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Abstract

Measurement of Open Charm in 158 AGeV /c Pb-Au Collisions

This thesis presents a measurement of an upper limit for the open charm yield in
158 AGeV/c Pb-Au collisions with the CERES spectrometer at 7% centrality. A se-
condary particle reconstruction scheme, based on the reconstruction of the decay vertex,
is developed and tested using the decay K% — 777~ as a reference measurement. An
integrated K9 rapidity density of dN/dy = 19.75 + 0.23 (stat) + 1.70 (syst) is measured
in the rapidity region 2.0 < y < 2.6 and compared to results from an alternative analysis
of the CERES data and results from the NA49 and NA57 collaborations.

The analysis of the decay D’ = K+r- requires careful study of the combinatorial
background and resonances contributing to the invariant mass spectrum. An open charm
enhancement of more than a factor 22 can be excluded at 98% confidence level. The
enhancement is calculated with respect to the expected open charm yield in nucleus-

nucleus collisions of <D0> = 0.21 per event, obtained by scaling the charm cross-section
in proton-proton collisions with the number of binary collisions.

The first part of this thesis is devoted to the development of a hit finding algorithm
for the CERES TPC. Furthermore, a detailed description of the calibration of the TPC
is presented. A position resolution of 0,44 ~ 340 pum and o, ~ 640 pm is achieved with
the new calibration, with a momentum resolution of Ap/p = 5.4% at p =5 GeV/c, the

. —0
momentum region relevant for the D meson.

Open Charm Analyse in 158 AGeV /c Pb-Au Kollisionen

Diese Doktorarbeit beinhaltet die Messung einer oberen Grenze fiir die Produktionsrate
von Open Charm Mesonen in 158 AGeV /c Pb-Au Kollisionen mit dem CERES Spektro-
meter bei einer Zentralitit von 7%. Es wird die Entwicklung einer Rekonstruktionsme-
thode fiir Sekundéarteilchen vorgestellt, die auf der Rekonstruktion des Zerfallsvertex
beruht. Die Methode wird mit dem Zerfall K2 — 777~ als Referenzmessung getestet.
Eine integrale Rapiditétsdichte von dN/dy = 19.75 4+ 0.23 (stat) 4= 1.70 (syst) wird fiir das
K? Meson im Rapiditatsbereich 2.0 < y < 2.6 gemessen und mit den Ergebnissen einer
alternativen CERES Messung und den Messungen der NA49 und NA57 Kollaborationen
verglichen.

Eine genaue Untersuchung des kombinatorischen Untergrundes und der Resonanzen,
die zusatzlich zu dem invarianten Massenspektrum beitragen, ist fiir die Analyse des Zer-
falls D° — K*x~ unerlisslich. Eine vermehrte Open Charm Produktionrate von mehr als
einem Faktor 22 kann bei einem Konfidenzniveau von 98% ausgeschlossen werden. Dieser
Faktor bezieht sich auf die in Kern-Kern Stoflen erwartete Open Charm Produktionsrate
von (EO> = 0.21 pro Ereignis, die durch Skalierung des Charm Wirkungsquerschnitts in
Proton-Proton Stofen mit der Anzahl der bindren Kollisionen gegeben ist.



Der erste Teil dieser Doktorabeit befasst sich mit der Entwicklung eines Algorithmus
zur Mustererkennung in der CERES TPC. Ferner wird eine detaillierte Beschreibung der
Kalibration der TPC prasentiert. Mit der neuen Kalibration wird eine Ortsauflosung von
Orag ~ 340 pm und oa, ~ 640 pm erreicht, sowie eine Impulsauflésung von Ap/p = 5.4%

bei einem fiir das D’ Meson relevanten Impuls von p =5 GeV/c.
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Chapter 1

Introduction

Heavy-ion collisions at ultra-relativistic energies offer the possibility to study the behavior
of nuclear matter at high density and temperature where one expects the existence of
the Quark Gluon Plasma (QGP). In this new state of matter the quarks are no longer
confined inside individual hadrons, but they are free to move within the interaction region.
At the same time the quarks lose their dynamical mass leading to the restoration of chiral
symmetry, an approximate symmetry of QCD in the sector of light quarks.

Many different signatures have been proposed for the formation of a QGP phase.
According to the type of final state particles, they can be divided into two main groups: the
hadronic probes and the electromagnetic probes. Hadronic probes have the advantage of
having large cross-sections. However, they undergo a substantial evolution through strong
reinteractions in the period between their formation and the detection. Therefore, the
momentum distribution and the final particle composition can be affected by later stages
of the heavy-ion collision. Nevertheless, it is still possible to extract valuable information
about the initial stage of the collision by studying final state hadrons. Electromagnetic
probes have a negligible cross-section for the interaction with hadronic matter. They
are a direct tool for the investigation of the first stages of the heavy-ion collision. The
drawback of this kind of probe is that the production cross-section is very small, and the
detection in a high background environment becomes a difficult task.

CERES is one of the experiments at the CERN Super Proton Synchroton (SPS) de-
dicated to the study of electromagnetic probes. Its main objective is the measurement of
low mass electron-positron pairs produced in p-A and A-A collisions. Systematic studies
have been done with S-Au in 1992 [1] and the proton-induced reactions p-Be and p-Au
in 1993 [2]. An energy scan has been performed during the years 1995 to 2000 using the
system Pb-Au [3, 4, 5]. While the p-A collisions could be well explained by a cocktail
of the hadronic sources 7°, 1, 1, p, w and ¢, the S-Au and Pb-Au spectra showed a
significant enhancement in the mass range 0.2 < mg+.- < 1.5 GeV/c?. A comparison
between the p-Au and S-Au data sets is shown in figure 1.1. A dilepton enhancement was
also observed by the HELIOS/3 experiment in 200 AGeV /c S-W collisions [6, 7| and by
the NA38/NA50 experiment in 158 AGeV/c Pb-Pb collisions [8]. The observation of this
excess also led to an enormous theoretical activity. It might be explained by direct thermal
radiation of the fireball, dominated by the two-pion annihilation 777~ — p — ete”
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Figure 1.1: Low-mass electron pair enhancement in nucleus-nucleus collisions.
The left figure shows the inclusive ete™ mass spectra in 450 GeV/c p-Au collisions. The shape
of the spectra is in good agreement with the predicted contributions from hadronic decays.
The right figure shows the corresponding spectra for S-Au at 200 AGeV/c. In the mass range
between 0.2 and 1.5 GeV/c? an enhancement by a factor of 5.0 & 0.7 (stat) 4= 2.0 (syst) [1] is
observed with respect to expectations from the hadronic cocktail.

with an intermediate p vector meson. Compared to the lighter vector mesons w and ¢
the p is of particular interest. Because of its short lifetime of 1.3 fm/c it samples the
evolution of the fireball as a function of time. Furthermore, due to its link to chiral
symmetry restoration [9], it is assumed that the intermediate p suffers strong in-medium
modifications. The two main theoretical alternatives for this modification predict a shift
of the p peak to lower masses (Brown-Rho scaling [10]) or a spreading of its width based
on calculations of the p spectral density within the dense hadronic medium [11]. The
upgrade of the CERES experiment in 1998 with a Time Projection Chamber (TPC)
opened the additional possibility to study hadronic channels. Many interesting topics
have been addressed since then [12, 13, 14, 15, 16].

The aforementioned dilepton enhancement in the low and intermediate mass region
gave rise to several speculations. One often discussed possibility proposes an abnormally
enhanced open charm production in nucleus-nucleus collisions [17]. However, such an
increase is not easily justified theoretically [18], and would also be difficult to reconcile with
the current understanding of the observed J/W¥ suppression. Another explanation argued
that D meson rescattering in hot and dense matter might generate a transverse momentum
broadening which can enrich the u*p~ phase space covered by the NA50 experiment [19].
But the resulting increase was to small to explain the excess [20]. Furthermore, the role
of secondary Drell-Yan processes in hadronic rescatterings has been investigated within
the UrQMD transport model [21]. It has been found that in the intermediate mass
region (IMR) this contribution may constitute up to 30% of the primordial Drell-Yan
yield and thus far from explaining the experimental findings. An attempt to explain
the HELIOS-3 data used a transport model incorporating dilepton production through
secondary hadronic annihilation processes [22, 23]. It was found that the enhancement in
S-W collisions could indeed be explained. Unfortunately, the statistics of the HELIOS-3



data for my+,- > 2 GeV is poor. Finally, the significance of thermal dilepton radiation
has been investigated [24]. The evaluation of the dilepton spectra in Pb-Pb collisions as
measured by NA50 showed that the IMR can be composed of 3 major components: open
charm decays, Drell-Yan and thermal radiation. It was shown that the dilepton excess
could indeed be explained without invoking any anomalous enhancement in the charm
production. Furthermore, the low-mass dilepton spectra from the CERES experiment
could be explained in the same framework when medium effects in the low-lying vector
mesons are included. Therefore, a consistent picture of dilepton production at the full
CERN SPS energy seems to emerge. To test this result against open charm enhancement
a direct measurement of the D meson contribution is needed.

The subject of this thesis is the measurement of the open charm yield in 158 AGeV /c
Pb-Au collisions. Due to the low production cross-section the measurement is difficult.
The expected yield per event for central Ph-Pb collisions at SPS is ~ 0.03 for D /D~

and ~ 0.1 for D(’/ﬁ0 (25, 26]. However, the CERES experiment has the possibility to
distinguish between primary and secondary tracks by cutting on the secondary vertex.
Moreover, the upgrade of the experiment with a TPC and its extensive calibration provides
a reasonable momentum resolution (Ap/p = 5.4% at p = 5 GeV/c). Finally, the large
data sample of 30 million events taken during the beam time of the year 2000 is enough
statistics to make such a measurement tempting.

The thesis is structured as follows. Chapter 2 gives a brief historical overview of the
heavy-ion program and elucidates the most relevant features of the Quark Gluon Plasma.
Chapter 3 presents the experimental findings of the NA38/NA50 experiment concerning
the excess in the intermediate mass muon pair continuum in 158 AGeV/c Pb-Pb collisions.
Furthermore, its most discussed sources, open charm enhancement and thermal radiation,
are presented. The overall experimental setup of the CERES experiment together with its
individual detector components are described in chapter 4. Chapter 5 is devoted to the
reconstruction scheme of the raw data. Special emphasis is given to software components
developed in the framework of this thesis. Another important contribution during this
work was the calibration of the TPC, described in detail in chapter 6. Chapter 7 presents
the analysis scheme for the measurement of open charm. It is mainly based on the
reconstruction of the secondary vertex using two Silicon Drift Counters (SiDC) and the
TPC. A cut on the longitudinal distance between the secondary vertex and the primary
interaction region allows to separate secondary particles from target tracks and thus makes
an almost background free particle reconstruction possible. In chapter 8 the feasibility
of the analysis is demonstrated for the more abundant strange particles. The studies
are performed on the two body decay K% — wF7~. The efficiency is tested against an
alternative CERES measurement using only the TPC and measurements from the NA49
and NA5T7 experiments. The same analysis scheme is applied to the reconstruction of
open charm in chapter 9. An upper limit on the open charm cross-section is obtained.
Finally, chapter 10 contains the conclusions.
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Chapter 2

Quark Gluon Plasma

Several experimental discoveries in particle physics revealed the hierarchical nature of
matter. The constituents of macroscopic matter were found to be molecules and atoms.
The atoms consist of a nucleus surrounded by an electron cloud. The components of
the nuclei are the nucleons which in turn are formed of quarks, antiquarks and gluons
(partons). To this date no further substructure of quarks was observed. They are regarded
as pointlike particles. The properties of the 6 known quark flavors are listed in table 2.1.
Isolated quarks have never been detected and thus it is conjectured that they are confined
together with other quarks to form hadrons. The gluons are the intermediators of the
strong color force between the quarks. The physics of the strong interaction is described
by the theory of Quantum Chromodynamics (QCD). It is the SU(3) gauge symmetric
part of the Standard Model of particle physics.

In deep-inelastic scattering experiments the individual scattered partons fly away
practically freely, dress with a gluon cloud and rapidly form color singlet bound states,
the hadrons. However, if the number of partons scattering simultaneously into the same
volume element is sufficiently increased, the situation may change radically. A dense
medium of partons is formed, where the interactions of quarks, antiquarks and gluons are
screened such that the formation of bound states is inhibited. This new state of matter
is called Quark Gluon Plasma.

The ultimate aim of ultra-relativistic heavy-ion collisions is to prove the existence
of this new state of matter and to investigate its particular properties. The topic is
also relevant to other fields, like cosmology and astrophysics. Firstly, the transition from
hadronic matter to a QGP may happen in the inner core of neutron stars, where mass
densities are likely to exceed 10" g/cm® (about four times the central density of nuclei)
while surface temperatures are as low as 10° K or less [11]. Secondly, it is believed that
the inverse transition (hadro-synthesis) had to occur a few tens of microseconds after the
Big Bang. The following sections will give a brief historical overview over the heavy-ion
program and elucidate the most interesting features of the phase transition.
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| quark flavor | charge Q/e | current mass m, [MeV/c?] | dynamical mass M, [MeV/¢?] |

d (down) —1/3 0.0+ 1.1 310
u (up) +2/3 5.6 + 1.1 310
s (strange) -1/3 199 + 33 500
¢ (charm) +2/3 1350 = 50 1800
b (bottom) ~1/3 ~ 5000 1500
t (top) +2/3 > 90000 > 176000

Table 2.1: Quark properties. Quarks are fermions (spin 1/2) and are characterized by the
flavor degree of freedom d, u, s, ¢, b or t. The current quark masses listed in the table were taken
from reference [27], the dynamical masses from [28]. A current mass is the mass of a quark in
the absence of confinement. When the quark is confined in a hadron, it may acquire an eftective
mass which includes the effect of the zero-point energy of the quark in the confining potential.
This so called dynamical mass is typically a few hundred MeV in magnitude.

2.1 Historical Overview

The heavy-ion program started with fixed target experiments in 1986 at the Alternating
Gradient Synchroton (AGS) of the Brookhaven National Laboratory (BNL) and the
Super Proton Synchroton (SPS) of the Centre Européen pour la Recherche Nucléaire
(CERN). The center of mass energy reached with these two facilities is /s = 5 AGeV
and /s = 17 AGeV, respectively. Data was taken using a beam of relatively light ions of
14.6 AGeV '°0 and %8Si at the AGS and 60-200 AGeV '°0O and 32S beams at the SPS. It
was observed that the colliding nuclear matter loses a substantial fraction of its energy in
the collision process [29]. This proved the possibility to create hot and dense matter in
heavy-ion collisions.

The program continued with heavier nuclei, 10.8 AGeV ¥7Au at the AGS and 40, 80
and 158 AGeV 2%Ph at the SPS. The high energy Pb data provided circumstantial evi-
dences that a new state of matter had been produced [30], and the official announcement
from CERN soon followed in the year 2000 [31].

The QGP formed at SPS energies is not expected to be net-baryon-free. The net-
baryon content in the QGP is small, if the separation between the beam and the target
rapidity stays far away from the central rapidity region. For nucleus-nucleus collisions
at an energy of \/s = 100 AGeV, the separation between the projectile and the target
rapidity is 10.7 units. On the other hand, the average rapidity loss of the baryons in the
central collision of Au on Au is roughly 2 to 4 units [27]. Thus, for those high energy
collisions a net-baryon-free Quark Gluon Plasma would be expected. This triggered the
set of experiments, which began to run in the year 2000 at the Relativistic Heavy Ion
Collider (RHIC), also located at BNL. These were collider experiments, able to reach
even higher energies of about /s = 200 AGeV necessary to produce a net-baryon-free
Quark Gluon Plasma.

An even clearer result will be obtained with a new collider being built at CERN, the
Large Hadron Collider (LHC). This machine will be capable to reach energies of about
Vs = 5.5 ATeV. At this highest energy all parameters relevant for the formation of the
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Figure 2.1: Phase diagram of matter. Lattice QCD calculations predict a deconfinement
phase transition, and an accompanying chiral phase transition, both at high temperature and/or
high density. The expectation for the phase boundary [35], based on calculation for up = 0, is
indicated by the hatched region. The chemical potentials p and temperatures T resulting from
thermal analyses place the chemical freeze-out (black line) very close to the phase boundary
between plasma and hadrons.

QGP, such as energy density, size and lifetime of the system and relaxation time, will be
more favorable. The experiment dedicated to heavy-ion collisions at LHC will be ALICE
(A Large Ion Collider Experiment) [32]. First runs are planned for the year 2007.

2.2 Phase Diagram of Nuclear Matter

Recent theoretical predictions estimate that the phase transition between the con-
fined and the deconfined phases of QCD occurs at a critical energy density of
€. = 0.70 - 0.35 GeV/fm? [33]. This energy density can be reached by changing one
or both of the two essential thermodynamical quantities: the temperature T and the
density p. The QCD phase diagram in figure 2.1 can thus map out regions in the plane of
temperature 7 and baryochemical potential g [34], with the latter specifying the mean
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If ordinary nuclear matter is compressed to the extent that nucleons overlap, a cold
QGP is formed. It is believed that this situation may take place inside neutron stars [36].
At T = 0 the critical density for the transition can be estimated to be p. ~ 0.72/fm3 [27].
pe is about 5 times the nucleon number density pp = 0.14/fm? for normal nuclear matter
at equilibrium. Experimentally, the QGP can be accessed by a combination of heating
and compression, colliding heavy nuclei with velocities close to the speed of light. The
energy brought into the system is dissipated for the creation of quark-antiquark pairs
and gluons. Assuming equilibration, the system becomes deconfined at sufficiently high
density and temperature to form a hot QGP.

The space-time scenario of a high-energy nucleus-nucleus collision was suggested by
Bjorken [37] as illustrated in figure 2.2. The trajectories of the projectile and the target
nucleus are drawn as thick lines in the diagram. The nuclei are Lorentz contracted in
longitudinal direction and therefore represented by two thin disks. During the collision
process the baryons lose a substantial fraction of their energy, which is deposited in the
vicinity of the center of mass. After the collision the slowed-down baryons can still have
enough momentum to recede from each other. The energy deposition is approximately ad-
ditive in nature and might be sufficient to create a system of quasi-free quarks and gluons
in the central rapidity region. After a short moment of incomplete thermal equilibration
(pre-equilibration), the plasma may reach local equilibration (QGP) at the formation time
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79 ~ 1 fm/c [37]. The subsequent evolution of the fireball can be described in terms of the
laws of hydrodynamics. The pressure inside the hot and dense medium leads the system
to expand. Its temperature drops and the plasma starts to hadronize (mixed phase).
The hadrons will stream out of the collision region when the temperature falls below the
temperature of chemical freeze-out. At this stage all inelastic interactions stop and the
yield of each hadron species is fixed. As the temperature further decreases to reach the
point of thermal freeze-out, also the elastic collisions cease.

The relative abundance of produced hadrons in heavy-ion collisions can be com-
pared with expectations for a statistical ensemble [34]. This allows two parameters to
be adjusted to the data: the temperature 7" and the baryochemical potential up. At
present, data exists for a variety of energy regimes, accessible by different accelerators
(SIS, AGS, SPS and RHIC). This allowed the determination of hadrochemical freeze-out
points, shown in figure 2.1 as red circles. The empirical curve connecting the freeze-out
points corresponds to a constant energy per hadron of 1 GeV [38]. The information about
the thermal freeze-out can be extracted from the analysis of momentum spectra and is
also shown in the figure.

2.3 Chiral Symmetry Restoration

A fundamental symmetry of QCD is chiral symmetry. It is broken in the vacuum, but
lattice QCD predicts that chiral symmetry is restored at the same temperature as the
deconfinement of the quarks and gluons occurs. An important goal in heavy-ion physics
is therefore to look for evidences for this fundamental prediction of the Standard Model.
This issue will briefly be elucidated in the present section. A comprehensive introduction
to this topic can also be found in [39].

Chiral symmetry involves the handedness of particles, i.e. the information of the
spin orientation versus its direction of motion. The ability to define the handedness in an
absolute way depends on weather or not a particle has mass, since a particle with mass
moves with less than the speed of light. For right-handed particles, the spin is pointing in
the same direction as its velocity. But for an observer moving faster than the particle, it
would appear to move backwards, while its spin would still remain unchanged. For that
observer the particle would seem to be left-handed. In contrast, a massless particle moves
at the speed of light in all frames, and all observers would agree on its handedness.

As indicated in table 2.1 the masses of the quarks are not fixed constants but are
rather generated by interactions with other particles. The current mass m, can be associ-
ated with the weak interaction. The dynamical mass M, arises from the strong interaction.
It is believed that the current masses are generated by the coupling to the still undiscov-
ered Higgs field. The Higgs field has a finite average value in the ground state, generally
known as vacuum. Particles interact with the vacuum Higgs field, which modifies their
properties and gives rise to their masses. In the limit m,; — 0 the QCD Lagrangian for
light quarks (u,d, and s) reveals SU(3) flavor symmetry independently for left-handed and
right-handed quarks, i.e. it has chiral symmetry SU(3);, x SU(3)g. In this limit the helic-
ity becomes a good quantum number. Since the actual current masses of the light quarks
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Figure 2.3: Energy dependence of a charge singlet pair. Due to quantum fluctuations
the vacuum is filled with pairs of charged particles in a singlet state. Charge means electric charge
in the case of QED (Quantum Electrodynamics) and color charge in the case of QCD (Quantum
Chromodynamics). If a ete™ pair is created from the QED vacuum, it will annihilate within
the time scale 1/E,q;, given by the uncertainty relation. These are virtual pairs. In contrast
to this scenario, the total energy in QCD exhibits a minimum at negative energy. The empty
vacuum at E = 0 becomes unstable and the pairs become real.

are small compared to the typical few hundreds of MeV for strongly interacting particles,
they can to a good approximation be regarded as massless and QCD as approximately
invariant under the chiral version of isospin symmetry.

As is schematically illustrated in figure 2.3, the total pair energy in QCD has a
minimum at some distance g ~ 1 fm. Moreover the value of this minimum is negative.
As a consequence, an empty (F = 0) vacuum becomes unstable because there exists a
configuration with lower energy. Pairs of color charge are created and stay there forever.
The QCD vacuum is filled with real color charge pairs. Because the gauge field (gluons)
is a vector field, due to the helicity conservation for m, — 0 a left-handed quark can
only couple with a left-handed antiquark and vice versa. This means that the ¢ pairs in
the QCD vacuum have to be in the singlet state not only in color but also in spin. But
already this means that chiral symmetry is broken in the vacuum, since there are ¢ pairs
in a scalar state, i.e. containing ¢ and ¢ of opposite helicities, which in massless limit do
not interact. A right-handed and massless test quark put into such a vacuum can only
annihilate on a right-handed antiquark thus liberating a left-handed quark [40]. For an
observer at some distance this will look like the test quark, being in a vacuum, changes
spontaneously its helicity. Therefore, it cannot move with the speed of light, and hence it
had to acquire some dynamical mass. It is these interactions with the asymmetric vacuum
that hide the approximate chiral symmetry of QCD.

