

Introduction to Flavour Physics

Stephanie Hansmann-Menzemer

Physikalisches Institut, Heidelberg

B-Workshop, Neckarzimmern 16.-18.03.2016

Birthday of Heavy Flavour

1947, G. D. Rochester and C. C. Butler, discovered kaons in cloud chamber studying cosmic rays

1953: new quantum number "strangeness" (Gellmann & Pais): conserved in strong IA, not conserved in weak IA + p! 0 + K0 + X

Neutral Meson Mixing

 $CP(K^{0}) = \overline{K^{0}}$ $CP(\overline{K^{0}}) = K^{0}$ $K_{1} = \frac{1}{\sqrt{2}}(K^{0} + \overline{K^{0}})$ $CP(K_{1}) = +K_{1}$ $K_{2} = \frac{1}{\sqrt{2}}(K^{0} - \overline{K^{0}})$ $CP(K_{2}) = -K_{2}$

 $K^0, \overline{K^0}$: flavour eigenstates; clear defined quark content ($K^0 = |d\overline{s}\rangle, \overline{K^0} = |\overline{ds}\rangle$) K_1, K_2 : CP eigenstates K_S, K_L : mass eigenstates (with clear defined mass and lifetime, $\psi_{S/L}(t) = e^{-im_{S/L}t}e^{-\Gamma_{S/L}t/2}$) in absence of CPV: $K_S = K_1, K_L = K_2$

Kaon Mixing

 $jK_{S} \ge pjK^{0} \ge +qj\overline{K^{0}} \ge, \quad jK_{S}(t) \ge jK_{S} \ge e^{-\frac{S}{2}t}e^{-im_{S}t}$ $jK_{L} \ge pjK^{0} \ge -qj\overline{K^{0}} \ge, \quad jK_{L}(t) \ge jK_{L} \ge e^{-\frac{L}{2}t}e^{-im_{L}t}$ $jpj^{2} + jqj^{2} = 1 \text{ complex coef cients; } q = p = p\frac{1}{2}, \quad K_{S} = K_{1}, K_{L} = K_{2}$

Flavour eigenstates:

 $j\mathbf{K}^{0} >= \frac{1}{2p}(j\mathbf{K}_{S} > + j\mathbf{K}_{L} >)$ $j\overline{\mathbf{K}^{0}} >= \frac{1}{2q}(j\mathbf{K}_{L} > - j\mathbf{K}_{S} >)$

time development of originally (at t=0) pure \mathbf{K}^{0} and $\overline{\mathbf{K}^{0}}$ states: $j\mathbf{K}^{0}(t) > = \frac{1}{2p}(j\mathbf{K}_{S}(t) > + j\mathbf{K}_{L}(t) >)$ $j\overline{\mathbf{K}^{0}}(t) > = \frac{1}{2q}(j\mathbf{K}_{L}(t) > j \mathbf{K}_{S}(t) >)$

Kaon Mixing

 $P(\mathbf{K}^{0} \mid \overline{\mathbf{K}^{0}}) = \langle \mathbf{K}^{0}(t) j \overline{\mathbf{K}^{0}} \rangle =$ $\frac{1}{4} j \frac{q}{p} j^{2} e^{-L^{t}} + e^{-H^{t}} 2e^{(-L^{t} + H^{t})t} cos mt$

 $P(\overline{K^{0}} \mid K^{0}) = \langle \overline{K^{0}}(t)jK^{0} \rangle =$ $\frac{1}{4}j\frac{p}{q}j^{2} \quad e^{-L^{t}} + e^{-H^{t}} \quad 2e^{-(-L^{t} + H^{t})t=2}\cos mt$

CP conserved: $P(K^{0} ! \overline{K^{0}}) = P(\overline{K^{0}} ! \overline{K^{0}})$, $j\frac{q}{p}j = 1$ (+ normalisation q² + p² = 1) , $q = p = p\frac{1}{2}$, $K_{S} = K_{1}, K_{L} = K_{2}$

