
Applications of Effective Theories in B Decays
(weak eff. Hamiltonian, factorization, HQET, SCET, and all that)

Thorsten Feldmann

Neckarzimmern, March 2019

TRR 257
particle physics phenomenology
after the Higgs discovery

q

f

ett
q

f

e
FOR 1873

quark flavour physics and
effective field theories

Th. Feldmann EFTs in B decays 1 / 53



. . . Some introductory remarks . . .

Disclaimer:

The dynamics of strong and weak interactions in B-decays
is very complex and has many faces . . .

. . . I will not be able to cover everything, . . .

. . . but I hope that some theoretical and phenomenological
concepts become clearer.
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. . . Some introductory remarks . . .

Physical processes involve Different typical Energy/Length Scales:

⇒ Short-distance Dynamics vs. Long-distance Dynamics

e.g. for b-decays:

New physics : δx . 1/ΛNP

Electroweak interactions : δx ∼ 1/MW

Short-distance QCD(QED) corrections : δx ∼ 1/MW → 1/mb

Hadronic effects : δx ∼ 1/mb (perturbative)

δx & 1/Λhad (non-perturbative)

→ Model-independent Parametrization of NP Effects
→ Sequence of Effective Field Theories (EFT)
→ Perturbative vs. Non-Perturbative Strong Interaction Effects
→ QFT-Definition of Hadronic Input Parameters (Functions)
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Central Notions / Theoretical Jargon

Factorization:
1 Separation of Scales in (RG-improved) Perturbation Theory
2 Simplification of Exclusive Hadronic Matrix Elements

Operator-Product Expansion (OPE):
Short-distance expansion (x → 0) of time-ordered operator products,
corresponding to |q2| → ∞ in Fourier transform:∫

d4x eiq·x T (φ(x)φ(0)) =
∑

i

ci (q2)Oi (0)
“Wilson Coefficients” ci (q2)

“Effective” Operators Oi (0)

Effective (Quantum) Field Theories:
Effective Lagrangian / Hamiltonian:

Feynman rules reproduce the dynamics of low-energy modes.
High-energy (short-distance) information in coefficient (functions).
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Outline

Example: effectcive Hamiltonian for b → cdū decays
separation of scales in loop diagrams
current-current operators (chirality, colour)
matching and running of Wilson coefficients

Generalization to b → s(d) transitions
strong penguin operators
electroweak operators

From b → s to B → K ∗`+`−

naive factorization
small hadronic recoil (HQET)
large hadronic recoil (SCET/QCDF)
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Example: b → cdū decays
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b → cdū decay at Born level

Full theory (SM) → Fermi model

g2 × current ×W -propagator × current
|q|�MW−→ effective coupling × local 4-quark operator

Energy/Momentum transfer limited by mass of decaying b-quark.
b-quark mass much smaller than W -boson mass.

|q| ≤ mb � MW
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Effective Theory:

Analogously to muon decay, transition described in terms of
current-current interaction, with left-handed charged currents

J(b→c)
α = Vcb [c̄ γα(1− γ5) b] , J

(d→u)

β = V ∗ud
[
d̄ γβ(1− γ5) u

]
Effective operators only contain light fields (!)
("light" quarks, leptons, gluons, photons).

Effect of large scale MW in effective Fermi coupling constant:

g2

8M2
W
−→ GF√

2
' 1.16639 · 10−5 GeV−2
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Quantum-loop corrections to b → cdū decay

4-momentum of the W -boson in the loop is an
internal integration parameter d4q,

each component taking values between −∞ and +∞.

⇒We cannot simply expand in |q|/MW !

⇒ Need a method to separate the cases |q| & MW and |q| � MW .
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IR and UV regions in the Effective Theory

full theory = IR region
( |q| � MW

MW →∞
)

+ UV region
( |q| & MW

mb,c → 0

)

= +

I(αs; mb
Mw
, mc

mb
)/GF ' IIR(αs; mb

µ
, mc

mb
) + IUV (αs; µ

mW
)
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IR and UV regions in the Effective Theory

full theory = IR region
( |q| � MW

MW →∞
)

+ UV region
( |q| & MW

mb,c → 0

)

' +

I(αs; mb
Mw
, mc

mb
)/GF ' 〈O〉loop(αs; mb

µ
, mc

mb
) + C′(αs; µ

mW
)× 〈O′〉tree

l l
1-loop matrix element of
operator O in Eff. Th.

independent of MW

UV divergent→ µ

1-loop coefficient for
new operator O′ in EFT

independent of mb,c

IR divergent→ µ
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Effective Operators for b → cdū

short-distance QCD corrections preserve chirality;
quark-gluon vertices induce second colour structure.

