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Diese Doktorarbeit stellt die Messung des anisotropen transversalen Flussesv2 gelad-
ener und seltsamer Teilchen mit dem CERES Spektrometer vor.Gezeigt werden die
elliptischen Fluss Messungen der Teilchen�, K0S, �� und p in Pb-Au Kollisionen bei
höchsten SPS Energien. Mit einem Pseudorapiditätsbereich von� = 2:05 � 2:70 bei
voller azimuthaler Akzeptanz und mit einerpT Sensitivität von bis zu 4 GeV/c können mit
den CERES Daten hydrodynamische Modelle getestet werden.v2 wird als Funktion der
Zentralität, Rapidität, Pseudorapidität und des Transversalimpulses für die verschiedenen
Teilchensorten diskutiert. Die Messungen werden mit Ergebnissen des NA49 Experi-
mentes und mit hydrodynamischen Rechnungen verglichen. Ferner werden Vergleiche zu
den STAR und RHICH Beobachtungen angestellt. Bei kleinempT wird der Massenord-
nungseffektv2(�) < v2(K0S) < v2(��) beobachtet. Ein entgegengesetztes Verhalten zeigt
sich bei hohempT . Um ein tieferes Verständniss für die Ursachen des Skalenverhal-
tens des kollektiven Flusses mit der Anzahl an Konstituentenquarks und mit der transver-
salen Rapidität zu erhalten, wird die von der HydrodynamikvorhergesagteyfsT -Skalierung
durchgeführt. Vergleiche differentieller Flussmessungen verschiedenster Teilchen mit
verschiedenen Szenarien an Skalenverhalten ermöglicht eine Aussage über die Ursachen
des Flusses, sowie über die frühesten Stadien der Kollision.

In this thesis the anisotropic transverse flowv2 of charged and strange particle species
measured by the CERES experiment is investigated. The�, K0S, �� and proton elliptic
flow measurements from Pb+Au collisions at the highest SPS energy are presented. The
data, collected by the CERES experiment which covers� = 2:05 � 2:70 with full 2�
azimuthal acceptance andpT sensitivity up to 4 GeV/c, is used to test hydrodynamical
models. The value ofv2 as a function of centrality, rapidity, pseudorapidity andpT is
presented for different particle species. The obtained measurements are compared with
results from the NA49 experiment and with hydrodynamical calculations. Also the results
are compared withv2 values observed with STAR at RHIC. The mass ordering effect was
observed:v2(�) < v2(K0S) < v2(��) at smallpT , while at highpT it is opposite. In
order to get better insight into the origin of the collectiveflow scaling to the number of
the constituent quarks and the transverse rapidityyfsT scaling predicted by hydrodynamics
were performed. Testing the differential flow measurementsof different particle species
against different scaling scenarios may yield additional information about the origin of
flow as well as about the early stage of the collision.
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Chapter 1

INTRODUCTION

1.1 Quark-Gluon Plasma

The experimental study of nuclear matter exposed to extremely high temperatures and
densities offers a unique opportunity for obtaining information concerning strongly in-
teracting many-body systems. Most important is the searching for the predicted phase
transition to Quark-Gluon-Plasma (QGP) [7]. QGP is defined as a (locally) thermally
equilibrated state of matter in which quarks and gluons are deconfined from hadrons, so
that color degrees of freedom become manifest over nuclear,rather than merely nucle-
onic, volumes. In nature, a transition from QGP to hadronic matter has probably under-
gone10�6 � 10�5 s after Big Bang [8, 9]. Now, the above mentioned systems probably
exist in astrophysical objects, like neutron stars and collapsing supernovae [10–12]. In
that new state of matter the chiral symmetry is restored. From all written above it is clear
that the study of the QGP is of common interest to particle andnuclear physics, as well
as for astrophysics and cosmology.

1.2 Experimental Search for the QGP

In the laboratory, strongly interacting many-body systemsat extreme conditions can be
produced and investigated using heavy-ion collisions at high colliding energies. Due to
that such collisions are investigated already three decades. To study in a systematic way
systems created in such collisions many experiments were designed and built. It started
with accelerating of relatively light projectiles as He, C,Ne up to Ar at BEVALAC
in Berkeley, the USA, and in the USSR started to work the LHE synchrophasotron in
the Laboratory for High Energies at the Joint Institute for Nuclear Research (JINR) in
Dubna. These experiments continued in the eighties with accelerating of heavier nuclei
with the SchwerIonen-Synchrotron (SIS) at the Gesellschaft für Schwerionenforschung
(GSI) in Darmstadt (Germany) and the Alternating Gradient Synchrotron (AGS) in the
Brookhaven National Laboratory (BNL) in the USA. At CERN (the acronym ofCon-
seil Euroṕeen pour la Recherche Nucléaire) the Super Proton Synchrotron (SPS) was
built. They were operating with an incident energy from several hundreds MeV/c (at BE-
VALAC) up to 200 GeV/c per nucleon (at SPS). Since that time many experiments used

1
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these facilities in investigations of the above mentioned physical systems. At incident
energies between 1 and 200 GeV/c temperatures between 50 and160 MeV are achieved
and baryon densities up to 10 times higher than in the case of ’normal’ nuclear matter
(�0 = 0:167fm�3) [13]. The needness for even higher colliding energies led to designing
and building of a new accelerator, Relativistic Heavy Ion Colider (RHIC) in BNL which
started to operate in the year 2000. Currently, under construction, is a new, most powerful
Large Hadron Collider (LHC) at CERN.

The basic aim of current and future experiments with heavy-ion collisions is searching
for signatures of the phase transition between the QGP and the hadronic matter and for
the QGP itself. The information about the QGP formation in the early stage of the colli-
sion is carried by electromagnetic (thermal photons and dileptons) and hadronic (enlarged
production of strangeness, suppressedJ=	 production and highpT jets) signatures. The
next, but not less important task, is to answer the question which Equation of State (EoS)
governs the behavior of matter in the QGP phase. Due to that, the investigation of col-
lective effects in nucleus-nucleus collisions takes an important role. The high (spatially
anisotropic) pressure created during the non-central collision results in later fast expan-
sion of matter created in such a collision and in appearance of a collective flow.

Although different types of collective flow, as longitudinal, radial and anisotropic
transversal flow are investigated separately, they are in fact interconnected and represent
different manifestations of the same phenomenon - the collective expansion of matter cre-
ated in the nucleus-nucleus collision. The longitudinal flow is an ordered expansion of the
system along the beam axis and analysis of rapidity distributions can show its existence.
The radial flow is introduced in order to explain the distributionsvs transverse massmT
for different kinds of particles. The investigation of the radial flow can give the infor-
mation about the temperature achieved in the system. The anisotropic transverse flow
appears as a dominant emission of particles in a certain direction in the transverse plane
of the collision.

One of the experiments which has been used in one of the facilities mentioned at the
beginning of this Section is the ChErenkov Ring Electron Spectrometer (CERES) de-
signed to measure low-masse+e� pairs created in proton-nucleus and nucleus-nucleus
collisions at SPS [14–16]. Dileptons have a particular significance as a probe for hot and
dense matter due to the fact that they, in contrast to the hadrons, interact only electromag-
netically. Hence, they probe the early stage of the collision.

Beside the dilepton signals, the CERES experiment is also able to detect charged
hadrons and to measure their momenta with high precision. This allowed to perform an
investigation of another probe of the early stages of the heavy ion collisions - so called
anisotropic transverse flow and especially, elliptic flow. The investigation of the elliptic
flow of �, K0S, protons and pions will be the main aim of the analysis presented in this
thesis. The elliptic flow itself appears as an azimuthally anisotropical emission of particles
with respect to the reaction plane of the collision. This is acollective effect created due to
an anisotropic pressure gradients built up as a consequenceof a geometrically anisotropic
shape of the overlapping zone of the colliding nuclei. The information which the elliptic
flow can provide could be used to get some insight about the EoSof the nuclear matter
under study [17].



1.3. OVERVIEW OF THIS THESIS 3

1.3 Overview of this Thesis

In this thesis the analysis of the anisotropic transverse flow of charged (�� and protons)
and strange (� andK0S) particles emitted in Pb+Au collisions at the highest SPS energy
(158 AGeV/c in the laboratory system) was performed.

This thesis is organized in the following way. In Chapter 2 are described the basic
features of QGP as well as the signatures of the QGP. The special emphasis is set on
the elliptic flow as a signature for the QGP. Chapter 3 gives anoverview of methods
developed and used in the anisotropic flow analysis startingfrom the oldest, and now
an obsolete one,sphericity tensormethod up to the newest one, the so called method of
Lee-Yang zeroes. Chapter 4 describes the CERES experimental setup. In Chapter 5 is
presented theFlowmaker, a Monte Carlo flow simulator, together with the results from
the simulated data. The results from the analysis of the experimental data are presented
in Chapters 6 - 8. In these, main Chapters of this thesis is described the analysis of the
anisotropic transverse flow of charged (�� and protons) and strange (� andK0S) particles.
The obtained results are also compared to the hydrodynamical model and to the results
on the flow analysis from the other experiments. These comparisons are the contents of
Chapter 9. Chapter 9 also contains the results on the scalingproperties of the elliptic flow
obtained from the CERES data. Finally, Chapter 10 contains the conclusions and outlook.
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Chapter 2

QGP AND HEAVY-ION COLLISIONS

2.1 The Lattice Quantum Chromo Dynamical Predictions

The phase diagram of strongly interacting bulk matter in theregime of high energy density
and temperature should be described by Quantum Chromo Dynamics (QCD). In a simple
picture of non-interacting massless quarks and gluons, theStefan-Boltzmann (SB) pres-
sure (pSB) at zero chemical potential is given by the number of degreesof freedom [18]:pSBT 4 = [2(N2
 � 1) + 72N
Nf ℄�290 (2.1)

whereN
 is the number of colors andNf is the number of quark flavors. Refinement
to this basic picture incorporates color interactions on the partonic level, non-vanishing
quark masses and finite chemical potential. In order to solvethe problem, the QCD cal-
culations are done on a spacetime lattice (LQCD). In order toextract predictions, the
LQCD result had to be extrapolated to the continuum (latticespacing! 0), chiral (actual
current quark masses) and thermodynamic (large volumes) limits. The LQCD investiga-
tions [19] show that matter with zero baryon density undergoes a phase transition at the
critical temperature ofT
 = (173� 15) MeV from a color-confined hadron resonance gas
(HG) to a color-deconfined QGP. The critical energy density�
 = 0:7 GeV=fm3 roughly
corresponds to the energy density in the center of a proton. Fig. 2.1 shows the normal-
ized energy density�=T 4 and pressurep=T 4 vs temperature obtained from the LQCD for0, 2, 3 light and1 heavier (strange) quark flavor [19]. One can see that when thephase
transition occurs the normalized energy density grows dramatically by roughly one order
of magnitude over a rather narrow temperature interval, while the normalized pressure is
continuous and grows more gradually. Both saturate at about75 � 85% of the Stefan-
Boltzmann value for an ideal gas of non-interacting quarks and gluons. The energy den-
sity reaches the saturation value very quickly (at about1:2 T
) while the pressure grows
slower and reaches the saturation at higher temperatures. The Lattice calculations show
that for temperatures above2 T
, the EoS corresponds to the equation of state of an ideal
gas of massless particles, i.e.� = 3p. For temperatures below2 T
, the deviation from the
SB limit indicates substantial remaining interactions among the quarks and gluons in the
QGP phase.

5
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Figure 2.1: The normalized energy density�=T 4 and pressurep=T 4 vstemperature obtained from LQCD
for 0, 2 and3 light quark flavors, as well as for2 light +1 heavier (strange) quark flavors. Horizontal arrows
on the right show the corresponding values for Stefan-Boltzmann gas.

.

Beside the predictions described above, here below are listed the other LQCD predic-
tions

1. Above the critical temperature the effective potential between a heavy quark-anti-
quark pair is a screened Coulomb potential with screening mass which rises with the
temperature [20]. That is not in accordance with perturbative QCD expectations.
The increasing of the screening mass leads to a shortening ofthe range of theq�q
interaction and to suppression of the charmonium production [21,22].

2. The phase transition is also accompanied by a chiral symmetry restoration [23]. The
reduction in the chiral condensate leads to variations in in-medium meson masses.

3. The kind of the phase transition strongly depends on the number of the dynamical
quark flavors included in the calculation and on the quark masses [24]. The realistic
calculations with two light quarks (u andd) and one heavier (s) at zero chemical
potential gives a crossover type of transition without discontinuities in thermody-
namical observables.

4. The calculations at non-zero chemical potential suggestthe existence of a critical
point such as illustrated in Fig. 2.2 [1]. There is still considerable ambiguity about
the value of�B (between350 and700 MeV ) at which the critical point occurs in
these calculations.

2.2 Geometry and Space-Time Evolution of a Heavy-Ion
Collision

Nuclei which take part in a collision are objects of the finitevolume and hence their
geometry has an important role in the understanding of the heavy-ion collisions. Both
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Figure 2.2: The LQCD results for non-
zero chemical potential [1] suggest the
existence of a critical point well above
RHIC chemical potential values. The
solid line represent a 1-st order phase
transition, while the dotted one indi-
cates a crossover transition between two
phases.

nuclei are Lorentz contracted in the direction of their relative movement (usually z-axis
of the experiment) what leads to a high baryon density. The impact parameter vector~b
connects, in the transversex � y plane, the center of the target with the center of the
projectile and points from the target to the projectile. Itsmagnitude goes from 0 toRA +RB, whereRA andRB are the radii of the colliding nuclei. According to the magnitude
of the impact parameter vector one can distinguish peripheral (high magnitude of the
vector~b) and central (small magnitude of the vector~b) collisions. In the case of peripheral
collisions, the overlapping region between the nuclei is minimal, while in the case of

b

b

participants

spectators

CENTRAL COLLISION
PERIPHERAL COLLISION

a) b)

Figure 2.3: A cartoon presentation of a central (a) and a peripheral (b) collision in x � z plane of the
collision.

central collisions it is maximal. In between these two extreme classes of the collisions are
so called semicentral collisions. As an example, Fig. 2.3 shows as a cartoon a central (a)
and a peripheral (b) collision inx� z plane of the collision.

Space-time evolution of a heavy-ion collision can be divided into three stages: The
early stage of the collision, the stage of expansion and the freeze-out stage. An example
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Figure 2.4: Schematic space-time evolution of a central heavy-ion collision with a QGP phase formed
during the collision.

with the formation of the QGP is shown in Fig. 2.4.

1. Early stage of the collision

Compression of matter in the early stage of the collision leads to increasing of en-
ergy density. A part of the incident energy of the colliding nuclei is redistributed
into other degrees of freedom. A short time after the beginning of the collision from
the highly excited QCD field appear secondary quarks. When a critical quark den-
sity �
 is reached a transition from ’normal’ hadron matter into a color deconfined
matter and restoring of chiral symmetry occurs. The energy density of the produced
medium is given by the Bjorken estimate [25]� = (dNdy )y=0 Eh�R2A�0 (2.2)

where(dNdy )y=0 is the number of produced hadrons per unit rapidity at the midra-
pidity, Eh is the average energy of produced hadrons,RA is the nuclear radius and�0 is the formation time of the medium which is not known but approximately it is
taken to be 1 fm/c. In the case of central Pb+Pb collisions at

psNN = 17 GeV/c,
the Bjorken estimate gives the initial energy density of 3.5GeV/fm3 [26] which is



2.3. HEAVY-ION COLLISIONS AND SIGNATURES OF THE QGP 9

much higher than the LQCD prediction of�1.0 GeV/fm3 where the phase transition
to deconfined quark and gluons occurs.

Given these large densities, in the created system of partons1under certain condi-
tions multiple parton-parton collisions can establish a local thermodynamical equi-
librium. If the time necessary for the thermalization is small enough in comparison
to the life of the system, the system can transit into a new phase, equilibrated QGP.
The experiments with heavy-ion collisions should answer the following question:
Are the interactions copious enough and rapid enough to thermalize the dynamic
and expanding matter created in the laboratory?

2. Stage of expansion

Regardless of whether QGP was formed or not, the high pressure built up in the
collision will result in a fast expansion of the created system. If in the early stage
of the collision the QGP was formed, during the expansion thetemperature of the
system will decrease and at the critical temperatureT
 will appear a transition into a
mixed phase in which partons and hadrons exist together. In the mixed phase many
partonic degrees of freedom are redistributed into a smaller number of hadronic
degrees of freedom. In the hadronic phase, constituents of the system still interact
and the system continues to expand. The temperature of the system in the hadronic
phase is still very high (smaller thanT
 but higher than the freeze-out temperatureTfo).

3. Freeze-out stage

With the expansion the mean free path of particles becomes larger. The freeze-out
appears when the mean free path becomes large enough. Then, by definition, the
strong interaction between the particles ceases and they continue to move freely.

Measuring observables as the phase-space distributions ofthe produced particles, the
ratio of multiplicities between different particles species, the anisotropic transverse flow
and then-particle correlations (n = 2; 3; :::) one can get the information about different
evolution stages in nucleus-nucleus collisions.

2.3 Heavy-Ion Collisions and Signatures of the QGP

Although in the theoretical treatment of the thermodynamicand hydrodynamic behavior
of the QGP was done a lot, the complexity of heavy-ion collisions introduces significant
quantitative ambiguities in deriving conclusions. Due to that one must identify the most
striking qualitative predictions of the QCD theory, which are able to survive the quantita-
tive ambiguities and to look for a congruence of different observables which support such
predictions.

In Fig. 2.5 is shown the phenomenological phase diagram of strongly interacting mat-
ter [2, 27, 28] where different phases of the nuclear matter are present. In order to under-
stand the nuclear EoS one has to measure parameters which govern the transition between

1Valence quarks, sea quarks and gluons have one common namepartons.
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Figure 2.5: The QCD phase diagram of the hadronic matter [2]. The points show chemical freeze-out of
hadrons extracted from different heavy-ion experiments.

different phases. The phase boundary can be constructing byequating chemical potential�B and pressurep between two phases. The properties of the system at the freeze-out are
well known from the systematic study of particle ratios. Theextracted freeze-out temper-
atures and baryon chemical potentials from the experimental data with the incident energy
beyond 10 AGeV are very close to the expected phase boundary.

2.4 Collective Flow as Signature of the QGP

Combining concepts from particle physics and nuclear physics gives a new approach
in investigating the properties of matter and its interactions. In high energy physics
(E=m� 1), interactionsare derived from gauge theories, and thematterconsists of par-
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tons2. In contrast, on nuclear physics scale, the strong interactions are shielded and can
be derived only in phenomenological theories, whereas the matter consists of extended
systems which show collective behavior.

If initial interactions among the constituents are sufficiently strong to establish local
thermal equilibrium and to maintain it during a significant evolution time, then the re-
sulting matter may be treated as a relativistic fluid undergoing collective, hydrodynamical
flow. The hydrodynamical treatment for the description of fireballs formed in heavy-ion
collisions has a long history [29–32]. The details of the hydrodynamical evolution are
sensitive to the EoS of the flowing matter. Hydrodynamics cannot be applied to matter
which is not in a local thermal equilibrium, hence it must be supplemented with a phe-
nomenological treatment for early and late stages of the collisions. The motion of an
ideal non-viscous fluid is completely described with the fluid velocity (~v), the pressure
(p) and the energy and baryon density (� andnB). From the EoSp = p(�; nB) one can
find the slope�p�� which gives the square of the velocity sound (
2s) exhibiting a high value
(close to1=3) for the hadron gas and especially for the QGP, but has a soft point at the
mixed phase [31]. This softening of the EoS during the assumed phase transition has
consequences to the system evolution.

In non-central collisions, the reaction zone has an almond shape which results in an
azimuthally anisotropic pressure gradients. It produces anon-trivial elliptic flow pattern.
Experimentally it is usually measured via a Fourier decomposition of the transverse mo-
mentum distribution relative to the reaction plane which isdefined with the beam direction
and the impact parameter vector~b. The important feature of the elliptic flow is the ”self-
quenching” [33, 34] because the flowing of matter, induced bypressure, tends to reduce
spatial anisotropy and to increase momentum anisotropy. Due to that, the self-quenching
makes the elliptic flow sensitive to early collision stages when the spatial anisotropy and
pressure gradients are the biggest.
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Figure 2.6: Hydrodynamical pre-
dictions of v2 excitation functions
(left axis) and radial flow velocityhhv?ii (right axis) for non-central
Pb+Pb collisions [3].

Calculations carried out for a fixed impact parameter vectoras a function of colli-
sion energy (pT -integrated) show a dip starting at Super-Proton-Synchrotron (SPS) energy

2or hadrons if the energy is not large enough.
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(Fig. 2.6 [3]). The existence of the dip reflects the softening of the EoS used. However,
comparison of predicted (Fig. 2.6) with measured (Fig. 2.7 [4]) excitation functions for
the elliptic flow are subject to ambiguity concerning where and when the appropriate con-
ditions of initial local thermal equilibrium for hydrodynamic applicability are actually
achieved.

elliptic flow in Au+Au collisions
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Figure 2.7: The beam en-
ergy dependence of the ellip-
tic flow. The figure is taken
from [4].