Neutral Meson Mixing

 $CP(K^{0}) = \overline{K^{0}}$ $CP(\overline{K^{0}}) = K^{0}$ $K_{1} = P^{1}_{\overline{2}}(K^{0} + \overline{K^{0}})$ $CP(K_{1}) = + K_{1}$ $K_{2} = P^{1}_{\overline{2}}(K^{0} - \overline{K^{0}})$ $CP(K_{2}) = K_{2}$

 $P(()) = P((q)) P((\bar{q})) (1)^{L=0} = 1 \quad 1 \quad 1 \quad () = ()$ $C(()) = C((q\bar{q})) = (1)^{L+S} (q\bar{q}) = +()$ $CP((+)) = CP((+)) CP(()) (1)^{L=0} = +(+)$ $L = 0 \text{ in } K^{0}! + () = CP(())^{3} (1)^{L} = (+)^{0}$ $L = 0 \text{ in } K^{0}! + ()^{3} (1)^{L} = (+)^{0}$

If there is no CPV in decay, then: $K_1 ! + K_2 ! + K$

1964: Discovery of CPV

produce K^0 , wait long enough for K_S component to decay away ! pure K_L beam search for CP violation: K_L ! $\pi^+\pi^-$

! excess of 56 events: BR(K_L ! $\pi^+\pi^-$) 2 10⁻³

Nobel prize for Cronin and Fitch in 1980

Good guessing ?

three-body decays of the K_2^{0} . The presence of a two-pion decay mode implies that the K_2^{0} meson is not a pure eigenstate of *CP*. Expressed as $K_2^{0} = 2^{-1/2} [(K_0 - \overline{K}_0) + \epsilon (K_0 + \overline{K}_0)]$ then $|\epsilon|^2 \cong R_T \tau_1 \tau_2$ where τ , and τ_0 are the K_1^{0} and K_0^{0} mean lives

in this paper they call K_2 what we call nowadays $K_L \ \ldots$

In my opinion one could not conclude from this experiment if the observed CPV is CPV in mixing or in decay.

CPV in mixing:

$$jK_{L} > = P \frac{1}{1+j^{2}j} (jK_{2} > + jK_{1} >)$$

CPV in decay:

 $K_1!$ and $K_2!$

CKM Matrix and Angles

size of box, illustrates absolute value

 $V_{cs}V_{cb}^*$ $V_{us}V_{ub}^*$ β_s $V_{ts}V_{tb}^*$

CPV in Kaon System

Interfering amplitudes which cause CPV in mixing:

long range contribution

short range contribution M

Interfering amplitudes which cause CPV in decay:

1974: Discovery of J=

p + Be ! ? + X ! e⁺ + e X

$$e^+ + e ! e^+ + e = + + = h^+ + h$$

Stephanie Hansmann-Menzemer 22

Phenomenology of Mixing II

$$H = \begin{array}{cccc} m_{11} & \frac{i}{2} & 11 & \frac{m}{2} & \frac{i}{2} \\ \frac{m}{2} & \frac{i}{2} & m_{22} & \frac{i}{2} & 22 \end{array}$$

	$K^0/\overline{K^0}$	$D^0/\overline{D^0}$	$B^0/\overline{B^0}$	$B_s^0/\overline{B_s^0}$
au [ps]	89.3	0.415	1.564	1.47
	51700			
Γ [ps $^{-1}$]	5.61 10 ⁻³	2.4	0.643	0.62
$y = \frac{\Delta \Gamma}{2\Gamma}$	0.9966	0.008	0.0075	0.059
Δm [ps $^{-1}$]	5.301 10^{-3}	0.16	0.506	17.8
$X = \frac{\Delta m}{\Gamma}$	0.945	0.010	0.768	26.1

New physics in B_s mixing?

