

Plasma Wake Field Acceleration and the AWAKE Experiment

J. Moody

P. Muggli, A. Caldwell

Max Planck Institute for Physics

for the AWAKE Collaboration

B-Physics Workshop, Neckarzimmern,

22 March 2019

Outline of Lecture

Section I: Motivation for Charged Particle Accelerators Section II: Acceleration of Particles Section III: Plasma Wakefield Acceleration Section IV: The AWAKE Experiment

Motivation for Accelerators

What is the demand for charged particle accelerators for scientific research?

Colliders for High **Energy Physics**

Collision at LHC

MAX-PLANCK-GESELLSCHAFT

To Higher CM Energy Scales

Challenges for Higher CM Energy

- Scale of Linear Accelerators
- Synchrotron radiation for circular electron machines
- Scale / maximum magnetic field for circular hadron accelerators
- Resource use scales with collider size, next generation colliders in Billions of USD

Livingston Plot

How to achieve physics goals with limited resources? Decrease size, Increase Gradients!

A WAKE

Werr, Murartori "Concept of Luminosity"

MAX-PLANCK-GESELLSCHAFT

How to generate Electric Field to accelerate particles?

Max-Planck-Institut für Physik

Electrostatic Accelerators

(Werner-Heisenberg-Institut)

- Electric field accelerates charged particles
- Relatively low accelerating gradients (MeV scale energy gain on large devices)
- Suffer from breakdown
- Breakdown limits the accelerating gradients!

How to overcome breakdown?

Let the field frequency, $\omega \neq 0$

H. Wiedemann, Particle Accelerator Physics

Acceleration by RF Fields

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Typical SLAC Cavity style Parameters:

Frequency: S-band (~3 GHz)

Gradient: ~20MeV/m

Cavity Length: 1.5 m

Beam Distributions

How do we describe beams?

- Liouville's Theorem allows us to describe a beam's evolution as an area occupied in phase space instead of individual particle trajectories
- Emittance is a measure of this phase space area occupied by the beam
- We typically assume rotational symmetry and can describe them by longitudinal and transverse phase spaces

Why Do We Care About Emittance?

Emittance effects Luminosity!

The waist size at the interaction final focus is determined by the emittance This determines the particle density over the collision

$$x_i(z) = \sqrt{\epsilon} \sqrt{\beta(z)} \cos[\psi(z) + \delta_i]$$

Limitations to Conventional RF Accelerators

(Werner-Heisenberg-Institut)

Advanced Accelerators

Because we are operating at shorter than conventional wavelengths all advanced accelerators have a challenge for Beam quality: Energy spread and transverse emittance

- Leaves behind energy in the medium
- Can extract the energy left behind, like a wake surfer

MAX-PLANCK-G	ESELLSCHAFT
--------------	-------------

Plasma Wakefield Concept

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Wakefield Equations Linear Theory

Modulated bunch drives larger wakefields than un-modulated bunch
 Wakefields shift backwards from the front of the bunch
 Growth of the wakefields, transverse evolution of the bunch ...

Transformer Ratio

Transformer Ratio

Optimum Depends on bunch shape

For Gaussian maximum R is at $\mathbf{k}_{pe}\sigma_{z}{\sim}\sqrt{2}$

For a square bunch It is $\lambda_{pe}/2$

The transformer ratio is a reflection of how much energy can be transferred from the drive to the witness beam

R=|W_{z,max}(behind)|/|W_{z,max}(within)|

Transformer Ratio R>2

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- R=2 is for a length optimized gaussian bunch but can we go higher?
- We already saw that the transformer ratio is affected by bunch shape
- Ramping the drive beam current can drive stronger wakefields within the plasma

A WA-KE

Blowout or Bubble Regime

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Regime most people are most familiar with ...

♦ Most useful regime for e⁻ bunches acceleration ...