Heff =
GF√

2
VcbV ∗ud

∑
i=1,2

Ci (µ)Oi + h.c. (b → cdū)

Current-Current Operators: (b → cdū, analogously for b → qq′q̄′′ decays)

O1 = (d
a
Lγαub

L ) (cb
Lγ
αba

L)

O2 = (d
a
Lγαua

L) (cb
Lγ
αbb

L)

The Wilson Coefficients Ci (µ) contain all information about
Short-Distance Physics ≡ Dynamics above a Scale µ
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Wilson Coefficients in Perturbation Theory

• 1-loop result:

Ci (µ) =

{
0

1

}
+
αs(µ)

4π

(
ln

µ2

M2
W

+
11
6

){
3

−1

}
+O(α2

s)

Question : How do we choose the renormalization scale µ ?
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Wilson Coefficients in Perturbation Theory

• 1-loop result:

Ci (µ) =

{
0

1

}
+
αs(µ)

4π

(
ln

µ2

M2
W

+
11
6

){
3

−1

}
+O(α2

s)

Question : How do we choose the renormalization scale µ ?

Answer :

”Matching”

For µ ∼ MW the logarithmic term is small, and αs(MW )
π � 1

→ Ci (MW ) can be calculated in Fixed-order Perturbation Theory

In this context, MW is called the Matching Scale.
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Anomalous Dimensions

In order to compare with experiment / hadronic models, the matrix
elements of EFT operators are needed at low-energy scale µ ∼ mb

Only the combination ∑
i

Ci (µ) 〈Oi〉(µ)

is µ-independent (in perturbation theory).
⇒ Need Wilson coefficients at low scale !

Scale dependence can be calculated in perturbation theory:
Loop diagrams in EFT are UV divergent
⇒ anomalous dimensions (matrix):

∂

∂ lnµ
Ci (µ) ≡ γji (µ) Cj (µ) =

(
αs(µ)

4π
γ

(1)
ji + . . .

)
Cj (µ)

γ = γ(αs) has a perturbative expansion.
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RG Improvement (“running”)

In our case:

γ(1) =

(
−2 6

6 −2

) {
Eigenvectors: C± = 1√

2
(C2 ± C1)

Eigenvalues: γ(1)
± = +4, −8

Formal solution of differential equation: (separation of variables)

ln
C±(µ)

C±(M)
=

∫ lnµ

ln M
d lnµ′ γ±(µ′) =

∫ αs(µ)

αs(M)

dαs

2β(αs)
γ±(αs)

Perturbative expansion of anomalous dimension and β-function:

γ =
αs

4π
γ

(1) + . . . , 2β ≡
dαs

d lnµ
= −

2β0

4π
α

2
s + . . .

C±(µ) ' C±(MW ) ·
(

αs(µ)

αs(MW )

)−γ(1)
± /2β0

(LeadingLogApprox)
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Numerical values for C1,2 in the SM [Buchalla/Buras/Lautenbacher 96]

operator: O1 O2

Ci (mb): -0.514 (LL) 1.026 (LL)

-0.303 (NLL) 1.008 (NLL)

(modulo parametric uncertainties from MW ,mb, αs(MZ ) and QED corr.)