Another way to attain sensitivity of the elliptic flow to the EoS is the predicted elliptic
flow magnitude on hadronpT and mass measured at a given collision energy and central-
ity. The mass dependence has a simple kinematic origin, but the flow magnitude depends
on EoS’s details. That is the reason why the pion, proton,� andK0S elliptic flow analysis
was performed in this thesis. Another reason for the� andK0S elliptic flow measurement
is that the elliptic flow of strange particles can give an insight into very early stages of the
collisions.

Comparing the elliptic flow intensities between mesons and baryons one can have an
insight into mechanisms which govern the hadronization of the dense matter created in
the heavy-ion collisions. Certain scaling scenarios were developed in order to perform
such kind of investigation.

The energy-,pT - and mass-dependence of the elliptic flow is also affected byspecies-
specific hadronic final state interactions close to the freeze-out where particles decouple
from the system freely flying to the detector where hydrodynamics is not applicable any-
more. A combination of macroscopic and microscopic models with hydrodynamics ap-
plied at the early partonic and mixed-phase stages and hadronic transport models such as
RQMD [35] at the later hadronic stage may offer a more realistic description of the whole
evolution than that achieved with a simplified sharp freeze-out treatment.



Chapter 3

METHODS IN FLOW ANALYSIS

In the investigations of the flow phenomena, different methods for the measurement of its
magnitude were developed. First, quite shortly will be described two oldest methods, the
sphericity tensor[36] and themean transverse momentumin the reaction plane [37]. The
concept of thereaction planewill be presented gradually in Section 3.2. That concept is
necessary for the explanation of the two widely used methodsin the flow analysis: the
already mentioned mean transverse momentum and theFourier analysisof the particle az-
imuthal distributions constructed with respect to the reaction plane [38–42]. The method
of Fourier analysis will be described as a generalization ofthe mean transverse momen-
tum method. The presentation of the methods in flow analysis will be continued with
the method oftwo-particle correlations[43] which does not use the idea of the reaction
plane for measuring the flow magnitude. In this thesis, for the Fourier analysis and for the
two-particle correlations will be used a common name: the Standard Flow Analysis. The
methods of the Standard Flow Analysis are mainly insensitive to the non-flow effects. In
order to distinguish flow from the non-flow contributions, J.-Y. Ollitrault developed the
cumulantmethod [44, 45] and the method ofLee-Yang zeroes[46, 47]. These methods
will be presented in the last two sections of this Chapter.

3.1 Sphericity Tensor

As a first approach in the flow investigation appeared the method of the kinetic-energy
flow tensor. This method is based on the construction of the second order spherical tensorF�� (which will be shortly named as sphericity tensor) defined inthe center-of-mass frame
as F�� = MXi=1 pi�pi�=2mi; �; � = x; y; z (3.1)

Here,pi� andmi are the momentum component and the mass of thei-th particle respec-
tively. The sum goes over all particlesM detected in the collision. In that way,F��
represents the total kinetic energy in the non-relativistic limit. The orientation and the
values of the principal axes could be obtained by diagonalization of theF��. Thus, the
event shape in momentum space could be presented by such an ellipsoid. The spheric-
ity tensor method also gives the information about the direction of the total momentum

13
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flow. The angle between the beam axis and the eigenvector associated with the largest
eigenvalue of this tensor defines the flow angle�F which was used for quantifying the
magnitude of the directed flow.

The sphericity tensor method was used for small colliding energies [36] while in the
case of high energies it is not used because the flow angle�F � hpxi=pbeam 1is too small
(� 1) and the information about the differential flow magnitude is not provided.

3.2 Mean Transverse Momentum in the Reaction Plane

The description of non-central collisions is more complicated than that of very central
collisions because of presence of the azimuthal asymmetry in the initial state of the inter-
action. Nevertheless, two colliding nuclei obey a reflection symmetry with respect to the
reaction plane. Although the structure of the colliding nuclei gets destroyed, the reflection
symmetry which was present in their initial state should be preserved during the collision.
The momentum distribution of nucleons in the nuclei is isotropic in the transverse (x� y)
laboratory plane. But the spatial distribution of matter does not have that property (for
finite impact parameter~b). Due to that, the momentum distribution evolves from isotropy
into an anisotropic shape but with an overall reflection symmetry. In Fig. 3.1 the spatial

plane
reaction

plane
reaction

space asymmetry

momentum asymmetry

∆x

∆y
P=0

Pmax

Figure 3.1: A schematic view of a col-
lision of two nuclei in the transverse
plane. The spatial asymmetry, showed at
the top, is transformed into a momentum
asymmetry, showed at the bottom, due to
the pressure gradient which was built up
during the collision.

asymmetry is represented by an overlapping zone (red area).The natural tendency of the
matter is to flow in the direction with the highest pressure gradient. That as a consequence
produce a collective anisotropical expansion of particlespreferentially emitted in the di-
rection with the highest pressure gradient (Fig. 3.1 bottom). The transverse momentum

1hpxi will be defined in Section 3.2
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method attempts to exploit and quantify possible anisotropies in the transverse momenta
associated with the reaction plane. Therefore, every eventshould be analyzed with respect
to this initial azimuthal asymmetry. This asymmetry is fully determined by the reaction
plane and the magnitude of the impact parameter vector~b. In the literature, the reaction
plane is also known as the event plane.

The reaction plane is defined by the impact parameter vector~b and beam axis. If one
assumes that the beam axis corresponds to the longitudinal (z) axis of the experiment
then the reaction plane is determined by the angle� between the~b and thex axis of the
experiment (which could be arbitrarily chosen).

The transverse momentum method was proposed by Danielewiczand Odyniec [37].
It was used over a wide range of colliding energies, from 25A MeV in the center-of-mass
system [48] to above 60A GeV [49]. In the original Danielewicz&Odyniec approach, the
underlying assumption is that particles are emitted in opposite direction in the forward
(y > y
m) and backward hemisphere (y < y
m) owing to the momentum conservation.
Then, the orientation of the reaction plane, i.e. the� angle, is determined by a vector~Q
constructed as ~Q = MXi=1 wi~pi;T ; (3.2)

where the weightwi is 0 for pions and midrapidity protons,+1 for protons emitted in
the forward hemisphere (y � y
m + Æ) and�1 for protons emitted in the backward
hemisphere2(y � y
m � Æ). Such a choice of weights corresponded to the strong proton
directed flow at low energies. The optimal value ofÆ could be determined by minimization
of the error in the determination of the reaction plane.

This method has been applied to evaluate directed flow in terms of the mean trans-
verse momentum of particles projected into the reaction plane hpxi [37]. The obtained
dependence on the rapidity has a characteristicSshape and the slope of that curve given
by Fy = dhpxi=Ady (3.3)

is used to quantify the strength of the directed flow. The normalization to the mass num-
ber transforms the momentum into a velocity and this makes different particle species
comparable. In addition to this flow signal, a quantitypdir� =PNi w � ~pT;i � ~Q=j ~Qj is used
to represent the total transverse momentum into the reaction plane.

3.2.1 The Reconstruction of the Reaction Plane

The orientation of the reaction plane is not knowna priori and as a first step in the flow
analysis it is necessary to reconstruct it. It can be reconstructed only if the outgoing
particles retains some memory of the initial collision geometry. So, the method uses the
anisotropic flow itself to determine it. As there are different types of anisotropic flow, it
also means that the reaction plane can be determined independently for each harmonic of
the anisotropic flow. The reaction plane vector~Qn, which defines the reaction plane angle�n from then-th harmonic is defined by the equations

2The sign of the weight was arbitrarily chosen and it became a convention
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Xn � Qn 
os(n�n) = MXi=1 wi 
os(n�i)Yn � Qn sin(n�n) = MXi=1 wi sin(n�i) (3.4)

which give its components, or by�n = 1n ar
tan� YnXn� (3.5)

Here,�i represents the azimuthal angle of each outgoing particle. The sums go over
all particlesi used for the reaction plane determination whilewi are their weights. The
weights are chosen in a way to make the reaction plane resolution as good as possible. It
could be done by selecting the particles of one particular type, or weighting with rapidity
in the case of the directed flow or with transverse momentum inthe case of the elliptic
flow. Another way is to use the flow magnitude itself as a weight. It can be done in the
following way. In the first iteration one can use the weights mentioned above to perform
the flow analysis. Then, in the second iteration, the flow analysis will be repeated using
the obtained flow intensities as weights. It is obvious that for n = 1 andwi = pT Eq.
(3.2) appears as a special case of the Eq. (3.4).

This is the general method for the reconstruction of the reaction plane orientation. In
practice, several problems appear when one tries to use the reaction plane reconstructed
with such method to calculate the flow. The reason is the following. The flow calculation
is always based on a correlation between a given particle with the reconstructed reaction
plane. When a particle has been used in the calculation of thereaction plane, an auto-
correlation effect appears. That effect is in the following. Whenever one measures the
particle azimuthal angle with respect to the reaction planereconstructed with Eq. (3.4),
an autocorrelation of the given particle with itself appears if that particle is included in
sums of Eq. (3.4). In general, whenever one connects a particle with a construction in
which that particle is used, the autocorrelation effect arises. The simplest way to remove
such an effect is to exclude such a particle from the above mentioned sums. That could
be easily done if one saves the sums of sines and cosines from Eq. (3.4), and subtracts
the contribution of that particle from these sums. In case when one uses Eq. (3.2) for the
reaction plane determination, the modified equation [50] isexpressed by~Qj = MX(j 6=)i=1wi~pT;i; (3.6)

In reality, e.g. in the case of electronic experiments, if one uses hits for the reaction
plane reconstruction due to a possible hit splitting the above described method for re-
moving the autocorrelation cannot help. One way to avoid theobstacle is to form tracks
by matching hits from different detectors. The other way is to exchange the method. In
Section 4.1 will be described so called slice method which isused in this analysis. Using
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that method the autocorrelation effect, even in case of existence of artificial hit splitting,
could be removed completely.

Another effect, the correlation due to the momentum conservation which appeared in
the directed flow analysis, could be removed already at the level of reconstruction of the
reaction plane. At small energies, where this effect is rather strong, this could be done
by redefining of the Eq. (3.6) in the following way [50]. The system that determines the
reaction plane~Qj is moving in the transverse direction with a momentum~pT = �~pT;j.
Applying a boost~vb to each particlei,~vb = ~pT;imsys �mi (3.7)

means that the system used to evaluate~Qj has no net transverse momentum. In Eq. (3.7)msys stands for the total mass of the system. Then Eq. (3.6) becomes~Q0j = MX(j 6=)i=1wi(~pT;i +mi~vb) (3.8)

This procedure leads to a decreasing of the flow magnitude for1=M relative to the flow
magnitude obtained with Eq. (3.6) [51]. In Eq. (3.8)M is the number of particles used in
the reaction plane reconstruction.

3.2.2 Flattening of thedN=d� Distribution

Due to the random distribution of the vector~b in the transversex � y plane, for an ideal
detector the distribution of the azimuthal angle of the reaction planedN=d� has to be
flat. In reality, different detector effects like the efficiency in� smaller than100%, or the
geometrical offset between the position of the beam and the center of the detector in thex�y plane make the distributiondN=d� not isotropic. Such an effect should be removed
before doing flow analysis. There are several methods to remove such an effect.

The first one is to recenter the(Xn; Yn) distributions by subtracting(hXni; hYni) val-
ues averaged over all events [52–54]. The main disadvantageof this method is that it is
not sensitive to anisotropies caused by higher harmonics. If such harmonics are present
one needs additional flattening of�n distributions. In the second method, one can con-
struct the laboratory particle azimuthal distributions for all events and to use the inverse
of this as weights in the Eq. (3.4) [52, 53, 55]. The limitation of this approach is that it
does not take the multiplicity fluctuations around the mean value into account. A third
method, the method of mixed events [52,53,55] is the next onewhich could be used. The
essence of the method is that one could divide the correlations of particles with respect
to the non-flat (”raw”) reaction plane by the correlations ofparticles with respect to the
reaction plane determined from another event. Such division can remove the correlations
due to the acceptance. In the fourth method one can fit the non-flat distributions of the
reaction plane angle�n to a Fourier expansion and to apply an event-by-event shifting of
the reaction planes in order to make the final distributions isotropic [52,53]. The equation
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for the shift is given by��n = 1n mmaxXm=1 2m [�hsin(mn�n)i 
os(mn�n) + h
os(mn�n)i sin(mn�n)℄ (3.9)

wheremmax is usually equal to 4.
In this analysis will be used the method of recentering and Fourier shifting subse-

quently. The first method will make the raw reaction plane distribution roughly flat. Sub-
sequent applying the Fourier shifting will make the reaction plane distribution completely
flat.

3.2.3 The Reaction Plane Resolution

Because the position of the true reaction plane is not knowna priori, one can only per-
form Fourier decomposition of the invariant particle distributionE d3Nd3p with respect to the
reconstructed position of the reaction plane�n wheren is the order of the harmonic from
which this position is reconstructed. Due to the finite multiplicity, the difference between
the true and the reconstructed reaction plane is not zero. So, the measured flow correla-
tion has to be corrected for thatreaction plane resolution. The reaction plane resolution
is given by h
os[n(�n � �)℄i (3.10)

where� is the azimuthal angle of the true reaction plane. The resolution depends on
the flow harmonic and the flow itself. In order to calculate thevalue given by (3.10) one
constructs reaction planes from two random subeventsa andb. The two random subevents
one gets by dividing the whole event into two pieces with verysimilar topology. In this
case, the simple relationh
os[n(�an � �bn)℄i = h
os[n(�an � �)℄ih
os[n(�bn � �)℄i (3.11)

is valid. An important assumption here is that there are no other correlations except the
ones due to the flow. Eq. (3.11) allows to calculate the reaction plane resolution given by
(3.10). For example, if one knows the correlations between two equal subevents then the
resolution of each of them ish
os[n(�an � �)℄i =ph
os[n(�an � �bn)℄i (3.12)

If the two subevents are correlated, then the term inside thesquare-root in Eq. (3.12) is
positive. In Eq. (3.12) one calculates the reaction plane resolution of a subevent. Taking
into account that the multiplicity of the full event is twicelarger than the one of a subevent
then h
os[n(�an � �)℄i =p2h
os[n(�an � �bn)℄i (3.13)

3.3 Two-particle Correlations

Wang [43] proposed to use two-particle azimuthal correlations in order to investigate the
anisotropic flow. The idea is based on the fact that if (in the case of flow) particles are
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correlated to the reaction plane, then they are also mutually correlated. So, in presence
of non-zero flow, theP
orr(��) distribution, constructed from two-particle correlations
with respect to the relative angle�� = �1 � �2 between two particles belonging to
the same event, is not flat. In reality, due to incomplete� acceptance in the detector or
due to finite efficiency for detecting particles at different�’s one has also to construct a
backgroundPun
orr(��) distribution in the same way asP
orr(��), where now�� is the
difference between azimuthal angles of particles belonging to two different events. One
then constructs the correlation function as a ratioC(��) � P
orr(��)Pun
orr(��) (3.14)

So, with this mixing technique the physical correlation between two particles is extracted
with elimination of the ’detector’ effects. In an ideal case, without non-flow effects, one
has C(��) = +1Xn=0 v2nein(��) = +1Xn=0 v2n 
os(n��) (3.15)

a Fourier expansion of the measured correlation functionC(��) which gives the inte-
grated flowvn.

For the differential flow,vdiffn , one has simply to replace�1 with the azimuthal angle of a particle in a narrow phase space window, andv2n in Eq. (3.15) is replaced withvnvdiffn .
The crucial limitation of the two-particle correlation method is the impossibility to

separate the flow and non-flow correlations.

3.4 Fourier Analysis of the Azimuthal Distributions

The dependence on the particle emission azimuthal angle measured with respect to the
(true) reaction plane angle (�) could be written as a Fourier expansion [38–42] of the
invariant particle distributionE d3Nd3pEd3Nd3p = 12� d2Nptdptdy  1 + 1Xn=1 2vn 
os[n(�� �)℄! (3.16)

Sine terms vanish due to the reflection symmetry with respectto the reaction plane. The
main advantage of the Fourier method, with respect to the sphericity method, is that the
magnitude of the flow, which is characterized by the Fourier coefficientsvn, can be cor-
rected for the reaction plane resolution, caused by the finite multiplicity of the event, by
multiplying the observed value ofvn with the inverse value of the reaction plane resolution
given by (3.13). This correction increases the value of the observed Fourier coefficients.
Only the Fourier coefficients corrected for the reaction plane resolution can be compared
to the theoretical predictions, or to simulations filtered for the detector acceptance.

The Fourier coefficients in Eq. (3.16) are given byvn = h
os[n(�� �)℄i (3.17)
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wherehi indicates an averaging over all particles of interest and over all events. A factor 2
in front of eachvn in Eq. (3.16) is used in order to obtain a transparent physical meaning
of the Fourier coefficients. In a coordinate system in which thex axis corresponds to a
projection of the reaction plane to the laboratory transverse plane are valid the following
formulae 
os(�� �) = px=pT ; sin(�� �) = py=pT (3.18)

Then, according to Eq. (3.17), the coefficientv1 is equal tohpx=pT i and v2 is equal
to h(px=pT )2 � (py=pT )2i. Now, it is obvious that the coefficientv1 corresponds to the
directed flow, andv2 to the elliptic flow.

3.5 The Cumulants

The reaction plane� cannot be measured directly. As the correlation between each par-
ticle and the reaction plane induces correlations among theparticles themselves,vn co-
efficients could be experimentally measured from the azimuthal correlations between the
outgoing particles. These correlations are called ”flow correlations”. Both methods, the
reaction plane and two-particle correlations are in use at intermediate and ultrarelativis-
tic energies, but in both methods one usually assumes that the only source of azimuthal
correlations is the flow. However, this assumption especially is not valid at SPS energies,
where ”direct”, non-flow two-particle correlations become of the same magnitude as the
flow correlations itself. Standard methods extract flow fromtwo-particle azimuthal cor-
relations, either directly [43, 56], or through the correlation with respect to the reaction
plane [37, 38, 41]. However, the correlation between two given particles is not only due
to the flow but also due to the other sources of correlation as quantum Bose-Einstein ef-
fects, momentum conservation, resonance decays, jets, etc. When the flow is small, these
effects may dominate the measured signal. The impact of the ’non-flow’ correlations
on the flow analysis might be minimized by cuts in phase-spacewhich could be used to
avoid the influence of quantum effects and resonance decays,while the contribution of
momentum conservation can be calculated and subtracteda posteriori [57]. However,
these various prescriptions require somea priori knowledge of non-flow correlations. So,
it is necessary to assume thatall such sources of correlations are known and accounted
for, which may not be true. A new method of flow analysis, basedon a cumulant ex-
pansion of multiparticle azimuthal correlations can overcome these difficulties [45]. The
principle of the method is that when the cumulants of higher order are considered, the
relative contribution of non-flow effects, and thus the corresponding systematic errors,
decreases. Denote by�j, wherej = 1; :::;M , the azimuthal angle of the particle detected
in an event with multiplicityM . Multiparticle azimuthal correlations could be generally
written in the formhein(�1+:::+�k��k+1�::::��k+l)i, wheren is the Fourier harmonic under
study and the brackets indicate an average over all possiblecombinations ofk+ l particles
detected in the same event and over all events. Correlationsbetweenk+ l particles could
be decomposed into a sum of terms involving correlations between a smaller number of
particles. For instance, two-particle correlationshein(�1��2)i can be written as:hein(�1��2)i = hein�1ihe�in�2i+ hhein(�1��2)ii (3.19)
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wherehhein(�1��2)ii is by definition the second order cumulant. In order to understand
the physical meaning of the cumulant, consider a ’perfect’ detector, i.e. a detector with
an isotropic acceptance. Then, the averagehein�ji vanishes due to the symmetry since�j is measured in the laboratory, not with respect to the reaction plane. The first term in
the right-hand side (r.-h.s.) of Eq. (3.19) vanishes and thecumulant reduces to the mea-
sured two-particle correlations. The importance of cumulants appears at a more realistic
case of a non-perfect detector. Then the first term on the r.-h.s. of the Eq. (3.19) can be
non-vanishing. But the cumulant vanishes if�1 and�2 are uncorrelated. Then the cumu-
lanthhein(�1��2)ii isolates the physical correlation and disentangles it fromtrivial detector
effects. There are several physical contributions to the correlationshhein(�1��2)ii which
separate into flow and non-flow correlations. When the sourceis isotropic (there is no
flow), only direct correlation remains. Direct correlationscales with the multiplicityM
like 1=M [57,58]. So, the correlation between two arbitrary pions isproportional to1=M .
If there is a flow, a correlation between emitted particles and the reaction plane, it gener-
ates azimuthal correlations between any two outgoing particles, and gives a contributionv2n to the second order cumulant. One can measure the flow using second order cumulant
if this contribution dominates over the non-flow contribution, i.e. ifvn � 1=pM [57,58].
This is the domain of validity of the standard flow analysis, which is based on two-particle
correlations.

