
Introduction to
Machine Learning

Elke Kirschbaum

Image Analysis and Learning Lab (IAL)
Interdisciplinary Center for Scientific Computing (IWR)
Heidelberg University

Overview

Part I:

Introduction to Machine Learning and Deep Learning

Part II:

Unsupervised Deep Learning Models

2

Part I: Introduction to Machine
Learning and Deep Learning

1. About Me and the IAL Group
2. And What About You?

3. What is Machine Learning?
4. What is Deep Learning?

a. What is a Neural Network?
b. Common Architectures and Loss Functions
c. Applications in Particle Physics
d. Tools for Deep Learning

3

About Me and the IAL
Group

4

About me

● studied Physics in Tübingen
● since 2015: PhD student in Image Analysis and Learning (IAL)

group
● developing machine learning algorithms to analyse neurological

data

5

We do…
Cell Segmentation from Videos

6

https://docs.google.com/file/d/1cV9tib3BjFMBgFy-XHj5LQuRmGnIMI8v/preview

We do…
Motif Detection

7

We do…
Neuron Segmentation

8Figures taken from Cerrone et al. (2019), “End-to-End Learned Random Walker for Seeded Image
Segmentation”

We do…
Cell Tracking

9

https://docs.google.com/file/d/1g4OOjY6OuuK8zlFiRfiJxTcLMJvJbEr5/preview
https://docs.google.com/file/d/1foTJFOY4_3z2X5m_tUDju0_CveuMeEkO/preview

And What About You?

10

What is Machine
Learning?

11

Machine Learning is...

Regression

find parameters a and b such that

12

Machine
Learning is...

13

Clustering
partition the n observations
into k sets S to minimize the
within-cluster sum of squares

Machine Learning is...

14

Classification

Soft-margin SVM:

Machine Learning is...

Figure taken from Krizhevsky et al. (2012), “ImageNet Classification with Deep Convolutional Neural
Networks”

15

Classification

Machine Learning is...
Segmentation

Figure taken from https://www.cityscapes-dataset.com/examples/
16

Machine Learning is...

● “a computer program learning from experience”
● algorithms that build a mathematical model based on training

data to make predictions or decisions
● model parameters are usually learned by finding an

(approximate) solution to an optimization problem
● name was coined in 1959

17

Machine Learning includes...

● Supervised Learning
○ training data = input data + output labels

○ e.g. SVM, linear regression

● Unsupervised Learning
○ training data = only input data

○ e.g. clustering, feature learning, dimensionality reduction, pattern or anomaly

detection

● Semi-Supervised Learning
○ only parts of the training data include output labels

18

Machine Learning includes...

● Active Learning
○ training labels for a limited input set

are accessed based on a budget

○ choice of inputs for which labels are

used is learned

○ can be trained interactively with a

human labeller

● Reinforcement Learning
○ actions get positive or negative

feedback

○ goal is to maximize reward

19

http://www.youtube.com/watch?v=60pwnLB0DqY

Why is Machine Learning suddenly
so “hot”?

20

Figure taken from
https://arstechnica.com/science/2018/12/how-computers-got-sho
ckingly-good-at-recognizing-images/

What is Deep Learning?

21

Deep Learning is…

● a specific class of machine learning models
● widely applicable to a huge range of different datasets and tasks

○ computer vision

○ natural language processing

○ speech recognition

○ machine translation

○ bio and medical image analysis

○ material inspection

● machine learning with deep neural networks

22

What is a Neural
Network?

