Experimental Status of Charm Physics

Sascha Stahl, CERN

Flavour-Workshop Neckarzimmern

21/03/2019

Biased choice of measurements

+ one measurement published today!

	TITLE	DOCUMENT NUMBER	JOURNAL	SUBMITTED ON	CITED
	Measurement of the mass difference between neutral charm-meson eigenstates	PAPER-2019-001 arXiv:1903.03074 [PDF]	PRL	07 Mar 2019	
	Search for CP violation in $D^+_s \to K^0_S \pi^+, D^+ \to K^0_S K^+$ and $D^+ \to \phi \pi^+$ decays	PAPER-2019-002 arXiv:1903.01150 [PDF]	PRL	04 Mar 2019	
	Dalitz Plot analysis of the $D^+ \rightarrow K^- K^+ K^+$ decay	PAPER-2018-039 arXiv:1902.05884 [PDF]	JHEP	15 Feb 2019	
	Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ o p \phi$	PAPER-2018-040 arXiv:1901.06222 [PDF]	JHEP	18 Jan 2019	1
	Search for <i>CP</i> violation through an amplitude analysis of $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays	PAPER-2018-041 arXiv:1811.08304 [PDF]	JHEP 02 (2019) 126	20 Nov 2018	
•	Measurement of the charm-mixing parameter y_{CP}	PAPER-2018-038 arXiv:1810.06874 [PDF]	Phys. Rev. Lett. 122 (2019) 011802	16 Oct 2018	2
	Measurement of the branching fractions of the decays $D^+ \to K^- K^+ K^+$, $D^+ \to \pi^- \pi^+ K^+$ and $D^+_{\pi} \to \pi^- K^+ K^+$	PAPER-2018-033 arXiv:1810.03138 [PDF]	JHEP	07 Oct 2018	2
	Measurement of the Ω_c^0 baryon lifetime	PAPER-2018-028 arXiv:1807.02024 [PDF]	Phys. Rev. Lett. 121 (2018) 092003	05 Jul 2018	8
	First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} o \Xi_c^+ \pi^+$	PAPER-2018-026 arXiv:1807.01919 [PDF]	Phys. Rev. Lett. 121 162002 (2018)	05 Jul 2018	20
	Measurement of angular and CP asymmetries in $D^0 \to \pi^+\pi^-\mu^+\mu^-$ and $D^0 \to K^+K^-\mu^+\mu^-$ decays	PAPER-2018-020 arXiv:1806.10793 [PDF]	Phys. Rev. Lett. 121 (2018) 091801	28 Jun 2018	6
	First measurement of the lifetime of the doubly charmed baryon Ξ_{cc}^{++}	PAPER-2018-019 arXiv:1806.02744 [PDF]	Phys. Rev. Lett. 121 052002	07 Jun 2018	26
	Measurement of the time-integrated CP asymmetry in $D^0 o K^0_S K^0_S$ decays	PAPER-2018-012 arXiv:1806.01642 [PDF]	JHEP 11 (2018) 048	05 Jun 2018	4
	Measurement of D_s^\pm production asymmetry in pp collisions at $\sqrt{s}=7$ and 8 TeV	PAPER-2018-010 arXiv:1805.09869 [PDF]	JHEP 08 (2018) 008	24 May 2018	5
	Studies of the resonance structure in $D^0 o K^\mp \pi^\pm \pi^\pm \pi^\mp$ decays	PAPER-2017-040 arXiv:1712.08609 [PDF]	Eur. Phys. J. C78 (2018) 443	22 Dec 2017	7
	Search for the rare decay $\Lambda_c^+ o p \mu^+ \mu^-$	PAPER-2017-039 arXiv:1712.07938 [PDF]	Phys. Rev. D 97, 091101	21 Dec 2017	9
	A measurement of the CP asymmetry difference in $\Lambda_c^+ o pK^-K^+$ and $p\pi^-\pi^+$ decays	PAPER-2017-044 arXiv:1712.07051 [PDF]	JHEP 03 (2018) 182	19 Dec 2017	9
•	Updated determination of $D^0 \cdot \overline{D}{}^0$ mixing and CP violation parameters with $D^0 o K^+ \pi^-$ decays	PAPER-2017-046 arXiv:1712.03220 [PDF]	Phys. Rev. D97 (2018) 031101	08 Dec 2017	7
	Measurements of the branching fractions of $\Lambda_c^+ \to p\pi^-\pi^+$, $\Lambda_c^+ \to pK^-K^+$, and $\Lambda_c^+ \to p\pi^-K^+$	PAPER-2017-026 arXiv:1711.01157 [PDF]	JHEP 03 (2018) 043	03 Nov 2017	8
	Observation of D^0 meson decays to $\pi^+\pi^-\mu^+\mu^-$ and $K^+K^-\mu^+\mu^-$ final states	PAPER-2017-019 arXiv:1707.08377 [PDF]	Phys. Rev. Lett. 119 (2017) 181805	26 Jul 2017	11
	Observation of the doubly charmed baryon Ξ_{cc}^{++}	PAPER-2017-018 arXiv:1707.01621 [PDF]	Phys. Rev. Lett. 119 (2017) 112001	06 Jul 2017	173
	Observation of five new narrow Ω_c^0 states decaying to $\Xi_c^+ K^-$	PAPER-2017-002 arXiv:1703.04639 [PDF]	Phys. Rev. Lett. 118 (2017) 182001	14 Mar 2017	126
	Measurement of the $C\!\!P$ violation parameter A_{Γ} in $D^0 o K^+ K^-$ and $D^0 o \pi^+ \pi^-$ decays	PAPER-2016-063 arXiv:1702.06490 [PDF]	Phys. Rev. Lett. 118 (2017) 261803	21 Feb 2017	21