3.5.1 Integrated Flow

The main benefit of the use of cumulants is in construction of higher order cumulants and
separation flow from non-flow correlations. To illustrate itconsider a perfect detector and
decompose the measured four-particle correlation as:hein(�1+�2��3��4)i = hein(�1��3)ihein(�2��4)i+ hein(�1��4)ihein(�2��3)i+hhein(�1+�2��3��4)ii (3.20)

where two first terms in the r.-h.s. comes from possible two-particle combinations. The
remaining termhhein(�1+�2��3��4)ii is the fourth-order cumulant by definition. Although
it is insensitive to two-particle non-flow correlations it could be sensitive to higher order
non-flow correlations, i.e. direct four-particle correlations. Fortunately their probability
is very small. Due to the symmetry between�1 and�2 (�3 and�4) the Eq. (3.20) can be
rewritten as: hein(�1+�2��3��4)i = 2hein(�1��3)i2 + hhein(�1+�2��3��4)ii (3.21)

So, in principle it is possible to construct an expression for the4th order cumulant which
eliminates both detector effects and non-flow correlations.

Generating Functions

Even without assuming a perfect detector, cumulants could be expressed via generating
functions. The generating functionGn(z) is a real valued function of a complex variable
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in each event, wherez? = x � iy is the complex conjugate ofz andwj is a statistical
weight chosen in some way. This function could be averaged over events with the same
multiplicity M . The expansion of such a function into power series generates correlations
to all orders: hGn(z)i = ::: = 1 + zhe�in�1i+ z?hein�1i+ M � 1M ���z22 he�in(�1+�2)i+ z?22 hein(�1+�2)i+ zz?hein(�1��2)i�+ ::: (3.23)

In this way theaveragedgenerating functionhGn(z)i contains all the information about
multiparticle azimuthal correlations.

In the case of the perfect detector,hGn(z)i does not depend on the phase ofz, but
only on its magnitudejzj = px2 + y2. If one changesz into zein�, the only effect is
a shift of all angles by the same quantity. But, as the probability that one event occurs
under a global rotation is unchanged, one concludes thathGn(z)i is invariant under such
a transformation.

Thegeneratingfunction of the cumulants is defined as:Cn(z) �M�hGn(z)i1=M � 1� (3.24)

and its expansion into power series ofz andz? defines the cumulantsCn(z) �Xk;l z?kzlk!l! hhein(�1+:::+�k��k+1�:::��k+l)ii (3.25)

If particles are uncorrelated, all the cumulants beyond order one are vanished. Indeed, if
all �j in Eq. (3.22) are independent from each other, then the mean value of the product
is the product of the mean valueshGn(z)i =M�1 + 1M (z?hein�i+ zhe�in�i))�M (3.26)

Then the generating function of the cumulants reduces toCn(z) = z?hein�i+ zhe�in�i) (3.27)

Comparing it with Eq. (3.25) all cumulants of order higher than1 vanishes, as it is ex-
pected in the case of uncorrelated particles.

The interesting cumulants are the diagonal terms withk = l which are related to the
flow. They will be denoted with
nf2kg:
nf2kg � hhein(�1+:::+�k��k+1�:::��2k)ii (3.28)
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In practice, it is rather difficult to expand the generating functionCn(z) analytically be-
yond the order2. The simplest way to extract
nf2kg is to computeGn(z) and thenCn(z)
for various values ofz in order to tabulate it. Then one has to interpolate their successive
derivatives from the obtained matrix. For example, one way is to use the points:zp;q = xp;q + iyp;q; (3.29)xp;q � r0pp 
os( 2q�qmax ); (3.30)yp;q � r0pp sin( 2q�qmax ) (3.31)

for p = 1; :::; kmax andq = 1; :::; qmax � 1 whereqmax > 2kmax. Typical values arekmax = 3 andqmax = 7. As one wants to know the behavior ofGn(z) andCn(z) near the
origin, r0 has to be a small number. AveragingCn(zp;q) over phase ofz one obtainsCp � 1qmax qmax�1Xq=0 Cn(zp;q); p = 1; :::; kmax (3.32)

It is shown [45] thatCp is related to the cumulants
nf2kg through the linear systemCp = kiXk=1 (r0pp)2k(k!)2 
nf2kg (3.33)

which can be resolved in order to extract the cumulants. Withki = 3 it gives
nf2g = 1r20 (3C1 � 32C2 + 13C3) (3.34)
nf4g = 2r40 (�5C1 + 4C2 � C3) (3.35)
nf6g = 6r60 (3C1 � 3C2 + C3) (3.36)

The relations between the cumulants
nf2kg and the integrated flowVn, or to be more
precise their estimatesVnf2kg are given byVnf2g2 = 
nf2g; (3.37)Vnf4g4 = �
nf4g; (3.38)Vnf6g6 = 
nf6g4 (3.39)

Statistical Errors

Due to the finite number of eventsN , the reconstructed integrated flow has a statistical
fluctuation which could be calculated from the covariance matriceshVnf2kgVnf2lgi �hVnf2kgihVnf2lgi. The covariance matrices contain information on the standard error.
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In [45] it is shown that in the case of a huge flow, i.e.,Vn � 1=pM , the following
equation is valid hVnf2kgVnf2lgi � hVnf2kgihVnf2lgi = 12MN (3.40)

In this limit, reconstructed flow from different cumulant orders coincide and the error is1=p2MN independently ofk. This is easy to understand: when flow is large compared
to 1=pM the reaction plane can be reconstructed with a high accuracy.

In the general case, whenVn and 1=pM are of the same order of magnitude the
statistical deviations are given by (ÆVnf2g)2 = 12MN 1 + 2�22�2(ÆVnf4g)2 = 12MN 1 + 4�2 + �4 + 2�62�6 (3.41)(ÆVnf6g)2 = 12MN 3 + 18�2 + 9�4 + 28�6 + 12�8 + 24�1024�10
where(ÆVnf2kg)2 = hVnf2kg2i�hVnf2kgi2 and�2 �MV 2n . In the limit of a very large
flow (�� 1) all three equations reduce to Eq. (3.40).

In the case of a very weak flow, i.e.,Vn � 1=pM , different estimates ofVn are
uncorrelated, and hence flow cannot be reconstructed and statistical errors loose their
sense.

3.5.2 Differential Flow

When the integrated (over phase space) flow valuesVnf2kg are known, one can measure
the ”differential flow”, i.e. flow value in a narrower phase space window. Following the
notation in [45], let’s call a particle belonging to the given narrower window a ’proton’
(although it can be anything else). It’s azimuthal angle is denoted with , and it’s dif-
ferential flow asvn(pT ; y) = hein( ��)i. The particles used for the integrated flowVn
are ’pions’. Once the integrated flowVn is known, one can reconstruct the differential
flow vn from the correlations between the azimuth and ’pion’ azimuths�j. In order to
do that, first one constructs a generating function between the ’proton’ and ’pions’. This
function is the average value over all ’protons’ ofeip Gn(z), whereGn(z) is defined with
Eq. (3.22) evaluated for the event to whom the ’proton’ belongs. Note that the average
procedure is not exactly the same as in the case of the integrated flow. One must first
average over ’protons’ in the same event (i.e. with the sameGn(z)) and then to average
over only those events where there are ’protons’.

Expanding in power series ofz andz?, one obtains:heip Gn(z)i = heip i+ zhei(p �n�1)i+ z?hei(p +n�1)i+ ::: (3.42)

which generates azimuthal correlations between the ’proton’ and arbitrary number of ’pi-
ons’. The generating function is thenDp=n(z) � heip Gn(z)ihGn(z)i (3.43)
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Note that the ’proton’ should not be one of the ’pions’ in order to avoid of autocorrela-
tions, and while the number of ’pions’ in Eq. (3.22) is fixed, the number of ’protons’ is
allowed to fluctuate from event to event.

The cumulants are, by definition, the coefficients in the power series of the generating
function, i.e. Dp=n(z) �Xk;l z?kzlk!l! hheip +in(�1+:::+�k��k+1�:::��k+l)ii (3.44)

The physical meaning of these cumulants is the same as in the case of the integrated flow.
They eliminate the detector effects and the lower order non-flow correlations, so only the
direct (non-flow) correlations of orderM�k�l remain.

If the ’proton’ is not correlated with the ’pions’, then Eq. (3.43) becomeDp=n(z) =heip i for any z and all cumulants are vanishing. In the case when the correlation is
present, expanding Eq. (3.43) up to orderz and comparing to Eq. (3.44) one obtainshhei(p �n�1)ii � hei(p �n�1)i � heip ihein�1i (3.45)

what is analogous to Eq. (3.19) and has the same interpretation, namely that the cumulant
method gives exactly the same result as the two-particle correlations.

In the case of a perfect detector all cumulants defined in Eq. (3.44) are real, be-
cause reversing the sign of all azimuthal angles ! � ; �j ! ��j leavingDp=n(z)
unchanged. Also the transformation�j ! ��j changesz into z? in Gn(z), soDp=n(z) � he�ip Gn(z?)ihGn(z?)i (3.46)

Comparing it with Eq. (3.43) one sees thatz has been changed intoz? and into � .
SinceGn(z) is a real function one finally obtainsDp=n(z) = D?p=n(z?). From that one
concludes that the coefficients in Eq. (3.44) are real. In thecase of a real detector, they
are complex, but only the real part has a physical meaning. Writing p = mn the relevant
quantities are:dmn=nf2k +m + 1g � Re[hhein(m +�1+:::+�k��k+1�:::��2k+m)ii℄ (3.47)

whereRe denotes the real part, andf2k + m + 1g denotes correlations between one
’proton’ and2k+m ’pions’. The cumulantdmn=nf2k+m+1g has a contribution from flow
proportional tovpV 2k+mn . In that way one can calculate the differential flowvp from the
cumulantdmn=nf2k+m+1g knowing a previously calculated value of the integrated flowVn. In order to avoid the trivial autocorrelation effect, the ’proton’ must not be one of the
’pions’. The same problem is well known in the Standard Flow Analysis where the way
to exclude it was to reject the particle under the study (in this case the ’proton’) from the
definition of the sums (Eq. (3.4)) which were used for the reaction plane reconstruction.
In the method of cumulants one simply removes the ’proton”s contribution by dividingGn(z) with 1+(z?ein + ze�in )=M in the numerator of the Eq. (3.43). As in the case of
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the integrated flow, a practical way to determine the differential flow consists in tabulating
the generating functionDp=n(z) at the ’pions’zp;q given by Eq. (3.29)Dp � (r0pp)mqmax qmax�1Xq=0 [
os(m 2q�qmax )Xp;q + sin(m 2q�qmax )Yp;q℄ (3.48)

with Xp;q + iYp;q � Dp=n(zp;q) = 1N 0 Pev:w:prot:[Pprot: 
os(p )Gn(z)p;q℄1Nevts PevtsGn(zp;q) ++i 1N 0 Pev:w:prot:[Pprot: sin(p )Gn(z)p;q℄1Nevts PevtsGn(zp;q) (3.49)

whereN 0 is the total number of ’protons’. There is a relation betweenthe cumulantdmn=nf2k +m+ 1g and numbersDp via the system:Dp = kd�1Xk=0 (r0pp)2k+mk!(k +m)! dp=nf2k +m+ 1g; 1 � p � kd (3.50)

which can be solved in cumulantsdp=nf2k+m+1g. For instance, withkd = 2 andm = 1
which is used forv1=1 andv2=2, one has:dn=nf2g = 1r20 (2D1 � 12D2) (3.51)dn=nf4g = 1r40 (�2D1 +D2) (3.52)

while for kd = 2 andm = 2 is used to calculatev2=1,d2n=nf3g = 1r40 (4D1 � 12D2) (3.53)d2n=nf5g = 1r60 (�6D1 + 32D2) (3.54)

When the cumulants are determined in that way, then they mustbe related to the differen-
tial flow vmn=n. In the case of a perfect detector following equations are validvn=nf2g = dn=nf2gVn (3.55)vn=nf4g = �dn=nf4gV 3n (3.56)v2n=nf3g = d2n=nf3gV 2n (3.57)v2n=nf5g = �d2n=nf5g2V 4n (3.58)
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Statistical Errors

Although, as in the case of the integrated flow, the reconstructed differential flow depends
on the number of eventsNevts (denominator in Eq. (3.49)), this depends additionally on
the number of ’protons’N 0 (numerator in Eq. (3.49)) in a narrow phase-space window
where it is measured. Hence, one can neglect the contribution from the denominator to
the statistical error of the differential flow.

Again, in the case of the weak flow, i.e.,vn � 1=pM , correlations between the
estimations from the different orders vanish and the statistical errors loose their sense.
Whenvn � 1=pM (large flow), covariance matrix reduces tohvmn=nf2k +m+ 1gvmn=nf2l +m+ 1gi �hvmn=nf2k +m + 1gihvmn=nf2l +m+ 1gi = 12N 0 (3.59)

In the general case, whenvn and 1=pM are of the same order of magnitude, the
following equations are valid. Form = 1:hvn=nf2g2i � hvn=nf2gi2 = 12N 0 1 + �2�2 (3.60)hvn=nf2gvn=nf4gi � hvn=nf2gihvn=nf4gi = 12N 0 (3.61)hvn=nf4g2i � hvn=nf4gi2 = 12N 0 2 + 6�2 + �4 + �6�6 (3.62)

where�2 �Mv2n. Form = 2:hv2n=nf3g2i � hv2n=nf3gi2 = 12N 0 2 + 4�2 + �4�4 (3.63)hv2n=nf3gv2n=nf5gi � hv2n=nf3gihv2n=nf5gi = 12N 0 3 + �2�2 (3.64)hv2n=nf5g2i � hv2n=nf5gi2 = 12N 0 6 + 24�2 + 9�4 + 10�6 + 4�84�8 (3.65)

In the limit of very large flow (�� 1) all six equations reduce to Eq. (3.59).

3.6 The Lee-Yang Zeroes

The Lee-Yang zeroes method [46, 47] derived by J.-Y. Ollitrault, N. Borghini and R.S.
Bhalerao is based on the genuine correlation between a largenumber of particles. It is
more natural and more reliable than all other methods which have been used so far. Since
the anisotropic flow appears as a collective effect, involving all particles produced in an
event, it is indeed natural to characterize it by means of a global multiparticle observable.
All previously used methods were practically based on2k-particle correlations (where2k � M ) and so they are not the appropriate tool to probe a collective behavior. Espe-
cially, in all these methods, except the cumulant method, non-flow effects were neglected.
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3.6.1 Integrated Flow

In order to measure genuine anisotropic flow one first defines the integrated flow asVn = h MXj=1 wj 
os[n(�j � �)℄i (3.66)

where the sum goes over all particles detected in an event andwj are appropriate weights.
In the Eq. (3.66)� is the azimuth of the impact parameter vector~b. The integrated
flow is connected with an average of the Fourier coefficientvn via: Vn = Mwvn, whereMw =PMj=1 wj.

In order to compute the integrated flow one has to compute for each event the complex-
valued function: g�(ir) = MYj=1[1 + irwj 
os(n(�j � �)℄ (3.67)

for various values of the real positive variabler and of the angle� (0 � � � �=n) 3. The�j is the measured laboratory azimuthal angle of a particle andthe product goes over all
detected particles.

Then, one has to averageg�(ir) over events for each value ofr and�:G�(ir) � hg�(ir)i = 1N Xevents g�(ir) (3.68)

whereN is the number of events used in the analysis. For each�, the position ofr�0
of the first minimum of the modulusjG�(ir)j has to be found. Then the estimate of the
integrated flowVn is given by: V �n f1g � j01r�0 (3.69)

wherej01 � 2:40483 is the first zero of the Bessel functionJ0. If the distribution of the
laboratory azimuthal angle is rather flat, thenV �n f1g does not depend on� up to the
statistical fluctuations. Then one can perform an averagingof V �n f1g over� which givesVnf1gwith smaller statistical error. That quantity is then used to calculate the resolution
parameter�. The resolution parameter is defined as:� = Vnf1g=� and it measures the
relative strength of the integrated flow with respect to the finite multiplicity fluctuations�
which is given by � =qhQ2x +Q2yi � hQxi2 � hQyi2 � Vnf1g2 (3.70)

In the above formula,Qx andQy are defined asQx = MXj=1 wj 
os(n�j); Qy = MXj=1 wj sin(n�j) (3.71)

3In practice, 4 equally spaced values of� are enough
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andhimeans the averaging over many events.
The finite number of the available events makes the relative statistical error onVnf1g

finite. That statistical error is given byh(�Vnf1g)2i(Vnf1g)2 = 12Nj201J1(j01)2 �e j2012�2 + e� j2012�2 J0(2j01)� (3.72)

3.6.2 Differential Flow

When an estimation of the integrated flow is obtained, one canuse it in order to calculate
the differential flow. As in the case of the cumulant analysis, the differential flow is flow
of particles of a given kind in a definite phase-space region,which will be again called
’protons’ for the sake of brevity. Azimuthal angle of such a ’proton’ will be denoted with and the corresponding differential flow withvn(pT ; y). For the given angle�, calculatedV �n f1g and r�0 determined in a way how it was described in the previous section, an
estimation ofv�nf1g is given byv�nf1g = V �n f1gJ1(j01)Jn(j01)Re( hg�(ir�0) 
os(n( ��))1+ir�0w 
os(n( ��)) i�hg�(ir�0)Pj wj 
os(n(�j��))1+ir�0wj 
os(n(�j��)))evtsi) (3.73)

In the denominator sum is over all detected particles in the given event averaged over
events. The averageh:::i in the numerator is over ”protons”, and varies from one ”pro-
ton” to the other, even for ”protons” within the same event.

Denoting withN the total number of ”protons” in the (differential) phase-space win-
dow under study, the statistical error on thev�nf1g is given byh(Æv�nf1g)2i = 14N 0Jn(j01)2 [ej201=2�2 + (�1)ne�j201=2�2J0(2j01)℄ (3.74)

Averaging overv�nf1g for different � values results in a newvnf1g with a smaller
statistical error. Statistical fluctuations could producea spurious flow even there when
real flow does not exist. These fluctuations could produce a minimum of jGn(z)j and
corresponding spurious flow satisfy the following non-equalityv�n � j01p2MlnN (3.75)

whereN is the total number of events andM is the multiplicity. From (3.75) is obvious
that if flow is too small even with a huge statistics (N ) due to the logarithmic dependence
it is impossible to measure the flow. This is the main limitation of the method of Lee-Yang
Zeroes:vn can be successfully determined only if it is larger then r.-h.s. of (3.75). The
main advantage of the method is that it is stable against the effects like multiple hits or
showering, which strongly bias the results of other methods. So, one should not refrain
from using all detected particles and combining information from different detectors: in-
creasing the multiplicity results in a smaller statisticalerror on the flow estimation.
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3.7 The Method Used in this Analysis

In this thesis due to the rather small magnitude of the elliptic flow it was difficult to ap-
ply the method of cumulants and the Lee-Yang zeroes method. Another problem which
caused inapplicability of the two above mentioned sofisticated methods was an insuffi-
cient statistics. These statements are a consequence of Eq.(3.41) and (3.75)4. . So the
reaction plane method, described in Section 3.4, was applied in the analysis of the ex-
perimental data. In Chapter 5 will be given more details concerning the selection of the
method which is going to be applied in the analysis of the experimental data.

4The cumulant method was applied successfully in [55] but forsemicentral collisions where the magni-
tude ofv2 is enough big. Similarly, due to the huge magnitude of the directed flowv1 the Lee-Yang Zero
method was applied in [59]



Chapter 4

EXPERIMENTAL SETUP AND DATA
USED

In this Chapter the CERES experimental setup will be presented. A special attention will
be devoted to the description of those detectors features which are especially important
for the measurements of the momentum anisotropy. In the Section 4.2, the calibration of
the raw data will be shortly presented. The ballistic deficitcorrection and the efficiency
of silicon detectors in which I was personally involved willbe explained in detail. A short
presentation of data used in the analysis of the anisotropictransverse flow in the CERES
experiment is the contents of the Section 4.3. The last Section of this Chapter concerns
the centrality determination.

4.1 The CERES Experimental Setup

The main goal of the CERES/NA45 experiment is the measurement of low-masse+e�
pairs produced in heavy-ion collisions at SPS energies. Theexperimental setup, shown
in Fig. 4.1, consists out of the target system, two radial Silicon Drift Detectors (SDD),
two Ring Imaging CHerenkov (RICH) detectors and a cylindrical Time Projection Cham-
ber (TPC) with a radial drift field. With older experimental setups (without the TPC),
the measurement of low-masse+e� pairs produced in Pb+Au collisions at the top SPS
energy showed a significant enhancement compared to the contributions originating from
the hadronic decays [60]. The new experimental setup, upgraded with the TPC, achieved
a mass resolution ofÆm=m � 3:8% at m � 1GeV=
2 which additionally allowed
distinction between different models of in-medium modification and spectroscopy of�
mesons [5, 61]. Although designed for the measurement of low-masse+e� pairs, the
CERES experimental setup has abilities to detect charged particles and measure their
momenta. Hence, allows performing of various ’hadronic analyses’ like identical, non-
identical, two and multiparticle correlations, fluctuations, reconstruction of different par-
ticle species like�,K0S, � and etc., and flow and jet physics.