 $\blacktriangleright P(B ! \overline{B}) \bigoplus P(\overline{B} ! B)$

SM: A_{sl}^b = (-0.20 0.03) 10⁻³

A. Lenz, U. Nierste, (2006/2011)

 $A_{sl}^b = -0.957$ 0.251 (stat) 0.14 (syst) % (Phys. Rev. Lett 105, 081802 (2010)) ! 3.2 σ deviation from SM

a_{sl} at LHCb

$$a_{sl} = \frac{\Gamma(\overline{B} \to B \to f) - \Gamma(B \to \overline{B} \to \overline{f})}{\Gamma(\overline{B} \to B \to f) + \Gamma(B \to \overline{B} \to \overline{f})}$$

If there is no CPV in decay
$$\Gamma(B \ f) = \Gamma(\overline{B} \ f) = \overline{f}$$
:
 $a_{sl} \in 0, \quad \Gamma(\overline{B} \ f) \in \Gamma(B \ f)$

However tagging the initial flavour is difficult at hadron colliders ... (tagging power 4%! $\sigma_{stat}^{tag} = \frac{1}{\sqrt{0.04}} \sigma_{stat}^{notag} = 5 \sigma_{stat}^{notag}$)

Untagged method:

Assuming there is no production asymmetry ($N(B,t=0)=N(\overline{B},t=0)$) and no CPV in decay:

$$\frac{N(f)(t) - N(f)(t)}{N(f)(t) + N(\overline{f})(t)} = \frac{a_{sl}}{2} \left[1 - \frac{\cos \Delta M t}{\cosh \frac{\Delta \Gamma t}{2}}\right]$$

index sl: semileptonic decays ... simply due to large statistics

a_{sl} at LHCb

For B_s^0 system, can perform time integrated analysis (fast oscillation) $\frac{N(f) - N(\overline{f})}{N(f) + N(\overline{f})} = \frac{a_{sl}^s}{2} + \begin{bmatrix} a_P & \frac{a_{sl}^s}{2} \end{bmatrix} \frac{\mathsf{R}}{\mathsf{R}} \frac{e^{-\Gamma_s t} \cdot \cos \Delta Mt \, dt}{e^{-\Gamma_s t \, dt} \cdot \cosh \frac{\Delta \Gamma_s t}{2}} \end{bmatrix} = \frac{a_{sl}^s}{2}$

For B_d^0 time dependent analysis is required. Due to missing neutrino in $B_d^0 \mid D^-\mu^+ X$ decays need to correct for missing momentum to reconstruct B_d^0 momentum and thus the B_d^0 decay time.

What are the interfering amplitudes? Why is CPV in B mixing so much smaller than CPV in K 0 mixing?

$\mathbf{CPV} \text{ in } \boldsymbol{B} \text{ Mixing}$

B°s

Stephanie Hansmann-Menzemer 35

CKM Matrix and Angles

CP violation is caused by phases of CKM matrix

! how can we use CP violation to extract CKM angles?

CP Violation in one Page

Mass eigenstates:

 $B_L = p\mathbf{j}B^0 > +q\mathbf{j}\overline{B^0} > w. m_L, \Gamma_L$ $B_H = p\mathbf{j}B^0 > q\mathbf{j}\overline{B^0} > w. m_H, \Gamma_H$ $|p^2| + |q^2| = 1, \text{ complex coefficients}$ Flavour eigenstates:

$$B^{0} = \frac{1}{2p} (\mathbf{j}B_{L} > +\mathbf{j}B_{H} >)$$

$$\overline{B^{0}} = \frac{1}{2q} (\mathbf{j}B_{L} > \mathbf{j} \ B_{H} >)$$

CP Violation in mixing

If $j\frac{q}{p}j \in 1$; mass eigenstates are no CP eigenstates;

! $P(B^0 ! \overline{B^0}) \in P(\overline{B^0} ! B^0)$

• CP violation in decay $jA(B ! f)j \in j\overline{A}(\overline{B} ! \overline{f})j$

• CP violation in interference of mixing and decay: $Im(\frac{q}{p}\frac{A}{A})$ 6-0

First direct CPV in ...

WA: $A_{CP} = 0.082 \quad 0.006$

First direct CPV in charged *B* decays: WA: $A_{CP}(B^+ ! D^0(! KK/\pi\pi)K^+) = 0.19 0.03$

Lot's of direct CPV ...

Due to unknown strong phases, hard to relate CPV directly to CKM parameters :-(.

"The strong interaction can be seen either as the unsung hero or the villain in the story of quark avour physics"; I. Bigi.

same true for CPV in mixing ...