 $http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_Charm.html$

CP violation in charm decays

- Charm quark of up-type: Complementary to kaon and B systems
- No CP violation observed yet
- CP violation in Standard Model suppressed:
 - Powerful probe to effects beyond Standard Model
 - Predictions difficult due to long-range effects
- High charm production rate in proton-proton collisions

 $\begin{array}{c}
D^{0} \quad \mathbf{u} \quad \mathbf{c} \\
\mathbf{t} \\
K^{0} \quad \mathbf{d} \quad \mathbf{s} \quad \mathbf{b} \\
B^{0}
\end{array}$

The LHCb experiment

- Run 1 3 fb⁻¹ (7 and 8 TeV), Run 2 6 fb⁻¹ (13 TeV)
- b and c quarks produced in pairs
 - Predominantly in forward direction
- Coverage 2<η<5:
 - Boosted pairs
 - 45 kHz bb pairs and 1 MHz cc pairs

The challenge to collect charm*

~1 MHz cc pairs!

- Assume 10 (5) % efficiency of full trigger selection chain
- Event size 70 kB
- \rightarrow Beauty bandwidth = 45 kHz * 0.1 * 70 kB = 0.32 GB/s, Charm bandwidth = 1 MHz * 0.05 * 70 kB = 3.5 GB/s
- Limit to tape storage 1 GB/s

 \rightarrow Cannot write out full information of all signal events, even with a very pure trigger

*very rough estimates

Turbo stream in Run 2

- Persist reconstructed objects, discard raw information
- Analysts choose what to persist
 - Up to factor 10 reduction of event size
- More events at same bandwidth \rightarrow more physics
- Big success story
 - 2/3 of triggered events persist raw detector information,
 1/3 of triggered events go to Turbo stream (almost all charm)

Some advertisement for LHCb people: A lot of (exciting) work to prepare the trigger for Run 3. Feel free to get in contact with me or Stephie.

https://twiki.cern.ch/twiki/bin/viewauth/LHCb/RealTimeAnalysis

Two charm samples at LHCb

Prompt produced charm:

- (Slow) pion charge tags flavour
- Unambiguous tag due to full D* reconstruction
- Hardware trigger: 40% triggered by D, 60% parasitically
- Higher statistics

S. Stahl, 21/03/19

Semileptonic B decays:

- Muon charge tags flavour
- B partially reconstructed
- Hardware trigger: High muon trigger efficiency
- Cross-checks and some other advantages

Two-body modes

Experimental status of charm physics

Two-body modes

S. Stahl, 21/03/19 Experimental status of charm physics

Two-body modes

S. Stahl, 21/03/19 Experimental status of charm physics

A lot of charm!

What do we measure?

What are the experimental challenges?