(potential) New Physics modifications:

new left-handed interactions (incl. new phases)

C1,2(MW )→ C1,2(MW ) + δNP(MW ,MNP)

new chiral structures⇒ extend operator basis (LR,RR currents)
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Next Example: b → s(d) transitions
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b → s(d) qq̄ decays – Current-current operators

→

Now, there are two possible flavour structures:

VubV ∗us(d) (ūLγµbL)(s̄(d)Lγ
µuL) ≡ λu O(u)

2 ,

VcbV ∗cs(d) (c̄LγµbL)(s̄(d)Lγ
µcL) ≡ λc O(c)

2 ,

Again, αs corrections induce independent colour structures O(u,c)
1 .
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b → s(d) qq̄ decays – strong penguin operators

New feature: Penguin Diagrams→ additional operator structures

→

smaller Wilson coefficients
(suppressed by αs / loop factor)

Strong penguin operators: O3−6

Chromomagnetic operator: Og
8

Question : CKM factor of Penguin Pperators? (for mu,c � mt )
Answer :
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b → s(d) qq̄ decays – strong penguin operators

New feature: Penguin Diagrams→ additional operator structures

→

smaller Wilson coefficients
(suppressed by αs / loop factor)

Strong penguin operators: O3−6

Chromomagnetic operator: Og
8

Question : CKM factor of Penguin Pperators? (for mu,c � mt )
Answer : −λt = (λu + λc) = −VtbV ∗ts(d)
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Eff. Hamiltonian for b → s(d)qq̄ decays (QCD only)

Heff =
GF√

2

∑
i=1,2

Ci (µ)
(
λu O(u)

i + λc O(c)
i

)

− GF√
2
λt

6∑
i=3

Ci (µ)Oi −
GF√

2
λt Cg

8 (µ)Og
8

O3 = (s̄a
Lγµba

L)
∑
q 6=t

(q̄b
Lγ
µqb

L ) , O4 = (s̄a
Lγµbb

L)
∑
q 6=t

(q̄b
Lγ
µqa

L) ,

O5 = (s̄a
Lγµba

L)
∑
q 6=t

(q̄b
Rγ

µqb
R) , O6 = (s̄a

Lγµbb
L)
∑
q 6=t

(q̄b
Rγ

µqa
R) ,

Og
8 =

gs

8π2 mb (s̄L σ
µν T A bR) GA

µν .

gluon couples to left- and right-handed currents.

chromomagnetic operator requires one chirality flip ! (ms is set to zero)
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Matching and running for strong penguin operators

Matching coefficients depend on top mass,

Ci = Ci (µ, xt ) , xt = m2
t /M

2
W

Matching of chromomagnetic operator is scheme-dependent.
Usually, one considers scheme-independent linear combination:

Cg, eff
8 = Cg

8 +
6∑

i=1

zi Ci

Again, operators mix under RG running (→ anomalous-dimension matrix)
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Electroweak Corrections

Penguin and box diagrams with additional γ/Z exchange:
→ Electroweak Penguin Operators O7−10

O7 =
2
3

(s̄a
Lγµba

L)
∑
q 6=t

eq (q̄b
Lγ
µqb

L ) , O8 =
2
3

(s̄a
Lγµbb

L)
∑
q 6=t

eq (q̄b
Lγ
µqa

L) ,

O9 =
2
3

(s̄a
Lγµba

L)
∑
q 6=t

eq (q̄b
Rγ

µqb
R) , O10 =

2
3

(s̄a
Lγµbb

L)
∑
q 6=t

eq (q̄b
Rγ

µqa
R) .

depend on electromagnetic charge of final state quarks !

→ Electromagnetic operators Oγ7
main contribution to b → s(d)γ and b → s(d)`+`− decays.

→ Semileptonic operators O9V , O10A

another main contribution to b → s`+`− decays.
[see below]

→ electroweak corrections to matching coefficients
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→ Electromagnetic operators Oγ7
main contribution to b → s(d)γ and b → s(d)`+`− decays.

→ Semileptonic operators O9V , O10A

O9V = (s̄L γµ bL) (¯̀γµ `) ,

O10A = (s̄L γµ bL) (¯̀γµγ5 `)

another main contribution to b → s`+`− decays.
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Summary: Effective Theory for b-quark decays

“Full theory”↔ all modes propagate
Parameters: MW ,Z ,MH ,mt ,mq , g, g′, αs . . . ↑ µ > MW

Ci (MW ) = Ci
∣∣

tree
+ δ

(1)
i

αs(MW )
4π + . . . matching: µ ∼ MW

“Eff. theory”↔ low-energy modes propagate.
High-energy modes are “integrated out”.
Parameters: mb,mc ,GF , αs,Ci (µ) . . .