23

Example: Classification in 2D

24

Linear Decision Boundary

25

Non-Linear Decision Boundary

26

Non-Linear Mapping of the Data + Linear
Decision Boundaries

27

Multi-Layer Perceptron (MLP)

28

Multi-Layer Perceptron (MLP)

29

Multi-Layer Perceptron (MLP)

30

Multi-Layer Perceptron (MLP)

31

Multi-Layer Perceptron (MLP)

32

Multi-Layer Perceptron (MLP)

33

w
c

Multi-Layer Perceptron (MLP)

34

Training

● minimize the loss function

yo = true label for observation o

po = predicted label for observation o

35

Training

● learn weights using gradient descent

36

Training

● use backpropagation to compute gradients efficiently

37

Training

● use backpropagation to compute gradients efficiently

38

Training

● use backpropagation to compute gradients efficiently

39

Training

● use backpropagation to compute gradients efficiently

40

Training

● use backpropagation to compute gradients efficiently

41

Neural Network

42
Figures taken from http://cs231n.github.io/convolutional-networks/

Fully Connected Neural Network

43Figure taken from
https://de.mathworks.com/matlabcentral/fileexchange/64247-simple-neural-network

depth

w
id

th

Convolutional Neural Network (CNN)

44
Figures taken from http://cs231n.github.io/convolutional-networks/

Convolutional Neural Network (CNN)

45
Figure taken from https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Network (CNN)

46
Figure taken from https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Network (CNN)

47
Figure taken from https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Network (CNN)

48
Figure taken from https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Network (CNN)

49
Figure taken from http://cs231n.github.io/convolutional-networks/

Convolutional Neural Network (CNN)

50
Figures taken from ttps://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Network (CNN)

51
Figure taken from https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional Neural Network (CNN)

52
Figure taken from http://cs231n.github.io/convolutional-networks/

Common Architectures
and Loss Functions

53

Common Network Architectures:
VGG

54
Figure taken from https://www.lri.fr/~gcharpia/deeppractice/chap_2.html

Common Network Architectures:
ResNet

55
Figure taken from He et al. (2016), “Deep Residual Learning for Image Recognition”

Common Network Architectures:
DenseNet

56
Figure taken from Huang et al. (2016), “Densely Connected Convolutional Networks”

Common Network Architectures:
U-Net

57
Figure taken from Renneberger et al. (2015), “U-Net: Convolutional for Biomedical Image Segmentation”

Common Network Architectures:
Xception Network

58
Figure taken from Chen et al. (2018), “Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation”

Loss Functions

● Cross Entropy Loss
● Hinge Loss
● Mean Absolute Error
● Mean Square Error
● Sörensen-Dice Loss
● …
● problem dependent choice

59

Applications in Particle
Physics

60

Applications in Particle Physics

61

Figure taken from
https://figshare.com/articles/
NIPS_2016_Keynote_Machine
_Learning_Likelihood_Free_Inf
erence_in_Particle_Physics/42
91565/1

Applications in Particle Physics

62

Figure taken from
http://helper.ipam.ucla.edu/pu
blications/dlt2018/dlt2018_1
4649.pdf

Applications in Particle Physics

63

Figure taken from
http://helper.ipam.ucla.edu/pu
blications/dlt2018/dlt2018_1
4649.pdf

Applications in Particle Physics

64

Figure taken from
http://helper.ipam.ucla.
edu/publications/dlt20
18/dlt2018_14649.pdf

Applications in Particle Physics

65

● inspired by natural language processing: words
follow a syntactic structure organized in a
parse tree

● jet classification:
○ sentence ⇒ jet
○ words ⇒ 4-momenta
○ syntactic structure ⇒ structure dictated

by QCD
○ parse tree ⇒ clustering history of a

sequential recombination jet algorithm

Figure taken from Louppe et al. (), “QCD-Aware Recursive Neural Networks for Jet
Physics”

Applications in Particle Physics

66
Figure taken from Louppe et al. (2017), “QCD-Aware Recursive Neural Networks for Jet Physics”

Tools for Deep Learning

67

Tools for Deep Learning

68

● mainly used Python libraries (March 2019): PyTorch,
TensorFlow and Theano (out-dated)

● PyTorch and TensorFlow have
○ easy GPU implementation

○ automated gradient computation for various operations

○ building blocks of commonly used models

○ online available implementations of many (trained) models

○ tools for visualization

○ lot’s of online tutorials and documentation

● Differences:
○ dynamic (PyTorch) vs. static (TensorFlow) graph definition

○ different ways of parallelization

○ PyTorch offers better development and debugging experience

● PyTorch or TensorFlow is a question of taste

Questions?

