector acceptance, while here
2 < y < 4.5 is referred to. The computation is executed in the same
computer algebra program by setting α4π · εsim to unity.

τ source cross section fτ

Ds (10.7± 1.8) µb 0.710 ± 0.037

D+ (0.66± 0.10) µb 0.044 ± 0.006

b (2.4± 0.4) µb 0.157 ± 0.024

b → Ds (1.32± 0.36) µb 0.088 ± 0.016

b → D+ (0.023± 0.004) µb 0.00155 ± 0.00026∑
until here (15.1± 2.6) µb ≡ 1

ψ(2S) (8.9± 2.3) nb

b → ψ(2S) (1.55± 0.24) nb

Υ(1S) (4.62± 0.61) nb

Υ(2S) (1.16± 0.16) nb

Υ(3S) (0.59± 0.10) nb

W (1.88± 0.06) nb

γ∗/Z (2.2± 0.4) nb∑
all channels (15.1± 2.6) µb
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4. τ PRODUCTION AT LHCB

Table 4.3: Same as Tab. 4.2, except for the collision energy of
√
s =

8 TeV. The entry n/a indicates that the cross section has not been
evaluated at 8 TeV.

τ source cross section fτ

Ds (12.2± 2.1) µb 0.713 ± 0.035

D+ (0.75± 0.11) µb 0.044 ± 0.006

b (2.7± 0.4) µb 0.155 ± 0.023

b → Ds (1.48± 0.37) µb 0.087 ± 0.016

b → D+ (0.026± 0.004) µb 0.00153 ± 0.00026∑
until here (17.2± 2.9) µb ≡ 1

ψ(2S) n/a

b → ψ(2S) n/a

Υ(1S) (6.53± 0.49) nb

Υ(2S) (1.58± 0.14) nb

Υ(3S) (0.77± 0.09) nb

W n/a

γ∗/Z n/a∑
all evaluated channels (17.2± 2.9) µb
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5

Analysis strategy

Following the introduction to set a limit on a decay’s branching fraction, this chapter
summarises how the search for B(τ → µµµ) is performed at LHCb. While the statis-
tics chapter, Chap. 3, suggests that only a τ → µµµ signature must be searched for,
a few other aspects need to be considered when designing the analysis. These are
the normalisation, the calibration of the event classification, the analysis optimisa-
tion, and the treatment of the uncertainties of the τ production. These aspects are
explained in this chapter.

5.1 The method of relative normalisation

Any of the formulae to determine a branching fraction, Eq. 3.1 or Eq. 3.4, involve
the number of τ leptons which eventually decayed Ntot(τ ). Often, it is undesirable to
use the production cross section from Sect. 4 to evaluated Ntot(τ ) since it has a large
uncertainty and would involve a precise determination of the absolute reconstruction
efficiency in Eq. 3.3. A normalisation relative to an observable decay signature can
often be done in a more accurate way.

A commonly used alternative is the measurement of a ratio of branching fractions

B(τ → µµµ)

B(τ → πππντ)
.

Thereby, the normalisation is given by the number of observed decays into a different
final state, here τ → πππντ . The decay D+ → ππππ0 is however indistinguishable
from τ → πππντ and occurs three orders of magnitude more often. It is shown in [144]
that the normalisation of a τ branching fraction at LHCb cannot be done in this way.
In a similar manner, there is a D+→ hh′h′′π0 decay for every other τ → hh′h′′ντ decay.

Given that τ leptons are produced in heavy flavoured hadron decays the number
of produced τ leptons can also be determined from the number of heavy hadrons
produced. For the dominant Ds→ τ contribution this reads

Ntot(τ from Ds decays) = B(Ds→ τντ)×Ntot(Ds).

Measuring the Ds production by means of a Ds decay mode with a known branching
fraction, one arrives at

Ntot(τ from Ds decays)

=
B(Ds→ τντ)

B(Ds→ φπ)× B(φ→ µµ)
×Ntot(Ds→ φ(µµ)π).
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The fraction of τ from the dominant contribution f incl.Ds
τ = N(τ from Ds)/N(τ ) is given

in Sect. 4.4 leading to

Ntot(τ )

= f
incl.Ds
τ

B(Ds→ τντ)

B(Ds→ φπ)× B(φ→ µµ)
×Ntot(Ds→ φ(µµ)π). (5.1)

Using ετ for the efficiency to observe a τ → µµµ decay and εDs
for the efficiency to

observe a Ds→ φ(µµ)π decay, the normalisation factor is given as

α−1 =
ετ

εDs

(
f

incl.Ds
τ

)−1 B(Ds→ τντ)

B(Ds→ φπ)× B(φ→ µµ)
×Nobs(Ds→ φ(µµ)π). (5.2)

For this analysis therefore two decays are reconstructed. The decay sought for
τ → µµµ and the so-called normalisation channel Ds→ φ(µµ)π.

It also plays a crucial role that the signal channel (τ → µµµ) and the normalisation
channel (Ds → φ(µµ)π), c. f. Chap. 10. Namely, another advantage of the relative
normalisation is that instead of an efficiency, a ratio of efficiencies ετ /εDs

is used. A
single efficiency would be determined with large systematic uncertainty, these are
correlated uncertainties for the numerator and denominator of an efficiency ratio and
thus cancel.

5.2 Calibratable event classification

As motivated in Sect. 3.3, the sensitivity of the search for τ → µµµ significantly
depends on how well τ → µµµ decays can be discriminated from background events.
These assign a number M to each observed event. M is designed to be large for
τ → µµµ decays and small for background events. Using only events with M > x
instead of using all observed events, reduces the efficiency

ε(M > x) < ε(no requirement onM)

but is more effective in removing background events

ξ(M > x) < ε(M > x).

The efficiency must be known accurately because it enters linearly in the normal-
isation factor1. Not to rely on simulated events, the selection efficiencies for multi-
variate classifiers must be determined using data. If all information from the detector
(i. e. information from the particle identification system) were used in a multivariate
classifier, the efficiency determination would require a real X → µµµ decay. None
of the decays in Tab. 8.1 can be used because X → µµµ must not include additional
neutrinos in the final state. Two separate classifiers are used instead. These are:

1NB: The classification is not part of the selection, thus not applied to the normalisation channel
and the above argument for efficiency ratios does not hold. Moreover, a priori it is not clear whether an
application of the classifier to Ds → φ(µµ)π is sensible. As explained in the the remainder of this section,
the layout of the classification is constrained by the demand to be meaningfully applicable to Ds → φ(µµ)π
decays
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Three body decay classification (M3body): This classifier is designed to identify
displaced three body decays. No information from the particle identification system
appears. Both, τ → µµµ and the normalisation channel Ds→ φπ, are such three body
decays. Therefore, at first order the efficiency ετ (M3body > x) can be observed in the
M3body distribution on data:

ετ (M3body > x) ≈ εDs
(M3body > x)

Chapter 9 is dedicated to the development ofM3body. A more accurate calibration
is given in Chap. 10.

Particle identification (MPID): One classifier is designed to separate muon tracks
from other tracks. Corresponding to the application of a selection criterion ofMPID >
x for all three tracks, the classification of τ → µµµ candidates is done by means of the
smallest of the three response values:

MPID(τ → µ1µ2µ3) := min
i

(MPID(µi)) .

In data, the MPID distribution can be observed for single muon tracks. The cali-
bration, as developed in [145], is described in Sect. 10.3.
MPID has been developed by the charged particle identification working group in

LHCb, called ProbNNmu in [85].

A event classification is done in both of these classifiers, i. e. the response range is
split into bins as motivated in Sect. 3.4.

5.3 Expected number of background events

To establish whether a signal is seen or not, not only the number of candidates must
be known but also the number of expected candidates, in particular expected back-
ground events given that only these are expected, as explained in Chap. 3. A common
way of determining the number of expected background events in a data sample is an
analysis of the invariant mass spectrum beyond the range in which a signal is sought
for.

An example of an invariant mass distribution is shown in Fig. 5.1. Background
candidates in this example are exponentially distributed, the signal is peaked. Once
a model for the distribution of background events as a function of the invariant mass
is known, the background distribution can be fitted in a range where no signal events
are expected and the distribution is extrapolated into the region where the signal is
sought for, as indicated by the black line. This extrapolation gives an estimate for the
number of background events in the signal region.

5.4 Unbiased analysis optimisation

The multivariate classifiers, as well as their usage must be optimised in an unbi-
assing way. This means that any decision or training process must be statistically
independent from the actual observation of the experiment, the estimate of the num-
ber of expected background events, and the signal efficiency determination.

The following counter example shall illustrate how an optimisation can bias the
analysis’ outcome.
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Figure 5.1: Illustration of the invariant mass spectrum. The hypo-
thetical distribution for the presence of a signal is shown in blue,
the distribution for the background hypothesis in black. The inner-
most region is the signal box. The distribution in the outer regions
is used to interpolate the background contribution in the signal
box. The narrow regions are used for the analysis optimisation.

Assume, there was a choice between using one of two different classifiers,MA and
MB , asM3body. Assume as well that these have the same true efficiency for the same
true background efficiency. Mathematically speaking2

ξ(MA > x) = ξ(MB > x).

These true background efficiencies are unknown and can only be estimated to
finite precision using the event count in the sidebands. If this is done, then this deci-
sion must be the consequence of a statistical fluctuation. Obviously, the classifier for
which the background fluctuates downward3 would be chosen. As a consequence, the
estimated number of expected background events is biased to small values since the
fluctuation must be in the downward direction with respect to an unbiased classifier
choice – the sensitivity is then estimated to be better than it actually is. Further-
more, the number of observed events would be larger than its expectation, even in
the absence of a signal. The optimisation process thus can cause the observation of
an excess of events.

Other, more complicated, examples can be constructed in which the sensitivity is
biased, but where no difference between the expected and observed numbers of events
in the signal region is created.

Blind rare decay searches

A commonly used method of avoiding biases in an analysis is performing a blind
analysis as reviewed in e. g. [146].

2Without loss of generality, it is assumed that ε(MA > x) = ε(MB > x) = 1 − x, which can be
achieved with a probability integral transform.

3or more downward than for the other or less upward than for the other
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5.5. Signal simulation

In rare decay searches, blinding is done by defining the entire analysis prior to
evaluating the part of the data in which a signal is sought for, this part is also re-
ferred to as signal box. In the case of τ → µµµ, the candidates with an invariant
mass between mτ − 20 MeV/c2 and mτ + 20 MeV/c2 were removed from the datasets
for the development of the analysis strategy and the classifier optimisation4. Once
the analysis is defined, the signal box is analysed. This means that the number of
candidates is evaluated and can be compared to the expectation, i. e. Qobs and CLs are
computed.

The problem arising from the classifier choice in the above example is not solved
by performing a blind analysis. As a remedy, a dedicated optimisation data set is used
as explained in the following section.

Dedicated optimisation data
Experiences from early versions of the search for τ → µµµ at LHCb, [147], showed
that decisions about the analysis strategy involved knowledge about the background
in the data. E. g. the bin boundaries ofM3body andMPID have to be optimised. Claims
were that O(1) background event in the sensitive analysis bins should be aimed for.
Simulated background events corresponded to less than 10 pb−1 while on data 1 fb−1

was to be studied. This implies that the bin boundaries had to be optimised in re-
sponse ranges of less than one simulated background event.

The suggested remedy was using background events from data, which were nei-
ther part of the signal box, nor used to determine the estimated number of expected
background events to the CLs method. The signal box ranges only frommτ−20 MeV/c2
to mτ +20 MeV/c2, which leaves the range of candidates with a mass difference to the
τ mass between 20 MeV/c2 and 30 MeV/c2 for other studies. This range is called inner
sideband.

An example invariant mass distribution is shown in Fig. 5.1. The invariant mass
distribution for the presence of a signal is shown in blue; the invariant mass distri-
bution for the absence of a signal is shown in black. The outer region, which is used
to estimate the number of background events in the signal box is identical for both
hypotheses. The narrow regions are not suited as part of the signal box because the
fraction of signal decays would be insignificant while the amount of background is
not insignificant. The narrow regions cannot be used for the background description
either because in the presence of a signal, the background prediction would be biased
to higher values. These events are used for optimisations of the analysis strategy
assuming they are all background events.

This strategy leaves one corner case: What if the number of real τ → µµµ decays
in the inner sidebands is high enough to deteriorate the optimisation? In this case
the analysis would be sub-optimal, i. e. the sensitivity of the analysis would lower
than an optimal sensitivity could be. If, however, B(τ → µµµ) was large enough to
contribute a significant number of true τ → µµµ decays to the inner sidebands, then
τ → µµµ will even be discovered with a sub-optimal analysis.

5.5 Signal simulation

At several places, the analysis requires simulated events with τ → µµµ decays.
Events are simulated for the five most abundant production mechanisms, as listed

4Here, mτ is the mass of the τ lepton from [80]
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in Tabs. 4.2 and 4.3. The numbers of simulated events for each production mode are
hereby chosen in the proportions as in the last column of these tables.

For technical reasons, the simulation only generates events where the final τ de-
cay products are within an approximate detector acceptance5. Furthermore only τ
leptons with a minimum momentum, p > 2.5 GeV/c, and minimum transverse mo-
mentum, pT > 250 MeV/c, are simulated. The probability for a τ → µµµ decay to
fulfil these criteria has been determined by [38, 11], it depends on the production
channel and the collision energy. For technical reasons, these probabilities are calcu-
lated with respect to τ produced anywhere in the full phase space and assumes the
η distribution of the τ as simulated by the standard LHCb simulation. These proba-
bilities are called simulation efficiencies, εSIM here. The cross sections from Tabs. 4.2
and 4.3 are thus extrapolated to the full phase space before the efficiency factors
are applied, see Tab. E.3. Once the cross sections for the simulated phase space are
known, the final fractions in which the simulated τ → µµµ decays must be composed
from the production channels can be computed.

The extrapolation to the full phase space, as well as the determination of the
simulation efficiency involve strong assumptions on the heavy flavour production far
outside of the LHCb acceptance, e. g. the extrapolation of the meson production to the
full phase space requires the knowledge of the production at very large rapidities:

ε(meson in LHCb acceptance) =

ε(meson in LHCb acceptance | meson in y < 6)︸ ︷︷ ︸
well simulated

· ε(meson in y < 6)︸ ︷︷ ︸
not trivial

,

and correspondingly for the simulation efficiency for a τ → µµµ decay where the τ
originates in a meson decay:

ε(τ → µµµ decay in LHCb acceptance) =

ε(τ → µµµ decay in LHCb acceptance | parent meson in y < 6)

· ε(parent meson in y < 6).

Consequently, extrapolating to the full phase space and determining the acceptance
in simulated events is solely sensitive to the ratio of the former factors, while the
non-trivial second factors cancel:

σ(τ → µµµ in acceptance)

∝ ε(τ → µµµ decay in LHCb acceptance | parent meson in y < 6)

ε(meson in LHCb acceptance | meson in y < 6)

× N(Ds)︸ ︷︷ ︸
yield in cross section measurement

.

Physically relevant is, that for each collision energy a nominal data sample is sim-
ulated with the expected τ production mixture. Furthermore, the covariance matrix
of the mixing fractions is diagonalised to determine five uncorrelated difference vec-
tors ~δf = (δf

Ds
τ , δf

D+

τ , δf
b
τ , δf

b→Ds
τ , δf

b→D+

τ ). For each of these difference vectors, a τ
mixture with mixing fractions ~f ± ~δf corresponding to 1 σ deviations are determined,
too. These are used to determine the influence of the systematic uncertainty of the
analysis due to the knowledge of the τ production.

5A generous safety factor ensures that a considerable part of the simulated τ → µµµ decays is not fully
in the detector acceptance, but no decay which is in the detector acceptance is rejected in the simulation.
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5.6 Strategy

Events recorded by LHCb are analysed if they pass a selection, which is described in
Chap. 6. The selection has been developed by Matt Jaffe [148] as a CERN Summer
Student project in 2011 using O(50 nb−1) of data as background and simulated τ →
µµµ decays as signal description. The simulated events used in that study are not
used in the present analysis. The data is considered too small to introduce a bias.
The selection mainly serves to reduce the data recorded by LHCb to a manageable
amount while being efficient for real τ → µµµ decays, i. e. the major purpose of the
selection is compliance with the computing resources.

Candidates passing the selection are classified using multivariate classifiers as
outlined in Sect. 5.2. M3body is trained using simulated τ → µµµ decays and simu-
lated background events. The development is explained in detail in Chap. 9.

The expected number of background events in the signal box is estimated fit-
ting the invariant mass spectrum of candidates with an invariant mass m > mτ +
30 MeV/c2 or m < mτ − 30 MeV/c2 and interpolating the fit result to the signal box.
The fit is described in Sect. 12.1.

The CLs method, described in Chap. 3, is used to convert the agreement of the
number of observed events with the expected background into a upper limit on the
branching fraction B(τ → µµµ).

To avoid biasses which are introduced by the design process of the analysis, three
blinding steps are done:

1. Blinding of the calibration data: The Ds→ φ(µµ)π decays in data are only anal-
ysed once the design ofM3body is finalised.

2. Blinding of the side-bands of τ → µµµ: To avoid a bias of the estimated back-
ground level in the signal region, the side-bands of τ → µµµ are only analysed
once design of theM3body classifier and its binning are finalised.

3. Blinding of the signal region: The τ → µµµ signal region is only analysed once
the full analysis is finalised and an expected limit has been computed.

The analysis is not strictly blind, in that sense that the data has already been anal-
ysed in [147, 4, 5].
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6

Event selection

6.1 Signal properties

For the development of the selection criteria, the qualitative physics properties of a
τ → µµµ are relevant. These are briefly described here. Variables quantifying these
properties are described in Sect. 6.2 if they are used in the signal selection and in
Sect. 9.4 if they are considered as input forM3body, while avoiding double listing.

The decay topology for a τ → µµµ decay from the most relevant production mech-
anism (τ from Ds) is shown in Fig. 6.1.

Displacement: Due to the lifetime of the τ lepton and due to the kinematics of its
production, τ leptons fly a short distance from their production point before they
decay. The production point itself is the decay vertex of a heavy flavour hadron,
which also flies a short distance from its production vertex (the primary inter-
action point or again a heavy flavour hadron decay). Therefore τ → µµµ vertex
is measurably displaced from the primary interaction point. The muon tracks,
extrapolated from the first measurement towards the interaction region, conse-
quently pass through the τ decay vertex and thus have a measurable impact
parameter with respect to the primary interaction point.

Figure 6.1: Decay topology of a τ → µµµ, where the τ is produced
in a leptonic Ds decay. Figure taken from [149].
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6. EVENT SELECTION

Isolation: As a consequence of the displacement, there are only three charged par-
ticles coming from the point where a τ decays. For the main production modes,
the inclusive Ds→ τντ as well as the inclusive D+→ τντ , there is also no charged
particle produced in the production point, except for the τ itself. Consequently
it is not expected that a charged particle is reconstructed in the vicinity of the
τ → µµµ decay vertex. This property is called isolation. An isolation of τ → µµµ
candidates is not required in the event selection, it is part of the event classifi-
cation in Chap. 9.

Pointing: The difference between the Ds mass and the τ mass is small, 1969 MeV/c2
and 1778 MeV/c2 [80]. In the Ds rest frame, after a Ds → τντ decay, the τ will
therefore be almost at rest. Consequently, a τ lepton being produced in the decay
of a boosted Ds meson, will follow the Ds flight direction in the lab system. The
sum of the three muon momenta of a τ → µµµ decay will therefore be parallel
to the straight connection of the primary interaction with the τ → µµµ decay
vertex if the τ is produced in the decay of a prompt Ds.

Particle identification: Muons interact differently with matter than other parti-
cles. All three tracks of a τ → µµµ decay are therefore identified as muons by
the particle identification system.

Invariant mass: Due to energy conservation, the invariant mass of the three muons
in a τ → µµµ decay is equal to the τ mass. This property can not be used
for either the event selection or the event classification because the invariant
mass spectrum is used to determine the number of background events in the
signal box, as mentioned in Sect. 5.3. The invariant mass of the three muons is
computed with a vertex fit which assumes a common origin vertex of the tracks.

Reconstruction quality: The tracks from particles originating in a common vertex
should fit to a common reconstructed vertex. The tracks of particles from differ-
ent vertices do not necessarily lead to a good fit quality when fitting a common
vertex. Similarly, the track fit of the track of a real particle should have a good
quality, while fake tracks can have bad fit qualities.

6.2 Selection variables

The above properties are quantified by means of the following variables. Unless oth-
erwise specified, the requirement is applied to the τ → µµµ reconstruction as well
as the Ds → φ(µµ)π reconstruction. Three distributions are shown for each selection
variable

• background candidates from data sidebands which pass the selection (red)

• simulated signal candidates (blue)

• simulated signal candidates which pass the selection (green).

Displacement variables
Track impact parameter χ2: The compatibility of a track’s origin in the pp inter-

action point is measured by the difference of the primary interaction vertex fit
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Figure 6.2: Distribution of displacement selection variables. Red
shows the background distribution observed on data sidebands,
blue shows all reconstructed simulated τ → µµµ decays, green
shows those simulated decays which fulfil all selection require-
ments. The latter two are correctly scaled with respect to each
other.
The background processes passing the selection are similar to the
signal. Prompt background candidates, which are rejected by the
selection, are not visible.

with and without using the track in the vertex fit, abbreviated χ2
IP. The event

selection requires
χ2

IP(tracks) > 9.

Reconstructed decay time Under the assumption that a candidate originates from
the primary interaction vertex, the decay time in the particle’s rest frame is com-
puted from the reconstructed momentum and the distance between the primary
vertex and the decay vertex.

τ > 0.3336 ps

Both variables are shown in Fig. 6.2.

Pointing
τ impact parameter χ2: The compatibility of the τ → µµµ candidate to origin in

the primary interaction vertex can be measured as well by including the τ can-
didate in the fit of the primary vertex. The change of the vertex fit’s χ2 under
inclusion of the τ candidate is again abbreviated χ2

IP. If the reconstructed τ
trajectory is incompatible with originating from the primary interaction point,
then the primary vertex fit with the τ flight direction as fit input has a large χ2.
Candidates with “good pointing” therefore have small χ2

IP and are selected by

χ2
IP(τ ) < 225.

Direction angle: The angle between the reconstructed τ momentum and a straight
line from the reconstructed primary vertex to the reconstructed decay vertex is
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Figure 6.3: Distribution of pointing selection variables. Red shows
the background distribution observed on data sidebands, blue
shows all reconstructed simulated τ → µµµ decays, green shows
those simulated decays which fulfil all selection requirements. The
latter two are correctly scaled with respect to each other.
In both variables, the signal is much better “pointing”, i. e. the sig-
nal is concentrated at small τ χ2

IP and large cosϕ, while the back-
ground has a wide tail where the selection requirement is visible,
in contrast to the green signal distribution.

another quantification of the pointing property. Candidates are required to have

cosϕ > 0.99.

Both variables are shown in Fig. 6.3.

Particle Identification
The standard muon pre-selection is applied for all muon tracks as described in Sect. 2.4.

Reconstruction quality
Track fit χ2/ndf: A track fit is considered good when its reduced fit χ2 is small,

χ2/ndf < 3.

Fake track probability: To suppress fake tracks further, only tracks with a low
fake track probability are considered,

Mfake track < 0.3.

Double reconstruction veto: Whenever a muon is reconstructed as two tracks, the
invariant mass of the wrong muon pair is close to twice the muon rest mass.
These fake muon pairs are rejected by the requirement

mµ±µ± > 250 MeV/c2.
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Figure 6.4: Distribution of reconstruction quality selection vari-
ables. Red shows the background distribution observed on data
sidebands, blue shows all reconstructed simulated τ → µµµ de-
cays, green shows those simulated decays which fulfil all selection
requirements. The latter two are correctly scaled with respect to
each other.
The average reconstruction quality of simulated signal tracks is
better than of background candidates in data. This is partially due
to the presence of fake tracks in data but also due to resolution
effects.