31
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4.1.1 The Target and the Beam/Trigger Detectors

During the last data taking period (the year 2000), 13 goldendisks with a diameter of600�m and a thickness of25�m were used as a target system. The distance of 1.98 mm
between them was chosen in order that particles produced in acollision will not travel
through other disks before they reach the detector system. For the electron analysis this
is important because in that way the conversion of photons into e+e� pairs is suppressed.

A system of different beam/trigger detectors, located in the beam line before and
after the target was used to detect the occurrence of a collision [62]. If any kind of
collision happened, the trigger condition is calledminimum bias. The collisions could be
characterized via the value of the impact parameter. There is no way to measure it directly,
but that variable is correlated with the multiplicity. Since many physical variables strongly
depend on the impact parameter, the multiplicity had to be measured in some way. In
CERES, as in many other heavy-ion experiments, only chargedmultiplicity is measured
which also can be connected with the impact parameter. The Multiplicity Counter (MC)
was used to fulfill that purpose. The MC is a scintillation detector.

beam

UV detector 2

UV detector 1

W-shield

target

SiDC1/SiDC2

RICH 1 mirror 1 RICH 2
mirror 2

8 o

15 o

TPC drift volume

TPC read-out chamber

TPC coils

-1 0 1 2 3 4 5m

1/r E-field

HV cathode

voltage divider

Figure 4.1: The CERES/NA45 experimental setup in year 2000 the data taking period.

4.1.2 The Silicon Drift Detectors

The SDDs as 4 inch silicon wafers with a thickness of 280�m are located approximately
10 cm behind the target. They have2� azimuthal acceptance and cover the pseudorapidity
region between approximately 1.6 and 3.4. That overlaps thecentral rapidity region which
is very interesting for the elliptic flow measurement. The high resolution of these detectors
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is used for the reconstruction of the position of the interaction vertex. The SDDs were
also used for the centrality determination. Together with the TPC they were used as the
tracking devices also. The precise determination of the primary vertex position and a
precise reconstruction of the tracks is very important in performing a flow analysis, as
well as a good enough centrality determination.
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Figure 4.2: The Silicon Drift Detectors operate on base of electrons drifting in a radially symmetric elec-
tric field towards the edge of the detectors.

Fig. 4.2 shows the working principle of the SDD. The SDDs workin the following
principle. When a charged particle passes the detector it creates electron-hole pairs along
its trajectory. In a radially symmetric electric field, created electrons drift towards the
outside edge of the detector. The edge of the SDD is divided into 360 anodes which
are reading out the signal. Knowing the drift time (typically around3:8�s) it is possible
to reconstruct the hit position in the radial direction. Then from the exact position of
the given SDD it is possible to obtain the polar angle� of the hit. The� position of
the hit is obtained via knowing the anode at which the signal is received. The precise
measurement of� and� is determined from the center of gravity of the corresponding

122
O

1

122 61 366 µm 61

Figure 4.3: An interlaced structure of the anode divided into 5 pieces.

charge distributions shared by adjacent time bins and anodes. The high precision in the
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measurement of� is achieved using anodes with an interlaced structure shownin Fig. 4.3.
For more details see [63,64].

4.1.3 The RICH Detectors

The purpose of the two RICH detectors, placed behind the SDDs, is electron identifica-
tion. The working principle of the RICH detector, proposed in [65], is the following.
A particle created in the collision emits Cherenkov photonsunder a constant angle�C
with respect to the trajectory of the particle. The relationbetween the refraction indexn, particle’s velocity� and Cherenkov angle�C is given by�C = ar

os(1=�n). From
the previous relation is obvious that Cherenkov radiation can happen only if� > 1=n.
The emitted photons are reflected from the mirror and form a ring image at the mirror’s
focal plane. The diameter of the ring corresponds to a certain Cherenkov angle and hence
to a certain velocity of the particle. The photons which formthe ring are detected at
the plane and the signal, after amplification, is read out on 50000 individual pads cov-
ering the geometrical acceptance. A complete description of the RICH detectors can be
found in [66–68]. The information obtained from the RICH detectors was not used in this
analysis.

4.1.4 The Time Projection Chamber

The main aim of upgrading the CERES experimental setup with the TPC was to achieve
an enough high mass resolution at the intermediate mass region in order to study�=! and
to perform a spectroscopy of�mesons. The TPC was designed according to the needness
of preservation of the azimuthal symmetry and matching the acceptance in pseudorapidity
roughly between 2.0 and 2.7. The perspective view of the CERES TPC is shown in
Fig. 4.4. It is a cylindrical drift chamber with a radial drift field and segmented pad-
readout. The length of the TPC is 2 m and the sensitive volume of about 9 m3. 16 readout
chambers are distributed in a polygonal structure around the inner electrode with diameter
of 0.972 m. In total there are 15360 individual channels. Each of them has 256 time bins.
The z-axis of the TPC, which coincides with the beam axis, is divided into 20 planes.
Each of them has16� 48 = 768 readout channels. The TPC was placed inside a~B field.

The electric field is defined by the inner electrode at a potential of � �30 kV and
the cathode wires of the readout chambers at ground potential. Such electric field shows
roughly a1=r dependence. With drift velocities between 2.4 and 0.7 cm/�s the maximum
drift time is about 71�s.

The magnetic field is generated by two warm coils with the electric currents floating in
the opposite directions. The radial component of the magnetic field is maximal between
the coils and it deflect charged particles mainly in the azimuthal direction. The mean
value of the magnetic field integral is0:18 Tm at� = 8Æ and0:38 Tm at� = 15Æ.

With such a performance, the TPC allows a precise measurement of a hit position
determined by radiusr, azimuthal angle� and polar angle� in a coordinate system where
the z-axis of the TPC coincides with the beam direction. Using the reconstructed hits,
tracks left by particles which passed the TPC are reconstructed with a high precision.
The presence of a magnetic field in the sensitive detection volume leads to curved tracks.
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Figure 4.4: The cylindrical Time Projection Chamber operates in a radial drift field.

The curvature allows the determination of the sign of the charged particle detected in the
TPC. Operating inside a magnetic field, the TPC provides a precise determination of the
momentum in a huge range from few tens MeV/c up to more than 20 GeV/c.

A more detailed description of the CERES/NA45 experiment can be found in [69].

4.2 The Calibration and Production of Data

In order to do a physics analysis one needs to receive the meaningful information from
the detector signals. The raw data, i.e. the data recorded from the detectors are difficult
to handle. They are also not calibrated, which means that they are not corrected for
the different changes like temperature, gas composition, imperfectness of the detectors
and etc. during the data taking. From the raw data via the procedure calledproduction
measured ADC values obtained from the detector system are transformed into hits. The
next step is grouping of hits in order to make tracks. Finally, by fitting tracks, momenta
and sign of the charged particles are obtained. The output ofthe production is stored in
shape of files with a ROOT Tree format.

Approximately 30 M events at the highest SPS energy, processed in the production,
are used in the anisotropic transverse flow analysis. Duringthe production, the amount of
data is significantly reduced. The events are grouped into� 400 units. Each unit consists
out of approximately 200 bursts.
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Concerning the calibration of data I was personally involved in the ballistic deficit
correction and the efficiency of the SDD. In the next two subsections these topics will be
presented in detail.

4.2.1 The Ballistic Deficit Correction

The energy loss ofEloss in the SDD can be approximated by a Landau distribution [70].dNdEdx � � exp(x2 + e�x); x = Eloss � Emax� (4.1)

whereEmax and� denote the most probable energy loss and the width of the correspond-
ing distribution. In a SDD detector, the measured number of FADC counts decreases with
the radial position of the hit. From the other side, the radial width of the electron cloud
increases with the drift time due to the diffusion accordingto [71]�2r (r) = �2r;r0 + 2Dtdrift(r) (4.2)

where�r;r0 andD are initial radial width of the hit and diffusion constant. Since the
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Figure 4.5: The ballistic deficit before (top) and after (bottom) the correction in the case of SDD1 (left)
and SDD2 (right). Data are fitted with a second order polynom.
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response of the SDD depends on the width of the input signal hence the output signal
decreases for hits at the lower radius. Such behavior is visible in Fig. 4.5. In that Figure is
drawn the sum of amplitudes of the signalvsradial distance for both SDD detectors. One
can see that before the correction the sum of amplitudes decreases going to smaller values
of r. This effect is known as the ballistic deficit. After the correction for the ballistic
deficit, the distribution of the sum of amplitudesvsr becomes flat as it should be.

4.2.2 The SDD Efficiency

In order to determine the efficiency of the SDD detector system, a selection of high quality
TPC tracks was done. Then, the efficiency of the SDD detector system is defined as a
ratio between the number of SDD tracks which are matched, within some window, with
the selected ’good’ TPC tracks (Nmat
hSDD ) to the number of the selected ’good’ TPC tracks
(NgoodTPC). �SDD = Nmat
hSDDNgoodTPC (4.3)

As a selection of ’good’ TPC tracks are chosen those TPC tracks which satisfy the
high quality criteria listed here below

1. the number of TPC hits has to be bigger than 17 out of 20 possible

2. to have momentump bigger than2:0 GeV/c

3. the polar angle� to be between9Æ and13Æ
4. the measured energy lossdE=dx to be smaller than 250 (81.2% of FP1)

5. radial distance from the track to the vertex position in the x � y plane had to be
smaller than0:6 cm. In that way a huge part of non-vertex tracks is eliminated

In that way only a small fraction of TPC tracks are extracted and used as ’good’ TPC
tracks.

SDD track segments are constructed by connecting the vertexpoint to the hits in
SDD2. A track segment is accepted if there is at least one hit in SDD1 within a predefined
window around the point of intersection. The sizes of the fiducial windows are expressed
as multiples of therms widths of the corresponding distributions inr and� direction.
Quantitatively, the normalized squared distance between the closest hits in SDD1 and
SDD2 is calculated according to formulad2 = dr2R2win + d�2�2win (4.4)

whereRwin and�win define a5�mat
h window in which the matching is performed. The
maximal value ofd2 has to be smaller than 1. The closest hits in SDD1 and SDD2 then
define the SDD track segment used for the matching to the ’good’ TPC tracks.

1where FP stands for the Fermi plateau
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Figure 4.6: Top: The signal (S) and normalized combinatorial background (Bnorm) of matched SDD
tracks to the referent TPC track in� (left) and� (right) direction. Middle: The ratio between the signal
and normalized combinatorial background. Bottom: The difference between the signal and normalized
combinatorial background.

In order to calculate the efficiency one can construct the distributions of number of
SDD tracks matched to a TPC trackvs the difference in� or � direction between the
TPC track and the SDD tracks. Such distributions are made forall ’good’ TPC tracks
over many events. In Fig. 4.6 (top) are shown such distributionsvs the difference in�
or � direction depicted with a red line. Among the real matches which are represented
with a peak positioned at zero could appear the fake matches between a SDD and a TPC
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track. These fake matches correspond to entries withj�TPC � �SDDj > 4 mrad andj�TPC � �SDDj > 20 mrad as well as to entries underneath the peak. In order to getthe
pure signal, these fake matches have to be removed. One way isto rotate for a random
angle all TPC tracks around the beam axis and to repeat the procedure for making the
signal distribution. In that way all real matches are destroyed and only fake matches can
survive. This distribution is shown with a black histogram in Fig. 4.6 (top). In the middle
of the Fig. 4.6 is shown the ratio between the signal and the normalized combinatorial
background. In the region of fake matches it has the value 1 what means that the nor-
malization is done in a proper way. Then the subtraction of the normalized combinatorial
background from the signal distribution in order to get the pure signal can be performed.
The corresponding distributions are shown at the bottom part of the Fig. 4.6. In both�
and� direction they have a nice Gaussian shape. Fitting it, one can find the number of
real matches and then to calculate the efficiency.

Table 4.1: The Gaussian width value of the pure signal distribution in� and� direction.��� [mrad] ��� [mrad]0:73 3:83
The Table 4.1 shows the Gaussian width value of the pure signal distribution in �

and� direction. The smaller value in� direction with respect to the one in� direction
is a consequence of the fact that the determination of the position of the track in radial
direction is better than in azimuthal direction for a factorroughly equal to1= sin �.
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Figure 4.7: The SDD efficiencyvs centrality ex-
pressed in the TPC multiplicity.

Fig. 4.7 shows the obtained values for the SDD efficiency applying a matching win-
dow withRwin = 0:03 cm and�win = 0:02 rad between SDD1 and SDD2. The SDD effi-
ciency is not 100% and it shows a centrality dependence. For the peripheral events where
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the population of SDD tracks is not big, a huge part (88%) of SDD tracks are matched to
the corresponding TPC tracks. Going from the peripheral to the more central collisions,
the population of SDD tracks becomes bigger and hence the efficiency decreases. For
the most central events, the SDD efficiency is 80%. In order toget 100% efficiency of
the SDD detector system, a matching window between SDD1 and SDD2 was optimized.
That requirement was achieved applying a matching window withRwin = 0:051 cm and�win = 0:04 rad.
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Figure 4.8: The efficiency�SDD vspolar (�) and laboratory azimuthal angle (�).
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Figure 4.9: The efficiency�SDD vsmomentump.

We investigated also, how the SDD efficiency looks like differentially. In Fig. 4.8 are
shown dependences of�SDD vspolar (�) and laboratory azimuthal angle (�). There is a
weak increase of the�SDD with increasing of� as a consequence of higher occupancy at
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small�, but values are quite close to 100%. The distribution of�SDD vs� does not show
any dependence. The values are scattered around 100%. In Fig. 4.9 is shown dependence
of �SDD vs momentump. As in the case of�SDD vs�, �SDD vs p distribution does not
show any dependence.

4.3 Data Used

In this Section, the main features of data used in the elliptic flow analysis, will be shortly
presented. In Subsection 4.3.1 will be explained how a partial particle identification is
performed. ThedN=d�, dN=dpT anddN=d� distributions of particles used in the elliptic
flow analysis are shown in Subsection 4.3.2. The contents of the last subsection of this
section concerns the momentum resolution.

4.3.1 Particle Identification

In order to perform the elliptic flow analysis it is importantto have a sample of particles,
as pure as possible, which will be used. This is especially important for the determination
of the reaction plane due to the fact that the information about the reaction plane origi-
nates from the flow and the flow itself is different for different particle species. In this
subsection the sample of particles used in the analysis willbe defined.

Charged particles which passed the CERES detectors within its acceptance made
tracks. In order to accept the track as a source of information of the corresponding parti-
cle, that track has to survive several simple quality criteria listed here below:

1. to have pseudorapidity (�) between2:05 and2:75
2. to have transverse momentumpT bigger than0:05 GeV/c

3. the minimal number of hits per track, which depends on�, has to be between 8 and
12 hits per track. On average it is more than 50% of the maximalnumber of hits
per track (20).

4. radial distance from the track to the vertex position in the x � y plane had to be
smaller than3:0 cm. In that way non-vertex tracks are suppressed

5. TPC and SDD track segments have to match within�3� window

In that way the ’good’ tracks were selected, but still there is no information about
the particle specie represented by the track. The CERES experimental setup does not
allow full particle identification. Using the TPC, partial particle identification is done
with help of 2-dimensional momentum-dE=dx particle distribution. In Fig. 4.10 is shown
momentum-dE=dx distribution of all, positive and negative, detected particles. As�� are
chosen positive and negative particles which satisfy the following condition:0:85dEdx (��) � dEdx � 1:15dEdx (��) (4.5)
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Figure 4.10: The momentum-dE=dx particle distribution for all detected charged particles.Full lines
represent a nominal energy loss calculated by using the Bethe-Bloch formula. Within dashed line (which
corresponds to�1:5� confidence) are chosen�+. The same is in the case of��. Even more,� particles as
well as low momentum protons and deuterons are clearly separated by theirdE=dx.

independently of the momentum. This selection correspondsto �1:5� window (dashed
lines) around the nominal energy loss for pionsdEdx (��) calculated according to Bethe-
Bloch formula (full line). In the region of low momenta, using the dE=dx allows to
identify the protons, deuterons and� particles.

4.3.2 ThedN=d�, dN=dpT and dN=d� distributions

The pseudorapidity (left) andpT (right) distribution of particles detected in the TPC are
shown in Fig. 4.11. Only those TPC tracks which satisfy quality criteria listed in the
previous subsection were used. The covered pseudorapidityregion is quite close to the
midrapidity region which, at an incident energy of 158 AGeV/c, is 2.92. The TPC covers
a hugepT range from few tens of MeV/c up to more than 4 GeV/c with a mean value ofhpT i � 0:5 GeV/c.

Fig. 4.12 shows the distribution of laboratory azimuthal angle�lab. As it was already
mentioned, the TPC has full azimuthal coverage from�� to �. But the efficiency of de-
tection of particles at any�lab is not the same. Due to that one can see very narrow holes
at certain�lab angles. Their distribution is rather regular. The wholes indN=d�lab distri-
butions originate from the edges of the TPC chambers where the efficiency of detection
of particles quickly decreases. Also, at�lab � �3, there is a big whole which appeared
due to the fact that 1/3 of a chamber’s electronics did not have the low voltage supply.
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Figure 4.11: The pseudorapidity (left) andpT (right) distribution of particles detected in the TPC. TPC
and SDD track segments are matched within a3� window.
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4.3.3 The Momentum Resolution

The momentum resolution is determined by the spatial resolution of the detector as well
as multiple scattering due to the material from which the detector consists. The relative
momentum resolutiondp=p as a function of the momentump can be parameterized in a
following way (dpp )2 = (dpp )2ms + (dpp )2res (4.6)
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with the following assumptions [72,73](dpp )ms / 1~Br 1LX0 (4.7)(dpp )res / p (4.8)L is the measured track length andX0 the radiation length. Themsandresstands for the
multiple scattering and for the spatial resolution of the detector.
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Figure 4.13: The momentum
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Monte Carlo simulation of the
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It is possible to specify the momentum resolution using a Monte Carlo simulation
of the detector. By comparing the reconstructed momentum ofa simulated particle with
its true momentum, the resolution of the detector can be studied. In Fig. 4.13 is shown
the momentum resolution as a function of momentum obtained by using a Monte Carlo
simulation of the detector [5]. The two parameter fit depicted as a red histogram provides
better results at high momenta, while the three parameter fitdepicted as a blue histogram
gives better results at small momenta. The combination of these two fits leads to a better
momentum resolution over the whole momentum range.

The obtained results suggest that the momentum resolution has a negligible influence
on the elliptic flow measurement. For example, atp = 1 GeV/c which corresponds topT � 0:2 GeV/c, the momentum resolution is�p � 5 MeV/c. The smallest bin size used
for the elliptic flow analysis in this thesis is 50 MeV/c (see Section 6.3) which is 10 times
larger than the momentum resolution.
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4.4 Centrality Determination

Events detected by CERES in the year 2000 data taking period were not taken with
the same trigger conditions. Three triggers were used. A minimum bias trigger con-
tributed with only 0.54% to the total amount of events. Underthe trigger condition with�=�geo � 20% have been collected 8.25% of the total amount of events. The biggest
part of data (91.21% of events) were taken with a trigger condition with �=�geo � 7%.
The corresponding TPC multiplicity distributions are shown in Fig. 4.14. Events wiht
TPC multiplicity smaller than 70 were cutted-off. The TPC multiplicity distributions are
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Figure 4.14: The TPC multi-
plicity distribution for all events
used in the elliptic flow analy-
sis. The distributions, obtained
with different trigger conditions,
are normalized to the minimum
bias distribution in the high TPC
multiplicity region.

formed from the TPC tracks which satisfy quality criteria listed in the Subsection 4.3.1.
All of the distributions are normalized to the minimum bias distribution in the region of
the high TPC multiplicity. At the top of the plot is drawn an axis with �=�geo values to
make a correspondence to the TPC multiplicities.
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Figure 4.15: Left: the correlation between the TPC and SDD multiplicity.Right: The Gaussian mean
value of the projection to the SDD multiplicity axisvs the TPC multiplicity. A linear fit describes the
obtained correlation.
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The centrality of the event is determined via the correlation between the TPC and
SDD multiplicity. Fig. 4.15 (left) shows the correlation between the TPC multiplicity and
the SDD multiplicity. The TPC multiplicity distribution isidentical to the one shown in
Fig. 4.14. Projecting the distribution at the given TPC multiplicity to the SDD multiplicity
axis and fitting it with a Gaussian around the maximum of the projection one gets the
one-to-one correspondence between the TPC multiplicity and the SDD multiplicity. This
correspondence is shown in Fig. 4.15 (right) together with alinear fit to the obtained
result. The fit describes the data very well and the values of the fit are used in the next
step of the centrality determination.
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respondence between the
SDD multiplicity and the
geometrical cross section�=�geo.