Neutral meson mixing

• Mass eigenstates unequal flavour eigenstates:

$$|D_1\rangle = p |D^0\rangle + q |\bar{D}^0\rangle$$
 CPT:

$$|D_2\rangle = p |D^0\rangle - q |\bar{D}^0\rangle$$

$$|q^2| + |p^2| = 1$$

$$|D_{1,2}(t)\rangle = e^{-im_{1,2}t} e^{-\Gamma_{1,2}t/2} |D_{1,2}\rangle$$

• Mixing parameters:

$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2} \qquad \qquad x = \frac{m_1 - m_2}{\Gamma} \qquad \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

• CPV parameters:

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \approx \left| \frac{q}{p} \right| \left| \frac{\bar{A}_f}{A_f} \right| \quad e^{i(\phi + \Delta_f)} \qquad \text{Weak} \text{ stron}$$

Weak phase + strong phase

Time evolution of different mesons

S. Stahl, 21/03/19

Time evolution of flavour states

• Time evolution of initially produced D^0 , \overline{D}^0 meson

$$\Gamma(D^{0}(t) \to f) \propto \left| A(D^{0} \to f)g_{+}(t) + \frac{q}{p}A(\overline{D}^{0} \to f)g_{-}(t) \right|^{2}$$

$$\Gamma(\overline{D}^{0}(t) \to \overline{f}) \propto \left| A(\overline{D}^{0} \to \overline{f})g_{+}(t) + \frac{p}{q}A(D^{0} \to \overline{f})g_{-}(t) \right|^{2}$$

• Mixing parameters small for D⁰ mesons

$$z \equiv -(y + ix)$$

$$|g_{+}(t)|^{2} \approx e^{-t} + \frac{1}{4}e^{-t}t^{2}\operatorname{Re}(z^{2}) + \mathcal{O}(z^{4})$$

$$|g_{-}(t)|^{2} \approx \frac{1}{4}e^{-t}t^{2}|z|^{2} + \mathcal{O}(z^{4})$$

$$g_{+}^{\star}(t)g_{-}(t) \approx \frac{1}{2}e^{-t}tz + \mathcal{O}(z^{3})$$

Measurement of D mixing

• Cabibbo-favoured $D^0 \rightarrow K^- \pi^+$

Measurement of D mixing

• Cabibbo-favoured $D^0 \rightarrow K^-\pi^+$ and doubly-Cabibbo-suppressed $D^0 \rightarrow \pi^-K^+$ decays

Measurement of D mixing

Cabibbo-favoured $D^0 \rightarrow K^-\pi^+$ and doubly-Cabibbo-suppressed $D^0 \rightarrow \pi^- K^+$ decays

Observed ratios

$$R_{\rm obs}(t) = \frac{N(D^{*+} \to [K^+\pi^-]_D \pi_s^+)}{N(D^{*+} \to [K^-\pi^+]_D \pi_s^+)}(t) = R(t) \quad \frac{\epsilon(\pi_s^+)}{\epsilon(\pi_s^+)} \frac{\epsilon(D)(t)}{\epsilon(D)(t)} = R(t)$$

- Tight displacement cuts (in trigger) to reject background
- Detection efficiencies cancel in ratio of wrong sign over right sign

Measurement of mixing and CP violation

$$R_{\rm obs}^{+}(t) = \frac{N(D^{*+} \to [K^{+}\pi^{-}]_{D}\pi_{s}^{+})}{N(D^{*+} \to [K^{-}\pi^{+}]_{D}\pi_{s}^{+})}(t) = R^{+}(t) \quad \frac{\epsilon(K^{+}\pi^{-})}{\epsilon(K^{-}\pi^{+})}$$
$$R_{\rm obs}^{-}(t) = \frac{N(D^{*-} \to [K^{-}\pi^{+}]_{D}\pi_{s}^{-})}{N(D^{*-} \to [K^{+}\pi^{-}]_{D}\pi_{s}^{-})}(t) = R^{-}(t) \quad \frac{\epsilon(K^{-}\pi^{+})}{\epsilon(K^{+}\pi^{-})}$$

LHCb-PUB-2018-004

Charged-kaon detection asymmetry

Charged kaons have to traverse full tracking system to be reconstructed
 Magnet

 $K^{-} = (\overline{u}s)$ $K^{+} = (u\overline{s})$

• Different absorption rate for positive and negative kaons

$$A_D(K^-\pi^+) = \frac{\epsilon(K^-\pi^+) - \epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+) + \epsilon(K^+\pi^-)}$$

→ Expected asymmetry about 1%

Charged-kaon detection asymmetry

Charged kaons have to traverse full tracking system to be reconstructed
 ^{5m} Magnet

 $K^{-} = (\overline{u}s)$ $K^{+} = (u\overline{s})$ "LHCb" = $(udq\overline{q})$

5m Magnet RICH2 MI M3 RICH1 TT T3 Cosator Cosa

• Different absorption rate for positive and negative kaons

$$A_D(K^-\pi^+) = \frac{\epsilon(K^-\pi^+) - \epsilon(K^+\pi^-)}{\epsilon(K^-\pi^+) + \epsilon(K^+\pi^-)}$$