 $egreen E_z \sim E_{WB}$ ("linear concept")

LWFA: Pukhov, Appl. Phys. B., Lasers Opt. 74, 355 (2002) PWFA: Rosenzweig, Phys. Rev. A 44, R6189 (1991) Lu, PRL 96, 165002 (2006)

Motion of a particle in the ion column:

$$\gamma m_e \frac{dv_{\perp}}{dt} = F_{\perp} \implies \gamma m_e c^2 \frac{d^2 r}{dz^2} = e \frac{1}{2} \frac{e n_{e0}}{\varepsilon_0} r \implies \frac{d^2 r}{dz^2} = \frac{1}{2\gamma c^2} \frac{e^2 n_{e0}}{m_e \varepsilon_0} r = \frac{\omega_{pe}^2}{2\gamma c^2} r = \frac{k_{pe}^2}{2\gamma} r = k_{\beta}^2 r$$

Harmonic motion (no energy gain/loss)

Dependent on γ !

 $\frac{d^2r}{dz^2} = k_{\beta}^2 r \implies r(z) = r_0 e^{ik_{\beta}z} \implies \text{emission of betatron radiation (synchrotron)}$

$$\begin{split} & \text{Examples: SLAC E}_{kin} = 28.56 \text{GeV} => \gamma^{\sim} 56'000 \\ & \text{n}_{e}^{\sim} 2 \times 10^{14} \text{cm}^{-3} => \text{KeV photons} \qquad & \text{Wang, PRL 88, 135004 (2002)} \\ & \text{n}_{e}^{\sim} 2 \times 10^{17} \text{cm}^{-3} => \text{MeV photons} \qquad & \text{Johnson, PRL 97, 175003 (2006)} \end{split}$$

This is required to lower the energy spread

LWFA vs PWFA (beam driven) AWAKE

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

(Werner-Heisenberg-Institut)

LWFA vs PWFA Results

AFT

Section IV The AWAKE Experiment

Proton Driven Plasma Wakefield Acceleration Experiment

- Proof-of-Principle Accelerator R&D experiment at CERN
- 400 GeV protons from SPS drive wakefields through 10 m plasma
- Final Goal: Design high quality & high energy electron accelerator based on acquired knowledge.
- AWAKE Collaboration: 16 institutes + 3 associate
- Currently AWAKE is at a stage of a beam-plasma experiment

Driving with Protons

- Max-Planck-Institut für Physik Mn Orden to create plasma wakefields efficiently, the drive bunch length has to be in the order of the plasma wavelength.
 - **CERN SPS proton bunch: very long!**
- Longitudinal beam size ($\sigma_z = 12 \text{ cm}$) is much longer than plasma wavelength ($\lambda =$ 1.2mm) Seeded Self-Modulation

 Modulate long bunch to produce a series of 'micro-bunches' in a plasma with a spacing of plasma wavelength $\lambda_{\rm p}.$

 \rightarrow Strong self-modulation effect of proton beam with period of λ_{pe} due to transverse wakefield in plasma

 \rightarrow Resonantly drives the longitudinal wakefield

AWAKE

N. Kumar, A. Pukhov, K. Lotov, PRL 104, 255003 (2010)

Why Drive with Protons?

^{Mar Proton bunches as drivers of plasma wakefields are interesting because of the very large energy content of the proton bunches.}

Drive beams:
Lasers: ~40 J/pulse
Electron drive beam: 30 J/bunch
Proton drive beam: SPS 19kJ/pulse, LHC
300kJ/bunch

Witness beams:

Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

Drive beam: protons

To reach TeV scale:

- Electron/laser driven PWA: need several stages, and challenging wrt to relative timing, tolerances, matching, etc...
 - effective gradient reduced because of long sections between accelerating elements....

- Proton drivers: large energy content in proton bunches → allows to consider single stage acceleration:
 - A single SPS/LHC bunch could produce an ILC bunch in a single PDWA stage. Plasma cell Witness beam

The AWAKE Experiment

Run 1 Completed After LS2 – proposing Run 2 of AWAKE After Run 2 – kick off particle physics driven applications A WA-KE

AWAKE Run 1 Layout

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

LSCHAFT

AWAKE Beamlines

AWAKE Proton and Laser Beam Line

The AWAKE beamline is designed to deliver **a high-quality beam** to the experiment.

The proton beam must be steered around a mirror which **couples a terawatt class laser (Ti:Saph, 500mJ, 120fs)** into the beamline.