Measurement of $\sin(2\beta)$: golden channel B_d ! $J/\psi K_s$

"Golden": large statistics, easy to detect, (almost) no CPV in decay

$B_d \to J/\Psi K^0$

Reach same final state through decay & mixing + decay

(assume no CPV in mixing and no CPV in decay)

 $\mathcal{A}_{1} = \mathcal{A}_{mix}(B^{0} \to B^{0}) * \mathcal{A}_{decay}(B^{0} \to J/\Psi K^{0}) = \cos(\frac{\Delta mt}{2}) * \mathbf{A} * e^{i\omega} * A_{K}$ $\mathcal{A}_{2} = \mathcal{A}_{mix}(B^{0} \to \overline{B^{0}}) * \mathcal{A}_{decay}(\overline{B^{0}} \to J/\Psi K^{0}) = i \sin(\frac{\Delta mt}{2}) * e^{+i\phi} * \mathbf{A} * e^{-i\omega} A_{K} * e^{+i\xi}$

weak phase difference A₂ A₁: $\Delta \phi = \phi$ $2\omega + \xi = 2\beta$ strong phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second phase difference $\Delta \delta = \pi/2$ (mixing introduces second p

$B_d ightarrow J/\Psi K^0$

$$\begin{split} \Delta \phi &= \phi \quad 2\omega + \xi = \arg [\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}}] \\ &= \arg [\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \frac{V_{cb} V_{cd}^*}{V_{cb}^* V_{cd}}] = 2\arg [\frac{V_{cb} V_{cd}^*}{V_{tb} V_{td}^*}] = 2\beta \end{split}$$

c quark dominates mixing box diagram

Correlated *B* **Production**

 $A(t) = \frac{N(B \to J/\psi K_s)(t) - N(B \to J/\psi K_s)(t)}{N(\overline{B} \to J/\psi K_s)(t) + N(B \to J/\psi K_s)(t)} = \eta_{CP} \sin(2\beta) \sin \Delta m_d t$ (for $K_s \eta_{CP}$ = -1, for $K_L \eta_{CP}$ = +1 ... neglecting CP in kaon mixing) B factories tagging side J/y This is how it works at e^+e signal side Ks Dt Dt tagging side mt

signal side

 \overline{B} pair produced on Y(4S) resonance with well defined quantum numbers. RB state till the time of the decay of the first B. Correlated B

Ks

р

Stephanie Hansmann-Menzemer 43

$B_d ightarrow J/\psi K_s$

 $A(t) = \frac{N(B^{0})(t) N(\overline{B^{0}})(t)}{N(B^{0})(t) N(\overline{B^{0}})(t)}$ $= sin(2) sin(m_{d}t)$

Babar: sin(2) = 0.722 0.040 0.023 Belle:

 $sin(2) = 0.652 \quad 0.039 \quad 0.020$

Stephanie Hansmann-Menzemer 44

Nobel Prize 2008

Kobayashi & Maskawa:

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

$$B_s
ightarrow J/\psi \phi$$

Basic idea similar to measurement of $\sin(2\beta)$:

No CP violation in mixing

No CP violation in decay (watch out penguin pollution ..)

 $\phi_{mix} = arg((V_{ts}V_{tb}^*)^2) = 2\beta_s \quad 0.04(SM)$, (top quark dominates the box) $\omega = arg((V_{cb}V_{cs}^*)^2) = 0$

$$V_{CKM} = \begin{pmatrix} 0 & 1 \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} e & i \\ e & e & i \\ e & e & i \\ (e & i & s) \end{pmatrix}$$

 $B_s
ightarrow J/\psi \phi$

 $\begin{array}{lll} B_s & : & J^P = 0^{-1} \text{ (pseudo scalar)} \\ J/\psi : & : & J^{CP} = 1^{-1-1} \text{ (vector)} \\ \phi : & : & J^{CP} = 1^{-1-1} \text{ (vector)} \end{array}$

Angular momentum conservation:

0 = J (
$$J/\psi\phi$$
) = j $\vec{S} + \vec{L}$ j; ! L = 0,1,2

 $P(J/\psi\phi) = P(J/\psi)^* P(\phi)^* (-1)^L$ $CP(J/\psi\phi) = CP(J/\psi)^* CP(\phi)^* (-1)^L$

L = 0,2! CP even final state L = 1! CP odd final state

Final state no CP eigenstate but linear combination! Angular analysis, to separate CP even/odd contributions.