3µ vertex fit χ2: Whether all muon tracks originate from a a common vertex is mea-
sured by the fit χ2 of the 3 muon vertex fit:

χ2
3µ < 15.

The variables are shown in Figs. 6.4, 6.5 (a), and 6.6 (a).

Other variables
In addition to the above selection requirements, the following requirements are im-
posed to address abundant background processes.

Muon transverse momentum: To reduce the number of tracks from soft QCD pro-
duction, a minimum transverse momentum requirement is applied.

pT (tracks) > 300 MeV/c

The muon pT distribution is shown in Fig. 6.6 (b).

Veto against φ→ µµ decays / selection of φ→ µµ: Background candidates from
φ→ µµ decays are rejected in the τ → µµµ selection by requiring that both com-
binations of oppositely charged muons are incompatible with a φ→ µµ decay

|mµ+µ− − 1019.46 MeV/c2| > 20 MeV/c2.

The opposite charge muon invariant mass distribution is shown in Fig. 6.5 (b).
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Figure 6.5: Dimuon invariant mass distribution. Red shows the
background distribution observed on data sidebands, blue shows
all reconstructed simulated τ → µµµ decays, green shows those
simulated decays which fulfil all selection requirements. The latter
two are correctly scaled with respect to each other.
In the same sign spectrum, it can be seen that the efficiency loss
due to the double reconstruction veto is tiny for signal candidates.
In the opposite sign spectrum, the φ and η vetos are visible. In
the background spectrum between 500 MeV/c2 and 1000 MeV/c2, a
contribution from ρ and ω decays is visible.
The background spectra extend beyond the range covered by the
signal, since the constrain on the invariant three muon mass is
different.

This requirement is not applied for Ds→ φ(µµ)π decays. Here, the purity of the
selection is enhanced by imposing the opposite requirement

|mµ+µ− − 1019.46 MeV/c2| < 20 MeV/c2.

Veto against η → µµγ decays: Background candidates from η → µµγ decays are
rejected in the τ → µµµ selection by requiring that both combinations of oppo-
sitely charged muons are incompatible with a η → µµγ decay. A µµγ candidate
cannot be vetoed since the photon reconstruction efficiency is too low to allow
for an effective veto.

mµ+µ− > 450 MeV/c2

The selection has been developed by Matt Jaffe [148] except for the η veto (Marcin
Chrzaszcz [11]), the double reconstruction veto (the author, following the suggestion
by Marco Meißner [149]), the fake track probability (the author in collaboration with
Johann Brehmer and Johannes Albrecht), and the φ veto (the author).

68



6.2. Selection variables

vertex fit χ2

0 10 20 30

re
la

ti
ve

ab
un

da
nc

e
[a

.u
.]

0

5000

10000

15000

20000

(a) Vertex fit χ2

track pT [GeV/c]
0 1 2 3 4 5

re
la

ti
ve

ab
un

da
nc

e
[a

.u
.]

0

20000

40000

(b) track pT

Figure 6.6: Distribution of the vertex fit χ2 and the muon trans-
verse momentum. Red shows the background distribution observed
on data sidebands, blue shows all reconstructed simulated τ → µµµ
decays, green shows those simulated decays which fulfil all selec-
tion requirements. The latter two are correctly scaled with respect
to each other.
A large contribution of bad vertex fit qualities to the background
spectrum is visible, due to combinations of tracks from different
origins.
After the selection, the track transverse momentum does not pro-
vide additional background discrimination from the background.
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7

Online event selection

The choice of trigger lines, from which events are used in this analysis, is based on
the following evaluation of the trigger efficiency and background yield.

7.1 Ranking of HLT2 trigger lines

The Punzi figure of merit is computed for each HLT2 trigger line l individually by
evaluating its efficiency (ε) in simulated τ → µµµ events and the expected number of
background events (b) in the inner sidebands1. For both, events are required to fulfil
the event selection described in the previous chapter (sel) and to be accepted by at
least one of all trigger lines as TOS, TIS, or TOB event (any trig).

FOMPunzi(l) :=
ε(l|sel ∧ any trig)

1 +
√

2 · b(acc.by l ∧ sel ∧ any trig)

The best trigger line is than that with the largest FOMPunzi and other trigger lines
are sorted by decreasing FOMPunzi.

The procedure is done separately considering only TOS candidates (FOMTOS
Punzi)

and for any possible positive trigger decision (FOMTOS|TIS|TOB
Punzi ). In all cases, the TOS

figure of merit is found better:

FOMTOS
Punzi(l)

exp. found
> FOM

TOS|TIS|TOB
Punzi (l) ∀l

In the case of HLT2, the dedicated τ → µµµ HLT2 line is the best HLT2 line in for
the 2012 data taking period. For the 2011 data taking period, the τ → µµµ HLT2 line
ranks second, slightly worse than the D→ hµµ HLT2 line.

The outcome differs between the two data taking periods due to a re-optimisation
of the software trigger between 2011 and 2012. The D→ hµµ trigger was not used in
data taking in 2012.

7.2 Accumulation of HLT2 trigger lines

From the ranking of HLT2 trigger lines, it is decided whether more than one HLT2
line can be used in the analysis. Let Ln := {li|1 ≤ i ≤ n} be the set of the n best

1The invariant mass range of the signal box is twice as large as the inner sidebands. Therefore a
factor 2 is introduced.
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Table 7.1: Requirements of the HLT1 single muon trigger.

variable requirement in 2011 requirement in 2012

track impact parameter > 0.1 mm > 0.1 mm

track χ2
IP > 16 > 16

pT > 1 GeV/c > 1 GeV/c

p > 8 GeV/c > 8/3 GeV/c
(reduced after the first 630 pb−1)

track fit χ2/ndf < 2 < 3/2.5
(reduced after the first 70 pb−1)

ranked HLT2 lines. The decision how many HLT2 lines to consider is then based on
the figure of merit

FOMTOS
Punzi(n) :=

ε
(

TOS for any of the li
∣∣∣sel ∧ any trig

)
1 +

√
2 · b
(

(TOS for any of the li) ∧ sel ∧ any trig
) .

The condition of the conditional probability ε still does only require the event selection
from the previous chapter and is not further restricted to the HLT2 selection from the
previous section.

In the case of the 2011 data, the figure of merit is maximised when using the two
best HLT2 lines; candidates selected by the D→ hµµ or the τ → µµµ HLT2 line. This
is not an exclusive or, the two trigger lines have a large overlap.

In the case of the 2012 data, the figure of merit is maximised when using one
HLT2 lines; candidates selected by the τ → µµµ HLT2 line.

7.3 Extension to HLT1 and L0

The procedure is repeated for the lower trigger stages. To ensure compatible opti-
misation results in all stages, the computation of FOMPunzi for HLT1 counts only
τ → µµµ candidates which fulfil the selection requirements and the HLT2 TOS re-
quirement, as established in the previous section. Consequently, the L0 optimisation
is based on candidates being selected offline, in HLT2, and in HLT1.

7.4 Description of the chosen trigger lines

The L0 single muon trigger is recapitulated from Chap. 2 for completeness. A muon
with pT > 1480 MeV/c is required in the 2011 data taking period and in the first
70 pb−1 of the 2012 data taking period. In the remainder of the 2012 data taking
period the threshold has been raised to 1760 MeV/c.

The HLT1 single muon trigger requires a VELO track which is compatible with
hits in the muon stations. This VELO track is then used as seed to online forward
tracking algorithm. The candidate is accepted by the single muon trigger if it ful-
fils the additional requirements in Tab. 7.1 and passes the muon pre-selection from
Sect. 2.5. This trigger line is called TrackMuon in [86, 150].

The HLT2 τ → µµµ trigger requires a three track candidate, each of them iden-
tified as a muon, by the offline muon pre-selection, each of them not pointing to a
primary interaction vertex. The exact numeric requirements are listed in Tab. 7.2.
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7.4. Description of the chosen trigger lines

Table 7.2: Requirements of the HLT2 τ → µµµ trigger.

variable requirement in 2011 requirement in 2012

track χ2
IP > 16 > 4/9

(increased after the first 70 pb−1)

one track with pT > 1 GeV/c n/a

track fit χ2/ndf < 6 < 6/4
(reduced after the first 70 pb−1)

reconstructed decay time cτ > 45 µm > 45/75 µm
(increased after the first 70 pb−1)

vertex fit χ2 < 25 < 25

Table 7.3: Requirements of the HLT2 D→ hµµ trigger.

variable requirement in 2011

track requirements

track fit χ2/ndf < 5

muon requirements

χ2
IP > 2

p > 5 GeV/c

pT > 500 MeV/c

hadron requirements

only implicit constrains due to the pattern recognition

muon pair requirements

flight distance χ2 > 20

track distance of closest ap-
proach < 0.1 mm

D candidate requirements∑
tracks pT > 1.5 GeV/c

track distance of closest ap-
proach < 0.25 mm

vertex fit χ2/ndf < 20

pointing angle (cos(ϕ)) > 0.9998∑
tracks

√
χ2

IP > 15

χ2
IP < 36

The additional D → hµµ trigger requires a di-muon candidate, where the two
muons have a small distance of closest approach and each of the muons passes a min-
imum χ2

IP and a minimum momentum requirement. The exact numeric requirements
are listed in Tab. 7.3.

This choice of trigger lines has first been performed by the author as documented
in [8].
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7.5 Ds→ φ(µµ)π trigger

To achieve a small uncertainty in the relative normalisation, the same trigger re-
quirement is used for Ds → φ(µµ)π as for τ → µµµ. For the L0 and HLT1, this is
accomplished by requiring Ds→ φ(µµ)π candidates to be selected by the single muon
L0 trigger and single muon HLT1 line. The HLT2 τ → µµµ line is not expected to
behave in the same way for τ → µµµ and for Ds → φ(µµ)π due to the absence of a
third muon in the final state. In HLT2 the Ds → φ(µµ)π candidates are selected by a
displaced dimuon trigger line. Its selection requirements are listed in Tab. 7.4. The
usage of this HLT2 line has been suggested by Jonathan Harrison [38].

Table 7.4: Selection requirements of the displaced di-muon trigger,
used for the Ds→ φ(µµ)π selection event selection.

variable requirement

muon requirements

track fit χ2/ndf < 4

χ2
IP > 25

pT > 300 MeV/c

muon pair requirements

vertex fit χ2/ndf < 8

decay length significance > 7

pT > 600 MeV/c
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8

Background processes to τ → µµµ

8.1 Processes with three muons from a common vertex

The most relevant background processes for this analysis are decays of heavy flavour
hadrons with three muons and no other charged particles in the final state because
these will have very similar properties as the τ → µµµ decay.

The decay of a b hadron into three muons without other charged particles in the
final state will likely result in a candidate with a large invariant mass, larger than the
τ mass and larger than the invariant mass range in which the background spectrum
is fitted. Therefore, only c meson decays are investigated further.

The list in Tab. 8.1 is based on the study made in [34] and the updates for [5,
8]. The values are quoted literally. All decays listed are partially reconstructed, i. e.
there are particles in the final state which are not reconstructed. Therefore, the
invariant mass of the three muons is smaller than the mass of the meson which
decays. Given their abundance, it is worth considering to remove them from the data
sample. The only feasible way of removing these decays is the two muon invariant
mass. Decays involving a φ → µµ decay are excluded from the data by only selecting
candidates where neither of the two dimuon combinations has an invariant mass
within 20 MeV/c2 of the φ mass. Charm meson decays with a subsequent η → µµγ
decay are excluded by requiring that both dimuon pairs have an invariant mass of at
least 450 MeV/c2.

8.2 Background sources in simulated events

Given the event selection, background candidates are combinations of non-prompt
charged particle tracks. These originate from c and b hadron decays. Since a positive
muon identification is required in the selection, a generic background is a pp collision
with a cc or bb pair production where muons occur in the decay chains of the heavy
flavour hadrons. Two or more real muons originating from c or b hadron decays
are required in each simulated event. Due to limited computing resources, additional
restrictions are imposed on the simulated muons, to ensure that the simulated events
are selected once the events are reconstructed. Both muons to have a transverse
momentum larger than 280 MeV/c, a momentum larger than 2900 MeV/c, the dimuon
invariant mass must be smaller than 4500 MeV/c2, and a distance of closest approach
smaller than 0.35 mm. There is no requirement imposed that the two muons have the
same charge or the opposite charge.

Assuming similar backgrounds for collision energies of 7 TeV and 8 TeV, only
background at 8 TeV is simulated.
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Table 8.1: Branching fractions of tri-muon final states from c me-
son decays [80]. The expected production cross-sections are cal-
culated by multiplying the 4π production cross-section σ(D+) =
3.16 mb and σ(Ds) = 976 µb with the corresponding detector ac-
ceptance efficiencies (determined from MC) εη = 0.183 for decays
into η or η′, εφ = 0.19 for the decays including a φ meson as inter-
mediate state, εω = 0.20 for decays into ω, and ερ = 0.19 for decays
into ρ0. The table is taken literally from [8].

D decay B(∗)
1

Secondary
decay B2 B1 × B2 σ(3µX)

Ds

ηµνµ 2.67 × 10−2 η → µµ 5.8 × 10−6 1.5 × 10−7 0.03 nb

ηµνµ 2.67 × 10−2 η → µµγ 3.1 × 10−4 8.2 × 10−6 1.5 nb

ηµνµ 2.67 × 10−2 η → π0µµγ < 3 × 10−6 < 8.0× 10−8 < 0.02 nb

η′µνµ 9.9 × 10−3 η′ → µµγ 1.09 × 10−4 1.1 × 10−6 0.20 nb

φµνµ 2.49 × 10−2 φ → µµ 2.87 × 10−4 7.1 × 10−6 1.3 nb

φµνµ 2.49 × 10−2 φ → µµγ 1.4 × 10−5 3.5 × 10−7 0.06 nb

φµνµ 2.49 × 10−2 φ → µµπ0 1.12 × 10−5(†) 2.8 × 10−7 0.05 nb

D+

ηµνµ 1.14 × 10−3 η → µµ 5.8 × 10−6 6.6 × 10−9 < 0.01 nb

ηµνµ 1.14 × 10−3 η → µµγ 3.1 × 10−4 3.5 × 10−7 0.20 nb

ηµνµ 1.14 × 10−3 η → π0µµγ < 3 × 10−6 < 3.4× 10−9 < 0.01 nb

η′µνµ 2.2 × 10−4 η′ → µµγ 1.09 × 10−4 2.4 × 10−8 0.01 nb

ωµνµ 1.6 × 10−3 ω → µµ 9.0 × 10−5 1.4 × 10−7 0.09 nb

ωµνµ 1.6 × 10−3 ω → µµπ0 1.3 × 10−4 2.1 × 10−7 0.13 nb

ρ0µνµ 2.4 × 10−3 ρ0 → µµ 4.55 × 10−5 1.1 × 10−7 0.07 nb

φµνµ < 9 × 10−5 φ → µµ 2.87 × 10−4 2.6 × 10−8 0.02 nb

(∗) : given branching ratios are from corresponding eνe decays

(†) : given branching ratio is from φ→ e+e−π0 decays

The probability that a simulated pp → qqX → (µµY )qqX event is accepted by
the generator selection is evaluated using simulated events. The probabilities are
(5.875 ± 0.047) × 10−4 for charm and (2.788 ± 0.029) × 10−3 for bottom quarks. The
determination has been carried out by Jonathan Harrison [8].

The inclusive charm cross section is taken from [129], scaled up by 8/7 to account
for the different collision energy. It is (6.95± 1.07) mb. The inclusive bottom cross
section is taken from [134] and amounts to (298± 36) µb.

The background simulation of 10 million charm events and 5 million bottom events
corresponds to (2.5± 0.4) pb−1 and (6.2± 1.0) pb−1, respectively. The charm events
contain 4641 candidates fulfilling the selection from Chap. 6. And 4936 candidates
are in the bottom events.
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8.3. Background from misidentified particles

Table 8.2: Charm decay modes which contribute to the misidenti-
fied background. The number of events produced in 1 fb−1 in the
LHCb acceptance shown in the forth column is estimated using
the LHCb measured inclusive D+, Ds, and D∗+ cross sections in 4π
(summed over charm and beauty contributions), the PDG branch-
ing fraction and a 20 % acceptance efficiency. The table is taken
literally from [8].

Decay channel σ(D) B (10−2) N/109 comments

D+ → K−π+π+ 3.30± 0.36 mb 9.13 ± 0.19 60
main

contribution

D+ → K−K+π+ 3.30± 0.36 mb 0.954± 0.026 6.3
visible small

peak(†)

D+ → π+π+π− 3.30± 0.36 mb 0.318± 0.018 2.1
visible small

peak(†)
D+ → K−π+π+π0 3.30± 0.36 mb 5.99 ± 0.18 40 low mass

D+ → π+π+π−π0 3.30± 0.36 mb 1.13 ± 0.08 7.4 low mass

D+ → K−π+µ+ν+ 3.30± 0.36 mb 3.8 ± 0.4 25 low mass

D+
s → K−K+π+ 1.11± 0.16 mb 5.49 ± 0.27 12

visible small
peak(†)

D+
s → K+π−π+ 1.11± 0.16 mb 0.69 ± 0.05 1.5 negligible

D+
s → π+π−π+ 1.11± 0.16 mb 1.10 ± 0.06 2.4

visible small
peak(†)

D+
s → K−K+π+π0 1.11± 0.16 mb 5.6 ± 0.5 12 low mass

D∗+ → D0(K−π+π0)π+ 3.48± 0.41 mb 9.41 ± 0.34 > 1 low mass

† : These are sufficiently suppressed by theMPID classifier.

8.3 Background from misidentified particles

Background processes with misidentified particles are decay processes with three
charged particles in the final state, which are not muons. The particle identification
should prevent tracks of these particles to be considered in the analysis, a residual
misidentification rate can, however, never be ruled out.

The decays which are relevant for the τ → µµµ analysis are listed in Tab. 8.2.
Most background processes are observable when no requirement onMPID is imposed.
When the lowest MPID bin is removed from the analysis, only D+ → K−π+π+ needs
to be considered in the background description. The three muon invariant mass spec-
trum in data is shown in Fig. 8.1 for candidates with M3body > 0.3 – to enhance the
visibility of the backgrounds above the combinatorial background – with and without
a requirement ofMPID > 0.2. The values in Tab. 8.2 are literally quoted from [8].
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Figure 8.1: Invariant mass spectrum of τ → µµµ candidates in
data for both data taking periods. All candidates are required to
have M3body > 0.3. The respective upper points show are for can-
didates without an additional MPID criterion, the lower points for
candidates with MPID > 0.2. The large structure at 1740 MeV/c2
is the D+ → K−π+π+ background. It is visible that the contribu-
tion of this background is drastically reduced by theMPID criterion
and the combinatorial background dominates the data aboveMPID
values of 0.2.
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9

M3body development

Various multivariate classification techniques are implemented in the software toolk-
its NeuroBayes R©[151, 152] and TMVA[153] . These two toolkits are considered for
the development of M3body. The development is based on the simulated signal and
background for the data taking conditions in 2012. The classifier is applied to the
data taken in 2011 without changes. A different binning is applied nevertheless.

9.1 Training ofM3body

Multivariate classification techniques for optimal signal/background separation use
machine learning for the construction of the classifier. A sample of signal and a sam-
ple of background events are used as input of the learning algorithm, called training
samples. The learning algorithm constructs a classifier based on the properties ob-
served in the training samples. Most learning algorithms are iterative procedures,
where the classifier is iteratively improved until no further improvement can be
reached. A review of the current state of the usage of multivariate techniques in
particle physics can be found in [121, 122]. The non-automised part of the training
are the following aspects.

variable selection: From a set of variables which are believed to provide informa-
tion for the signal/background discrimination, several combinations are formed
and all classification methods are trained on each variable set. As explained
before, it is expected that different variable sets will be optimal for boosted deci-
sion trees (BDT) and neural networks (NN), the latter performing better when
irrelevant inputs are removed while the former are invariant.

training data: The training samples have to describe the actual signal and back-
ground correctly. A background which is missing in the background training
might not be discriminated from the signal by the trained classifier and corre-
spondingly non-simulated signal components would not be discriminated from
the background. Furthermore, components of the signal and background sam-
ples have to be represented in the right proportions in the training samples – a
background which is under-represented in the training sample might not be dis-
criminated well by the trained classifier, if this allows for a better discrimination
of other backgrounds. It therefore needs to be ensured that the training data is
accurate in terms of signal production (as described in Chap. 4) and background
components (as described in Sect. 8.2). This background sample contains bb and
cc production with two muons in the final state. Consequently, events without
heavy flavour production and events without muons in the final state are not
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9. M3BODY DEVELOPMENT

correctly represented. The selection and the application of MPID, as explained
in Sect. 5.2 excludes these events from the analysis and they are therefore not
necessary in the training data.

candidate selection: The training can be improved further by restricting the can-
didates in the training samples to not using all candidates. E. g. Background
candidates which are made from three charged particles from a c hadron de-
cay without further charged particles in the final state are not expected to be
distinguishable from τ → µµµ decays, as further explained in Sect. 9.5.

Ultimately, the performance of different classifications cannot be distinguished
due to limited sensitivity of the performance evaluation, as visible in Fig. 9.4. At that
point further improvement can hardly be obtained in a purposeful optimisation and
the development is stopped.

9.2 Data sample division

The training data is divided into disjoint subsamples to avoid the introduction of
biases due to the classifier development (c. f. Sect. 5.4).

Training sample 60 % of the simulated signal events and 50 % of the simulated
background events are used to train multivariate classifiers

Test sample 30 % of the simulated signal events and 50 % of the simulated back-
ground events are used as “test” sample. These events are used to determine
which classifier is the best, how to configure the training algorithms and de-
velop the classifier binning.

Calibration sample 10 % of the simulated signal events are left out of the devel-
opment process. The performance of the classifier on this sample is therefore
unbiased and serves as input to the calibration procedure outlined in Sect. 10.2.

The numbers are chosen in this way because the machine learning stage should
get most “knowledge” of the events by receiving the largest part of the simulated
statistics. The development is on the other hand easily limited by the statistical
significance at which classifiers can be compared to each other, therefore the test
sample must not be too small either. The remaining calibration sample kept at a size
which is expected to be large enough to keep the statistical uncertainty of theM3body
calibration at an acceptable level.

9.3 The boosted decision tree technique

The boosted decision tree used in [147], for example, uses 452 cut values. Under-
standing every single value of that tree is unfeasible and unnecessary. The analysis
must be able to only use the classifier response and phenomenologically understand
the physics of the response distribution.

For the search for τ → µµµ, the author studied boosted decision trees with adap-
tive boosting as implemented in TMVA, while following instructions by colleagues
[154, 155] about which configurations to test when tuning a multilayer perceptron
(the neural network, implemented in TMVA) and following instruction manuals for
NeuroBayes R© neural networks.
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9.3. The boosted decision tree technique

Given that eventually a boosted decision tree is chosen in Sect. 9.7, a description
of boosted decision trees is given here.

Boosted decision trees

Decision trees [156] with adaptive boosting [157] have first been used in particle
physics by the MiniBooNE collaboration [158].

Simple decision trees: Simple decision trees are binary trees, as shown in Fig. 9.1.
When classifying events, at each node one variable of the event is compared to a fixed
value to decide which branch to follow. Eventually, a leaf is reached which either
assigns the signal hypothesis or the background hypothesis to the event.

The difference between a selection and a decision tree is that the former selects
one hyper cube in the variable space while the latter selects multiple hypercubes.

In the training process, it is decided which variable is considered in each node and
at which value the branches are separated. The variable and value are chosen which
provide the best separation of the training at that node. The separation is measured
with the Gini-Index, g = p · (1−p), where p is the decision purity1, as explained in e. g.
[158]. If the training is not constrained to a maximum tree size, the tree can be as
large as necessary to achieve a perfect classification of the training sample2. In this
case that leaf assigns the signal hypothesis if the training events are signal events
and, conversely, the background hypothesis if the events are background events. If
the tree size is limited and multiple training events end up in a leaf, a majority vote,
illustrated in Fig. 9.2, decides the leaf type.

