Applications of Effective Theories in *B* Decays (weak eff. Hamiltonian, factorization, HQET, SCET, and all that)

Thorsten Feldmann

Neckarzimmern, March 2019

DFG TRR 257 particle physics phenomenology after the Higgs discovery

DFG FOR 1873 quark flavour physics and

effective field theories

Th. Feldmann

Disclaimer:

The dynamics of strong and weak interactions in B-decays is very complex and has many faces ...

... I will not be able to cover everything, ...

... but I hope that some theoretical and phenomenological concepts become clearer.

... Some introductory remarks ...

Physical processes involve Different typical Energy/Length Scales:

⇒ Short-distance Dynamics vs. Long-distance Dynamics

• e.g. for *b*-decays:

New physics	:	$\delta x \lesssim 1/\Lambda_{ m NP}$
Electroweak interactions	:	$\delta x \sim 1/M_W$
Short-distance QCD(QED) corrections	:	$\delta x \sim 1/M_W ightarrow 1/m_b$
Hadronic effects	:	$\delta x \sim 1/m_b$ (perturbative)
		$\delta x \ge 1/\Lambda_{\text{had}}$ (non-perturbative)

- → Model-independent Parametrization of NP Effects
- → Sequence of Effective Field Theories (EFT)
- → Perturbative vs. Non-Perturbative Strong Interaction Effects
- → QFT-Definition of Hadronic Input Parameters (Functions)

Th. Feldmann

• Factorization:

Separation of Scales in (RG-improved) Perturbation Theory

2 Simplification of Exclusive Hadronic Matrix Elements

Operator-Product Expansion (OPE):

Short-distance expansion ($x \to 0$) of time-ordered operator products, corresponding to $|q^2| \to \infty$ in Fourier transform:

$$\int d^4x \, e^{iq \cdot x} \, T(\phi(x) \, \phi(0)) = \sum_i c_i(q^2) \, \mathcal{O}_i(0) \qquad \text{"Wilson Coefficients"} \, c_i(q^2) \, \mathcal{O}_i(0)$$

• Effective (Quantum) Field Theories:

Effective Lagrangian / Hamiltonian:

- Feynman rules reproduce the dynamics of low-energy modes.
- High-energy (short-distance) information in coefficient (functions).

Outline

• Example: effectcive Hamiltonian for $b ightarrow c d ar{u}$ decays

- separation of scales in loop diagrams
- current-current operators (chirality, colour)
- matching and running of Wilson coefficients
- Generalization to $b \rightarrow s(d)$ transitions
 - strong penguin operators
 - electroweak operators

• From b o s to $B o K^* \ell^+ \ell^-$

- naive factorization
- small hadronic recoil (HQET)
- large hadronic recoil (SCET/QCDF)

Example: $b \rightarrow cd\bar{u}$ decays

$b ightarrow cd ar{u}$ decay at Born level

Fermi model

effective coupling \times local 4-quark operator

Energy/Momentum transfer limited by mass of decaying b-quark.

• *b*-quark mass much smaller than *W*-boson mass.

 $|q| \leq m_b \ll M_W$

Effective Theory:

 Analogously to muon decay, transition described in terms of current-current interaction, with left-handed charged currents

 $J_{\alpha}^{(b \to c)} = \boldsymbol{V_{cb}} \left[\bar{c} \gamma_{\alpha} (1 - \gamma_5) \, b \right] \,, \qquad \overline{J}_{\beta}^{(d \to u)} = \boldsymbol{V_{ud}^*} \left[\bar{d} \gamma_{\beta} (1 - \gamma_5) \, u \right]$

 Effective operators only contain light fields (!) ("light" quarks, leptons, gluons, photons).

Effect of large scale M_W in effective Fermi coupling constant:

$$rac{g^2}{8M_W^2} \longrightarrow rac{G_F}{\sqrt{2}} \simeq 1.16639 \cdot 10^{-5} \, {
m GeV}^{-2}$$

Quantum-loop corrections to $b \rightarrow c d \bar{u}$ decay

 4-momentum of the *W*-boson in the loop is an internal integration parameter d⁴q, each component taking values between −∞ and +∞.

 \Rightarrow We cannot simply expand in $|q|/M_W!$

 \Rightarrow Need a method to separate the cases $|q| \gtrsim M_W$ and $|q| \ll M_W$.

IR and UV regions in the Effective Theory

IR and UV regions in the Effective Theory

IR and UV regions in the Effective Theory

full theory

$$I(lpha_{s}; rac{m_{b}}{M_{w}}, rac{m_{c}}{m_{b}})/G_{F}$$
 \simeq

 $\langle \mathcal{O} \rangle^{\text{loop}}(\alpha_{s}; \frac{m_{b}}{\mu}, \frac{m_{c}}{m_{b}}) +$

\$

1-loop matrix element of operator \mathcal{O} in Eff. Th.