Fig. 4.16 shows the correspondence between the SDD multiplicity and the geometrical
cross section�=�geo [74]. For an event with a given TPC multiplicity one can, using the
correspondence shown in Fig. 4.16 find out what the corresponding geometrical cross
section is.
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The �=�geo values shown as the upper axis in Fig. 4.14 are determined in the way
described above.
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Fig. 4.17 shows two centrality bins in which the differential elliptic flow analysis of� andK0S particles is performed. These two centrality bins are characterized with the
weighted mean centralityh�=�geoi calculated as an averaged centrality weighted withd�=dNTPCtra
ks. The corresponding values ofh�=�geoi for two centrality bins mentioned
above as well as for all events taken together are shown in thepicture.
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Chapter 5

FLOW ANALYSIS OF SIMULATED
DATA

5.1 Flowmaker

In order to check the feasibility of different methods for the flow analysis presented in
Chapter 3 in application to the CERES data, several sets of the simulated data have been
produced using Fortran 77 computer code [75] and a parallel STAR software library STAF
package, called MEVSIM [76]. For the sake of brevity it will be called simplyFlow-
maker. The Flowmaker simulator is a new event generator which provides a fast way of
producing a large number of uncorrelated A+A collision events. The user can select the
number of events, the detector acceptance ranges, the particle types, the multiplicities and
the proper one-body momentum space distributions with respect to the transverse mo-
mentum (pT ), the rapidity (y) and the azimuthal angle (�) distributions from a menu of
the model. In addition one can include the reaction plane angle and to specify different
harmonics of the anisotropic flow. The particle multiplicities were allowed to vary from
event-to-event according to the Poisson statistics. Also,the parameters of the one-body
momentum space distributions were randomly varying from event-to-event according to
a Gaussian distribution in order to simulate dynamical fluctuations. Finally, the produced
events are assumed to be in the A+A center-of-momentum frame. Due to that, in order
to use the produced events, the kinematic variables are transformed into the laboratory
system which corresponds to the CERES experiment at the top of the SPS energy.

5.2 The Data Simulated by the Flowmaker

For the purpose of this thesis only 3 particles species were generated: positive and nega-
tive pions (��) and protons. The�+ and�� contributes each with 45% to the total multi-
plicity, while the protons (p) contributes with 10% to the total multiplicity. Other particle
species which have a quite small contribution in the real events like electrons, kaons,�s
etc. are neglected in the simulated data. As the feasibilityof the method of cumulants and
the Lee-Yang Zeroes method strongly depends on the multiplicity and the flow magnitude
itself, for the purposes of this thesis were simulated several different sets of data. For the

49
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first and largest one, 20 M of the very central events which correspond to the experimen-
tal data were simulated. The shape and the mean value of the multiplicity distribution are
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Figure 5.1: Multiplicity distribution from the Flowmaker simulated data.

similar to the experimental values and they are shown in Fig.5.1. Although in the ex-
perimental multiplicity distribution (see Fig. 4.17) exists a part of semicentral events they
were not simulated using the Flowmaker. The simple Gaussianlike multiplicity distribu-
tion was simulated by the Flowmaker due to the fact that the majority of the experimental
events (above 90%) belong to the class of central events.
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Figure 5.2: dN=d� (left) anddN=dpT (right) distribution from the Flowmaker simulated data.

The input values for the Flowmaker are chosen in such a way that dN=d� anddN=dpT
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have a similar shape as in the case of the experimental data (see Fig. 4.11). The corre-
sponding distributions are shown in Fig. 5.2.
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Figure 5.3: dN=d� distribution from the Flowmaker simulated data.

As the inefficiency in thedN=d� distribution strongly influences on the position of the
reconstructed reaction plane, thedN=d� distribution in the Flowmaker simulated data had
to follow the corresponding distribution in the experimental events. The Fig. 5.3 shows
thedN=d� distribution obtained from the Flowmaker generator. It wasgenerated using
the proper weights from the experimental distribution (seeFig. 4.12).

The input values for the integrated anisotropic transverseflow werev1 = 0:5% andv2 = 2:0%. They are quite small just like that what is expected in the case of the ex-
perimental data. In the case of the directed flow, the value ofthe v1 is not independent
on � andpT . The pseudorapidity dependence ofv1 is simulated in a way to show a pion
directed flow for the central collisions at the top SPS energy[55]. A similar statement is
also valid for the simulatedpT dependence ofv1. As the CERES detectors cover a rather
small (pseudo)rapidity interval, thev2 dependence was simulated in a way that it does
not depends on�, but it has a typicalpT dependence not corrected for the HBT effect. It
grows quickly withpT for smallpT and then much slower in the region of high transverse
momenta.

In each simulated event, the position of the reaction plane is known. Using that in-
formation one can easily calculate the ’true’ flow. In that way one is just reproducing the
input values.

5.3 Flow Analysis of the Simulated Data Using the Reac-
tion Plane Method

Although in a real event exists only one reaction plane, it’sposition is not known and
one has to reconstruct it from the emitted particles. In order to check the codes which
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have been developed for the anisotropic flow analysis applied to the experimental data,
these codes were applied on the simulated events in exactly the same way as in the case
of the real data. The procedure consists out of several steps. In the fist one, theXn, Yn(n = 1; :::; 4) values were calculated in each event according to the Eq. (3.4). Using them
one can obtain a ”rough” position, determined with the azimuthal angle�n, of the reaction
plane using Eq. (3.4). The calculation has been done for eachof 4 slices1separately. Also,
at the end of the first step, files with mean valueshXni, hYni (n = 1; :::; 4) obtained by
averaging over events for each 4 slices have been created.

The main characteristic of the obtaineddN=d�n distributions is that they are not flat
as it should be. In the second step of the analysis the method of shifting is performed
in order to make these distributions flat. In each event one calculatesXn andYn and
then from the obtained sums one needs to subtracthXni andhYni values found from the
first step of the analysis. Obtained ”shifted”dN=d�n distributions are flatter, but not
enough. Together with determining the ”shifted” distributions, in the second step was
also calculated Fourier coefficients for flattening based onEq. (3.9).

In the third step the final flattening was performed. Again, the values of(Xn, Yn)
were calculated, and then the values of(hXni; hYni) were subtracted. In order to correct�n, in each event values of��n were calculated using Fourier coefficients obtained from
the second step and Eq. (3.9). The finaldN=d�n distributions became completely flat2.
This is the best possible estimation of the reaction plane. But due to the finite multiplicity
it does not coincide with the true reaction plane. So, the reaction plane resolution is not
infinitely small and consequently the flow correction factors are bigger than 1.
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circles) and reconstructed
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1System of slices will be explained in the next Chapter
2Figures which show the shape of rough, shifted and flatdN=d�n distributions are essentially the same

as those shown in Section 6.2)
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In the final,4th, step the ”observed” Fourier coefficientsv0n n = 1; :::; 4 are calcu-
lated with respect to the reconstructed reaction plane. These Fourier coefficients werea
posterioricorrected for the reaction plane resolution according to:vn = v0n=h
os[n(��n)℄i (5.1)

As in this thesis the elliptic flow was investigated, here it is interesting to show the
reconstructedv2 dependences on the pseudorapidity (�) and the transverse momentumpT .
In Fig. 5.4 are shown the reconstructed Fourier coefficientsv2 vspseudorapidity as closed
circles. In order to compare that with the input values, withopen circles are shown thev2 Fourier coefficientsvspseudorapidity calculated with respect to the true reaction plane
(which is known in the Flowmaker simulator). Input values and functional dependences
of v2 vspseudorapidity are fully reconstructed. Thev2 value does not depend on� as one
should expect for a narrow� coverage in the case of the CERES experiment. It is constant
and roughly equal2%. The relative deviation from the truev2 value is smaller than 10%.
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Figure 5.5: The true (open
circles) and reconstructed
(closed circles) second
Fourier coefficientvspT .

ThepT dependence of the elliptic flow is also fully reconstructed.The reconstructedv2 vspT values are shown in Fig. 5.5 as closed circles while the truev2 vspT values are
shown as open circles.

A perfect agreement between the true and reconstructedv2 values insures that the
procedure which is applied on the experimental data is correct.

5.4 Cumulant Analysis of the Simulated Data

Here, the results of the cumulant analysis applied on the simulated data are presented.
The analysis is performed in order to reconstruct only the integrated elliptic flow, and it
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follows the procedure described in Subsection 3.5.1.

As, according to Eq. (3.41), the feasibility of the cumulantmethod strongly depends
on the multiplicityM , available statisticsN , and the flow magnitude itself, the new set
of events created with the Flowmaker simulator was made. Theelliptic flow magnitude is
3% and the directed one is 0.5%. The mean multiplicity was increased up to 300. Fig. 5.6
shows the obtained results. On the left plot are shown obtainedv1 values and on the right
one thev2 values.
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Figure 5.6: The integratedv1 (left) andv2 (right) dependence on multiplicity obtained from the first three
cumulants.

From all three first cumulants
2f2kg; k = 1; 2; 3, the elliptic flow value of 3%
was reconstructed. The exception is thev2f6g at the smallest multilpicities. As in the
simulated data the only correlations are those which originate from the flow, it is naturally
that flow reconstructed from different cumulants is the same. The difference is in the
statistical errors which grow with increasing of the order of cumulant.

The directed flow is not reconstructed at all due to the quite small value. The non-zerov1 values appear as a spurious flow. Here one should emphasize that if the anisotropic
flow is small one needs, according to Eq. (3.41), a huge statistics and multiplicity in order
to be able to reconstruct the flow magnitude. For the CERES data analysed in this thesis
thev2 is smaller than 0.012 at�=�geo < 5% where the population of events is highest (see
Fig. 4.14). If one wants to have a relative statistical errornot bigger than1=3, according
to Eq. (3.41) one needs at least9 � 109 events. Considering the fact that the generating
function can be averaged only over events with the same multiplicity, the above found
requirement is not fulfilled.
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5.5 Lee-Yang Zeroes Analysis of the Simulated Data

Again, as in the case of the cumulant analysis, the Lee-Yang zeroes analysis has been
performed only for the elliptic flow reconstruction. This isdue to the fact that only flow
with magnitude greater thanj01=p2MlnN could be safely measured. From this formula
one can see that a huge statistics has a most important role inthe reconstruction of the
anisotropic flow magnitude if the flow itself is small. Due to that, a new set of events
created with the Flowmaker was simulated with higher elliptic flow magnitude (v2 =0:056) and without the directed flow.
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Figure 5.7: Top: the absolute values of the generating functionsGn in the case of the directed (left) and
elliptic (right) flow plotted against ther value. Bottom: the same as at the top but zoomed at the position of
the minimum.

In order to reconstruct anisotropic flow using the method of Lee-Yang zeroes the pro-
cedure described in Sec. 3.6 was followed. First, we calculated and tabulated the complex
valued functiong�(ir) for 4 equally spaced values of� and for appropriately chosen dis-
crete values ofr. As g�(ir) has to be a smooth function ofr we calculated its values at
enough high number of discrete points inr direction in order that the obtained distribution
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looks like a function. This is necessary for a precise determination of ther�0 position of
the minimum ofg�(ir). Using Eq. (3.69) the integrated flowVn has been calculated3.

At the top of the Fig. 5.7 are shown the absolute values of the generating functions
for the directed (left) and the elliptic (right) flow. As an example values ofjGn(r)j at� = 67:5Æ are shown. In the case of the directed flow the absolute value of the generating
function does not have a real minimum necessary for the flow determination. Fluctuations
can produce a very shallow and broad minimum ofjGn(r)j which position differs from
one to another value of�. The corresponding value of the ’spurious flow’ satisfies non-
equality (3.75). On the right top plot is visible a clear minimum in thejGn(r)j produced
by the existence of the significant elliptic flow. At the bottom part of the Fig. 5.7 are shown
the absolute values of the generating functions for the directed (left) and the elliptic (right)
flow zoomed around the position of found minima.
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Figure 5.8: The reconstructed value ofv2 vs� (top) andvspT (bottom) for different� values (left) and
averaged over different� values (right).

3In the method of Lee-Yang zeroes, the integrated flowVn is defined as a product of the flowvn inte-
grated overy andpT and then multiplied to the mean number of particles averagedover many events used
in the analysis
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In the next step, obtained values for the integrated elliptic flowV2 has been used for the
reconstruction of the differential flow via Eq. (3.73). In Fig. 5.8 are shown the obtained
results. The reconstructed values of thev2 vs pseudorapidity are shown at the top part
of the Fig. 5.8, while thev2 vs transverse momentum are shown at the bottom bottom
part of the Figure. On the left side of the Fig. 5.8 are shown results obtained at different�
values, while on the right part are shown the corresponding results averaged over different� values. One can see that reconstructed flow is in a perfect agreement with input flow
values. At the end of this Chapter one has to stress that in thecase of a limited statistics
(even if it is measured in million of events) if the magnitudeof the anisotropic flow is
small enough, the cumulant method and the method of Lee-Yangzeros are unapplicable.
Only the spurious flow can be produced by these methods. Contrary, if the magnitude of
the anisotropic flow is big enough, then it can be safely reconstructed. Because of such a
limitation and due to the fact that in this thesis is analisedthe elliptic flow in rather central
collisions (v2 � 0:015) the method of Lee-Yang zeros were not used in this thesis4.

4According to the non-equality (3.75), with the available statistics, only an elliptic flow with the magni-
tude bigger than3:2% can be measured



58 CHAPTER 5. FLOW ANALYSIS OF SIMULATED DATA



Chapter 6

FLOW ANALYSIS OF CHARGED
PARTICLES

In this Chapter will be presented the results of the anisotropic transverse flow measure-
ments of charged particles using the Standard Flow Analysiswhich is described in Sec-
tion 3.4. Some specific features of the charged particle elliptic flow analysis performed
using the CERES data will be presented in detail.

6.1 Particle Selection
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Figure 6.1: The momentum-dE=dx particle distribution for the selected pions, protons and deuterons.
Full lines represent a nominal energy loss calculated by theBethe-Bloch formula. Within dashed lines
(which correspond to�1:5� confidence) are chosen�+. The same is in the case of��. The low momentum
protons and deuterons are clearly separated by theirdE=dx.
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Charged particles mostly consist of�� and a small admixture of protons and kaons
which survived the dE/dx selection (see Subsection 4.3.1).In Fig. 6.1 is shown the
momentum-dE=dx distribution where the positive pions are selected using a band which
corresponds to�1:5� confidence level (denoted with the dashed lines) around the nominal
energy loss for the positive pions calculated by using the Bethe-Bloch formula (denoted
with the full lines). In Fig. 6.1 one can see that in the regionbetween 1 and 3 GeV/c and
thedE=dx values around 220 a part of protons cannot be removed from thepion sam-
ple. In Section 6.4 the elliptic flow of the identified low momentum protons is presented.
These protons are clearly visible Fig. 6.1.

6.2 Determination of the Reaction Plane

The first step in the Standard Flow Analysis which uses the reaction plane method is to
calculate the position of the reaction plane. The position of the reaction plane is calculated
(see Section 3.2.1) using�� selected as described in the previous section. In order to
avoid the autocorrelation effect and partially the HBT effect the2� azimuthal coverage
was divided into 4 groups of slices. In total there are100 slices distributed regularly in4 groups which are denoted with1, 2, 3 and4. So each group consists out of25 slices,
and each slice covers3:6Æ in �. The autocorrelation effect is removed by correlating a

4 1 2 3
4

1

.

.

.

.
.

.
Figure 6.2: The distribution of slices in�
space. The size of a slice is3:6Æ. Each fourth
of them forms a group denoted with 1, 2, 3 or
4.

particle from one slice with the reaction plane determined from the non-adjacent slice
(see Fig. 6.2). For example, if a particle of interest belongs to the slice number3 then one
has to correlate it with a reaction plane determined from theslice number1. Concerning
partial removing of the HBT effect see Section 6.5.

So, although in an event exists only one real reaction plan, one has to reconstruct
its position in each slice separately. Additionally, in order to calculate the magnitude
of the anisotropic transverse flow which corresponds to different Fourier harmonics one
reconstructs the position of the reaction plane separatelyfor each harmonic. Together with
the reconstruction of the position of the reaction plane onehas to calculate the reaction
plane resolution in order to correct the observed flow magnitude for the finite reaction
plane resolution. As it depends on multiplicity the position of the reaction plane was
reconstructed for different centralities also. So, instead of one reaction plane per event
one calculates4 (slices)� 4 (harmonics)� 6 (centralities) =96 different reaction planes.
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Of course, they are actually correlated. That feature is used in order to calculate the
corresponding reaction plane resolution. In order to perform such a calculation, each
event/slice was randomly divided into two subevents/subslices and corresponding reaction
planes were calculated.
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Figure 6.3: Raw reaction plane distri-
bution calculated fromXn and Yn co-
efficients forn = 1 (top) andn = 2
(bottom) in the second (left) and fourth
(right) slice.

In Fig. 6.3, as an example, are shown the reaction plane distributionsdN=d� for the
first two harmonicsn = 1; 2 (top and bottom) in slice2 and4 (left and right). Due to the
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Figure 6.4: The reaction plane distri-
bution after applying the shifting method
for n = 1 (top) andn = 2 (bottom) in
the second (left) and fourth (right) slice.

non-flat distributions of particles in the laboratory azimuthal angle�, these distributions
are not flat as it should be. One should notice that there is a little difference between
the shapes ofdN=d� distributions derived from two slices due to similar topology of the
slices. From the other side, there is a clear difference in the shape ofdN=d� distributions
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Figure 6.5: The reaction plane distri-
bution after applying the shifting and the
Fourier method of flattening forn = 1
(top) andn = 2 (bottom) in the second
(left) and fourth (right) slice.

for different harmonics. So, one has to make them flat. In order to fulfill it, it is enough to
apply successively first the method of shifting, and then theFourier method of flattening
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Figure 6.6: Shifting coefficientsXn andYn for n = 2 in the first two centrality bins (up and down) for
the whole event (left), and subeventsa (center) andb (right) versus the unit number.



6.2. DETERMINATION OF THE REACTION PLANE 63

(for the description see Section 3.2.2). The results of these methods are shown in Fig. 6.4
and Fig. 6.5 for the same harmonics/slices as in Fig. 6.3. After shifting, which makes
rough flattening, the reaction plane distributiondN=d� became more flat (Fig. 6.4) but
not completely. In order to make it completely flat, the Fourier method of flattening was
applied (Fig. 6.5). Due to consistency, the procedure of thereaction plane determination
was done for all slices, harmonics and for all centrality bins.

In order to check the stability of the shifting and the Fourier flattening coefficients for
different units, in Fig. 6.6 are shown the shifting coefficientsXn andYn (for n = 2) and
for 2 different centralities for the whole event (left) subeventa (middle) and subeventb
(right). One can see that these distributions do not depend on the unit number except in the
region between unit225 and265 which corresponds to the negativeB-field data. Also, the
shifting coefficients for the whole event are twice larger than in the case of the subevents.
This is a consequence of the fact that the whole event has twice larger multiplicity than
the multiplicity of one subevent.
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Figure 6.7: Reaction plane resolution in case of the second harmonic forall centrality binsvsunit number.

From Fig. 6.7 one can notice that the reaction plane resolution becomes smaller with
increasing of the centrality as it is expected because flow has to decrease with centrality.
Also, the width of the distribution of the reaction plane resolution with respect to the unit
number becomes bigger with increasing of the centrality forthe same reason.



64 CHAPTER 6. FLOW ANALYSIS OF CHARGED PARTICLES

Before the continuation of the charged elliptic flow analysis, the other way of the
reaction plane determination and the charged elliptic flow analysis used in this thesis will
be shortly presented. As the charge of particles is well defined in the CERES experiment,
one can instead of dividing the event into four subevents (the ’slice’ method) to divide
the event into two subevents. Positive pions, defined in Subsection 4.3.1, form the first
subevent and negative pions form the second one. Again the autocorrelation effect is
removed by correlating the pion from one subevent to the reaction plane constructed from
the other one. The advantage of this approach with respect tothe ’slice’ method is that
the reaction plane resolution is better due to the bigger multiplicity used for the reaction
plane reconstruction. In Fig. 6.8 are presented the values of the correction factors in
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Figure 6.8: The correction factorsvs centrality expressed via TPC multiplicity for the 2 subevents and
the ’slice’ method. Due to the roughly double multiplicity,correction factors in the 2 subevents method are� p2 times smaller then in case of the ’slice’ method.

different centrality bins for both, above mentioned, methods. In both cases, the correction
factors grow with the TPC multiplicity because the ellipticflow and hence the resolution,
decrease with the multiplicity. Due to roughly two times higher multiplicity in the 2
subevents method with respect to the ’slice’ method, the correction factors are� p2
times smaller then in case of the ’slice’ method.

6.3 Elliptic Flow of Pions

In this section the results on�� elliptic vspseudorapidity, rapidity, transverse momentum
and centrality obtained from the two methods will be shown. Also, a comparison between
the results obtained from the 2 subevents method and the results obtained using the ’slice’
method will be presented. All results which are going to be presented in this Section are
not corrected for the Hanbury-Brown and Twiss (HBT) effect.Differences between the
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Figure 6.9: Thev2 valuesvs� (left) andy (right) for pions from all centralities taken together. Theresults
are obtained using the 2 subevents method.

results derived from these two methods can give an estimation on the systematic errors in
the�� elliptic flow analysis.