If the temperature and therefore the kinetic energy is raised, at some critical value
T, of the order of the pion mass the energy stored in the strong field is overcome. At
this stage the minimum of the total pair energy will become positive, and hence the real
qq pairs would disappear from the vacuum. Above that temperature chiral symmetry will
be restored and quarks will retain their zero mass in the chiral limit.
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2.4 Equation of State

The equation of state describes the temperature dependence of the energy density € and
the pressure p. Obviously it is of great interest to estimate the hadron-quark transition
temperature. The simplest picture is perhaps assuming the hadronic phase to be an ideal
non-interacting Hadron Gas (HG) of massless pions, and the quark phase to be an ideal
gas (QGP) of massless gluons and two-flavor quarks [41]. The energy density € and the
pressure p of an ideal gas are given by:

g
€ideal = %WQT{ (21)
€ideal 9 927u
ideal — = —7 1" 2.2
Pideal = 3 00" (2:2)

The degeneracy factor ¢ is defined by the boson degrees of freedom n;, and the fermion
degrees of freedom ny:

1
g:nb+ 1—5 nf. (23)
With the boson degrees of freedom n, = 3 for the three isospin pion states, and no
fermions, the pressure of the ideal Hadron Gas would be:

1 1
PG = —m°T" ~ -T". (2.4)

30 3
In the QGP case, the boson degrees of freedom add up to n, = 16 (8 color states x 2 spin
states for gluons). The fermion degrees of freedom add up to ny = 24 (2 flavors x 3 colors
x 2 spins x 2 for quark-antiquark). The external pressure can be estimated using the
bag model for hadrons [42]. It is equal to the bag constant B. As a result, the pressure
for the QGP can be written as:
_ i _payrt B 2.5

Pocpr = 907T = . ( . )
For low temperatures, equation (2.4) yields the larger pressure. By increasing the tem-
perature, the two pressures first become equal at a critical temperature 7T, and thereafter
the QGP pressure dominates. According to Gibbs criterion, the phase with the largest
pressure is the stable one. This means that at low temperature the system will be in
a HG phase and for high temperatures in the QGP phase. Assuming a bag constant of
B'Y* ~ 200 MeV [27], the transition will occur at a temperature:

1
90B \ *
T, = ~ 140MeV 2.6

<377r2> ‘ (2:6)

More detailed theoretical calculations are done in lattice QCD, a nonperturbative
treatment of quantum chromodynamics formulated in a discrete lattice of space-time
coordinates [43]. They have been performed at zero net-baryon charge. This has a
pure technical reason, as some expressions that are in lattice Monte Carlo formulation
interpreted as probabilities, are no longer positive definite at non-zero baryon densities.
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Figure 2.4: Energy density and pressure as a function of temperature in lattice
QCD. The calculations have been performed by the Bielefeld group [33] using 0, 2 and 3 light
quarks as well as two light quarks and a heavier (strange) quark. At high temperature it is
expected that ¢/T* and p/T* will asymptotically approach the free gas limit for a gas of gluons
and ny quarks (equation 2.1 and 2.2). This is indicated by the arrows.

Figure 2.4 shows a calculation for the energy density and the pressure. The rapid change
in energy density within a narrow temperature interval indicates the change from confined
hadrons to a QGP. However, the phase transition is found to be of the first or of the second
order, or even a smooth cross-over, depending on the number of quark flavors and their
masses. The critical temperature T, obtained at zero baryon density is about 260 MeV for
pure gauge theory, i.e. for systems consisting of gluons only. For theories with dynamical
quarks T, varies between 140-170 MeV.
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Chapter 3

Dimuon Excess in the Intermediate
Mass Region

Dileptons have the interesting property of not suffering strong interactions with the sur-
rounding hadronic medium. Therefore, they are considered as ideal probes of the early
stage of heavy-ion collisions, where the Quark Gluon Plasma formation is expected. The
dilepton mass spectra can basically be divided into three regions [22]. The region be-
low the ¢ meson (~ 1 GeV/c?) is addressed as the low mass region. It is dominated by
hadronic interactions and hadronic decays. In the intermediate mass region from about
1 to 2.5 GeV/c?, the contribution from the thermalized QGP might be seen [44]. And
finally, in the high mass region the .J/t¢) suppression has been a subject of great interest,
since it was proposed as a signal of the deconfinement phase transition [45].

The most prominent observation in the low and intermediate mass region has been
the dilepton enhancement seen by the experiments HELIOS/3, CERES and NA38/NA50.
The NA50 experiment has proposed an enhanced open charm production in central
Pb-Pb collisions by a factor of 3 [17]. Such a large enhancement is, however, difficult to
explain theoretically. Another interpretation of the data is that the increase of the IMR
dimuons is not from charm but is due to thermal dileptons [24]. This chapter summarizes
the experimental findings and gives a brief confrontation of two possible explanations:
open charm enhancement and thermal dilepton radiation.

3.1 Experimental Evidences

The NA38/NA50 experiment studied muon pair production in p-A, S-U and Pb-Pb col-
lisions at the CERN SPS [8, 46]. The dominant contribution to the dimuon spectrum in
the IMR is the combinatorial background due to the decays of 7 and K mesons. After
its subtraction the invariant mass and transverse momentum spectra in p-A collisions
are well described by a superposition of dimuons coming from leptonic and semi-leptonic
charm decays and from Drell-Yan processes:

+ b J/Y P
AN* L ANY AN dN

dm dm dm dm dm dm
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Figure 3.1: Charm hadroproduction cross-section. The values refer to forward produc-
tion (zp > 0). The dotted curve shows the \/s—dependence of o*% obtained with PYTHIA and
fitted to the measurements. The red square is the indirect measurement from the NA38/NA50
collaboration [17].

In this equation R is a correction factor to account for charge correlation effects. The
shape of the dimuon sources in the right part of equation (3.1) is evaluated by means of a
Monte Carlo simulation. By fixing the shape of the dimuon sources, the p-A spectra are
fitted leaving the yields n’ (i = DY, DD, J/v, v') as free parameters.

The obtained total number of muon pairs from DD decays is translated into an open

. . A . . . .
charm production cross-section a’l’)ﬁﬂm for p-A collisions. To obtain the corresponding

value for p-p collisions at 450 GeV/c a linear dependence on the mass number A is
assumed:

MC pA,Data
pp Opr T pD-up
DD—pup

The Monte Carlo scaling ratio was obtained from a simulation with the event generator
PYTHIA [47]. The NA38/NA50 compared their indirect measurement for the p-p open
charm production cross-section to direct measurements from other experiments, as shown
in figure 3.1. For this purpose the cross-section value was divided by a factor of 2 to
consider only the zz > 0 hemisphere. The agreement is satisfactory. It is possible to
obtain the 0’2 cross-section for different energies from a PYTHIA calculation fitted to the
data.

The expected cross-section for A-A collisions ag‘%iw is obtained by using a linear

extrapolation of the p-A sources with the product A, x A; of the mass number of the
projectile and target nuclei. This enables to calculate the expected number of DD dimuons
in the centrality integrated S-U and Pb-Pb spectra. The Drell-Yan events are determined
by a fit to the high mass region of the spectrum.
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Figure 3.2: Enhancement in the IMR dimuon spectra of Pb-Pb collisions. The
figure shows the dimuon spectra from 158 AGeV/c Pb-Pb collisions [17]. The sum of expected
sources is drawn as solid line. The contributions from Drell-Yan processes (dashed line), J /v
and 1)’ (dot-dashed lines), and from DD (dotted line) are also shown. The comparison to the
data shows a dimuon excess in the IMR which might be assigned to an enhancement of open
charm.

The comparison of the expected sources in A-A collisions and the data points shows
that the linear extrapolation from p-A collisions underestimates the dimuon yield in the
IMR. As an example the spectrum for central Pb-Pb collisions (N, = 381) is shown in
figure 3.2. It is observed that the excess increases roughly linearly with the number of
participant nucleons N, as can be seen in figure 3.3. In order to describe the data with
a simple superposition of DY and DD, the expected open charm yield has to be scaled
up by a factor reaching ~ 3.5 for central Pb-Pb collisions.

This excess has been interpreted as enhancement of open charm. It has been observed
that the kinematical distributions (pr, y and cosf.,) of the measured dimuon excess are
compatible with those expected from open charm but not with a wrong estimation of the
background normalization.

Also the CERES collaboration has tested the hypothesis of open charm enhancement
to explain their dilepton enhancement in the low mass region [25]. However, the data
would require an enhancement factor of about 150, which is ruled out by the NA38/NA50
measurement. To bring clarity in the situation, a direct measurement of the open charm
yield is presented in this work.
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Figure 3.3: Enhancement factor versus number of participants. The data points
comprise the p-A and A-A collision measurements of the NA38/NA50 collaboration [17]. The
bracket in the p-A point represents the systematic uncertainty.

3.2 Open Charm Enhancement as QGP Signature

One possible explanation of the open charm enhancement is given within the Statistical
Coalescence Model (SCM) [48]. In this approach it is assumed that the .J/¢) meson is
created at hadronization according to the available hadronic phase-space. Thus, within
this model, the .J/v yield is independent of the open charm yield.

The hypothesis for open charm enhancement is that in A-A collisions a charm pair
below the D meson pair threshold (m. < 2mp) can hadronize into D mesons [49]. This
picture can be clarified by first considering open charm production in e™e ™ annihilation. If
the distance between the ¢ and ¢ quark reaches the range of the confinement forces, a string
connecting these colored objects is formed. If the eTe™ center of mass energy /s lies above
the D meson threshold 2mp, the ¢ and € quarks break the string into two (or more) pieces.
As a consequence charmed mesons or hadrons are produced. However, if /s exceeds the
charm quark threshold but lies below the D meson threshold (2m, < /s < 2mp), the
string does not break and no open charm meson is formed.

Next, the c¢ formation is assumed to take place inside a deconfined medium. In this
case no string is formed between the colored objects due to the Debye screening. The
created ¢ and ¢ quarks can fly apart as if they were free particles. Thus, they will be able



3.3. THERMAL DILEPTON RADIATION 17

to form a D meson at the stage of the QQGP hadronization even if their initial invariant
mass ms was below the corresponding meson threshold.

In N-N or A-A collisions the heavy flavor quark pairs are produced due to hard parton
interactions. Leading order pQCD calculations show that a great fraction of ¢¢ pairs are
created with m < 2mp even at the largest RHIC energies. In a deconfined medium, as
expected for high energy A-A collisions, the hadronization of the created c¢ pair would
be facilitated. This should lead to an enhancement of charmed meson production in
A-A collisions compared to the result obtained by linear extrapolating the N-N data.
Within the rapidity window of the NA50 spectrometer the SCM predicts an open charm
enhancement factor of 2.5 to 4.5 [50].

3.3 Thermal Dilepton Radiation

A different approach to explain the dilepton excess is the assumption of a thermal source
emission [24, 51, 52, 53]. The model is based on the observation that the dilepton emission
rate from a hadron gas at a given temperature is fairly well described by the ¢ annihilation
rate at the same temperature [11]. The so called quark-hadron duality is valid down to a
mass of approximately 1 GeV/c?. Such simplification makes it possible to parameterize
the thermal source by a Boltzmann-like exponential function with effective temperature
Te.sr and a normalization factor N which reflects the space-time volume occupied by the
thermal source.

In this way the dilepton spectra from CERES in the low mass region and from
NA50 in the intermediate mass region can be described at the same time by just using
the two parameters T,y = 170 MeV and Ny = 3.3 - 10* fm*. The comparison is shown
in figure 3.4. Even the direct photon data from the WA98 [54] is compatible with this
picture.

The thermal source model is not able to decide if the matter which emits the dileptons
has a deconfined or hadronic nature. However, the effective temperature parameter of
Terr = 170 MeV is in perfect agreement with the temperature needed to describe hadron
species ratios [55]. Since Ty is an average temperature, it can be concluded that the
electromagnetic probes indeed point to temperatures above the expected deconfinement
temperature. This corroborates the expectation that at CERN-SPS energies a QGP is
formed.
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Figure 3.4: Comparison of thermal model calculations to data. Preliminary
CERES data (upper row) and NA50 data (lower row) can be described within thermal model
calculations [53]. The thermal yields are drawn as black solid lines. The contribution from the
hadronic decay cocktail is drawn as dot-dashed blue line in the CERES data. In the NA50 data
the contribution from Drell-Yan processes is drawn as dashed line, the contribution from open
charm as dot-dashed line, and the J/v and 1)’ as black solid line. The blue solid line is the sum
over all contributions.
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Chapter 4

CERES Experiment

The CERES (Cherenkov Ring Electron Spectrometer) experiment is part of the heavy-
ion program at the CERN Super Proton Synchroton (SPS). It was designed for the
measurement of low mass e™e~ pairs in nucleus-nucleus collisions. The first version of the
experiment consisted of a telescope of two Silicon Drift Counters (SiDC1 and SIDC2)
for precise vertex reconstruction and two Ring Imaging Cherenkov Detectors (RICH) for
the electron identification. Originally, the momentum of the electrons was determined
by measuring the deflection angle in the azimuthal symmetric magnetic field between the
two RICH detectors. The experiment was upgraded in the year 1995. An additional Pad
Chamber was positioned behind the second RICH detector to improve the momentum
resolution and to cope with the high multiplicities of Pb-Au collisions [56].

In 1998 the Pad Chamber was replaced by a cylindrical Time Projection Chamber
(TPC) [57] in order to improve the mass resolution in the range of the p, w and ¢ mesons
to Am/m = 3%. The differential energy loss dF/dx in the TPC is used to further im-
prove the electron to pion separation. In addition, the TPC allows the study of final
hadronic states. As all other subdetectors the TPC has full azimuthal coverage. The
acceptance in polar angle is 8° < 6 < 14° which corresponds to a pseudorapidity range
of 2.10 < n < 2.65. At the time of the experimental upgrade the former magnetic sys-
tem between the RICH detectors was disabled and a new system assembled around the
TPC. The recent experimental setup of the CERES experiment is shown in figure 4.1. A
detailed description of its individual components will follow in the next sections.

4.1 Target Area

The target system used during the beam time in 2000 consists of 13 gold disks. The gold
is vacuum-metalized onto mylar foils which served as support structure. The thickness
of the mylar foils is 1.5 um, that of the gold layers is 25 ym. The mylar foils are glued
onto iron rings of 350 um. The distance between the targets is adjusted with spacers of
1.6 mm. A target diameter of 600 yum and a spacing between each disk of 1.98 mm is
chosen to guarantee that each particle produced in the acceptance of the spectrometer
does not pass additional target disks. This condition minimizes the amount of undesired
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Figure 4.1: Cross-section of the upgraded CERES experiment. Shown is the latest
setup of the spectrometer used during the beam times in 1999 and 2000. The main components
are two Silicon Drift Detectors (SiDC1/SiDC2) for the vertex reconstruction, two Cherenkov
Counters (RICH1/RICH?2) for electron identification and a Time Projection Chamber (TPC)
for the measurement of the particle momentum.

conversions of photons into ete™ pairs. The tungsten shield upstream the target system
protects the UV-Counters of the RICH detectors against strongly ionizing particles from
the target.

4.2 Trigger System

The trigger system of the CERES experiment starts the readout sequence of the detectors
if a (central) collision between a beam and a target nucleus has been detected. The
decision is based on the signals of three Cherenkov Counters with air as radiator gas (Beam
Counters BC1, BC2, and BC3) and a 1 mm plastic scintillator for centrality (Multiplicity
Counter MC).

The first two Cherenkov Counters are located 60 m and 40 mm upstream the target
system, respectively. The beam trigger is defined by the coincidence between these two
counters:

Tyoarn = BC1 - BO2. (4.1)

With an additional veto on BC3, located 69 mm downstream the target system, the
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Figure 4.2: Correlation between the pulse height of the MC and the TPC track
multiplicity. The number of tracks for minimum bias runs is plotted on the horizontal axis.
The vertical axis shows the pulse height information from the multiplicity detector of the trigger
system. The plot was divided into vertical slices. To each slice a Gaussian function was fitted,
and the mean value with its error is shown in black. Over the whole range the pulse height of
the MC is proportional to the track multiplicity.

minimum bias interaction trigger can be generated by:
Trinvias = BC'1 - BC2 - BC3. (4.2)

Finally, the central trigger requires a signal from MC, located 77 mm downstream the
target system:

Tyentrat = BC'1 - BC2 - BC3 - MC. (4.3)

The MC scintillator has an outer diameter of 14.7 mm. With a 4.9 mm diameter hole in
the middle it has a mean pseudorapidity coverage of 2.3 < n < 3.5. Its signal is roughly
proportional to the number of charged particles hitting the scintillator and thus it is a
good measure for centrality. The correlation between the MC pulse height and the track
multiplicity measured with the TPC is shown in figure 4.2.

Additional beam particles passing through the target within several microseconds
from the triggered event produce d-electrons visible in the SiDC and the RICH detectors.
These events are suppressed by the trigger system by requiring no other beam particle
within £1 ps from the nuclear reaction triggered on.
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Figure 4.3: Operation mode of the Silicon Drift Detectors used in the CERES
spectrometer. A particle traversing the depletion zone of the detector creates electron-hole
pairs. An electric drift field leads the electrons towards the anodes located at the edge of the
wafer.

4.3 Silicon Drift Detectors

Two radial Silicon Drift Counters (SiDC1, SiDC2) are located 10.4 ¢m and 14.3 cm
respectively downstream the target system. Both detectors are 4” wafers with a thickness
of 250 pm. The active area ranges from 4.5 mm to 42 mm in radius.

The operation mode of the SiDC detectors is based on the sidewards depletion pro-
posed by E. Gatti and R. Rehak in 1984 [58] and is illustrated in figure 4.3. The under-
lying idea is that a huge area of high resistive n-type doped silicon can be completely
depleted from a tiny n™-type doped contact by impressing a negative voltage on p*-type
implants on both side of the wafer. The minimum of the electric potential is located in
the middle of the wafer and has a parabolic shape towards the surface.

If a particle traverses the depletion zone of a SiDC it produces electron-hole-pairs.
The electrons are transported towards the n*-anode via an electric drift field created by
a voltage divider parallel to the wafer surface. For a typical drift field of 700 V/m the
maximal drift time of the electrons is around 3.8 us. This drift concept has the advantage
that the surface of the anode can be kept small. A small anode surface implies a small
capacitance which reduces electronic noise.

A total amount of 360 anodes are radially arranged at the edges of the SiDC detectors.
They are connected with the readout chain. The measured pulse height is amplified by a
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Figure 4.4: Segmented anode structure of the SiDC detectors. The width of a
1° anode sector adds up to 732 ym. The central segment of 366 pm is connected to two main
side segments of 122 pym. In addition each anode has two smaller side segments of 61 pm located
in adjacent anodes. This design guarantees optimal charge sharing.

charge sensitive amplifier and shaped in a quasi-Gaussian form. A FADC (Flash Analog
Digital Converter) samples the analog signal with a frequency of 50 MHz and digitizes it
with a 6 bit resolution.

Within the overall concept of the experiment the two SiDC detectors are used to
determine the pseudorapidity density of charged particles dN/dn, suppress conversion
electrons, and perform a precise vertex reconstruction. Knowing the drift velocity, the
radial coordinate of a particle passing through the detector can be calculated by measuring
the drift time of the electron cloud. The azimuthal coordinate ¢ can be accessed via the
information which anode has been hit. Figure 4.4 shows a cross-section of an anode. The
segmented structure improves the charge sharing between the anodes and therefore the
azimuthal resolution of the detector [59].

4.4 Cherenkov Counters

The task of the two Ring Imaging Cherenkov Detectors (RICH1, RICH2) of the CERES
spectrometer is the identification of electrons. These detectors take advantage of the
Cherenkov radiation to measure the velocity f of the traversing particle. Combined with
the knowledge of the particle momentum, [ determines its mass.

Whenever charged particles pass through matter they polarize the molecules, which
then turn back rapidly to their ground state emitting prompt radiation. If the velocity of
the particle exceeds the velocity of light in the medium v > ¢/n, the emitted light forms
a coherent wavefront. This so called Cherenkov light is emitted under a constant angle
0. with respect to the particle trajectory:

6, = arccos <C/Tn> = arccos (51n> (4.4)

The lowest velocity where the emission of Cherenkov radiation is still possible is vy, = ¢/n.
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Figure 4.5: Principle of the RICH detectors. Cherenkov photons are emitted under
a constant angle to the trajectory of a particle, if its velocity exceeds the velocity of light in
the radiator gas. The photons are focused by a mirror onto a ring at the surface of a position-
sensitive photon detector. The radius of the ring is a measure for the particle velocity.

This corresponds to a Lorentz threshold factor of:

1
Yeh = —— (4.5)

The concept of a RICH detector was proposed in 1977 by J. Séguinot and T. Ypsilantis [60)]
and is illustrated in figure 4.5. The Cherenkov photons, emitted at an angle 6. by a particle
passing the radiator of the detector, are focused by a mirror onto a ring of radius R at the
surface of a position-sensitive photon detector. By measuring the ring radius the particle
velocity, which is connected with the relativistic Lorentz factor 7, can be determined by:

R=Ru|1— (%)2 (4.6)

In this equation R is the asymptotic radius for particles with v > vy,. It is determined
by the focal length f of the mirror and the Lorentz threshold factor:

1

The radiator gas used in the RICH detectors of the CERES spectrometer is CH, at
atmospheric pressure. The high threshold of 7, = 32 assures that only electrons and
positrons emit Cherenkov light, whereas 95% of the hadrons do not produce any signal.
Only pions with a momentum exceeding 4.5 GeV/c make an exception to the hadron

blindness of the RICH detectors.

The spherical shape of the RICH1 mirror is manufactured out of a carbon fiber com-
posite with a low radiation length of X/X, = 0.4%. It is coated with aluminum, known
for its high reflectivity in the UV region (> 85%). The RICH2 mirror is a conventional
6 mm glass with a radiation length of X/Xy = 4.5% at comparable UV-reflectivity [61].
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The position-sensitive UV-detectors located in the focal plane of the mirrors are
gas detectors filled with 94% He and 6% CH, at atmospheric pressure. To convert the
incoming photons to electrons via photoionization TMAE (Tetrakis-di-Methyl-Amino-
Ehtylen) vapor is added. It has a low ionization potential of 5.4 eV. The gas is heated to a
temperature of 40° to increase the partial pressure of TMAE. At this working temperature
the mean free path for photoabsorption is 5 mm. The conversion region of the UV-
detectors of 15 mm adds up to a conversion probability of 95%. The electrons emitted
after photoabsorption are amplified in an avalanche process. The signals are read out on
53800 individual pads in RICH1 and 48400 pads in RICH2. The pad size is 2.7 x 2.7 mm?
in RICH1 and 7.6 x 7.6 mm? in RICH2, respectively. To separate the UV-detectors from
the radiator gas of the RICH detectors UV-transparent windows are used (CaF; for RICH1
and Quartz for RICH2).

