Quark Flavor Physics

Outline:

- Quark Flavor Physics und New Physics Searches
- Neutral Meson Mixing
- CP Violation in Interference between Mixing and Decay
- CP Violation in Mixing
- One Word to Direct CPV (no γ)

Ulrich Uwer – Neckarzimmern 2017 – 22/03/2017

What is Flavor Physics?

Fundamental matter comes in three generations carrying the same charges under the Standard Model gauge group $SU(3)_c \times SU(2)_L \times U(1)$:

Leptons			Quarks		
e	μ	au	<u>uu</u> u	<u>ccc</u>	ttt
$ u_e$	$ u_{\mu}$	$ u_{ au}$	ddd	<mark>88</mark> 8	<u>bbb</u>

Flavor is the feature that distinguishes the generations.

Flavor physics studies the complex phenomenology:

- masses ranging over 12 orders of magnitude (sub-eV neutrino 173 GeV top)
- flavor transitions (mixing)
- CP Violation

Flavor within the Standard Model

Yukawa interaction couples fermions to Higgs. For the quarks:

$$\mathcal{L}_{\mathrm{Y}}^{\mathrm{quarks}} = -\frac{\nu}{\sqrt{2}} \left(\overline{d}_{\mathrm{L}} Y_{d} d_{\mathrm{R}} + \overline{u}_{\mathrm{L}} Y_{u} u_{\mathrm{R}} \right) + \mathrm{h.c}$$

After electroweak symmetry breaking

 Y_d , Y_u are 3×3 complex matrices in generation space fnot diagonal \rightarrow flavor structure

Mass eigenstates of the quarks obtained by unitary transformations:

$$\widetilde{q}_A = V_{A,q} q_A$$
 for $q = u, d$ and $A = L, R$ where $V_{A,q} V_{A,q}^{\dagger} = 1$

 $V_{A,q}$ are determined by requiring that the matrices $M_{d,u}$ are diagonal: $M_d = \operatorname{diag}(m_d, m_s, m_b) = \frac{v}{\sqrt{2}} V_{\mathrm{L},d} Y_d V_{\mathrm{R},d}^{\dagger}$

Quark masses

After this transformation quark masses appear as usual Dirac terms:

$$\mathcal{L}_{\mathrm{Y}}^{\mathrm{quarks}} = -\overline{\tilde{d}}_{\mathrm{L}} M_d \, \overline{\tilde{d}}_{\mathrm{R}} - \overline{\tilde{u}}_{\mathrm{L}} M_u \, \overline{\tilde{u}}_{\mathrm{R}} + \mathrm{h.c.}$$

Up-type and down-type quarks cannot be diagonalized by the same matrix, i.e. $V_{A,d} \neq V_{A,u} \rightarrow$ net effect on flavor structure of charged current.

$$\begin{split} \mathcal{L}_{\rm CC} &= -\frac{g_2}{\sqrt{2}} \left(\overline{\tilde{u}}_{\rm L} \gamma^{\,\mu} \, W^{\,+}_{\mu} V_{\rm CKM} \, \tilde{d}_{\rm L} + \overline{\tilde{d}}_{\rm L} \gamma^{\,\mu} \, W^{\,-}_{\mu} \, V^{\dagger}_{\rm CKM} \, \tilde{u}_{\rm L} \right) \\ & \text{with} \qquad V_{\rm CKM} = V_{\rm L,u} \, V^{\,\dagger}_{\rm L,d} \qquad (\text{must be unitary}) \end{split}$$

CKM Matrix

Complex and unitary 3×3 matrix:

$$\mathbf{V}_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Complex 3×3 matrix: 18 parameters + unitarity condition (9 parameters) + removal of 5 unobservable phases results into \rightarrow 4 free parameter:

3 Euler angles and one phase δ :

CP violation

Violates CP if V_{CKM} is complex:

$$\mathcal{L}_{\rm CC} = -\frac{g_2}{\sqrt{2}} \left(\overline{\tilde{u}}_{\rm L} \gamma^{\mu} W^+_{\mu} V_{\rm CKM} \tilde{d}_{\rm L} + \overline{\tilde{d}}_{\rm L} \gamma^{\mu} W^-_{\mu} V^{\dagger}_{\rm CKM} \tilde{u}_{\rm L} \right)$$
$$\mathcal{L}_{\rm CC}^{\rm CP} = -\frac{g_2}{\sqrt{2}} \left(\overline{\tilde{d}}_{\rm L} \gamma^{\mu} W^-_{\mu} V^{\rm T}_{\rm CKM} \tilde{u}_{\rm L} + \overline{\tilde{u}}_{\rm L} \gamma^{\mu} W^+_{\mu} V^{*}_{\rm CKM} \tilde{d}_{\rm L} \right).$$