Measurement of mixing and CP violation

$$R^{\pm}(t) \approx R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \frac{t}{\tau} + \frac{x'^{\pm 2} + y'^{\pm 2}}{4} \left(\frac{t}{\tau}\right)^2$$

Direct CP violation
$$A_D \equiv \frac{R_D^{\pm} - R_D^{-}}{R_D^{\pm} + R_D^{-}}$$

CP violation in mixing and interference
$$y'^{\pm} = \left|\frac{q}{p}\right|^{\pm 1} \left(y'\cos\phi \mp x'\sin\phi\right)$$
$$x'^{\pm} = \left|\frac{q}{p}\right|^{\pm 1} \left(y'\cos\phi \pm x'\sin\phi\right)$$

$$R_{\rm obs}^{+}(t) = \frac{N(D^{*+} \to [K^{+}\pi^{-}]_{D}\pi_{s}^{+})}{N(D^{*+} \to [K^{-}\pi^{+}]_{D}\pi_{s}^{+})}(t) = R^{+}(t) \quad \frac{\epsilon(K^{+}\pi^{-})}{\epsilon(K^{-}\pi^{+})}$$
$$R_{\rm obs}^{-}(t) = \frac{N(D^{*-} \to [K^{-}\pi^{+}]_{D}\pi_{s}^{-})}{N(D^{*-} \to [K^{+}\pi^{-}]_{D}\pi_{s}^{-})}(t) = R^{-}(t) \quad \frac{\epsilon(K^{-}\pi^{+})}{\epsilon(K^{+}\pi^{-})}$$

Results

S. Stahl, 21/03/19

Experimental status of charm physics

Results

CP asymmetry in mixing with $D^0 \rightarrow h^-h^+$

• Two-body decays to CP-even eigenstates

 $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$

S. Bergmann et al., Phys. Lett. B486 (2000) 418, arXiv:hep-ph/0005181.

CP asymmetry in mixing with $D^0 \rightarrow h^-h^+$

• Two-body decays to CP-even eigenstates

 $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$

S. Bergmann et al., Phys. Lett. B486 (2000) 418, arXiv:hep-ph/0005181.

 \rightarrow Mixing and CPV changes effective lifetime $y_{CP} =$

$$\nu_{CP} = \frac{\Gamma_{CP+}}{\Gamma} - 1$$

 $\blacktriangleright K^-K^+$

$$y_{CP} = +\frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) y \cos \phi - \frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin \phi$$

CP conservation implies: $y_{CP} = y$

S. Stahl, 21/03/19 Experimental status of charm physics

Phys. Rev. Lett. 122 (2019) 011802

Measurement of y_{CP}

- Two-body decays to CP-even eigenstates $D^0 \rightarrow K^- K^+, D^0 \rightarrow \pi^- \pi^+$
- CP-mixed final state

 $D^0 \to K^- \pi^+$

- Measure width difference, calculate y_{CP} from known lifetime

$$\Delta_{\Gamma} = \Gamma_{CP+} - \Gamma \qquad \qquad y_{CP} = \frac{\Delta_{\Gamma}}{\Gamma}$$

- Measure ratios of yields in decay-time bins
 - Need correction of decay-time acceptance effects

Sample

- Analysis uses Run 1 Semileptonic sample
- Trigger on muon
- Looser selection on D decay products

Lifetime acceptance

• Opening angle depends on masses of decay products

Lifetime acceptance

• Opening angle depends on masses of decay products

Robustness tests

- Tighter impact parameter requirements
- Different decay-modes

 $D^+ \to K^+ K^- \pi^+$ $D^+ \to K^- \pi^+ \pi^+$

- Decay-width differences consistent with 0
- Biggest systematic from
 Monte Carlo statistics

Phys. Rev. Lett. 122 (2019) 011802

Result of y_{CP} measurement

$\begin{array}{c} 0.2\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$		D = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1			
	Decay	$\Delta_{\Gamma} [\mathrm{ps}^{-1}] \qquad y_{CP} [\%]$			
	$D^0 \to K^+ K$ $D^0 \to \pi^+ \pi^-$	$ \begin{array}{c} - & 0.0153 \pm 0.0036 \pm 0.0027 & 0.63 \pm 0.15 \pm 0.11 \\ & 0.0093 \pm 0.0067 \pm 0.0038 & 0.38 \pm 0.28 \pm 0.15 \end{array} $			
As precise as previous world average. No evidence for CP violation. S. Stahl, 21/03/19		$y_{CP} = (0.57 \pm 0.13(\text{stat}) \pm 0.09(\text{syst}))\%$ $y_{CP,\text{HFLAV}} = (0.84 \pm 0.16)\%$ $y_{\text{HFLAV}} = (0.62 \pm 0.07)\%$			
		Experimental status of charm physics			