↓ µ < MW

∂
∂ lnµ

Ci (µ) = γji (µ) Cj (µ) anomalous dimensions

Expectation values of operators 〈Oi〉 at µ = mb.
All dependence on MW absorbed into Ci (mb)

resummation of logs
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From b → s to B → K ∗`+`−
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Naive factorization and B → K ∗ transition form factors

0th approximation:

Hadronic amplitudes expressed in terms of seven Form Factors for
Tensor, Vector, and Axialvector b → s currents,

T1,2,3(q2) , A0,1,2(q2) , V (q2)

multiplied by Wilson Coefficients C7,9,10(µ) and kinematic factors.

form factors include non-perturbative bound-state effects for B → K∗ transitions

to be taken from light-cone sum rules (small q2) or lattice QCD (large q2)
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The case of small hadronic recoil energy→ HQET

The heavy b-quark:

Heavy quark approximately behaves as Static Source of Colour

pµb = mbvµ + kµ , with |kµ| � mb

kµ: soft (residual) momentum. vµ = (1,~0): B-meson velocity.

The b-quark propagator is approximated as

i
/pb −mb + iε

=
i (/pb + mb)

p2
b −m2

b + iε
' imb (/v + 1)

2mb v · k + iε
=

i
v · k + iε

1 + /v
2

This corresponds to a kinetic term for an effective b-quark field hv

Lkin = h̄v (i v · ∂) hv , with (/v − 1) hv = 0

→ Heavy Quark Effective Theory (HQET)
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The case of small hadronic recoil energy→ HQET

“full theory” (QCD with weak-decay currents) matched onto HQET ,
only contains the “good components” of the b-quark Dirac spinor,

b(x) → e−imbv·x hv (x) , with /v hv = hv (µ ≤ mb)

QCD part:

b̄(x)
(
i /D −mb

)
b(x) −→ h̄v (x) (iv · D) hv (x) + . . .

decay currents, e.g.

q̄(x) Γ b(x) −→
∑

i

cΓ
i (µ) e−imbv·x q̄(x) Γi hv (x) + . . .

Consequences:
⇒ relative orientation of heavy-quark spin irrelevant in the limit mb →∞
⇒ reduction of independent B → K ∗ form factors from 7→ 4
⇒ additional gluon-radiation costs factors of 1/mb (higher-dim. operators in HQET)
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Radiative corrections to symmetry relations in HQET

NLO vertex corrections to matching coefficients:

Remember:
QCD@mb : hard gluons (with |p| ∼ mb) and soft gluons (|p| � mb)

HQET@mb : only soft gluons

radiative corrections to form-factor symmetry relations (from hard gluons)

calculable in perturbation theory, since αs(mb)� 1
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Complications:

Also Hadronic Operators contribute:

LO:

Effect can be absorbed into effective Wilson coefficients,

Ceff
7 = C7 +

6∑
i=1

yi Ci , Ceff
9 (q2) = C9 +

6∑
i=1

fi (q2) Ci

removes scheme-dependence in the definition of Wilson coefficients (see above)
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Complications:

Also Hadronic Operators contribute:

NLO:

. . .

O(αs(mb)) contributions require evaluation of 2-loop diagrams
Higher-order terms have sizeable numerical impact!
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Further Complications:

Quark loops can form hadronic vector resonances if q2 ' m2
V

Particularly relevant for charm loop↔ charmonium resonances

e.g. B → J/ψ(→ `+`−) K ∗ . . .

Requires some modelling of “quark-hadron duality” assumption

Resonant contributions interfere with (large) tree-level contribution from C9

⇒ sensitive to real part of charm loop (not a Breit-Wigner)

(in contrast to R-ratio in e+e− → hadrons ∼ imaginary part of quark loops)

HQET analysis only valid for q2 above narrow c̄c states (J/ψ, ψ′)

theory predictions must be averaged over sufficiently large region of q2
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The case of large hadronic recoil energy→ SCET

Fast (massless) light quarks in K ∗ with large energy EK∗ ∼ O(mb/2):

Quarks move approximately collinear to their parent mesons.

pµcoll = p+
nµ−
2

+ pµ⊥ + p−
n̄µ+
2
, with p− � |p⊥| � p+

pµ⊥: small transverse momentum. nµ± = (1, 0⊥,±1): light-like.