CP (T) violation possible if $V_{ji} \neq V_{ji}^*$ $b \rightarrow V_{ub}$ $W^ U^ V_{ub}$ \overline{CP} $\overline{b} \rightarrow V_{ub}$ \overline{u}

Wolfenstein Parametrization

Reflects the hierarchical structure of the CMK matrix

$$\lambda, A, \rho, \eta \text{ with } \lambda = 0.22 \qquad |V_{ub}| \times e^{-i\gamma}$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

$$|V_{td}| \times e^{-i\beta}$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + A^2\lambda^5(\frac{1}{2} - \rho - i\eta) & 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8}(1 + 4A^2) & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 + A\lambda^4(1/2 - \rho - i\eta) & 1 - \frac{A^2\lambda^4}{2} \end{pmatrix} + O(\lambda^6)$$

 $-|V_{ts}| \times e^{i\beta_s}$

Unitarity of CKM Matrix $V_{CKM}^{\dagger}V_{CKM} = 1$

$$\begin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

More Triangles ...

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \text{ (db)}$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \text{ (sb)}$$

$$\begin{pmatrix} V_{ub}^{*}V_{ud} & V_{ub}^{*}V_{ud} \\ (db) & V_{ub}^{*}V_{ud} \\ V_{ub}^{*}V_{ub} & V_{ub}^{*}V_{ud} \\ V_{ub}^{*}V_{ub} & V_{ub}^{*}V_{ub} \\ \begin{pmatrix} V_{ub}^{*}V_{ub} & V_{ub}^{*}V_{ud} \\ V_{us}^{*}V_{ub} & V_{ub}^{*}V_{ub} \\ V_{us}^{*}V_{ub} & V_{ub}^{*}V_{ub} \\ V_{us}^{*}V_{ub} & V_{ub}^{*}V_{ub} \\ V_{ub}^{*}V_{ub} & V_{ub}^{*}V_{ub} \\ V_{ub}^{*}V_$$

All 6 triangles have the same area: $J_{CP}/2$

 J_{CP} is called Jarlskog invariant, it is a measure of CPV in Standard Model.

$$J_{CP} = Im (V_{ij} V_{kl} V_{il}^* V_{kj}^*) \approx 3 \cdot 10^{-5}$$

Unitarity Triangle from B Decays

conserving observables

Unitarity Triangle from B Decays

CP Violation in meson decays

CKM phase do not lead easily to measurable CPV asymmetries.

To observe CP violation needs at least two amplitudes with different weak (sign flip under CP) and different strong (invariant under CP) amplitudes:

Weak b hadron hecays

New Physics in Quantum Loops

If the precision of the measurements is high enough we can discover NP due to effect of "virtual" new particles in quantum loops,

What is the scale of Λ_{NP} ? Size of C_{NP} and alignment w/r to C_{SM} ?

The Flavor Problem

excluded NP scales for generic flavor models C_{NP}=1 from mixing

Numbers by T.Mannel (FPCP 2016)

Possible scenarios:

- new particles indeed have very large masses.
- new particles have degenerated masses
- mixing angles in new flavor sector are small, similar to SM

Flavor Problem: Absence of NP effects in flavor physics implies non-natural "fine tuning" if NP at TeV scale exists: Minimal flavor violation (MFV)

LHCb – Strategies to Probe New Physics

Neutral Meson Mixing

Figure from http://www.gridpp.ac.uk/news/?p=205

Mixing Phenomenology

Off – diagonal elements describe the mixing.