Phys. Rev. Lett. 118, 261803 (2017) Asymmetry of effective decay widths

• Asymmetry between D^0 and \overline{D}^0 effective decay widths

$$A_{CP}(t) = \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \approx a_{dir}^{f} - A_{\Gamma} \frac{t}{\tau_{D}}$$
$$A_{\Gamma} = +\frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi$$

S. Stahl, 21/03/19

Phys. Rev. Lett. 118, 261803 (2017) Asymmetry of effective decay widths

• Asymmetry between D^0 and \overline{D}^0 effective decay widths

$$A_{CP}(t) = \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} \approx a_{dir}^{f} - A_{\Gamma} \frac{t}{\tau_{D}}$$
$$A_{\Gamma} = +\frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi - \frac{1}{2} \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi$$

Experimental status of charm physics

LHCb-PAPER-2019-001

Multi-body decays

- Analysis with Run 1 data
- 1.3 Million prompt decays
- 1 Million semileptonic decays
Dalitz plot and interference

$$\mathcal{P}_D(m_+, m_-) \propto e^{-\Gamma t} \left[|A_D|^2 + \operatorname{Re}(A_{\overline{D}}^*(m_+, m_-)A_D(m_+, m_-)(z)\Gamma^2) \right]$$

Reminder WS method

- Remember WS method $R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$ $\frac{A(D^0 \to K^+ \pi^-)}{A(\overline{D}^0 \to K^+ \pi^-)} = -\sqrt{R_D} e^{-i\delta}$ $y' = y \cos \delta - x \sin \delta$ (strong $x' = x \cos \delta + y \sin \delta$ phase) Cabibbo
 - Here, strong phase varies in each point
 - CLEO measured strong phases with correlated DD pairs in bins of Dalitz plot

Binflip method

$$R_{bj} = \frac{N_{-bj}}{N_{bj}}$$

• Measure ratios of yields in Dalitz bins b and -b in decay-time bins j

No CPV:

$$R_{bj} \approx r_b - \langle t \rangle_j \sqrt{r_b} \big[(1 - r_b) c_b \ y - (1 + r_b) s_b \ x \big],$$

- External input from CLEO c_b, s_b
- Nuisance parameter r_b
- Use binning which minimizes strong phase variations

Binflip method

$$R_{bj} = \frac{N_{-bj}}{N_{bj}}$$

$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4} r_b \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}.$$

 $X_b \equiv c_b - is_b$

- r_b nuisance parameter
- X_b external input from CLEO
- Avoids modeling of D decay dynamics
- Cancellation of most acceptance effects

Phys. Rev. D99 (2019) 012007 Binflip method – Expected Sensitivity

- CLEO uncertainties, marginal impact on precision for Run 1 data set
- For future measurements, improved input from BESIII needed

Dalitz-plot acceptance

Measured by CLEO:

 $c_b \propto \int_b dm_+^2 dm_-^2 \left| A_f(m_+^2, m_-^2) \right| \left| A_f(m_-^2, m_+^2) \right| \cos[\Delta \delta(m_+^2, m_-^2)]$ Measured by LHCb: $\tilde{c}_b \propto \int_b dm_+^2 dm_-^2 \left| \epsilon(m_+^2, m_-^2) \right| \left| A_f(m_+^2, m_-^2) \right| \left| A_f(m_-^2, m_+^2) \right| \cos[\Delta \delta(m_+^2, m_-^2)]$

Pseudo experiments: Negligible bias if appropriate selection and binning.

LHCb-PAPER-2019-001 Dalitz-plot and decay-time acceptance

43

Dalitz-plot and decay-time acceptance

 $\tilde{c}_b(t) \propto \int_b dm_+^2 dm_-^2 \left[\epsilon(m_+^2, m^2, t) \right] |A_f(m_+^2, m_-^2)| \left| A_f(m_-^2, m_+^2) \right| \cos[\Delta \delta(m_+^2, m_-^2)]$

(Uncorrected) correlation (m²(π^+ , π^-), t) introduces bias in measurement.