Collinear quark propagator is approximated as

i /pcoll

p2
coll + iε

'
i p+/n−

p+p− + p2
⊥ + iε

=
i

p− + p2
⊥/p+ + iε

/n−
2

This corresponds to a kinetic term for an effective collinear field ξc

Lkin = ξ̄c

(
i n− · D + i /D⊥

1
in+D

i /D⊥

)
/n+

2
ξc , with /n− ξc = 0

→ Soft Collinear Effective Theory (SCET)
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The case of large hadronic recoil energy→ SCET

Soft-collinear interactions:
Invariant mass of a gluon coupled to soft-collinear quark current:

(ksoft − pcoll)
2 ' −p+ (n− · k) ∼ O(E Λhad)

→ hard-collinear modes (relevant for spectator interactions)

Subtlety: Soft-collinear vertices have to be multipole-expanded according
to the different sizes for the typical wave-lengths involved.

Heavy-to-light currents:

A generic heavy-to-light current (with arbitrary Dirac matrix Γ) matches onto:

q̄(0) Γ Q(0) −→ ξ̄c(0) Γ hv (0) + . . .

→ Soft Collinear Effective Theory (SCET)
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The case of large hadronic recoil energy→ SCET

⇒ distinguish different kind of modes for light quarks and gluons:

name energy |~pz | |p2|, |~p2
⊥|

“hard”: O(mb) O(mb) O(m2
b)

“hard-collinear’: O(mb) O(mb) O(mbΛhad)

”collinear“: O(mb) O(mb) O(Λ2
had)

”soft“: O(Λhad) O(Λhad) O(Λ2
had)

Th. Feldmann EFTs in B decays 29 / 53



The case of large hadronic recoil energy→ SCET

⇒ distinguish different kind of modes for light quarks and gluons:

name energy |~pz | |p2|, |~p2
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Form-factor relations in SCET

energetic quarks→ two components of the Dirac spinor are subleading:

collinear fields: q(x) →
/n− /n+

4
ξc(x) ,

⇒ further reduction of independent form factors in B → K ∗

7 (QCD) −→ 4 (HQET) −→ 2 (SCET × HQET)

leading-order predictions depend on less hadronic unknowns X

Feynman rules for perturbative corrections in SCET more complicated !

power corrections ∼ 1/E might be more important, since E . mb/2 ?
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Radiative corrections to form-factor relations in SCET

vertex diagrams from integrating out hard modes
(similar as for HQET – see above)

new feature:
spectator diagrams from integrating out hard-collinear modes

contribute at leading power of 1/mb expansion
perturbatively calculable as long as αs � 1 for µ2 ∼ mbΛhad
new hadronic input functions that describe the momentum distribution of spectator
quarks→ light-cone distribution amplitudes for B-meson and K∗-mesons.

Th. Feldmann EFTs in B decays 31 / 53



New ingredient: LCDA for the B-meson

0.5 1 1.5 2 Ω ÈGeVÈ
0.1

0.2

0.3

0.4

0.5

0.6

ΦBHΩL

where ω = n− · kq̄

• Phenomenologically relevant:

〈ω−1〉B =

∫ ∞
0

dω
ω
φB(ω) ≈ 2 GeV−1 (at µ =

√
mbΛ ' 1.5 GeV)

(from QCD sum rules [Braun/Ivanov/Korchemsky])

(from HQET parameters [Lee/Neubert])
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Further complications:

spectator scattering with hadronic operators,
when virtual photon is radiated from any of the internal quark lines !

etc.

hadronic input functions are the same as above (i.e. LCDAs)

all internal dynamics is perturbative, as long as mb � Λhad

but power corrections ∼ Λhad/mb may spoil the picture . . .
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Further complications:

also, some annihilation topologies are leading power
no αs suppression (but small Wilson coefficient and/or CKM factors)

etc.

when a time-like photon is radiated from an internal quark line,
it very much behaves like a vector meson (same quantum numbers)
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Using dispersion relations / analyticity
Idea: [Bobeth et al. 17] (here: for γ-radiation of charm-loop only)

make use of theoretical predictions for unphysical kinematics,
with space-like momenta,