- independent of M_W
- UV divergent $\rightarrow \mu$

 $= \text{ IR region } \left(\begin{array}{c} |q| \ll M_W \\ M_W \to \infty \end{array} \right) + \text{ UV region } \left(\begin{array}{c} |q| \gtrsim M_W \\ m_{b,c} \to 0 \end{array} \right)$

 $C'(\alpha_s; \frac{\mu}{m_W}) \times \langle \mathcal{O}' \rangle^{\text{tree}}$

+

\$

1-loop coefficient for new operator \mathcal{O}' in EFT

- independent of m_{b,c}
- IR divergent $\rightarrow \mu$

Effective Operators for $b \rightarrow c d \bar{u}$

- short-distance QCD corrections preserve chirality;
- quark-gluon vertices induce second colour structure.

$$H_{
m eff} = rac{G_F}{\sqrt{2}} V_{cb} V_{ud}^* \sum_{i=1,2} C_i(\mu) \mathcal{O}_i + {
m h.c.} \qquad (b o cdar{u})$$

• Current-Current Operators: $(b \rightarrow cd\bar{u}, \text{ analogously for } b \rightarrow qq'\bar{q}'' \text{ decays})$

$$\begin{aligned} \mathcal{O}_1 &= (\overline{d}_L^a \gamma_\alpha u_L^b) (\overline{c}_L^b \gamma^\alpha b_L^a) \\ \mathcal{O}_2 &= (\overline{d}_L^a \gamma_\alpha u_L^a) (\overline{c}_L^b \gamma^\alpha b_L^b) \end{aligned}$$

• The Wilson Coefficients $C_i(\mu)$ contain all information about **Short-Distance Physics** \equiv Dynamics above a Scale μ

Wilson Coefficients in Perturbation Theory

• 1-loop result:

$$C_{i}(\mu) = \left\{ \begin{array}{c} 0\\ 1 \end{array} \right\} + \frac{\alpha_{s}(\mu)}{4\pi} \left(\ln \frac{\mu^{2}}{M_{W}^{2}} + \frac{11}{6} \right) \left\{ \begin{array}{c} 3\\ -1 \end{array} \right\} + \mathcal{O}(\alpha_{s}^{2})$$

Question : How do we choose the renormalization scale μ ?

Wilson Coefficients in Perturbation Theory

• 1-loop result:

$$C_{i}(\mu) = \left\{ \begin{array}{c} 0\\1 \end{array} \right\} + \frac{\alpha_{s}(\mu)}{4\pi} \left(\ln \frac{\mu^{2}}{M_{W}^{2}} + \frac{11}{6} \right) \left\{ \begin{array}{c} 3\\-1 \end{array} \right\} + \mathcal{O}(\alpha_{s}^{2})$$

Question : How do we choose the renormalization scale μ ?

Answer :

"Matching"

- For $\mu \sim M_W$ the logarithmic term is small, and $\frac{\alpha_s(M_W)}{\pi} \ll 1$
- $\rightarrow C_i(M_W)$ can be calculated in Fixed-order Perturbation Theory
 - In this context, M_W is called the Matching Scale.

Anomalous Dimensions

- In order to compare with experiment / hadronic models, the matrix elements of EFT operators are needed at low-energy scale μ ~ m_b
 - Only the combination

$$\sum_{i} C_{i}(\mu) \langle \mathcal{O}_{i} \rangle (\mu)$$

is μ -independent (in perturbation theory).

⇒ Need Wilson coefficients at low scale !

Scale dependence can be calculated in perturbation theory:

 Loop diagrams in EFT are UV divergent ⇒ anomalous dimensions (matrix):

$$rac{\partial}{\partial \ln \mu} \, C_i(\mu) \equiv \gamma_{ji}(\mu) \, C_j(\mu) = \left(rac{lpha_{s}(\mu)}{4\pi} \, \gamma_{ji}^{(1)} + \ldots
ight) C_j(\mu)$$

• $\gamma = \gamma(\alpha_s)$ has a perturbative expansion.

Th. Feldmann

RG Improvement ("running")

In our case:

$$\gamma^{(1)} = \begin{pmatrix} -2 & 6 \\ 6 & -2 \end{pmatrix} \qquad \begin{cases} \text{Eigenvectors: } C_{\pm} = \frac{1}{\sqrt{2}}(C_2 \pm C_1) \\ \text{Eigenvalues: } \gamma^{(1)}_{\pm} = +4, -8 \end{cases}$$

• Formal solution of differential equation:

(separation of variables)

$$\ln \frac{C_{\pm}(\mu)}{C_{\pm}(M)} = \int_{\ln M}^{\ln \mu} d\ln \mu' \gamma_{\pm}(\mu') = \int_{\alpha_s(M)}^{\alpha_s(\mu)} \frac{d\alpha_s}{2\beta(\alpha_s)} \gamma_{\pm}(\alpha_s)$$

• Perturbative expansion of anomalous dimension and β -function:

$$\gamma = \frac{\alpha_s}{4\pi} \gamma^{(1)} + \dots, \qquad 2\beta \equiv \frac{d\alpha_s}{d \ln \mu} = -\frac{2\beta_0}{4\pi} \alpha_s^2 + \dots$$
$$C_{\pm}(\mu) \simeq C_{\pm}(M_W) \cdot \left(\frac{\alpha_s(\mu)}{\alpha_s(M_W)}\right)^{-\gamma_{\pm}^{(1)}/2\beta_0} \qquad \text{(LeadingLogApprox)}$$

Numerical values for $C_{1,2}$ in the SM

[Buchalla/Buras/Lautenbacher 96]

operator:	\mathcal{O}_1	\mathcal{O}_2
$C_i(m_b)$:	-0.514 (LL)	1.026 (LL)
	-0.303 (NLL)	1.008 (NLL)

(modulo parametric uncertainties from M_W , m_b , $\alpha_s(M_Z)$ and QED corr.)