Three decay amplitudes: $jA_{\perp}j$ (L=1), $jA_{\parallel}j$, jA_0j (L=0,2), + two rel. strong phases: $\delta_1 = \arg(A_{\parallel}(0)A_{\perp})$, $\delta_2 = \arg(A_0(0)A_{\perp}(0))$

Messung von ϕ_s

Proper time (ps)

- amplitude of modulation: $D\sin\phi_s$
- sign of modulation depend on production flavour (B_s or $\overline{B_s}$) and from CP value of final state η_{CP}

Most important tools: Flavour-Tagging and decay time resolution

 $J/\Psi\phi$ is combination of different CP eigenstates

! combined measurement of Γ , $\Delta\Gamma$, Δm_s and ϕ_s possible

 $B_s^{
m u}
ightarrow J/\Psi \phi$

CKM angle α

- Very same analysis idea, then $B_d \stackrel{!}{=} J/\psi K^0$
- In absence of penguins, weak phase difference: $2eta+2\gamma=-2lpha$
- However sizable contributions from penguin decays (come in with phase β)
- **Two approaches:**
 - 1) use isospin relations w. other $B ! \pi \pi$ modes to determine T vs. P rate
 - 2) use alternative mode with little P contribution (e.g. $B^0 ! \rho^0 \rho^0$)

 $B_d o \pi^+\pi^-/
ho
ho$

Śtephanie Hansmann-Menzemer 51

Constraints on α

= 0 and = excluded by branching ratio measurements world average: = $87:6^{+3:5}_{3:3}$

measurement or how to attack strong phases

γ from Trees: $B \to DK$

► $D^0/\overline{D^0}$ decay in common flavour state $(K^+\pi^-, K^+3\pi ...)$ 5 param.: $r_B = j \frac{A(B^- \to D^0 K^-)}{A(B^- \to \overline{D^0} K^-)} j$, δ_B , γ , δ_D^{π} , $\delta_D^{3\pi}$ (r_D from CLEO-c)

Low event rate; large interference

Atwood-Dunietz-Soni Method

γ from Trees: $B \to DK$

D⁰/D⁰ decay in common CP eigenstate (K⁺K⁻, π⁺π⁻, ...)
 3 parameters: r_B, δ_B, γ (r_D = 1, δ_D = 0)
 Large event rate; small interference (r_B small)

Both analyses are decay time independent, no flavour tagging needed!

Strategy: Perform analysis in as many as possible channels, measure ratios of decay rates and perform a combined analysis.

Side-remark

The amplitude ratio r_B drives the sensitivity:

$$r_B \equiv |A(b \to u)/A(b \to c)| \qquad r_B = \frac{A(B^+ \to D^0 K^+)}{A(B^+ \to \overline{D^0} K^+)}$$

(was a big discussion in 2009 ...)

Results

GGSZ (Giri, Grossman, Soffer, Zupan): GLW/ADS method combined with Dalitz-Plot analysis of D^0 ! $K_S^0 \pi^+ \pi^-$ decay.

In this combination enters the GLW, ADS & GGSZ method.

world average: $\gamma = 73.2^{+..3}_{-7.0}$

What next?

New Physics in ${\cal B}$ decays

New Physics effects only appear as correction to leading SM terms.

$$A_{BSM} = A_0 \quad \frac{C_{SM}}{m_W^2} + \frac{C_{NP}}{\lambda_{NP}^2} \quad ; \quad (C_{SM} = \frac{g_W^2}{4\pi} \sim \frac{1}{30}, \lambda_{NP} \sim 1 \text{ TeV (?)})$$

Flavour physics approach to new physics:

study processes which are sensitive to quantum corrections:
 e.g. very rare (SM suppressed) decays, CPV

If couplings are of order O(1) ...