69

Break!

70

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Part II:

Unsupervised Deep Learning Models

1 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Contents

1 Autoencoder (AE)

2 Variational Autoencoder (VAE)

3 Example: The LeMoNADe Model

4 CycleGAN

2 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Section 1

Autoencoder (AE)

3 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Autoencoder

unsupervised learning models

attempt to copy input to the output through some hidden
layer

consists of two parts: encoder and decoder

dimension of hidden layer usually smaller than dimension of
input data) AE forced to capture the most salient features
of the data

learn useful properties of high dimensional data

4 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Autoencoder

x1

x2

x3

x4

x5

z1

z2

z3

x 01

x 02

x 03

x 04

x 05

LatentHiddenInput Hidden Output

E =
��x 0(i) � x (i)

��2

Encoder Decoder

5 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Section 2

Variational Autoencoder (VAE)

6 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Variational Autoencoder (VAE)

VAE = generative latent variable models + neural networks to
find optimal parameters [1]

what you need to know about neural networks:
1 ability to approximate arbitrary functions
2 learn parameters using gradient descent
3 convolutional neural networks (CNNs) learn convolution filters

7 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Variational Autoencoder (VAE)

VAE = generative latent variable models + neural networks to
find optimal parameters [1]

generative latent variable models data generation:
1 draw latent variable z (not observed) from prior distribution

z ⇠ pa(z)
2 generate data x (observed) from conditional distribution

x ⇠ p✓(x | z)

x

z

✓

a

8 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE

interesting quantity: posterior distribution of latent variables
given the data: p✓(z | x)
problem: true posterior is intractable

solution: introduce an approximate posterior q�(z | x)

x

z

✓ �

a

9 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Variational InferenceVariational Inference

p.z j x/

KL.q.zI ��/ jjp.z j x//

�init

��q.zI �/

� VI turns inference into optimization.

� Posit a variational family of distributions over the latent variables,

q(z;�)

� Fit the variational parameters � to be close (in KL) to the exact posterior.
(There are alternative divergences, which connect to algorithms like EP, BP, and others.)

⌫ ⌘ �
Figure taken from David Blei, for more on VI see e.g. Blei et al. (2017) [2]

10 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Objective

objective I: find parameters � that minimize di↵erence
between true and approximate posterior

min
�

KL(q�(z |x)kp✓(z |x))

objective II: find parameters ✓ that maximize the data
log-likelihood

max
✓

log p✓(x)

11 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Objective

use

log p✓(x) = L(p, q; x) + KL(q�(z |x)kp✓(z |x))

12 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Objective

use

log p✓(x)

max✓

= L(p, q; x) + KL(q�(z |x)kp✓(z |x))

min�

� 0

13 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Objective

use

log p✓(x)

max✓

= L(p, q; x) +

max✓,�

lower bound to
the log-likelihood
called ELBO

KL(q�(z |x)kp✓(z |x))KL(q�(z |x)kp✓(z |x))

min�

� 0

14 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Objective

new objective: maximize the lower bound (ELBO)

max
✓,�

L(p, q; x)

with

L(p, q; x) = Ez⇠q�(z|x) [log p✓(x |z)] � KL(q�(z |x)kpa(z))

approximate q�(z |x) and p✓(x |z) with neural networks
(encoder and decoder)

find optimal network parameters ✓ and � by minimizing the
loss function

loss = �L(p, q; x)

15 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Objective

new objective: maximize the lower bound (ELBO)

max
✓,�

L(p, q; x)

with

L(p, q; x) = Ez⇠q�(z|x) [log p✓(x |z)] � KL(q�(z |x)kpa(z))

approximate q�(z |x) and p✓(x |z) with neural networks
(encoder and decoder)

find optimal network parameters ✓ and � by minimizing the
loss function

loss = �L(p, q; x)

15 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Network Structure

x1

x2

x3

x4

x5

µ1

�1

µ2

�2

µ3

�3

z1

z2

z3

x 01

x 02

x 03

x 04

x 05

Encoder Decoder

z ⇠ q(z |x)

q(z |x ;�) = N (µ(x), �(x)) p(x |z ; ✓) = N (µ(z), �(z))