(potential) New Physics modifications:

new left-handed interactions (incl. new phases)

 $C_{1,2}(M_W) \rightarrow C_{1,2}(M_W) + \delta_{\mathrm{NP}}(M_W, M_{\mathrm{NP}})$

new chiral structures ⇒ extend operator basis (LR,RR currents)

Next Example: $b \rightarrow s(d)$ transitions

$b \rightarrow s(d) q \bar{q}$ decays – Current-current operators

Now, there are two possible flavour structures:

$$\begin{array}{lll} V_{ub} V_{us(d)}^{*} \left(\bar{u}_{L} \gamma_{\mu} b_{L} \right) (\bar{s}(d)_{L} \gamma^{\mu} u_{L}) & \equiv & \lambda_{u} \mathcal{O}_{2}^{(u)} \,, \\ V_{cb} V_{cs(d)}^{*} \left(\bar{c}_{L} \gamma_{\mu} b_{L} \right) (\bar{s}(d)_{L} \gamma^{\mu} c_{L}) & \equiv & \lambda_{c} \mathcal{O}_{2}^{(c)} \,, \end{array}$$

• Again, α_s corrections induce independent colour structures $\mathcal{O}_1^{(u,c)}$.

$b \rightarrow s(d) q \bar{q}$ decays – strong penguin operators

● New feature: **Penguin Diagrams** → additional operator structures

smaller Wilson coefficients

(suppressed by α_{s} / loop factor)

- Strong penguin operators: O₃₋₆
- Chromomagnetic operator: O^g₈

Question : CKM factor of Penguin Pperators?	(for $m_{u,c} \ll$

Th. Feldmanr	n
--------------	---

 m_t)

$b \rightarrow s(d) \, q \bar{q}$ decays – strong penguin operators

New feature: Penguin Diagrams → additional operator structures

smaller Wilson coefficients (suppressed by α_s / loop factor)

- Strong penguin operators: O₃₋₆
- Chromomagnetic operator: O^g₈

Question : CKM factor of Penguin Pperators? (for $m_{u,c} \ll m_t$) **Answer :** $-\lambda_t = (\lambda_u + \lambda_c) = -V_{tb}V^*_{ts(d)}$

Th. Feldmann

Eff. Hamiltonian for $b \rightarrow s(d)q\bar{q}$ decays

(QCD only)

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{i=1,2} C_i(\mu) \left(\lambda_u \mathcal{O}_i^{(u)} + \lambda_c \mathcal{O}_i^{(c)} \right) \\ - \frac{G_F}{\sqrt{2}} \lambda_t \sum_{i=3}^6 C_i(\mu) \mathcal{O}_i - \frac{G_F}{\sqrt{2}} \lambda_t C_8^g(\mu) \mathcal{O}_8^g$$

$$\begin{aligned} \mathcal{O}_3 &= (\bar{s}_L^a \gamma_\mu b_L^a) \sum_{q \neq t} (\bar{q}_L^b \gamma^\mu q_L^b) \,, \qquad \mathcal{O}_4 &= (\bar{s}_L^a \gamma_\mu b_L^b) \sum_{q \neq t} (\bar{q}_L^b \gamma^\mu q_L^a) \,, \\ \mathcal{O}_5 &= (\bar{s}_L^a \gamma_\mu b_L^a) \sum_{q \neq t} (\bar{q}_R^b \gamma^\mu q_R^b) \,, \qquad \mathcal{O}_6 &= (\bar{s}_L^a \gamma_\mu b_L^b) \sum_{q \neq t} (\bar{q}_R^b \gamma^\mu q_R^a) \,, \\ \mathcal{O}_8^g &= \frac{g_s}{8\pi^2} \, m_b \left(\bar{s}_L \, \sigma^{\mu\nu} \, T^A \, b_R \right) \, G_{\mu\nu}^A \,. \end{aligned}$$

- gluon couples to left- and right-handed currents.
- chromomagnetic operator requires one chirality flip ! (m_s is set to zero)

Matching and running for strong penguin operators

Matching coefficients depend on top mass,

$$C_i = C_i(\mu, x_t), \qquad x_t = m_t^2/M_W^2$$

 Matching of chromomagnetic operator is scheme-dependent. Usually, one considers scheme-independent linear combination:

$$C_8^{g,\,\mathrm{eff}}=C_8^g+\sum_{i=1}^6 Z_i\,C_i$$

• Again, operators mix under RG running

 $(\rightarrow \text{ anomalous-dimension matrix})$

• Penguin and box diagrams with additional γ/Z exchange: \rightarrow Electroweak Penguin Operators \mathcal{O}_{7-10}

$$\begin{aligned} \mathcal{O}_7 &= & \frac{2}{3} \left(\bar{s}^a_L \gamma_\mu b^a_L \right) \sum_{q \neq t} \, e_q \left(\bar{q}^b_L \gamma^\mu q^b_L \right), \quad \mathcal{O}_8 \,= \, \frac{2}{3} \left(\bar{s}^a_L \gamma_\mu b^b_L \right) \sum_{q \neq t} \, e_q \left(\bar{q}^b_L \gamma^\mu q^a_L \right), \\ \mathcal{O}_9 &= & \frac{2}{3} \left(\bar{s}^a_L \gamma_\mu b^a_L \right) \sum_{q \neq t} \, e_q \left(\bar{q}^b_R \gamma^\mu q^b_R \right), \quad \mathcal{O}_{10} \,= \, \frac{2}{3} \left(\bar{s}^a_L \gamma_\mu b^b_L \right) \sum_{q \neq t} \, e_q \left(\bar{q}^b_R \gamma^\mu q^a_R \right). \end{aligned}$$

depend on electromagnetic charge of final state quarks !

- → Electromagnetic operators O_ℓ main contribution to b → s(d)γ and b → s(d)ℓ⁺ℓ⁻ decays.
- → Semileptonic operators O_{9V}, O_{10A} another main contribution to b → sℓ⁺ℓ⁻ decays.