Further downstream, a **trailing electron beam** will injected into the same beamline.

AWAKE Vapor Source

Max-Planck-Institut für Physik

- 10 meter rubidium vapor source
- Rubidium is controlled to within .2% neutral density, gradients can be controlled (1-10) e14/cm³
- Rubidium neutral density is measured by white light interferometry

acor Systom

Edser System	
Laser type	Er:Fiber/ OscillatorTi:Sapphire
Pulse wavelength	λ ₀ = 780 nm
Pulse length	120 fs FWHM
Maximum Pulse energy (after compressor)	450 mJ
Maximum Laser power	4.5 TW
Focused laser size	$\sigma_{x,y}$ = 1 mm
Rayleigh length Z _R	~3.5 m
Energy stability	±1.5% r.m.s.
Repetition rate	10 Hz

Amplitude Technologies Centarus X

- Fiber laser chosen for stability on long runs
- Laser BW is only 15nm with peak spectrum at 780nm
- Several Rb lines within spectrum

Direct SSM diagnostic: Measure frequency of modulation.

Acceleration Diagnostic:

Spectrometer

Spectrometer

AWAKE Run 1 Results: Seeded Self Modulation

Demonstration of Seeded Self Modulation

Seeding the self modulation of the proton demonstrates phase stability which is required for stable injection of the witness beam after wakefields have grown!

 \diamond Observed only with low n_{e0}

J. Vieira et al., Phys. Rev. Lett. 112, 205001 (2014).

MAX-PLANCK-GESELLSCHAFT

Indirect Measurement of SSM

Indirect SSM Measurement: Image protons that got defocused by the strong plasma wakefields.

M. Turner, CERN

Two imaging stations (IS) to measure the radial proton beam distribution 2 and 10 m downstream the end of the plasma.
→ Growth of tails governed by transverse fields

in the plasma.

M. Turner et al PRL

Demonstrated energy gain up to 2 GeV

Goals for Run 2

- Accelerate an electron beam to high energy (gradient of 0.5-1GV/m)
- Preserve electron beam quality as well as possible (emittance preservation at 10 mm mrad level)
- Demonstrate scalability of the AWAKE concept (R&D plasma sources)

AWAKE Run 2: <u>AIVAKE</u> <u>Max-Planck-Institut für Phy</u> <u>emonstration of Beam Preservation</u>

- For Run 2 AWAKE must demonstrate high beam quality of the accelerated beam
- This means low energy spread and low emittance

♦ Challenging parameters to produce with low energy particles (σ_r , σ_z) ♦ Challenging to measure (σ_r)

Beyond Run 2: Applications for AWAKE

- Use bunches from SPS with 3.5 E11 protons every ~5sec, \rightarrow electron beam of up to O (50GeV).
 - → Search for dark photons a la NA64, 3 orders of magnitude increase in electrons
- Using the LHC beam as a driver, TeV electron beams are possible → Electron/Proton or Electron/Ion Collider
 - LHeC like collider: E_e up to O (50 GeV), colliding with LHC protons → exceeds HERA centre-of-mass energy
 - − **VHPeC:** choose $E_e = 3$ TeV as a baseline and with $E_p = 7$ TeV yields $\sqrt{s} = 9$ TeV. \rightarrow CM ~30 higher than HERA. Luminosity ~ $10^{28} 10^{29}$ cm⁻² s⁻¹ gives ~ 1 pb-1 per year.

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

MAX-PLANCK-GESELLSCHAFT

Conclusions for AWAKE

- AWAKE is proton driven plasma wakefield experiment at CERN
- Aim of AWAKE: accelerating electrons with ~1 GV/m gradient using seeded self-modulation of a long proton bunch in a plasma ($\sigma_z >> \lambda_{pe}$)
- First Seeded Self-Modulation measurements in 2016/17
 - The Seeded Self-Modulation of the proton beam has been observed.
- Electron acceleration in the plasma wakefield: Observed energy gain up to 2 GeV
- Run 2 is proposed for after 2020: preserve electron beam quality, scalability
 - Will split into SSM and accelerating stages
- First studies on applications of p-driven PWFA up at 10's of GeV and TeV scales are currently under investigation