16 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Gradient Descent

minimize loss using gradient descent

✓n+1 = ✓n � ⌘r✓loss(✓n)

�n+1 = �n � ⌘r�loss(�n)

with

r�,✓loss = �r�,✓Ez⇠q�(z|x) [log p✓(x |z)]
+ r�,✓KL(q�(z |x)kp(z))

second term usually no problem

17 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Gradient Descent

first term with respect to ✓ also no problem

r✓Ez⇠q�(z|x) [log p✓(x |z)] = Ez⇠q�(z|x) [r✓ log p✓(x |z)]

) use e.g. Monte Carlo sampling

problem: expectation depends on �
) gradient w.r.t. � not easily computable

18 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Gradient Descent

solution: reparameterization trick

z ⇠ q�(z | x) ! z = h�(", x) with " ⇠ p(")

example: reparametrization for Gaussian distribution

z ⇠ N (µ, �) ! z = µ + � · " with " ⇠ N (0, 1)

after reparametrization trick expectation and gradient can be
exchanged

r�E"⇠p(") [log p✓(x |z = h�(", x))]

= E"⇠p(") [r� log p✓(x |z = h�(", x))]

) all gradients can now be computed easily e.g. using Monte
Carlo sampling

19 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

VAE Loss Function

assume data to be generated from Gaussian distribution

p✓(x |z) ⇠ N (x |f✓(z), 2�11)

) expectation term becomes a mean squared error (MSE)
between data and ’reconstructed’ data

�Ez⇠q�(z|x) [log p✓(x |z)] ! 1

T

TX

t=1

kxt � f✓(z)tk2 = MSE(x , x 0)

the KL-divergence acts as a regularizer on the approximate
posterior

standard VAE loss

loss = MSE(x , x 0) + KL
�
q�(z | x)||pa(z)

�

20 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Section 3

Example: The LeMoNADe Model

21 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Example: The LeMoNADe Model

Kirschbaum et al. (2019),
”LeMoNADe: Learned Motif and Neuronal Assembly Detection in
calcium imaging videos” [3]

22 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

What is Calcium Imaging?

microscopy technique

observe activity of large cell
populations on
single-cell-level

fluorescent Ca2+ tracer
) active cells light up

widely applicable: in vitro
and in vivo

data = sequence of images
= calcium imaging video

23 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

What are Neuronal Assemblies?

neuronal assemblies = motifs = subsets of neurons firing in a
spatio-temporal pattern

could be crucial building blocks in neuronal information
processing

existence still debated

cannot be detected manually

24 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Detection of Neuronal Assemblies in Ca Imaging Videos

Ca Imaging
Videos

Neuronal
Assemblies

Cell
Identification

Spike Time
Extraction

Motif Detection

25 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Detection of Neuronal Assemblies in Ca Imaging Videos

Ca Imaging
Videos

Neuronal
Assemblies

Cell
Identification

Spike Time
Extraction

Motif Detection

25 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Detection of Neuronal Assemblies in Ca Imaging Videos

Ca Imaging
Videos

Neuronal
Assemblies

Cell
Identification

Spike Time
Extraction

Motif Detection

25 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Detection of Neuronal Assemblies in Ca Imaging Videos

Ca Imaging
Videos

Neuronal
Assemblies

Cell
Identification

Spike Time
Extraction

Motif Detection

25 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Detection of Neuronal Assemblies in Ca Imaging Videos