[see below]

 \rightarrow electroweak corrections to matching coefficients

• Penguin and box diagrams with additional γ/Z exchange:

- \rightarrow Electroweak Penguin Operators \mathcal{O}_{7-10} depend on electromagnetic charge of final state quarks !
- \rightarrow Electromagnetic operators \mathcal{O}_7^{γ}

$$\mathcal{O}_7^\gamma = rac{e}{8\pi^2} \, m_b \left(ar{s}_L \, \sigma_{\mu
u} \, b_R
ight) F^{\mu
u}$$

main contribution to $b \rightarrow s(d)\gamma$ and $b \rightarrow s(d)\ell^+\ell^-$ decays.

→ Semileptonic operators O_{9V}, O_{10A}
 another main contribution to b → sℓ⁺ℓ⁻ decays.

[see below]

ightarrow electroweak corrections to matching coefficients

- Penguin and box diagrams with additional γ/Z exchange:
 - \rightarrow Electroweak Penguin Operators \mathcal{O}_{7-10} depend on electromagnetic charge of final state quarks !
 - → Electromagnetic operators \mathcal{O}_7^{γ} main contribution to $b \to s(d)\gamma$ and $b \to s(d)\ell^+\ell^-$ decays.
 - \rightarrow Semileptonic operators $\mathcal{O}_{9V}, \mathcal{O}_{10A}$

$$\begin{aligned} \mathcal{O}_{9V} &= (\bar{\mathbf{s}}_L \gamma_\mu \, \mathbf{b}_L) (\bar{\ell} \, \gamma^\mu \, \ell) \,, \\ \mathcal{O}_{10A} &= (\bar{\mathbf{s}}_L \gamma_\mu \, \mathbf{b}_L) (\bar{\ell} \, \gamma^\mu \gamma_5 \, \ell) \end{aligned}$$

another main contribution to $b \rightarrow s\ell^+\ell^-$ decays.

[see below]

ightarrow electroweak corrections to matching coefficients.

• Penguin and box diagrams with additional γ/Z exchange:

- \rightarrow Electroweak Penguin Operators \mathcal{O}_{7-10} depend on electromagnetic charge of final state quarks !
- → Electromagnetic operators \mathcal{O}_7^{γ} main contribution to $b \to s(d)\gamma$ and $b \to s(d)\ell^+\ell^-$ decays.
- → Semileptonic operators \mathcal{O}_{9V} , \mathcal{O}_{10A} another main contribution to $b \rightarrow s\ell^+\ell^-$ decays.

[see below]

 \rightarrow electroweak corrections to matching coefficients

Summary: Effective Theory for *b*-quark decays

"Full theory"	↔ all modes propagate
Parameters:	$M_{W,Z}, M_H, m_t, m_q, g, g', \alpha_s \ldots$

$$\uparrow \mu > M_W$$

 $C_i(M_W) = C_i\Big|_{\text{tree}} + \delta_i^{(1)} \frac{\alpha_s(M_W)}{4\pi} + \dots$ matching: $\mu \sim M_W$

"Eff. theory" \leftrightarrow low-energy modes propagate. High-energy modes are "integrated out". $\downarrow \mu < M_W$ Parameters: $m_b, m_c, G_F, \alpha_s, C_i(\mu) \dots$

 $\frac{\partial}{\partial \ln \mu} C_i(\mu) = \gamma_{ji}(\mu) C_j(\mu)$ anomalous dimensions

Expectation values of operators $\langle O_i \rangle$ at $\mu = m_b$. All dependence on M_W absorbed into $C_i(m_b)$

resummation of logs

Th. Feldmann

From $b \to s$ to $B \to K^* \ell^+ \ell^-$

Naive factorization and $B \rightarrow K^*$ transition form factors

0th approximation:

Hadronic amplitudes expressed in terms of seven Form Factors for Tensor, Vector, and Axialvector $b \rightarrow s$ currents,

$$T_{1,2,3}(q^2), \quad A_{0,1,2}(q^2), \quad V(q^2)$$

multiplied by Wilson Coefficients $C_{7,9,10}(\mu)$ and kinematic factors.

• form factors include non-perturbative bound-state effects for $B \rightarrow K^*$ transitions

• to be taken from light-cone sum rules (small q^2) or lattice QCD (large q^2)

Th. Feldmann

Naive factorization and $B \rightarrow K^*$ transition form factors

0th approximation:

Hadronic amplitudes expressed in terms of seven Form Factors for Tensor, Vector, and Axialvector $b \rightarrow s$ currents,

$$T_{1,2,3}(q^2), \quad A_{0,1,2}(q^2), \quad V(q^2)$$

multiplied by Wilson Coefficients $C_{7,9,10}(\mu)$ and kinematic factors.

• form factors include non-perturbative bound-state effects for $B \rightarrow K^*$ transitions

• to be taken from light-cone sum rules (small q^2) or lattice QCD (large q^2)

Th. Feldmann

The case of small hadronic recoil energy \rightarrow HQET

The heavy *b*-quark:

Heavy quark approximately behaves as Static Source of Colour

 $p_b^\mu = m_b v^\mu + k^\mu$, with $|k^\mu| \ll m_b$

 $k^{\mu}: \text{ soft (residual) momentum.} \qquad v^{\mu} = (1, \vec{0}): B\text{-meson velocity.}$ $\bullet \text{ The } b\text{-quark propagator is approximated as}$ $\frac{i}{\not{p}_b - m_b + i\epsilon} = \frac{i(\not{p}_b + m_b)}{p_b^2 - m_b^2 + i\epsilon} \simeq \frac{im_b(\not{v} + 1)}{2m_b v \cdot k + i\epsilon} = \frac{i}{v \cdot k + i\epsilon} \frac{1 + \not{v}}{2}$

This corresponds to a kinetic term for an effective *b*-quark field h_v

 $\mathcal{L}_{\mathrm{kin}} = \bar{h}_{v} \left(i \, v \cdot \partial \right) h_{v}, \quad \text{with} \left(\psi - 1 \right) h_{v} = 0$