4.5 Time Projection Chamber

The measurement of the particle momentum is accomplished with a cylindrical Time
Projection Chamber (TPC), located 3.8 m downstream the target system. Furthermore,
particle identification is possible taking advantage of the differential energy loss dE/dz.
As mentioned in the introduction of this chapter, the CERES experiment was originally
conceived for the measurement of eTe™ pairs. However, the spectrometer upgrade with
the TPC renders the additional possibility to study final hadronic states.

Figure 4.6 shows a schematic view of the CERES TPC. Its sensitive volume is filled
with gas. If a charged particle passes through the TPC the gas is ionized. An electric field
forces the liberated electrons to drift outwards until they reach a plane of anode wires.
In the vicinity of the anode wires the electrons are accelerated and produce secondary
ionization in an avalanche process. The electrons are quickly collected by the anode
wires and therefore contribute little to the induced signal. The heavier ion clouds remain
and expand radially, inducing a signal on the pads, which are connected to the readout
electronics.

The CERES TPC has an active length of 2 m and an outer radius of 130 cm. The
inner barrel has a radius of 48.6 cm. The TPC is composed of 16 multiwire proportional
chambers forming a polygonal structure. The segmented readout pads are arranged in
groups of 48 in azimuthal direction on each chamber. Along the z axis the TPC is divided
into 20 planes. The 16 x 48 x 20 = 15360 readout channels of the TPC are sampled in
256 time bins, thus allowing a 3-dimensional reconstruction of a particle track.

The electric drift field inside the TPC is radial, pointing from the grounded cath-
ode wires on the readout chambers to the inner barrel, supplied with a high voltage
of —30 kV. Both sides of the TPC are closed by 50 pum capton foils with incorporated
voltage dividers. The TPC is operated inside an inhomogeneous magnetic field, generated
by two opposite-polarity solenoidal coils. The magnetic flux is indicated in figure 4.1 by
red dotted lines. In the region between the two coils a field strength of 0.5 T is reached
(compare figure 6.1).

In the presence of a magnetic and an electric field, the drift velocity vector U
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Figure 4.6: Schematic view of the CERES TPC. A charged particle passing the active
volume of the TPC ionizes the gas along its trajectory. The electrons drift towards the anode
wires on the readout chambers. The angle between the radial electric field E and the drift
velocity Ugrips is given by the Lorentz angle ay,.

of the electrons has non-zero components perpendicular to the the electric field vector

—

E [62]:

B [ . E x B ,(E-B)B

Varift = m (E + wT B + (wT) 5 (4.8)
In this equation 7 is the mean time between two collisions. The cyclotron frequency w is
given by:

wr =S Br = Bpu (4.9)
m

where p is the mobility. It has to be pointed out that the mobility is a function of the
electric field, gas composition, pressure, and temperature. As soon as the magnetic and
the electric fields are not parallel to each other, the electrons do not follow any more the
electric field lines. The angle between the drift velocity vy.;s; and the electric field E is
called Lorentz angle ay.

The CERES TPC has a large contribution of a magnetic field component perpendi-
cular to the radial electric field, especially towards the edges. If p, E and B are known,
the drift velocity can be computed. Its value ranges from 0.7 cm/us to 2.4 cm/pus with a
maximal drift time of about 71 us. However, to minimize uncertainties, the Lorentz angle
should be kept small. Thus, a gas composition with low mobility has to be used. Beside
this aspect, the radiation length, the number of created electron-ion pairs, the maximal
drift time and the diffusion coefficients were taken into account and led to the choice of



4.6. COORDINATE SYSTEM 27

_gating grid @70pm o —

cathode wires @70pm S |°™"

anode wires 20 um 3mm
W |103 mm . . . . @- “ 1Y AGmm Ie 3mm

24 mm
cathode pad
Figure 4.7: Chevron grounded
structure of the plane conductor

cathode pads. The

chevron structure re-  Figure 4.8: Cross-section of a TPC readout chamber.
sults in an optimal  Primary electrons coming from an ionizing particle are amplified in
charge sharing between  an avalanche process due to the strong electric field in the vicinity
adjacent pads and in  of the anode wires. The gating grid is responsible to protect the
a good linearity of the  readout chambers from free charge. It is switched to a transparent
pad response. mode as soon as a trigger signal has been given.

a gas mixture of 80% Ne and 20% CO, [63].

The pads of the CERES TPC have a chevron-shaped structure, as plotted in
figure 4.7. Compared to usual rectangular pads, the chevron shape results in a better
charge sharing and linearity of the pad response [63].

The anode wires are strained in azimuthal direction 3 mm above the chamber surface.
A cross-section of a chamber is shown in figure 4.8. Thin parallel and equally spaced
anode wires are sandwiched between a cathode wire plane and the pads. The anodes
are on positive potential of about 1.3 kV. The adjacent cathode wires are grounded.
This creates a very strong electric field close to the anode wires where the electrons are
multiplied by a factor of 10* in an avalanche process. The potential of the gating grid,
located 6 mm above the cathode wire plane, is responsible to regulate the passage of
electrons and ions. It impedes free charge inside the gas volume, which does not come
from particles originating from a nucleus-nucleus collision, to reach the anodes. Secondly,
it prevents the ions from floating back into the drift volume. The gating grid is operated
at an offset potential of U,fser = —140 V. In the closed mode an additional bias potential
of Upias = £70 V is superposed, alternating from wire to wire. This causes a strong
inhomogeneous field and the charge is collected at the gating grid. Only after a signal
from the trigger the gating grid is switched to a transparent mode at U, = 0 V.

4.6 Coordinate System

All subdetectors use their own specific coordinate system. However, a global polar co-
ordinate system with the origin located in the center of the first Silicon Drift Detector
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Figure 4.9: Global coordinate system of the CERES experiment. It is a polar
coordinate system (z,0,¢) with the origin in the center of the first Silicon Drift Detector SiDC1.
The z coordinate is parallel to the beam axis. For secondary particles a right handed Cartesian
coordinate system (x,y,z) with origin in the interaction point is used.

(SiDC1) combines all detectors. It is drawn in figure 4.9. The beam axis coincides with
the z coordinate. Therefore each point is defined by its distance z to SiDC1, its polar
angle 6, and its azimuthal angle ¢.

Also frequently used are the so called event coordinates. Their origin is located in
the interaction point of each event. For a segmented target, as it is used in the CERES
spectrometer, this coordinate system is very convenient. It projects all target disk onto
a single one which is specially important for the mixed events technique, described in
section 8.3.1.

The polar coordinate system, as it is commonly used in the CERES experiment,
is not suitable for the analysis of secondary particles arising from late decays. For this
purpose a conversion into Cartesian coordinate is needed.
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Chapter 5

Raw Data Reconstruction

This thesis is based on the analysis of data recorded during the beam time in the year
2000. The CERES experiment has taken a large data sample of about 30 - 105 Pb-Au
collisions at 158 AGeV /¢ triggering on the 7% most central collisions. A second sample of
3+10° events was collected at 20% centrality. The typical beam intensity was 10° ions per
burst. Each burst had a duration of 5 s with a 14 s pause in between. The data taking
rate was 300-500 events per burst.

The raw data is stored on tape at the CERN computer center. Before being able to
perform any physics analysis it has to be transformed into a suitable format. Therefore,
the data is decompressed, the pedestals are subtracted, and an automatic calibration is
performed. The signals are disentangled to form hits and the hits are combined in a
meaningful way to form tracks. And finally, further information like the momentum is
retrieved by fitting the curvature of the track in the magnetic field.

This chapter is focused to specific aspects of the data reconstruction, i.e. the hit
and track reconstruction procedure in the SiDC detectors and the TPC. It is part of the
C++ package COOL (Ceres Object Oriented Library). Special importance is given to
developments in the framework of this thesis. These are the reconstruction of particles
originating from late decays and the hit finding strategy in the TPC.

5.1 Reconstruction Procedure in the SiDC Detectors

5.1.1 Hit Finding

The raw data of the SiDC detectors consist of 6 bit nonlinear amplitudes on 360 anodes
in azimuthal direction and 256 time bins in radial direction. Thus, a SiDC event consists
of a grid of 360 x 256 = 92160 pixels. Figure 5.1 shows an example of an event display
of SiDC1. A signature of a charged particle passing the detector and depositing energy is
called a hit. It is a cluster of typically 8-12 time bins on 2-3 anodes.

The pattern recognition starts from a given pixel and searches for neighbors with
non-zero amplitude which are not yet assigned to another hit. All pixels fulfilling these
criteria are grouped together in a cluster. Also non-functioning (dead) anodes, if present,
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Figure 5.1: Event display of SiDC1. The SiDC plane is divided into 360 anodes and
256 time bins. The amplitude height is displayed in a color code, going from the lowest values
in blue to the highest in red.

are considered to prevent additional cluster formation.

Each cluster is then divided into anode slices. These time pulses are scanned for local
maxima and minima in the amplitude profile. If the amplitude of a minimum is less than
10% of one of the adjacent maxima, the pulse becomes a candidate to be split into two
parts. The final decision about the splitting is based on several criteria concerning the
width and the skewness [13].

The time position of a maximum is determined by calculating the center of gravity.
Only in the cases where one or more time bins are in saturation, it is determined by fitting
a Gaussian function. Overlapping pulses are fitted with a double-Gaussian. Within a
window of +7 time bins the pulses are combined in anode direction to hits. Pulses with
three or less time bins are discarded in this process.

If more than two time pulses are combined to a hit candidate, the amplitude profiles
are scanned for a minimum in anode direction. If such a minimum is found the hit is split
in two parts. The position of the hit in anode direction is obtained by calculating the
center of gravity. In cases where a pixel has reached saturation a Gaussian regression is
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Figure 5.2: Reconstructed target resolution. The 13 target discs are well resolved
along the beam axis. The thickness of each gold disc of 25 um is negligible as compared to the
resolution.

used for this purpose.

5.1.2 Track and Vertex Reconstruction

Once the hits in the two SiDC detectors are reconstructed a first estimate of the vertex
position can be obtained using a robust vertex fitting approach [64]. It has the advantage
of being an order of magnitude faster than a standard minimization package, at compa-
rable accuracy. In this method each hit in SiDC1 is combined with each hit in SiDC2
into a straight track segment. Afterwards, the residual of the SiDC1 hit from the line
through an assumed vertex and the SiDC2 hit is calculated. The same is done for the hit
in SiDC2. The starting value of the vertex position is in the middle of the target region.
The sum of the squared residuals are minimized using Tukey’s bi-squared weights [65] to
account for the fact that the data is highly contaminated with background. In this way
a better estimate for the vertex position is obtained. The procedure is repeated until
it converges after approximately five iterations. The reconstructed vertex distribution is
shown in figure 5.2. The 13 target discs are resolved with an average resolution of about
0, ~ 210 pm along the beam axis.

The knowledge of the vertex position is needed for the tracking strategy in the SiDC
detectors. In the standard method used in the CERES experiment a SiDC track segment
is created by searching for the closest SiDC2 hit in a narrow matching window around the
hit in SiDC1. The matching window is defined in event coordinates. Thus, preferentially
tracks pointing to the vertex are reconstructed.

For the special demands of the K and D’ analysis described in the chapters 8 and 9
this strategy had to be modified in order to enhance the number of tracks from secondary
decays. To avoid the bias due to the fitted vertex the hits in SiDC2 are now projected
onto the SiDC1 plane. In this projection all SiDC2 hits in the vicinity of a given SiDC1
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Figure 5.3: Primary versus secondary matching. The comparison is based on a clean
Monte Carlo sample of daughter particles from D" decays. The primary matching distribution
is broad because it uses mean angles for the pointing. The secondary matching is based on local
angles and thus yields better results for tracks originating from late decays.

hit are accepted if they fulfill the following distance criteria:

Ar?  A¢?
d= "L +—q25<1
T

pe (5.1)
In this equation Ar and A¢ are the radial and azimuthal distances between the SiDC1 hit
and the projected SiDC2 hit. The values for o, and o4 define the cutoff and are given by
0.09 ¢m and 0.05 rad, respectively. The cutoff is tuned such that the amount of additional
SiDC track segments does not exceed 30%.

Another change concerns the matching between a SiDC and a TPC track segment.
The originally matching procedure favored tracks coming from the targets. It was defined
using the average angles ¢,,cqn and 0,cq, of the two SiDC hits in order to improve the
pointing resolution of the SiDC track segment to the TPC. This procedure is not appli-
cable for tracks originating from late decays. In this case the two SiDC hits are directly
connected with a straight line and extrapolated in the field free region to the plane of the
RICH2 mirror. Also the TPC track segment is extrapolated to the RICH2 mirror, but
now taking the magnetic fringe field into account. The RICH2 mirror is the main source
of multiple scattering in the experiment and therefore a suitable place for the matching
between the two track segments. A global track is obtained if the matching

match = \/(A0)? + (A¢ - sin(fsinc))?

(5.2)

between the two track segments is minimal as compared to other combinations. The

azimuthal angle difference in this equation is defined as A¢ = ¢s;pc — ¢rpc, and similar
for Af.
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Figure 5.4: Scheme of the hit finding procedure in the TPC. The pixel grid is
searched for local maxima in time direction, followed by a search in pad direction. If a pixel is
flagged as a local maximum in both coordinates it become an absolute maximum. The hit is
defined as an area of 15 pixels around the absolute maximum.

The two different matching procedures are optimized for either primary or secondary
tracks, and will therefore be denominated as primary or secondary matching, respec-
tively. The comparison between the two matching procedures, applied to a clean Monte
Carlo sample of D" mesons, is shown in figure 5.3. The D' meson has a decay length
of et = 311.8 um [66] and thus decays in the vicinity of the targets. Nevertheless, the
difference between the two matching procedures is remarkable. In spite of the fact that
the secondary matching has a limited resolution, the figure shows that the pointing of the
primary matching is even worse and might lead to a wrong track segment combination.
The new matching procedure is implemented in the CERES code such, that the user can
chose between primary and secondary matching, depending on the needs of his physics
analysis.

5.2 Reconstruction Procedure in the TPC

5.2.1 Hit Finding

The TPC is divided into 20 planes, each of them containing 768 pads in azimuthal di-
rection and 256 time bins in radial direction. Thus, the overall grid is composed of
20 x 756 x 256 ~ 4 million pixels. The pixel contains the linear amplitude information
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Figure 5.5: Reconstruction of overlapping hits in the TPC. A counter variable
memorizes the value of the absolute maximum of the regarded hit. If a pixel is assigned to
several hits, the counter variable is augmented by the corresponding absolute maxima of the
overlapping neighbors.

from an 8 bit ADC.

The pixel grid of the TPC is scanned for hits individually in each plane. A schematic
overview of the procedure is drawn in figure 5.4. In a first loop local maxima are searched
in time direction for a given pad p. The same is repeated in pad direction for a given
time bin £. The combination of both informations finally yields the position of absolute
maxima. These are pixels which are flagged as a local maximum in time as well as in pad
direction. They provide a first guess of the true hit position.

The search for local maxima might yield wrong results if several adjacent pixels in a
time bin row have saturated amplitudes. As compromise the middle pixel of the saturated
cluster is chosen as local maximum. For instance, if three pixels have saturated amplitudes
Ag = A} = Ay, the pixel with A; is flagged. A further problem appears if the number of
adjacent saturated amplitudes is even. In this case the non saturated neighborhood is
used for the decision. For instance, if two pixels have saturated amplitudes A; = Ay, and
the amplitude A3 is higher than Aj, than the pixel with A, is flagged as local maximum.

The area assigned to a hit is composed of 5 time bins and 3 pads. These 15 pixels
are arranged around the absolute maximum. Hits containing only one time bin row are



5.2. RECONSTRUCTION PROCEDURE IN THE TPC 35

80 ------oooC
70
60
50
40
30
20
10

T

TPC hits < 17500

et I EERREE 17500 2 TPC hits < 25000
25000 2 TPC hits

fraction [%]

IIII|IIII|IIII|IIII|IIII|IIII|IIII|II

L L1 T B I T T O ) "
05 1 15 2 25 3 35 4
number of overlapping hits

(=)

Figure 5.6: Number of overlapping hits. The three different lines correspond to different
multiplicity ranges. For the distribution of the hit multiplicity in the TPC compare figure 6.15.

discarded. The same applies for one pad clusters, with the exception of a hit being
localized at the edge of a chamber or adjacent to a dead front-end-board.

If a hit is isolated, its position in pad and time coordinates is given by the center of
gravity comprising the area of the 15 pixels. However, many times the area assigned to
a hit overlaps with other hit areas and the simple computation of the center of gravity
is falsified. This problem is solved by allocating a counter variable f; to each pixel 7. Tt
memorizes the amplitude of the absolute local maximum of the regarded hit. If a pixel
can also be assigned to areas belonging to other hits, the counter f; is augmented by the
values of their absolute maxima. The operation method is clarified in figure 5.5. In this
way it becomes possible to weight each pixel individually by the ratio of the absolute
maximum A,,,, of the regarded hit and the counter variable f;. The center of gravity is
defined as

A - Aman
2 Z/‘{ and (5.3)
5 > A % * Di

;A

for the time and pad coordinates, respectively.

o~
Il

The information about the number of overlapping hits is stored. If the overlapping
factor is zero the hit is isolated. The distribution of the overlapping factor is shown in
figure 5.6 for different hit multiplicities in the TPC. About 80% of the hits are isolated,
17% are overlapping with one other hit and 3% are overlapping with two other hits. The
fraction of hits overlapping with more than two hits is in the per mill range. The number
of overlapping hits increases with the hit multiplicity in the TPC, though the effect is
small.
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Figure 5.7: Time and pad width distribution. Figures a) and c) show the distribution
of the hit width expressed in units of time bins for 2 and 3 pad clusters, respectively. The same
is shown in figures b) and d) in units of pads. Only isolated hits belonging to tracks are taken
into account.

Another useful quantity is the hit width in terms of time bins and pads. It is defined
as:

— -2 — _
Otime = \[12 =1 and  0pe0 = \/p? — D (5.4)

Figure 5.7 shows the distribution of o4,. and 0,44 for isolated hits belonging to tracks.
Three peaks are visible in the o0y, distribution. The tiniest one is at a value of 0.5
corresponding to half a time bin. It can be attributed to hits allocating only two time
bin rows. A second peak can be seen at about 0.7. These are mostly hits which are
well situated in an area containing three time bin rows. The rest of the cases belong to
the main peak localized at 0.85. The 0,,4 distribution peaks at a value of 0.5 regardless
of the hit being a 2 or a 3 pad cluster. For the 2 pad clusters the charge is distributed
almost equally over the two pads, while for a 3 pad cluster the bulk of the charge is
localized on the center pad. Conspicuous is the long tail on the right hand side of the
3 pad cluster distribution. Here the contribution of unresolved double or even triple hits
becomes important. This issue will be readdressed in section 6.5.
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Figure 5.8: Event display of the TPC. The left plot shows a front view of the TPC, the
right plot the corresponding sight view. The reconstructed hits are connected to TPC track
segments, represented as green lines.

The detector specific hit coordinates (pad, time, plane) are transformed to the spa-
cial coordinates (z,vy,2) with the help of look-up tables. This transformation contains
the information about the transport process of the charged clusters in the electric and
magnetic field inside the TPC. Furthermore, many calibration aspects enter already at
this stage. The calibration of the TPC is described in detail in chapter 6.

5.2.2 Track Finding

The next task is to combine the reconstructed hits in the TPC to a track segment.
The maximal number of hits per track is given by the 20 planes in the TPC. The
minimal number is limited to 6 hits in order to reduce the contribution of deficient or
fake tracks.

The tracking starts from a hit in one of the middle planes in the TPC. This hit is
combined with its four closest neighbors in the two upstream and two downstream planes.
These hits are used to determine the sign of the track curvature in azimuthal direction.
The information is used to define a narrow window in which further hits are searched.
The ¢ position of the next hit is predicted by a linear extrapolation of the deflection
obtained from the previous hits. The procedure stops if no further hit is found. In order
to find hits which are still missing, a second order polynomial fit with Tukey weights [65]
is performed in the next step for the prediction. This is done in several iterations until
no further hit is found. Special treatment is required for low momentum (soft) tracks. In
this case a correction is applied to the prediction of the next hit. The correction depends
on the curvature of the track and the z position of the next point. The result of the track
finding procedure in the TPC is shown in figure 5.8. More details can be found in [67].
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5.2.3 Track Fitting

The magnetic field in the TPC is very inhomogeneous and an analytical description of
a trajectory is not possible. This problem is handled by using reference tables for the
track fit in the ¢-z and r-z planes. The reference tables contain the TPC hit coordinates
of Monte Carlo tracks from a GEANT simulation [68] of the CERES experiment. The
Monte Carlo tracks are generated in steps of 32 different ¢ angles in the range —m < ¢ < T,
18 different 1 angles in the range 2.05 < 1 < 2.95 and 8 different momentum values in the
range —2 < q/p < 2 (GeV/c)™! , where ¢ is the charge of the simulated particle [69]. The
track segments in the TPC are fitted with a two-parameter fit assuming that the tracks
come from the vertex, and also with a three-parameter fit taking into account multiple
scattering which happens mainly in the RICH2 mirror. After several iterations, hits with
large residuals Ar > 0.4 cm and rA¢ > 0.2 cm are excluded from the fit.

The distribution of the number of hits per track and fitted hits per track is plotted
in figure 5.9 for the same number of events. The average number of hits per track is 16.5.
The distribution peaks at a value of 19 hits. Once the track is fitted, in average one hit
is excluded. The mean value of fitted hits per track is 15.3, the most probable value is
18 hits. The single track efficiency of TPC track segments is plotted in figure 5.10 as a
function of momentum. The efficiency drops steeply for tracks with a momentum smaller
than 0.6 GeV/c. Tracks with higher momentum are reconstructed with an efficiency of
approximately 90%. It has to be mentioned that about 2% of the efficiency loss can be
assigned to a row of dead front-end-boards in chamber 15 in all 20 planes which were
disabled during the beam time in 2000.

In a first order approximation it is assumed that the track is only deflected in
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Figure 5.11: Momentum Resolution. The momentum resolution is determined from an
overlay Monte Carlo sample. Red squares are used for the two-parameter fit, blue triangle for
the three-parameter fit. The black circles show the result for the combined momentum fit, which
include the positive aspects of both.

azimuthal direction. This allows to determine the polar angle # from a straight line
fit in the r-z plane. In the next step the track is fitted in the ¢-z plane using the hits
of the reference tracks for the given # angle. The momentum of the track is determined
from the deflection in ¢-direction. The deflection in f-direction caused by a second order
field effect is considered by applying a small correction. In addition to the two-parameter
fit, the three-parameter fit allows an azimuthal inclination of the track already at the
entrance of the TPC.

The three-parameter fit yields an optimal result for low momentum tracks which often
suffer multiple scattering. In contrast, high momentum tracks are better described by a
two-parameter fit due to the additional vertex constraint. This is clearly seen in figure 5.11
which shows the momentum resolution as a function of the momentum. To exploit the
positive aspect of both, a weighted combination is used. The combined momentum peg,
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is given by
P2 4 P3
oz 1 o2

1 1
P

Peomb = (55)
where py and p; denote the two-parameter and three-parameter fit, respectively, and
09 = Aps/py and o3 = Aps/p3 the corresponding resolution.