Mixing Phenomenology

Mass eigenstates

Mass eigenstates are obtained by diagonalizing the matrix:

$$|P_{a}\rangle = \rho |P^{0}\rangle + q |\overline{P^{0}}\rangle \quad \text{with } m_{a}\Gamma_{a} \qquad |P_{a}(t)\rangle = e^{-im_{a}t} \cdot e^{-\frac{1}{2}\Gamma_{a}t} |P_{a}(0)\rangle$$
$$|P_{b}\rangle = \rho |P^{0}\rangle - q |\overline{P^{0}}\rangle \quad \text{with } m_{b}\Gamma_{b} \qquad |P_{b}(t)\rangle = e^{-im_{b}t} \cdot e^{-\frac{1}{2}\Gamma_{b}t} |P_{b}(0)\rangle$$

complex coefficients $|\boldsymbol{p}|^2 + |\boldsymbol{q}|^2 = 1$

The mass (physical) states are usually labeled by the properties which distinguish them the best: $K_{s_1} K_L$; $B_{H_1} B_L$; D_1 , D_2 ;

Mixing Parameters

- The sign of q/p determines whether m_a or m_b is heavier: the usual choice is ∆m>0: q/p>0 "+" sign.
- <u>Attention</u>: this conventions is not fixing the sign of $\Delta\Gamma$. The experiment has to tell whether CP even/odd lived longer.

Neutral Mesons

Labeling of physical states: heavy/light, short/long, CP-even/CP-odd

Theoretical predictions

$$M_{12} = \frac{G_F^2}{12\pi^2} (V_{td}^* V_{tb})^2 M_W^2 S_0(x_t) B_B f_B^2 M_B \eta_B$$

$$\Delta m \approx 2 |M_{12}|$$

 $\langle B | \mathbf{Q} | \Delta \mathbf{B} = 2 \rangle \overline{B} \rangle$

 $S_0(m_t^2/m_W^2)$ = Loop-function (Inami-Lim) = result of box diagramm. B_B = bag factor, f_B = decay constant: non-perturbative effects η_B = perturbative QCD corrections

Time evolution of B⁰ (P⁰)

$$\begin{split} |B^{0}(t)\rangle &= g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B}^{0}\rangle \quad |\overline{B}^{0}(t)\rangle = g_{-}(t)\frac{p}{q}|B^{0}\rangle + g_{+}(t)|\overline{B}^{0}\rangle \\ g_{+}(t) &= e^{-i(m-i\frac{\Gamma}{2})t} \left[+\cosh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} - i\sinh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} \right] &\Delta\Gamma\approx0 \\ g_{-}(t) &= e^{-i(m-i\frac{\Gamma}{2})t} \left[-\sinh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} + i\cosh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} \right] &\Lambda\Gamma\approx0 \\ \end{split}$$

Mixing phenomenology

$$\begin{aligned} \underline{\mathsf{Mixed/unmixed probability:}} & \Delta \Gamma \approx \mathbf{0} \\ \mathcal{P}(B^0 \to B^0, t) &= \left| \left\langle B^0 | B^0(t) \right\rangle \right|^2 = \frac{e^{-\Gamma t}}{2} (1 + \cos(\Delta m t)) \\ \mathcal{P}(B^0 \to \bar{B}^0, t) &= \left| \left\langle B^0 | \bar{B}^0(t) \right\rangle \right|^2 = \frac{e^{-\Gamma t}}{2} \left| \frac{q}{p} \right|^2 (1 - \cos(\Delta m t)) \end{aligned}$$

Mixing asymmetry:

$$A(t) = \frac{unmixed(t) - mixed(t)}{unmixed(t) + mixed(t)} = \cos(\Delta mt) \qquad \text{If } |q/p| = 1$$

Time dependent mixing asymmetry

B meson mixing

$$M_{12,q} = \frac{G_F^2}{12\pi^2} (V_{tq}^* V_{tb})^2 M_W^2 S_0(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B$$

$$\frac{\Delta m_d}{\Delta m_s} \approx \frac{\left|V_{td}\right|^2}{\left|V_{ts}\right|^2} \approx \frac{\lambda^6}{\lambda^4} = \lambda^2 \approx 0.04$$

B⁰ Mixing *)

Question: ARGUS (DESY) in 1987: $m_{top} > 50$ GeV. Why???

B_s Mixing Measurement

Detector effects on B_s oscillation

resolution: 44 fs

New J. Phys. 15 (2013) 053021

Unsatisfying: Hadronic uncertainties limit the precision of theoretical prediction

Can we do better?

Parameters with better precision?

Phases have very small absolute theoretical uncertainties:

$$\phi_{M} = \arg(M_{12}) = \arg\left(\frac{q}{p}\right)$$

Theory: $\phi_{M} = -0.0364 \pm 0.0016$

 $\mathsf{P}(\mathsf{B}^{0} \longrightarrow \overline{\mathsf{B}}^{0}) \neq \mathsf{P}(\overline{\mathsf{B}}^{0} \longrightarrow \mathsf{B}^{0})$

CP-violation in mixing

Time dependent CP-violation of B_s decaying to a CP eigenstate

Phases are very sensitive to new effects in the loops.