→ Heavy Quark Effective Theory (HQET)

The case of small hadronic recoil energy \rightarrow HQET

 "full theory" (QCD with weak-decay currents) matched onto HQET, only contains the "good components" of the *b*-quark Dirac spinor,

 $b(x) \rightarrow e^{-im_b v \cdot x} h_v(x)$, with $\psi h_v = h_v$ $(\mu \le m_b)$

QCD part:

 $\bar{b}(x) (i \not D - m_b) b(x) \longrightarrow \bar{h}_v(x) (iv \cdot D) h_v(x) + \dots$

decay currents, e.g.

$$\bar{q}(x) \Gamma b(x) \longrightarrow \sum_{i} c_{i}^{\Gamma}(\mu) e^{-im_{b}v \cdot x} \bar{q}(x) \Gamma_{i} h_{v}(x) + \dots$$

Consequences:

- \Rightarrow relative orientation of heavy-quark spin irrelevant in the limit $m_b \rightarrow \infty$
- \Rightarrow reduction of independent $B \rightarrow K^*$ form factors from 7 \rightarrow 4
- \Rightarrow additional gluon-radiation costs factors of $1/m_b$ (higher-dim. operators in HQET)

Th. Feldmann

Radiative corrections to symmetry relations in HQET

NLO vertex corrections to matching coefficients:

Remember:

- QCD@ m_b : hard gluons (with $|p| \sim m_b$) and soft gluons ($|p| \ll m_b$)
- HQET@mb: only soft gluons

radiative corrections to form-factor symmetry relations (from hard gluons)

• calculable in perturbation theory, since $\alpha_s(m_b) \ll 1$

Th. Feldmann

Also Hadronic Operators contribute:

• LO:

• Effect can be absorbed into effective Wilson coefficients,

$$C_7^{\text{eff}} = C_7 + \sum_{i=1}^6 y_i C_i, \qquad C_9^{\text{eff}}(q^2) = C_9 + \sum_{i=1}^6 f_i(q^2) C_i$$

removes scheme-dependence in the definition of Wilson coefficients (see above)

Th. Feldmann
Also Hadronic Operators contribute:

O(α_s(m_b)) contributions require evaluation of 2-loop diagrams
Higher-order terms have sizeable numerical impact!

Further Complications:

Quark loops can form hadronic vector resonances if $q^2 \simeq m_V^2$

● Particularly relevant for charm loop ↔ charmonium resonances

e.g. $B \to J/\psi (\to \ell^+ \ell^-) K^* \dots$

- Requires some modelling of "quark-hadron duality" assumption
- Resonant contributions interfere with (large) tree-level contribution from C₉ ⇒ sensitive to real part of charm loop (not a Breit-Wigner) (in contrast to R-ratio in e⁺e⁻ → hadrons ~ imaginary part of quark loops)
- HQET analysis only valid for q^2 above narrow $\bar{c}c$ states $(J/\psi, \psi')$
- theory predictions must be averaged over sufficiently large region of q²

The case of large hadronic recoil energy \rightarrow SCET

Fast (massless) light quarks in K^* with large energy $E_{K^*} \sim O(m_b/2)$:

Quarks move approximately collinear to their parent mesons.

$$p^{\mu}_{\rm coll} = p_+ \frac{n^{\mu}_-}{2} + p^{\mu}_\perp + p_- \frac{\bar{n}^{\mu}_+}{2},$$

 $n_{\pm}^{\mu} = (1, 0_{\perp}, \pm 1)$: light-like.

with $p_{-} \ll |p_{+}| \ll p_{+}$

Collinear quark propagator is approximated as

$$\frac{i\,p_{\rm coll}}{p_{\rm coll}^2+i\epsilon} \simeq \frac{i\,p_+\not p_-}{p_+p_-+p_\perp^2+i\epsilon} \quad = \quad \frac{i}{p_-+p_\perp^2/p_++i\epsilon}\,\frac{\not p_-}{2}$$

This corresponds to a kinetic term for an effective collinear field ξ_c

$$\mathcal{L}_{\rm kin} = \bar{\xi}_c \left(i \, n_- \cdot D + i \not D_\perp \frac{1}{i n_+ D} \, i \not D_\perp \right) \frac{\not h_+}{2} \, \xi_c \,, \qquad \text{with} \quad \not h_- \, \xi_c = 0$$

→ Soft Collinear Effective Theory (SCET)

Th. Feldmann

 p^{μ}

The case of large hadronic recoil energy \rightarrow SCET

Soft-collinear interactions:

Invariant mass of a gluon coupled to soft-collinear quark current:

$$(k_{\text{soft}} - p_{\text{coll}})^2 \simeq -p_+ (n_- \cdot k) \sim \mathcal{O}(E \Lambda_{\text{had}})$$

 \rightarrow hard-collinear modes

(relevant for spectator interactions)

Subtlety: Soft-collinear vertices have to be **multipole-expanded** according to the different sizes for the typical wave-lengths involved.