The relative momentum resolution is determined by the resolution of the detector
and multiple scattering in the detector material [70]:

Ap\®  [(Ap)? Ap\?
(5) - (7). () L
p p det p scat
Ap) (Ap) 1 /1
— o« p and — X — = const. 5.7
< p det p scat B L. XO ( )

Here L denotes the measured track length, X, is the radiation length, and B is the mag-
nitude of the magnetic field. The multiple scattering term is constant and influences the
resolution of low momentum tracks. The detector resolution deteriorates with momen-
tum because the relative error of the momentum fit is smaller for large track deflections
than for small ones. This term determines the momentum resolution of high momentum
tracks. The relative momentum resolution of the TPC, as obtained from the combined
momentum fit, is given by:

with

% = /(% p) + (2%). (5.8)



41

Chapter 6

Calibration of the CERES TPC

The CERES TPC is exceptional in terms of its radial electric field (see figure 4.1). The
readout system is therefore not located at the end plates as for a usual TPC, but around
the outer barrel. The magnetic field inside the CERES TPC is inhomogeneous to be
almost parallel to the course of the tracks inside the spectrometer, except for the part
at which the deflections of the tracks occur. Due to this complex field configuration the
calibration of the CERES TPC poses a great challenge.

The different steps of the calibration are described in each section of this chapter. It
has to be pointed out that most of the steps are not independent from each other and
have to be determined after previous calibration steps are applied.

6.1 Electric and Magnetic Field and Mobility Cali-
bration

The magnetic field of the upgraded CERES experiment is calculated with the POISSON
program and shown in figure 6.1. The radial and longitudinal components B, and B,
change as a function of r and 2. The magnetic field has been measured before the instal-
lation of the TPC in the experimental area. The measurement deviates from azimuthal
symmetry by few percent compared to the nominal calculation. The deviations are in-
cluded as correction in the field map [67].

The electric field is predominantly radial with E, ~ 1/r. Deviations from the radial
symmetry occur due to the polygonal shape of the TPC. Furthermore, a small longitudinal
component appears at both end plates. The electric field is calculated with a custom
program based on the relaxation method. The exact knowledge of the field cage resistors,
of field distortions caused by displaced chambers, and the leakage of the amplification
field through the cathode wire plane is included in the calculation [12, 71].

The electron mobility u depends on the electric field, pressure, gas composition,
and temperature. The dependence on the electric field is calibrated using so called laser
events in absence of a magnetic field [72]. For this purpose UV light of A = 266 nm
from a Nd:YAG laser was sent into the TPC, parallel to its axis and at different radii,
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Figure 6.1: Magnetic field in the TPC. The plots show the radial and longitudinal
magnetic field components B, and B, as a function of z for different radii r. The region of the
TPC from z = 381.15 m (plane 0) to z = 572.55 m (plane 19) is marked with two vertical lines.
A magnetic fringe field is also present outside the TPC, starting to be negligible upstream the
RICH2 mirror at a position z = 329.73 m.

using a mirror system at the backplate of the TPC. The position of each laser ray was
monitored with position sensitive diodes placed behind the semi-transparent mirrors. The
estimated resolution of the measured laser ray position is dr = 0.25 mm and rd¢ = 0.5
mrad. In figure 6.2 an example of such a laser event can be seen. For a given set of gas
parameters the reconstructed track position is compared to its nominal position known
from the diodes. The mobility is adapted iteratively until both positions agree.

A further constraint is given by the position of the inner cylinder at a radius of
r = 486 mm. The signal from the inner cylinder comes from photo electrons knocked out
by UV stray light which falls onto the aluminum material. If no proper calibration is
applied, this signal appears as semicircles, as can be seen in figure 6.2. It reflects the
polygonal shape of the TPC due to the fact that the drift paths for electrons become
longer and the drift velocities become smaller towards the edges of a chamber.
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Figure 6.2: Laser event in the TPC. The figure shows a display of plane 17 of the TPC for
a laser event. The reconstructed hits in chamber 8 correspond to the radii 700, 800, 900, 1000,
1100 and 1200 mm. The semicircles at the inner cylinder are caused by photo electrons from
UV stray light of the laser. This periodic structure reflects the polygonal shape of the TPC.

The pressure, gas composition, and temperature were monitored during the beam
time with the slow control system of the experiment as shown in figure 6.3. The data is
divided in calibration units of roughly one hour. For each calibration unit the relative
change of the mobility due to outside influences is calculated with the MAGBOLTZ
program [73|. The transformation from detector specific coordinates (plane,time,pad)
to Cartesian coordinates (z,y,z) is done via the drift velocity @4 using a fourth-order
Runge-Kutta method. The drift velocity is determined with equation (4.8). A higher
precision is achieved using the drift option in MAGBOLTZ, but the computation is time
consuming. Therefore, the drift option is only used to compute ¥y;p; in a wide meshed
grid. The components of the drift velocity from equation (4.8) parallel to the E and
parallel to (E X E) are then corrected to account for the obtained differences.

At last the information about the maximum drift time ¢g;2%, is required for the coordi-

nate transformation. This quantity is extracted from the edge of the average radius distri-
bution of the hits from the middle 16 pads of planes 9 and 10 using the drift velocity Ugy; .
arife 18 determined for each calibration unit to account for different conditions in the TPC
over the beam time [74].
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Figure 6.3: Slow control. The slow control of the experiment monitored the pressure, gas
composition, and temperature during the beam time. The changes of the nominal mobility value
due to outside influences are in the percent range.
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Figure 6.4: Calibration of chamber positions. The plots show the reconstructed radius
of the inner aluminum cylinder before and after calibration. The structures seen in the upper
plot are caused by misaligned chambers. The three-fold structure within each chamber belongs
to the three front-end-boards.

6.2 Correction of Chamber Positions

The laser events taken in absence of a magnetic field can also be used to correct for
tilts and shifts of the 16 readout chambers [72]. This is again done by using the signal
from the inner cylinder, which was already mentioned in the previous section. Once
the periodic structures seen in figure 6.2 have been corrected, the misalignment of the
chambers becomes visible. This is shown in the upper plot of figure 6.4 for plane 9 of
the TPC. The observed structures are ordered in groups of 48 pads corresponding to a
chamber. Within each chamber a tinier three-fold structure of 16 pads is visible, related
to the three front-end-boards. The reason is found in the different capacities of the
connections between the pads and the preamplifiers and will be readdressed in section 6.8.

The chamber position affects the drift time via the drift path length and via the
electric field. Thus, the correction has to be done iteratively. The corrected data is shown
in the lower plot of figure 6.4.
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Figure 6.5: Geometry of a readout

board. The pads have a chevron-like struc-
ture oriented along the z coordinate and rep-
resenting one plane. The planes are sepa-

rated by ground strips from each other. The
anode wires are mounted in azimuthal direc-
tion above the pads. The red circle represents
electrons drifting towards the anode wire. A
shift of the wire will influence the electron
cloud in the indicated way.

Figure 6.6: Calibration of anode wire
positions. Shifts of the anode wires result
in a linear dependence of A¢ = ¢irack — Phit
versus pad number. This is corrected individ-
ually for each plane and each chamber via a
look-up table.

6.3 Correction of Anodes Wire Positions

The precision of the adjustment of the anode wires above the cathode pad planes is finite.
Deviations from the nominal positions, as shown in figure 6.5, are calibrated using a
sample of data taken in the absence of a magnetic field. For each plane and each chamber
the difference of the azimuthal angle between the track and the hits A¢ = ¢yrack — Gnir 18
plotted versus the pad number. Here ¢y, is chosen as the best knowledge of the true
azimuthal angle ¢;,,.. This assumption is justifiable because the track is a fit to 12-20 hits
and therefore a good measurand for ¢ qe.

In some cases systematic offsets of A¢ from zero are observed like the example in
figure 6.6. These offsets depend linearly on the pad number and can be parameterized by
a polynomial of first order. The linear dependence has its origin in the chevron-shaped
structure of the cathode pads. If the position of an anode wire above the pads is shifted
in beam direction (parallel to the z coordinate) the charge sharing between the pads must
necessarily change. This in turn influences the determination of the center of gravity of
a hit. The azimuthal hit position ¢p;; is corrected with the help of a look-up table. The
result can be seen in the lower plot of figure 6.6.
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6.4 Nonlinearities

The charge distribution from a track segment is sampled by a finite number of pads.
This introduces a systematic error in the position resolution, as depicted in figure 6.7. As
example a charge distribution, drawn as red curve, induces a signal in two adjacent pads.
The continuous signal is transformed into a discrete one, and thus results in a nonlinearity
of the pad response function. The error vanishes for symmetric configurations if the mean
position of the charge distribution is located either in the middle or at the edge of a pad.

To minimize the nonlinearities a chevron shape has been chosen for the pads [63].
The advantage with respect to a rectangular shape is a better charge sharing and linearity
of the pad response even at low pad granularity. The remaining nonlinearities can be
corrected by plotting A¢ = ¢yraer — dnir versus a fraction of a pad, where ¢yqc i the
best knowledge of the true value ¢;.,.. The nonlinearities depend on the number of pads
on which a signal is induced. In the upper row of figure 6.8 they are plotted separately
for 2 and 3 pad clusters. The azimuthal position distortion is smaller than 0.5 mrad and
thus a tiny effect. The correction of ¢;;; is done via look-up tables, separately for positive
and negative magnetic fields. The result of the correction is shown in the lower row of
figure 6.8.
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Figure 6.9: Position correction for overlapping hits.  The splitting of the

Ad = brack — Ppir distribution in several peaks is due to unrecognized overlapping hits. The
distance d of the peak to the center as a function of the pad width is used to derive a correction
for the hit position.

6.5 Position Correction for Overlapping Hits

The hit reconstruction procedure described in section 5.2.1 is able to separate overlapping
hits as long as their absolute maxima are at least one pixel apart. If this is not the case,
the merged clusters are assigned to a single hit. These hits can be recognized by their
unusually large pad width of op,4 > 0.6.

In figure 6.9 the azimuthal angle difference A¢ = ¢yrack — Gnir is plotted for different
values of 0,,4. With increasing pad width a double or even triple peak structure starts to
appear. This can be used to derive a correction for unrecognized overlapping hits. The
double peak structure is fitted with two Gaussian functions of same hight and width, but
with the distance d from the center. The fits are performed separately for 2 and 3 pad clus-
ters. The relationship between the distance d and the pad width 0,44 is linear and given by
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Figure 6.10: Lateral crosstalk and signal undershoot. The figure shows an average over
many laser events in the pad-time space. The laser pulse is accompanied by a signal undershoot
and the lateral crosstalk. The broadly spread signal at high drift time is caused by stray light
of the laser knocking out electrons at the inner cylinder of the TPC (compare figure 6.2).

dopacr = (3.569 - 044 — 1.656) mrad
dSpdcl == (3903 *Opad — 1543) mrad (61)
for 2 and 3 pad clusters, respectively. The triple peak structure is ignored in the correc-

tion. Assuming that ¢4 is close to the true value ¢, the hit position is shifted by
the distance d towards the track. The track is refitted afterwards.

6.6 Lateral Crosstalk and Signal Undershoot

With the help of the laser it becomes possible to generate many events containing tracks
at the same position and with similar signal amplitude. An average over several laser
events can be seen in figure 6.10 [63]. The absence of surrounding tracks in laser events
allows a detailed study of the pulse shape of the readout chamber.

Each gas amplification at an anode wire causes a drop of the wire voltage AU
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according to

Cwire ‘
In this equation ()4, is the deposited charge and C\ye is the capacitance of the anode
wire grid with respect to the surrounding electrodes. On the other hand each pad has a
capacitance Cp,q With respect to the anode wire grid. A drop of the wire voltage therefore
will induce a charge

AU = (6.2)

Cpad
Cwire
on the readout pad. This effect is referred to as lateral crosstalk. It is a known feature of
wire chambers [75]. The lateral crosstalk is seen in figure 6.10 as a sagging of the baseline
in the same time bins as the laser hit, but on neighboring pads. The effect was reduced by
a factor of 2.5 by adding additional capacitance of about 5 nF to each HV sector [63].

chosstalk = C1pozd AU =

' Qamp (63)

The second effect observed in figure 6.10 is the sagging of the baseline for time bins
following the laser hit on a pad. The origin of this so called undershoot can be found
in the usage of high-pass filters to suppress leakage currents. High-pass filters work as
differentiators for frequencies below the threshold frequency [76]. Thus, a trailing edge of
an incoming pulse will cause a negative outgoing pulse. This decreases the amplitude of
pulses following in time.

For a given pad 7 and a local maximum [, the shape of the undershoot is well described
by the sum of two exponential functions:

th42 th4-2
}: }: }: fC'ttl }: fCttl
AZ cm. = Cll A . 12 021 A . 2 . (64)
I<lg I<lg ] —¢l— ] —l—

In this equation #' is the time bin of pad 7 where a local maximum has been found. = A,
is the sum over the 5 time bins in pad i assigned to a hit [ (for better understanding
see also section 5.2.1). The coefficients C,,,, have been determined in [77]. Finally, the
sum ), Al () expresses that all undershoot corrections of hits preceding the local
maximum [y in time have to be considered.

6.7 Electron attachment

Another important issue is a process which influences the number of primary produced
electrons. The noble gas neon in the TPC has an admixture of 20% quench gas carbon
dioxide. The CO, improves the drift properties [63] and prevents multiple discharges. Tt
absorbs the photons emitted by excited atoms or de-excites the atoms directly through
collisions. The energy mainly goes into rotational and vibrational excited molecular states
and into ionization of the quencher.

However, the CO, molecules also interact with gas impurities like oxygen. Oxygen
has the unwished property of attaching free electrons coming from primary ionization

processes:
e+ 0y — 05", (6.5)
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Figure 6.11: Correction of electron attachment effects. The hit amplitudes decrease
with drift time due to the attachment of free electrons to oxygen impurities in the fill gas of
the TPC. The amplitudes are corrected for the polar angle 0 of the track. This is important to
account for the effect that a track segment projected onto a pad is longer for larger angles 6.
Therefore, the amplitudes have to by multiplied by cos 6.

In dilute media the oxygen loses its energy by the reemission of the electron or by radiation.
Unfortunately, at the atmospheric pressure present in the TPC the dominating process is
the interaction with another molecule M:

Os+ M + e~ (66)
O, "+ M <
O, + M*. (6.7)

In the lower case the electron is lost. The abundant excitation modes of CO, even enhance
process (6.7). Therefore, high requirements for the oxygen purity of the gas mixture in
the TPC are indispensable.

The electron attachment can be parameterized as a function of the drift time by
N(t) = Ny - e PMPODKL (6.8)

where p(M) is the operation pressure of the counting gas, p(O,) is the partial pressure
of oxygen impurities and K is the electron attachment coefficient. The average value of
p(O3) during the beam time in the year 2000 was 11 ppm. It is clear from equation (6.8)
that the electron attachment increases with the drift path length.

The decrease of the amplitude with the drift time can be described by an exponential
function:

A(t) = Ag - e 7. (6.9)

In this equation Ay is the amplitude expected in absence of any electron attachment effect.
An example is shown in figure 6.11 [77]. The coefficient C' is determined individually for
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Figure 6.12: Pad-to-pad gain correction. For the pad-to-pad gain correction the maxi-
mum ADC value of a hit is used, which is localized on a single pad. The maximum ADC value
is corrected for the polar angle 6 of the track.

each of the 20 planes in time scales of calibration units. The different particle compositions
as a function of the polar angle # are taken into account. The correction is applied after

the undershoot correction described in the previous section.

6.8 Pad-to-Pad Gain Variations

The pad-to-pad correction comprises all effects which cause gain variation from pad to
pad, but also characteristics which extend over a whole electronic device. The upper plot
of figure 6.12 shows the uncorrected pad-to-pad gain variation of the first plane of the

TPC as an example.
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The most noticeable structure extends over groups of 48 pads according to the cham-
bers of the TPC. The periodic peaks can partly be explained by the bending of the anode
wires. The wires are glued to the edge of a chamber. In between these two fixed points
the wires might bend due to the electrostatic attraction towards the pad plane. This
decreases the distance between the anode wires and the pads and thus a stronger signal
is induced. The effect is strongest in the center of a chamber. It has also been observed
that the gain drops at the end of the wires. Here the electric field differs from that of an
infinite wire. Furthermore, the closing pads at the border of a chamber are smaller and
have a different shape than the rest of the pads. This can be responsible for the dip at
the edge of each chamber. Finally, the three-fold structure inside a chamber reflects the
individual responding behavior of the front-end-boards.

The pad-to-pad gain variations have been studied in [77]. The correction is imple-
mented in form of look-up tables and determined for each calibraton unit. The effect of
the correction is demonstrated in the lower plot of figure 6.12.

6.9 Correction of Hit Positions

A fine tuning of the hit positions in the TPC can be achieved by using further information
from the Silicon Drift Detectors. The upper row of figure 6.13 shows the polar angle
difference A0 = Osipcitrack — Orpopie between the SiDC track segment and the TPC
hits versus the pads of the TPC [74]. The tiny structures seen in the plots reflect the
16 chambers. No periodic structure is seen in the distribution of 0g;pc ireck- Using this
knowledge the positions of the hits in the TPC are shifted by the amount Af,,,, calculated
with respect to the mean value Af obtained for each chamber. The correction is applied
as a function of the polar angle # to the individual pads and planes. The result can be
seen in the lower row of figure 6.13.

For the next correction step it is important that the abundance of particles with
opposite charge is similar. A convenient choice for this purpose are pions because the
multiplicity of 7% and 7~ differs by only 10% [78]. A clean sample of high momentum
pions (p > 4.5 GeV/c) can be selected with the help of the RICH detectors. This sample is
used to plot the azimuthal angle difference A¢ = ¢rorsr — drpcpie between the TPC track
segment as measured at the RICH2 mirror and the hits in the TPC versus ¢gon [69].
This is shown in figure 6.14. Clearly the deflection of the oppositely charged particles
can be seen with increasing plane number. Tracks with infinite momentum do not suffer
deflection. The minima of the distributions should therefore be centered at zero. However,
a deviation from zero is seen as a function of ¢raps. The deviation from zero is applied
as correction to the hit positions of the TPC. The correction is done as a function of the
azimuthal angle ¢ and as a function of the plane number. The procedure is repeated for
the distribution Af = HRQM — HTPC,hit-
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Figure 6.15: Hit multiplicity in the TPC. The resolution is determined differentially for
the seven multiplicity bins marked in the figure.

6.10 Differential Resolution

The fitting of track segments in the TPC, as described in section 5.2.3, can be improved
by switching from constant weights for all hits to a more sophisticated method by assign-
ing individual weights to the hits according to their resolution. The weights contain the
information about the hit position in the 3-dimensional space and about special hit char-
acteristics. In this way remaining inaccuracies in the determination of the drift velocity
are taken into account, as well as other dependencies like the hit amplitude or the hit
multiplicity of the event.

The momentum of a particle is determined by the deflection of the trajectory in the
magnetic field of the TPC. Thus, the important coordinate to obtain a gopod momentum
resolution is the azimuthal angle ¢. For this coordinate the differential resolution o, is
determined as a function of

e the radius in steps of 4 cm,

the 20 planes in the TPC,

the hit amplitude in steps of 50 ADC units,

the hit multiplicity in the TPC in steps according to figure 6.15,

the number of responding pads, and

the hit being isolated or not.

The differential resolution is shown in figure 6.16 for a selected set of hits. For a better
understanding o, is plotted instead of o0,44. For isolated hits the 3 pad clusters have



6.10. DIFFERENTIAL RESOLUTION 57

amplitude: 300 - 350 ADC units plane: 14 und 15
radius: 98 - 102 cm radius: 98 - 102 cm
multipliciy: 17500 - 20000 hits multiplicity: 17500 - 20000 hits
= 0.9/ @ 2padcluster, ?solated hits 3 = 0.9 : : T T T T U
E 0.87 3 pad cluster, isolated hits é E 0.8 % + ‘l' L1
Ee 8.;; 3 Es 8.; 5 A SR
< ok © S < 06F ¢ ' 1204 {Te |
S o5 0 ° T 00 0% 00 %1 S ggis o Ql, 4ea90its T
F 3 (]
04 0 o o ® E 0.4F o +**°
F (] E [A) @
0.3E 2 e o 71 0.3f “tege?
0.2 @] 2 pad cluster, overlapping hits E 0.2
O. 3 pad cluster, overlapping hits H“HE O' e
]0 2 4 6 8 10 12 14 16 18 20 ]O 200 400 600 800 1000120014001600
plane amplitude [ADC units]
plane: 14 und 15 plane: 14 und 15
amplitude: 300 - 350 ADC units amplitude: 300 - 350 ADC units
multiplicity: 17500 - 20000 hits radius: 98 - 102 cm
g 09: T T T T T B g 09: T T T T T T T T B
g osf i 8 ost
E 075 4 5 3 E 07 3
S 0.6F 0o 3 S 0.6F 3
< E O A E < E 8 E
© osE OOVOOOO 3 © o_5§-<i> © o © 0 o O_z
04" 00 94 . Sl 0.4F -
0.3F "aooo.,.,—; o3 ¢ e e 2 o @ 3
0.2F E 0.2F 3
0-%6~""80 90 100 110 120 130 015141616 20 22 24 26 28 30
radius [cm] multiplicity [ #1000 hits]

Figure 6.16: Differential Resolution. The differential resolution is determined as a function
of several hit characteristics. In this way it is possible to weight each hit individually in the fit
of a TPC track segment.

a somewhat better resolution than the 2 pad clusters due to the more favorable charge
sharing. The resolution of overlapping hits deteriorates about a factor of two compared
to isolated hits. Nevertheless the bulk of the hits are isolated, as can be seen in figure 5.6.
Only 20% of the hits have an overlapping partner. Remarkable is also the strong de-
pendence of the resolution on the amplitude. Firstly, the resolution increases with the
amplitude. This effect can be ascribed to a better signal-to-noise ratio. Due to saturation
effects the resolution deteriorates again at higher amplitudes. As expected, the resolution
decreases with the number of hits in the TPC, though the effect only start to be impor-
tant for very high multiplicities of more than 40000 hits. The number of events with such
high multiplicities is small as can be judged from figure 6.15. The linear decrease of the
resolution with the radius has its origin in the increasing influence of the diffusion with
the drift length. The dependence on the plane number of the TPC is due to the higher
occupancy in the first planes, but also due to remaining uncertainties in the knowledge
of the electric or magnetic field.
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Once the differential resolution has been determined, the weight of a hit is given by:

(6.10)

Figures 6.17 and 6.18 show a small extract of the weights for isolated and overlapping
3 pad clusters, respectively. Each connected curve describes an amplitude scan at a fixed
radius. The multiplicity in the TPC is between 25000 and 27500 hits. Only every second
plane is displayed. The weights w can be parameterized as a function of the amplitude A
by

<A
’LU(A) :Co+ClA+C27A (611)
l+e @

or in the case of overlapping hits with three pads by

Cy- A Cs- (A-C
’LU(A):Cg+01'A+%+C4'(A—C5)+%. (612)
1+e @ 1+e ©7

Unfortunately the weights have large error bars at high amplitudes or radii due to
limited statistics. In some cases the fitting of the weights might fail, thus resulting in
unreasonable coefficients C,,. To avoid this effect the coefficients C,, are also fitted, but
now as a function of the radius. The used functions are polynomials. The functions shown
in figures 6.17 and 6.18 are smoothed in the described way:.