Interference between Mixing and Decay

$$g_{_+}(t)A_{_f}+rac{q}{p}g_{_-}(t)\overline{A}_{_f}$$

$$g_{+}(t) = e^{-i(m-i\frac{\Gamma}{2})t} \left[+\cosh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} - i\sinh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} \right]$$
$$g_{-}(t) = e^{-i(m-i\frac{\Gamma}{2})t} \left[-\sinh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta mt}{2} + i\cosh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta mt}{2} \right]$$

Time-dependent CP-Asymmetry ΔΓ≈0

adapted from G. Raven

t = 0 t	Rate
$B^0 \longrightarrow f_{CP}$	$\propto e^{-\Gamma t} \left[1 + \sin(\phi_{\text{weak}})\sin(\Delta m t)\right]$
$\overline{B^0} \longrightarrow f_{CP}$	$\propto e^{-\Gamma t} \left[1 - \sin(\phi_{\text{weak}})\sin(\Delta m t)\right]$

$$\mathcal{A}_{CP}(\mathbf{t}) \equiv \frac{\Gamma(\overline{B^0} \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\overline{B^0} \to f_{CP}) + \Gamma(B^0 \to f_{CP})}$$
$$= -\frac{\sin \phi_{\text{weak}} \sin (\Delta m t)}{\sin (\Delta m t)}$$

Time-dependent CP Asymmetry $\Delta\Gamma \neq 0$

$$\mathcal{A}_{CP}(\mathsf{t}) \equiv \frac{\Gamma(\overline{B^0} \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\overline{B^0} \to f_{CP}) + \Gamma(B^0 \to f_{CP})}$$
$$= \frac{-\Im\lambda_f \sin \Delta m t}{\cosh \frac{1}{2} \Delta \Gamma t + \Re\lambda_f \sinh \frac{1}{2} \Delta \Gamma t}$$

For $\Delta \Gamma \approx 0$ (B_d): = $-\sin \phi_{\text{weak}} \sin (\Delta m t)$

Measurement of time dependent CP asymmetry of a process $B^0 \rightarrow f_{CP}$ measures the phase difference ϕ_{weak} between the two path:

B_s mixing Phase ϕ_s

Mixing phase (ignoring CPV in mixing |q/p|=1):

$$\frac{q}{\rho} = -\exp(-i\phi_M) \qquad \phi_M = \arg(M_{12})$$

New Physics can alter the phase ϕ_M from the Standard Model. Need an interference experiment to measure phase differences.

Measuring the B_s mixing phase

Standard Model:

 $V_{ts} = - |V_{ts}| e^{i\beta_s}$

 $\phi_{weak,s}^{SM} = -0.0364 \pm 0.0016 \text{ rad}$ (CKMFitter) \rightarrow very small CPV

Standard Model Expectation

Precise Standard Model prediction:

 $\phi_{\rm s}^{\rm SM} = -0.0364 \pm 0.0016$ rad

$B_s \rightarrow J/\psi$ (μμ) φ(KK)

Angular dependent t distributions

$$\frac{\mathrm{d}^4\Gamma(B^0_s \to J/\psi K^+ K^-)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$

B_s

B_s

$$\frac{\mathrm{d}^4\Gamma(\overline{B^0_s} \to J/\psi K^+ K^-)}{\mathrm{d}t \;\mathrm{d}\Omega} \propto \sum_{k=1}^{10} \overline{h_k}(t) \;\overline{f_k}(\Omega)$$

Decay time and decay angles

--- CP-even ----- CP-odd ---- S-wave

41

Time-dependent CP Asymmetry for B_s

Experimental Status

B⁰ Mixing and CPV in **B⁰** \rightarrow J/ ψ K_s

Time-dependent CPV for B_d⁰

CP Violation in B mixing

$$P(B_{d,s}^{0} \to \overline{B}_{d,s}^{0}) \neq P(\overline{B}_{d,s}^{0} \to \overline{B}_{d,s}^{0})$$

$$\xrightarrow{t=0} \qquad t \qquad t=0 \qquad t \qquad f=0 \qquad t \qquad f=0 \qquad t \qquad f=0 \quad f=0$$

Semileptonic CP asymmetry

Question: Which amplitudes interfere?