Heavy-to-light currents:

A generic heavy-to-light current (with arbitrary Dirac matrix Γ) matches onto:

 $\bar{q}(0) \Gamma Q(0) \longrightarrow \bar{\xi}_c(0) \Gamma h_v(0) + \dots$

→ Soft Collinear Effective Theory (SCET)

\Rightarrow distinguish different kind of modes for light quarks and gluons:

name	energy	$ ec{\pmb{p}}_z $	$ m{p}^2 , ec{m{p}}_{\perp}^2 $
"hard":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b^2)$
"hard-collinear":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b \Lambda_{had})$
"collinear":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(\Lambda_{\rm had}^2)$
"soft":	$\mathcal{O}(\Lambda_{had})$	$\mathcal{O}(\Lambda_{had})$	$\mathcal{O}(\Lambda_{\rm had}^2)$

\Rightarrow distinguish different kind of modes for light quarks and gluons:

	name	energy	$ \vec{p}_z $	$ p^2 , ec{p}_{\perp}^2 $
_	"hard":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b^2)$
	"hard-collinear":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b \Lambda_{had})$
	"collinear":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(\Lambda_{\rm had}^2)$
	"soft":	$\mathcal{O}(\Lambda_{had})$	$\mathcal{O}(\Lambda_{had})$	$\mathcal{O}(\Lambda_{\rm had}^2)$

two-step matching:

remove hard modes → SCET-1 × HQET

remove hard-collinear modes —> SCET-2 × HQET

\Rightarrow distinguish different kind of modes for light quarks and gluons:

name	energy	$ \vec{p}_z $	$ oldsymbol{p}^2 , oldsymbol{ec{p}}_{oldsymbol{\perp}}^2 $	
"hard":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b^2)$	
"hard-collinear":	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b)$	$\mathcal{O}(m_b \Lambda_{had})$	
"collinear": "soft":	$\mathcal{O}(m_b) \ \mathcal{O}(\Lambda_{ ext{had}})$	$\mathcal{O}(m_b) \ \mathcal{O}(\Lambda_{ ext{had}})$	$egin{aligned} \mathcal{O}(\Lambda_{ ext{had}}^2) \ \mathcal{O}(\Lambda_{ ext{had}}^2) \end{aligned}$	

two-step matching:

- remove hard modes \longrightarrow SCET-1 \times HQET
- remove hard-collinear modes \longrightarrow SCET-2 \times HQET

Form-factor relations in SCET

• energetic quarks \rightarrow two components of the Dirac spinor are subleading:

collinear fields:
$$q(x) \rightarrow \frac{\not p_- \eta_+}{4} \xi_c(x)$$
,

 \Rightarrow further reduction of independent form factors in $B \rightarrow K^*$

7 (QCD) \rightarrow 4 (HQET) \rightarrow 2 (SCET \times HQET)

- leading-order predictions depend on less hadronic unknowns
- Feynman rules for perturbative corrections in SCET more complicated
- power corrections $\sim 1/E$ might be more important, since $E \lesssim m_b/2$

?

Radiative corrections to form-factor relations in SCET

- vertex diagrams from integrating out hard modes (similar as for HQET – see above)
- new feature:

spectator diagrams from integrating out hard-collinear modes

- contribute at leading power of $1/m_b$ expansion
- perturbatively calculable as long as $\alpha_s \ll 1$ for $\mu^2 \sim m_b \Lambda_{\rm had}$
- new hadronic input functions that describe the momentum distribution of spectator quarks → light-cone distribution amplitudes for *B*-meson and *K**-mesons.

• Phenomenologically relevant:

$$\langle \omega^{-1} \rangle_B = \int_0^\infty \frac{d\omega}{\omega} \phi_B(\omega) \approx 2 \text{ GeV}^{-1}$$
 (at $\mu = \sqrt{m_b \Lambda} \simeq 1.5 \text{ GeV}$)

(from QCD sum rules [Braun/Ivanov/Korchemsky]) (from HQET parameters [Lee/Neubert])

Further complications:

 spectator scattering with hadronic operators, when virtual photon is radiated from any of the internal quark lines !

- hadronic input functions are the same as above (i.e. LCDAs)
- all internal dynamics is perturbative, as long as $m_b \ll \Lambda_{\rm had}$
- but power corrections $\sim \Lambda_{\rm had}/m_b$ may spoil the picture ...

etc.

Further complications:

- also, some annihilation topologies are leading power
- no α_s suppression (but small Wilson coefficient and/or CKM factors)

 when a time-like photon is radiated from an internal quark line, it very much behaves like a vector meson (same quantum numbers)

Using dispersion relations / analyticity

Idea:

[Bobeth et al. 17]

(here: for γ -radiation of charm-loop only)

• make use of theoretical predictions for unphysical kinematics, with *space-like* momenta,

 $-m_b^2 \ll -q^2 \ll 0$

• perform clever change of variables, encorporating the open-charm threshold

$$z(q^2) \equiv rac{\sqrt{4M_D^2-q^2}-\sqrt{4M_D^2-t_0}}{\sqrt{4M_D^2-q^2}+\sqrt{4M_D^2-t_0}}$$

where the parameter t_0 can be chosen to minimize |z| in a chosen q^2 -interval. (for instance |z| < 0.52 for $-7 \text{ GeV}^2 \le q^2 \le M_{ab(2S)}^2$)

• truncated Taylor expansion in the new variable z

• include information from resonant decays $B \to J/\psi(\psi') [\to \ell^+ \ell^-] K^*$

 \Rightarrow theory predictions can be extended to values $m_{\rho}^2 \ll q^2 < M_{\psi(2s)}^2$

Th. Feldmann

State-of-the-art predictions for $B \rightarrow K^* \mu^+ \mu^-$

E.g. the famous angular observable P'_5 :

[[]Bobeth/Chrzaszcz/van Dyk/Virto]

Weak *b*-quark decays described by Effective Hamiltonian:

- Current-current and Penguin and Box operators.
- Wilson Coefficients encode short-distance dynamics in SM or NP.
- QCD effects between m_W and m_b via **Renormalization-Group**.

Exclusive Amplitudes for semi-leptonic FCNC decays:

- Hadronic Matrix Elements of \mathcal{O}_i contain QCD dynamics below m_b .
- "Naive" Factorization in terms of form factors.
- Factorization Theorems: soft and collinear modes in HQET / SCET.