In order to keep the amount of data as small as possible, many runs were taken using
a so called TPC mask. This means that only those hits in the TPC are written to tape
which fall in the overall acceptance of the spectrometer. The mask window chosen for the
beam time in 2000 is 6.5° < 6 < 15°. Obviously, the information about the hit multiplicity
needed to calculate the weights is wrong for runs with mask. The hit multiplicity has to
be rescaled in those cases. The scaling factors are determined from runs taken without
mask. The ratio

mask
N’i,hit

Ni nit

(6.13)

r, =

is determined for each plane i, where Nl"}l‘;‘fk and N; p;; are the hit multiplicities measured
with and without mask application, respectively. The scaling factors rise continuously
from ~ 0.6 for the first plane to 1.0 for the middle planes 9 and 10, and drop again to
~ 0.8 for the last plane.
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Figure 6.19: x2? distribution for 20 fitted hits in the TPC. If the hits are weighted
according to their individual characteristics the x? distribution of the track fit in the TPC
approaches the theoretical expectation.

The benefit of using individual weights for the hits becomes obvious by plotting
the x? distribution of the track fits in the TPC. This is done is figure 6.19 for the case
of 20 fitted hits. If all hits in the fit are weighted equally the fit result is inadequate
and the x? distribution is broad. If the hits are weighted according to their individual
characteristics, the x? distribution approaches the theoretical expectation. The remaining
discrepancy is due to a contamination of the track sample with particles originating from
decay vertices. However, the reference tracks used for the fits are calculated for particles
coming from a target. The fit result for particles coming from another interaction point
will therefore deliver an unsatisfactory result.

6.11 Inverse Momentum Correction

For a detector with infinite resolution the distribution of the charge times the inverse
momentum ¢/p should be centered at zero. However, remaining uncertainties in the
knowledge of the Lorentz angle might cause a shift, as sketched in figure 6.20. For in-
stance, depending on the charge, a somewhat smaller or higher momentum might be
reconstructed. It can even happen that particles at very high momentum are recon-
structed with the wrong sign. If in addition the abundance of positive and negative
charged particles is different, the shift of the minimum is even larger.

The shift can be used to correct remaining deviations in the momentum. A convenient
particle choice for this measurement are pions. As already mentioned in section 6.9 the
multiplicities of 7+ and 7~ are similar and effects related to a different abundance of
particles with opposite charge are therefore reduced.
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Figure 6.20: Inverse momentum correction. If the knowledge of the Lorentz angle in
the TPC is imprecise the particles are reconstructed at wrong momenta.

The pions are selected with the RICH detectors by the ring radius. The determination
of the shift of the minimum is done in four steps in order to optimize the statistics [79].
First, a coarse correction is calculated for each calibration unit. The data is then divided
into three groups,

e positive magnetic field at the beginning of the beam time,
e negative magnetic field, and

e positive magnetic field at the end of the beam time.

A finer correction is calculated as a function of the azimuthal and polar angle ¢ and 6. In
the following step the same is repeated as a function of #, but now within each calibration
unit. In this case the pions are selected via their differential energy loss in the TPC in
order to increase statistics. Finally, a last correction is determined in even finer entities
of 10 bursts, but integrated over ¢ and 6.

6.12 Test Results of the Calibration

The last section of this chapter is devoted to the benefits achieved with the calibration
of the TPC. Figure 6.21 shows the e/m separation before and after calibration. In a
momentum range between 0 < p < 1 GeV/c the dE/dx resolution for electrons improved
from 18.4% to 11.8% [77].

The position resolution is given by the width of the residuals rA¢ = rdiyack — TPnit
or AT = Tyeer — Thit- Figure 6.22 shows the present position resolution as a function of
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Figure 6.21: dE/dx resolution in the TPC before and after calibration. The left
plot shows the dE/dx resolution of electrons before the calibration of the TPC, the right plot
shows the same after the calibration. The selected momentum range is 0 < p < 1 GeV/c%. Only
tracks with at least 15 hits are used.

the plane number in the TPC. The distortions in the azimuthal resolution are due to
remaining uncertainties of the Lorentz angle. The higher occupancy in the first TPC
planes is responsible for the deterioration of the radial resolution. Furthermore, the drift
length is longer in the first planes due to the acceptance of the TPC, and thus diffusion
plays a major role. The global position resolution achieved with the new calibration is
Orng ~ 340 pm and o, ~ 640 pm. This has to be compared with the design resolution of
Ufzségn = 250 — 350 pm and oa, = 400 — 500 pm [57]. The important coordinate for the
momentum resolution is the azimuth. Here the design resolution is reached. The radial
position resolution is worse than its design value. The main reason is, that the weight
calculation described in the previous section is not performed for the radial component.
The improvements of the new TPC calibration become visible by comparing the position
resolution with the corresponding values 0,44 &~ 500 pm and oa, &~ 800 pm [63], obtained
with an earlier calibration version.

Another test is the comparison of the width of reconstructed particles like the
A baryon or K2 meson. Here, the previous calibration results in a width of
12.6 + 0.3 MeV/c? for the decay A — pr~ and a width of 21.7 4+ 0.3 MeV /c? for the de-
cay K% — ntr~ [63]. Figure 6.23 shows both particles reconstructed using the procedure
described in chapter 7 and using the new calibration. The width of the A is significantly
narrower, having now a value of 5.68 £ 0.17 MeV /c?. The same applies for the K2 which
has now a width of 13.24 + 0.05 MeV /c2.
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Figure 6.22: TPC residuals. Plots a) and c) show the resolution as a function of the plane
number in the TPC. Plots b) and d) show the residuals integrated over all planes.
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Figure 6.23: A and K2 Width. The number of analyzed events is 3.4 million for the A
and 15.9 million for the Kg. The width 0, and the oftset Ay, of the measured mass from its
nominal value is written in the figures. For both analyses a secondary vertex cut of zg > 1 ¢m
is used. Furthermore, a cut on the back extrapolated momentum vector of bep < 200 pm is
applied. The x? probability cut on the track and the secondary vertex fits is P> > 0.01. The
reconstruction procedure and the cut variables are explained in detail in chapters 7 and 8.
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Chapter 7

Secondary Particle Reconstruction
Scheme

The two RICH detectors of the CERES experiment are optimized for the identification of
electrons. Other particles can be identified using the differential energy loss dE/dx in the
TPC, as shown in figure 7.1. In the CERES acceptance the momentum range of the K and
7 decay products of the D° meson is predominantly located between 2.5 and 7.5 GeV/c.
In this momentum regime the dE/dx resolution of the CERES TPC is not sufficient to
resolve the Bethe-Bloch lines of the decay products. In figure 7.2 a Monte Carlo simulation
of the differential energy loss of the kaon and the pion are plotted as a function of the
momentum. The +1o0 bands correspond to ~ 10% of the mean dF/dx value. From 1
GeV/c on the bands for the kaon and the pion overlap. Furthermore, they are crossed
by the Bethe-Bloch lines of other particles like protons and muons. Without particle
identification the fraction of combinatorial background becomes extremely large. Thus, a
combination of suitable cuts has to be applied to optimize the signal-to-background ratio.

A powerful tool for background suppression is provided by the reconstruction of the
secondary vertex. This enables to separate tracks originating from the target from those
coming from late decays. The detectors usable for this purpose are the two SiDC detectors
and TPC. At first, each track of a particle is fitted by a straight line in the B-field free
region upstream the RICH2 mirror. The fits are based on three points. The first two are
given by the hits in SiDC1 and SiDC2. To obtain the third point the TPC track segments
are extrapolated to the RICH2 mirror taking the magnetic fringe field into account. The
third point is then defined by the coordinates of this intercept. The fringe field upstream
the RICH2 mirror is negligible as can be judged from figure 6.1. Nevertheless, deviations
of the track from a straight line can still occur by multiple scattering between the two
SiDC detectors and the TPC. This is accounted for by momentum dependent errors of
the points. In a second step each two tracks are combined and the point of closest
approach between them is calculated. The reconstruction scheme of the secondary vertex
is illustrated in figure 7.3.
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Figure 7.1: Differential energy loss in the CERES TPC. The two vertical lines mark
the momentum range of the decay products of the D meson. In this region particle identification
via the differential energy loss in the TPC' is not applicable anymore.
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Figure 7.2: Simulation of the kaon and pion dE/dx band. The red and green shaded
regions correspond to the 1o-dE /dz band of the pion and kaon, respectively. The bands overlap
and are crossed by the Bethe-Bloch lines of other particles like protons and muons.
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Figure 7.3: Reconstruction scheme of the secondary vertex. The tracks are straight
line fits through three points given by the SiDC detectors and the TPC. The errors of these
points are determined from the resolution of the detectors. The secondary vertex is the point
of closest approach between two tracks. A cut on its coordinates suppresses tracks originating
from the targets. The picture is not drawn to scale.

A possibility to suppress fake track combinations is given by a cut on the radial
distance between the back extrapolated momentum vector of the D® candidate and the
primary interaction point. In the following this distance will be denominated bep param-
eter. The momentum vector of the D° candidate is given by the sum of the momenta of
the decay products Y p;. For a true combination of tracks this momentum vector will
point back to one of the targets. In this case the bep parameter will be small in contrast
to the case of a fake combination of tracks. The meaning of the bep parameter is further
clarified in figure 7.4.

The two following sections explain in more detail the track and the vertex fitting
procedure and the error propagation. Afterwards the determination of the point errors
needed for the straight line fits of the tracks is addressed. This is followed by a discussion
of the bep parameter. The chapter will finish with additional corrections used in the
analysis.

7.1 Track Fit

The tracks used in this analysis are obtained by fitting a straight line through two hits in
the Silicon Drift Detector system, and an additional point obtained from the TPC. The
fit is based on the Least Square Method and it is performed independently in the z-z and
y-z planes. In this section the analytical solution of the problem will be discussed. Here,
only the z-z plane will be considered. The treatment of the problem in the y-z plane is
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Figure 7.4: Back extrapolated momentum vector. The momentum of a D° meson is
the sum of its decay products Y p;. This vector must point back to the primary interaction
region for a true track combination. As a measurand the bep parameter is defined as the radial
distance between the back extrapolated momentum vector and the primary interaction region.

identical.

The general task is to describe a sample of N measured data points (x;, z;) by a
function f(z;a1,as,...,a,) and to determine the unknown parameters a,, as, . .., a,. The
number N of measured data points must be greater than the number n of parameters.
Further, it is assumed that the measurement of the values x; at the points z; have the
uncertainties 0;. The method of least squares states that the best values of a; are those
for which the sum

g

X° = i:; [L(za’)] 2 (7.1)

is minimal. Examining equation (7.1) it is clear that it just describes the sum of the
squared deviations of the data points from the curve f(z;;a;) weighted by the respective
errors on z,;. To find the values of a;, the system of equations

O _

5~ (7.2)

must be solved. In the case of functions linear in their parameters a;, i.e. with no terms
which are products or ratios of different a;, equation (7.2) can be solved analytically. A
straight line is one example of a linear function.

A straight line in the z-z plane is defined by slope 2’ and an intercept xg:
z(z) = 2’2 + . (7.3)

Here 2’ and zg stand for the unknown parameters a; and as to be determined. As
mentioned at the beginning of this section, the number of data points N is 3 (two SiDC
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hits and one TPC point). Equation (7.1) then can be written as

=Y [@} B (7.4)

=1

Taking the partial derivatives with respect to 2’ and z, results in

x> — zl — X0)2i
= -2
o Z

)

x> — zl — 7¢)
IX _ . .
7. Z (7.5)

To simplify the notation, the following terms are defined:

B:Z%: A:Zg_Za ¢ = :_57
1 12 12

2 2 (7.6)
D:Zj—%, E = ZZ’;, F:Z%
Using these definitions, equation (7.6) becomes
E—2'D—xyB =0, (7.7)
C —12'B—10A =0, (7.8)
and leads to the solutions
x = % and x¢ = % (7.9)

Finally, assuming to have obtained the best estimates for the unknown parameters =’ and
X, it is necessary to determine their uncertainties. These can be extracted by inverting
the Hessian matrix

Hyy Hi
H = , 7.10
< Hy  Hy ) ( )
which contains the second derivatives:
162X2 162X2 1 aQXQ
Hy,=—-——"-, Hyp=——"", d Hyy=Hy =— . 7.11
12 9a 272 002 an 2 212000 (7.11)
The inverse of the Hessian matrix is the covariance matrix,
1 Hy —H12>
V=H'!=——— , 7.12
~ Hy Hy — H% <—H12 Hyy (7.12)
from which the variances 0,7, 04,2, and the covariance o,,, are obtained:
Ay A
Oyl = —
Ay Ay — A2, AD — B2
AQQ D
0 Ay Ay — A2, AD — B?
—A —B
2 = (7.13)

Ox'zg — - = Ogqa’ -
° T AnAn -4, AD—pB "
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Figure 7.5: Vectors used in the secondary vertex fit algorithm. 7; is the position
vector of the i*" track, @; is its direction vector. 7, is the vector pointing to the secondary vertex.
d; is the distance between the i'" track and the secondary vertex.

7.2 Secondary Vertex Fit

The secondary vertex fit algorithm implemented within the framework of this thesis also
uses the Least Square Method. It calculates the point of closest approach between a given
number of N tracks in 3-dimensional space coordinates. A similar procedure was already
used in the HADES experiment for the target reconstruction [80]. The mathematics
behind it are described in the following.

Each track is defined by a straight line and can be written as:

where 7 is the position vector of the i track, @; is its direction vector and ¢ is a parameter
(t € R). Let 7, be the vector pointing to the secondary vertex. The two vectors (7; — 7)
and d; span a parallelogram with |(7; — 7,) X @;| being equal to its area (see figure 7.5).
On the other hand, the area of a parallelogram is also given by multiplying its base with
its height, where the base is just |@;| and the height is the distance d; between the track
and the secondary vertex. Hence, the distance is:

—

di = (7 = 7)) X ], with @ = —-) (7.15)
a;

The point of closest approach between all tracks is given as that point, where the distances
d; to each of the N tracks, normalized by their uncertainties o;, become minimal:
N
d?
= = =0 with = —
or, 0Oy, 0z, X o?

i=1 !

(7.16)
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The uncertainties o; assign a weight to the i track in the determination of the vertex.
Assuming the uncertainties o; to be constant, the problem can be solved analytically.

The expression for d? can be extracted from equation (7.15):

d’L2 = [(yl - yv)azi - (Zz - Zv)ayi]2 +
(2 — 2z0)ami — (2 — 3y)az) +

[(xl - xv)ayi - (yz - yv)am']Q (717)

Calculating the derivatives of equation (7.16) one obtains:

2
% = Zi]\il f—2 {[(zi = 2zo)awi — (25 — 2y)azilaz — (v — 20)ay; — (i — Yo)aailayi} =0

2
gZU =3 % {[(zi — zo)ayi — (yi = yo)wilawi — [(yi = Yo)azi — (2 = 20)ayilazi} =0

?z{j =3 % Uy = yo)azi — (2 — 20)ayilay — [(2i — 20) 00 — (T — Ty)Azilag} =0

(7.18)
By rearranging the variables in the system of equations (7.18), and by defining the fol-
lowing matrices

N o9 ) aii +aZ; ;amay; OOy
A = Z ?Az = Z ? Oy Qg Q. + a; ;ayiazg (719)
=1t i=1 ! Ay Qyy TOzi Ay Gy + az,;
and
T
B=Alu |, (7.20)
Zi

equations (7.18) can be written in matrix notation as

Ty Ty
Aly, |=B=1|wvw | =A"B (7.21)
2y 2y

and thus be solved to obtain the vertex coordinates.

A complication emerges with the fact, that the o;’s in equation (7.18) are indeed not
constant. One has to consider that the track fit, described in section 7.1, itself already
comprises uncertainties. Thus, the values of o; are dependent on the distances d;. They
can be determined by error propagation:

Ozozo 0 Oz’ 0 %
o?(d;) = %,%,%,adi 0 Oyye 0 Ty gg[/lé (7.22)
! Oxg Oyg Ox' Oy Optg 0 Opg 0 ;
0 oyy 0 oyy

In this notation g, yo denote the axis intercept of the track and z’, v’ the slopes. o = oy
stand for the covariances of the track fit in the case of k£ # [ and for the variances in the
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case of £k = [. The track fit is performed independently for the z-z and y-z planes.
Therefore the covariances 04y,, Ozgy/s Tary, and o,y do not contribute to the covariance
matrix in equation (7.22). The slopes z', ¢’ can be expressed in terms of the unit direction
vector a;:

o' =9 and y =7t (7.23)

az

Using 52 = (7; — 7,) as abbreviation, equation 7.17 can be rewritten as:

dZQ - [Ayzazz - Aziayi]Q + [Azzam - Aziazi]Q + [Amayz - Ayiam‘]g
2 2 2 2 2 2 2 2
= (Azz - Amz)am + (Azz - Ayi)ayi + Am + Ayi
_Z(AyiAziayiazi) + AziAziam’azi + AmAylamayz (724)
The next concern are the derivatives (0d;/0x,), (0d;/dyy), (0d;/0x") and (dd;/dy'). For

simplicity first the derivatives with respect to a, and a, will be computed instead of 2’
and y'. Using the expressions

d*) = 2dd = d = () 7.25
and
gaz _— % — - with @=1-a2-d’ (7.26)
o a;  0ay a,

one finally obtains:

od; (1= a2) A — azi(Asiaz + Ayiay;)

alEg dz

od; _ (1- agQJi)Ayi — Qi (Aii + Agiyi)

890 dz

ddi _ (AL = Al)awi + NN NN
aam dz

2
adl (Agz - AZQ/i)ayi - AyiAziazi + AyiAziZ_Z + AzzAzz azia.yi - Azszzam

Qi

8ayi dz
(7.27)

The derivatives dd;/0x" and dd; /0y’ can now be retrieved by:

adz . adz aam 4 8d, 8ayz~ . adz 1-— aii _ adz l‘lyl
' Oay O da,; Ox' " Oday L da,; L3
% . 8dz Bam- n adl aayi _ 8dz a:’y’ 8dz 1— GZZ'
Yy Oay Oy Oay Oy Oday L3 Oa, L

(7.28)
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where

L22x12+y12+1

2
az; | Gy | a3
=F+F+-2
2 CL2 2
21 21 21
1
a2

(7.29)

was used. The uncertainties o; can now be computed with equation (7.22). The fact
that the vertex coordinates appear in the expression for o; has the consequence that the
problem does not have an analytical solution anymore. Therefore an iterative minimiza-
tion procedure is needed.

In the first iteration the values for the uncertainties o; are set to be constant. A
first guess of the vertex position can then be obtained solving equation (7.21). Under the
assumption that the o; change only slowly with the vertex, their values can be computed
in the next iteration by using the vertex position from the previous one. This procedure is
repeated until a convergence criterion is fulfilled. This criterion was chosen such that the
computation stops if the changes in the vertex position become smaller than e = 0,01 um.
Typically three iterations are needed in order to reach this condition.

7.3 Resolution of the Detectors

The errors of the points needed as input for the straight line fits mentioned in section 7.1
are extracted from the matching between the track segments of each detector. The match-
ing is performed in polar coordinates as most of the tracks come from the targets. Once
the resolution of the detectors is determined, the point errors are determined by coordinate
transformation 0,(¢,0, 2,04, 09) and o,(¢,0, 2, 04, 0y).

The errors are extracted from the azimuthal angle difference A¢ = @lit) .| — ¢t .,
between the hits in the two Silicon Drift Detectors and A¢ = ¢k, — ¢lrack hetween
the SiDC and TPC track segments. The same applies for the polar angle difference A#6.
These matching distributions are parameterized as a function of the momentum p and as
a function of the polar angle §. Furthermore the hits in the SiDC are classified in single
anode (sgl) and multi anode (mit) hits. The background was determined by a random
rotation of the hits in SiDC2 and the track segments in the TPC, respectively. Figure 7.6
shows some examples of background subtracted matching distributions. They are fitted
with a sum of two Gaussians. The width o is defined as 68.3% of the total integral.

Under the assumption that the Silicon Drift Detectors have equal properties, the
SiDC resolution is given by

m 1 mlt,ml
O-S’i%c = \/5(%11301?5@02)2 (7.30)
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Figure 7.6: Azimuthal and polar matching. The upper three plots a), b) and c¢) show
the azimuthal matching distributions A¢ for a momentum range between 4 and 5 GeV/c and a
range of the polar angle 6 between 11° to 12°. The lower three plots d), e) and f) show the same
for the polar matching distributions Af. Plots a) and d) show the hit matching between the
two SiDC detectors, only considering multi anode hits. The same is plotted for a combination
of a multi with a single anode hit in b) and e). The track matching between the SiDC and the
TPC is shown in c) and f).

for multi anode hits, and by

! It,sgl
UZ?DC = \/(UgDsqusmm)Q - (Uglillt)C)Q (7.31)

for single anode hits. The resolution of the TPC is

1 It,ml
orpc = \/(O-?i%lé’,TPC)Q - Z(Ug@z)’gﬁsmmy (7.32)

if only SiDC track segments with multi anode hits are used.

The values for the detector resolution obtained in this way are summarized in
figure 7.7. The resolution of the SiDC detectors is about o4 = 1 mrad in the azimuthal
coordinate and o, = 0.2 mrad in the polar coordinate for multi anode hits. As expected
the resolution of single anode hits remains equal for oy but deteriorates significantly for
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‘ o4 : Oy ‘ o4 : Cy H op: Cy ‘ op : Cy ‘

8° < # < 10° || 0.001160 | 0.000794 | 0.000198 | 0.000130
SiDC | 10° < 6 < 11° || 0.000995 | 0.000810 || 0.000192 | 0.000139
multi | 11° < 6§ < 12° || 0.000916 | 0.000836 | 0.000190 | 0.000154
anode | 12° < # < 13° || 0.000848 | 0.000928 || 0.000189 | 0.000167
13° < 0 < 15° || 0.000863 | 0.000787 || 0.000193 | 0.000178
8° < 0 < 10° || 0.006759 | 0.000794 | 0.000249 | 0.000130
SiDC | 10° < 6 < 11° || 0.005741 | 0.000810 || 0.000230 | 0.000139
single | 11° < § < 12° || 0.005193 | 0.000836 || 0.000168 | 0.000154
anode | 12° < # < 13° || 0.004516 | 0.000928 || 0.000193 | 0.000181
13° < 0 < 15° | 0.003543 | 0.000787 || 0.000203 | 0.000178
8° < 0 < 10° || 0.002487 | 0.010029 || 0.000659 | 0.001381
10° < 0 < 11° | 0.002176 | 0.008810 || 0.000588 | 0.001378
TPC | 11° < 6 < 12° || 0.001943 | 0.008426 | 0.000543 | 0.001465
12° < 9 < 13° | 0.001794 | 0.007893 || 0.000498 | 0.001623
13° < 0 < 15° | 0.001738 | 0.007753 || 0.000669 | 0.001623

Table 7.1: Fit parameters of the detector resolution. The table contains the values
for the fit parameter Cy and C) according to equation (7.33) and figure 7.7.