In Fig. 6.9 are shown the results on�� elliptic flow vs pseudorapidity (left) and ra-
pidity (right) obtained using the 2 subevents method. The results are obtained from all
centralities taken together. The rapidity and pseudorapidity dependence ofv2 is reason-
able flat as one should expect in such a small rapidity window.The previous statement
is practically completely fulfilled in the region2:1 � y � 2:6. A little bit bigger devia-
tions from a flat behavior is at the edges of the rapidity/pseudorapidity distributions. The
integrated magnitude of the pion elliptic flow is� 1:4% in that rapidity region.

The Plot in Fig. 6.10 shows thepT dependence of�� elliptic flow from all centralities
taken together. The values ofv2 grow with pT going from 0 atpT = 0 up to� 4:0% at
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Figure 6.10: The pionv2(pT ) from all centralities
taken together. The results
are obtained using the 2
subevents method and not
corrected for the HBT effect.

the highestpT . It is observed that the pion elliptic flow saturates atpT >� 2 GeV/c. The
elliptic flow values at smallpT do not have ap2T like behavior due to the fact that the
results are not corrected for the HBT effect. The topic of thenext section is the influence
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of the HBT correlations on the flow measurements. There will be given an explanation of
the procedure for the correction as well as the results corrected for the HBT effect.
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Figure 6.11: Thev2 valuesvscen-
trality. The closed circles denote the
present analysis, while the open cir-
cle represents the older (completely
independent) analysis. The result is
not corrected for the HBT effect.

In Fig. 6.11 is shown thev2 dependence on centrality. With closed circles is presented
the result of the pion elliptic flow analysis done in 2005, while with open circle is rep-
resented a completely independent analysis done in 2001 [77]. There is a clear smooth
transition between the results of these two analysis. Thev2 values, shown in Fig. 6.11,
increase with centrality going fromv2 = 1:2% at very small�=�geo up to 4% for semicen-
tral events with20% � �=�geo � 40% 1. As the results are not corrected for the non-flow
effects (for example, for the HBT effect), the offset of� 1% at�=�geo ! 0% can be
explained as a consequence of these effects.
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Figure 6.12: The pion elliptic flowvs rapidity (left) andpT (right) for central (closed circles) and semi-
central (open circles) collisions.

In Fig. 6.12 are shown differential values of the pion elliptic flow vs y and pT in
semicentral and central collisions as discussed in Section4.4. The trend of increasing
of v2 with centrality, which is already shown in Fig. 6.11, is visible in the differential
distributions too. It seems that the shape ofv2(y) distributions changes with centrality in

1Points are plotted at the center of gravity of the given centrality bin
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a way that it becomes more flat with increasing of�=�geo. In the case ofpT dependence,
it looks like that thepT threshold wherev2 starts to saturates increases with increasing
of �=�geo. In the case of the semicentral events the above mentioned threshold is around
2 GeV/c, while in the case of the central events it is around 1.5 GeV/c. Similarly as in the
case of Fig. 6.10, the theoretically predicted [58] quadratical dependence ofv2 at smallpT is not present atv2(pT ) distributions shown in and Fig. 6.12 (left).
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Figure 6.13: The pion elliptic flowvspseudorapidity (left) and rapidity (right) calculated using the ’slice’
(closed circles) and subevent method (open circles).

Fig. 6.13 shows the values of�� elliptic flow vs pseudorapidity (left) and rapidity
(right) obtained using two, above mentioned, methods. The difference between them is
rather small. The maximal difference of� 0:002 appears inv2(�), while the difference in2:1 � y � 2:6 region is negligible.
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Figure 6.14: The pion
elliptic flow vs transverse
momentum calculated using
the ’slice’ and 2 subevents
method.

ThepT dependences of�� elliptic flow, shown in Fig. 6.14 are in a rather good agree-
ment. The biggest difference of� 0:004 appears in the middlepT region around 1 GeV/c.
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In Fig. 6.15 is shown the ratio (left panel) and the difference (right panel) betweenv2(pT ) dependences shown in Fig. 6.14. Although with some structure, the ratio is quite
close to 1 and the difference is close to zero. From the described comparison between
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Figure 6.15: The ratio (left) and the difference (right) betweenv2(pT ) calculated using the ’slice’ method
and the 2 subevents method.

results obtained from two independent analysis methods onecan conclude that the ab-
solute systematic error in�� elliptic flow measurements is not bigger than 0.002. The
corresponding relative systematic error is� �7%.
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Figure 6.16: The �+ (closed circles) and�� (open circles) elliptic flowvs pseudorapidity (left) and
rapidity (right) for all centralities taken together.

Separately calculated elliptic flow of�+ and��, using the ’slice’ method, is shown
in Fig. 6.16. Systematically it appears thatv2(�+) � v2(��). The averaged difference is� 0:003 in both� andy, what could be attributed to the contamination of protons in�+
sample even afterdE=dx selection. From Fig. 6.1 one can see that protons cross the pion
band at1 � p � 3 GeV/c and200 � dE=dx � 250. These lowpT protons (0:2 � pT �0:6 GeV/c) contribute to the�+ elliptic flow in a way to make it smaller. Assuming the
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equivalence betweenv2(�+) andv2(��) and that protons contribute maximally with 0.15
in the total charged multiplicity one obtains that their elliptic flow is smaller than 0.004
which is in an accordance with results from the NA49 experiment in central collisions
[78].

6.4 Elliptic Flow of Identified Protons

From Fig. 6.1 one can see that the low momentum protons can be clearly separated from
other particle species. Particles withp � 1 GeV/c anddE=dx � 400 form a band which
represents protons according to the nominal energy loss forprotons calculated via the
Bethe-Bloch formula2. In Fig. 6.17 is shownpT dependence of the elliptic flow of these
protons. As it is expected for the elliptic flow of baryons forsmallpT , thev2 of protons
is close to zero [78]. The importance of the proton elliptic flow analysis at thispT region
will become more clear in Chapter 9 where the proton and the� elliptic flow will be
compared. As protons and� have similar masses it is natural to expect that they have
similar elliptic flow too. Due to that, as� acceptance did not allow to measurev2(�) at
low-pT region we will combine the elliptic flow of protons with the one from� in order
to cover the wholepT region.
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Figure 6.17: The identified proton el-
liptic flow vspT .

6.5 HBT Effects on the�� Elliptic Flow Measurements

The methods which are used in the measurements of the pion elliptic flow assume that the
the only azimuthal correlations between pions are those arising from the pion correlation
with the reaction plane. However, there are other, non-flow correlations which produce
the azimuthal correlations between the pions. One of them, the most pronounced, is
Hanbury-Brown and Twiss (HBT) quantum correlations which produce short range az-
imuthal correlations. Even in collisions withb = 0, the HBT correlations produce a
spurious flow. This effect is especially important when pions are used for the reaction

2Although deuterons are visible in the same way, they are not included in this analysis due to the small
statistics
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plane reconstruction as it is the case in ultrarelativisticheavy-ion collisions experiments
as CERES.

Ollitrault et al. in [58] have shown that the contribution to the flow arising from the
HBT correlations can be subtracted. That correction significantly changes values and
shape at the lowpT region inv2(pT ) distribution. After the correction,v2(pT ) achieves a
physically proper shape proportional top2T at lowpT .

In Section 3.3 has already been explained how, from a two-particle azimuthal distri-
bution it is possible to extract the flow magnitude in a given(pT ; y) window, or in other
words, how to extract the differential values of the azimuthal anisotropic flow. The Fourier
coefficients of the relative azimuthal distributions (3.15) are defined as
n(pT1; y1; pT2; y2) � h
os[n(�1 � �2)℄i (6.1)

where�1 and�2 are the laboratory azimuthal angles of particles.
In general, the two-particle distribution can be written asdNd3p1d3p2 = dNd3p1 dNd3p2 (1 + C(p1;p2)) (6.2)

whereC(p1;p2) is two-particle correlation function and decomposing it one can rewrite
the coefficient
n given by Eq. (6.1) as
n(pT1; y1; pT2; y2) = 
flown (pT1; y1; pT2; y2) + 
non�flown (pT1; y1; pT2; y2) (6.3)

where the first term, defined as a product of the Fourier coefficientsvn
flown (pT1; y1; pT2; y2) = vn(pT1; y1)vn(pT2; y2) (6.4)

is due to the flow (see Section 3.3). Averaging
flown , given by Eq. (6.4), over(pT1; y1)
and(pT2; y2) within the experimental acceptance one obtains the integrated flow value:vn(D) = �p
n(D;D) (6.5)

Finally, integrating Eq. (6.4) over(pT2; y2) one can get a relation between differential
values of
n and Fourier coefficientsvnvn(pT1; y1) = �
n(pT1; y1;D)p
n(D;D) (6.6)

In the presence of the HBT, the correlation functionC(p1;p2) has a non-zero value,
and according to Eq. (6.1) will increase the contribution tothe measured
n value. As this
contribution originates from the HBT effect it will be denoted with
HBTn .

Considering only pions, since they are bosons, the correlation functionC(p1;p2) is
positive. Assuming that there is no flow has as a consequence that
flown = 0, but
non�flown
is not zero and hence measured
n 6= 0. In that way a spurious flowvHBTn appears.

Let us estimate the order of the magnitude ofvHBTn . The HBT effect between two
identical pions with momentap1 andp2 appears only ifjp2 � p1j <� �h=R whereR is a
typical size of the interacting zone. Now it is time to stressthat the estimation and the



6.5. HBT EFFECTS ON THE�� ELLIPTIC FLOW MEASUREMENTS 71

proper numerical calculation of the HBT correction will be done in the natural system
of units3where�h = 
 = 1. In the 2000 data taking period CERES measured rather
central collisions with a typical value of theR � 4:5 fm [79]. Then1=R � 45 MeV
which is more than for one order of magnitude smaller than theaveragepT , which is
about 500 MeV/c. It means that HBT affects only pairs with quite low relative momenta.
So p2 � p1 � p(�1 � �2) <� 1=R (6.7)

or (�1 � �2) � 1=pTR � 0:09 = 5Æ (6.8)

Hence, on average, only pions with� separation smaller than� 5Æ contribute to the
HBT effect, or in other words the fraction of particles inD whose momentum lies in a
circle of radius1=R centered atp1. This fraction is(R3hpT i2hmT i�y)�1 wheremT is
the transverse mass defined asmT = pp2T +m2 wherem stands for the particle mass.
In the case of the CERES 2000 data,hpT i � hmT i � 0:5 GeV/c and�y � 0:7 using Eq.
(6.5) one obtains jvHBTn (D)j � ( 1R3hpT i2hmT i�y )1=2 � 0:03 (6.9)

which has the same order of magnitude as the elliptic flow measured with the CERES
spectrometer. Therefore, it is important to correct the measured flow for the HBT effect.

In order to get a more quantitative estimate of thevHBTn in the following shortly the
main points will be quoted of the procedure for the HBT correction without deriving the
corresponding formulae4. Assuming the standard Bertsch-Pratt Gaussian parameteriza-
tion of the correlation functionC(p1;p2) = �e�q2sR2s�q2oR2o�q2LR2L (6.10)

after integration one obtains
HBTn (pT1; y1;D) = ��3=2RsRoRL exp(� n24p2T1R2s ) 1mT1 dNd2pT1dy1RD dNd2pT2dy2d2pT2dy2 (6.11)

At low pT , one must do the following substitution in the previous equationexp(� n24p2T1R2s )! p�2 �e��2=2(In�12 (�22 ) + In+12 (�22 )) (6.12)

where� = RspT andIk is the modified Bessel function of orderk. In the case of the
elliptic flow Eq. (6.11, 6.12) become

3In natural system of units1 fm corresponds to5:076GeV �1
4For more details, see [58]
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HBT2 (pT1; y1;D) = ��3=2RsRoRL e�1=�2 1mT1 dNd2pT1dy1RD dNd2pT2dy2d2pT2dy2 (6.13)

with the substitution at lowpT given bye�1=�2 ! p�2 �e��2=2(I 12 (�22 ) + I 32 (�22 )) (6.14)

Our domainD is defined with: 0:05 � pT � 4:2 GeV/c, 2:05 � y � 2:75 and�� � � � �. Also, assuming that 85% of detected charged particles are pions, half�+
and half��, the right side of the Eq. (6.13) has to be multiplied with0:85 � 0:5 which
gives the probability that a particle inD is, let’s say,��.

Now, one is ready to evaluate the contribution of HBT correlations
HBTn and to sub-
tract it from the measured correlation
measuredn in order to isolate the correlation due to
the flow
flown in the following simple way
flown (pT1; y1;D) = 
measuredn (pT1; y1;D)� 
HBTn (pT1; y1;D) (6.15)

where
measuredn (pT1; y1;D) = vmeasuredn (pT1; y1)vmeasuredn (D). The corrected Fourier co-
efficientsvflown can be obtained by converting back
flown into vflown via Eq. (6.6).

Table 6.1: The input values for�, Rs, Ro andRL for the HBT correction of the integratedv2.
The input values are obtained by averaging over centralities with �=�geo � 15% and overkT �0:6 GeV/c. � Rs [fm] Ro [fm] RL [fm]0:38 4:30 4:55 4:79

In Table 6.1 are given the input values for�, Rs, Ro andRL taken from [79] for
the HBT correction of the integrated elliptic flow. The valueof the integrated elliptic
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Figure 6.18: Left: the correlation coefficient
HBT2 vspT calculated via Eq. (6.13). Right: the apparentvHBT2 (pT ) pion elliptic flow arising only from the HBT correlations calculated from
HBT2 (pT ).
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flow before correction for the HBT effect was 0.0153. Severaliterations of the correction
procedure were done until the final value of the integrated elliptic flow corrected for the
HBT effect became stable. That value is 0.0137 and it is 10% smaller with respect to the
value before the correction for the HBT effect.

In the left panel of Fig. 6.18 are shown
HBT2 coefficientsvs transverse momentum
calculated using Eq. (6.13). In the right panel of Fig. 6.18 are shown values of the appar-
ent flowvHBT2 (pT ) due to the HBT effect. The coefficientsvHBT2 (pT ) are calculated using
Eq. (6.6) where
2 coefficients are substituted with the
HBT2 . The biggest contribution of
the HBT correlation effect is situated around 150 MeV/c. AtpT = 0 it has zero value.
Then it is rising quickly up to its maximum, and then it is decreasing to the value close to
zero already atpT = 1 GeV/c.
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Figure 6.19: The pion elliptic flowvspT before (closed circles) and after (open circles) correction for the
HBT effect. A parabolic (p2T ) fit is indicated with a full line.

In Fig. 6.19 the elliptic flow values, corrected for the HBT effect, are plotted against
the transverse momentum (open circles). At the same Figure are also plotted the elliptic
flow values uncorrected for the HBT effect (closed circles).The HBT correctedv2 values
are calculated via Eq. (6.15) and (6.6) where
2 coefficients are substituted with the
flow2 .
As was expected, the correction affects only values ofv2 at low-pT up to 500 MeV/c. ForpT � 0:5 GeV/c it only slightly changes the values of the measured pion elliptic flow.
For pT � 1:0 GeV/c, the change is negligible. The correction did not onlydecrease the
measured elliptic flow values but also it changed the shape ofthev2(pT ) distribution. It
changed it into a roughlyp2T like distributions which is physically expected. The peculiar
behavior of the pion elliptic flow at low-pT disappears and nowv2 is compatible with a
variation of typev2 / p2T up to� 400 MeV/c.
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The correction of thev2(pT ) for the HBT effect could be done separately for each
centrality bin too. In Table 6.2 are given values ofRs, Ro andRL at different centrality
bins [79]. Recalculated integrated values of the pion elliptic flow corrected for the HBT

Table 6.2: The input values for�,Rs,Ro andRL for the HBT correction of the integrated elliptic
flow. The input values are obtained by averaging overkT � 0:6 GeV/c in different centrality bins.Rs [fm℄ Ro [fm] RL [fm]0% � �=�geo � 5% 4:54 4:84 5:045% � �=�geo � 10% 4:32 4:52 4:7810% � �=�geo � 15% 4:05 4:30 4:56
effect are shown in Fig. 6.20. As it is expected, the correction for the HBT effect decreases
the elliptic flow values.
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In Fig. 6.21 is shown the ratio between the values of the integrated pion elliptic flow
before and after the correction for the HBT effectvscentrality. The biggest relative con-
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Figure 6.22: The pion elliptic flowvsthe transverse momentum calculated using the 2 subevents method
for 3 different centralities before (closed circles) and after (open circles) correction for the HBT effect.

tribution is visible in the most central events (� nearly 50%). Going from the most central
to the semicentral events, the HBT correction becomes smaller and in the last centrality
bin with �=�geo � 12%, the relative decrease of thev2 is only 15%. This observation is
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consistent with the expected physical behavior.
Applying the procedure for the HBT correction for 3 different centralities one obtains

the plots similar to one shown in Fig. 6.19. In Fig. 6.22 are shown the corresponding
plots. One can notice that going from semicentral to more central collisions, the HBT
effect becomes more pronounced. That is already visible looking atv2(pT ) distributions
for different centralities. For10% � �=�geo � 15% the uncorrectedv2(pT ) is a linear
function. There is no bump visible in the distribution. But the distribution does not have
a shape proportinal top2T at smallpT . After subtraction the contribution which comes
from the HBT effect the obtained shape at smallpT became proportional top2T . For more
central collisions, a bump is visible, but after subtraction the contribution from the HBT
effect it disappears completely and corrected distributions have ap2T like shape.

At the end of this section one has to notice that thev2 values obtained from the ’slice’
method were not corrected for the effect of HBT correlation.The reason is that the method
itself removes the HBT effect partly. From the rough estimation given in Eq. (6.8),
the HBT affects the data only within a narrow�� region of�2:5Æ. As in the ’slice’
method the pion elliptic flow is calculated via the combiningparticles from non-adjacent
slices where minimal�� is 1Æ it is clear that a big part of the HBT effect is removed
automatically. Taking into account that particles are alsodistributed in� makes the above
spatial separation between particles even bigger. That is visible from Fig. 6.14 where
thev2(pT ) values obtained from two methods are compared. At smallpT (smaller than
150 MeV/c)v2 obtained from the ’slice’ method are smaller than those obtained from 2
subevent method uncorrected for the HBT effect. The most natural explanation is that the
method itself, just due to the slicing, removes the HBT influence at a small enoughpT .
With the increasing ofpT , this advantage of the method slowly disappears.



Chapter 7

FLOW ANALYSIS OF � PARTICLES

Most of the anisotropic flow measurements available in the systematics are done for non-
strange particles [39,49,55,80–83]. At very low collisionenergies directed flow of strange
particles was measured [80, 84–88]. Recently, at very high RHIC energies [89] elliptic
flow of strange particles (K0S, �, �, and
) was measured. At the CERN SPS a few
measurements of transverse radial flow in Pb+Pb collisions at

psNN = 17 GeV/c [90,91]
were done. In order to explain a quantitative difference in the transverse radial flow
between multi-strange baryons and non-strange hadrons wasproposed a physical picture
in which multi-strange baryons do not take part in a common expansion and thus decouple
early from the system [92]. This explanation also suggests that via the investigation of
the elliptic flow of strange particles one can have an insightinto very early stages of the
collisions.

In this Chapter will be presented results of the anisotropictransverse flow measure-
ments of� particles emitted in Pb+Au collisions at

psNN = 17 Gev/c using the method
which is partially described in Section 3.4. Some specific features of this analysis, like
the reaction plane determination and autocorrelation effect, construction of� elliptic flow
pattern and extraction ofobservedflow coefficients, will be presented in detail because
they are not part of the standard reaction plane method.

This Chapter will start with the identification of� daughters particles. The main part
of the contents of Section 7.1 is the reconstruction of� particles and the characteristics of
the obtained signals. In the Section 7.2, the reaction planereconstruction and its resolution
will be presented in detail. Finally, in the last Section 7.3of this Chapter, the results on� elliptic flow measured as a function of rapidity, transversemomentum and the collision
centrality will be presented.