Interference-Effect

In case of CPV in mixing: $1 \neq |q/p| = (1 - \varepsilon_B)/(1 + \varepsilon_B) w/\varepsilon_B$ complex Physical states (B_H, B_L) are not any longer pure CP states.

Time integrated asymmetry

$$\boldsymbol{a}_{s\prime}^{q} \equiv \frac{\Gamma(\overline{B}_{q}^{0} \to B_{q}^{0} \to \mu^{+}X) - \Gamma(B_{q}^{0} \to \overline{B}_{q}^{0} \to \mu^{-}X)}{\Gamma(\overline{B}_{q}^{0} \to B_{q}^{0} \to \mu^{+}X) + \Gamma(B_{q}^{0} \to \overline{B}_{q}^{0} \to \mu^{-}X)}, \quad q = d, s$$

$$=\frac{\left|\boldsymbol{\rho}/\boldsymbol{q}\right|^{2}-\left|\boldsymbol{q}/\boldsymbol{\rho}\right|^{2}}{\left|\boldsymbol{\rho}/\boldsymbol{q}\right|^{2}+\left|\boldsymbol{q}/\boldsymbol{\rho}\right|^{2}}=\frac{1-\left|\boldsymbol{q}/\boldsymbol{\rho}\right|^{4}}{1+\left|\boldsymbol{q}/\boldsymbol{\rho}\right|^{4}}\approx\frac{\Delta\Gamma}{\Delta m}\tan\phi_{M/\Gamma}\qquad\phi_{M/\Gamma}=\arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

$$a_{fs}^{d,\text{SM}} = (-4.5 \pm 0.8) \cdot 10^{-4} \qquad a_{fs}^{s,\text{SM}} = (2.11 \pm 0.36) \cdot 10^{-5}$$
 A.Lenz and U.Nierste

LHCb measurement of a_{SL}

- Tagging of the initial state reduces the statistical power drastically
- A untagged analysis is possible, reduction of stat. power only by factor 2. However this requires an excellent knowledge of the production asym.

$$A_P = \frac{\mathcal{P}(B^0) - \mathcal{P}(\overline{B}^0)}{\mathcal{P}(B^0) + \mathcal{P}(\overline{B}^0)}$$

• Moreover one needs to know the detection asymmetry for the final state

$$A_D = \frac{\varepsilon(f) - \varepsilon(\overline{f})}{\varepsilon(f) + \varepsilon(\overline{f})}$$

• Knowing the detection asymmetry, the production and semi-leptonic asymmetries can be determined in a time dependent analysis:

$$A_{\text{meas}}(t) = \frac{N(f,t) - N(\overline{f},t)}{N(f,t) + N(\overline{f},t)} \approx A_D + \frac{a_{sl}^d}{2} + \left(A_P - \frac{a_{sl}^d}{2}\right) \cos(\Delta m_d t)$$

 Due to the fast oscillation, the production asymmetry for B_s mesons is washed out and no time dependent measurement is necessary.

Experimental Status

51

New Physics in B_s Mixing

A. Lenz , U. Nierste & CKM Fitter

Agreement with Standard Model, but still room for New Physics (10...20%)

Direct CP Violation & CKM angle γ

Direct CP Violation & CKM angle γ

CP Violation in meson decays

CKM phase do not lead easily to measurable CPV asymmetries.

To observe CP violation needs at least two amplitudes with different weak (sign flip under CP) and different strong (invariant under CP) amplitudes:

Direct CP Violation in B \rightarrow K\pi

CP Asymmetrie

$$\overline{A}\Big|^2 - |A|^2 = 4|A_1||A_2|\sin\phi\sin\delta$$

Strong phase difficult to predict

Direct CP asymmetries for B^0_{d,s} \rightarrow K\pi

PRL 110, 221601 (2013)

CP Observables

$$A_{CP}(B \to f) = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$$

Correction for detection / production asymmetry

$$A_{CP}(B^0 \to K^+\pi^-) = -0.080 \pm 0.007 \,(\text{stat}) \pm 0.003 \,(\text{syst})$$
[10.5 σ]
$$A_{CP}(B^0_s \to K^-\pi^+) = 0.27 \pm 0.04 \,(\text{stat}) \pm 0.01 \,(\text{syst}).$$
[6.5 σ]

.*) ...but in the standard model a miracle occurs ...

CKM Angle γ

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Exploit direct CPV in $B \rightarrow DK$ decays

Sensitivity of B \rightarrow DK decays to γ