04. The steep rise of the TPC resolution for low momenta has its origin due to multiple
scattering in the RICH2 mirror. For high momenta the TPC can reach a resolution of
04 = 2.3 mrad and oy = 0.6 mrad. The strong dependence of the TPC resolution on
the polar angle # is explained by diffusion, which affects electron clouds with long path
length. Additionally the decreasing number of hits per tracks in the TPC has an impact
on the resolution in the outer range 13° < 6 < 15°.

The resolution was fitted with the function

o= \/(CO)2 + (%)2.

The first term refers to the constant point resolution of the detector. The second term de-
scribes the deterioration of the resolution due to multiple scattering which predominantly
effects the TPC at low momentum. The coefficients Cy and C are listed in table 7.1.

(7.33)
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Figure 7.7: Detector resolution versus momentum. The left plot shows the azimuthal
angle resolution o4 of SiDC multi anode hits (filled circle), SiDC single anode hits (open circles)
and of the TPC (filled triangles). The right plot shows the same for the polar angle resolution oy.
The resolution is plotted as a function of the momentum p and of the polar angle 6.
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Figure 7.8: bep parameter versus momentum and number of anodes. The figures
show the bep parameter in overlay Monte Carlo for different pair p, selections. The upper row
is plotted for tracks with at least one single anode hit in the SiDC detectors. The lower row
contains only tracks with multi anode hits.

7.4 Back Extrapolated Momentum Vector

The momentum vector of a mother particle is given by the sum of the momentum vectors
of its daughters. This vector should point back to the primary interaction region in one
of the targets (compare figure 7.4). This is quantified by the radial distance between the
back extrapolated momentum vector of the mother particle to the primary interaction
region and denominated as bep parameter.

The measurement of the absolute momentum of a particle is performed with the
TPC, as described in chapter 5. In this analysis the individual components p,, p,, and p,
are recalculated by multiplying the momentum with the unit slope vector obtained from
the track fits. Thus the bep parameters depends strongly on the momentum resolution in
the TPC and the pointing resolution of the track fits, as can be seen in figure 7.8.

A large fraction of 67% from all two track combinations contain tracks with at least
one single anode hit in the Silicon Drift Detectors. It is thus clear that a cut excluding
these tracks in order to improve vertex resolution implies a significant loss of statistics.
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Figure 7.9: Background suppression by a bep parameter cut. The plots show a
Kg — T~ analysis of 3.4 million events, once without using a bep parameter cut (upper row)
and once requiring bep < 200 pum (lower row). Plots a) and d) show the distribution of the
secondary vertex zg, coordinate, b) and e) show the distribution of the bep parameter, and c)
and f) the invariant mass spectra.

The remaining 33% belong to tracks with multi anode hits. Of these only 28% have a
bep parameter smaller than 200 ym. For the track combinations containing at least one
single anode hit this number is 16%. The right part of the distribution with bep > 200 um
originates from mismatches between the TPC and the SiDC track segments or from mis-
matches between the hits in SiDC1 and SiDC2. It is removed by applying a cut on the
x? probability of the straight line fits of the tracks, which will be explained in detail in
section 8.2.6.

The power of the bep parameter cut is demonstrated in figure 7.9. It shows
a K — m"m~ analysis once without a bep parameter cut and once with a cut of
bep < 200 pm. For pairs of primary particles the bep parameter has by definition small
values and therefore it is only a useful quantity if in addition a cut on the secondary
vertex z,, coordinate is applied. In figure 7.9 a cut of z,, > 1.5 cm is chosen. Further-
more, a cut of pr > 200 MeV /c was required on the single track transverse momentum
and an opening angle cut of ¢y > 0.1 rad. Only track and secondary vertex fits are con-
sidered which passed a x? probability cut of P> > 0.01. Contamination in the invariant
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mass spectrum from misidentified A baryons is cleaned by an Armenteros-Podolanski cut
of gr > 0.11 MeV/c (see appendix A). Tracks containing single anode hits in the SiDC
detectors are excluded. The background is drawn as dashed line and is obtained by the
mixed events technique (see section 8.3.1 for more details). No particle identification via
dE /dz in the TPC is used. The invariant mass spectra in figure 7.9 are plotted assuming
that all tracks have the pion mass. For 3.4 million analyzed events the application of the
bep parameter cut is able to improve the significance S/\/E from 31 to 733.

7.5 Additional Corrections

The present analysis is sensitive to the secondary vertex resolution. Therefore, two ad-
ditional corrections are applied on top of the overall calibration. The first one is the
determination of a matching correction between a TPC and a SiDC track segment [79].
The distribution A¢ = ¢s;pc— drpc is plotted differentially as a function of the azimuthal
and polar angle ¢ and 6, and as a function of the inverse momentum 1/p and the numbers
of responding anodes in the SiDC detectors. The matching correction corfnatch is deter-
mined as the shift of the mean value of the distributions from zero. The same applies for

0
COT pateh

Under the assumption that the precision of the SiDC detectors is higher, the matching
correction is added to ¢rpc and O7pe, respectively. The correctness of this statement can
be judged from figure 7.10. It shows a comparison of the azimuthal angle distribution of
the TPC before and after application of the matching correction. The tracks used for the
plots are fitted according to section 7.1. It can be observed that the borders to dead pads
or front-end-boards become sharper once the correction is applied. The slight valley in
the distribution around —2 < ¢7pc < 0 and 2.25 < ¢rpc < 2.5 rad can be ascribed to
inefficiencies in the SiDC detectors. They develop if only multi anode hits are required.

The second correction is the determination of the nonlinearities in the SiDC detectors
following the work described in section 6.4. Unfortunately, the SiDC track segment cannot
be used as an approximation for the true value ¢,,,. because it is obtained from only two
hits. As a replacement the TPC track segment is used. The nonlinearities for the SiDC
detector are derived by plotting A¢ = ¢rpc irack — Psine,ni versus a fraction of an anode.
The correction is determined separately for SiDC1 and SiDC2, for positive and negative

magnetic field and for 2 and 3 anode clusters. The correction needed for the hits is
< 0.1 mrad for SiDC1 and < 0.2 mrad for SiDC2.
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Figure 7.10: Improvements due to matching correction. The azimuthal angle of
the TPC is plotted for tracks constructed with the procedure described in section 7.1. If the
matching correction is applied to the third fit point obtained from the TPC, the dips in the
distribution become more pronounced.



81

Chapter 8

Acceptance and Efficiency

Charm quarks are less frequently produced in hadronic collisions than strange quarks. It
is therefore appropriate to test the secondary particle reconstruction scheme presented
in the previous chapter with strange particles. The decay length has to be short to be
able to reconstruct the secondary vertex within the limited region of 10.4 cm given by the
distance between the first Silicon Drift Detector and the target area. The abundant K§
meson, decaying into two charged pions with a branching ratio of 68.95%, has a decay
length of ¢ = 2.68 ¢cm [66] and thus fulfills the required conditions.

The chapter starts with a detailed study of the acceptance and the efficiency using
as reference the decay K% — nt7~. A measurement of the K2 rapidity density dN/dy
and the inverse slope parameter 7' is presented and compared to existing measurements.
In this way the systematic uncertainty of the efficiency is derived.

8.1 Acceptance

The acceptance in the CERES spectrometer is 8° < # < 14° for the polar angle at full
azimuthal coverage. For the reconstruction of the secondary vertex it is in addition
required that a particle decays upstream the first Silicon Drift Detector located 10.4 cm
downstream the target system. The calculation of the number of particles falling in
the acceptance of the spectrometer and passing SiDCI1 is performed using a kinematic
generator [81]. A schematic picture of the calculation is shown in figure 8.1. The decay
point is marked with a small circle and has the coordinates (z,, ¥s, 2s»). Particles coming
from z,, > 10.4 ¢cm are rejected. To consider the spectrometer acceptance one has to be
aware that a simple cut on the polar angle is not suitable for secondary tracks. Therefore
the angle # is translated into a radius r at a distance

_ Tmae _ 130.8 cm
Ctanfn.,  tan(14°)

2y = 542.61 cm. (8.1)
In this equation the maximal radius 7,,,, is given by the outer barrel of the TPC. The
minimal radius is given by r,,;, = 73.7 cm using 0,,;, = 8°. Thus, a particle is accepted
if its radius

r=tanfg, - (z, — 2sy) + sy (8.2)
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Figure 8.1: Scheme for the calculation of the acceptance. The local angle 65, of a
secondary track differs from the polar angle 0 as determined from the origin of the coordinate
system. Therefore the polar angle coverage of the spectrometer 0, < 0 < O, Is translated
into a radial coverage 1y, < T < Tmaez at the distance z,.

fulfills the condition 73.7 cm < r < 130.8 cm at 2z, = 542.61 c¢m.

8.2 Efficiency

The reconstruction efficiency of the D’ and the K? meson is determined using a full
overlay Monte Carlo simulation and applying the same cuts as in the analysis of the data.
The error of the efficiency is given by the quality of the agreement between simulation
and data which has to be verified.

This section starts with a description of the overlay Monte Carlo procedure, followed
by a comparison of the relevant single track distributions between simulation and data.
The momentum resolution is tested by measuring the mass resolution of the KJ. The
vertex resolution is checked by reconstructing the targets using the secondary particle
reconstruction scheme. Furthermore, a scan is performed for each individual cut and the
results are compared to the simulation. The section ends with a description of the cut on
the 2 probability of the straight line fits and its adjustment in the simulation.

8.2.1 Full Overlay Monte Carlo Simulation

The efficiency for the D’ analysis is determined with a full overlay Monte Carlo simu-
lation. For this purpose 1 million D = Ktr decays are created using the aforemen-
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tioned kinematic generator and requiring the conditions described in section 8.1. The
transverse momentum distribution of the D' is simulated with an inverse slope param-
eter of T'= 205 MeV/c?. The rapidity density is sampled with a Gaussian function of
width 0, = 0.6. These parameters are identical to those obtained from the PYTHIA
event generator [47] described in more detail in section 9.2.

The decay kaons and pions are passed through a GEANT [68] simulation of the
CERES spectrometer. The simulated particles are embedded into 50 different runs and
reconstructed with the the C++ package COOL described in chapter 5. The selected
runs sample the multiplicity distribution of the data taken during the beam time. The
embedding of the simulation into real events is called overlay Monte Carlo. It provides a
more realistic description of problems related to the large amount of background in a real
event. The simulation is adjusted to describe the measured residuals of figure 6.22.

The rapidity density of the D’ meson, the opening angle and the secondary ver-
tex distribution is shown in figure 8.2 as a function of the transverse momentum of the

D’ meson. Within the acceptance of the CERES spectrometer the phase space between
—0

21 <y<25and 0 < p? < 1.6 GeV/c?is occupied. The opening angle is large, starting

at around 0.25 rad. The decay position of the D’ meson is in the range of few millimeters.

The efficiency is cross checked with the reference decay K% — 77 ~. The simulation
of 1 million K2 mesons is performed in the same way as described above. An inverse slope
parameter of T = 220 MeV/c? is used, estimated from [82]. The width of the rapidity
distribution is set to o, = 1.2 [83].

The same kinematic variables as in figure 8.2 are shown in figure 8.3 for the K§ meson.
The bulk of the K9 mesons are reconstructed within a rapidity range of 2 <y < 2.5

0
and a transverse momentum range of 0.1 < p;{s <1 GeV/c. The opening angle in the
0

spectrometer ranges from about 0.1 to 0.4 rad and is strongly anticorrelated with pgs.
The decay position of the K9 is reconstructable up to 5 cm.

8.2.2 Comparison of Single Track Variables

As starting point for efficiency checks the angular distribution of the tracks from the
straight line fits (see section 7.1) are examined. This is shown in figure 8.4. The holes in
the distribution are due to dead electronic devices either in SiDC1, SiDC2 or TPC. They
are well reproduced by the simulation.

Another important issue is the number of single anode hits in the Silicon Drift De-
tectors. It has been shown in figure 7.7 that the resolution of single anode hits is worse
than of multi anode hits. A different number of single anodes in the data than in the
simulation would thus result in a different resolution of the secondary vertex and of the
bep parameter. Although all dead anodes are included in the simulation, the distribu-
tion of the number of anodes shows differences between data and simulation. Therefore,
8% randomly selected anodes in SiDC1 are assigned to be a dead anode. SiDC2 is left
unchanged. The distributions obtained after this adjustment are shown in figure 8.5.
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Figure 8.4: Azimuthal distribution of the tracks. For the comparison of the azimuthal
track distribution the same acceptance cut is used for the simulation and for the data. The
acceptance cut depends on the number of fitted hits per track and is shown in figure 8.12.
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Figure 8.5: Distribution of the Number of Anodes in a SiDC hit. For the secondary
particle reconstruction scheme it is important that the amount of single anode hits in SiDC1
and SiDC2 is similar in the data and in the simulation.
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The ratio R of the number of tracks containing at least one single anode hit to the
number of tracks containing only multi anode hits is R = 0.52 in the data. This large
number shows how essential it is to include tracks with single anode hits in the analysis.
The same ratio in overlay Monte Carlo is R = 0.51 after the adjustment of single anodes
in SiDC1.

Another modification concerns the differential energy loss dE/dz in the Silicon Drift
Detectors. The position of the mean and width of the distribution are adapted in the
simulation to resemble the data. Originally a cut on the dE/dz of SIDC was planned to
exclude unresolved double tracks. Such a cut becomes redundant once an opening angle
cut is applied.

8.2.3 Comparison of Momentum Resolution

The momentum resolution of the CERES experiment given by equation (5.8) is deter-
mined by comparing the reconstructed momenta of tracks from an overlay Monte Carlo
simulation with their true momenta. The momentum resolution obtained from the simu-
lation can be verified using the decay K% — 7"7~. The invariant mass of the K% meson
with mgo = 497.65 MeV /c? [66] is given by

Mg = /M2 + M2+ 2Fps Ere = 2 - e (8.3)

where m, = 139.57 MeV /¢? [66] is the pion mass and F, the pion energy. The contribu-
tion of the pion masses to the mass of the K3 is small. Thus, the mass resolution of the
K? is sensitive to the momentum resolution.

Figure 8.6 shows a comparison between the reconstructed invariant mass position
and the width of the K3 between overlay Monte Carlo and data. For the comparison
the cuts summarized in table 8.2 are used. The invariant mass position is displayed in
form of an offset Ay = mye. — Mg between the reconstructed K% mass m,.. and its
nominal value mgq. The shape is well described by the simulation. A small mass offset

of the order of few MeV/c? is observed at low and high pjlfg. The situation remains
unchanged if the reconstructed angles 6,.. and ¢,.. of the tracks are substituted in the
simulation by the true angles 0.4, and ¢;u.. If, on the other hand, the reconstructed
momentum p,.. is substituted by the true momentum p;,,. the mass offset becomes flat
over the whole pgg range with Ay, ~ 0. Furthermore, the same mass offset as shown in
figure 8.6 is seen if a simulation is used where all the K mesons are forced to decay in the
targets (¢ = 0 cm). These observations indicate a bias in the momentum determination.
However, the effect is small as compared to the average mass resolution of the K9 with
Om = 13.21 4 0.05 MeV /c?, indicating that the momentum bias is small as compared to
the momentum resolution Ap.

The increase of the mass resolution with the transverse momentum of the K2 reflects

0
the shape of the momentum resolution shown in figure 5.11. At low p;(s the mass resolu-
tion as obtained from data is somewhat worse than the simulation, although the overall
agreement is satisfactory.
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Figure 8.6: K3 mass offset and width. The invariant mass offset and width of the K
peak is plotted as a function of the transverse momentum of the Kg meson. The points are
connected by a line to guide the eye.

8.2.4 Comparison of Secondary Vertex Resolution

The presented analysis scheme is based on a secondary vertex cut to diminish the large
contribution of target tracks. The resolution of the secondary vertex is determined in
overlay Monte Carlo by comparing the reconstructed decay position of a simulated particle

with its nominal value. For the D' it is given by
(AZgy, AYsy, Azgy) = (49 pm, 50 pm, 348 pm). (8.4)

An improvement of about 7% is obtained if only tracks with multi anode hits in both
SiDC detectors are considered. The K9 has a worse resolution of

(AZ gy, AYsy, Azgy) = (132 pm, 135 pm, 1181 pm), (8.5)

due to the lower momentum range of the decay pions.

The secondary vertex resolution can be compared to the target width if the same
reconstruction procedure is used. Figure 8.7 a) and d) show the 13 targets of the CERES
experiment reconstructed by either using two or three points for the straight line fits of the
tracks. An additional cut on the single track transverse momentum of pr > 500 MeV /c is
applied to the data in order to represent the same momentum region as the kaon and pion
tracks from the D' decay. Furthermore, only tracks with multi anode hits in both SiDC
detectors are accepted to avoid effects related to a possible different number of single
anode hits in the data and in the simulation which might result in different values for the
resolution. A magnification of the target region is shown in figure 8.7 b) and e) together
with a Gaussian fit. The target width obtained in this way is in good agreement with the
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Figure 8.7: Verification of the secondary vertex resolution. Plots a) and d) show
the 13 targets of the CERES experiment reconstructed with the analysis scheme presented in
chapter 7. Only tracks with multi anode hits in the SiDC detectors with pp > 500 MeV/c are
considered. Plots b) and e) show a magnification of the reconstructed targets. The target width
obtained from a Gaussian fit agrees with the secondary vertex resolution of the D° shown in c)
and f).

secondary vertex resolution of the D’ meson, shown in figure 8.7 ¢) and f). Remarkable
is that the third point from the TPC on the straight line fits of the tracks improves the
vertex resolution by 40%. This is expected because the high momentum tracks from the

decay of the D’ meson have a very good pointing from the TPC to the SiDC.

8.2.5 Scan of Cut Parameters

Ideally, the correctness of the efficiency determination could be proven by showing that
the fraction of the K2 yield lost by the application of a cut is the same in data as in
simulation. This would imply the knowledge of the number of K2 without any cut. In
this case, however, the significance of the K2 is too small, making such a measurement
impossible. Still, it is possible to prove that the resolution of a cut parameter is understood
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Figure 8.8: Scan of zs,, pr, and bep cut parameter. To show the agreement between
overlay Monte Carlo and data each cut parameter is scanned while fixing the others.

by scanning this parameter, while fixing the others, and comparing the behavior of the
data and the simulation under the the influence of this cut. This is shown in figure 8.8.
Plot a) shows a scan of the secondary vertex cut for the values z,, > 0.5, 1, 1.5, 2, and
2.5 cm, while the other cuts are fixed to pr > 150 MeV/c and bep < 200 um. For each
set of cuts the K9 yield is determined. The yield obtained from the data and from the
simulation is arbritrarily normalized to the corresponding yield obtained at zg, > 1 cm.
The figure shows that the data and simulation behave similarly.

In a similar way the single track transverse momentum cut is scanned in figure 8.8 b)
for the values pr > 150, 200, 250, 300, and 350 MeV/c, while fixing bep < 200 pum
and zg,, > 1 cm. The yields are normalized to the yield at pyr > 200 MeV/c. Data and
simulation show a good agreement except for the first point at 150 MeV /c. For this reason
a single track transverse momentum cut of pr > 200 MeV/c is chosen for the following

K? analysis. A harder cut of pr > 400 MeV/c is chosen for the D’ analysis.
Unfortunately the same procedure fails if applied to scan the bep parameter while

fixing zz,, > 1 cm and py > 200 MeV/c. Additional requirements on the quality of the
track fit are needed. This is done by using a cut on the y? probability of the straight line
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Figure 8.9: Correlation between bep parameter and ? probability of the straight
line fits. The two components of the bep parameter cut seen in figure 7.8 emerge at different
P)l(@"e values. The broad component appears almost exclusively at P)l(@"e ~ 0. The narrow

component at around 80 pm is equally distributed along all P)l(’;""’ values.

fits P)l(é”e, which will be explained in more detail in the next section.

As seen in figure 7.8 the bep parameter distribution has two components. The first
component is narrow and peaks at 80 pum, while the second component is very broad
and peaks at around 600 pym. The broad component is due to mismatches between the
TPC and the SiDC track segments and disappears completely once a x? probability cut is
applied. If clean Monte Carlo is used, the second component is not even present because
a mismatch between TPC and SiDC becomes rare. It has to be pointed out that the

simulation only contains particles decaying upstream SiDC1.

The correlation between the bep parameter and P}i@”e is plotted in figure 8.9, using a
logarithmic scale for the vertical axis. The broad component of the bep parameter appears
mainly at P}i@”e ~ 0, while the narrow component at around 80 um is equally distributed
along all P)l:;"e values, as expected. Thus, using a bep parameter cut of bep < 200 um
implicitly rejects a large fraction of tracks with P)lfz"e ~ 0.

Once a cut of Pf(é”e > (.05 is used to scan the bep parameter, the agreement between
the data and the simulation is satisfactory, as seen in figure 8.8 c¢). In this case the yield
obtained without applying a bep parameter cut is used for the normalization. Summarizing
these results, it has been shown that the single track pr cut, the secondary vertex cut z,
and the bep parameter cut are understood. The remaining task is to study the agreement
of the y? probability between the data and the simulation.
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Figure 8.10: x? probability of the straight line fits. Plot a) shows the x> probability
of the straight line fits in the x-z plane and y-z plane in double logarithmic scale. The same
is plotted in b) in linear scale. The distributions are obtained from the data. The vertical line
indicates the cut used in the analysis.

8.2.6 2 probability

The x? probability is a number between 0 and 1 that describes how likely it is that for
a given number of degrees of freedom, the y? could be greater than the reported y2. A
very small x? probability indicates that it is unlikely that the measurement is consistent
with the expectation.

The straight line fits of the tracks are performed in the -z plane and y-z plane.
For both a y? probability is defined, named as P)i@"e’x and P)i@"e’y, respectively. Often

the abbreviation P)l{é”e is used to refer to both quantities. The distributions of P)lcéne’x and

Pié"e’y are plotted for data in figure 8.10, once in double logarithmic (a) and once in linear
scale (b). The large peak at P!9¢ < 0.05 arises from tracks, where the errors of the three
points are too small to describe their distance to the fit. Thus, most of the mismatches
between the TPC and the SiDC track segments will show up there. Also secondary tracks
from particles decaying after SiDC1 or SiDC2 will have low P{5* values. By definition
these tracks do not have a real match to the SiDC detectors. To significantly reduce the
amount of mismatched tracks, and thus of background, a cut of P)l:;"e > (.05 is used, as
indicated by the vertical line in figure 8.10.