−m2
b � −q2 � 0

perform clever change of variables, encorporating the open-charm threshold

z(q2) ≡

√
4M2

D − q2 −
√

4M2
D − t0√

4M2
D − q2 +

√
4M2

D − t0

where the parameter t0 can be chosen to minimize |z| in a chosen q2-interval.
(for instance |z| < 0.52 for −7 GeV2 ≤ q2 ≤ M2

ψ(2S)
)

truncated Taylor expansion in the new variable z
include information from resonant decays B → J/ψ(ψ′)[→ `+`−]K ∗

⇒ theory predictions can be extended to values m2
ρ � q2 < M2

ψ(2s)
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State-of-the-art predictions for B → K ∗µ+µ−

E.g. the famous angular observable P ′5:

[Bobeth/Chrzaszcz/van Dyk/Virto]
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Summary

Weak b-quark decays described by Effective Hamiltonian:

Current-current and Penguin and Box operators.
Wilson Coefficients encode short-distance dynamics in SM or NP.
QCD effects between mW and mb via Renormalization-Group.

Exclusive Amplitudes for semi-leptonic FCNC decays:

Hadronic Matrix Elements of Oi contain QCD dynamics below mb.
“Naive” Factorization in terms of form factors.
Factorization Theorems: soft and collinear modes in HQET / SCET.
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Summary

” When looking for New Physics in Beauty, . . .
. . . do not forget about the Beautiful Complexity of Old Physics ! ”
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Backup Slides
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From flavour anomalies to SMEFT

Low-energy perspective: Explain current flavour anomalies by significant
change of the Wilson coefficients C9 and/or C10 at the electroweak scale.

BSM perspective: b → s`+`− operators receive additional contributions from
(virtual) exchange of new heavy particles, (e.g. of leptoquarks or Z ′-bosons.

Model-independent approach→ SMEFT
use EFT framework, if new particles are much heavier than 200 GeV.

construct effective operator basis from requiring manifest symmetry with
respect to the SM gauge group, SU(3)C × SU(2)L × U(1)Y .

all SM particles (quarks, leptons, gauge bosons, Higgs doublet) may appear
explicitly as fields in the effective operators.

effect of new particles encoded in (a priori) unknown Wilson coefficients.

E.g. analogue of the operator O9 written in SM-invariant manner as

−
C ijαβ

S

Λ̄2
NP

(Q̄i
LγµQj

L)(L̄αγµLβ) or −
C ijαβ

T

Λ̄2
NP

(Q̄i
Lγµσ

aQj
L)(L̄αγµσaLβ)

where QL and L are SU(2)L quark and lepton doublets.
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From b → cdū to B̄0 → D+π−

In experiment, we cannot see the quark transition directly.
Rather, we observe exclusive hadronic transitions,
described by hadronic matrix elements, like e.g.

〈D+π−|Hb→cdū
eff |B̄0

d 〉 = VcbV ∗ud
GF√

2

∑
i=1,2

Ci (µ) ri (µ)

ri (µ) = 〈D+π−|Oi |B̄0
d 〉
∣∣∣
µ

The hadronic matrix elements ri contain
QCD (and also QED) dynamics below the scale µ ∼ mb.
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"Naive" Factorization of hadronic matrix elements

ri = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸

• Quantum fluctuations above µ ∼ mb already in Wilson coefficients
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"Naive" Factorization of hadronic matrix elements

ri = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸

form factor decay constant

• Part of (low-energy) gluon effects encoded in simple/universal had. quantities
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"Naive" Factorization of hadronic matrix elements

ri = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸

Question : Why is naive factorization not exact ?
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"Naive" Factorization of hadronic matrix elements

ri (µ) = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸ + corrections(µ)

Answer : Gluon cross-talk between π− and B → D
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QCD factorization [Beneke/Buchalla/Neubert/Sachrajda 2000]

light quarks in π−have large energy (in B rest frame)

gluons from the B → D transition see ”small colour-dipole”

⇒ corrections to naive factorization dominated by
gluon exchange at short distances δx ∼ 1/mb

New feature: Light-cone distribution amplitudes φπ(u)

Short-distance corrections to naive factorization given as convolution

ri (µ) '
∑

j

F (B→D)
j

∫ 1

0
du
(

1 +
αsCF

4π
tij (u, µ) + . . .