The tree depth can be limited to avoid overtraining. This, however, reduces the
maximum achievable separation power significantly. In practise, it is found to be
preferable to limit the tree depth and apply a boosting procedure to overcompensate
the performance loss. In addition to enhancing the separation power, boosting results
in classifiers which are less vulnerable to overtraining than single decision trees.

The training is not necessarily based on event counts, weights can be assigned to
the training events which are considered in the computation of the Gini-index and in
the majority vote.

Adaptive boosting: Adaptive boosting can be understood as a power series, sum-
ming classifier responses to converge to the best possible classifier [159, 160]. It can
be applied to any classifier, while “weak” classifiers profit most, e. g. decision trees
with limited depth.

An initial decision tree is trained with weights ~w0, where the vector indicates indi-
vidual weights for individual training events while the index stands for the training
iteration. The initial weights are 1 for signal events and background events from b
quark pair production. For c quark pair production, the weights is chosen to give
charm and bottom events, which corresponds to the same integrated luminosity the
same total weight. The charm background weights are set to

2.48

(
=

6.2 pb−1

2.5 pb−1

)
.

1p = N(correct decisions)/(N(correct decisions) +N(incorrect decisions))
2This is always possible, even if the signal and background samples do not differ in any physics prop-

erty. Random decisions at each node will create a perfect tree at a tree depth of log2(N) for N training
events.
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Figure 9.1: Example of a full grown decision tree. The numbers are
to be understood as absolute numbers of signal and background
events in the training data, xi are event variables, ci are constants
which determine which branch to follow.

After a training iteration i, the error rate3 ei of the training is computed and the
weights of the training events are updated. The speed at which the weights are
updated is steered by the predefined parameter β:

(wi+1)j = (wi)j ·

1 event j is classified correctly in iteration i(
1−ei
ei

)β
event j is classified wrongly in iteration i

.

In the next iteration, a decision tree is trained with the updated weights ~wi+1 and the
procedure is repeated. The number of iterations, N , is predefined and usually at the
order of a few hundreds.

Once all training iterations are performed, the boosted decision tree response y(j)
of an event j is computed as a weighted average of the individual tree responses hi(j)
using the error rate ei.

hi(j) =

{
0 event j reaches a background leaf in the tree from iteration i

1 event j reaches a signal leaf in the tree from iteration i
(9.1)

y(j) =
1

N

∑
i

ln

(
1− ei
ei

)β
hi(j) (9.2)

3e = N(incorrect decisions)/(N(correct decisions) +N(incorrect decisions))
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Figure 9.2: Example for a majority vote for one of the nodes in the
decision tree from Fig. 9.1

A common misconception is that the last training iteration hN should provide a
better discrimination than the weighted average y. In contrast it must be pointed
out that during the reweighting procedure, the weighted training data represents
the actual classification problem less and less accurately. The best individual tree
is, in fact, the initial iteration h0. All subsequent iterations “only” correct residual
misclassification. See [159] or [160] for simple examples for boosting which illustrate
this.

The description here is based on [161], the same information can be found in [153,
Sects. 7.1 and 8.12].

9.4 Input variables forM3body

The signal properties, listed in Sect. 6.1, can be quantified in several variables. Back-
ground candidates do not necessarily have these signal properties and can therefore
be differently distributed in the variable space than the signal. The variables which
are considered for the M3body development are listed in Tab. 9.1. They are partially
covered in Chap. 6. For some variables, different options of usage are listed, e. g. the
impact parameters of all three muon tracks of the τ → µµµ candidate are used as in-
put variables, or the maximal and minimal value, or only the minimal value, or none
of them. The option of not using a variable is implied for all variables. The variables
which need additional explanation with respect to the list in Chap. 6 are:

Reconstructed flight distance: The distance between the τ decay vertex and the
primary interaction vertex, measured in the lab system. It is a measure of the
displacement similar to the reconstructed decay time.

Track distances of closest approach: For signal events, the extrapolations of the
muon tracks meet in a single point up to resolution effects. Consequently, the
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9. M3BODY DEVELOPMENT

Table 9.1: List of variables from which theM3body input variables
are chosen. For many variables there are several options to use
them. Those options tested are listed in the individual rows of the
second column.

variable options property

all three values

track impact parameter all min&max displacement

min

all three values

track χ2
IP min&max displacement

min

best fit & uncert.

flight distance wrt. PV best fit displacement
best fit
uncert.

decay time displacement

3µ vertex fit χ2 rec. quality

all three values

track distance of closest approach max&min rec. quality

max

IP&uncert.

τ impact parameter IP pointing

χ2
IP

τ transverse momentum other

all three values

track isolation
∑

three values isolation

max

cone isolation isolation

all three values

track fit χ2/ndf three “match” contribs. rec. quality

max “match” contrib.
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9.4. Input variables forM3body

minimal distance of closest approach of each pair of these tracks is zero, up
to resolution effects. For background candidates where tracks from different
vertices are combined, this is not the case.

τ transverse momentum: The production of τ leptons has a characteristic pT spec-
trum, as a consequence of the pT spectrum of b and c production and the decay
kinematics. The spectrum of background candidates can be different.

Track isolation: There are exactly three charged particle tracks originating in a
τ → µµµ decay vertex. Background processes can have more than three charged
particles in the final state.
For each of the three tracks of a τ → µµµ candidate i and for each other track
in the event j a multivariate classifier Miso is evaluated which measures the
likelihood that i and j originate from a common heavy flavour decay vertex.
It is trained on simulated background events which pass the event selection.
The training uses pairs of tracks which do (not) originate from the same heavy
flavour decay chain as signal (background) events. In background events where
the τ → µµµ candidate tracks originate from a heavy-flavour decay with more
than 3 charged particles in the final state, the classifierMiso thus identifies the
track j which is most likely a decay product from a background process.
Miso has been developed by Laura Gavardi in [35].

Cone isolation: Another commonly used variable to measure the abundance of tracks
around a decay candidate is the cone isolation. For all particles within a circle
in the φ-η-plane around the candidate, the transverse momenta are summed.
The fraction pT (cand.)/

∑
cone pT is the cone isolation. The size of the cone is a

tuning parameters. The training of the finalM3body classifier has been repeated
for different cone radii from 0.1 to 2.0. OptimalM3body performance is found for
a cone radius of 1.0 by Laura Gavardi [35]. The cone isolation has been used first
in [162].

Track match χ2/ndf : A significant fraction of fake tracks are wrong combinations
of correctly reconstructed VELO tracks with correctly reconstructed T-tracks.
The quality χ2/ndf of the track fit of these fake tracks is usually good because
the two segments, in the VELO and in the T stations, can be fit the track model
quite accurately. The contribution of how well the VELO segment and the T
station segment are compatible is measured as χ2

match.

The variables vi in Tab. 9.1 are potentially useful input variables forM3body. For
{vi}, the different options are considered as individual variables:

v1 := (IP1, IP2, IP3)

v2 := (min(IPi),max(IPi))

v3 := min(IPi)

v4 := (χ2
IP,1, χ

2
IP,3, χ

2
IP,3)

...

For each element V of the powerset

V ∈ P({vi}) := {V |V ⊆ {vi}}
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ε
0.0 0.1 0.2 0.3

1
−
ξ

0.990

0.995

1.000

Figure 9.3: Classification performance of M3body when irreducible
background candidates are included (blue) and excluded (red) from
the training sample. The bands indicted the statistical uncertain-
ties due to the amount of events in the inner sidebands. The same
test events are used for both classifiers, the shown uncertainty does
therefore not illustrate if the curves differ significantly.

a multivariate classifier is trained to determine the optimal set of input variables.
Combinations of different options of a variable4 in V are excluded. Those variable
sets V where the decay length, the decay time, and the τ transverse momentum
are in V are excluded, too, because this combination could enable the multivariate
framework to determine the candidate’s invariant mass. For all remaining V , a TMVA
boosted decision tree, a TMVA neural network, and a NeuroBayes R© neural network
are trained.

For each multivariate technique, the ten best variable sets V are determined by
measuring the signal efficiency and background rejection on the test sample. The
decision is made by means of the background efficiency at a signal efficiency of 40 %.
For each technique, the best ten variable sets are identified and the resulting thirty
classifiers are studied further.

9.5 Candidate selection

Charm hadron decays with three charged particles in the final state, which are in the
background training sample, cannot be expected to be discriminatable from the signal
by M3body. This is a consequence of the signal properties for which M3body is devel-
oped because these charm backgrounds share these properties. To avoid this, back-
ground candidates which are correct reconstructions of decays with three charged
particles in the final state are removed from the training sample.

In [8, 5] it has been found that many classifiers profit from this candidate selection.
Before the configuration optimisation of the classifier chosen in this work, only an
insignificant improvement is observed, as shown in Fig. 9.3. The curves5 are obtained

4as indicated by the horizontal lines in Tab. 9.1
5These curves are called Receiver Operating Characteristic curves (ROC curves).
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9.5. Candidate selection

by scanning 0 ≤ x ≤ 1 and drawing 1− ξ(M > x) as a function of ε(M > x). Using

Nb := N(bkg. evts.)
Ns := N(sig. evts.)
kb := N(bkg. evts. withM > x)

ks := N(sig. evts. withM > x)

the signal efficiency ε and the background rejection 1 − ξ are given by the following
Bayesian estimators (for prior parameters α = β = 0.5):

ε(M, x) =
ki
Ni
±
√

(ki + α)(Ni − ki + β)

(Ni + α+ β)2(Ni + α+ β + 1)︸ ︷︷ ︸
=:σε(M,x)

for i = s. (9.3)

And ξ correspondingly for i = b.

The formula is given in e. g. [163]. The signal test sample is three times larger than
the background test sample, therefore the simplification that all uncertainties are
dominated by the background sample is made.

The comparison of two classifiers is done by comparing the background efficiency
at a response of a fixed signal efficiency, here ε = 0.25; i. e. for two classifiersMA and
MB the response values xA and xB are defined by

ε(MA > xA) = 0.25

ε(MB > xB) = 0.25.

The classifier decision function D for a classifierMA and for an event j is defined as

DA(j) :=

{
0 ifMA(j) < xA

1 ifMA(j) ≥ xA
and correspondingly forMB .

The correlation between classifier decisions is the Pearson correlation coefficient6

of the classifier decision functions:

corr(A,B) :=
E[(DA − E(DA))(DB − E(DB))]

σ[DA]σ[DB ]

Since the classifier comparison here is done by means of observed background events
in the simulated background, the observed correlation coefficient is evaluated, and
the expression can be simplified with the background efficiency:

corr(A,B) =
E[(DA − ξ(MA, xA))(DB − ξ(MB , xB))]

σξ(MA, xA)σξ(MB, xB)
.

This correlation is necessary to compute the significance of the difference of two clas-
sifier background efficiencies7, as given by error propagation:

D = ξ(MA, xA)− ξ(MB , xB)

σ2
D = σ2

ξ (MA, xA) + σ2
ξ (MB, xB)− 2 corr(A,B)σξ(MA, xA)σξ(MB, xB).

At the benchmark point ε = 0.25, the background efficiency changes by 0.6σ when
excluding three body charm decays from the background training sample.

6E is the expectation value, σ the standard deviation from Eq. 9.3.
7Rigorously correct would be the correlation of the efficiency estimates. It has been verified in a toy

study that the observed decision correlation is a faithful estimate of the efficiency estimator correlation.
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9. M3BODY DEVELOPMENT

9.6 Training parameters ofM3body

To achieve an optimal performance, the following four BDT training parameters are
optimised by repeating the training various times while varying these parameters.
The figure of merit is the signal efficiency at 1 % background efficiency, measured on
the test sample. This is one of the figures of merit implemented in TMVA for the
optimisation, it is regarded to be the one with the largest relevance for rare decay
searches. For each of the trainings, the performance is measured on the test sample.
The optimised parameters are the number of decision trees (N ), the learning speed
(β), the minimum number of events for a node creation, and the maximum tree depth.

It is expected that the optimal set of variables depends on the maximum tree
depth and the number of trees. Therefore, for each of the ten best variable sets iden-
tified before, a parameter optimisation is performed to achieve a performance gain.
Whether a performance maximum is found is verified for the best variable set after
the parameter optimisation as follows. For the optimal training parameters of the
most performant variable set, the training is repeated removing one variable from
the variable set at a time, or adding one variable to the variable set at a time. This
test identifies if the optimal variable set was only locally optimal, i. e. optimal for the
default training parameters of TMVA. No performance improvement from updating
the variable selecting after the parameter optimisation is observed.

The final boosted decision tree which uses 762 trees with a maximal tree depth
of 3. The boost parameter is set to β = 0.5. Its variables are listed in the following
section.

9.7 FinalM3body

After the classifier optimisation, the best classifier is identified. For x in steps of
0.005, the signal efficiency and the background efficiency are determined forM > x.
Both efficiencies are measured as the observed efficiency on the simulated test sample
and the inner sidebands. The uncertainties are statistical uncertainties evaluated as
before.

The background efficiency is measured on the inner sidebands instead of the sim-
ulated background to consider possible background processes in the selections which
are missing in the simulation. It is expected that there’s a significant contribution
of D+ → K−π+π+ decays present in the data. Since these are not discriminatable
by the classifier their contribution to the background sample needs to be reduced. A
suppression of hadronic backgrounds is achieved by considering only candidates with
MPID > 0.2. The effectivity of this selection cut is visible in Fig. 8.1: after the appli-
cation of the cut, the remaining data is dominated by combinatorial backgrounds.

The variables used by the best classifier of each kind (TMVA boosted decision tree,
TMVA neural network, and NeuroBayes R© neural network) are listed in Tab. 9.2. The
ROC curves for the best classifier of each kind are shown in Fig. 9.4. The classifiers
show similar performance. The boosted decision tree is chosen due to the authors
familiarity with this technique.

The uncorrelated uncertainties of the classifiers’ background efficiencies is esti-
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Figure 9.4: Discrimination performance of the best TMVA neural
network (blue), NeuroBayes R© neural network (red), and TMVA
boosted decision tree (black). The background efficiency, 1 − ξ, is
measured on the inner sidebands, the signal efficiency, ε, is mea-
sured on the test sample. The uncertainties, indicated by the
widths of the bands ignore correlations between the classifiers.

Table 9.2: Input variables of the best performing classifier of each
classification technique. The variables are ordered according to
their importance in the boosted decision tree, the numeric impor-
tance is also given for the boosted decision tree. The horizontal line
indicates the median of the importances.

variable boosted
decision tree

TMVA neural
network

NeuroBayes R©
neural network

track isolation 0.225 X X

pointing angle 0.140

track distances of closest
approach (3 variables)

0.050
+0.046
+0.043

τ flight distance 0.071 X X

decay time 0.069 X X

τ transverse momentum 0.064 X

minimal track impact
parameter χ2 0.063 X X

vertex χ2 0.062 X X

cone isolation 0.061 X X

maximal track match χ2 0.056 X X

τ flight distance uncer-
tainty 0.050 X X

τ impact parameter χ2 X X

track fit χ2/ndf (3 vari-
ables) X
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Figure 9.5: The background 90 % percentiles ofM3body for different
invariant mass ranges. I. e. theM3body value, below which 90 % of
the simulated background events are ranked, in bins of the invari-
ant 3 muon mass. No peak at the τ rest mass is visible.

mated as outlined in Sect. 9.5 for ε = 0.25:

1− ξTMVA NN = (99.46± 0.11) %

1− ξTMVA BDT = (99.28± 0.13) %

1− ξNeuroBayes R© NN = (99.21± 0.13) %.

The importance of an input variables of a boosted decision tree is defined as the
sum of the separation gain squared in each node multiplied by the number of training
events in the node and the tree’s boosting weight from Eq. 9.2, summed over all trees
and nodes using the variable. The variables in Tab. 9.2 are ordered by the importance
of the variables inM3body.

The true performance of M3body is known after its calibration in the following
chapter: Figures 10.5 and 10.6 show the response distributions for the τ → µµµ
signal and the background in data respectively.

9.8 M3body characterisation

Mass correlation

In Sect. 12.1, the number of background events in the signal region is estimated with
a fit to the invariant mass spectrum in the sidebands. If the background efficiency
of M3body was different for candidates with an invariant mass in the signal region
than for candidates in the sidebands, then the fitted function would not predict the
number of expected background events correctly. M3body percentiles on the simulated
background are determined as a function of the invariant mass. The 90 % percentiles
in Fig. 9.5 distributions do not show signs for a problematic correlation.

90



9.9. Binning

M3body

0 0.5 1

re
la

tiv
e

ab
un

da
nc

e
[1

/0
.0

5]

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 9.6: Distribution of τ → µµµ candidates on the simulated
2011 signal test sample. The full distribution is given in blue, the
contribution of τ from inclusive Ds decays in red, the contribution of
τ from prompt Ds decays in black. The error bars are the statistical
uncertainty due to the size of the simulated sample.

Production preference
When assessing the systematic uncertainty due to the τ production fractions in Sect. 11.2
the calibration ofM3body is repeated for varied τ production fractions. This is neces-
sary because τ → µµµ decays where the τ originated in a Ds→ τντ decay are preferred
by M3body over other production modes. This is a consequence of the signal proper-
ties, listed in Sect. 6.1. In other words, τ from Ds decays can be distinguished from
background candidates much more efficiently than other τ . The τ from B decays are
“sacrificed” by M3body for an optimal performance on the integrated sample of all τ .
The preference is visualised in Fig. 9.6.

9.9 Binning

The response ranges ofMPID andM3body are split into bins. The method to chose an
optimal binning is to compute the difference of the median Q values under the b and
the s+b hypotheses for possible binnings, called ∆Q. The method has been introduced
in LHCb in the search for B0

s → µµ as documented in [127]. Numeric examples for the
optimisation method can be found in Appendix A.

Before the optimisation, a probability integral transform is applied to M3body. A
grid with a 0.05 grid point spacing in the two dimensional (M3body,MPID) space is
used to define possible bin boundary positions. The expected number of background
events under the b hypothesis is twice8 the number of events in the inner sidebands
in each bin. The number of signal events in each bin is estimated by the number

8The inner sidebands’ invariant mass range covers 20 MeV/c2 while the signal region covers
40 MeV/c2, therefore the event count in the inner sidebands needs to be multiplied by two.
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9. M3BODY DEVELOPMENT

of candidates in that bin in the simulated test sample. It is shown in Appendix A.3
that the number of expected signal events should be chosen at the order of the final
sensitivity. The sensitivity of [5] is used as sensitivity prediction for the present work:

limit(B(τ → µµµ))

α
≈ O(30 evts.) (numbers from [5])

using the normalisation factor for the 2012 data due to the assumption that the sen-
sitivity is driven by the 2012 data and rounding up as an ad-hoc correction. The sim-
ulated signal events for the 2012 data are therefore weighted to

∑
wi = 30. Roughly

half as many signal events are expected in the 2011 data because it corresponds to
only half the integrated luminosity.

The optimisation procedure determines the optimal bin boundaries for a given
number of bins in eachM3body andMPID. The maximal figure of merit for each given
number ofMPID bins and number ofM3body bins combination is shown in Fig. 9.7.

One bin in either dimension means that the entireM range from 0 to 1 is a single
bin. This is equivalent to not using the classifier at all. The figure of merit has
small values if one or both classifiers are not used.

Two bins in either dimension mean that the range [0, 1] is split into two bins bl =
[0, x] and bh = [x, 1]. As stated in Sect. 3.4, the data in the lower bin is removed
from the analysis. This is equivalent to applying a selection requirementM > x.
It can be seen that a selection with both classifiers improves the figure of merit
significantly over ignoring one of the classifiers (change from blue to grass-green
in both data taking periods).

N bins withN ≥ 3 are a division of theM range intoN bins. As before the lowest bin
is not used in the analysis, all other bins are statistically independent counting
experiments. The figure of merit saturates in the red region between 8 and 9
for the 2012 data and between 4 and 5 for the 2011 data. It is expected that the
2011 data reaches a smaller figure of merit, since the sensitivity for the data set
which corresponds to the smaller integrated luminosity should be smaller.

The figure of merit must, by construction, increase when increasing the number
of bins, therefore no stagnancy or downward fluctuations can be seen in the plateau
region of Fig. 9.7.

2011 data: The figure of merit saturates at 4 bins in M3body and 4 bins in MPID.
The figure of merit is 4.40.

2012 data: The figure of merit saturates at 4 bins in M3body and 5 bins in MPID.
The figure of merit is 8.31. Figure 9.7 does not show the behaviour for larger num-
bers ofMPID bins because the number of possible binnings increases drastically and
therefore increasing the plot range would require more than a day of computing time.
As a single point the figure of merit for 4M3body bins and 7MPID bins was computed
and found to be 8.62.

The optimal bin boundaries are listed in Tab. 9.3.
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Figure 9.7: ∆Q as a function of the number of bins. If no classifi-
cation is applied in one of the classifiers (i. e. the number of bins is
one), ∆Q takes small values. ∆Q increases once a classification is
applied in both classifiers and increases further when the number
of bins is increased. Saturation is reached at four bins in M3body,
and 4 bins inMPID for 2011 data, and 5 bins for 2012 data.
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9. M3BODY DEVELOPMENT

Table 9.3: Optimal bin boundaries for the two classifiers.

M3body MPID

2012 data

0.15 0.35

0.35 0.65

0.70 0.70

n/a 0.85

2011 data

0.30 0.15

0.70 0.40

0.85 0.80

The binning optimisation uses the same data for the signal description and the
background description which is already used for the choice of the multivariate clas-
sifier. This can lead to “overtrained bin boundaries”. I. e. If two classifiers have identi-
cal performance, the choice is made based on a statistical fluctuation in the simulated
test sample or the inner sidebands. The background response distribution is thus bi-
ased to small values in this sample, the signal response distribution to large values,
which affects the positions of the bin boundaries. The bin boundaries can therefore
be at sub-optimal positions, the analysis is not biased because the signal response is
calibrated using an unbiased sample.

Invariant mass: The invariant mass binning is an ad-hoc choice of equidistant bins
of 5 MeV/c2 width covering the ±20 MeV/c2 signal region.
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10

Likelihood calibrations

10.1 Invariant mass

The distribution of τ → µµµ decays in the invariant mass bins is dominated by de-
tector resolution effects. The largest contribution to the detector resolution is the
track momentum resolution1 as described in [85]. The track momentum resolution
depends on the track momentum. Therefore the mass resolution for strongly boosted
τ is wider than for τ with a small boost. The sum of two Gaussian functions with a
common mean describes the τ → µµµ mass resolution:

f · G(m;µ, σ1) + (1− f) · G(m;µ, σ2) with σ1 < σ2. (10.1)

This model is found to describe the Ds → φ(µµ)π invariant mass distribution in sim-
ulated events and in data, too. The normalisation ratio f can be fixed to 0.7 without
degrading the shape description. The mass model fitted to the Ds → φ(µµ)π can-
didates is shown in Fig. 10.1 where an additional exponential function is added to
describe the background.

The phase space covered by Ds → φ(µµ)π decay products is similar to that of
τ → µµµ decay products. Furthermore, the invariant mass resolution of τ → µµµ and
Ds → φ(µµ)π in simulated events are compatible, as shown in Fig. 10.2. A first-order
correction is obtained from Ds → φ(µµ)π decays, correcting the simulated invariant
mass resolution to the observed mass resolution:

cµ :=
µDs, data

µDs, sim

cσ1
:=

σ1,Ds, data

σ1,Ds, sim

cσ2
:=

σ2,Ds, data

σ2,Ds, sim

The factors cµ, cσ1
, and cσ2

are then applied as correction to the simulated τ → µµµ
mass resolution.

µτ , data = cµ ·µτ , sim

σ1,τ , data = cσ1
·σ1,τ , sim

σ2,τ , data = cσ2 ·σ2,τ , sim

The assumed invariant mass resolution parameters are listed in Tab. 10.1 along with
the mass resolution in simulated events.