Ca Imaging
Videos

Cell
Identification

Spike Time
Extraction

Motif Detection

Neuronal
Assemblies

Motif Detection
in Ca Videos
LeMoNADe

26 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Idea

calcium imaging video x⇡

reconstructed video x0

=

+

activations z

~

~

motifs M

27 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

LeMoNADe Model

xt

zmt�f

✓ �

a

M

F

T

Generative Model

z ⇠
TY

t=1

MY

m=1

Ber
�
zmt | a

�

x | z, ✓ ⇠ N
�
x | f✓(z), 2�11

�

Recognition Model

z | x, � ⇠
TY

t=1

MY

m=1

Ber
�
zmt | ↵m

t (x;�)
�

T = number of frames, M = number of motifs, F = length of each motif

28 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

LeMoNADe VAE

x

·ENCODER
↵

‡SAMPLING

z

·DECODER
~

~
x0

latent space = activations of motifs in time

motifs are either on or o↵
) Bernoulli-prior on z and Bernoulli distributions for q(z | x)
data additiv mixture of motifs plus noise
) only one deconvolution layer in decoder
) decoding filters = motifs

29 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

LeMoNADe Reparametrization Trick

q�(z | x) product of Bernoulli distributions
Bernoullis = discrete) no di↵erentiable reparametrization
trick available
use BinConcrete continuous relaxation of Bernoulli instead

z | x ⇠ Ber(↵(x)) ! z̃ | x ⇠ BinConcrete(↵̃(x), �)

with ↵̃ = ↵/(1 � ↵)

0.00 0.25 0.50 0.75 1.00

Ber(↵ = 0.8)

0

1000

2000

3000

4000

5000

6000

7000

8000

0.00 0.25 0.50 0.75 1.00

BinConcrete(↵̃ = 4,� = 0.1)

0

1000

2000

3000

4000

5000

6000

7000

0.00 0.25 0.50 0.75 1.00

BinConcrete(↵̃ = 4,� = 0.6)

0

500

1000

1500

2000

2500

3000

3500

4000

0.00 0.25 0.50 0.75 1.00

BinConcrete(↵̃ = 4,� = 1.0)

0

250

500

750

1000

1250

1500

1750

30 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

LeMoNADe Reparametrization Trick

Gumbel-softmax reparametrization trick [4, 5]

U ⇠ Uni(0, 1)

y = log(↵̃) + log(U) � log(1 � U)

z̃ = �(y/�) =
1

1 + exp(�y/�)Published as a conference paper at ICLR 2017

(a) � = 0 (b) � = 1/2 (c) � = 1 (d) � = 2

Figure 3: A visualization of the binary special case. (a) shows the discrete trick, which works by
passing a noisy logit through the unit step function. (b), (c), (d) show Concrete relaxations; the
horizontal blue densities show the density of the input distribution and the vertical densities show
the corresponding Binary Concrete density on (0, 1) for varying �.

(d) (Convex eventually) If � � (n � 1)�1, then p�,�(x) is log-convex in x.

The binary case of the Gumbel-Max trick simplifies to passing additive noise through a step func-
tion. The corresponding Concrete relaxation is implemented by passing additive noise through a
sigmoid—see Figure 3. We cover this more thoroughly in Appendix B, along with a cheat sheet
(Appendix F) on the density and implementation of all the random variables discussed in this work.

3.3 CONCRETE RELAXATIONS

Concrete random variables may have some intrinsic value, but we investigate them simply as surro-
gates for optimizing a SCG with discrete nodes. When it is computationally feasible to integrate over
the discreteness, that will always be a better choice. Thus, we consider the use case of optimizing a
large graph with discrete stochastic nodes from samples.

First, we outline our proposal for how to use Concrete relaxations by considering a variational
autoencoder with a single discrete latent variable. Let Pa(d) be the mass function of some n-
dimensional one-hot discrete random variable with unnormalized probabilities a � (0, �)n and
p✓(x|d) some distribution over a data point x given d � (0, 1)n one-hot. The generative model is
then p✓,a(x, d) = p✓(x|d)Pa(d). Let Q�(d|x) be an approximating posterior over d � (0, 1)n one-
hot whose unnormalized probabilities ↵(x) � (0, �)n depend on x. All together the variational
lowerbound we care about stochastically optimizing is

L1(✓, a, ↵) = E
D�Q�(d|x)

�
log

p✓(x|D)Pa(D)

Q�(D|x)