Weak *b*-quark decays described by Effective Hamiltonian:

- Current-current and Penguin and Box operators.
- Wilson Coefficients encode short-distance dynamics in SM or NP.
- QCD effects between m_W and m_b via **Renormalization-Group**.

Exclusive Amplitudes for semi-leptonic FCNC decays:

- Hadronic Matrix Elements of O_i contain QCD dynamics below m_b .
- "Naive" Factorization in terms of form factors.
- Factorization Theorems: soft and collinear modes in HQET / SCET.

Summary

"When looking for New Physics in Beauty,do not forget about the Beautiful Complexity of Old Physics !"

Backup Slides

From flavour anomalies to SMEFT

- Low-energy perspective: Explain current flavour anomalies by significant change of the Wilson coefficients C₉ and/or C₁₀ at the electroweak scale.
- BSM perspective: $b \rightarrow s\ell^+\ell^-$ operators receive additional contributions from (virtual) exchange of new heavy particles, (e.g. of leptoquarks or Z'-bosons.

Model-independent approach \rightarrow SMEFT

- use EFT framework, if new particles are much heavier than 200 GeV.
- construct effective operator basis from requiring manifest symmetry with respect to the SM gauge group, $SU(3)_C \times SU(2)_L \times U(1)_Y$.
- *all* SM particles (quarks, leptons, gauge bosons, Higgs doublet) may appear explicitly as fields in the effective operators.
- effect of new particles encoded in (a priori) unknown Wilson coefficients.

E.g. analogue of the operator O_9 written in SM-invariant manner as

$$-\frac{C_{S}^{ij\alpha\beta}}{\bar{\Lambda}_{NP}^{2}}\left(\bar{Q}_{L}^{i}\gamma_{\mu}Q_{L}^{j}\right)(\bar{L}^{\alpha}\gamma^{\mu}L^{\beta}) \quad \text{or} \quad -\frac{C_{T}^{ij\alpha\beta}}{\bar{\Lambda}_{NP}^{2}}\left(\bar{Q}_{L}^{j}\gamma_{\mu}\sigma^{a}Q_{L}^{j}\right)(\bar{L}^{\alpha}\gamma^{\mu}\sigma^{a}L^{\beta})$$

where Q_L and L are $SU(2)_L$ quark and lepton doublets.

Th. Feldmann

- In experiment, we cannot see the quark transition directly.
- Rather, we observe exclusive hadronic transitions, described by hadronic matrix elements, like e.g.

$$\langle D^{+}\pi^{-} | \mathcal{H}_{\text{eff}}^{b \to cd\bar{u}} | \bar{B}_{d}^{0} \rangle = V_{cb} V_{ud}^{*} \frac{G_{F}}{\sqrt{2}} \sum_{i=1,2} C_{i}(\mu) r_{i}(\mu)$$
$$r_{i}(\mu) = \langle D^{+}\pi^{-} | \mathcal{O}_{i} | \bar{B}_{d}^{0} \rangle \Big|_{\mu}$$

• The hadronic matrix elements r_i contain QCD (and also QED) dynamics below the scale $\mu \sim m_b$.

"Naive" Factorization of hadronic matrix elements π^{-} \bar{B}_d^0 D^+ $r_i = \langle D^+ | J_i^{(b \to c)} | \bar{B}_d^0 \rangle \langle \pi^- | J_i^{(d \to u)} | 0 \rangle$

• Quantum fluctuations above $\mu \sim m_b$ already in Wilson coefficients

Th. Feldmann

"Naive" Factorization of hadronic matrix elements

• Part of (low-energy) gluon effects encoded in simple/universal had. quantities

Th. Feldmann

"Naive" Factorization of hadronic matrix elements

Question : Why is naive factorization not exact ?

Th. Feldmann

"Naive" Factorization of hadronic matrix elements

Answer : Gluon cross-talk between π^- and $B \rightarrow D$

QCD factorization

- light quarks in π^- have large energy (in *B* rest frame)
- gluons from the $B \rightarrow D$ transition see "small colour-dipole"

⇒ corrections to naive factorization dominated by gluon exchange at short distances $\delta x \sim 1/m_b$

New feature: Light-cone distribution amplitudes $\phi_{\pi}(u)$

• Short-distance corrections to naive factorization given as convolution

$$r_{i}(\mu) \simeq \sum_{j} F_{j}^{(\mathcal{B} \to \mathcal{D})} \int_{0}^{1} dU \left(1 + \frac{\alpha_{s} C_{F}}{4\pi} t_{ij}(U, \mu) + \ldots\right) f_{\pi} \phi_{\pi}(U, \mu)$$

• $\phi_{\pi}(u)$: distribution of momentum fraction *u* of a quark in the pion.

• $t_{ij}(u, \mu)$: perturbative coefficient function (depends on u)

• $F_i^{(B \to D)}$: form factors known from $B \to D\ell\nu$

QCD factorization

- light quarks in π^- have large energy (in *B* rest frame)
- gluons from the $B \rightarrow D$ transition see "small colour-dipole"

⇒ corrections to naive factorization dominated by gluon exchange at short distances $\delta x \sim 1/m_b$

New feature: Light-cone distribution amplitudes $\phi_{\pi}(u)$

• Short-distance corrections to naive factorization given as convolution

$$r_i(\mu) \simeq \sum_j F_j^{(B \to D)} \int_0^1 du \left(1 + \frac{\alpha_s C_F}{4\pi} t_{ij}(u,\mu) + \ldots \right) f_\pi \phi_\pi(u,\mu)$$

• $\phi_{\pi}(u)$: distribution of momentum fraction *u* of a quark in the pion.