7.1 Particle Selection and� Reconstruction

The� particles were reconstructed via the decay chanel�! p+�� with aBR = 63:9%
and
�Æ = 7:89 cm [70]. In order to estimate a systematic error in the measurement of
the elliptic flow of� hyperons, two different analysis were performed. In both ofthem
many cuts, listed below, which are applied in order to maximize the significance, were
the same. One cut, which was used in order to eliminate the contribution of �+ in a

77
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proton sample was essentially different. In the first case, which will be called Run I, was
applied a sharp cut on the transverse momentum of positive particles (pT > 0:4 GeV/c)
together with a sharp opening angle�p�� cut (�p�� � 0.015). In that way, protons withdE=dx � 200 andp <� 2 GeV/c which overlap with positive pions at approximately the
samedE=dx and momentum were excluded from the analysis. This as a consequence
had a more pronounced� signal above the combinatorial background, but from the other
side, many� particles in that case were excluded from the analysis. In the second case,
which will be called Run II, in order to increase the number of� particles for the elliptic
flow analysis was applied combinedpT dependent opening angle�p�� cuts. Using the
kinetic generator [93],� decays were simulated and for all rapidity bins in which� was
reconstructed two dimensional�p�� vs pT distributions were formed. Based on them
was possible to establish a set ofpT dependent opening angle cuts which were used in
order to partially remove positive pion contribution from the proton sample. As a price
the� statistics is increased twice, but the signal integrated over y andpT has been less
pronounced with respect to the Run I.
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Figure 7.1: Left: Partially identified�� and protons in the case of a sharp cut on the transverse momenta
of positive particles and a sharp opening angle cut (Run I). Right: Partially identified�� and protons in the
case were combinedpT dependent opening angle�p�� cuts have been applied.

As candidates for� daughters were chosen only those TPC tracks which satisfied
several simple cuts1listed below.

1. Due to late decay of� particle, TPC and SDD segment of daughter track should
not match within�3� window.

2. Radial distance from the daughter track to the vertex position in thex � y plane
had to be bigger than3:0 cm. This is an additional cut used in order to exclude the

1Overall quality criteria on particle track were the same as in Subsection 4.3.1
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vertex tracks2.

3. Partial identification of particles was determined bydE=dx cut. Protons were se-
lected as positive particles withdE=dx smaller than1:1 � dE=dx(protons), which
corresponds to+1� boundary. Negative pions were selected as negative particles
with dE=dx between0:85 � dE=dx(��) and1:15 � dE=dx(��), which corresponds
to �1:5� boundary. The nominal energy lossdE=dx(protons) anddE=dx(��)
were calculated according to the appropriate Bethe-Bloch formulae. In Fig. 7.1
(left) one can see partially identified�� and protons in the case of a sharp cut on
the transverse momenta of positive particles and a sharp opening angle cut (Run I)
after applying the describeddE=dx cuts. On the right side of Fig. 7.1 are shown
partially identified protons and negative pions after thedE=dx cuts were applied in
the case of combinedpT dependent opening angle�p�� cuts (Run II).

4. In order to suppress the contamination ofK0S, an Armenteros-Podolanski cut [94]
with qT � 0:125 GeV/c and0:0 � � � 0:65 was applied. In Fig. 7.2, as a 2-
dimensional� � qT distribution, are shown�, �� andK0S reconstructed from the
experimental data [6]. In the case of the� particle, the� variable is defined as� =(q+L � q�L )=(q+L + q�L ) whereq+L andq�L are the longitudinal momentum components
of ~p+ and ~p� calculated with respect to the~p� = ~p+ + ~p�. The qT variable is
defined as the momentum component of~p+ in the transverse plane perpendicular to
the~p�. In the case of the�� (K0S) particle one should exchange~p� with ~p�� (~pK0S ) in
the above definitions.
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Figure 7.2: Armenteros-Podolanski plot shows�, �� andK0S reconstructed from the experimental data.
The Figure is taken from [6].

In order to remove the effect of autocorrelation, tracks which were chosen to be can-
didates for� daughter particles were not included into the determination of the ori-

2For the first and the second item, the opposite condition is required in the case of�� elliptic flow
analysis (see Subsection 4.3.1)
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entation of the reaction plane. Anyhow, they are well separated because�’s daugh-
ter particles do not point into vertex due to rather long timeof half life of � (�� =(2:632� 0:020) � 10�10 s).

For the flow measurements, the topology of the event is important, especially the mul-
tiplicity and the position of the reaction plane. In order tocompletely preserve the topol-
ogy, the mixed events technique was not used for the combinatorial background calcula-
tion, but rather the same event technique. Additionally, this way is much more efficient
due to consuming much less CPU time and hence faster computing. The combinatorial
background was determined by rotating positive�’s daughter tracks by180Æ around the
beam axis and constructing the invariant mass distribution. By such a rotation of posi-
tive daughter tracks around the beam axis all real� vertexes were destroyed. In order to
decrease the statistical errors, instead of one rotation for 180Æ, ten of them by a random
angle were performed. The shape of the combinatorial background was unchanged in
both cases.
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Figure 7.3: Left: Run I. Top: the invariant mass distribution of the signal and the normalized combina-
torial background. In the region of the� mass a pronounced signal is observed. Bottom: the invariant
mass distribution of the signal after subtraction of the normalized combinatorial background. Right: Run
II. Top: A small enhancement of the signal is visible in the region of the� mass. Bottom: the invariant
mass distribution of the signal left after subtraction of the normalized combinatorial background.
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For two different ways of� reconstruction (Run I and II) in Fig. 7.3 are shown the
invariant mass distribution of the signal and the normalized combinatorial background
as well as the invariant mass distribution of the signal after subtraction the normalized
combinatorial background. The distributions show that in the case of Run I the signal is
much more pronounced then in the case of Run II, but the yield of � is twice higher in the
case of Run II with respect to the case of Run I as it is explained above.
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Figure 7.4: Left: mass of� in function ofpT for different rapidities displayed with different symbols.
Right: the same dependences in the case of width of�

The pure� signal shown at the bottom part of Fig. 7.3 does not have a Gaussian
shape (this is a convolution of several Gaussians). This is aconsequence of the fact that
the observed mass and width of� particles depend onpT andy, because the displaced
secondary vertex is not used for recalculation of the angles. Due to that, the analysis was
done separately inpT � y windows which are small enough that the mass and width of�
particles are practically constant. In each of these smally� pT windows the procedure of� reconstruction was performed in order to extract the mass and width of�. The signal
distributions were fitted with aGaussian+ a constantand in this case the best�2 values
were obtained3. In Fig. 7.4 is displayed the mass and width of� as a function ofpT of �
for different rapidity bins. The mass of� particles strongly depends onpT and practically
does not depend on rapidity, while in the case of�’s width both dependences are present.
Once the mass and width of� were established for a giveny andpT they were kept as
constants for the rest of the analysis.

With the cuts, listed above, the optimal values forS=B � 0:04 andS=pB � 500
were obtained. HereS stands for the signal andB for the combinatorial background.
Before continuation of the presentation of the� reconstruction one should stress thatS=B
and significance (defined asS=pB) strongly depends on the transverse momentum of�
particle. In Fig. 7.5 these quantities are displayed as a function of applied cuts. First point
corresponds to the distributions before any cut was applied. The second one represents

3The results obtained by fitting with aGaussian+ a slopewere a little bit less satisfactory
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(for the correspondence be-
tween the depicted points
and the applied cuts see
the text below). Right:
the same dependences in
the case of the significanceS=pB.

the cut on the acceptance edges. Ally � pT bins, where the number of reconstructed�
was extremely small, were cutted off in the analysis. In Fig.7.7 it is represented with
non-colored area. The third, main cut was Armenteros-Podolanski cut what is visible
with a drop ofS=B andS=pB values. This cut was necessary in order to suppress theK0S contamination. Last two cuts represent the opening angle cuts vs proton and pionpT . In Fig. 7.6,S=B andS=pB as a function ofpT for different rapidities are displayed
with different symbols. There is practically no rapidity dependence ofS=B, whileS=pB
shows significant rapidity dependence. Concerning thepT dependence,S=B goes from
values close to0 at smallpT up to values close to1 at the highestpT . The biggest values
of the significanceS=pB are situated atpT � 1 � 1:5 GeV/c with y � 2 what is the
consequence of the fact that it is the most populated area iny � pT distribution of the
reconstructed� (see Fig. 7.7).
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Figure 7.6: Left: S=B as a function ofpT for different rapidities displayed with different symbols. Right:
the same dependences in the case of the significanceS=pB.

In Fig. 7.7 is shown� acceptance after these cuts were applied. The� particles
used for the elliptic flow analysis are from the kinematic region 1:6 � y � 2:6 and



7.1. PARTICLE SELECTION AND� RECONSTRUCTION 830:3 � pT � 3:5 GeV/c. This region does not cover the whole kinematic regionshown in
Fig. 7.7. The� particles with smallpT and at small rapidities were not included because
they are reconstructed with a quite small value ofS=B and significanceS=pB.
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Figure 7.7: Distribution of accepted� in y � pT space.
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The area under the peak in the invariant mass distribution was used to measure the
yield of� particles in differenty, pT and� bins4. The above mentioned yield was obtained
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by subtracting a normalized combinatorial background fromthe corresponding signal dis-
tributions. In the top part of Fig. 7.8 is shown an example of such a distribution. Plotting
the yield versus� for different pT andy values one can constructdN�=d� distribution
(Fig. 7.8 bottom). Fitting these distributions with a cosine function
[1+2v02 
os(2�)℄, it is
possible to extract the observed elliptic flow valuesv02 for differentpT andy and hence to
obtain differential dependences ofv2 versuspT andy which is the main goal of this anal-
ysis. Of course, in order to get the proper elliptic flow magnitude, the obtainedv02 coeffi-
cients were corrected for the reaction plane resolution viav2 = v02=p2h
os[2(�1 � �2)℄i
as it was explained in Section 3.2.3.

7.2 Reaction Plane Determination and its Resolution

At the top SPS energy and with rather central events which were analyzed, it is correct
enough to assume that the only significant azimuthally anisotropic flow is the elliptic flow
of particles. With such a supposition, azimuthal distributions of particles with respect to
the true reaction plane orientation (	) can be written as a Fourier decomposition where
the only elliptic flow component (v2) has a non-zero valueEd3Nd3p = d2NpTdpTdy 12�f1 + 2v2 
os[2(�� 	)℄g (7.1)

Using that supposition, the reaction plane was determined by measuring the corre-
sponding orientation (i.e. the azimuthal angle�) from the second Fourier harmonic� = 12 ar
tan �Pi pT i sin(2�i)Pi pT i 
os(2�i)� (7.2)

according to the Eq. (3.4) and (3.5)5. As it was already mentioned, in order to avoid the
autocorrelation effect for the reaction plane determination were used only those particles
which are not candidates for� daughters, i.e. were used only primary vertex tracks.
The flattening of the reaction plane was done by recentering and Fourier Expansion ofdN=d� distribution in exactly the same way as in the case of the pionanalysis which was
described in Section 6.2. The results of subsequent application of the flattening procedure
mentioned above are shown in Fig. 7.9. Again, as in the case ofpion flow analysis, big
non-uniformity in the ’raw’ reaction plane distribution isa consequence of a deep in�lab
distribution due to the fact that in the case of one TPC chamber 1/3 of its electronics did
not work. The flattening procedure is performed for 9 (6) centrality bins in the case of
Run I (II). The obtained results (in the case of Run I) are shown in Fig. 7.10.

In order to find the resolution of the measured reaction planeeach event6was ran-
domly divided into two subevents. The corresponding reaction planes reconstructed from
these subevents were correlated using the
os[2(�1��2)℄ variable. Here,�1 and�2 stands
for the azimuthal angles of the reaction planes reconstructed in the subevents. From this,
using Eq. (3.13) the resolution was calculated. As the resolution depends on centrality

4Here� is the azimuthal angle of the reconstructed� measured with respect to the reaction plane.
5For the weight is chosenpTi, transverse momentum of the given,i-th, particle.
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Figure 7.9: Example of flattening of the calculated reaction plane(�) in one of 6 centrality bins (Run II).
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Figure 7.10: CorrecteddN=d� distribution for 9 different centralities (Run I) as a function of the reaction
plane angle� calculated using the Eq. (7.2).
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(via the elliptic flow which decreases with centrality), in the above described way the res-
olution was calculated for each centrality bin separately.The resolution goes from 0.16
(semicentral events) to 0.31 (very central events).

The correction factor, which one has to use in order to correct the observed Fourier
harmonics for the finite reaction plane resolution, is defined as an inverse value of the cor-
responding reaction plane resolution. In Fig. 7.11 are displayed values of the correction
factorsvscentrality (expressed via TPC multiplicity). The correction factors grow with
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Figure 7.11: Correction factors, as the inverse values of the reaction plane resolutions calculated using
the Eq. (3.13) are presented as a function of centrality.

centrality as a consequence of the fact that the elliptic flow, and hence the reaction plane
resolution, decreases with centrality. The values of the correction factors were calculated
in three different ways. In Fig. 7.11 with open (closed) circles are depicted the correc-
tion factor values calculated from the correlation of the reaction plane angles obtained
from a random division, in� space, of the event into two subevents in Run I (Run II).
The difference between them is practically negligible. With stars are shown the correc-
tion factor values calculated from the correlation of reaction plane angles obtained from
a division, in� (pseudorapidity) space. In order to make a big difference intwo ways of
calculation (division in� and division in�), the event was not divided randomly into two� subevents but in two separate subevents which correspond to2:05 � � � 2:375 and2:375 � � � 2:70 region.

The information which Fig. 7.11 contains is later used for anestimation of the sys-
tematic errors in the elliptic flow measurements which comesfrom a finite precision with
which the reaction plane resolution can be calculated.

6In this caseeventmeans a set of particles which were used for the reaction plane reconstruction.
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7.3 Elliptic Flow of � Particles

In Fig. 7.12 are plotted the values ofv2 measured as a function of� particle transverse
momentum (0:3 � pT � 3:5 GeV/c) integrated over all centralities. The� elliptic flow
shows a typicalpT dependence characteristic for baryon elliptic flow. It has asmall mag-
nitude in the region of smallpT and with increasingpT , the v2 values slowly increase.
When it reaches highpT values, the baryon elliptic flow achieves big values.
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Figure 7.12: � elliptic flow vspT for all cen-
tralities taken together.

Such a behavior can be seen better in the case of semicentral collisions. In the left plot
of Fig. 7.13 are shown the results of the� elliptic flow vs thepT (�) in the semicentral
collisions. Thev2(�) grows withpT and reaches values larger than 10% for the highest

(GeV/c)Tp
0 0.5 1 1.5 2 2.5 3 3.5

2v

-0.05

0

0.05

0.1

0.15

0.2 semicentral events
 = 10.5%〉 geoσ/σ 〈

(GeV/c)Tp
0 0.5 1 1.5 2 2.5 3 3.5

2v

-0.05

0

0.05

0.1

0.15

0.2 central events
 = 3.5%〉 geoσ/σ 〈

Figure 7.13: � elliptic flow vspT for the semicentral (left) and central (right) collisions.pT . On the right plot of Fig. 7.13 is shownv2(pT ) dependence for� particles emitted
in central collisions. There is a clear difference in the elliptic flow magnitude between
semicentral and central collisions.



88 CHAPTER 7. FLOW ANALYSIS OF� PARTICLES

y
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

2v

0

0.05

0.1

0.15

0.2

semicentral events

Figure 7.14: � elliptic flow ıvs y in the case
of semicentral events.

As an example, in Fig. 7.14 is plotted the� elliptic flow (integrated over allpT bins)
versusy in the case of semicentral collisions. As one can expect, this distribution should
be flat7. But, the fact thatv2(y) is not completely flat in rapidity could be explained by
the� acceptance. The mean transverse momentum of the� increases with rapidity (as
one can see from Fig. 7.7) and hencev2 increases.

The analysis performed in this thesis, as was already mentioned, was done in 9(6)
centrality bins in the case of Run I (Run II). IntegratingdN=d� distributions (like that one
shown in Fig. 7.8 at the bottom) over wholepT and rapidity range in a given centrality bin
gives the possibility to obtain� elliptic flow vscentrality. Such distributions are shown
in Fig. 7.15. The� elliptic flow decreases with centrality.
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Figure 7.15: � elliptic flow vs central-
ity.

As the� elliptic flow analysis was performed in two different ways (Run I/II), the

7Due to the fact that the rapidity interval in which the analysis is done is rather narrow�y = 0:65
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differences between these two analysis could be used to estimate the systematic error of
this study. In order to visualize the size of the systematic errors, in Fig. 7.16 are shown on
the top of each other results ofv2 vspT obtained in the two, above mentioned analyses.
There is a very good agreement between them which means that the statistical errors
dominate over the systematic ones. The overall absolute systematic error�v is estimated
as the difference betweenv2 values integrated overpT , y and centrality and its value is+0:001�0:009 . One can notice that the systematic error is not independentof pT . For smallpT
values (pT � 1:6 GeV/c) the estimated absolute systematic error�v is +0:001�0:007 , while in
the case of highpT values (pT � 1:6 GeV/c) the estimated absolute systematic error is+0:00�0:02 .
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Figure 7.16: � elliptic flow vspT from Run I and Run II calculations.
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Chapter 8

FLOW ANALYSIS OF K0S
PARTICLES

The second strange particle which its anisotropic flow has been investigated in this thesis
is theK0S meson. The study of theK0S elliptic flow is important due to getting the system-
atics from different particle species. It is especially important for the comparison with��
and� elliptic flow which can establish the mass ordering effect due to the fact that the
mass ofK0S particle is bigger than the pion mass and smaller than the mass of� particle.
Having one particle specie more in the elliptic flow systematics can give better insight in
the properties of different scaling scenarios. Chapter 9 ispartially devoted to the mass
ordering effect and the scaling properties.

This Chapter is organized in the following way. In Section 8.1, as a possibleK0S
daughters, the�+ and�� selection will be discussed as well as the method ofK0S recon-
struction. The method ofK0S reconstruction is entirely different from the one used for the� reconstruction. The reaction plane determination and the determination of its resolution
are the contents of Section 8.2. In the last Section of this Chapter the obtained results
will be presented.

8.1 Particle Selection andK0S Reconstruction

TheK0S particles were reconstructed via the decay chanelK0S ! �+ + �� with BR =68:95% and
� = 2:6739 cm [70]. The first step in the extraction ofK0S daughters was the
selection of�+ and�� particles as possible candidates ofK0S daughters. The selection
was done in the same way as in Subsection 4.3.1 with one difference. In order to increase
theK0S statistics, in the momentum-dE=dx distribution, instead of�1:5� window around
the nominal Bethe-Bloch value, particles within�2� window around the nominal Bethe-
Bloch value were chosen.

Impossibility to make a perfect particle identification viathe TPCdE=dx value results
in a big combinatorial background. A powerful tool for the background suppression is
provided by the secondary vertex reconstruction. The corresponding codes used for the
secondary vertex reconstruction were developed by W. Ludolphs [6]. The method is able
to separate tracks originating from the primary vertex fromthose originating from the
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secondary one. The detectors used for this purpose are the 2 SDD detectors and the TPC.
The first step in the procedure is the fitting of a particle track with a straight line in the�B
field free region between the SDD detector system and the RICH2 mirror. The straight line
fit is based on 3 points coming from the 2 SDD detectors and the TPC track extrapolated
to the position of the RICH2 mirror. The deviations from the straight line can occur by
multiple scattering what is accounted for by the momentum dependent errors of these 3
points. The second step of the procedure is that each two tracks, as possible candidates
for theK0S daughters, are combined and the point of the closest approach between them
is calculated. Assuming that theK0S particle comes from a primary vertex, a possibility
to suppress fake track combinations is given by a cut on the radial distance between the
momentum vector of theK0S candidate and the primary vertex in thex � y plane. This
variable will be calledbep. In the case of possibly trueK0S candidate thebepparameter
has to be small in contrast to the case of the fake combinationof tracks. The more details
about the procedure for the secondary vertex reconstruction one can find in [6].

The following list of cuts was applied in order to suppress the combinatorial back-
ground

1. a�2 probability value for a linear fit applied on 3 points has to bebigger than 0.01.

2. thebepparameter has to be smaller than 0.02 cm.

3. the opening angle��+�� > 0:05 rad.

4. the value of the z-coordinate of the secondary vertex has to be bigger than 1.0 cm.

5. In order to suppress the contamination of� and�� particles, an Armenteros-Podolanski
cut with qT � 0:12 GeV/c was applied (see Fig. 7.2).

6. a�2 probability of finding the secondary vertex has to be bigger than 0.01.

The combinatorial background is reconstructed by using themixed events technique.
In order to preserve the topology of the event, only events with similar multiplicity and the
orientation of the reaction plane were allowed to mix with each other. Similar multiplicity
means that the difference in the multiplicity must not be bigger than 10%, while the
similar reaction plane orientation means that the difference between the reaction plane
orientations from the two events which are used in the mixed events analysis must not be
bigger than22Æ what corresponds to the half of the reaction plane resolution. In order
to make the combinatorial background smooth enough the events mixing procedure was
repeated 10 times.

In Fig. 8.1 is shown the invariant mass distribution of the signal and the normalized
combinatorial background (left) and the invariant mass distribution of the signal after
subtraction of the normalized combinatorial background (right). A huge part of the back-
ground is suppressed if one recalculates the momenta of possible daughter particles with
respect to the reconstructed secondary vertex and make cutson the position of the vertex.