�
, (12)

with respect to ✓, a, and any parameters of ↵. First, we relax the stochastic computation
D ⇠ Discrete(↵(x)) by replacing D with a Concrete random variable Z ⇠ Concrete(↵(x), �1)
with density q�,�1(z|x). Simply replacing every instance of D with Z in Eq. 12 will re-
sult in a non-interpretable objective, which does not necessarily lowerbound log p(x), because
EZ�q�,�1 (a|x)[� log Q�(Z|x)/Pa(Z)] is not a KL divergence. Thus we propose “relaxing” the
terms Pa(d) and Q�(d|x) to reflect the true sampling distribution. Thus, the relaxed objective is:

L1(✓, a, ↵)
relax� E

Z�q�,�1 (z|x)

�
log

p✓(x|Z)pa,�2(Z)

q�,�1(Z|x)

�
(13)

where pa,�2(z) is a Concrete density with location a and temperature �2. At test time we evaluate
the discrete lowerbound L1(✓, a, ↵). Naively implementing Eq. 13 will result in numerical issues.
We discuss this and other details in Appendix C.

Thus, the basic paradigm we propose is the following: during training replace every discrete node
with a Concrete node at some fixed temperature (or with an annealing schedule). The graphs are
identical up to the softmax / argmax computations, so the parameters of the relaxed graph and
discrete graph are the same. When an objective depends on the log-probability of discrete variables
in the SCG, as the variational lowerbound does, we propose that the log-probability terms are also
“relaxed” to represent the true distribution of the relaxed node. At test time the original discrete loss
is evaluated. This is possible, because the discretization of any Concrete distribution has a closed
form mass function, and the relaxation of any discrete distribution into a Concrete distribution has a
closed form density. This is not always possible. For example, the multinomial probit model—the
Gumbel-Max trick with Gaussians replacing Gumbels—does not have a closed form mass.

The success of Concrete relaxations will depend on the choice of temperature during training. It is
important that the relaxed nodes are not able to represent a precise real valued mode in the interior

6

Figure taken from Maddison et al. (2016) [4]

31 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

LeMoNADe Loss Function

loss = MSE(x , x 0) + �KL · KL
�
q↵̃,�1(y | x)||pã,�2(y)

�

pã,�2(y) = relaxed and reparameterized prior pa(z)

q↵̃,�1(y | x) = relaxed and reparameterized approximate
posterior q�(z | x)
�KL controls regularization strength [6]

32 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Results on Synthetic Data

200 datasets

10 di↵erent noise levels from 0% up to 90% spurious spikes

3 motifs in each dataset

cosine similarity computed between found and ground truth
motifs, 1 = identical, 0 = orthogonal

bootstrap test to determine 5%-significance threshold of
similarity measure

33 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Results on Synthetic Data

SCC = Sparse Convolutional Coding, Peter et al. (2017) [7],
operating on spike matrix
red area = below BS 5% significance threshold

34 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Results on Real Data

two real datasets from hippocampal slice cultures

in both cases one pattern identified

Dataset 1

Dataset 2

35 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Section 4

CycleGAN

36 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

CycleGAN

X Y

G

F

DYDX

G

F
Ŷ

X Y� X Y
�

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

Figure 3: (a) Our model contains two mapping functions G : X ! Y and F : Y ! X , and associated adversarial
discriminators DY and DX . DY encourages G to translate X into outputs indistinguishable from domain Y , and vice versa
for DX and F . To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: x ! G(x) ! F (G(x)) ⇡ x, and (c) backward cycle-consistency loss: y ! F (y) ! G(F (y)) ⇡ y

images cannot be distinguished from images in the target
domain.