1The resolution of the track slopes is not dominant in the kinematic regime of τ → µµµ.
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Figure 10.1: Fit to the Ds → φ(µµ)π invariant mass distribution,
used for the calibration of the invariant mass resolution and the
sPlot of theM3body response.

Table 10.1: Invariant mass resolution parameters for τ → µµµ in
simulated events and after the application of the calibration.

year µ [MeV/c2] σ1 [MeV/c2] σ2 [MeV/c2]

2011 data 1779.1 ± 0.1 7.7 ± 0.1 12.0 ± 0.8

2011 sim 1779.1 ± 0.05 6.74 ± 0.031 12.12 ± 0.07

2012 data 1779.0 ± 0.1 7.6 ± 0.1 11.5 ± 0.5

2012 sim 1779.0 ± 0.05 7.11 ± 0.03 12.5 ± 0.1
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Figure 10.2: Mass resolution for simulated events for τ → µµµ
decays (black) compared to Ds → φ(µµ)π decays (red). The recon-
structed invariant mass is m, and the τ lepton or Ds meson mass
from [80] is mPDG.

The integral of the invariant mass distribution in the signal region for 2011 is
0.966, i. e. 3.4 % of possible τ → µµµ decays would not appear in the signal window
(0.961 and 3.9 % for 2012). The uncertainty on the invariant mass parameters is a
correlated uncertainty between this inefficiency and the signal distribution in the
invariant mass binning.

For the limit calculation three nuisance parameters arise from the invariant mass
shape calibration, one for each of µ, σ1, and σ2. They are assumed to be uncorrelated
among each other.

This assumption corresponds to the following seven invariant mass distributions
of the signal for each data taking period: A nominal one with the central values from
Tab. 10.1. Furthermore, one for an upward change of each parameter and one for
a downward change of each parameter. For the six latter ones, the normalisation
factor is corrected according to the corresponding change of the inefficiency of the
±20 MeV/c2 mass window.

Same parameters for the two data taking periods are assumed to be maximally
correlated. Different parameters are assumed to be uncorrelated. The mass shape
parameters are assumed to be uncorrelated to all other systematic uncertainties.

10.2 M3body calibration

For the usage of M3body in the analysis, the fraction of expected τ → µµµ decays in
eachM3body bin needs to be known. The fraction of τ → µµµ decays in aM3body bin
with bin boundaries [a, b] is:

ε(M3body > a|rec&sel&trig)− ε(M3body > b|rec&sel&trig).

These efficiencies cannot be measured for τ → µµµ decays. Instead the measured
efficiency for Ds→ φ(µµ)π is used.

Differences between the Ds → φ(µµ)π and τ → µµµ response distribution arise
from the following aspects:
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Figure 10.3: Comparison of the M3body response in simulated
events for τ → µµµ decays (blue) and Ds → φ(µµ)π decays (red).
The responses of Ds → φ(µµ)π decays are slightly higher than
τ → µµµ responses, as expected because Ds are pointing better
to the primary interaction vertex.

• The ratio of prompt Ds and non-prompt Ds is the same as the ratio of τ lep-
tons produced in the decays of prompt Ds and non-prompt Ds, but there is no
production mechanism corresponding to b→ τ transitions.

• Prompt Ds → φ(µµ)π decays are perfectly pointing. The undetected neutrino
in Ds → τντ leads to a small direction angle. The measured direction angle
distribution of Ds→ φ(µµ)π decays will therefore be better concentrated at 0.

• Considering that a Ds meson can undergo a φ(µµ)π decay or a τ (µµµ)ντ decay, it
is clear that the reconstructed flight distance2 of a τ → µµµ decay is longer than
that of a Ds→ φ(µµ)π decay.

These differences are assumed to be correctly described in simulated events be-
cause they are consequences of the τ life time, the τ and Ds mass, and the B → τX
decay kinematics. The response distributions for both decays in simulated events for
the 2011 simulation are shown in Fig. 10.3. The efficiency ratio

ετ (M3body > x)

εDs
(M3body > x)

is assumed to be correctly simulated. A calibration ofM3body is therefore obtained as
a first-order correction to the observed M3body response distribution of Ds → φ(µµ)π
decays.

εdata
τ (M3body > x) =

εsim
τ (M3body > x)

εsim
Ds

(M3body > x)
· εdata

Ds
(M3body > x) (10.2)

2As in Chap. 9, the reconstructed flight distance is always the measured distance between the three-
track vertex and the primary interaction vertex.

98



10.2. M3body calibration

M3body

0 0.2 0.4 0.6 0.8 1

re
la

ti
ve

ab
un

da
nc

e
[1
/
0.
05

]

0

0.02

0.04

0.06

0.08

0.1

Figure 10.4: M3body response distribution for Ds → φ(µµ)π decays
in simulated events (red) compared to the sPlot’ed distribution in
data (black). The former is identical to that shown in Fig. 10.3. The
responses for simulated events slightly better than for real decays.
This observed difference is used as correction to the simulated τ →
µµµ response distribution.

An alternate interpretation of the calibration formula is that if the response of
Ds decays is correctly simulated, then also τ decays are correctly simulated. Conse-
quently, if there is only a small difference between theM3body response of Ds decays
in data and the simulation, then a first-order correction to the simulated response
distribution of τ decays is sufficient

εdata
τ (M3body > x) =

εdata
Ds

(M3body > x)

εsim
Ds

(M3body > x)
· εsim
τ (M3body > x). (10.2 rearranged)

The M3body distribution for Ds → φ(µµ)π in data is obtained with the sPlot tech-
nique (see Appendix B.4 or Ref. [164]). The invariant mass distribution of Ds →
φ(µµ)π decays is fitted as in the calibration of the invariant mass shape. The sPlot’ed
M3body response distribution for Ds→ φ(µµ)π in data is shown in Fig. 10.4 along with
the response distribution for simulated Ds→ φ(µµ)π decays.

The final calibratedM3body response distribution, as expected for τ → µµµ decays
in data, is shown in Fig. 10.5. The figure shows the response distribution in simulated
events, too. The error bars indicate the statistical uncertainty.

Three contributions of statistical uncertainty are considered, the fit to the Ds data,
the finite size of the simulated Ds → φ(µµ)π sample, and the finite size of the simu-
lated τ → µµµ calibration sample. The size of the calibration sample is the dominant
contribution to the calibration for the 2012 data. For the 2011 data, no classifier de-
velopment is performed. There are therefore more simulated events for the simulated
calibration sample available. For the 2011 calibration, the fit to the Ds→ φ(µµ)π lim-
its the statistic uncertainty.
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Figure 10.5: CalibratedM3body response in the binning used in the
analysis (black) compared to the simulated response (blue). The
error bars indicate the statistical uncertainty, an additional sys-
tematic uncertainty of 0.01 is assigned to each bin. The calibrated
response distribution and the simulated response distribution do
not agree, which is why the calibration is applied in the first place.
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Figure 10.6: M3body response distribution in data, i. e. the back-
ground distribution. Background candidates occur much more at
smallM3body values than the signal, which is shown in Fig. 10.5.
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Figure 10.7: Illustration of the test of the calibration method. The
smeared simulated Ds → φ(µµ)π is treated like the data in the
actual calibration. The resulting calibrated τ → µµµ response dis-
tribution can be compared to the simulated τ → µµµ response dis-
tribution in the smeared simulation.

Systematic uncertainty

The calibration method is supposed to determine the τ → µµµ response distribution
in an experiment which can measure the Ds→ φ(µµ)π response, while the “true” τ →
µµµ response behaviour is only known in a reference experiment (= the simulated
experiment), in which the Ds → φ(µµ)π response can be measured, too. Whether
the calibration method predicts τ → µµµ responses correctly is tested with a second
simulated experiment, where the VELO resolution is altered. The VELO resolution
is chosen as test parameter because the VELO resolution affects most of the input
variables ofM3body. The test is illustrated in Fig. 10.7.

The VELO resolution is worsened in simulated events by Gaussian smearing of
the impact parameters of all reconstructed tracks, [154, Sect. 6.4]. This results in a
degraded resolution of the track impact parameters, but also of the τ impact param-
eter and direction angle, the τ decay time, its flight distance, and the track distances
of closest approach.

Using Ds → φ(µµ)π decays in smeared simulated events instead of real decays in
the calibration method leads to a prediction for the τ → µµµ response distribution in
smeared simulated events. The calibrated response distribution is compared to the
simulatedM3body distribution of the simulated τ → µµµ decays. The efficiencies

εsmear, sim(M3body > x) and εsmear, calib(M3body > x)

are compatible within 1 %, which is assigned as estimate for the systematic uncer-
tainty of the calibration method.
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10.3. MPID calibration

Nuisance parameters for the limit calculation
For each of the data taking periods, theM3body calibration determines the efficiency
of three bin boundaries (for the 2011 data sample 0.30, 0.70, and 0.85; for the 2012
data sample 0.15, 0.35, and 0.70). The resulting nuisance parameters are changes of
these efficiencies. They are considered uncorrelated among each other and uncorre-
lated among data taking periods. The systematic and statistical uncertainty for each
efficiency are added in quadrature to result in one uncertainty on each efficiency.

10.3 MPID calibration

Calibration of multiple particleMPID efficiencies from single
particleMPID efficiencies
The response distribution ofMPID for a single muon depends on the particle’s momen-
tum, p, its pseudorapidity η, and the occupancy of the particle identification system.
The latter is measured by the number of reconstructed charged particle tracks in the
event, Ntracks.

εcalib(MPID(µi) > x) = εcalib(pi, ηi, Ntracks) (10.3)

This dependency introduces a correlation between the responses for several muons
from a decay. For a single given τ → µµµ decay with an event occupancy Ntracks, and
the first muon’s momentum p1 and pseudorapidity η1, and correspondingly for the
other muons, the probability of all three muons to have a response larger than x is
therefore

εcalib(MPID(τ → µ1µ2µ3) > x) =

εcalib(p1, η1, Ntracks) · εcalib(p2, η2, Ntracks) · εcalib(p3, η3, Ntracks). (10.4)

Equation 10.4 can be applied for a single τ → µµµ decay with fixed pi, ηi, Ntracks.
The fraction ε of τ → µµµ decays among the full sample of τ → µµµ decays with
MPID > x is determined by summation over the simulated τ → µµµ decays.

εcalib(MPID(τ ) > x) =

1

N
·
∑

simulation

(
εcalib(p1, η1, Ntracks) · εcalib(p2, η2, Ntracks) · εcalib(p3, η3, Ntracks)

)
, (10.5)

The factors εcalib(pi, ηi, Ntracks) remain to be determined in data, which is done in the
following steps.

Calibration of single particleMPID efficiencies
A calibration, εcalib(p, η,Ntracks), is provided by the charged particle identification group
of LHCb, [85], in ranges of p, η, and Ntracks. A sample of b→ J/ψ(µµ) decays is selected
and and theMPID response distribution %(MPID) is determined with the sPlot method
(see Appendix B.4). When the J/ψ sample is restricted to a narrow range of muon mo-
menta p, muon pseudorapidities η, and a narrow Ntracks range, then the single muon
MPID > x efficiency is an integral of the observed sPlot

εcalib(p, η,Ntracks) =

1∫
x

%(MPID)dMPID.
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Table 10.2: Comparison of the calibrated MPID efficiency (using
b → J/ψ(µµ) decays) to the validation (using Ds → φ(µµ)π decays).
The uncertainties are described in the text.

MPID εfit εcalib εfit/εcalib =: c

2011

0.15 0.98 ± 0.01 0.987 ± 0.001 0.99 ± 0.01

0.40 0.90 ± 0.01 0.909 ± 0.002 0.99 ± 0.01

0.80 0.47 ± 0.01 0.528 ± 0.002 0.89 ± 0.02

2012

0.35 0.85 ± 0.01 0.927 ± 0.002 0.92 ± 0.01

0.65 0.66 ± 0.01 0.726 ± 0.002 0.91 ± 0.01

0.70 0.59 ± 0.01 0.672 ± 0.002 0.88 ± 0.02

0.85 0.37 ± 0.01 0.422 ± 0.002 0.88 ± 0.02

The classifiersMPID andM3body have a small correlation because the τ transverse
momentum is an input variable toM3body and theMPID classification depends on the
muon momentum. Therefore,MPID is calibrated in eachM3body bin individually. The
sum in Eq. 10.5 then ranges only over simulated τ → µµµ candidates with x1 <
M3body < x2. The calibrations of both classifiers are combined as:

εcalib(x1 <M3body < x2 ∧ y1 <MPID < y2) = (10.6)

εcalib(x1 <M3body < x2) · εcalib

(
y1 <MPID < y2

∣∣∣x1 <M3body, simulated < x2

)
Validation of theMPID calibration

To validate whether the MPID calibration using displaced J/ψ → µµ decays is accu-
rate for the expected τ → µµµ phase space coverage, the calibration is tested using
Ds→ φ(µµ)π decays as follows. For each Ds→ φ(µµ)π decay, a Bernoulli3 distributed
random number r is generated, and if r = 0 the positively charged muon is required
to have MPID > x, otherwise the requirement is imposed on the negatively charged
muon. The “average single-muon efficiency” is then the ratio

εfit :=
N(Ds→ φ(µ1µ2)π|MPID(µr) > x)

N(Ds→ φ(µ1µ2)π)

The denominator is determined with the aforementioned fit of the invariant mass
spectrum. The invariant mass spectrum of the Ds sample fulfilling the MPID(µr)
selection is fitted with the same fit model as before to determine the numerator.

This efficiency can also be determined with the calibration method, εcalib(x), the
resulting numbers are listed in Tab. 10.2.

The uncertainties in Tab. 10.2 are purely statistical for εcalib. For εfit a conservative
estimate for the total uncertainty is given: the statistical uncertainty is always found
below 0.005, the systematic uncertainty due to the fit model is estimated by varying
the fit range. The uncertainty due to the fit model cancels at first order in the ratio of
the yields with and without theMPID requirement.

3with p = 1/2
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10.3. MPID calibration

The results in Tab. 10.2 imply that the standard calibration is not fully suited for
the present analysis.

It has been investigated whether the difference between the two methods is mo-
mentum dependent. No significant trend, that the difference depends on p, pT , or η
is observed, limited by the accuracy of the fitted Ds → φ(µµ)π yield. Since no trend
is observed, it is sufficient to apply a zeroth order correction (as opposed to e. g. a
momentum dependent correction). In Eq. 10.4 the occurrence of εcalib(p, η,Ntracks) is
replaced by

εcalib(p, η,Ntracks)
replace
 

εfit(x)

εcalib(x)︸ ︷︷ ︸
=:cx

ε(p, η,Ntracks). (10.7)

The usage of a phase space averaged correction is motivated by the observation
that the correlation of the two MPID responses in Ds → φ(µµ)π is small. This is
observed as follows: the above fit is repeated after requiring both muons to fulfil the
requirement MPID > x. The fraction of Ds → φ(µµ)π passing the selection is called
εfit, 2(x), i. e. it is the efficiency for both muons passing theMPID selection. Comparing
εfit, 2(x) to the expectation in absence of a correlation it is experimentally found that
εfit, 2(x) and ε2

fit(x) agree up to O(1 %).
There are three muons in the final state of τ → µµµ, the final MPID calibration,

Eq. 10.5, is therefore corrected by the third power of cx

ε(MPID(τ ) > x) =
c3x
N
·
∑

simulation

(
ε(p1, η1, Ntracks) · ε(p2, η2, Ntracks) · ε(p3, η3, Ntracks)

)
. (10.8)

The resulting MPID distributions are shown in Fig. 10.8, it shows how a τ → µµµ
signal would be distributed over the MPID bins in data (if the branching fraction
would be high enough to observe it); i. e. Fig. 10.8 is theMPID projection of the signal
pdf.

Nuisance parameters for the limit calculation
The uncertainty on theMPID efficiencies are dominated by the uncertainty on cx, i. e.:

σ(ε(MPID(τ ) > x)) = 3 ·σcx .

The efficiencies for different bin boundaries and different data taking periods are
assumed to be uncorrelated. For each pseudo-experiment (PE) in the CLs method,
and for each data taking period y, and each MPID cut value x, a Gaussian random
number ϑMPID,y,x is generated; i. e. seven in total:

ϑMPID,2011,0.15, ϑMPID,2011,0.4, ϑMPID,2011,0.8

ϑMPID,2012,0.35, ϑMPID,2012,0.65, ϑMPID,2012,0.7, ϑMPID,2012,0.85

In the pseudo-experiment, the MPID > x efficiencies are then changed by ϑMPID,y,x

standard deviations from nominal value, i. e.:

ε(MPID > x)PE︸ ︷︷ ︸
used in PE generation

= ε(MPID > x)︸ ︷︷ ︸
nominal value

+ ϑMPID,y,x︸ ︷︷ ︸
random number

· σ(ε(MPID > x))︸ ︷︷ ︸
fixed number from Tab. 10.2

.

105



10. LIKELIHOOD CALIBRATIONS

MPID

0 0.5 1

re
la

ti
ve

ab
un

da
nc

e

0

0.2

0.4

0.6

0.8

1

(a) 2011

MPID

0 0.5 1

re
la

ti
ve

ab
un

da
nc

e

0

0.2

0.4

0.6

0.8

1

(b) 2012

Figure 10.8: Calibrated MPID response in the binning used in the
analysis (black). It shows how the responses of real τ → µµµ de-
cays would be distributed over theMPID bins in data, if there was
a signal. The large visible difference between the two data taking
periods is a feature of using different binnings in both years. For
comparison the MPID response in simulated events without any
correction is shown in red. The large discrepancy between the cal-
ibrated response and the simulated response is the reason for the
necessity of a data-driven calibration. The distribution of back-
ground candidates is shown in Fig. 10.9 for comparison.
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10.3. MPID calibration
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Figure 10.9: M3body response distribution in data, i. e. the back-
ground distribution. Background candidates occur much more at
smallMPID values than the signal, which is shown in Fig. 10.8 for
comparison. A logarithmic scale is chosen because the high MPID
bins would not be visible otherwise.
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10. LIKELIHOOD CALIBRATIONS

10.4 Role of the nuisance parameters in the limit
computation

The uncertainties of the likelihood calibration are considered in the generation of
pseudo-experiments for the CLs computation, described in Sect. 3.6. The number of
expected signal events in an analysis bin si is thereby the product of the total number
of signal events under a given signal hypothesis B(τ → µµµ) ·α−1 times the fraction
of signal events in that bin. The latter is related to the uncertainties determined
in this chapter. For each pseudo experiment and each uncertain parameter, a Gaus-
sian random number is generated to decide by how many standard deviations the
parameter is fluctuated.

Example: The mean of the invariant mass distribution for data taken in 2011 is

µ = (1779.1± 0.1) MeV/c2.

In a pseudo-experiment the Gaussian random number ϑµ will be generated and µ is
then assumed to be

µ = (1779.1 + ϑµ ·0.1) MeV/c2.

Similarly, the widths σ1 and σ2 are set to σ1 = (7.7 + ϑσ1 ·0.1) MeV/c2 and σ2 =
(12.0+ϑσ2

·0.8) MeV/c2 correspondingly. The fraction of τ → µµµ decays in each mass
bin is then computed for this distribution.

The nuisance parameters of the likelihood calibration are assumed to be uncorre-
lated among the data taking periods. Separate random numbers ~ϑ2011 and ~ϑ2012 are
therefore generated.
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Normalisation

The determination of the normalisation factor α is subject of this chapter. From the
analysis strategy it is given by

α−1 =
Nobs(Ds→ φ(µµ)π)

B(Ds→ φ(µµ)π)

B(Ds→ τντ)

f
incl.Ds
τ

ετ

εDs

. (5.2 revisited)

The factors are determined one after the other in the following sections. After-
wards, the full normalisation factor is determined and its uncertainties are discussed.

11.1 Ds→ φ(µµ)π yield and branching fraction

The yield of Ds → φ(µµ)π decays is determined with the fit to the invariant mass
spectrum in Sect. 10.1. The integral of the signal component is1

Nobs, 2011(Ds→ φ(µµ)π) = (2.321± 0.044)× 104

Nobs, 2012(Ds→ φ(µµ)π) = (5.213± 0.070)× 104.

The branching fraction B(Ds → φ(µµ)π) is obtained by multiplying B(Ds → φπ)
and B(φ → µµ) from [80]. The former uses an amplitude analysis of D+

s → K+K−π+

to account for the interference of D+
s → φ(K+K−)π+ with other processes, the most

dominant of which is D+
s →K∗(892)(K−π+)K+.

A non-φ-resonant contribution to B(D+
s → µ+µ−π+) is assumed to be negligible

due to the exclusion limits on this contribution [165]. This leads to

B(Ds→ φ(µµ)π) = (1.29± 0.14)× 10−5.

11.2 τ production fractions and B(Ds→ τντ)

To determine the uncertainty on the τ production fractions, the correlated sources
of uncertainties to the individual production modes need to be taken into account.
The uncertain input quantities to the cross section computation are the branching
fractions

• B(Ds→ τντ) = 0.0543± 0.0031

• B(D+→ τντ) = 0.00102± 0.00009

1These have been determined by Jonathan Harrison in [38].
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11. NORMALISATION

• B(b→ τX) = 0.0241± 0.0023

• B(b→ DsX) = 0.248± 0.037

• B(b→ D+X) = 0.233± 0.017

and the cross sections

• σ(pp→ DsX) = (197± 31) µb (7 TeV)

• σ(pp→ DsX) = (225± 35) µb (8 TeV)

• σ(pp→ D+X) = (645± 74) µb (7 TeV)

• σ(pp→ D+X) = (737± 85) µb (8 TeV)

• σ(pp→ bX) = (49± 8) µb (7 TeV)

• σ(pp→ bX) = (55± 7) µb (8 TeV).

The former are assumed uncorrelated. The latter have correlated sources of uncer-
tainties.

Writing the fractions σ(pp → τX)h as functions of these quantities, the cross
sections can be rearranged to only contain the ratios σ(pp → D+X)/σ(pp → DsX)
and σ(pp→ bX)/σ(pp→ DsX) and no other cross sections.

The ratio σ(pp→DsX)
σ(pp→D+X) is given in [129] under consideration of the correlation of the

systematic uncertainties of the two individual measurements, it is (0.305± 0.042).
The uncertainty on the ratio σ(pp → bX)/σ(pp → DsX) is estimated from the

uncertainty budgets in the respective papers2 as follows. The statistical uncertain-
ties are uncorrelated. Since the luminosity measurement at LHCb is assumed to be
dominated by systematic uncertainties [166], the uncertainties due to the luminos-
ity measurement are assumed to be maximally correlated despite the fact that the
measurements have been performed on disjoint data samples.

The systematic uncertainty due to the track finding efficiency is correlated as well.
Considering the updated measurement of the track finding efficiency, [87], the sys-
tematic uncertainty of the ratio σ(pp→ bX)/σ(pp→ DsX) is reduced as follows. The
uncertainty on the track reconstruction cancels twice in the ratio – the bottom cross
section is measured in a two track final state, the charm cross sections are measured
in a three track final state. – The uncertainty on the ratio of track reconstruction effi-
ciencies is therefore once the uncertainty of the single track reconstruction efficiency.

The difference of the numbers of final state hadron tracks between the two mea-
surements is three. Therefore, the uncertainty on the track reconstruction due to
hadronic interactions with the detector material is considered three times in the ra-
tio of cross section. These two effects add up to 2.9 % uncertainty on the ratio due to
the track reconstruction.

All other systematic uncertainties of the cross section measurements are assumed
to be uncorrelated.