The x? probability of the straight line fits is not well described by the simulation.
The differences depend on the momentum and the polar angle 6 of the tracks. Thus, the
cut of P)lcéne > (.05 used in the data has to be adjusted in the simulation, such that the
same number of tracks normalized to the total number of tracks in a given momentum
and polar angle range is accepted.
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The simulation has to describe the cocktail of particles arising from an ultrarela-
tivistic heavy-ion collision in order to include all effects that might have an influence
on the x? probability of the straight line fits, for example late decays. For this pur-
pose 9000 Pb-Au collisions at 6.5% centrality are generated with the Ultrarelativistic
Quantum Molecular Dynamics model (UrQMD) [84, 85|, passed through a GEANT [68]
simulation of the CERES spectrometer, and reconstructed with the C4++ package COOL.
The simulation is performed once in a clean mode, and once embedding it in real events.
The clean UrQMD simulation underestimates the hit multiplicity in the TPC by a factor
of 4, while the hit multiplicity in the SiDC is reproduced. On the other hand, the overlay
UrQMD simulation overestimates the SiDC hit multiplicity by a factor of 2, while the
TPC hit multiplicity is better described (factor 1.3).

The full circles and full lines in figure 8.11 show the P)ié"e cut as determined with the
overlay UrQMD simulation. The corresponding cut of P35 > 0.05 as used in the data is
indicated with the dashed line. The P)ié"e cut from the clean UrQMD simulation is drawn

with dotted lines. The momentum dependence of the Pfj{‘e cut used in the simulation is
fitted by the empirical function:

f(p) =Coe VP +Cy 4 Cap. (8.6)

The parameters are summarized in table 8.1. The steep rise at low momentum reflects
the aforementioned underestimation of mismatches between the TPC and SiDC track seg-
ments. The dependence of the polar angle 6 of the track becomes stronger with increasing
hit multiplicity.

The adjustment of the P)l(’;"e cut gives rise to a systematic uncertainty in the deter-
mination of the efficiency, because neither the clean nor the overlay UrQMD simulation
simultaneously describe the hit multiplicity in the SiDC and TPC. The two simulations
thus allow to estimate the upper and lower boundary of the efficiency, the truth lying
somewhere in between.

Besides the straight line fits of the track, also a secondary vertex fit is used in the
analysis. This means that in addition a cut on the y? probability of the secondary vertex
fit is needed. This quantity is labeled P;’SI. The effect of this cut has been studied in
the analysis of the K described in the next section. If the analysis is performed with or
without a cut of PY3” > 0.05 the result changes by 5%.

8.3 pr Spectrum of K2

The efficiency is further cross-checked by measuring the K2 pr spectrum and comparing
the results to a reference measurement from [86]. The reference measurement is performed
with the CERES spectrometer, but only using the TPC and a reduced set of cuts. The
centrality selection of both analyses are the same. The results will also be compared to
measurements from the NA49 [83, 87] and the NA57 collaborations [88, 89).
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Figure 8.11: Adjustment of the P;(ié‘e cut. A cut of P)ljzne > 0.05 is used in the data. To
reject the same fraction of tracks a momentum and polar angle dependent cut has to be applied
in the simulation, as shown by the colored lines. The P}i@"e cut adjustment is determined using a
UrQMD simulation. The simulation is performed once in a clean and once in an overlay mode.

Plene,:E plzr)ne,y
X XZ
C() ‘ Cl ‘ 02 ‘ C() ‘ Cl ‘ CQ
8° < 6 < 10° | 0.3150 | 0.0691 | 0.0025 || 0.3548 | 0.0554 | 0.0025
clean 10° < 6 < 11° || 0.3781 | 0.0592 | 0.0030 || 0.4044 | 0.0465 | 0.0030
UrQMD | 11° < 0 < 12° || 0.4327 | 0.04531 | 0.0035 || 0.4495 | 0.0322 | 0.0035
simulation | 12° < # < 13° || 0.4911 | 0.0301 | 0.0040 || 0.5215 | 0.0134 | 0.0040
13° < 6 < 15° || 0.4696 | 0.0356 | 0.0040 || 0.5284 | 0.0113 | 0.0040
8° <0 < 10° | 0.2846 | 0.0847 | 0.0020 || 0.3142 | 0.0704 | 0.0020
overlay 10° < 6 < 11° || 0.3080 | 0.0653 | 0.0025 || 0.3558 | 0.0447 | 0.0025
UrQMD | 11° < 0 < 12° | 0.3241 | 0.0471 | 0.0030 || 0.3602 | 0.0299 | 0.0030
simulation | 12° < # < 13° || 0.3856 | 0.0252 | 0.0030 || 0.3963 | 0.0145 | 0.0030
13° < 6 < 15° || 0.3379 | 0.0306 | 0.0030 || 0.3781 | 0.0091 | 0.0030

Table 8.1: Fit parameters of the Pi:;le cut adjustment. The table contains the values
for the fit parameters according to equation (8.6) and figure 8.11.
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Figure 8.12: Acceptance Cut in the TPC. The cut on the polar angle O7p¢c of the TPC
track segment takes into account that at large Orpc the tracks leave the TPC earlier. These
tracks have by definition a smaller number of hits per track.

8.3.1 Analysis

The K9 analysis is based on 18.8 million events at 7% centrality, comprising the calibra-
tion units 146 to 415 (end of the run). The resolution of the data from the calibration
units 1 to 145 does not satisfy the high requirements in pointing precision between TPC
and SiDC needed for the secondary vertex reconstruction scheme. For the first 80 units
the jitter of the TPC was not measured resulting in a worse drift time resolution. The data
of the units 81 to 145 is rejected due to an unstable gas composition in the TPC during
the beam time, which was monitored with less precision using a CO, analyzer instead of
the drift velocity monitor.

The analysis is performed by combining all positive tracks with all negative tracks
within each event. For both tracks the pion mass is assumed and the invariant mass m.
is calculated according to equation (8.3). Only events with an interaction position lying
within 0.9 mm with respect to the closest target are considered, the distance between two
targets being approximately 2 mm (compare figure 5.2). In the following this procedure
is called same events analysis. The background distribution is obtained by combining
the positive tracks of a given event with all negative tracks of ten other randomly chosen
events within the same burst (1 burst &~ 400 events), and vice versa. The mixing of two
events is performed within the same target and the track multiplicity should not differ by
more than 10%. This procedure is called mixed events analysis.

A polar angle cut is applied on the acceptance of the TPC according to figure 8.12.
The upper and lower cut of 0.1396 rad < O7pc < 0.2443 rad considers the geometrical
coverage of the spectrometer. In order to obtain a reasonable momentum fit at least
12 fitted hits are required for the TPC track segments. At large polar angles the tracks
do not traverse the whole TPC barrel. Here the requirements for the number of fitted
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Figure 8.13: Armenteros-Podolanski Plot for the K2. The cuts ¢ > 0.1 rad,
bep <200 pm, zs < 1.5 cm and P > 0.01 are used to obtain a clear Kg signal in the
Armenteros-Podolanski plane. The small contribution of misidentified A baryons can be ex-
cluded by using a cut on the transverse momentum in flight direction of the mother particle
of gr > 0.11 GeV/c. The cut is drawn as dashed line. The solid lines for the K2 and A are
calculated according to the formulas in appendix A.

hits is relaxed to 10 fitted hits for the range 0.22 rad < O7pc < 0.24 rad and to 8 fitted
hits for 0.24 rad < Orpc.

Analyses performed without particle identification often suffer from the problem that
misidentified resonances, which are reconstructed with the wrong mass assumption of the
daughters, fall in the same mass range as the considered one. However, kinematical con-
siderations still enable to suppress unwanted contributions. A powerful method is to apply
a cut in the gr-a plane of the Armenteros-Podolanski plot [90], where ¢ is the transverse
momentum with respect to the flight direction of the mother particle, and « is an asym-
metry variable comprising the longitudinal momentum ¢;,. A detailed description about
this topic can be found in appendix A. Figure 8.13 shows the Armenteros-Podolanski plot
as obtained with an adequate choice of cuts from the data. The remaining contributions
are mostly the K2 and the A meson. A cut of gz > 0.11 MeV/c in the gr-a plane is
sufficient to suppress the A baryon. A summary of the cuts used in the K2 analysis can
be found in table 8.2.

The total number of collected K9 mesons is 168315. The analysis is performed diffe-

rentially in ten equidistant pfg bins in the range 0 < pfg < 2 GeV/c and three equidistant
rapidity bins in the range 2.0 < y < 2.6. Examples of the raw invariant mass spectra of
the same and the normalized mixed events analyses are shown in figure 8.14. To extract
the normalization constant the invariant mass distribution in the same events sample
is divided by the analog distribution in the mixed events sample. The ratio is fitted
by a Gaussian on top of the normalization constant. The mixed events distribution is
then multiplied with this constant and subtracted from the same events distribution.
The resulting signal spectrum is fitted with a Gaussian function for the K9 yield and a
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polar angle 0.1396 < O7pc < 0.2443
Armenteros-Podolanski qr > 0.11 GeV/c
single track transverse momentum pr > 200 MeV/c
opening angle ¥ > 0.05 rad
x? probability of the line fit P > 0.05
x? probability of the vertex fit PyT > 0.05
secondary vertex Zgp > 1 cm
bep parameter bep < 200 pm

Table 8.2: Cuts for the K analysis. The table contains a compilation of the cuts used in
the Kg analysis.

polynomial of first order for a possible residual background contribution. The uncorrected

K? yields obtained in this way are shown in figure 8.15 ¢) for each pgg and y bin.

Also the acceptance and the efficiency are determined for each differential spectrum,
as shown in figure 8.15 a) and b). Using further the number of analyzed events and the
branching ratio for the decay K — 77, the quantity dN/(prdydpr) is calculated and
plotted versus the transverse momentum of the K2 meson, as shown in figure 8.15 d).
The pr spectrum is fitted with the exponential function

2 m24p2 —m
d°N dN/dy e7\/ o . (8.7)
prdydpr  T(T +m)

For m the invariant mass of the Kg meson m o = 497.65 MeV /c* is used. The position of
the data points within the bins are calculated according to [91]. The parameters obtained
from the fits are the inverse slope parameter 7" and the rapidity density dN/dy. The
results are discussed in the next section.

8.3.2 Results and Conclusions for the Efficiency

Figure 8.16 shows a compilation of the fit results from the K% pr spectrum of figure 8.15
in comparison to other measurements. The three values for the rapidity density dN/dy
obtained in this work are shown in figure 8.16 a) as circles. The corresponding values for
the inverse slope parameter 7" are shown in plot b). The reference measurement from [86]
is drawn as squares and the corresponding fit results as dashed lines. Both are CERES
measurements for 158 AGeV /¢ Pb-Au collisions at 7% centrality, but using two different
philosophies in the analysis scheme. The reference measurement is solely based on the
information of the TPC. The triangles and dotted lines indicate the results obtained by the
NA49 collaboration for Ph-Pb collisions at 5% centrality [83, 87]. The NA49 measurement
is scaled by a factor of 0.938 using the number of participating nucleons N4 [92]. The
dotted line is not a fit to the K% data points from NA49, but rather a fit to the mean of
their measured K+ and K~ rapidity density spectra. The measurement from the NA57
collaboration for the most 4.5% central Pb-Pb collisions [88, 89] is shown by the diamond
symbols, using a scaling factor of 0.928. Although a disagreement is seen at mid-rapidity
between the NA49 and NA57 rapidity density measurements, all four measurements are
compatible within the narrow acceptance window of the CERES spectrometer.
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Figure 8.14: Raw invariant mass spectra of the K% meson. The plots show the

0
raw invariant mass spectra of Kg — wtr~ for two different pgs bins in the rapidity range
2.2 <y < 2.4. The contribution of the background is determined with the mixed events tech-
nique and is drawn as dashed line.

The pr spectrum integrated in the rapidity range 2.0 <y < 2.6 is shown in
figure 8.17 a). A fit according to equation (8.7) results in a rapidity density of
dN/dy = 19.75 4 0.23 and an inverse slope parameter of T = 227.97 + 1.47 MeV/c?. The
measured rapidity density agrees within 5% if compared to the corresponding value ob-
tained from the CERES fit from [86]. It agrees within the statistical errors with the
corresponding value obtained from NA49 [83]. The difference of the data points to the
dashed or dotted line is shown in figure 8.17 b) as a function of the transverse momentum

0
of the K2 meson. The deviation towards larger pfs reflects the larger fit value obtained
for the inverse slope parameter 7.

The results presented here are stable if the fit range in the K2 signal spectrum is
varied or if the residual background is fitted with a constant instead of a polyomial of first
order. As it was discussed in section 8.2.6, the efficiency is obtained by using the P)l(?;”e cut
adjustment from the overlay UrQMD simulation, shown as full lines in figure 8.11. Using
the adjustment from the clean UrQMD simulation, drawn as dashed lines in figure 8.11,
increases the rapidity density by 7%.

As summary, it is concluded that the overall systematic uncertainties are dominated
by the uncertainty of the efficiency determination. Systematic variations of the different
cuts have shown that the uncertainty is dominated by the P)l:;"e cut adjustment with 7%
and the uncertainty of the P;’%I cut with 5%, resulting in an systematic uncertainty of
8.6% for the final yields. Within this limit, the results for the K2 meson presented here
are consistent with results from an independent analysis of the CERES data and results
from the NA49 and NA57 collaborations.
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Figure 8.15: K pr spectra for different rapidity bins. The K pr spectra (d) are
fitted with function (8.7) in three rapidity bins. The corresponding uncorrected K2 yields (c),
the efficiencies (b) and the acceptances (a) are also shown.
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Figure 8.17: Integrated K2 pr Spectrum. Plot a) shows the K% pr spectrum integrated
over the rapidity range 2.0 < y < 2.6. The dashed and dotted lines are the corresponding
dependencies obtained from the CERES and NA49 fits from [86] and [83, 87], respectively.
Plot b) shows the deviation of the data points from the dashed (full circles) and the dotted
(open circles) line.
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Chapter 9

Open Charm Analysis

The measurement of charmed mesons is an extremely difficult task in heavy-ion physics
due to the low production cross-section and the huge amount of combinatorial background.
For instance, 30 million collected events of 158 AGeV/c¢ Pb-Au collisions would result
in 3.6 million D’ mesons, if a yield of 0.12 D’ per event [26] is assumed. Measuring
only the decay channel D’ = Ktr- (et =123.0 pm) will further reduce this number
by the branching ratio of 3.8% [66]. In only 3.4% of the cases both daughters will fall
in the acceptance of the spectrometer, thus leading to an amount of 4650 detectable
D’ mesons. This has to be multiplied by an efficiency of the order of 3%, resulting in
roughly 140 D’ mesons. If an open charm enhancement factor of 3 is assumed, at most
420 D° mesons would be expected. This number has to be further reduced by a factor
0.63 considering the fact that data of lower quality, i.e. with worse secondary vertex
resolution, is sorted out for the analysis.

The situation is not promising either considering the three body decay
D~ — Ktn~n~ (er = 311.8 pm) with a branching ratio of of 9.2% [66]. Assuming a yield
of 0.036 D~ per event [26], an acceptance of 0.9% and again an efficiency of the order
of 3% results in 27 expected D~ mesons in 30 million collected events of 158 AGeV /¢
Pb-Au collisions.

9.1 Suppression of Resonances

Without an effective particle identification many resonances will contribute to the invari-
ant mass spectrum of the D meson. These contributions will remain after subtraction of
the combinatorial background, and completely mask the tiny D’ peak.

The solution is again a cut in the gr-a plane of the Armenteros-Podolanski plot. As
derived in appendix A the semi-minor axis of the Armenteros-Podolanski ellipse is given
by the center of mass momentum p.,,. If a mother particle at rest has the four-momentum
pm = (myy, 0) and decays in two daughter particles with four-momenta p; = (Ey, py) and
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| decay | mass my; [GeV/c?] | semi-minor axis [GeV/(] |
DD’ = Kn 1.865 0.8609
K% — nr 0.498 0.2060
p— T 0.776 0.3619
w— T 0.783 0.3656
o — KK 1.019 0.1269
K*— K 0.892 0.2881
AA = pr 1.116 0.1006
A — prm 1.232 0.2272
¥ — Ax 1.383 0.2054
= = An 1.321 0.1390
Q= AK 1.672 0.2112

Table 9.1: Semi-minor axes of Armenteros-Podolanski ellipses. The table con-
tains examples of particle decays with the corresponding masses and semi-minor axes of the
Armenteros-Podolanski ellipses. The semi-minor axis can be used as cut variable to suppress
contributions from unwanted resonances in the invariant mass spectrum.

P2 = (Ea,P2), then p, is given by

. , m3, — (mq +mg)?) - (m3, — (mq — my)?
pcm:p1=|p2|:\/( = tm )ty — (=l gy
M

applying the energy and momentum conservation law. Using equation (9.1) the semi-
minor axis of the Armenteros-Podolanski ellipse is calculated for few examples in table 9.1.
Figure 9.1 shows the Armenteros-Podolanski plot of the D’ meson obtained from an over-
lay Monte Carlo simulation.

[t can be seen from equation (9.1) that a large mass my; of the mother and small
masses m; and my of the daughters imply a large center of mass momentum p,,,,. This is
exactly the case for the D’ meson. A cut of gr > 0.5 GeV/c, as indicated in figure 9.1,
will thus reject most of the unwanted resonance contributions, except those from charm
decays.

9.2 Fast Monte Carlo Simulation

To obtain the signal spectrum of all possible charm decays a fast Monte Carlo simulation
based on the PYTHIA event generator [47] has been developed. The fast Monte Carlo
simulation allows to make optimal use of the available computing time and disk space,
and to reduce the statistical error dramatically compared to the limited statistics of a
full overlay Monte Carlo simulation. Its precision is however not sufficient to determine
the efficiency of the analysis method. For this purpose still a full overlay Monte Carlo

simulation of D' mesons is needed. This was already described in detail in section 8.2.1.

The input for the fast simulation is a sample of 158 GeV /c p-p collisions generated
in fixed target mode with the PYTHIA event generator. The total number of collected



9.2. FAST MONTE CARLO SIMULATION 103

1271

1

0.8

d, [GeV/c]

IIIIIIIIIIIII
lllllllllllll

0.6

=== - - - =—

0.4

0.2

lllllllll

lllllllll

Figure 9.1: Armenteros-Podolanski Plot for the D’ meson. The plot is obtained
from an overlay Monte Carlo simulation. The solid line is calculated according to appendix A.
The semi-minor axis of the D" ellipse is larger than that of most of the other resonances. Only
contribution from charm decays can pass the cut of gr > 0.5, indicated by the dashed line.

cc pairs is 3.2 million, obtained by only triggering on charm production processes. The
charm mass is set to m, = 1.35 GeV/c? [66]. The nucleon structure function is para-
meterized by MRS(G) [93]. The primordial kr distribution inside the hadron is assumed
to be Gaussian with < k% >=1 (GeV/c)? and an upper cut-off at 3 GeV/c. The charm
cross-section is scaled from p-p to A-A collisions using the number of binary collisions
(see [25] for details).

The fast simulation tool processes all 50, D D~, D*, A,, D; and D/ decay chan-
nels from the PYTHIA simulation. Each two opposite charged particles having the same
vertex are assumed to originate from a D’ = K+n- decay. The kaon mass is assigned
to the positive particle, the pion mass to the negative one, respectively. The result is a
continuous invariant mass spectrum mg,. Some of the most important charmed reso-
nance contributions are shown in figure 9.2. Remarkable is that the misidentified decay
D’ — K 77", i.e. where the kaon mass is assumed for the 7 and the pion mass is as-
sumed for the K, appears in the same invariant mass range as the D’ = K*tn—. The
reason can be found in the similar momentum distributions of the decay kaon and pion
Pr = pp (compare equation (8.3)).

To obtain a more realistic picture the momentum of a particle is smeared using
equation (5.8) for the momentum resolution of the TPC. According to figure 8.5, 19.3%
randomly chosen tracks are assigned to have a single anode hit in SiDC1, and respectively
20.1% in SiDC2. The three points (z1, y1, zsipc1), (T2, Y2, 2sipca) and (23, Y3, zroar) o0 a
given track are smeared according to the detector resolution described in section 7.3. Fi-
nally, the simulation is passed through the same secondary particle reconstruction scheme
as used for the analysis of the data.

Figure 9.3 shows a comparison between the fast Monte Carlo and the full overlay
Monte Carlo simulation for the decay channel D’ — K*x. The mass resolution of
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Figure 9.2: Charmed resonance contributions to the invariant mass spectrum.
The plots show some of the relevant contributions to the invariant mass spectrum of the

D’ = Koo decay.
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Figure 9.3: Comparison between fast Monte Carlo and full overlay Monte Carlo.
Plot a) shows the invariant mass distribution for the decay D’ — K+r—. The full overlay
Monte Carlo simulation is drawn as dashed line, the fast Monte Carlo simulation as solid
line. Plot b) shows the resolution of the z coordinate of the decay point. The distribution
of the bep parameter is shown in plot ¢).
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Figure 9.4: Target structures in the secondary vertex distribution. The arrows and
circles mark regions with enhanced secondary vertices. These might be tracks from secondary
interactions of collision fragments in downstream targets. They are removed by cutting out a
box of zg, > 1.5 mm and 1, < 300 um in the rg,-z5, distribution of the secondary vertex.

0m = 70 MeV /c? is reproduced by the fast Monte Carlo simulation. An additional smear-
ing of the z coordinate with a width of o, = 190 ym had to be introduced to reproduce
the secondary vertex resolution given in equation (8.4). The fast Monte Carlo simulation
does not comprise the possibility of mismatches between the detectors. Thus, the dis-
tributions shown in figure 9.3 have only tails in the case of the full overlay Monte Carlo
simulation.

9.3 Analysis

The analysis of the decay D’ — K*r is similar to the K? analysis described in
section 8.3.1. Thus, only the differences will be explained here. The analysis of the
D" meson is is based on 18.9 million events at 7% centrality, comprising the calibration
units 146 to 415 as explained in section 8.3.1. No effective particle identification is pos-
sible, meaning that the kaon mass is assigned to all positive tracks and the pion mass
to all negative tracks. The combinatorial background is obtained with the mixed events

technique.

A high single track transverse momentum cut of pr > 400 MeV/c is possible for the
D’ analysis due to the high momentum range of the decay kaon and pion. The decay
length of the D" meson with cr = 123 pm is short. Thus, the secondary vertex cut is
chosen in the range of 1 mm (compare figure 8.2). In this scope interesting features
become visible in the secondary vertex distribution as shown in figure 9.4. Plot a) shows
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polar angle 0.1396 < O7pc < 0.2443
Armenteros-Podolanski qr > 0.5 GeV/c
single track transverse momentum pr > 400 MeV/c
opening angle ¥ > 0.25 rad
x? probability of the line fit P > 0.05
x? probability of the vertex fit PyT > 0.05
secondary vertex 1mm <z, < 1cm
bep parameter bep < 200 pm
cleaning of target tracks Zgy < 1.5 mm || rg, > 300 pum

=0 . . . .
Table 9.2: Cuts for the D analysis. The table contains a compilation of the cuts used in
the D° analysis.

the distribution of the transverse coordinate ry, versus the longitudinal coordinate z,, with
logarithmic color code. The circles and arrows mark regions with enhanced secondary
vertices. The distances of these structures are 2 mm in longitudinal direction, which is
the distance between adjacent targets. These structures are target tracks which might ori-
ginate from secondary interactions of collision fragments in downstream targets. Plot b)

—0
shows the distribution of z,, for low values of p2 . Here, the target structures appear

as equidistant peaks marked with arrows. To obtain a clean track sample for the D’
analysis a box of zy, > 1.5 mm and ry, < 300 um is cut out in the rg,-z,, distribution,
taking into account that the radius of a target is 300 um. A compilation of all cuts used
for the D’ analysis is listed table 9.2. It has been shown in section 9.1 that the hard cut of
qr > 0.5 GeV/c2 in the Armenteros-Podolanski plane removes all resonance contributions
from the invariant mass distribution, except those from charmed mesons and baryons.