Image-to-Image Translation The idea of image-to-
image translation goes back at least to Hertzmann et al.’s
Image Analogies [19], who employ a non-parametric tex-
ture model [10] on a single input-output training image pair.
More recent approaches use a dataset of input-output exam-
ples to learn a parametric translation function using CNNs
(e.g., [33]). Our approach builds on the “pix2pix” frame-
work of Isola et al. [22], which uses a conditional generative
adversarial network [16] to learn a mapping from input to
output images. Similar ideas have been applied to various
tasks such as generating photographs from sketches [44] or
from attribute and semantic layouts [25]. However, unlike
the above prior work, we learn the mapping without paired
training examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is
to relate two data domains: X and Y . Rosales et al. [42]
propose a Bayesian framework that includes a prior based
on a patch-based Markov random field computed from a
source image and a likelihood term obtained from multiple
style images. More recently, CoGAN [32] and cross-modal
scene networks [1] use a weight-sharing strategy to learn a
common representation across domains. Concurrent to our
method, Liu et al. [31] extends the above framework with
a combination of variational autoencoders [27] and genera-
tive adversarial networks [16]. Another line of concurrent
work [46, 49, 2] encourages the input and output to share
specific “content” features even though they may differ in
“style“. These methods also use adversarial networks, with
additional terms to enforce the output to be close to the input
in a predefined metric space, such as class label space [2],
image pixel space [46], and image feature space [49].

Unlike the above approaches, our formulation does not
rely on any task-specific, predefined similarity function be-

tween the input and output, nor do we assume that the input
and output have to lie in the same low-dimensional embed-
ding space. This makes our method a general-purpose solu-
tion for many vision and graphics tasks. We directly com-
pare against several prior and contemporary approaches in
Section 5.1.

Cycle Consistency The idea of using transitivity as a
way to regularize structured data has a long history. In
visual tracking, enforcing simple forward-backward con-
sistency has been a standard trick for decades [24, 48].
In the language domain, verifying and improving transla-
tions via “back translation and reconciliation” is a technique
used by human translators [3] (including, humorously, by
Mark Twain [51]), as well as by machines [17]. More
recently, higher-order cycle consistency has been used in
structure from motion [61], 3D shape matching [21], co-
segmentation [55], dense semantic alignment [65, 64], and
depth estimation [14]. Of these, Zhou et al. [64] and Go-
dard et al. [14] are most similar to our work, as they use a
cycle consistency loss as a way of using transitivity to su-
pervise CNN training. In this work, we are introducing a
similar loss to push G and F to be consistent with each
other. Concurrent with our work, in these same proceed-
ings, Yi et al. [59] independently use a similar objective
for unpaired image-to-image translation, inspired by dual
learning in machine translation [17].

Neural Style Transfer [13, 23, 52, 12] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with
the style of another image (typically a painting) based on
matching the Gram matrix statistics of pre-trained deep fea-
tures. Our primary focus, on the other hand, is learning
the mapping between two image collections, rather than be-
tween two specific images, by trying to capture correspon-
dences between higher-level appearance structures. There-
fore, our method can be applied to other tasks, such as

Figure taken from [8]

37 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

CycleGAN

X Y

G

F

DYDX

G

F
Ŷ

X Y� X Y
�

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

Figure 3: (a) Our model contains two mapping functions G : X ! Y and F : Y ! X , and associated adversarial
discriminators DY and DX . DY encourages G to translate X into outputs indistinguishable from domain Y , and vice versa
for DX and F . To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: x ! G(x) ! F (G(x)) ⇡ x, and (c) backward cycle-consistency loss: y ! F (y) ! G(F (y)) ⇡ y

images cannot be distinguished from images in the target
domain.

Image-to-Image Translation The idea of image-to-
image translation goes back at least to Hertzmann et al.’s
Image Analogies [19], who employ a non-parametric tex-
ture model [10] on a single input-output training image pair.
More recent approaches use a dataset of input-output exam-
ples to learn a parametric translation function using CNNs
(e.g., [33]). Our approach builds on the “pix2pix” frame-
work of Isola et al. [22], which uses a conditional generative
adversarial network [16] to learn a mapping from input to
output images. Similar ideas have been applied to various
tasks such as generating photographs from sketches [44] or
from attribute and semantic layouts [25]. However, unlike
the above prior work, we learn the mapping without paired
training examples.