The covariance matrix for the production fractions is computed by first order error
propagation as follows. The vector of production fractions is expressed as function of

2[129, 137, 134]
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11.2. τ production fractions and B(Ds→ τντ)

the uncertain input quantities:


f

Ds
τ

f
b→Ds
τ

f
D+

τ

f
b→Ds
τ

f
b
τ

 =: ~fτ

(
B(Ds→ τ ),B(D+→ τ ), . . . ,

σ(D+)

σ(Ds)
,
σ(b)

σ(Ds)

)
=: ~fτ (~x)

The Jacobi matrix A := ∂ ~f/∂~x is determined with computer algebra software. The
covariance matrix of ~x is diagonal with the uncertainties’ squares of the input quan-
tities on the diagonal, up to one off-diagonal entry for the correlation of the cross
section ratios3(see Appendix E).

Cov(~x) =



σ2
B(Ds→τ ) 0 . . . 0 0

0 σ2
B(D+→τ )

...
...

...
. . . 0 0

0 . . . 0 σ2
(
σ(D+)
σ(Ds)

)
0.0347

0 . . . 0 0.0347 σ2
(
σ(b)
σ(Ds)

)


The covariance matrix Cov( ~fτ ) is given by

Cov( ~fτ ) = ACov(~x)AT.

The correlation matrix the production fractions fhτ is computed using computer
algebra software and given in Appendix E. The uncertainty on B(Ds→ τντ) is hereby
excluded since it appears a second time in α. It is addressed separately below. The
tables in Appendix E refer to the τ production in the acceptance of the LHCb simula-
tion, because the “mixture” at that stage is needed for the simulation. Converting to
4π the central values for f incl.Ds

τ are found to be

f
incl.Ds
τ = 0.782± 0.027 for

√
s = 7 TeV

f
incl.Ds
τ = 0.790± 0.025 for

√
s = 8 TeV.

The uncertainties will be re-addressed in Sect. 11.5.

The uncertainty on the branching fraction B(Ds → τντ) is a correlated source of
uncertainty of f incl.Ds

τ and the remaining factors of α. The uncertainty on B(Ds→ τντ)

is addressed by calculating three values of f incl.Ds
τ , once using the nominal values for

all input quantities, once increasing B(Ds → τντ) by 1σ, and once decreasing B(Ds →
τντ) by 1σ. Consequently, three values for α can be computed where the fluctuated
value of B(Ds → τντ) and the correspondingly fluctuated value for f incl.Ds

τ are used.

30.0347 applies for
√
s = 7 TeV. For

√
s = 8 TeV the off-diagonal entry is 0.0248.
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11. NORMALISATION

The ratios B(Ds→τντ)

f
incl.Ds
τ

and its uncertainty due to the B(Ds→ τντ) are(
B(Ds→ τντ)

f
incl.Ds
τ

)
7 TeV

= 0.0718+0.0022
−0.0014(from B(Ds → τντ))± 0.0025(from before)(

B(Ds→ τντ)

f
incl.Ds
τ

)
8 TeV

= 0.0710+0.0021
−0.0013(from B(Ds → τντ))± 0.0022(from before).

The uncertainty due to B(Ds → τντ) is maximally correlated among the data tak-
ing periods.

Ds → φ(µµ)π branching fraction: The uncertainty on the branching fraction
B(Ds → φπ) appears to be a correlated source of uncertainty of the factor B(Ds →
φ(µµ)π and f incl.Ds

τ in the normalisation factor, because the Ds cross section measure-
ment used the Ds → φπ decay. It has however been confirmed that independent
measurements of B(Ds→ φπ) have been used in [129] and Sect. 11.1.

11.3 Efficiency ratio

The ratio of efficiencies is split into three factors. The probability that the decay of
a Ds meson or of a τ lepton, which is produced at a collision at LHCb is within the
detector acceptance, εacc; the probability that a decay in the detector acceptance can
be reconstructed and selected, εrec; and the probability that a reconstructible decay
fulfilling the selection requirements is accepted by the trigger, εtrig.

11.3.1 Acceptance
The acceptance – the fraction of τ → µµµ decays where all three final state particle
trajectories are within the sensitive region of the LHCb detector, and correspondingly
for Ds → Φ(µµ)π – is evaluated in simulated events and the uncertainty includes the
statistical uncertainty from the simulated sample size and is listed in Appendix E
for the individual production modes. Considering the uncertainty of the production
fractions, the acceptance ratio averages to(

εacc
τ /εacc

Ds

)
= 0.803± 0.043 at 7 TeV(

εacc
τ /εacc

Ds

)
= 0.799± 0.038 at 8 TeV.

11.3.2 Reconstruction and selection
The combined reconstruction and selection efficiency, excluding the selection cuts on
M3body and MPID selection, are determined using simulated events. Three correc-
tions are applied to the efficiency ratio due to a possibly incorrect description of the
track reconstruction efficiency, the muon pre-selection efficiency, and the φ resonance
description in the simulation. These corrections are described in the following para-
graphs. Before applying the corrections, the efficiency ratios are(

εrec
τ /εrec

Ds

)
= 1.381± 0.006 at 7 TeV(

εrec
τ /εrec

Ds

)
= 1.384± 0.006 at 8 TeV.
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11.3. Efficiency ratio

The uncertainty stems from the association of reconstructed objects to simulated
objects4: The reconstructed τ → µµµ candidates in simulated events contain a small
amount of background from the underlying events. Therefore counting the number
of selected candidates in the simulation cannot lead to a correct efficiency determina-
tion.

The invariant mass spectrum of the simulated events is fitted with the same
method as in Sect. 11.1 to determine the τ → µµµ and Ds → Φ(µµ)π yield in the
simulated events.

Track reconstruction efficiency correction

The ratio of the track reconstruction efficiency in simulated events and real events is
measured as a function of the track momentum and pseudorapidity with the tag-and-
probe method (see Appendix C.1). This correction factor is applied to every simulated
τ → µµµ and Ds→ φ(µµ)π decay. This results in a correction factor

ctrack :=

εtrack
τ (data)

εtrack
Ds

(data)

εtrack
τ (sim)

εtrack
Ds

(sim)

,

to correct the ratio of reconstruction efficiencies observed in the simulation to the
expected ratio of reconstruction efficiencies in data:

ctrack = 0.997± 0.009 for 2011 data

ctrack = 0.996± 0.009 for 2012 data

where the uncertainty is the statistical uncertainty from [87]. The uncertainty on
the hadronic interaction length for the pion in the Ds → φπ decay contributes an
additional uncertainty of 0.026 to these factors.

The measurement of the track reconstruction efficiency has not been performed
within the scope of the present analysis. The efficiency ratio (real data over simula-
tion) is taken from [87].

Muon identification efficiency correction

The performance of MPID is measured in Sect. 10.3. The muon pre-selection is ad-
dressed here. The efficiency of the pre-selection is measured by reconstructing J/ψ →
µµ decays in data without imposing muon identification requirements on one of the
muons (a tag-and-probe method as in Appendix C.1). The “success rate” of the muon
pre-selection on this sample is then pre-selection efficiency. To account for possible
background candidates in the J/ψ → µµ sample, the invariant mass spectrum is fitted
before and after applying the muon pre-selection – which yields the number of true
J/ψ → µµ decays.

The measurement has been conducted by the muon identification group [93]. The
ratio of the measured efficiency in data and in simulated events is used as a per-track
correction factor to the reconstruction efficiency observed in simulated decays. In the
case of τ → µµµ the correction is applied for all three tracks, for Ds → φ(µµ)π it is
applied for the two muon tracks.

4The explanation is written for τ → µµµ but applies to Ds → φπ in the same manner.
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11. NORMALISATION

The correction to the τ -to-Ds efficiency ratio is

cµ id :=

ε
µ id
τ (data)

ε
µ id
Ds

(data)

ε
µ id
τ (sim)

ε
µ id
Ds

(sim)

.

It is found to be

cµ id = 0.973± 0.003± 0.026 for 2011 data

cµ id = 1.007± 0.002± 0.020 for 2012 data.

where the first uncertainty is statistical and the second is systematic. The systematic
uncertainty is the difference between the actual efficiency of the muon pre-selection
in simulated events (in simulated events, it is known if a track is a muon) and the
efficiency measured with the tag-and-probe method.

Correction of the simulated φ resonance

The efficiency of the φ → µµ selection in the Ds → φ(µµ)π decay, based on the mass
cut (±20 MeV/c2 around the nominal value), is not correctly simulated because the
φ→ µµ resonance is not simulated according to the φ→ µµ line shape. The simulated
line shape is truncated at 988 MeV/c2 and 1085 MeV/c2 and includes a turn-on at the
lower end, as it would be expected for a two kaon final state. The integral of a non-
relativistic Breit-Wigner for this process5 outside of the simulated range is computed
to be 0.028. The integral of the simulated line shape within ±20 MeV/c2 of the φ mass
is therefore 0.934 instead of the simulated value of 0.962. The Ds → φ(µµ)π selection
efficiency is therefore decreased by ∼ 3 % with respect to the simulation.

It may seem arguable whether the φ line shape extends into the range between
twice the strange quark mass and twice the muon mass. Additionally, the range of
small invariant muon masses is subject to interference with other resonances. As
an alternative line shape model, the non-relativistic Breit-Wigner is truncated at the
kaon threshold without the kinematic turn-on. This leads to a smaller correction of
∼ 1 %.

The correction to the simulated efficiency of the di-muon mass requirement is
therefore taken to be 0.98±0.01, the mean of the two corrections and either difference
to the mean as uncertainty.

11.3.3 Trigger
The trigger efficiencies are determined in simulated events. To evaluate the uncer-
tainty, the TISTOS method (Appendix C.2) is applied to Ds → φ(µµ)π in simulated
and real events. The statistical uncertainty of this method is large. The difference
εDs

(TISTOS, data) − εDs
(TISTOS, simulation) of 5.2 % is significant due to the poor

sensitivity of the TISTOS method. As a conservative estimate, these 5.2 % are as-
signed as uncertainty to the trigger efficiency ratio.(

εtrig
τ /εtrig

Ds

)
= 0.6593± 0.0058 at 7 TeV(

εtrig
τ /εtrig

Ds

)
= 0.525± 0.040 at 8 TeV

5I. e. assuming that the φ resonance extends below twice the strange quark mass!
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11.4. Total normalisation factor α

The efficiency ratio has been computed by Jonathan Harrison in [38].

11.4 Total normalisation factor α

The full normalisation factor is given in Tab. 11.1. Those sources of uncertainty of the
normalisation factor which are uncorrelated to the distribution of τ → µµµ decays
over the analysis bins, are added in quadrature and called σα-normalisation. These are

• B(Ds→ φ(µµ)π)

• the number of observed Ds→ φ(µµ)π decays

• the correction to the track reconstruction efficiency

• the correction to the first muon pre-selection

• the efficiency ratio, except for the uncertainties which are correlated to the sig-
nal calibration, as listed in the following section.

The major difference between the two data taking periods are the integrated lumi-
nosities, which leads to a larger Nobs(Ds→ φ(µµ)π) in 2012.

Table 11.1: Factors of the normalisation factor. Uncertainties
marked with ∗ are correlated to the likelihood calibration and not
considered in the uncertainty of the product, σα-normalisation. They
are re-addressed in Sect. 11.5. The second column indicates if the
quantity is in the numerator or denominator of α.

2011 2012

f
incl.Ds
τ num 0.782 ± 0.027∗ 0.790 ± 0.025∗

B(Ds → φ(µµ)π) num (1.29± 0.14)× 10−5

B(Ds → τντ) den 0.0561± 0.0024∗

εDs
/ετ num 0.574 ± 0.039 0.47 ± 0.11

likelihood calibrations
(mass,MPID,M3body) den 0.68 ± 0.02∗ 0.49 ± 0.02∗

Nobs(Ds → φ(µµ)π) den (2.321 ± 0.044) × 104 (5.213 ± 0.070) × 104

α± σα-normalisation (5.36 ± 0.69) × 10−9 (3.32 ± 0.51) × 10−9

11.5 Correlated uncertainties of likelihood calibration and
normalisation

Some sources of uncertainties affect the calibrated likelihoods as well as the normal-
isation. The most simple one is the invariant mass shape. A change of the invariant
mass shape results in a changed distribution of the signal candidates over the mass
bins, but also changes the selection efficiency of |m −mτ | < 20 MeV/c2. As described
in Sect. 10.4, the three nuisance parameters (NP) of the invariant mass shape are
µ, σ1, and σ2. For variations of each of them by one standard deviation, a “fluctuated”
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11. NORMALISATION

normalisation factor is computed:

αn := α(NP at their nominal values)

αµ+ := α(µ increased by 1σ)

αµ− := α(µ decreased by 1σ)

...

and correspondingly for ασ1+, ασ1−, ασ2+, ασ2−. The normalisation factor in a pseudo-
experiment (PE) with nuisance parameters (NP) µ, σ1, and σ2 is then computed in
first order approximation from the relative changes of α

δµ+ := (αµ+ − αn)/αn

δµ− := (αn − αµ−)/αn

...

and correspondingly for δσ1+, δσ1+, δσ2+, δσ2+. For each NP a Gaussian (mean at 0 and
width of 1) random number ϑ is generated and the randomised normalisation factor
is:

αPE := αn ·
(

1 + ϑµ ·
{
δµ+ if ϑµ > 0

δµ− if ϑµ < 0

+ϑσ1 ·
{
δσ1+ if ϑσ1

> 0

δσ1− if ϑσ1
< 0

(11.1)

+ϑσ2
·
{
δσ2+ if ϑσ2

> 0

δσ2− if ϑσ2 < 0

)

For the τ production fractions a similar method is applied: For each principle
component, PCi, of the production fraction covariance matrix, a new simulated τ →
µµµ calibration sample is generated (see Sect. 9.2), where the production fractions are
changed by one standard deviation of PCi. With this altered calibration sample, the
calibration ofMPID andM3body are repeated and an altered distribution of τ → µµµ

over the multivariate bins is obtained. The fraction f
incl.Ds
τ is also recomputed for a

1σ variation of PCi, and the relative change of α is determined, called δPCi .
In the pseudo-experiment generation, a Gaussian random number ϑi is generated

for each of the principle components PCi. In this pseudo-experiment, α is then

αPE := αn

(
1 +

∑
i NP

ϑi ·
{
δi+ if ϑi > 0

δi− if ϑi < 0

)
, (11.2)

where the sum ranges over µ, σ1, σ2, and the PCi.
The number of τ → µµµ decays in each analysis bin si in the pseudo-experiment

is, in the same manner, the interpolation between the nominal fraction, si(nom), and
the varied fraction, si(PCi), with the same parameter ϑi:

si = si(nom)
∑
i

ϑi

(
si(PCi)− si(nom)

)
.
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11.5. Correlated uncertainties of likelihood calibration and normalisation

Table 11.2: List of nuisance parameters which influence both, the
distribution of a signal over the analysis bins and the normalisa-
tion factor. The relative change of the normalisation factor under
1σ fluctuations of the parameter are assumed to be maximally cor-
related among the two data taking periods (except for the the M
selection requirements).

nuisance parameter δ+ δ− δ+ δ−
2011 [%] 2012 [%]

mass parameter µ 0.032 0.037 0.035 0.040

mass parameter σ1 0.071 0.039 0.079 0.084

mass parameter σ2 0.38 0.43 0.061 0.071

B(Ds → τντ) 5.0 5.5 3.0 3.6

τ production fraction,
first principle component 0.14 2.6 0.44 1.0

τ production fraction,
second principle component 1.9 1.8 1.5 2.2

τ production fraction,
third principle component 0.73 0.41 1.2 0.80

τ production fraction,
fourth principle component 0.093 0.083 0.20 0.25

M3body > 0.30 (2011 data) 1.3 1.4

M3body > 0.15 (2012 data) 1.7 1.8

MPID > 0.15 (2011 data) 3.1 3.1

MPID > 0.35 (2012 data) 3.3 3.3

The uncertainty on B(Ds→ τντ) is treated in the same way as the PCi. The relative
changes of α for all nuisance parameters are listed in Tab. 11.2. As stated above, the
principle components listed in Tabs. E.6 and E.7 have the same physics behaviour
and are assumed to be maximally correlated for the different data taking periods, i. e.
in each pseudo-experiment the same value ϑi is used for both data taking periods.

Adding the uncertainties which do not alter the distribution of τ → µµµ decays
over the likelihood bins (i. e. the uncertainty quoted in Tab. 11.1) to Eq. 11.2 leads to

αPE := αn

(
1 +

∑
i NP

ϑi ·
{
δi+ if ϑi > 0

δi− if ϑi < 0

)

+ ϑnormalisationσα-normalisation . (11.3)
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Limits for the τ → µµµ decay

12.1 Inspection of the mτ mass region

The invariant mass spectrum is fitted in the invariant mass sidebands. The inte-
gral of the fitted probability density function in the signal region is the expected
background yield in the signal region. The fit function describes two background pro-
cesses, the D+ → K−π+π+ background and the combinatorial spectrum. All other
processes are sufficiently suppressed by not using the lowest bin ofMPID.

The combinatorial background is described by an exponential function.
The D+ → K−π+π+ contribution is described by a Crystal Ball function. As an

example, the bin with 0.7 <M3body < 0.85 andMPID < 0.15 in the 2011 data is shown
in Fig. 12.1. This bin is not used in the analysis but the shape of the D+ → K−π+π+

is best visible.
The numbers of expected background events in the different multivariate likeli-

hood bins are listed in Tab. 12.1 and 12.2, where the invariant mass bins are inte-
grated out. The uncertainties are the statistical uncertainties from the fit to the side-
bands. The highest likelihood bin1 for each data taking period is shown in Fig. 12.2
for both data taking periods. The binning in the figure is chosen to coincide with the
mass bin boundaries and the border of the outer and inner sidebands. The statistical
uncertainty on the fit result is visualised as the green band in the fit region. Within

1See the footnote on page 126 for an explanation of this tautological term.

Table 12.1: Expected and observed background event yield in the
multivariate likelihood bins for 2011 data.

MPID bin M3body bin N(expected) N(observed) fit quality
χ2/ndf

0.15 – 0.4 0.3 – 0.7 212.4 ± 0.2 200 1.6

0.15 – 0.4 0.7 – 0.85 24.8 ± 2.7 20 0.4

0.15 – 0.4 0.85 – 1 21.1 ± 1.8 16 0.7

0.4 – 0.8 0.3 – 0.7 71.1 ± 3.1 76 0.8

0.4 – 0.8 0.7 – 0.85 12.6 ± 1.3 14 0.4

0.4 – 0.8 0.85 – 1 5.6 ± 0.9 7 1.7

0.8 – 1 0.3 – 0.7 6.3 ± 0.9 7 1.5

0.8 – 1 0.7 – 0.85 1.8 ± 0.5 4 2.1

0.8 – 1 0.85 – 1 1.1 ± 0.4 1 2.2
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12. LIMITS FOR THE τ → µµµ DECAY
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Figure 12.1: The 2011 data with 0.7 <M3body < 0.85 andMPID <
0.15, fitted with the background fit model: a combinatorial con-
tribution in dashed magenta and a Crystal ball function for the
D+→ K−π+π+ in dashed black. The combined fit function is shown
in solid blue, all three curves are drawn in the fit range. The in-
terpolated combined fit function is shown in dashed blue in the
signal region. The green band indicates the 1σ uncertainty band
on the fitted function. The lower part of the figure shows the pulls
– the difference between the (integrated) fit function and the ob-
served event count per bin divided by the statistical uncertainty –
red lines indicate 2σ deviations.

the range which is not considered in the fit, i. e. inner sidebands and signal region,
the fit result is shown as dashed line. The inner sidebands are the outermost two bins
on each side of that range, the innermost 8 bins are the signal region.

The exponential model for the combinatorial background is found compatible with
a linear function, which has been tested by repeating the fit to the sidebands with
a linear function instead of the exponential function. In a second test, the range
in which the data is fitted has been increased to include the inner sidebands, too.
The expected background yields found with the increased fit region are compatible
with the nominal fit range, while a bias towards lower values due to the optimisation
procedure cannot be ruled out. No systematic uncertainty is assigned due to these
effects.

The uncertainties on the expected background yields are assumed uncorrelated
for different multivariate likelihood bins and maximally correlated for different in-
variant mass bins in the same multivariate likelihood bin.
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12.1. Inspection of the mτ mass region
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Figure 12.2: The invariant mass spectra for the candidates in the
highest multivariate likelihood bins for both data taking periods.
The fit function is shown in solid blue in the fit range. The interpo-
lated fit function is shown in dashed blue in the signal region. The
green band indicates the 1σ uncertainty band on the fitted func-
tion. The lower part of the figures shows the pulls – the difference
between the (integrated) fit function and the observed event count
per bin divided by the statistical uncertainty – red lines indicate
2σ deviations.
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12. LIMITS FOR THE τ → µµµ DECAY

Table 12.2: Expected and observed background event yield in the
multivariate likelihood bins for 2012 data.

MPID bin M3body bin N(expected) N(observed) fit quality
χ2/ndf

0.35 – 0.65 0.15 – 0.35 336.1 ± 7.3 349 1.3

0.35 – 0.65 0.35 – 0.7 122.6 ± 4.1 115 1.5

0.35 – 0.65 0.7 – 1 37.4 ± 2.3 33 1.0

0.65 – 0.7 0.15 – 0.35 28.7 ± 2.0 25 0.6

0.65 – 0.7 0.35 – 0.7 6.8 ± 2.7 8 0.5

0.65 – 0.7 0.7 – 1 2.4 ± 1.4 4 1.4

0.7 – 0.85 0.15 – 0.35 50.1 ± 2.6 54 0.7

0.7 – 0.85 0.35 – 0.7 25.5 ± 1.9 18 0.9

0.7 – 0.85 0.7 – 1 10.7 ± 1.3 5 1.5

0.85 – 1 0.15 – 0.35 11.0 ± 1.2 8 0.7

0.85 – 1 0.35 – 0.7 7.6 ± 1.0 6 0.2

0.85 – 1 0.7 – 1 3.7 ± 0.7 3 1.8

In the pseudo-experiment generation, the uncertainties on the expected yield of
background events is considered as nuisance parameter. I. e. for each likelihood bin
i, a Gaussian random number ϑi is generated. Assume, that the estimation of the
expected number of background events in the eight mass bins are bi,j ± σb,i,j . In this
pseudo experiment the background hypothesis is then set to a mean number of bi,j +
ϑi ·σb,i,j in likelihood bin i and mass bin j. The truncation, mentioned in Sect. 3.6,
is applied by repeating the random number generation if the result is negative. The
number of observed background events in the pseudo-experiment in each bin is then
a Poissonian random number with mean bi,j + ϑi ·σb,i,j .

12.2 Upper limit on B(τ → µµµ)

The numbers of expected events from the background fit and the numbers of observed
events in the different likelihood bins are given in Tabs. 12.1 and 12.2. The uncer-
tainties are purely the uncertainties on the estimated mean of the event count, an
additional Poissonian fluctuation is expected. The background-only expectation is in
agreement with the observation, especially considering Poissonian fluctuations of the
observed events around the expectation.

The number of expected signal decays for a given branching fraction hypothesis is
computed using the normalisation factor from Chap. 11 with

N(τ → µµµ) =
B(τ → µµµ)

α
.

The distribution of the signal over the analysis bins, as determined in Chap. 10.
The CLs method is applied as explained in Sect. 3.7 to determine the sensitivity:

For branching fraction hypotheses B from 1× 10−8 to 5× 10−6 the test statistics Q is
defined as

Qobs = −2 ln

∏
i

(si+bi)
ni

ni!
e−(si+bi)∏

i
(bi)ni

ni!
e−bi

,

122



12.2. Upper limit on B(τ → µµµ)
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Figure 12.3: CLs as a function of the assumed branching frac-
tion. The solid black line is the observed CLs value. The blue
dashed line, the yellow band, and the green band are the me-
dian, the central 68 % coverage interval, and the central 95 % cov-
erage interval of the CLs distribution under the background hy-
pothesis. The observed CLs is well within the expected range,
i e. the data is compatible with the background hypothesis. At
B(τ → µµµ) = 7.1 × 10−8, the observed CLs value drops below
0.1, i. e. branching fractions above 7.1 × 10−8 are excluded at 90 %
confidence level.

where the product ranges over all bins. Nuisance parameters do not occur in the test
statistics, i. e. they are not floating in the test statistics but fixed to their nominal
values instead. The expected Q distribution for both hypotheses (only background or
background with the presence of an additional signal of B) is determined with pseudo-
experiments. In each pseudo-experiment, a Gaussian random number ϑj is generated
for each nuisance parameter to determine the value of the nuisance parameter in the
pseudo-experiment, i. e. the nuisance parameters are not fixed to their nominal values
in the pseudo-experiment generation but randomised instead.