)
fπ φπ(u, µ)

φπ(u) : distribution of momentum fraction u of a quark in the pion.

tij (u, µ) : perturbative coefficient function (depends on u)

F (B→D)
j : form factors known from B → D`ν
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Light-cone distribution amplitude for the pion

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1

1.2

1.4

ΦΠHuL
(for illustration only)

• Exclusive analogue of parton distribution function:
PDF: probability density (all Fock states)

LCDA: probability amplitude (one Fock state, here: qq̄)

• Phenomenologically relevant

〈u−1〉π =

∫ 1

0

du
u
φπ(u) ' 3.3± 0.3

[from sum rules, lattice, exp.]

Th. Feldmann EFTs in B decays 43 / 53



Complication: Annihilation in B̄d → D+π−

Second topology for hadronic matrix element possible:

”Tree” (class-I) ”Annihilation” (class-III)

annihilation is formally power-suppressed by Λhad/mb

more difficult to estimate (colour-dipole argument does not apply!)
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Still more complicated: B− → D0π−

Second topology with spectator quark going into light meson:

”Tree” (class-I) ”Tree” (class-II)

class-II amplitude does not factorize into simpler objects
(again, colour-transparency argument does not apply)

again, it is power-suppressed compared to class-I topology
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Non-factorizable: B̄0 → D0π0

In this channel, class-I topology is absent:

”Tree” (class-II) ”Annihilation” (class-III)

The whole decay amplitude is power-suppressed!
Naive factorization is not even a first-order approximation!
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Isospin analysis for B → Dπ

Employ isospin symmetry between (u, d) of strong interactions.

Final-state with π (I = 1) and D (I = 1/2) described by only two isospin amplitudes:

A(B̄d → D+π−) =

√
1
3
A3/2 +

√
2
3
A1/2 ,

√
2A(B̄d → D0π0) =

√
4
3
A3/2 −

√
2
3
A1/2 ,

A(B− → D0π−) =
√

3A3/2 ,

QCDF: A1/2/A3/2 =
√

2 + corrections, relative strong phase ∆θ small

Isospin amplitudes from experimental data [Fleischer et al., arXiv:1012.2784]∣∣∣∣∣ A1/2√
2A3/2

∣∣∣∣∣ = 0.676± 0.038 , cos ∆θ = 0.930+0.024
−0.022

(similar for B → D∗π)

→ Corrections to QCDF sizeable — Strong phases remain small
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B → ππ and B → πK
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B → ππ and B → πK

Naive factorization:

Both final-state mesons are light and energetic.

Colour-transparency argument applies for class-I and class-II topologies.

B → π(K ) form factors at large recoil fairly well known (QCD sum rules)
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QCDF for B → ππ and B → πK decays (BBNS 1999)

Factorization formula has to be extended:
Vertex corrections are treated as in B → Dπ

Include penguin (and electroweak) operators from Heff.
Take into account new (long-distance) penguin diagrams! (→ Fig.)

Additional perturbative interactions involving spectator in B-meson
(→ Fig.)

Sensitive to the distribution of the spectator momentum ω
−→ light-cone distribution amplitude φB(ω)
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Additional diagrams for QCDF corrections in B → πK (example)

−→ additional contributions to the hard coefficient functions tij (u, µ)

ri (µ)
∣∣∣
hard
'
∑

j

F (B→π)
j (m2

K )

∫ 1

0
du
(

1 +
αs

4π
tij (u, µ) + . . .

)
fK φK (u, µ)
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Spectator corrections in QCDF

−→ additive correction to naive factorization

∆ri (µ)
∣∣∣

spect.
=

∫
du dv dω

(αs

4π
hi (u, v , ω, µ) + . . .

)
× fK φK (u, µ) fπ φπ(v , µ) fB φB(ω, µ)

Distribution amplitudes for all three mesons involved!

Th. Feldmann EFTs in B decays 52 / 53



Complications for QCDF in B → ππ, πK etc.

Annihilation topologies are numerically important.
BBNS use conservative model estimates.

Some power-corrections are numerically enhanced
by ”chiral factor”

µπ
fπ

=
m2
π

2fπ mq

Many decay topologies interfere with each other.

Many hadronic parameters to vary.

→ Depending on specific mode, hadronic uncertainties sometimes quite large.
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