Unpaired Image-to-Image Translation Several other
methods also tackle the unpaired setting, where the goal is
to relate two data domains: X and Y . Rosales et al. [42]
propose a Bayesian framework that includes a prior based
on a patch-based Markov random field computed from a
source image and a likelihood term obtained from multiple
style images. More recently, CoGAN [32] and cross-modal
scene networks [1] use a weight-sharing strategy to learn a
common representation across domains. Concurrent to our
method, Liu et al. [31] extends the above framework with
a combination of variational autoencoders [27] and genera-
tive adversarial networks [16]. Another line of concurrent
work [46, 49, 2] encourages the input and output to share
specific “content” features even though they may differ in
“style“. These methods also use adversarial networks, with
additional terms to enforce the output to be close to the input
in a predefined metric space, such as class label space [2],
image pixel space [46], and image feature space [49].

Unlike the above approaches, our formulation does not
rely on any task-specific, predefined similarity function be-

tween the input and output, nor do we assume that the input
and output have to lie in the same low-dimensional embed-
ding space. This makes our method a general-purpose solu-
tion for many vision and graphics tasks. We directly com-
pare against several prior and contemporary approaches in
Section 5.1.

Cycle Consistency The idea of using transitivity as a
way to regularize structured data has a long history. In
visual tracking, enforcing simple forward-backward con-
sistency has been a standard trick for decades [24, 48].
In the language domain, verifying and improving transla-
tions via “back translation and reconciliation” is a technique
used by human translators [3] (including, humorously, by
Mark Twain [51]), as well as by machines [17]. More
recently, higher-order cycle consistency has been used in
structure from motion [61], 3D shape matching [21], co-
segmentation [55], dense semantic alignment [65, 64], and
depth estimation [14]. Of these, Zhou et al. [64] and Go-
dard et al. [14] are most similar to our work, as they use a
cycle consistency loss as a way of using transitivity to su-
pervise CNN training. In this work, we are introducing a
similar loss to push G and F to be consistent with each
other. Concurrent with our work, in these same proceed-
ings, Yi et al. [59] independently use a similar objective
for unpaired image-to-image translation, inspired by dual
learning in machine translation [17].

Neural Style Transfer [13, 23, 52, 12] is another way
to perform image-to-image translation, which synthesizes a
novel image by combining the content of one image with
the style of another image (typically a painting) based on
matching the Gram matrix statistics of pre-trained deep fea-
tures. Our primary focus, on the other hand, is learning
the mapping between two image collections, rather than be-
tween two specific images, by trying to capture correspon-
dences between higher-level appearance structures. There-
fore, our method can be applied to other tasks, such as

Figure taken from [8]

38 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

CycleGAN

Figure taken from [8]

39 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

CycleGAN

Figure taken from https://junyanz.github.io/CycleGAN/
40 / 42

https://junyanz.github.io/CycleGAN/

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

References

[1] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in ICLR, 2014.

[2] D. M. Blei, A. Kucukelbir, and J. D. McAuli↵e, “Variational inference: A review for statisticians,” Journal of
the American Statistical Association, 2017.

[3] E. Kirschbaum, M. Haußmann, S. Wolf, H. Sonntag, J. Schneider, S. Elzoheiry, O. Kann, D. Durstewitz, and
F. A. Hamprecht, “Lemonade: Learned motif and neuronal assembly detection in calcium imaging videos,” in
ICLR, 2019.

[4] C. Maddison, A. Mnih, and Y. Whye Teh, “The concrete distribution: A continuous relaxation of discrete
random variables,” in ICLR, 2016.

[5] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” in ICLR, 2017.

[6] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae:
Learning basic visual concepts with a constrained variational framework,” in ICLR, 2017.

[7] S. Peter, E. Kirschbaum, M. Both, L. Campbell, B. Harvey, C. Heins, D. Durstewitz, F. Diego, and F. A.
Hamprecht, “Sparse convolutional coding for neuronal assembly detection,” in NIPS, 2017.

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent
adversarial networks,” in Computer Vision (ICCV), 2017 IEEE International Conference on, 2017.

41 / 42

Autoencoder (AE) Variational Autoencoder (VAE) Example: The LeMoNADe Model CycleGAN References

Questions?

42 / 42