The expected and observed CLs values are then used to decide if the branching
fraction hypothesis is expected to be rejected (expected CLs < 0.1) and if the branch-
ing fraction hypothesis is actually rejected (observed CLs < 0.1).

At 90 % confidence level, the exclusion limit is expected to be within 4.1×10−8 and
8.7×10−8, with a central value of 5.9×10−8. It is observed that B(τ → µµµ) is smaller
than 7.1× 10−8 at 90 % confidence level, well in agreement with the expectation. Fig-
ure 12.3 shows the observed CLs values as a function of B(τ → µµµ), as well as the
range in which CLs is expected.

The nuisance parameters, which are randomised in the pseudo experiment gener-
ation, are listed in Tab. 12.3.
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12. LIMITS FOR THE τ → µµµ DECAY

Table 12.3: Nuisance parameters (NP) of the pseudo experiment
generation. The categories are those used in Tab. 12.4.

nuisance parameter (NP) N parameters
2011/2012 reference category

invariant mass shape (µ, σ1, σ2) 3 Sect. 10.1 signal NP

M3body 3 Sect. 10.2 signal NP

MPID 3/4 Sect. 10.3 signal NP

τ production fractions 4 Sect. 11.2 signal NP

B(Ds → τν) 1 Sect. 11.2 signal NP

normalisation 1 Sect. 11.4 α-normalisation NP

background expectation 9/12 Sect. 12.1 background NP

12.3 Influence of nuisance parameters

If all nuisance parameters are fixed to their nominal values in the pseudo-experiment
generation the expected sensitivity “improves” to 5.6 × 10−8. Only some of the nui-
sance parameters are randomised in each scenario in Tab. 12.4, the other nuisance
parameters remain fixed to their nominal values, i. e. ϑj is set to zero in all pseudo-
experiments instead of to a Gaussian random number. The three scenarios are

background fluctuating only the expected number of background events in the pseudo-
experiment generation,

signal fluctuating only the signal distribution over the analysis bins in the pseudo-
experiment generation,

α-normalisation fluctuating only the the normalisation factor, for the sources of
systematic uncertainty on the normalisation factor which are uncorrelated to
the signal distribution.

The nuisance parameters of the signal distribution and the normalisation do not
alter the expected sensitivity significantly. The uncertainty on the background esti-
mation degrades the sensitivity. There is no need to improve the likelihood calibration
methods beyond its current accuracy, but the analysis would profit from an improved
background estimation.

12.4 Review of the binned analysis procedure

The searches for τ → µµµ in [3, 167] appear simpler than the present work by avoid-
ing a binned event classification. Both analyses apply an event selection without
event classification. The present analysis can thus not be directly compared to these
analyses in terms of numbers of background events, produced τ leptons, and selec-
tion efficiencies: each of them is a single number in [3] and [167] but 21 numbers in
the present work. A curious analyst is therefore interested in the sensitivity gain by
performing the presented binned search, whilst complicating the comparison to other
results.

For simplicity, the nuisance parameters are fixed to their nominal values in the
following studies. Furthermore, only the binning in the multivariate classifiers is
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12.4. Review of the binned analysis procedure

Table 12.4: Influence of the nuisance parameters (NP) on the sensi-
tivity quantified by the expected exclusion limit. The sensitivities
for the individual data taking periods are given as well, the influ-
ence of separate nuisance parameter categories is not evaluated for
the separate data taking periods.

randomised nuisance parameter
(NP)

sensitivity
both years

[10−8]

sensitivity
2011

[10−8]

sensitivity
2012

[10−8]

no NP randomised 5.5 8.9 7.2

only signal NP randomised 5.6 - -

only α-normalisation NP randomised 5.6 - -

only background NP randomised 5.8 - -

all NP randomised 5.9 9.4 8.2

observed 7.1 14.5 7.3

investigated, the nominal binning in the invariant mass is used. The binned analysis
of the data taken in 2012 has an expected sensitivity of 7.2× 10−8, see Tab. 12.4.

The highest likelihood bin is the bin with the highest (multivariate) likelihood
values2. As illustrated in Fig. 12.4, the highestM3body bin is the bin with the highest
M3body values; for the 2011 data this is the bin 0.85 <M3body ≤ 1.0; for the 2012 data
this is the bin 0.70 <M3body ≤ 1.0. Correspondingly, the highestMPID bin is the bin
0.80 < MPID ≤ 1.0 for 2011 and 0.85 < MPID ≤ 1.0 for 2012. The highest bin in the
two-dimensional likelihood binning is consequently the bin with

0.85 <M3body ≤ 1.0 and 0.80 <MPID ≤ 1.0

2This tautology is a definition and not a finding of statistics.

Figure 12.4: Illustration of the term “highest bin” for a binned
quantity. The example shows a binning inM3body –M3body is shown
on the x-axis – Whether a bin is a “high” M3body bin is thus inde-
pendent of the y value – these are random numbers here to achieve
a visibility of the bins. The M3body values increase from left to
right, the highest M3body values are therefore in the bin which is
furthest to the right.
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Figure 12.5: Quantification of analysing only a single analysis bin
for the 2012 data sample. The signal hypothesis in (a), (c), and
(d) is the expected sensitivity of the nominal analysis with fixed
nuisance parameters. (a): shows the expected number of signal
candidates, the projections are shown in Figs. 10.5 (b) and 10.8 (b),
up to an overall scaling due to the signal hypothesis. The pattern
is a consequence of the bin widths. (b): the number of expected
background candidates, as listed in Tab. 12.2, (c)&(d): the signal to
background ratio and the signal significance resulting from (a) and
(b).

for 2011, and
0.70 <M3body ≤ 1.0 and 0.85 <MPID ≤ 1.0

for 2012. The highest bin is commonly regarded as most interesting and relevant,
and therefore picked as example illustration (e. g. [168]). In the work of [127], it is
actually shown that the highest likelihood bin of the B0

s → µµ analysis is also the best
bin (defined as below). The expected exclusion limit using only the highest likelihood
bin in 2012 is 2.5× 10−7, as indicated by the colour of the top right bin in Fig. 12.6.

The best bin is defined to be the analysis bin which provides the best sensitivity if
the decay τ → µµµ is sought for in this bin alone. The best bin is not necessarily the
highest bin3.

For each analysis bin, the intermediate results of the nominal analysis are re-
used: the background estimate from Sect. 12.1 for that bin is used as background

3Since the binning is done in a multivariate likelihood, “highest bin” is the natural abbreviation for
“the bin which is the highest on the likelihood axis” or “the bin which comprises the highest likelihood
values”.
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Figure 12.6: The expected sensitivity on B(τ → µµµ) when
analysing only a single analysis bin of the 2012 data sample. The
colour indicates the expected limit, the numbers indicate the rank-
ing of the bins, 1 being the bin with the best sensitivity; this
best bin is on the bottom right, with 0.7 < M3body ≤ 1.0 and
0.35 <MPID < 0.65. This bin has also the best signal significance.
The ranking of signal significances is similar but not identical to
the sensitivity ranking. The highest likelihood bin is the bin on the
top right, marked by ∗.

prediction. The number of expected signal decays (for a given B(τ → µµµ) hypothe-
sis) is determined with the normalisation factor (Chap. 11) and the fraction of signal
decays in that bin, given by the calibration (Chap. 10).

As normalisation factor for the single bin analyses, the nominal normalisation
factor, corrected by the fraction of the signal decays in that bin, is used. The number
of expected signal candidates for B(τ → µµµ) = 5.0 × 10−8, the number of expected
background candidates are shown in Fig. 12.5. The signal-to-background ratio as well
as s/

√
s+b are shown in Fig. 12.5 along.

The resulting “single bin sensitivities” are illustrated in Fig. 12.6. It is visible,
that the most sensitive bin is not the bin with the highest signal likelihood, marked
with a ∗ in Fig. 12.6. This best analysis bin alone achieves an expected sensitivity of
1.8×10−7. Furthermore, comparing Fig. 12.6 to Fig. 12.5 (c) and (d), it becomes visible
as well that s/b is a poor measure of the sensitivity of a search while the best s/√s+b
bin has the best sensitivity. It must still be noticed that s/√s+b does not correctly re-
produce the sensitivity ordering: the second largest s/√s+b value is 0.39 in the highest
M3body and second MPID bin, although this bin has only the third best sensitivity,
indicated in Fig. 12.6.

The best bin is 0.7 < M3body ≤ 1.0 ∧ 0.35 < MPID ≤ 0.65. This, however would
not be chosen as a selection for an unbinned analysis, since the requirementMPID ≤
0.65 is non-physical. A remedy is the best possible bin, as described in the following
paragraph.

The best possible bin is an attempt to emulate an unbinned analysis which uses
both multivariate classifiers. The selection requirement M3body > x ∧MPID > y is
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Figure 12.7: Expected sensitivities for different single-bin scenar-
ios. The colour indicates the range in M3body and MPID which is
analysed. The same colour scale as in Fig. 12.7 is used in all fig-
ures.

emulated by adding bins. Then the sensitivity for an analysis using this selection is
determined by applying the CLs method with one analysis bin.

The resulting “merged bin sensitivities” are illustrated in Fig. 12.7, where the
coloured area shows which bins are merged and the colour indicates the sensitivity.
The best possible bin reaches an expected sensitivity of 8.8×10−8, resulting from 47.5
expected background events and one expected signal decay at a branching fraction
hypothesis of 1.2× 10−8.

Comparing this sensitivity of 8.8 × 10−8 to the sensitivity of the nominal analysis
with the 2012 data, 7.2 × 10−8, shows that the binned analysis gains approximately
18 % in sensitivity. Due to the limitation of only testing selections at bin boundaries,
18 % is an upper estimate for the improvement.

The best single measurement by the Belle collaboration [3] expects 0.13 ± 0.06
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12.5. Comparison to other measurements of B(τ → µµµ)

background events, which is to be compared to 216.7±6.2 expected background events
in the best possible bin (summing the expected numbers of background events from
Tab. 12.2). The number of expected signal events in [3] for a branching fraction of
B(τ → µµµ) = 5.0 × 10−8 is 2.1, which is to be compared 12.3 in the best possible
bin for the same branching fraction hypothesis (summing the merged bin contents in
Fig. 12.5 (a)).

12.5 Comparison to other measurements of B(τ → µµµ)

Comparison to the published result of LHCb
The sensitivity of the present analysis is similar to the sensitivity of the best previ-
ous experiments, [3, 167]. A study by [169] of the data used in [4] showed that the
sensitivity of LHCb is expected to improve with

Limit
(
B(τ → µµµ)

)
∝
√
σbkg · L
στ · L

≈ 1√
σL

(12.1)

if the analysis remains unchanged. LHCb will continue operations in 2015 and the
inclusive τ production cross section is expected to increase due to a higher centre-of-
mass energy of

√
s = 13 TeV. Since τ leptons are produced in bottom and charm de-

cays, and since the background processes are also bottom and charm decays, the cross
section for background will increase in the same way. A correction to the latter as-
sumption might be necessary because the cross section for combinatoric background
candidates can receive an enhancement due to a higher detector occupancy (the parti-
cle density is increased at a higher centre-of-mass energy). Additionally, the detector
occupancy depends on the number of primary collisions at a bunch crossing (pile-up)
and the detector’s capabilities to distinguish consecutive bunch crossings (spill-over;
it is planned to operate the LHC at a 25 ns bunch spacing in the future).

A small deviation from Eq. 12.1 can be expected from an updated classifier bin-
ning, as shown in Appendix A, the optimal binning is a function of the integrated
luminosity.

This work analysed the same data, with the same event selection as the analysis
published by the LHCb collaboration in [5]. The present work finds

B(τ → µµµ) < (5.9+2.8
−1.8)× 10−8 expected

while [5] reports

B(τ → µµµ) < (5.0+2.4
−1.6)× 10−8 expected

at 90 % confidence level. The differences between the published result and this anal-
ysis shall shortly be listed here. A summary is given in Tab. 12.5.

τ production: The τ production fractions have been re-computed here with respect
to [5]. The numeric values differ slightly due to different rounding precisions.
The differences are much smaller than the assigned uncertainties. The uncer-
tainties in the present work are evaluated by means of the principle components
of the covariance matrix. In the analysis in [5] the uncertainties of the τ produc-
tion fractions are considered uncorrelated4. The method of principle components

4up to the overall normalisation
∑
f = 1.
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12. LIMITS FOR THE τ → µµµ DECAY

is more rigorous. However, given that the signal nuisance parameter do not al-
ter the sensitivity in either this work or [5], the τ production cannot account for
the different results.

The τ production fractions enter the computation of the expected and the ob-
served limit in the same manner.

Binning: The present work used the observed event count in the inner sidebands in
the optimisation of the bin boundaries. In [5] a parametrisation of the distribu-
tion of background events in both classifiers has been developed; based on the
work by [127]. Ultimately, both methods are limited by the small event count
in the inner sidebands for high likelihood values: the method presented here
is sensitive to statistical fluctuations. This is acceptable because the sensitiv-
ity does not depend strongly on deviations from the optimal boundary position,
as shown in Appendix A. The method in [5] requires a parametrisation of the
M3body andMPID distribution for the background events in the inner sidebands
and this parametrisation needs to be developed on same small event count in
the inner sidebands with high likelihood values.

Any effect of the different binning optimisation enter the computation of the
expected and the observed limit in the same manner.

M3body technique: An ensemble selection [9, 10] of multivariate classifiers, based
on the TMVA classifiers developed within this work, is used in [5]. Twice as many
simulated events of signal and background have been available for its training.
The improvement is estimated to be around 6 % in the final sensitivity, [8], com-
bined with the binning. This 6 % could only be evaluated once the τ → µµµ
sidebands (the invariant mass region in which the background fit is performed)
have been unblinded.

Table 12.5: Breakdown of differences between [5] and the present
work and their impact on the expected exclusion limit, except for
values marked with ∗, which contributes only to the difference
of the observed exclusion limits. Values marked with † are only
known after the unblinding of the calibration data, values marked
with ‡ are only known after the unblinding of the signal region,
values marked with z are only known after the unblinding of the
background region.

sensitivity difference

τ production ±0 %

treatment of the uncertainties of the τ production ±0 %

M3body classifier
and binning
prior / after background unblinding

O(5 %) / 6 %z

M3body calibration
i. e. difference in data/simulation differences 11 %†z

B(Ds → φ(µµ)π) −2 %

Poissonian fluctuation of observed background
around expected background 22 %∗‡z∑

expected / observed 15 %†z / 35 %∗†‡z
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12.5. Comparison to other measurements of B(τ → µµµ)

The event classification withM3body affects the computation of the expected and
the observed limit in the same manner.

Normalisation: The normalisation in [5] uses the Ds → φ(µµ)π branching fraction
measurement from [170], this compares to the present as follows:

B(Ds→ φ(µµ)π) = (1.29± 0.14)× 10−5 present work

B(Ds→ φ(µµ)π) = (1.32± 0.10)× 10−5 [5].

This factor in the normalisation factor α applies both, to the expected and the
observed limit, linearly.

M3body calibration: In the classifier development, based on simulated events, the
performance of M3body in the present work and in [5] are rather similar (6 %,
see above). The difference between the expected exclusion limits of [5] and the
present analysis is partially due to this. The remaining difference is introduced
by the calibration – the difference between the M3body performance on Ds →
φ(µµ)π decays in simulated and real events is larger in the present work than
in [5]. It is unknown why one of the two M3body versions is more vulnerable to
data/simulation differences.

The calibration is an unblinding of the calibration data. The classifier choice
must not be done due to the calibrated performance since changing the analysis
after the unblinding is forbidden.

The calibration is used in the computation of the expected and the observed
limit.

In the present analysis and in [5], the difference between the expected and ob-
served limits are well compatible with Poissonian fluctuations. The present analysis
observes a O(0.4σ) upward fluctuation:

(5.9+2.8
−1.8)× 10−8(exp.) vs. 7.1× 10−8(obs.),

while [5] observes a O(0.2σ) downward fluctuation:

(5.0+2.4
−1.6)× 10−8(exp.) vs. 4.6× 10−8(obs.).

The uncertainties on the expected limits here are the 1σ range of the Poissonian
fluctuations of the event counts.

Since both analyses analysed the same LHCb data, the overlap of events se-
lected by both versions of M3body is determined for cut values x with efficiencies of
20 %, 40 %, 60 %, and 80 %. For all four efficiencies, the overlap is only around 60 %,
i. e.

ε(M3body,here > x ∧M3body,[5] > x)

ε(M3body,here > xhere)
≈ 0.6.

Observing a mild upward fluctuation in the present work, and a mild downward fluc-
tuation in [5] at a correlation coefficient of 0.6 is therefore possible.
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12. LIMITS FOR THE τ → µµµ DECAY

Combination of the LHCb result with previous measurements
The combination of the Belle result, [3], and the BaBar result, [167], with the LHCb
publication [5] has been reported to be

B(τ → µµµ) < 1.2× 10−8 [171].

The LHCb measurement, [5], leads to a small improvement in this combination.
Without the LHCb data, the combination of Belle and BaBar is

B(τ → µµµ) < 1.4× 10−8 [11].
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Model dependence

The exclusion limit on the branching fraction B(τ → µµµ) determined in the previ-
ous chapter assumes that the 3-body phase space is flat and the distribution over the
Dalitz plane is thus constant. Various models for physics beyond the Standard Model
do not fulfil this assumption. Exclusion limits for phase space distributions in effec-
tive theories are determined in this chapter. The analysis remains unchanged, only
the efficiency ratio in the normalisation factor and the distribution of τ → µµµ over
the analysis bins are reevaluated.

13.1 Separation in effective phase space distributions

The model independent analysis of τ → µµµ by [72], presented in Sect. 1.3, finds
that three effective operators need to be taken into account. Allowing for an overall
normalisation N , any effective Hamiltonian can be written as linear combination of
the three operators,

Heff = N
(
c1H

(LL)(LL)
eff + c2H

(LL)(RR)
eff + c3H

rad
eff

)
.

The phase space distribution of the decay τ → µµµ for the full Hamiltonian is then a
linear combination of the phase space distributions for the individual operators and
their interferences (N ′ is again a normalisation constant to ensure

∫
% = 1)

%(m2
−−,m

2
+−) = N ′

(
|c1|2 %(LL)(LL)

V (m2
−−,m

2
+−)︸ ︷︷ ︸

=:%1

+|c2|2 %(LL)(RR)
V (m2

−−,m
2
+−)︸ ︷︷ ︸

=:%2

+|c3|2 %(LR)
rad (m2

−−,m
2
+−)︸ ︷︷ ︸

=:%3

+ 2|c1c3| cos arg(c1/c3)︸ ︷︷ ︸
=:|c4|2

%
(LL)(LL)
int (m2

−−,m
2
+−)︸ ︷︷ ︸

=:%4

+ 2|c2c3| cos arg(c2/c3)︸ ︷︷ ︸
=:|c5|2

%
(LL)(RR)
int (m2

−−,m
2
+−)︸ ︷︷ ︸

=:%5

+2|c1c2| cos arg(c1/c2) %
((LL)(LL))↔((LL)(RR))
int (m2

−−,m
2
+−)︸ ︷︷ ︸

≈0

)
.
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13. MODEL DEPENDENCE

With the definitions of %i, |c4|2, and |c5|2, this is reads in short:

%(m2
−−,m

2
+−) = N ′

5∑
i=1

|ci|2%i(m2
−−,m

2
+−).

As stated in Sect. 1.3, the interference between the vector operators H(LL)(LL)
eff and

H
(LL)(RR)
eff can be neglected because the interference of different helicity final states

is suppressed by m2
µ/m2

τ .

13.2 Efficiency dependence

The following paragraphs are just a mathematically more rigorous formulation of the
efficiency determination method in Sect. 11.3.

The efficiency which is used in the nominal analysis, εnom is a phase space aver-
aged value:

εnom =

∫∫
dm2
−−dm2

+− ε(m
2
−−,m

2
+−)%nom(m2

−−,m
2
+−)

where %nom(m2
−−,m

2
+−) =

1

VDalitz
= const.

The integration is carried out by Monte Carlo integration. The integrand in the Monte
Carlo integration is the observed phase space distribution of τ → µµµ decays in the
sample of simulated τ → µµµ decays after applying the reconstruction, event selec-
tion, and trigger requirement:

εnom =
1

Nsample

∑
sample

1

cVDalitz
, (13.1)

where VDalitz is the volume of the kinematically allowed phase space, and c is a con-
stant to make the summand dimensionless. The value of c is not determined as it
drops out later.

For the above linear combination of phase space distributions, the efficiency inte-
gral becomes

ε(Heff) =

∫∫
dm2
−−dm2

+− ε(m
2
−−,m

2
+−)

5∑
i=1

|ci|2%i(m2
−−,m

2
+−).

The integral can be rearranged1 to

ε(Heff) =

5∑
i=1

|ci|2
∫∫

dm2
−−dm2

+− ε(m
2
−−,m

2
+−)%i(m

2
−−,m

2
+−)︸ ︷︷ ︸

=:εi

=

5∑
i=1

|ci|2εi.

1[172]
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13.3. Signal distribution

Table 13.1: Efficiency ratios εi/εnom for different phase space dis-
tributions relative to a flat phase space distribution. The efficiency
hereby includes acceptance, trigger, and event selection, except for
the requirements on the minimum multivariate classifier response.
The uncertainties are the statistical uncertainty due to the finite
size of the simulated sample. The values have been determined by
[38].

2011 data 2012 data

%
(LL)(LL)
V 1.0049±0.0019 1.0060±0.0016

%
(LL)(RR)
V 1.0772±0.0010 1.0680±0.0008

%
(LR)
rad 0.6318±0.0017 0.6422±0.0014

%
(LL)(LL)
int 0.9193±0.0027 0.9280±0.0023

%
(LL)(RR)
int 1.0124±0.0013 1.0089±0.0010

This transformation is only possible when expressing the full phase space distri-
bution as a linear combination of the five phase space distributions %i. Due to the
interference terms, the expansion cannot be done for the three effective Hamiltoni-
ans.

The efficiency is expected to depend strongly on the phase space distribution due
to the veto against η → µµγ decays. Requiring the simulated decays to be within
the detector acceptance, pass the trigger, be reconstructed, and fulfil the selection
requirements immediately yields the dependence of the full efficiency as a function of
(m2
−−,m

2
+−) as the observed phase space distribution, shown in Fig. 13.1. The impact

of the φ veto and the η veto is visible in Fig. 13.1, the double reconstruction veto is
hardly visible because the requirement m−− > 250 MeV/c2 is very close to the edge
of the Dalitz plot.

The efficiency for each of the phase space distributions is determined using Monte
Carlo integration with the simulated τ → µµµ decays, again.

εi =
1

Nsample

∑
sample

%i(m
2
−−,m

2
+−)

c
,

with the same constant c as in Eq. 13.1. The only difference with respect to Eq. 13.1 is
that instead of a constant 1/VDalitz a non-constant phase space distribution %(m2

−−,m
2
+−)

is summed/integrated.
It follows

εi
εnom

=
1

Nsample
VDalitz

∑
sample

%i(m
2
−−,m

2
+−) ∀1 ≤ i ≤ 5

These five sums have been evaluated by Jonathan Harrison for each data taking
period separately. The results, εi/εnom, are summarised in Tab. 13.1. As expected,
the most striking model dependence is found for the radiative operator where the
dominant contribution is the η veto.