Dalitz-plot and decay-time acceptance

- Correlation (m²(π^+ , π^-), t) introduces bias in measurement
- Extract efficiency map from data, normalized to average decay-time distribution
- Assign per-candidate weight depending on $(m^2(\pi^+, \pi^-), t)$
- Extensive pseudo-experiment studies to validate method

Dalitz-plot and decay-time acceptance

- D's from semileptonic decays show almost no correlation
- No correction applied
- Extensive pseudo-experiment studies to validate method

Mixing and CPV fit

Fit results

Parameter	Value	$95.5\%~{\rm CL}$ interval
$ \begin{array}{c} x \ [10^{-2}] \\ y \ [10^{-2}] \\ q/p \\ \phi \end{array} $	$\begin{array}{r} 0.27 \substack{+0.17 \\ -0.15} \\ 0.74 \pm 0.37 \\ 1.05 \substack{+0.22 \\ -0.17} \\ -0.09 \substack{+0.11 \\ -0.12} \end{array}$	$\begin{bmatrix} -0.05, 0.60 \end{bmatrix}$ $\begin{bmatrix} 0.00, 1.50 \end{bmatrix}$ $\begin{bmatrix} 0.55, 2.15 \end{bmatrix}$ $\begin{bmatrix} -0.73, 0.29 \end{bmatrix}$

- Most precise measurement of x by a single experiment
- No sign of CP violation

Impact on world average

Parameter	Value	Allowed interval			
		$68.3\%~{\rm CL}$	$95.5\%~\mathrm{CL}$	$99.7\%~\mathrm{CL}$	
$x [10^{-2}]$	0.38 ± 0.12	$\left[\begin{array}{c} 0.26 \\ , 0.50 \end{array} \right]$	[0.14, 0.61]	[0.02, 0.71]	
$y \; [10^{-2}]$	$0.655 {}^{+ 0.062}_{- 0.067}$	[0.588, 0.717]	[0.52, 0.78]	[0.44, 0.84]	
q/p	$0.967 {}^{+ 0.050}_{- 0.045}$	[0.922, 1.017]	[0.88, 1.07]	[0.84, 1.13]	
ϕ	$-0.070{}^{+0.079}_{-0.081}$	$\left[-0.151, 0.009 ight]$	[-0.24, 0.09]	$\left[-0.33, 0.19\right]$	

- Includes all measurements shown today
- Significantly improved limits on CPV parameters
- First evidence of non-zero x ... 30 times more data in Run 2

Direct CP violation

Direct CP violation in two-body charm decays

• Observable:

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)} \propto \left| \frac{V_{cb}^* V_{ub}}{V_{cs}^* V_{us}} \right| \lesssim \mathcal{O}(0.1 \%)$$

Naively:
$$A_{CP}(K^-K^+) = -A_{CP}(\pi^-\pi^+)$$

Two-body modes

Measured quantity: ΔA_{CP} (prompt)

Measured quantity: ΔA_{CP} (SL)

ΔA_{CP} history in LHCb

Picture by A. Carbone

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

Validity of the method

- Assumption: Cancellation of production and detection asymmetry in difference
 - Asymmetries depend on kinematics
 - \rightarrow Residual asymmetries in difference
- Remember sub-per mille precision

Kinematic weighting

- Small differences in kinematics
- Weights assigned to each KK event:

$$w(p_T^{D^*}, \eta^{D^*}, \phi^{D^*}) \propto \frac{n_{\pi^-\pi^+}(p_T^{D^*}, \eta^{D^*}, \phi^{D^*})}{n_{K^-K^+}(p_T^{D^*}, \eta^{D^*}, \phi^{D^*})}$$

• Production and detection asymmetries cancel in difference

• Effect on ΔA_{CP} smaller than 10^{-4}

Systematic uncertainties

Robustness checks

S. Stahl, 21/03/19

- Remember sub-per mille precision.
- Detection asymmetries can change over time, CP asymmetries should not.
- Results compatible for different run periods and magnet polarities.

Experimental status of charm physics

Robustness checks

- Remember sub-per mille precision.
- Detection asymmetries depend on kinematics, CP asymmetries should not.
- Huge number of tests

S. Stahl, 21/03/19

Experimental status of charm physics

Results

• Full Run 2 result:

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \text{ (stat.)} \pm 0.9 \text{ (syst.)}] \times 10^{-4}$$

$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \text{ (stat.)} \pm 5 \text{ (syst.)}] \times 10^{-4}$$

• Full Run 1 result:

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-10 \pm 8 \text{ (stat.)} \pm 3 \text{ (syst.)}] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [+14 \pm 16 \text{ (stat.)} \pm 8 \text{ (syst.)}] \times 10^{-4}$$

• All results compatible → combined result:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

Combined LHCb result

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

- The significance of the deviation from zero corresponds to 5.3 standard deviations.
- This is the first observation of CP violation in the decay of charm hadrons.