Similarly as in the case of the� elliptic flow analysis, theK0S elliptic flow analysis
was done differentially in small enoughy � pT bins. The characteristics (the mean value
and the width) of the signal after subtraction of the normalized combinatorial background
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Figure 8.1: Left: The invariant mass distribution of the signal (red line) and the normalized combinato-
rial background (black line). Right: The invariant mass distribution of the signal after subtraction of the
normalized combinatorial background.
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Figure 8.2: Left: mass ofK0S as function ofpT for different rapidities displayed with different symbols.
Right: the same dependence in the case of the width ofK0S.

vsy andpT are shown in Fig. 8.2. The signal distributions were fitted with a Gaussian +
a constant. The mass ofK0S which is obtained as the mean value of the Gaussian fit has a
weak dependence ony andpT , while in the case of the width both dependences are strong.
Once the mass and the width ofK0S were determined for a giveny andpT bin they were
kept as constants for the rest of the analysis. In the approach for theK0S reconstruction
described above the values ofS=B � 0:92 andS=pB � 500 were obtained.

Fig. 8.3 shows they � pT distribution of the acceptedK0S particles after all applied
cuts. TheK0S particles used for the elliptic flow analysis are from the kinematic region
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Figure 8.3: Distribution of acceptedK0S in y � pT space.

2:0 < y < 2:6 and0 < pT < 2:4 GeV/c. This kinematic region does not cover ally � pT
bins whereK0S particles were reconstructed. They� pT bins where theK0S statistics (the
edges of the acceptance) were not included in the elliptic flow analysis.
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Figure 8.4: Top: K0S reconstructed for1:62 � y � 1:69, 0:675 � pT � 0:8 GeV/c
and15Æ � � � 30Æ. Bottom: Elliptic flow
pattern reconstructed from the� yield in �
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In order to measure the yield ofK0S particles in a giveny� pT �� bin, the area under
the peak in the invariant mass distribution, which is obtained from the Gaussian fit, was
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used. Fig. 8.4 (top) shows an example of such a distribution.Plotting the yieldvs� for
differenty andpT values one can constructdNK0S=d� distributions. One example of such
a distribution is shown at the bottom of the Fig. 8.4.

The observed elliptic flow valuesv02 are obtained by fittingdNK0S=d� distribution with
a cosine function
[1+ 2v02 
os(2�)℄. After the correction for the reaction plane resolution
one gets the information about the differential elliptic flow magnitude.

8.2 Reaction Plane Determination and its Resolution

Again, as in Section 7.2, assuming that the only significant anisotropic flow is the elliptic
flow, one can decompose the azimuthal distributions ofK0S particles constructed with re-
spect to the reaction plane in a Fourier decomposition givenby Eq. (7.1). The orientation
of the reaction plane is derived from the second Fourier harmonic using Eq. (7.2). In order
to avoid of the autocorrelation effect, tracks used for theK0S reconstruction are excluded
from the set of tracks used to calculate the reaction plane. Again, as in the case of��
and� elliptic flow analysis, the flattening of the reaction plane was done by recentering
and the Fourier expansion of the rawdN=d� distribution. After the flattening procedures
were applied the flatdN=d� distributions were obtained and they are essentially the same
to the one shown in Fig. 7.9 (right).
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Figure 8.5: Correction factors in theK0S elliptic flow analysis using the Eq. (3.13) are shown as a function
of centrality.

The determination of the resolution of the measured reaction plane was done using the
two random subevents method which is already described in Section 7.2. The correction
factors for the reaction plane resolutionvscentrality are shown in Fig. 8.5. Again, they
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are growing with the centrality because the magnitude of theelliptic flow and hence the
reaction plane resolution decreases with the centrality.

8.3 Elliptic Flow of K0S Particles

Fig 7.12 shows theK0S elliptic flow vsK0S transverse momentum for all centralities taken
together. As in average the elliptic flow analysis was performed for rather central colli-
sions (see Fig. 4.17) where thev2 is expected to be small, and as theK0S statistics is rather
poor has as a consequence huge statistical errors in the presented distribution. Still, there
is an indication thatv2(pT ) grows with transverse momentum of theK0S.
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Figure 8.6: K0S elliptic flow vspT for all
centralities taken together.

In order to see the elliptic flow signal, in the left plot of Fig8.7 are shownv2(pT )
dependences for theK0S particles emitted in the semicentral collisions. In the right plot of
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Figure 8.7: K0S elliptic flow vspT for the semicentral (left) and central (right) collisions.
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the same Figure is shown the corresponding dependence for the central collisions. In the
case of semicentral collisions,K0S elliptic flow grows withpT and reaches roughly 10%
at the highestpT . There is a difference in theK0S elliptic flow magnitude between these
two classes of events.
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Figure 8.8: K0S elliptic flow vsy in the case
of semicentral events.

As an example, in Fig. 8.8 is plottedK0S elliptic flow integrated over allpT bins as a
function ofy in the case of semicentral collisions. Similarly as in the case of the� elliptic
flow analysisv2 grows withy due to the fact that the mean transverse momentum ofK0S
increases with rapidity (as one can see from Fig. 8.3). It seems that the effect is not so
strong as in the case of the� elliptic flow analysis. Also, smallK0S statistics does not
allow to make a strong conclusion aboutv2(y) dependence.
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Chapter 9

COMPARISONS AND SCALINGS

The elliptic flow of mesons (�� andK0S) and baryons (protons and�) will be mutually
compared. Also, the obtained results will be compared with the hydrodynamical calcu-
lations and to other SPS and RHIC results. At the end of this Chapter the results scaled
to the number of constituent quarksnq and to the flavor transverse rapidityyfsT will be
presented.

9.1 Comparison with Hydrodynamical Model

A system can be described within a hydrodynamical theory if the time scales of the mi-
croscopic processes within the system are significantly smaller than the time scale of the
macroscopic evolution of the system. In the heavy-ion collisions it means that the aver-
aged time between two successive interactions between partons is much smaller than the
life time of the system. Only under that condition partons can interact enough times in
order to equilibrate the system. Then the hydrodynamical formalism can be applied in
order to describe the system.

The covariant equation for the energy-momentum conservation is given by��T �� = 0 (9.1)

where the energy-momentum tensor is defined asT �� = (�+ p)u�u� � pg�� (9.2)

where�, p andunu are the energy density, pressure and four-velocity respectively.
The hydrodynamical equations are valid from the early time of the collision when the

system became thermalized until the time when the interactions between partons become
so weak that they cannot maintain the equilibration reachedin the previous stage of the
collision. When the initial conditions for a given type of heavy-ion collision is provided
one needs to specify the EoS which relates thermodynamical quantities of the system.

Basically, the elliptic flow is a consequence of the rescattering of the particles pro-
duced in a heavy-ion collision. For a given initial size of the overlapping region between
the colliding nuclei, the hydrodynamical description gives the highest flow magnitude due
to the most intense rescattering incorporated into the hydrodynamical formalism.
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In this thesis the obtained results on the elliptic flow are compared with the hydrody-
namical calculations done by P. Huovinen based on [95,96]. The calculation was done in
2+1 dimensions assuming a boost-invariant longitudinal flow. The initial conditions were
fixed via a fit to thepT spectra of negatively charged particles and protons in Pb+Pb colli-
sions at the top SPS energy [97]. The used EoS assumed the 1-storder phase transition to
a QGP at a critical temperature ofT
 = 165 MeV. The hydrodynamical predictions were
calculated with 2 freeze-out temperatures,Tf = 120 MeV andTf = 160 MeV.
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Figure 9.1: Comparison between the hydrodynamical calculation and theCERES experimental results on� elliptic flow in semicentral (left) and central (right) events.

In Fig. 9.1 is shown a comparison betweenv2(pT ) for � hyperons emitted in semi-
central (left plot) and central (right plot) collisions andthe hydrodynamical calculations
described above. The model prediction with a lower freeze-out temperature ofTf =120 MeV overpredicts the data at anypT value. A better agreement between the theory
and the data can be achieved with a higher freeze-out temperature ofTf = 160 MeV. The
same behavior is observed comparing the pion flow from CERES to the same hydrody-
namical model [98].

The higher freeze-out temperature may as well be consistentwith the freeze-out pa-
rameters extracted from the inclusive transverse mass distributions [99]. Similar results
can be obtained by combining the hydrodynamical model withTf = 120 MeV together
with a transport model [100] or by a hydrodynamical model which including viscos-
ity [101].
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9.2 Comparison with STAR and NA49 experiment

A comparison of the CERES data with the results from the NA49 [102, 103] at the same
energy (

psNN = 17 GeV) and with the STAR results [104] at
psNN = 200 GeV are

shown in Fig. 9.2. The NA49 and CERES results are in a very goodagreement.
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Figure 9.2: Comparison of� elliptic
flow measured by CERES, STAR and
NA49.

Thev2 values measured at the RHIC energy are30 � 50% higher. Partly, this is due
to an effectively higher centrality (i.e. smaller�=�geo) in CERES as compared with the
STAR experiment. From the other side it is expected that thev2 values measured at the
RHIC energy are higher than those at the SPS energy due to the energy dependence of
the v2. If one rescales STAR data to the centrality range close to CERES data (5% �
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Figure 9.3: Comparison ofK0S el-
liptic flow measured by CERES and
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102 CHAPTER 9. COMPARISONS AND SCALINGS�=�geo � 17%) they become for� 25% smaller with respect to one plotted in Fig. 9.2,
but still they are higher than those measured by CERES and NA49 at the SPS energy.

Fig. 9.3 shows a comparison of theK0S elliptic flow measured by CERES and STAR
experiment. Similarly as in the case of thev2(�), the v2(K0S) measured at the RHIC
energy is higher than the one measured at the top SPS energy. This is a consequence of
the energy dependence ofv2 as well as of the fact the CERES experiment has a higher
centrality as compared to the STAR.

9.3 Mass Ordering Effect

Fig. 9.4 shows the elliptic flow magnitude of the��, low momentum protons,�, andK0S emitted in semicentral events. For� hyperons as well as for�� andK0S mesons,v2
increases monotonically withpT .
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Figure 9.4: Comparison between
the elliptic flow magnitude of the��, low momentum protons,�, andK0S emitted in semicentral events.

At small pT , up to� 1 GeV/c, heavier particle species have a smaller elliptic flow
magnitude with respect to the lighter ones. In the region of high pT , above� 2 GeV/c it
is the opposite. A rather clear mass ordering effect is observed. It is not possible to give
a clear statement aboutv2(K0S) at highpT due to poor statistics.

Table 9.1: The mass ordering effect betweenv2 of �, K0S , and�� at the top SPS energy.

smallpT highpTv2(�) < v2(K0S) < v2(��) v2(��) < v2(�)
As proton and� hyperon have similar masses, thev2 of low momentum identified

protons was used as a natural continuation of� v2(pT ) dependence at region of smallpT .
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9.4 Scaling to the Number of Constituent Quarks

Comparing the intensities of the meson and baryon elliptic flow gives the possibility to
get some knowledge about the mechanisms responsible for thehadronization of the dense
matter created in the heavy-ion collisions. Due to that two scaling scenarios were pro-
posed. In the first one, scaling to the number of the constituent quarks (nq) [105–107],
one needs to scale both,v2 andpT .
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scaled flow Figure 9.5: Comparison between
elliptic flow magnitude scaled to the
number of the constituent quarks
for the��, low momentum protons,�, andK0S emitted in semicentral
events.

Fig. 9.5 shows the scaled elliptic flow magnitudev2=nq for ��, �, andK0S againstpT=nq. The results are obtained from the semicentral class of events. While thev2 is
significantly different for all three kinds of particles at any pT , except at the intersecting
region around� 1:5 GeV/c, within errorsv2=nq vspT=nq is the same in the case of�, andK0S particles. There is an indication that highpT pions (pT > 1:1 GeV/c) shows scaling
behavior. A similar behavior is observed by the STAR experiment at RHIC [104].

Such a scenario is consistent with the coalescence mechanism where co-moving quarks
with highpT forming hadrons. In this case scaling to the number of the constituent quarks
shows the original momentum space azimuthal anisotropy formed at the early stage of the
collision. This scenario also argue for the existence of a strongly interacting parton sys-
tem formed at the early stage of the heavy-ion collision. Thedeviation from the scaling
behavior in the case of the low momentum�� may reflect the break-down of the coales-
cence mechanism at lowpT . This deviation may be also caused by the contribution of
pions from resonance decays [108, 109]. Alternatively, it may reflect the difficulty of a
constituent quark coalescence model to describe the production of pions whose masses
are significantly smaller than the assuemed constituent quark masses [105].
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9.5 Scaling to the Flavor Transverse RapidityyfsT
An important scaling prediction of the hydrodynamical theory is the so called flavor trans-
verse rapidityyfsT scaling [110–112]. In this scaling scenario,v2 of different particle
species should scale withyfsT = kmy2Tm. Herem is the mass of particle,yT is the trans-
verse rapidity defined asyT = sinh�1(pT=m) andkm is a mass dependent factor with a
value approximately equal to 1. In Table 9.2 are given thekm values for��, K0S and�
particle.

Table 9.2: Thekm values for��, K0S and� particle.�� K0S �km 1:2965 1:0415 0:9980
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elliptic flow magnitude scaled to the
transverse rapidityyfsT for the ��,�, protons andK0S emitted in semi-
central events.

Fig. 9.6 shows the values ofv2 for ��,�, protons andK0S emitted in semicentral events
scaled to theyfsT variable. Within statistical errors a rather good scaling is observed for
all particles. This can indicate a hydrodynamic behavior ofmatter created in heavy-ion
collisions at the highest SPS energy.
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CONCLUSIONS

In this thesis the elliptic transverse flow of particles measured by the CERES experiment
was investigated and discussed. A detailed investigation has been done for charged (��
and proton) and strange (� andK0S) particles emitted in rather central Pb+Au collisions
at the highest SPS energy. The data, collected by the CERES experiment which covers� = 2:05� 2:70 with full 2� azimuthal acceptance andpT sensitivity up to 4 GeV/c, are
very suitable for the elliptic flow investigations.

The huge statistics (� 5 � 109) of detected pions allowed very precise measurements
of their elliptic flow. After subtraction of the HBT correlation effect, the obtainedv2(pT )
dependence achieved a proper shape. Thev2 grows quadratically withpT at lowpT region.
At the intermediate region it has a linearpT dependence and it saturates at the highpT
region. The integrated pion elliptic flow smoothly decreases with the centrality. Only
protons with very low momenta (below 1.2 GeV/c) could be identified unambiguously
via the energy loss and the elliptic flow of these protons was reconstructed in order to
have a continuation of the� elliptic flow at the low-pT region due to the similar masses
of protons and the� hyperons.

The elliptic flow of� particles emitted in the semicentral collisions shows a typical
behavior. Thev2 value is close to zero up topT = 1 GeV/c and then it quickly rises up
to more than 10% at the highestpT . The integrated� elliptic flow decreases with the
centrality. Thev2 of theK0S particles grows withpT in the semicentral collisions.

The elliptic flow of mesons (�� andK0S) and baryons (protons and�) has been com-
pared. A mass ordering effect is observed. At smallpT , up to� 1 GeV/c, heavier particle
species have a smaller elliptic flow magnitude with respect to the lighter ones. In the
region of highpT , above� 2 GeV/c it is opposite. Due to the poorK0S statistics it is not
possible to give a clear statement aboutv2(K0S) at highpT .

In order to test the hydrodynamical models and the sensitivity to the EoS the measured� elliptic flow was used. The hydrodynamical calculation was done in 2+1 dimensions
assuming a boost-invariant longitudinal flow and the EoS with a 1-st order phase transition
to QGP at a critical temperature ofT
 = 165 MeV. The model prediction with a lower
freeze-out temperature ofTf = 120 MeV overpredicts the data, while a better agreement
between the theory and the data is achieved with a higher freeze-out temperature ofTf =160 MeV. The same behaviour is observed comparing the pion flow from CERES to the
same hydrodynamical model [98].

105



106 CHAPTER 10. CONCLUSIONS

The measured� elliptic flow was compared withv2 values observed with the STAR
experiment at RHIC and with the NA49 results. A very good agreement between two
independent measurements of the� elliptic flow at the top SPS energy was found. Thev2
values measured at the RHIC energy are higher than those at the SPS. Partly, this is due
to an effectively higher centrality in the CERES experimentas compared with the STAR
experiment. From the other side it is expected thatv2 values measured at the RHIC energy
are higher than those at the SPS energy due to the energy dependence of thev2.

The most interesting part of the results concern the scalingproperties of the elliptic
flow of different particle kinds. In order to get better insight into the origin of the collec-
tive flow a scaling to the number of the constituent quarks andthe transverse rapidityyfsT
scaling predicted by hydrodynamics was performed. Within the errors the elliptic flow of� andK0S particles scales well. At smallpT , pions do not scale, but it seems that at highpT the elliptic flow of pions is scaled to the number of the constituent quarks. Concerning
the other scaling scenario, so calledyfsT scaling shows that within the statistical errors all
three particle kinds are scaled reasonably well. Here arisequestions. If particles obeyed
theyfsT scaling, does the thermalization occurs at the top SPS energy? Even more, is the
QGP formed already at this energy?



Appendix A

VARIABLES

A.1 Rapidity and Pseudorapidity

A particle is characterized with the massm and the momentump = pk + pT which
could be decomposed into a longitudinal and transversal component with respect to the
direction of its movement. Someone can try to find another inertial system in whichpk = 0, i.e. p0 = pT . The velocity of that system (denoted with a ’) is connected with
rapidity. In order to find that connection one can write transformation formulae for energy
and momentum as E 0 = 
(E �V � p) = 
(E � V pk) (A.1)p0k = 
(pk �VE) (A.2)p0T = pT (A.3)

As the system of the interest is a system in whichp0k = 0, thenV = pk=E with �1 <V < 1 1. As the functiontanh satisfies the inequality�1 < tanh y < 1 one can writeV = tanh y = pk=E ) y = atanhV = atanh(pk=E) (A.4)

what is a definition of rapidity for a particular particle. From the following mathematical
identities atanhV = 12 ln 1 + V1� V = 12 ln 1 + pk=E1� pk=E (A.5)12 ln E + pkE � pk = 12 ln E + pkE � pk E + pkE + pk (A.6)12 ln(E + pkmT )2 = ln E + pkmT (A.7)

1Note that in the natural system of units
 is equal to1
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one obtains the geometrical definition of rapidity.
In the ultra-relativistic case (p2T � m2) the rapidity could be written asy � � ln pTp+ pk = � ln(tan �2) (A.8)

and with that one obtains the expression for the pseudorapidity.



Appendix B

FINITE GRANULARITY INdN�(K0S)=d�
B.1 Correction for the Finite Granularity in dN�(K0S)=d�

distributions

In order to increase the statistics of� andK0S particles indN�(K0S)=d� distributions, these
distributions are made in only 6� bins spanned from0Æ to 90Æ measured with respect to
the reaction plane. The problem of the finite granularity could appear in this case due
to the fact that the center of the bin does not correspond to the gravity center due to the
non-zero elliptic flow value. If that correction is large enough, the results have to be
corrected.

As a positive elliptic flow of� andK0S particles was observed (see for example Fig. 7.8
bottom) one can call the left side of the� bin as�high and the right side as�low. Theoret-
ically, in the case ofn-th harmonic, one can write the following relationsN / Z �high�low (1 + 2vn 
os[n(��	)℄)d� (B.1)= �high � �low + 2vnn fsin[n(�high �	)℄� sin[n(�low � 	)℄g (B.2)= �high � �low + 2vnn 2 sin[n(�high � �low)2 ℄ 
os[n(�high + �low)� 2n	2 ℄ (B.3)

From the other side, one has the measured~vn which is not corrected for the granularity
effect. The value of~vn can be expressed withN / (1 + 2~vn 
os[n(�high + �low2 � 	)℄(�high � �low) (B.4)

Correlating Eq. (B.1) and Eq. (B.4), one gets1

1Note that in the case of small��, the measured value~vn goes into its limit valuevn.
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110 APPENDIX B. FINITE GRANULARITY INDN�(K0S)=D�2vnn sin[n(�high � �low)2 ℄ = ~vn(�high � �low)) vn = n2��sin(n2��) ~vn (B.5)

where�� = �high � �low.
In the case of the elliptic flow (n = 2) the final equation becomes simplier:vn = ��sin(��)~vn (B.6)

In the case of� elliptic flow, according to the Eq. (B.6) and the fact that binsize in
the analysis was�� = 90Æ=6 = 15Æ = 0:2618 rad it is easy to see that the correction
factor��= sin(��) is equal to 1.0115152 what is negligible in this case.
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[24] E. Lärmann and O. Philipsen, Ann. Rev. Nucl. Part. Sci.53, 163 (2003).

[25] J. D. Bjorken, Phys. Rev.D27, 140 (1983).

[26] H. Satz, Nucl. Phys.A715, 3 (2003).

[27] J. Stachel, Nucl. Phys.A654, 119c (1999), nucl-th/9903007.

[28] P. Braun-Munzinger, Nucl. Phys.A663, 183 (2000), nucl-th/9909014.

[29] L. D. Landau, Izv. Akad. Nauk Ser. Fiz17, 51 (1953).

[30] L. D. Landau and E. M. Lifshitz, Fluid Mechanics(Pergamon Press, Oxford,
1959).

[31] E. V. Shuryak, Prog. Part. Nucl. Phys.53, 273 (2004).
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