13.3 Signal distribution

The signal distributions over the analysis bins for the different phase space distribu-
tions are obtained as in Chap. 10 for the nominal analysis, weighting the events in
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Figure 13.1: The relative deviation from the average efficiency as a
function ofm2

−− andm2
+−. The efficiency in bins which are partially

outside of the kinematically allowed region is low due to the η veto
or veto of double reconstructed tracks. The fraction of those bins
which is outside of the allowed phase space is taken into account in
the computation, i. e. the visualised efficiency in those bins is not
biased to small values due to the binning.
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13.4. Sensitivities

the simulated τ → µµµ calibration sample (see Sect. 9.2) with
∑ |ci|2%i(m2

−−,m
2
+−).

13.4 Sensitivities

The determination of the expected and observed exclusion limit for the branching
fraction B(τ → µµµ) is repeated with the CLs method as in Chap. 12. As state above,
the following modifications are made to account for the altered phase space distribu-
tion:

• For simplicity, the nuisance parameters related to the distribution of τ → µµµ
over the analysis bins are fixed to their nominal values.

• The nominal normalisation factor is corrected by the aforementioned efficiency
ratio

α→ α ·
(∑

|ci|2
εi
εnom

)−1

• The signal distribution over the analysis bins for the weighted calibration sam-
ple is used instead of the un-weighted calibration sample.

The expected and observed exclusion limits for different phase space distributions
are summarised in Tab. 13.2. The differences with respect to the nominal analysis,
are close to the efficiency ratios quoted in Tab. 13.1, i. e. the dominant dependence on
the decay kinematics in introduced by the efficiency.

Since no combination of complex numbers c1, c2, c3 can lead to |c1|2 = |c2|2 = |c3|2 =
|c4|2 = 0 6= |c5|2, there cannot be any new physics model with a phase space distri-
bution of %5 (and correspondingly for %4). The “exclusion limits” for %4 and %5 are
necessary for the following parametrisation.

The upper limit on a branching fraction in Eq. 3.4 is

B(τ → µµµ) < Limit(τ → µµµ) ∝ 1

ε
.

The other terms are not phase-space-distribution dependent. Above it is found that
ε(Heff) =

∑ |ci|2εi. This means, that when the Hamiltonian of a new physics model is
expanded as a linear combination of the effective operators

Heff = N
(
c1H

(LL)(LL)
eff + c2H

(LL)(RR)
eff + c3H

rad
eff

)
and for each of the phase space distributions an exclusion limit is known

B(τ → µµµ, %(m2
−−,m

2
+−) = %i) < Limit(τ → µµµ, %(m2

−−,m
2
+−) = %i) =: Li ∀1 ≤ i ≤ 5,

then the limit on the branching fraction for the phase space distribution of the new
physics model is

B(τ → µµµ, via Heff) .

(
5∑
i=1

|ci|2
Li

)−1

(13.2)

Equation 13.2 is for analyses with a single analysis bin strictly valid. For the
present analysis it holds approximately, due to the a possible influence of the phase
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13. MODEL DEPENDENCE

Table 13.2: Expected and observed exclusion limits for B(τ → µµµ)
for different phase space distribution of the decay. The nuisance
parameters labelled as “signal NP” in Tab. 12.3 are fixed to their
nominal values. All numbers are given at 90 % confidence level.
There are four categories of phase space distributions, separated
by horizontal lines. Firstly, the expected and observed exclusion
limit for the nominal analysis. Secondly, the exclusion limits for
pure contributions from one of the effective operators. Thirdly,
the exclusion limits for the unphysical phase space distributions
of the interference terms. Fourthly, exclusion limits for simple lin-
ear combinations of effective operators. For the latter ones, the
exclusion limit for the parametrisation in Eq. 13.2 is given, too.

distribution exclusion limit

expected
[10−8]

observed
[10−8]

parametric
observed
[10−8]

% =const 5.8 7.0 -

%1 := %
(LL)(LL)
V 5.8 L1 :=6.9 -

%2 := %
(LL)(RR)
V 5.4 L2 :=6.5 -

%3 := %
(LR)
rad 9.1 L3 :=10.8 -

%4 := %
(LL)(LL)
int 6.3 L4 :=7.5 -

%5 := %
(LL)(RR)
int 5.8 L5 :=6.9 -

1
2
·
(
%

(LL)(LL)
V + %

(LR)
rad

)
7.0 8.4 8.4

1
2
·
(
%

(LL)(RR)
V + %

(LR)
rad

)
6.8 8.1 8.1

1
2
·
(
%

(LL)(RR)
V + %

(LL)(RR)
V

)
5.6 6.7 6.7

1
4
·
(
%

(LL)(LL)
V + %

(LR)
rad + 2%

(LL)(LL)
int

)
6.6 7.9 7.9

1
4
·
(
%

(LL)(RR)
V + %

(LR)
rad + 2%

(LL)(RR)
int

)
6.3 7.5 7.5

space distribution on the the distribution of the signal over the multivariate likeli-
hood bins. The validity of the approximation can be seen in Tab. 13.2, where the
parametric exclusion limit coincides with the exact calculation within the printed
rounding precision. For a given new physics model thus only the coefficients |ci|2 need
to be determined to obtain an exclusion limit on B(τ → µµµ) based on the present
analysis.

The results in Tab. 13.2 show that the limit on new physics models with a pure
vector contribution (%1, %2, or linear combinations like 1/2(%1 + %2)) is stronger than
the nominal analysis with the assumption of a flat phase space distribution. The
exclusion limit of the nominal analysis is, however, too strong for new physics models
with a radiative contribution. The same is observed in [5].
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Conclusion

In the Standard Model, the lepton flavour violating decay τ → µµµ is expected to
occur at unobservable low rates. Models for physics beyond the Standard Model,
however, can predict larger rates and they can be constrained by observed limits on
the branching fraction.

The search for the lepton flavour violating decay at LHCb has reached a sensitivity
similar to previous experiments at e+e− colliders. The entire data set taken by LHCb
in the first run of the LHC is analysed in this work. In the absence of a signal, it is
expected to obtain an exclusion limit between 4.1× 10−8 and 8.7× 10−8. The observed
exclusion limit,

B(τ → µµµ) < 7.1× 10−8

is in the expected range. The sensitivity is reached by applying a multivariate event
classification which separates the data into 21 independent search regions.

The application of a classification, instead of a simpler “cut-and-count” technique
contributes approximately 18 % to the sensitivity. The classification technique de-
veloped in this work has been picked up in an ensemble selection within a different
multivariate toolkit. Together with a a larger sample of simulated events, the publi-
cation in [5] expects an exclusion between 3.4× 10−8 and 7.4× 10−8 and observes

B(τ → µµµ) < 4.6× 10−8.

The largest part of the difference of the observed exclusion limits between both anal-
yses is compatible with Poissonian fluctuations of the observed event count around
the background expectation, additionally to an improvement of 15 % in the expected
limit.

The current world combination of τ → µµµ searches (including the LHCb publica-
tion [5]) is

B(τ → µµµ) < 1.2× 10−8.

The above exclusion limits are valid for the precise decay sought for, a τ → µµµ
decay with a flat phase space distribution. Within an effective theory, exclusion limits
for other phase space distributions can be computed. The exclusion limits can be
as low as 6.9 × 10−8 or as large as 1.1 × 10−7. The latter for a dominant radiative
contribution.

The LHC and LHCb will continue operations in 2014. The sensitivity can be ex-
pected to improve with the square root of the τ production, 1/

√
σL.
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A

Toy studies on classifier binning

To illustrate the benefit of using several analysis bins, a toy study is performed. Sim-
ulated candidate events have one propertyM which can be thought of being a multi-
variate classifier, which discriminates signal from background. For each event,M is
a number between 0 and 1. Signal events have a flat distribution inM. Background
events have an exponential distribution inM.

P (M(event) < v|event is signal) = v (A.1)

P (M(event) < v|event is background) = N · (1− e−5v) (A.2)

with a normalisation N =
1

1− e−5

One of these two assumptions can be achieved by means of a monotonous variable
transformation.The other is a choice motivated by [168, Fig. 3].

A.1 Application of a classifier requirement

The CLs method, as described in Sects. 3.5 through 3.7, is used to determine the
expected sensitivity of an experiment. The outcome of the study does not depend on
α. For simplicity α is set to 10−3 prior to the application of a selection. If a selection
is applied, α is corrected correspondingly α → α/ε. The results do not depend on the
choice of α.

A.1.1 Selection requirement vs. no selection requirement
Firstly, it is shown that applying a selection requirement improves the sensitivity of
a rare decay search.

To quantify the effect of introducing a selection requirement, ten scenarios are
compared for b = 90 expected background events. Not applying a requirement, and
applying nine different requirements M > x with equally spaced values from 0.1 to
0.9 for x. The expected upper limit as a function of x shown in figure A.1.

There are two extreme cases. The selection is not restrictive enough, atM > 0.0,
where the efficiency is 100 % and all background events are selected. The sensitivity
improves when increasing x. The other extreme case is at M > 0.9. The efficiency
is only 10 % and 4 remaining background events are expected to be selected. It is
pointed out that the expected upper limit for the extreme caseM > 0.9 is worse than
the expected upper limit without a selection requirement.

Among the requirements tested, the best sensitivity is obtained requiringM > 0.4
with an efficiency of 60 %. The application of a selection requirement improves the
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Figure A.1: Expected upper limit of the toy experiment as a func-
tion of the selection requirement on the classifier. The most left
point,M > 0 corresponds to not applying a selection requirement.

expected upper limit from 0.017 to 0.011. The function looks “nonsmooth”, which is a
consequence of the discrete nature of the observable. The nonsmoothness vanishes
when choosing larger numbers of expected background events, as shown in Fig. A.2.

A.1.2 Optimal selection for increasing integrated luminosity
When more data is accumulated it is worth restricting the selection further. The
number of expected background events is changed to 6 different values from 5 to
30 000. For each of these, the expected upper limit under the background hypothesis
is shown as a function of the selection requirementM > x in Fig. A.2. At high b, the
minimum is found at higher values than at low b.

At first sight, the study shown in Fig. A.2 only shows that the selection must be
more restrictive when large numbers of background events are expected, and that in
these cases the sensitivity degrades.

One can also consider this study as an increase of the integrated luminosity when
correcting α correspondingly. The number of expected background events should be
linear to the accumulated integrated luminosity. Furthermore α ∝ 1/L. The results
from Fig. A.2 are summarised in Tab. A.1 with the minimal upper limits from the
figure (UL × 10−3) and with a luminosity corrected normalisation factor (UL × α(L)).
One finds that the selection must be more restrictive when more data is accumulated.

The optimal selection requirement shows the same nonsmooth behaviour as UL
for small values of b, visible as “jump” from 0.4 to 0.3 and back for b = 30. Testing for
b each integer number from 30 to 90, one finds that the optimal value for x fluctuates
between 0.3 and 0.5, with a general trend that the optimal value becomes larger with
increasing b. It is visible from Fig. A.2 that the optimal selection requirement of 0.6
or 0.7 for large values of b is not optimal for small values of b and not within the range
of the fluctuations observed. The finding that the selection must become restrictive is
thus not a result of fluctuations.
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(f) b = 30000

Figure A.2: Expected upper limit for different numbers of expected
background events with α = 10−3. The ordinate ranges change in
the respective subfigures. The ranges of the abscissae are the same
in all subfigures.
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Table A.1: Expected upper limits for the best selection in Fig. A.2.
No uncertainties are given since the numbers are either exact or
the dominant uncertainty is rounding to two significant digits.

L[a.u.] α(L) b UL× α(L) UL× 10−3 best selection
M > x

1 1.8 × 10−2 5 0.069 0.0038 0.4

6 3 × 10−3 30 0.022 0.0075 0.3

18 1 × 10−3 90 0.011 0.011 0.4

60 3 × 10−4 300 0.0055 0.018 0.6

600 3 × 10−5 3000 0.0015 0.050 0.6

6000 3 × 10−6 30000 0.00045 0.15 0.7
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Figure A.3: Comparison of the expected upper limit in an analysis
with a selection requirementM > x (blue hair cross) to an analysis
in two bins withM > x andM < x respectively (black circle). The
data points from the former are identical to those shown in Fig. A.1.

A.2 Application of binning

It is argued in Sect. 3.4 that it is favourable to do an analysis in bins over the applica-
tion of a selection requirement. The behaviour of the sensitivity of a binned analysis
is illuminated in this section.

A.2.1 Two bins compared to a selection requirement
As an example, the same toy setup as before (b = 90) is used to compare the applica-
tion of a selection requirementM > x to an analysis in two bins, where x is the bin
boundary.

The result is shown in Fig. A.3. For each tested value of x, the binned analysis is
equally or better performing than the analysis with a selection requirement. In the
extreme case x = 0, both analyses are identical. In contrast to the findings of the
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Figure A.4: Comparison of the sensitivity of a binned analysis
(black circle) to the sensitivity using a selection requirement (blue
hair cross). The ordinate ranges change in the respective subfig-
ures. The ranges of the abscissae are the same in all subfigures.

previous section, the binned analysis cannot perform worse than the extreme case of
x = 0. As an example, the expected upper limit for x = 0.9 in the binned analysis
is still better than the analysis with x = 0. The change from the optimal selection
requirement to the optimal binned analysis improves the expected upper limit from
1.1×10−2 to 9.6×10−3. The optimal bin boundary is at x = 0.6, which does not coincide
with the optimal selection requirement atM > 0.4.

The same comparison, between an analysis with a selection requirement to an
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Table A.2: Expected upper small for the best selection and best
binning in Fig. A.2. No uncertainties are given since the numbers
are either exact or the dominant uncertainty is rounding to two
significant digits.

b
best

selection
UL× 10−3

(selection)
best bin

boundary
UL× 10−3

(bins)
relative im-
provement

5 0.4 0.0038 0.4 0.0036 6.7 %

30 0.3 0.0075 0.6 0.0064 14 %

90 0.4 0.011 0.6 0.0096 17 %

300 0.6 0.018 0.6 0.016 13 %

3000 0.6 0.050 0.7 0.046 8.9 %

30000 0.7 0.15 0.7 0.14 6.5 %

analysis in two bins, is shown for different values of b in Fig. A.4. The expected
upper limit as a function of x in the binned analysis tends to be smoother than in the
analyses with a selection requirement. The optimal bin boundaries are situated at
larger values than the optimal selection requirement.

The sensitivity improvement for changing from a selection requirement to a binned
analysis is different for the tested scenarios as summarised in Tab. A.2. It is sus-
pected that the relative improvements at small values for b are dominated by the
fluctuations, mentioned earlier. At large values for b, a trend is visible that the im-
provement shrinks It is not investigated if this stems from the step size of possible
values for x.

Note

• One might be interested in not only optimising the expected upper limit, but also
to keep the 1σ range of the expected upper limit at limited size. Conversely, if
the 1σ range increases drastically in the optimisation, the experiment’s outcome
would be dominated by (un)lucky fluctuations instead of the achieved optimisa-
tion. The behaviour of the 1σ range of the expected upper limit for b = 90 is
shown in Fig. A.5. No increase of the width of the 1σ interval within which the
upper limit is expected is observed as a side effect of the optimisation.

A.2.2 Multiple bins

The scenario of using two analysis bins is compared to that with three analysis bins,
for b = 90. The expected upper limit becomes a function of two bin boundaries, x1 and
x2, and is shown in Fig. A.6. The findings are invariant under exchange of x1 and x2.
The outer most rows and columns correspond to either of the bin boundaries being 0
or 1, which means that one bin vanishes. The same holds for the diagonal x1 = x2.
The expected upper limit as a function of e. g. x1 for x2 = 0 is identical to that shown
in Fig. A.3.

The minimum is 9.0×10−3 at x1 = 0.7 and x2 = 0.4. Neither of the bin boundaries is
the optimal bin boundary for the analysis with two bins (x = 0.6, yielding an expected
upper limit of 9.6× 10−3). The analysis with three bins thus improves the sensitivity
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Figure A.5: Expected upper limit and its 1σ range for the toy study
using 2 bins as function of the position of the bin boundary. The
data points at 1 and 0 are identical as these are the cases where
only one bin spans from 0 to 1.
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Figure A.6: Expected upper limit for an analysis with three bins
as bin boundaries x1 and x2. The cases where x1 = x2, xi = 0, or
xi = 1 are identical to analyses with two bins. Cases where both xi
take pathological values 1 or 0 are identical to not applying binning
or a selection requirement.
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Figure A.7: Expected upper limit for an analysis with three bins as
bin boundaries x1 and x2 for different numbers of expected back-
ground events.

Table A.3: Optimal expected upper limits for an analysis with a
selection requirement, two bin, and three bins compared, for differ-
ent numbers of expected background events. Numerical errors are
smaller than the rounding precision.

b
UL× 10−3

(selection)
UL× 10−3

(2 bins)
UL× 10−3

(3 bins)

relative im-
provement

(2→ 3 bins)

relative
improvement

(sel.→ 3 bins)

30 0.0075 0.0064 0.0060 6.5 % 19 %

90 0.011 0.0096 0.0090 6.4 % 17 %

300 0.018 0.016 0.015 7.5 % 19 %

3000 0.050 0.046 0.042 7.9 % 16 %

30000 0.15 0.14 0.13 8.6 % 14 %

by 6.4 % over the analysis with two bins. The improvement over the application of a
selection requirement is 17 %.

For illustrative purposes, Fig. A.7, shows the same for the extreme cases b = 5 and
b = 30 000. The conclusions of the previous sections hold: The optimal bin boundaries
depend on the number of expected background events (the absolute number, indepen-
dent of the normalisation factor). The bin boundaries need to be put at larger values
for higher numbers of background events. The optimal bin boundaries using three
bins do not coincide with the optimal bin boundary using two bins. Increasing the
number of bins optimally therefore can not be done by splitting one bin into two.

The improvement for increasing the number of bins from two to three increases
for larger numbers of expected background events, as summarised in Tab. A.3.

A.2.3 Multi-dimensional binning

In the search for τ → µµµ a binning is applied in two dimensions,MPID andM3body.
The binning can be regarded as two one-dimensional binnings. The simplest approach
is to find an optimal binning in the two dimensional range, is to find an optimal
binning inMPID regardless of the distribution of signal and background inM3body and
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vice versa. Because the marginal distributions of the two-dimensionalMPID×M3body
distribution are input to the optimisation, this procedure of finding a two-dimensional
binning is called marginal optimisation here.

The marginal optimisation will, however, not yield an optimal two-dimensional
binning. In the entireM3body range, there are more background events expected than
in the range of high M3 body values. Therefore, the MPID binning which would be
found optimal in the high M3body range would be different from that found in the
entireM3body range.

As a hand waving argument, most of the sensitivity comes from highM3body range
– see Fig. A.3, where the improvement going from a selection to a binning is much
smaller than the improvement from introducing a selection. On that scale, the usage
of the bin with M < x is only a small sensitivity gain. Consequently, an optimal
MPID binning must be found in the highest M3body bin. This is also done in [127,
Sect. 3.2.3]. Optimising the binnings in MPID and M3body introduces a circular ref-
erence, since one must be known to find the other. As a consequence, an optimal
two-dimensional binning must be found by varying the bin boundaries in both di-
mensions simultaneously to optimise an analysis with NPID ·N3body bins; where NPID
is the number of bins inMPID and N3body is the number of bins inM3body.

A.3 Figure of merit for classifier binning

In the previous sections, the expected sensitivity of the toy experiment has been stud-
ied. It is desired to choose a binning in a real analysis which optimises the sensitivity.
The approach from the toy study, trying several bin boundary settings and finding the
optimal, is not possible in real applications. The toy study presented in the previous
section needed O(100) CPU weeks for only three bins. The search for τ → µµµ used
5 bins in theM3body in [4]. The complexity of the problem scales with

(
n
k

)
, where n is

the number of places where a bin boundary is allowed to be, and k is the number of
bin boundaries. The optimisation would thus have occupied the computing cluster of
the Heidelberg LHCb group for roughly 300 weeks.

For the analysis, an expected sensitivity thus cannot be computed for each possible
binning due to computing constrains. This conclusion is also found in [127], where ∆Q
is used as a figure of merit.

A.3.1 Punzi’s figure of merit
A commonly used figure of merit is the signal significance s/

√
s+ b. As described

in [124] this is not optimal in the case of small statistics. It is found there that the
optimal figure of merit is

FOMPunzi :=
ε

a/2 +
√
b
, (A.3)

where a is “the number of sigmas corresponding to one-sided Gaussian tests at [the
desired] significance.”

Note

• Punzi’s figure of merit is independent of the branching fraction which is searched
for. It is thus favourable over the signal significance.
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Figure A.8: Comparison of the CLs expected upper limit (at 90 %
confidence level) to Punzi’s figure of merit (for 1.28σ) for b = 90. The
expected upper limits as a function of a selection requirement from
Fig. A.1 (black dots, left ordinate axis) behaves similar as Punzi’s
figure of merit (open stars, right ordinate axis).

• Punzi’s figure of merit does not have a natural analogue for an analysis in mul-
tiple bins. It does not behave additive or multiplicative under random splits,
like Q (see appendix B.1).

• For a = 1.28, the number of sigmas of a one sided 90 % confidence interval,
FOMPunzi agrees moderately well with the findings of Sect. A.2, as illustrated
in Fig. A.8. The maximum of FOMPunzi and the minimum of the expected upper
limit do not coincide perfectly. It is assumed to be an effect of either the discrete-
ness of event counts, which is not considered in FOMPunzi, or the fact that in the
derivation of FOMPunzi the Poisson distribution is approximated by a Gaussian
distribution, which does not hold in the toy study for b = 90 once a selection
requirement is applied (For the optimal selection, 12 background events are ex-
pected). The maximum of FOMPunzi and the minimum of the expected upper
limit are closer to each other when larger values for b are chosen.

A.3.2 Difference of median test statistics

A figure of merit closely related to the CLs method is ∆Q, as motivated in [127],
therein called ∆LQ . ∆Q is the difference between the medians of the Q distribution
under the s+ b hypothesis and the b hypothesis.
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A.3. Figure of merit for classifier binning

Qmed
s+b = −2 ln

Ls+b(xi = bi + si)

Lb(xi = bi + si)

Qmed
b = −2 ln

Ls+b(xi = bi)

Lb(xi = bi)

∆Q = Qmed
b −Qmed

s+b

The computation of ∆Q does not require a complex Monte Carlo integration, as
opposed to the computation of CLs values. As pointed out in [127], the reduction of
required computing resources, using ∆Q instead of CLs as a figure of merit, makes a
binning optimisation feasible.

As pointed out by [127], assuming Wilk’s theorem [173], one can interpret ∆Q as
significance square, at which the b and s+ b hypotheses are separated.

For the toy scenario with 2 bins, the expected upper limit as a function of the
position of the bin boundary is compared to the behaviour of ∆Q. The comparison is
shown in Fig. A.9 for b = 90. The minimal expected sensitivity is achieved with a bin
boundary at 0.6 while ∆Q is maximal at 0.7 or 0.8, depending on the assumed s + b
hypothesis. The s+b hypothesis for B = α leads to a maximum of ∆Q at higher x than
the s + b hypothesis with B = α × ULbest 2 binned, the best sensitivity for two analysis
bins found earlier. The latter is closer to the bin boundary with the best sensitivity.
For smaller values of b the discrepancy is larger while from b = 3 000 onward the
toy study didn’t find a discrepancy between the true optimum and either of the ∆Q
maxima.

It is concluded that ∆Q enables analysts to find the optimal bin boundaries, if
the expected event count in all bins remains large enough. This is similar to the
observation that FOMPunzi finds the optimal selection criterion only if the expected
number of background events which are selected remains large enough to justify the
approximation of the Poisson distribution by a Gaussian distribution.

Note

• ∆Q depends on a s+ b hypothesis.