Interpretation of the results

- ΔA_{CP} mostly sensitive to direct CP violation.
- Small contribution from indirect CP violation.

$$\Delta A_{CP} \equiv A_{CP}(K^{-}K^{+}) - A_{CP}(\pi^{-}\pi^{+})$$
$$\approx \Delta a_{CP}^{\text{dir}}\left(1 + \frac{\overline{\langle t \rangle}}{\tau(D^{0})} y_{CP}\right) + \frac{\Delta \langle t \rangle}{\tau(D^{0})} a_{CP}^{\text{ind}},$$

• Use average decay-times, their difference and the other results shown today:

$$\Delta a_{CP}^{\rm dir} = (-15.6 \pm 2.9) \times 10^{-4}$$

$$a_{CP}^{\mathrm{ind}} = -\frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi + \frac{1}{2} \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin \phi$$

HFLAV combination

[https://hflav.web.cern.ch]

HFLAV combination (dominated by LHCb):

$$a_{CP}^{\text{ind}} = (-0.028 \pm 0.026)\%$$

$$\Delta a_{CP}^{\rm dir} = (-0.164 \pm 0.028)\%$$

Consistency with NO CPV Hypothesis:

 5×10^{-8}

Picture by A. Carbone

Credits: Slides inspired by: "Charm physics at LHCb", Angelo Di Canto, LHCb UK Student Meeting, December 14th, 2015

ΔA_{CP} history in LHCb since today

ΔA_{CP} history in LHCb since today

Source	x_{CP}	y_{CP}	Δx	Δy
Secondary charm decays	0.24 (0.44) (0.00)	0.36(0.65)(0.00)	< 0.01	< 0.01
Unrelated $D^0\mu^-$ combinations	0.34 (0.00) (0.94)	0.31(0.00)(0.60)	< 0.01	< 0.01
Reconstruction and selection biases	0.08 (0.24) (0.08)	0.94 (1.37) (0.21)	0.22(0.24)(0.28)	0.25(0.29)(0.22)
Mass-fit model	0.04 (0.02) (0.10)	0.03(0.08)(0.15)	< 0.01	0.03(0.04)(< 0.01)
VELO length scale	< 0.01	< 0.01	< 0.01	< 0.01
Input D^0 lifetime	< 0.01	< 0.01	< 0.01	< 0.01
Total systematic	0.43 (0.50) (0.95)	1.05(1.52)(0.65)	0.22 (0.24) (0.28)	0.25 (0.29) (0.22)
CLEO inputs	0.70 (0.65) (0.87)	1.22 (1.54) (1.35)	0.19 (0.25) (0.28)	0.26 (0.36) (0.65)
Statistical (w/o CLEO inputs)	1.46(1.76)(2.64)	3.35 (4.02) (6.12)	0.68(0.74)(1.67)	1.58(1.76)(3.93)
Statistical	1.62 (1.87) (2.78)	3.57 (4.30) (6.27)	0.70(0.78)(1.69)	1.60(1.80)(3.98)

Effect of direct CPV on CPV parameters

M Gersabeck et al. http://arxiv.org/abs/1111.6515v2

 $|\lambda_f^{\pm 1}|^2 \approx (1 \pm A_m)(1 \pm A_d),$

$$y_{CP} \approx \eta_{CP} \left[\left(1 - \frac{1}{8} A_m^2 \right) y \cos \phi - \frac{1}{2} (A_m) x \sin \phi \right], \tag{7}$$

and

$$A_{\Gamma} \approx \left[\frac{1}{2}(A_m + A_d)y\cos\phi - x\sin\phi\right]\frac{\eta_{CP}}{1 + y_{CP}} \approx \eta_{CP}\left[\frac{1}{2}(A_m + A_d)y\cos\phi - x\sin\phi\right].(8)$$