The normalization between the same and mixed events invariant mass distributions
is obtained by fitting their ratio with a spectrum of charmed resonances on top of the
normalization constant. The spectrum of charmed resonances is based on PYTHIA and
simulated with the fast simulation described in section 9.2. The same cuts as used in the
analysis of the data are applied to the simulation. As an example figure 9.5 shows a spec-
trum of charmed resonances for the cuts listed in table 9.2. The spectrum is normalized
to the yield of the decay D’ = K+7~. To fit the ratio between same and mixed events
distributions the D' yield is constraint to positive values.

The signal distribution, which is obtained after subtraction of the combinatorial
background, is also fitted with the spectrum of charmed resonances, but now on top of
a polynomial of first order to account for a possible residual background. In contrast to

the fitting procedure for the ratio, the D’ yield is not constraint to positive values.

This procedure is repeated for different sets of cuts. The largest influence on the
invariant mass spectrum of the D’ is observed, if the opening angle or the secondary vertex
cut are varied. This is shown in figure 9.6 for three different opening angle cuts, ¢ > 0.24,
0.25, and 0.26 rad, and two different secondary vertex cuts, zy, > 1.0 and 1.1 mm. The six
cut variations are labeled with numbers 1 to 6. The first row (a) shows the raw invariant
mass spectra of the same events (solid line) and the normalized mixed events (dashed
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Figure 9.5: Example of a spectrum of charmed resonances. The spectrum contains
all contributions from charmed resonances, which pass the cuts listed in table 9.2. For
comparison a bin size of 100 MeV /c? is chosen, as used in the analysis of the D’ meson.
The red dashed-line indicates the contribution from the decay D’ = K+n.

line) distributions in logarithmic scale with a bin size of 100 MeV/c?. Remarkable is
that, even though very hard cuts are applied (see table 9.2), the number of entries is
still of the order of 10° per bin. The measurement of a tiny signal thus requires careful
treatment of the normalization. The ratio between same and mixed events distributions
is shown in the second row (b) of figure 9.6, together with the fit for the normalization
as explained above. The signal distribution and the fit for the D’ yield is shown in the
third row (c). The resulting fit parameters are the intercept and the slope for the residual
background and the 50 yield N,,eqs in the considered decay channel. The fit parameters
and the corresponding x? per number of degrees of freedom are summarized in table 9.3
for the six sets of cuts. Except for the measurement number 2 with large x?/dof, all
intercept and slope parameters are consistent with zero within the errors.

The efficiencies are calculated for each set of cuts using the full overlay Monte Carlo
simulation described in section 8.2.1. The expected yields N, in the considered decay

channel D° — K+7~ are calculated according to:
Newp = Noy (D' BA . (9.2)

In this equation N,, is the number of analyzed events, (EU> = 0.12 is the expected average

number of D’ mesons per event according to [26], B = 3.80% [66] is the branching ratio,
A = 3.43% is the acceptance and e is the efficiency.
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Figure 9.6: D’ invariant mass spectra for different sets of cuts. The numbers 1 to 6
label different sets of opening angle and secondary vertex cuts: 1 > 0.24 rad (1,2), ¢ > 0.25 rad
(3,4), andvp > 0.26 rad (5,6), with z5, > 1.0 mm (1,3,5) and z5,, > 1.1 mm (2,4,6). Plots a) show
the raw invariant mass spectra, plots b) the ratio between same and mixed events distributions,
and plots c¢) the signal spectra.
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| spectrum | cuts | intercept | slope [(GeV/c®) ']  Npeas | x*/dof |

1 v>024rad ey 75 38447 130+ 509 | 36.26/25
Zgy > 1.0 mm

> v>024rad a4y _37+38 224 + 388 | 57.69/25
Zey > 1.1 mm

3 w>025rad |y gy 11 447 105 + 496 | 22.45/25
Zgy > 1.0 mm

g | V02 ad gy —9438 200 + 376 | 33.66,/25
Zspy > 1.1 mm

5 v>0.26rad I y6a 4 73 43 + 47 1410 + 456 | 27.81/25
Zspy > 1.0 mm

6 v > 026rad |00 39 34 + 37 250 + 366 | 22.84/25
Zspy > 1.1 mm

Table 9.3: Fit results for D' invariant mass spectra. The table summarizes the fit
results from the signal spectra in figure 9.6. Np,eqs 1S the measured 50 yield.

The efficiencies € and the significances S/v/B are listed in the first two rows of
table 9.4 for the six sets of cuts. The significances consider a range of +2.50,, around
the nominal value of the D' invariant mass. The expected D’ yields N, are given in the
third row of table 9.4 according to equation (9.2). The first error of the expected yield is
the statistical uncertainty coming from the acceptance and efficiency determination. The
second error is the systematic uncertainty, containing the uncertainty of the branching
ratio with 0.09% [66] and of the efficiency with 8.6%. The last row of table 9.4 contains
the calculated enhancement factors F, i.e. the ratio between measured and expected
yields, with the corresponding statistical and systematic uncertainties. The systematic
uncertainties of the enhancement factors contain again the uncertainty of the branching
ratio and of the efficiency. It is seen that this error is negligible as compared to the
statistical error. Thus, this error is neglected in further considerations.

Within the statistical uncertainties the enhancement factors should remain robust
against the variation of cuts. However, the delicate determination of the normalization
constant between same and mixed events distributions could result in a systematic uncer-
tainty in the measurement of the D’ yield. This systematic uncertainty is given by half
of the largest variation between the enhancement factors, resulting in AFE,, ~ 7.3.

9.4 Upper Limit in the Bayesian Approach

If the outcome of an experiment is a null result it is often interesting to set an upper
limit in order to eliminate some of the proposed theories. This can be done either in the
framework of Frequentist or Bayesian statistics. The two approaches attribute different
meanings in the involved quantities and lead to different numerical results. The question
which framework yields the better description is at present a hotly debated issue.

The determination of the upper limit in this thesis follows Bayesian philosophy, which
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spectrum || ¢ | S/vV/B [107?] Neap E
1 3.2% 4.32 94.954+0.06 £8.47 | 1.4+54+£0.1
2 2.4% 4.07 72.45£0.05£6.46 | 3.1 +£5.4+0.3
3 3.1% 4.31 92.87+0.06£8.28 | 1.1+5.3£0.1
4 2.4% 4.05 70.72+£0.05£6.31 | 28 £5.3+0.3
5 3.1% 4.28 90.37£0.05+8.06 | 15.6 £5.0+1.4
6 2.3% 4.02 68.63 £0.05+6.12 | 3.7£5.3£0.3

Table 9.4: Enhancement factors for different sets of cuts. The table contains the
efficiencies €, the significanes S/ VB, the expected D’ yields N.g;, and the enhancement factors
E for the six different D° spectra of figure 9.6. The expected yields are calculated according
to equation (9.2). The enhancement factors are the ratios between the measured yields from
table 9.3 and the expected yields. The errors are the statistical and systematic uncertainties,
respectively.

is very general and avoids unphysical confidence limits. Following [66, 94, 95] and [96] this
section will describe some important features of Bayesian statistics and its conclusions for
the upper limit determination of the D" meson.

9.4.1 General Considerations

The starting point is Bayes’ theorem:

L(data|hyp)p(hyp)

[ L(datalhyp')p(hyp') dhyp'”
The degree of belief in a hypothesis, given the data, is summarized by the posterior
probability density function (pdf) p(hyp|data). It is proportional to the likelihood
function L(datalhyp) multiplied with the prior pdf p(hyp). L(data|hyp) gives the pro-
bability that the hypothesis, when true, just yields the data. The prior pdf p(hyp)
reflects the experimenters subjective degree of belief about the hypothesis before the
measurement was carried out. The denominator in equation (9.3) normalizes the poste-
rior pdf to unity.

p(hyp|data) = (9.3)

As example, let’s suppose that the measurement of a physical constant S results in
the estimator b. Usually, no specific knowledge about the prior pdf p(3) is at hand and
the claim is that all physically reasonable values for 5 are equally probable. Thus, p(/)
is set to be constant over the region of interest and zero in the unphysical region. If 3 is
assumed to by positive, the upper limit at (1 — €) confidence level is than given by:

M

_ ) ) LlB)p(8) dp’
1—6—/p(5|b)d = L) 3 (9.4)

Figure 9.7 represents the outcome of several experiments measuring values for 3, with
significant probability of obtaining unphysical results. Assuming a step function for p(/)
would mean to just consider the shaded region, but renormalized to unity. By stating an
upper limit at (1 — ¢€) confidence level thus means that § lies in the grey shaded region.

0
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9.4.2

0

In the following these considerations are applied to the measurement of the D~ yield.
At first, a likelihood function is constructed. The measured invariant mass spectrum of

the same and mixed events analysis is divided in bins ¢ with bin content n

Y

and n"

S
2

respectively. The bin contents are large and therefore taken to be real numbers which are

Gaussian distributed. If so, than also the bin contents n; of the

obtained after m

t mass spectrum
ith mean p; and width

invarian

ixed events subtraction are Gaussian distributed w

0;. The probability of the counts lying between n; and n; + dn; can then be written as

(9.5)

, is described by a

10n

t mass spectrum, obtained after mixed events subtract
1 spectrum W(m) on top of a first order polynomial describing the residual back-

ground

invarian

The

signa

(9.6)

c) = co+cym + coW(m),

b

p(m

10n

btained from a PYTHIA simulat

is o

)

. The signal spectrum W(m

{ei

where ¢

—0

and contains all relevant resonances. It is normalized to the D peak, and thus ¢, gives

the number of measured D' — K+~ decays. The fit function p(m

the

mear in

c) is 1

J
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parameters ¢ and can be expressed by

2

p(m;c) = chfy( ), (9.7)

7=0

where the f; are a set of functions of m with £ = {1, m, W (m)}.

Under the assumption that the bin contents n; are statistically independent, the
likelihood function of the data can be obtained by multiplying the probabilities of
equation (9.5),

_ Ly (nizplmyse) ‘
L(n|c) = HL nilc) = 22( ) = Ae X’ (nlc), (9.8)

In this equation n = {n;}, A is a normalization constant, and

(nlc) = Z (%M) = Z % (nl — chf](mz)) . (9.9)

i i ¢

The x? can be expanded around the point € where the likelihood becomes maximal or
the x? becomes minimal, thus leading to

_ 8X2(n|c &x’(nfc)
2 2
X (nlc) = x"(n[c) + zz: Ok Z Z Desdcr Ac;Acy + ..., (9.10)

with Acy, = ¢y — . The first derivative of equation (9.9) vanishes at the point €:

ax n\ 22 ( —chfj(mi)> fr(m;) = 0. (9.11)

J
This equation can be written in vector notation as

a=We with o, =Y %nifk(mi) and Wy =3 %fj(mi)fk(mi). (9.12)

i ! i

The second derivative of equation (9.9), evaluated at the point €, yields an expression for
the Hessian matrix

. 1%%(mfe) 1
H—H]k—im—go__?fy(mz)fk(mz)a (913)

which is just equal to W in equation (9.12). Higher derivatives vanish.

Inserting now the x? expansion of equation (9.10) in equation (9.8), and considering
proper normalization, results in
1

Lnle) = ———— ¢ 2(c "V e0), (9.14)
(2m)*| V|
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where the covariance matrix V is the inverse of the Hessian matrix H with the
determinant |V|.

After deriving the likelihood function, the next step is to specify the prior pdf
p(c). Without having specific knowledge about the parameters the simplest choice is
to set p(co, ;) = (2r)72, where r defines the range in which the parameters are defined
(—r < ¢p,c; <1). The prior pdf p(cg, ;) vanishes for r — oo but the posterior pdf will
remain finite because the normalization integral in the denominator contains the same
factor (2r)~2. Similar arguments apply to the choice of the remaining prior pdf p(c;), but

now considering the knowledge that the D’ yield ¢; must be positive, that is (0 < ¢y < r):

- 0 forecy <0
plca) = {rl for ¢ > 0 (9.15)

To obtain the posterior pdf, the likelihood function of equation (9.14) has to be multiplied
with the prior pdf for the parameters, leading to

B —Lc—e)TV-l(c—t
p(c\n)zmp(@)e 2(cE) VT ); (9.16)

with the normalization constant B. The posterior pdf p(cs|n) can now be obtained by
using the marginalization rule and integrating the joint pdf p(c|n) with respect to ¢y and
c1. In this way the posterior pdf is obtained as

1(02 (D)

plealn) = 5r p(e2) e H(52) = Bip(ey) glex; ©,0), (9.17)

where g(cq; T, 0) is used as abbreviation for the Gaussian function.

The upper limit for the D’ meson is thus given by

M

1= e= [ plesfn)des =

0

fO CQ CQ, dCQ

fo 02 Cy, 0 dCQ

(9.18)

at (1 — ¢€) confidence level.

9.5 Results and Discussion

The upper limit for the D’ yield is determined with measurement number 3 from
figure 9.6, plot 3¢). This measurement is performed with the set of cuts listed in table 9.2.
It fulfills the requirements of having one of the highest significances and at the same time

x?%/dof ~ 1. The D’ yield Np,eqs Obtained from this measurement is given by
Nimeas = 105 + 496 (stat) + 693 (syst), (9.19)

with a systematic uncertainty of 660%. The systematic uncertainty is obtained from the
considerations in section 9.3 with AFy,,,/E ~ 7.3/1.1. Using further equation (9.18) with
the parameters

T2 = Noeas = 105 and 5 = /(ANjtat, )2 + (AN:L)? = 852, (9.20)

meas
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Figure 9.8: D’ upper limit. The figure shows the final result for the measurement of the
D’ yield. The data is based on 18.9 million analyzed events of 158 AGeV/c Pb-Au collisions.
The red solid curve is the fit to the data with a measured enhancement factor of E = 1. The
upper limit of Ey; = 22 is indicated with the blue dotted line. The sensitivity of the experiment
with E5{"® = 13 is drawn as green dashed line. It is the best possible upper limit, which could
be obtained with the available statistics if no systematic uncertainties would be present.

an upper limit for the D’ yield of M = 2058 is obtained at 98% confidence level. As the
expected number of D’ mesons is Nezp = 93, an upper limit for the enhancement factor of
Er = M/Neyp = 22 can be excluded. The same result is obtained if the measurement is
fitted with a charmed resonance spectrum on top of a constant, instead of a polynomial of
first order. If measurement number 6 from figure 9.6, plot 6 ¢) is used for the calculation,
an upper limit for the open charm enhancement factor of E,; = 24 is obtained.

Figure 9.8 shows the final results for the measurement of the D’ yield in 158 AGeV /c
Pb-Au collisions. The red solid curve is the fit to the data, resulting in an enhancement
factor of £ = 1. The blue dotted curve marks the upper limit for the enhancement factor
with Ej; = 22. The position of the D’ meson in the continuous spectrum of charmed
resonances is indicated with an arrow and a horizontal line of +2.5 5,,,. The green dashed
line marks the best possible upper limit of E3{"® = 13, considering only the statistical
uncertainty. This is denoted as sensitivity of the experiment. It is the upper limit that
could be obtained with the available statistics, under the assumption that the systematic
uncertainties in the determination of the normalization between same and mixed events
distributions could be removed.

The result can be compared to two other measurements of the open charm enhance-
ment factor E at the CERN SPS. The indirect measurement from the NA38/NA50
collaboration [17] has already been presented in section 3.1. It is conjectured that the
observed excess in the intermediate mass range (1 < my, <3 GeV/c?) of the dimuon
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spectrum could be due to an open charm enhancement. For 158 AGeV/c central
Pb-Pb collisions an enhancement factor up to F = 3.5 is possible (compare figure 3.3).
The upper limit of Ey; = 22 obtained in this thesis is clearly not sensitive enough to reach
the region below E & 3.5 and bring further light in the situation.

The second experiment is the direct open charm measurement of the decay channels
D’ — K*r~ and D° — K-+ from the NA49 collaboration 97, 98] for 158 AGeV/c
Pb-Pb collisions.  As result an upper limit for the combined yield per event of
M({D° +E0>) = 1.5 is obtained at 98% confidence level. The comparison to the ex-

pected yield per event (D° +EU> = 0.21 [26] gives an upper limit for the enhancement
factor of B4 = 7.

The measurement in [97, 98] is based on two samples of tracks with and without
kaon identification via the TPC dFE/dz, respectively. The relative dFE/dx-resolution is
about 4%. The measurement of the particle momentum is precise with a resolution of
Ap/p* =3-107" (GeV/c)~!. The decision weather kaon identification is performed or not
depends on the track length and on weather the momentum of the track is low enough
to make kaon selection via a dE/dz cut possible. The D’ and D° decay channels are
analyzed separately and combined at the end. It is not clear how the contribution of
D° mesons in the D" spectrum, and vice versa, is treated for the track sample without
kaon identification (compare herefore figure 9.2). This contribution might in fact be

negligible compared to their D' or D° mass resolution of mr = 6.2 MeV /c?, obtained
from an overlay Monte Carlo simulation. However, in the absence of particle identification
a careful study of contributing resonances to the invariant mass spectrum is advisable.

In [97, 98] the raw invariant mass spectra are directly fitted in a region of £90 MeV /c?
around the position of the D’ or D° meson, using a Cauchy function for the signal distri-
bution on top of a polynomial of fourth order for the background. The D’ or DY invariant
masses and widths are kept fixed during the fitting procedure. This approach is not fol-
lowed in this thesis. The reason is that, if the signal spectrum has a different shape than
that predicted by a Monte Carlo simulation, it might easily be assigned to the back-
ground and thus included in the fit with the polynomial of high order. Tt is judged to be
more safe to subtract the combinatorial background using the mixed events technique and
describe the remaining signal spectrum with a simulation of the contributing resonances,
as described in the course of this chapter.
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Chapter 10

Conclusions

The development of a secondary particle reconstruction scheme using the combined infor-
mation of the SiDC detectors and the TPC to reconstruct the secondary vertex is new for
the CERES experiment. The analysis scheme allows to suppress a large fraction of target
tracks by cutting on the longitudinal distance between the decay vertex of the secondary
particle and the primary interaction region. The constraint of this method is, that the
particle has to decay upstream SiDCI, i.e. within a distance of 10.4 cm. Consequently,
it is applicable to reconstruct particles with relatively short decay length.

The method is optimal to reconstruct the decay K% — 777~ (cr = 2.68 cm) and
is already successfully incorporated in other CERES analyses, like the measurement
of the elliptic flow of the K92 [99]. Within this thesis the K2 meson is used as re-
ference measurement to study the efficiency for the subsequent measurement of the
D’ yield. Tt is shown that the measurement of the integrated K9 rapidity density of
dN/dy = 19.75 + 0.23 (stat) & 1.70 (syst) for 2.0 < y < 2.6 is dominated by the uncer-
tainty of the efficiency determination with 8.6%. Within this limit, the results obtained
for the K agree with an alternative analysis of the CERES data and with measurements
the NA49 and NA57 collaborations.

The secondary particle reconstruction scheme reaches its limits of applicability if the
cut on the secondary vertex gets close to the target resolution of about o, ~ 210 um.
The analysis of the D’ meson (et =123 pm) is in this regime. However, a careful study
of the combinatorial background and of contributing resonances to the invariant mass
spectrum still allows to derive an upper limit for the D’ yield. Taking the ratio to
the expected D' yield per event of (E0> = 0.21 [25, 26], which is calculated by scaling
the charm cross-section to nucleus-nucleus collisions, an upper limit of E; = 22 is ob-

tained at 98% confidence level for the open charm enhancement factor in 158 AGeV/c
Pb-Au collisions.
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Appendix A

The Armenteros-Podolanski Plot

A common problem of numerous experiments is the lack of particle identification.
For a two body decay system this issue was addressed in 1954 by J. Podolanski and
R. Armenteros [90]. They developed a method to distinguish between different hadrons
using the transverse and longitudinal momenta g7 and g7, of the decay particles relative
to the flight direction of their mother particle. In a so called Armenteros-Podolanski
plot the transverse momentum ¢r is plotted against an asymmetry variable «, which is a
combination of the longitudinal momenta of the positive and the negative decay particles:

+_ —
o=2 "I (A.1)
qr, +4qg,

The transverse momenta of the decay particles are by definition equal:
4 = dp = qr. (A.2)

The following derivations will show that each type of hadrons describe individual ellipses
in the gr-a plane.

In the center of mass system the transverse and longitudinal momentum of the po-
sitive decay particle and and its energy can be written as:
Q;,cm = Pem Sin(gcm)
qz—,cm = Pem COS(Hcm)

EX =/ (pem)? + (m+)2. (A.3)

In the laboratory system these quantities transform to

q;:' = q;:"cm = pcm Sln(gcm)
9 = V4L em + VBES, = YDem c08(0em) +VBES,

ET = yEL +Y84) o = VES, + 7BDem c08(Oem). (A.4)
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gr A
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- A

Figure A.1: Armenteros-Podolanski Ellipse. Each particle has its individual ellipse in
the qr-a plane of the Armenteros-Podolanski plot with the semi-minor and semi-major axes
given by pen and A as derived below. The point (B,0) is the center of the ellipse.

Due to the relation g ., = —q; ., one arrives to

Q; = qicm = Pem Sin(ecm)
4 = —YPem €08(bem) +VBE,,
E™ =~yE., — vBpem cos(0em) (A.5)

for the negative particle.

To derive the former defined variable « one has to form the difference

qf — a5 = 29pem cos(0em) + VB(ES, — E,,,) (A.6)

and the addition
q; +q;, = pm = YBmar. (A7)
Here pj; denotes the momentum of the mother particle in the laboratory system and

my its rest mass. According to equation (A.1), equations (A.6) and (A.7) can then be
combined to form:

2pcm E+ - E,
= —am_ e — Acos(0,.,,) + B. A8
S — (6.0) (A8)

Together with equation (A.4) or (A.5) this results in
a—B
A

St (Gpm) = ];]T (A.9)

and

coS(Oem) =
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with

$in2 (O ) + €05%(Bem) = (O‘ ;Br + ( Ir )2 =1. (A.10)

pcm
This is an ordinary ellipse equation in the ¢r-a plane with the semi-minor axis given by
Pem and the semi-major axis by A = 2p.,/(Bmas). The ellipse is shifted along the a-axis
by the amount B = (E — E_ )/my;. The geometry is depicted in figure A.1.
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