• The optimal bin boundaries found using ∆Q are only the true optimal bin bound-
aries, if enough expected remain in every bin. For practical reasons this must
be ensured anyhow, as mentioned already in [127].
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Figure A.9: Comparison of the CLs expected upper limit (at 90 %
confidence level) to ∆Q for b = 90. The expected upper limits as a
function of the bin boundary from Fig. A.3 (black dots, left ordinate
axis) behaves similar to ∆Q for one expected signal decay (i. e. B =
α; red crosses, arbitrary units) and 11 expected signal decays (i. e.
the branching fraction equal to the expected upper limit found in
Tab. A.2; open circles, right ordinate axis).
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B

Statistics glossary

B.1 Behaviour of Q under random splits

It is claimed in Sect. 3.5 that the test statistics Q is invariant under random splits
of an analysis bins. WLOG, consider the case that the full data set is split into two
bins. Let s and b be the total numbers of expected signal and background events,
respectively, and si and bi for i = 1, 2 the corresponding numbers for each of the two
bins. It follows that

s = s1 + s2

b = b1 + b2.

If the split is randomly done the fraction of signal events which get classified in the
first bin, s1/s, is equal to the fraction of background events which get classified in the
first bin, b1/b:

f :=
s1

s
⇒ s1 = fs

b1 = fb

s2 = (1− f)s

b2 = (1− f)b

The definition of λ can immediately be simplified, as most factors appear in the
numerator and the denominator:

λ2 bins =

∏2
i=1

(si+bi)
ni

ni!
e−(si+bi)∏2

i=1
b
ni
i

ni!
e−bi

=

∏2
i=1 (si + bi)

nie−si∏2
i=1 b

ni
i

= e−(s1+s2) (s1 + b1)n1

bn1
1

(s2 + b2)n2

bn2
2

= e−s
fn1(s+ b)n1

fn1bn1

(1− f)n2(s+ b)n2

(1− f)n2bn2

= e−s
(s+ b)n1+n2

bn1+n2
= e−s

(s+ b)n

bn
.
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Firstly introducing factors e−b and secondly 1/n! in numerator and denominator leads
to the desired equality to λ1 bin.

λ2 bins =
(s+ b)ne−(s+b)

bne−b

=
(s+b)n

n! e−(s+b)

bn

n! e
−b = λ1 bin

⇒ −2 lnλ2 bins = −2 lnλ1 bin

⇒ Q2 bins = Q1 bin (B.1)

B.2 Standard distribution functions

The following distribution functions are used throughout the thesis.

B.2.1 Gauss distribution

The Gauss distribution (also known as normal distribution) describes a peak at mean
position µ and with variance σ2

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)

Despite its many mathematical properties, one of the most exploited features of
the Gauss distribution throughout this work is its qualitative shape: “Mostly nothing,
but around one position it goes up and down again. Nothing strange. Symmetric,
simple, only two parameters.”

Since it is one of the simplest distributions imaginable, and its role in the central
limit theorem, it is used as “default distribution” whenever nothing is known about
a distribution, except for its mean and variance. Therefore the Gaussian distribution
is used for the randomisation of nuisance parameters in the CLs method.

Unless otherwise noted, Gaussian distributions throughout this work are assumed
to be centred at zero and have unit width, µ = 0 and σ = 1.

B.2.2 Crystal Ball distribution

The Crystal Ball function is named after the Crystal Ball Collaboration, which estab-
lished this function for the parametrisation of the peak in an invariant mass spec-
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trum, with a radiative tail (i. e. FSR). The probability density function is given by

f(x;α, n, µ, σ) = N ·
{

exp
(
− (x−µ)2

2σ2

)
, if x−µ

σ > −α
A ·
(
B − x−µ

σ

)−n
, if x−µ

σ ≤ −α
with

A =

(
n

|α|

)n
· exp

(
−|α|

2

2

)
B =

n

|α| − |α|

N =
1

σ · (C +D)

C =
n

|α| ·
1

n− 1
· exp

(
−|α|

2

2

)
D =

√
π

2

(
1 + erf

( |α|√
2

))
.

The function consists of a Gaussian main part, and at the threshold x−µ
σ = −α, it is

replaced by the tail function, which is a power-law, which is designed for continuity
of the function and its first derivative at the threshold.

B.2.3 Poisson distribution

The Poisson distribution describes the probability of the occurrence of a number of
events in a fixed interval. For a mean number of λ events the probability mass func-
tion is

f(x) =
λke−λ

k!
.

The variance is k, which motivates the
√
N -law of uncertainties of observed event

counts. For large λ it can be well approximated by a Gaussian distribution with µ = λ
and σ =

√
λ. The variance of the Poisson distribution is always λ. However the

approximation with a Gaussian distribution becomes invalid for small values of λ. If
this is the case, then the coverage of a ±1σ interval, i. e. [λ−

√
λ, λ+

√
λ] is not 68 %.

B.2.4 Bernoulli distribution

The Bernoulli distribution describes random variables which can take the values 0
and 1. Its only parameter p is the so-called success rate, i. e. the probability at which
the value 1 occurs. The cumulative density function is thus

f(x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if 1 ≤ x
.

The expected value is p and the variance p(1−p), which is the reason for the commonly
used efficiency estimator uncertainty

√
ε(1− ε)/N .

155



B. STATISTICS GLOSSARY

B.3 Computation of UL in the certain absence of backgrounds

In Poissonian statistics, the relation between the true mean, the observation, and
confidence limits for the true mean inferred from the observation can be computed as
follows. The probability to observe k events, for a true mean of µ events is

P (k;µ) =
µk

k!
e−µ.

Consequently the probability of observing no event given a true mean of µ events is

P (0;µ) = e−µ.

To turn this into a conclusive statement, one must fix a confidence level for which
the result is given. Generally, it should be fixed before evaluating the data. Searches
for τ → µµµ at previous experiments use a 90 % confidence level.

Numeric example at 90% confidence level: Since P (0;µ) < 0.1 = 1 − 90 % for
µ > 2.3025, the probability of observing no event is smaller than 10 % for a true mean
larger than 2.3025; which can be expressed as µ < 2.3025 at 90 % confidence level.
When no events are observed, the branching fraction thus is

B(τ → µµµ) < α× 2.3025

at 90 % confidence level. Corresponding limits can be set for the observations of other
numbers of events.

B.4 The sPlot technique

The sPlot technique [164] applies the principle “If you know the background distri-
bution and the full distribution, then you also know the signal distribution.” The
sPlot technique is applicable when there is an observable distribution of variables
~m, ~x which is a superposition of N components. The distribution of the variables ~x
is of interest and the variables ~m are a mean to distinguish the components. It is
required that ~x and ~m are independent for all components:

f(~x, ~m) =
∑
N

nif
i(~x, ~m)

=
∑
N

nif
i
interest(~x)f idiscriminate(~m).

The most common use case is the two components “signal” (s) and “background”
(b) with the discriminating variable “invariant mass” (m) and ~x is only one variable
x. The components can be isolated by means of the discriminating variable as illus-
trated in Fig. B.1. The x-distribution of the background component can be observed
when restricting to the background region. The assumption of independence implies
that the x-distribution in the background region is identical to the distribution of the
background component in the signal region, up to the normalisation:

fb(x|m ∈ signal box) ∝ fb(x|m ∈ background region)
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B.4. The sPlot technique

Further discrimination is done by determining the normalisation of the components
in the signal region by means of a fit to the invariant mass distribution

f(m) = nsf
s(m) + nbf

b(m).

Then, the normalisation of both components in the signal box can be determined
as integrals

ñs =

∫
signal box

dm nsf
s(m)

ñb =

∫
signal box

dm nbf
b(m).

The contribution of the background component to the full x-distribution is thereby
fixed and it can be subtracted from the full x distribution to isolate the signal contri-
bution.

fb(x|m ∈ signal box) = ñb Normalise
(
fb(x|m ∈ background region)

)
f s(x|m ∈ signal box) = f(x|m ∈ signal box)− fb(x|m ∈ signal box).

Up until this point the procedure is effectively replacing f(x) by a weighted distri-
bution

g(x) =

∫
m

dm f(x,m) ·
{
ws if m ∈ signal box
−wb if m ∈ background region

where ws and wb are positive parameters which need to fulfil the normalisation condi-
tion that (expressed for observed distributions) the weights for the signal component
sum up to the number of signal events and the weights sum up to zero for the back-
ground component: ∫

signal box

dm w1f
s(m) +

∫
background region

dm − w2f
s(m) = Ns (B.2)

∫
signal box

dm w1f
b(m) +

∫
background region

dm − w2f
b(m) = 0. (B.3)

Figure B.1: Illustration for the simple decoupling of two compo-
nents.
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Several possible choices for the weight functions w(m) fulfil these conditions. To max-
imise the statistical significance of the observed f s(x) distribution, the following ex-
pression must be minimised: ∫

dm w(m)f s(m). (B.4)

Minimising Eq. B.4 under the constrains of Eqs. B.2 and B.3 is a Lagrange multiplier
problem, solved by:

ws(m) =
Vssf

s(m) + Vsbf
b(m)

Nsf s(m) +Nbfb(m)
, (B.5)

where the variance matrix V is defined by its inverse

V −1
ij =

∫
dm

f i(m)f j(m)

(Nsf s(m) +Nbfb(m))2
.
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C

Tag-and-probe and TISTOS

C.1 Tag-and-probe

The tag-and-probe technique is used to measure the efficiency of the track reconstruc-
tion or particle identification at LHCb in data.

The particle identification efficiency is measured by selecting J/ψ → µµ decays
without imposing selection requirements on the particle identification on one of the
muons (the probe). A fit to the invariant mass spectrum of the J/ψ candidates yields
the number of true J/ψ → µµ decays in that sample,

Nall := N(J/ψ, w/o requiring muon ID).

Any muon identification criterion can then be tested by imposing this additional crite-
rion and determining the number of remaining candidates with a fit to the invariant
mass spectrum,

Ngood := N(J/ψ, w/ requiring muon ID).

The particle identification efficiency is then

ε =
Ngood

Nall
.

This method can be applied to any muon identification criterion – the muon pre-
selection and requirementsMPID > x.

The track reconstruction efficiency is similarly measured by reconstructing
J/ψ → µµ by using the standard track reconstruction for one of the muons and an
independent reconstruction for the other muon – independent in the tracking de-
tectors. For the track reconstruction efficiency measurement, three complementary
implementations exist: reconstructing muons as downstream tracks, reconstructing
the muon in the TT and muon stations, and reconstructing the muon in the VELO
and the muon stations. These implementations probe the long track reconstruction
in the VELO, the full tracking system, and the T stations, respectively.

ε =
N(both muons found as longtrack)

N(at least one muon found as longtrack)

159
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The kinematic dependence of either efficiency is determined by restricting the
J/ψ samples to those candidates where the probe is in a certain kinematic range.

ε(x1 < p < x2) =
N(good and x1 < p < x2)

N(all and x1 < p < x2)

Continuous criteria can be probed more elegantly. Instead of fitting the invariant
mass spectrum of J/ψ → µµ candidates for any possible selection criterionMPID > x,
the selection variableMPID is sPlot’ed, f(MPID). If the sPlot is normalised (

∫
f(MPID)dMPID =

1) then the efficiency can as well be obtained by integrating the sPlot:

ε(MPID > x) =

∞∫
x

f(MPID)dMPID.

C.2 TISTOS

The trigger efficiency for TOS triggers1 is measured in data with TIS candidates.
The invariant mass spectrum of Ds → φ(µµ)π TIS candidates is fitted to obtain the
number of Ds → φ(µµ)π decays withing this sample N(TIS). The TOS efficiency is
then probed by restricting the sample further to candidates which are TIS and TOS
at the same time:

εtrig =
N(TIS and TOS)

N(TIS)
.

1Only TOS candidates are used in this work.
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D

b hadronisation at LHC

In this work, inclusive measurements of b branching fractions at LEP are used. It is
assumed that these measurements are valid at the LHC due to similar hadronisation
fractions. A short comparison of the hadronisation at LEP and at the LHC is done in
this appendix.

D.1 Baryonic hadronisation

The inclusive b→ τ branching fraction is given by the sum over all b hadronisations.

B(b→ τ ) =
∑

i∈{b hadrons}

fi∑
j fj
· B(hi → τ )

It is argued in [174] and the references therein, that the semileptonic decay widths
for all b mesons are equal. For the ratio of branching fractions it is stated that

B(Bu/d → D`X)

B(Λb→ Λ+
c `X)

=
τB+ + τB0

2τΛb

· (1− ξ),

where the ratio of life times is 1.14 ± 0.03 and the chromomagnetic correction ξ is
(4± 2) %. Given that the mass differences mB −mD and mΛb

−mΛ+
c

are about equal,
no additional phase space factor is considered here.

The full b→ τ branching fraction is thus rewritten

B(b→ τ ) =
1∑ fi
fd

· B(B→ τ ) ·
(
fu

fd
+
fd

fd
+
fs

fd
+
B(Λb→ τ )

B(B→ τ )
· fΛ

fd

)
.

Of all the terms on the right side of the equation, only fΛ/fd differs at LEP and the
LHC. At first order B(b→ τ ) at the LHC is therefore

B(b→ τ )LHC = B(b→ τ )LEP

×

1 +

(
fΛ

fd

)
LHC
−
(
fΛ

fd

)
LEP∑

hadrons
fi
fd

·
∑

mesons
fi
fd∑

hadrons
fi
fd

·
(B(Λb→ τ )

B(B→ τ )
− 1

)
Due to isospin symmetry fu = fd. It is at both, LHC and LEP, found that fs/fd ∼

0.25. The sum of the meson fi/fd is therefore 2.25, neglecting fc ∼ O(0.01) · fd. The
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baryonic fragmentation function at the LHC is in average fΛ ∼ 0.4 fd, as averaged by
eye from [132, Fig. 4], the LEP value from [80, page 1105] is 0.23. Using the above
expansion at the LEP hadronisation, it follows that

B(b→ τ )LHC = B(b→ τ )LEP

×
(

1 +
0.4− 0.23

2.25 + 0.23
· 2.25

2.25 + 0.23
·
(

1

1.14 · (1− 0.04)
− 1

))
= B(b→ τ )LEP × (1 + 0.069 · 0.91 · (−0.086))

= B(b→ τ )LEP × 0.99.

The b → τ branching fraction from the inclusive LEP measurements is therefor
expected to be correct up to 1 %.

D.2 B+
c hadronisation

The B+
c production has been measured by LHCb in [175]. It is found that

fc · B(B+
c → J/ψπ+) = (0.68± 0.10) %× fu · B(B+→ J/ψK+),

which is in agreement with the LEP measurements of fc · B(B+
c → J/ψπ+) < 8.2×10−5.

The hadronisation into charmed b mesons at LHCb and at the LEP experiments is
thus in agreement.
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τ production fractions

To create simulated signal samples, the production cross sections for the respective
production channels need to be expressed as fractions among the final sample. This
computation is in principle a simple division, e. g. fDs

τ = σ(τ )Ds
/
∑
σ(τ )i. To correctly

assess the uncertainties on the fractions, a more diligent study is necessary. The
quantities, from which the cross sections are computed, are the branching fractions

• B(Ds→ τντ) = 0.0543± 0.0031

• B(D+→ τντ) = 0.00102± 0.00009

• B(b→ τX) = 0.0241± 0.0023

• B(b→ DsX) = 0.248± 0.037

• B(b→ D+X) = 0.233± 0.017

and the cross sections

• σ(pp→ DsX)

• σ(pp→ D+X)

• σ(pp→ bX).

The latter three are correlated. To uncorrelate them, the latter two are expressed as
ratios to the Ds cross section

• σ(pp→ DsX)

• σ(pp→ D+X)/σ(pp→ DsX)

• σ(pp→ bX)/σ(pp→ DsX).

The ratio of charm cross sections is quoted already in [129], considering the correlated
uncertainties between the two measurements. The ratio is reported to be 1./(0.305±
0.042) = 3.28± 0.45. This corresponds to a correlation coefficient of 0.527.

For the ratio of the b cross section over the Ds cross section, it is assumed that from
the lists of systematic uncertainty sources of [129] and [137] ([134]), the uncertainty
on the luminosity measurement is maximally correlated and the uncertainty on the
track finding efficiency per track is the same for both measurements. The b cross sec-
tion measurement used two reconstructed tracks, the c cross section measurement
used three reconstructed tracks. The track finding efficiency is thus not considered
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Table E.1: Estimated correlation coefficients between the produc-
tion cross sections

√
s = 7 TeV.

D+ Ds b

D+ 1.000 0.527 0.849

Ds 1.000 0.389

b 1.000

Table E.2: Estimated correlation coefficients between the produc-
tion cross sections

√
s = 8 TeV.

D+ Ds b

D+ 1.000 0.527 0.513

Ds 1.000 0.362

b 1.000

for the b cross section uncertainty, and reduced to the single track track-finding un-
certainty for the c cross section measurement, while the hadronic interaction uncer-
tainty1 is kept for all three tracks. The updated values from [87] lead to a relevant
relative uncertainty of the c cross section measurement due to track finding of 2.9 %
instead of 9 %.

The maximally correlated uncertainties are subtracted from the quoted uncertain-
ties of the measurements. The uncorrelated uncertainties are then (the uncertainties
without the subtraction are given in parentheses):

∆σ(Ds)
= 13.6 % (15.7 %)

∆σ(b),7 TeV = 10.8 % (16.7 %)

∆σ(b),8 TeV = 6.3 % (12.1 %)

The ratio is found to be
σ(pp→ bX)

σ(pp→ DsX)
= 0.249± 0.041 for

√
s = 7 TeV

σ(pp→ bX)

σ(pp→ DsX)
= 0.245± 0.042 for

√
s = 8 TeV,

corresponding to correlation coefficients of 0.389 and 0.362, respectively.
In the same manner the correlation coefficients between the D+ cross section and

the b cross section is computed. The correlation matrices are shown in Tabs. E.1
and E.2.

The uncertainties of the two ratios σ(pp→bX)
σ(pp→DsX) and σ(pp→D+X)

σ(pp→DsX) are correlated, too.
The covariance is determined by error propagation of the correlation matrices in
Tabs. E.1 and E.2. The covariance of the two ratios amounts to 0.0347 for

√
s = 7 TeV

and 0.0248 for
√
s = 8 TeV.

Once the five fractions are expressed as functions of the 7 input variables, the
Jacobi matrix A of the mapping ~x 7→ ~fτ can be computed.

Cov( ~fτ ) = ACov(xi)A
T.

1See [87] for an explanation of the contribution of the hadronic interaction length to the track finding
efficiency
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Table E.3: Conversion of the τ production cross sections to the simulated LHCb acceptance.

τ source cross section
(2 < y < 4.5) α4π εSIM cross section (SIM) fraction

√
s = 7 TeV

Ds (10.7± 1.8) µb 4.943 9.301 ± 0.033 (4.92± 0.83) µb 0.705 ± 0.038

D+ (0.66± 0.10) µb 4.943 9.257 ± 0.047 (0.30± 0.05) µb 0.043 ± 0.006

b (2.4± 0.4) µb 5.88 8.024 ± 0.045 (1.11± 0.19) µb 0.160 ± 0.024

b → Ds (1.32± 0.36) µb 5.88 8.088 ± 0.047 (0.63± 0.17) µb 0.090 ± 0.017

b → D+ (23± 4) nb 5.88 8.07 ± 0.15 (0.0110± 0.0019) µb 0.00158 ± 0.00027

incl. Ds n/a n/a n/a n/a 0.795 ± 0.028
√
s = 8 TeV

Ds (12.2± 2.1) µb 4.943 9.472 ± 0.028 (5.71± 0.98) µb 0.719 ± 0.035

D+ (0.75± 0.11) µb 4.943 9.500 ± 0.027 (0.35± 0.05) µb 0.044 ± 0.006

b (2.7± 0.4) µb 5.4 8.349 ± 0.046 (1.22± 0.18) µb 0.151 ± 0.023

b → Ds (1.48± 0.37) µb 5.4 8.392 ± 0.017 (0.67± 0.17) µb 0.084 ± 0.015

b → D+ (26± 4) nb 5.4 8.320 ± 0.015 (0.0117± 0.0018) µb 0.00148 ± 0.00025

incl. Ds n/a n/a n/a n/a 0.803 ± 0.026
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Table E.4: Correlation matrix for the τ production fractions at
√
s =

7 TeV.

Ds D+ b b → Ds b → D+ fraction

Ds 1.000 -0.602 -0.896 -0.734 -0.673 0.705 ± 0.038

D+ 1.000 0.491 -0.602 0.818 0.043 ± 0.006

b 1.000 0.384 0.578 0.160 ± 0.024

b → Ds 1.000 0.376 0.090 ± 0.017

b → D+ 1.000 0.00158 ± 0.00027

Table E.5: Correlation matrix for the τ production fractions at
√
s =

8 TeV.

Ds D+ b b → Ds b → D+ fraction

Ds 1.000 -0.455 -0.890 -0.725 -0.668 0.719 ± 0.035

D+ 1.000 0.307 0.135 0.628 0.044 ± 0.006

b 1.000 0.380 0.573 0.151 ± 0.023

b → Ds 1.000 0.371 0.084 ± 0.015

b → D+ 1.000 0.00148 ± 0.00025
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Table E.6: Nominal τ production fractions, variations by 1σ for the
principle components of the covariance matrix, and for variations
of B(Ds→ τντ) by 1σ. For collision energies of 7 TeV.

nominal nominal
+1σB(Ds→τντ)

Ds 0.705 0.742 0.707 0.707 0.705 0.713

D+ 0.043 0.040 0.043 0.039 0.043 0.041

b 0.160 0.139 0.169 0.162 0.160 0.153

b → Ds 0.090 0.078 0.079 0.092 0.090 0.091

b → D+ 0.00158 0.00142 0.00159 0.00144 0.00173 0.00151

incl. Ds 0.795 0.820 0.786 0.799 0.795 0.804

Table E.7: Nominal τ production fractions, variations by 1σ for the
principle components of the covariance matrix, and for variations
of B(Ds→ τντ) by 1σ. For collision energies of 8 TeV.

nominal nominal
+1σB(Ds→τντ)

Ds 0.719 0.752 0.721 0.720 0.719 0.727

D+ 0.044 0.042 0.044 0.039 0.044 0.042

b 0.151 0.131 0.159 0.153 0.151 0.144

b → Ds 0.084 0.073 0.074 0.087 0.085 0.086

b → D+ 0.00148 0.00133 0.00148 0.00138 0.00164 0.00141

incl. Ds 0.803 0.825 0.795 0.807 0.804 0.813

The computation is done using computer algebra software, the resulting correlation
matrix is given in Tabs. E.4 and E.5.

The covariance matrix is diagonalised to obtain the uncorrelated degrees of free-
dom of the fractions in Tab. E.3. For each degree of freedom, a 1σ change is given in
Tabs. E.6 and E.7, they are sorted in magnitude of the eigenvalues of the covariance
matrix. Since the Ds branching fraction B(Ds → τντ) appears in both, the production
fractions and the normalisation factor, the uncertainty due to B(Ds → τντ) is treated
separately and set to 0 for the decorrelation of the covariance matrix. The uncertainty
on the Ds cross section measurement due to the uncertainty on B(Ds→ φπ) is not ex-
cluded, because a different measurement is used in [129] compared to this work. The
fifth eigenvalue of the covariance matrix is 17 orders of magnitude smaller than the
largest. The 1σ change corresponding to this degree of freedom is thus not visible
with the printed numbers of digits and omitted in the table.

The mixing fractions resulting from a 1σ change of B(Ds → τντ) are given in the
last column of Tab. E.6 and E.7, respectively.

Surprisingly, and fortunately, the principle components describe the same physics
behaviour. (Otherwise the treatment of the correlated uncertainties of the production
fractions among the data taking periods would become less trivial.) The first compo-
nent is an enhancement of prompt Ds, compensated by a reduction of all other modes.
The second component is an enhancement of the b → τ production, compensated by
the b → Ds → τ production. The third component is a reduction of the prompt and
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non-prompt D+ contribution. The fourth is an enhancement of the non-prompt D+

contribution.
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