- $t_{ij}(u, \mu)$: perturbative coefficient function (depends on u)
- $F_i^{(B \to D)}$: form factors known from $B \to D\ell\nu$

- Exclusive analogue of parton distribution function:
 - PDF: probability density (all Fock states)
 - LCDA: probability amplitude (one Fock state, here: $q\bar{q}$)
- Phenomenologically relevant

$$\langle u^{-1} \rangle_{\pi} = \int_0^1 \frac{du}{u} \phi_{\pi}(u) \simeq 3.3 \pm 0.3$$

[from sum rules, lattice, exp.]

Complication: Annihilation in $\overline{B}_d \rightarrow D^+ \pi^-$

Second topology for hadronic matrix element possible:

• annihilation is formally power-suppressed by $\Lambda_{
m had}/m_b$

more difficult to estimate (colour-dipole argument does not apply!)

Still more complicated: $B^- \rightarrow D^0 \pi^-$

Second topology with spectator quark going into light meson:

 class-II amplitude does not factorize into simpler objects (again, colour-transparency argument does not apply)

again, it is power-suppressed compared to class-I topology

Non-factorizable: $\bar{B}^0 \rightarrow D^0 \pi^0$

In this channel, class-I topology is absent:

- The whole decay amplitude is power-suppressed!
- Naive factorization is not even a first-order approximation!

Isospin analysis for $B \rightarrow D\pi$

- Employ isospin symmetry between (*u*, *d*) of strong interactions.
- Final-state with π (I = 1) and D (I = 1/2) described by only two isospin amplitudes:

$$\begin{split} \mathcal{A}(\bar{B}_d \to D^+\pi^-) &= \sqrt{\frac{1}{3}} \,\mathcal{A}_{3/2} + \sqrt{\frac{2}{3}} \,\mathcal{A}_{1/2} \,, \\ \sqrt{2} \,\mathcal{A}(\bar{B}_d \to D^0\pi^0) &= \sqrt{\frac{4}{3}} \,\mathcal{A}_{3/2} - \sqrt{\frac{2}{3}} \,\mathcal{A}_{1/2} \,, \\ \mathcal{A}(B^- \to D^0\pi^-) &= \sqrt{3} \,\mathcal{A}_{3/2} \,, \end{split}$$

• QCDF: $A_{1/2}/A_{3/2} = \sqrt{2} + \text{corrections}$, relative strong phase $\Delta \theta$ small

Isospin amplitudes from experimental data[Fleischer et al., arXiv:1012.2784]
$$\left| \frac{\mathcal{A}_{1/2}}{\sqrt{2} \mathcal{A}_{3/2}} \right| = 0.676 \pm 0.038$$
, $\cos \Delta \theta = 0.930^{+0.024}_{-0.022}$
(similar for $B \rightarrow D^* \pi$)

→ Corrections to QCDF sizeable — Strong phases remain small

$B \rightarrow \pi\pi$ and $B \rightarrow \pi K$

$B \rightarrow \pi\pi$ and $B \rightarrow \pi K$

Naive factorization:

- Both final-state mesons are light and energetic.
- Colour-transparency argument applies for class-I and class-II topologies.
- $B \rightarrow \pi(K)$ form factors at large recoil fairly well known (QCD sum rules)

Th. Feldmann

QCDF for $B ightarrow \pi\pi$ and $B ightarrow \pi K$ decays	(BBNS 1999)				
Factorization formula has to be extended:					
• Vertex corrections are treated as in ${\it B} ightarrow {\it D}\pi$					
• Include penguin (and electroweak) operators from $H_{\rm eff}$.					
 Take into account new (long-distance) penguin diagrams! 	$(\rightarrow Fig.)$				
 Additional perturbative interactions involving spectator in 	B-meson $(\rightarrow Fig.)$				
• Sensitive to the distribution of the spectator momentum $\omega \longrightarrow$ light-cone distribution amplitude $\phi_B(\omega)$					

$$r_i(\mu)\Big|_{\text{hard}} \simeq \sum_j F_j^{(B\to\pi)}(m_K^2) \int_0^1 du \left(1 + \frac{\alpha_s}{4\pi} t_{ij}(u,\mu) + \ldots\right) f_K \phi_K(u,\mu)$$

$$r_i(\mu)\Big|_{\text{hard}} \simeq \sum_j F_j^{(B\to\pi)}(m_K^2) \int_0^1 du \left(1 + \frac{\alpha_s}{4\pi} t_{ij}(u,\mu) + \ldots\right) f_K \phi_K(u,\mu)$$

Th. Feldmann
Spectator corrections in QCDF

 \longrightarrow additive correction to naive factorization

$$\Delta r_i(\mu)\Big|_{\text{spect.}} = \int du \, dv \, d\omega \, \left(\frac{\alpha_s}{4\pi} \, h_i(u, v, \omega, \mu) + \ldots\right) \\ \times f_K \, \phi_K(u, \mu) \, f_\pi \, \phi_\pi(v, \mu) \, f_B \, \phi_B(\omega, \mu)$$

Distribution amplitudes for all three mesons involved!

Th. Feldmann

EFTs in *B* decays

Complications for QCDF in $B \rightarrow \pi\pi, \pi K$ etc.

- Annihilation topologies are numerically important. BBNS use conservative model estimates.
- Some power-corrections are numerically enhanced by "chiral factor"

 $\frac{\mu_{\pi}}{f_{\pi}} = \frac{m_{\pi}^2}{2f_{\pi} m_q}$

Many decay topologies interfere with each other.

Many hadronic parameters to vary.

ightarrow Depending on specific mode, hadronic uncertainties sometimes quite large.