One step further: $A_{CP}(K^-K^+)$

• Similar strategy as ΔA_{CP} , just more complicated

 $A_{\rm raw}(K^-K^+, {\rm SL}) = A_{CP}(K^-K^+) + A_D(\mu^-) + A_P(B)$

• Cabibbo-favoured decays $B \rightarrow (D^0 \rightarrow K^- \pi^+) \mu^- X$

$$A_{\rm raw}(K^-\pi^+, {\rm SL}) = A_D(\mu^-) + A_P(B) + A_D(K^-\pi^+)$$

• Charged kaon asymmetry from Cabibbo-favoured D⁺ decays $\begin{aligned} A_{\text{raw}}(K^{-}\pi^{+}\pi^{+}, \Pr) &= \overline{A_{D}(K^{-}\pi^{+})} + \overline{A_{D}(\pi^{+})} + A_{P}(D^{+}) \\ A_{\text{raw}}(\overline{K}^{0}\pi^{+}, \Pr) &= \overline{A_{D}(\pi^{+})} + A_{P}(D^{+}) + \overline{A_{D}(K^{0})} \end{aligned}$ (small) $\begin{aligned} A_{D}(K^{-}\pi^{+}) &= A_{\text{raw}}(K^{-}\pi^{+}\pi^{+}) - A_{\text{raw}}(\overline{K}^{0}\pi^{+}) - A_{D}(K^{0}) \end{aligned}$ (small) $\begin{aligned} A_{CP}(K^{-}K^{+}) &= A_{\text{raw}}(K^{-}K^{+}) - A_{\text{raw}}(K^{-}\pi^{+}) + A_{D}(K^{-}\pi^{+}) \end{aligned}$

One step further: $A_{CP}(K^-K^+)$

• Similar strategy as ΔA_{CP} , just more complicated

 $A_{\rm raw}(K^-K^+, {\rm SL}) = A_{CP}(K^-K^+) + A_D(\mu^-) + A_P(B)$

• Cabibbo-favoured decays $B \rightarrow (D^0 \rightarrow K^- \pi^+) \mu^- X$

$$A_{\text{raw}}(K^{-}\pi^{+}\pi^{+}, \text{Pr}) = \underbrace{A_{D}(K^{-}\pi^{+})}_{A_{\text{raw}}(\overline{K}^{0}\pi^{+}, Pr)} = \underbrace{A_{D}(K^{-}\pi^{+})}_{A_{\text{raw}}(\overline{K}^{0}\pi^{+}, Pr)} = \underbrace{A_{D}(\pi^{+})}_{A_{D}(\pi^{+})} + \underbrace{A_{D}(\pi^{+})}_{A_{D}(\pi^{+})} + \underbrace{A_{D}(K^{0})}_{(\text{small})}$$

$$\underbrace{A_{D}(K^{-}\pi^{+})}_{A_{\text{raw}}(\overline{K}^{-}\pi^{+}\pi^{+})} - \underbrace{A_{\text{raw}}(\overline{K}^{0}\pi^{+})}_{A_{\text{raw}}(\overline{K}^{0}\pi^{+})} - A_{D}(K^{0})}$$

$$\underbrace{A_{CP}(K^{-}K^{+})}_{A_{\text{raw}}(K^{-}K^{+})} - A_{\text{raw}}(K^{-}\pi^{+}) + A_{D}(K^{-}\pi^{+})}$$
Neutral kaon asymmetry

• Flavour of kaon at production defined

$$D^+ \to \overline{K}^0 \pi^+$$
 $D^- \to K^0 \pi^-$

- At decay we measure $\pi\pi$ final state (almost pure K_S^0)
- Feature 1: Neutral Kaons mix and decay is CP violating
- Feature 2: Different matter interaction rates for K^0/\overline{K}^0
- Feature 3: Both effects interfere

Thesis,

S. Stahl

Neutral kaon asymmetry

• Formalism well known:

$$\alpha_{\rm L,S}(t) = e^{-i\Sigma \cdot t} \left[\alpha_{\rm L,S}^0 \cos\left(\Omega t\right) \neq \underbrace{\Delta \lambda \alpha_{\rm L,S}^0 \pm \Delta \chi \alpha_{\rm S,L}^0}_{2\Omega} \sin\left(\Omega t\right) \right]$$

Mixing and
CP violation

$$\left| K^0 \rangle, |\overline{K}^0 \rangle = \frac{\sqrt{1 + |\epsilon|^2}}{2} \frac{1}{1 \pm \epsilon} \left[|K_{\rm L}^0 \rangle \pm |K_{\rm S}^0 \rangle \right]$$

Propagate particles step wisethrough material map.→ Extract expected asymmetry

Neutral kaon asymmetry

- effect much bigger

JHEP07(2014)041, S. Stahl PhD thesis

Charm at LHCb (Run 2)

ΔA_{CP} history in LHCb since today

S. Stahl, 21/03/19 Experimental status of charm physics