Semileptonic b-hadron decays at LHCb

Concezio Bozzi CERN and INFN Ferrara

Neckarzimmern, March 17th 2016

Outline

- The LHCb detector and its current and foreseen datasets
- Recent results on
 - B⁰ oscillation frequency Δm_d
 - Semileptonic asymmetries a_{sl}^{s} , a_{sl}^{d}
 - CKM matrix element $|V_{ub}|$
 - semi-tauonic $B \rightarrow D^* \tau \nu$ decays
- Outlook

Designed to study b and c decays

$\sigma(pp \to b\bar{b}X) = (284 \pm 20 \pm 49)\mu b @ \sqrt{s} = 7 \text{ TeV}$

Phys. Lett. B 694 (2010) 209 (obtained from semileptonic decays).

Excellent performance

- 3/fb collected in run 1 at 7-8 TeV.
- Expect to collect another 5/fb in run 2. Collected 0.3/fb in 2015. LHC says 2016 is going to be a "luminosity year"
 - Note that at 13 TeV *bb* cross-section roughly doubles.
 - i.e. 4 times larger data sample than current.

Large and clean samples

Millions of *B* candidates available.

Excellent vertex separation

- Note: $t = d * m_B / p_B$
- p_B unknown in semileptonic decays, due to missing neutrino!

But... "dirty" hadronic enviroment

- Many other particles produced in the *pp* collision.
 - No possibility to use beam energy constraints.
 - No kinematic constraints from other (tagging) *B*.
 - Also *b*-hadron production fractions poorly known.

 Time evolution of Schrödinger equation

$$i\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} |B^{0}(t)\rangle\\ |\overline{B}^{0}(t)\rangle\end{array}\right) = \left(M - \frac{i}{2}\Gamma\right) \left(\begin{array}{c} |B^{0}(t)\rangle\\ |\overline{B}^{0}(t)\rangle\end{array}\right)$$

 "heavy" and "light" mass eigenstates:

$$|B_{H,L}\rangle = p|B^0\rangle \mp q|\overline{B}{}^0\rangle$$

 With different masses and decay widths

$$\Delta m = m_H - m_L$$
$$\Delta \Gamma = \Gamma_L - \Gamma_H$$

$$\propto e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\left(\Delta mt\right) \right]$$

• Mixing asymmetry

$$A(t) = \frac{N^{unmix}(t) - N^{mix}(t)}{N^{unmix}(t) + N^{mix}(t)} = \frac{\cos(\Delta m_d t)}{\cosh(\Delta \Gamma_d t/2)} + \frac{a}{2} \left[1 - \frac{\cos^2(\Delta m_d t)}{\cosh^2(\Delta \Gamma_d t/2)} \right]$$
$$\Delta \Gamma_d \sim 0$$
$$CP \text{ violation in mixing ~10^{-4}}$$

• Mixing asymmetry

$$A(t) = \frac{N^{unmix}(t) - N^{mix}(t)}{N^{unmix}(t) + N^{mix}(t)} = \cos(\Delta m_d t)$$

• Mixing asymmetry

$$A(t) = \frac{N^{unmix}(t) - N^{mix}(t)}{N^{unmix}(t) + N^{mix}(t)} = \cos(\Delta m_d t) \times (1-2\omega)$$

• Flavour tagging $\mathcal{P} = \epsilon_{tag} (1 - 2\omega)^2 \sim 2.4\%$

• Mixing asymmetry

$$A(t) = \frac{N^{unmix}(t) - N^{mix}(t)}{N^{unmix}(t) + N^{mix}(t)} = \cos(\Delta m_d t) \times (1-2\omega) + A_{B+}$$

- Flavour tagging
- Rejection of $B^+ \rightarrow D^{(*)-} \mu^+ \nu_{\mu} X^+$ background

• Mixing asymmetry

$$A(t) = \frac{N^{unmix}(t) - N^{mix}(t)}{N^{unmix}(t) + N^{mix}(t)} = \left[\cos(\Delta m_d t) \times (1-2\omega) + A_{B+}\right] \bigotimes_t R(t)$$

- Flavour tagging
- Rejection of $B^+ \rightarrow D^{(*)-} \mu^+ \nu_{\mu} X^+$ background
- Decay time reconstruction

Decay time reconstruction

- Using semileptonic $B^0 \to D^{(*)-} \mu^+ \nu_\mu X$ decays
- The B momentum is inferred from the reconstructed on by means of a statistical correction taken from simulation

•

LHCb-PAPER-2015-031

Precision measurement of Δm_d

• Fit to the time distributions in four bins of increasing mistag probability

Constraints on CKM UT

$$\Delta m_{q} = \frac{G_{F}^{2} m_{W}^{2} M_{B_{q}}}{6 \pi^{2}} S_{0}(x_{t}) \eta_{2B} |V_{tq}^{*} V_{tb}|^{2} f_{B_{q}}^{2} \hat{B}_{B_{q}}^{(1)}$$

- High experimental precision somewhat "swamped" by hadronic uncertainties
- Recent results from Lattice QCD pave the way for tightening the mixing constraints on the unitarity triangle

FNAL/MILC arXiv:1602.03560

C. Bozzi - SL decays at LHCb

 Time evolution of Schrödinger equation

$$i\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{array} \right) = \left(M - \frac{i}{2}\Gamma \right) \left(\begin{array}{c} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{array} \right)$$

 "heavy" and "light" mass eigenstates:

$$|B_{H,L}\rangle = p|B^0\rangle \mp q|\overline{B}{}^0\rangle$$

• With different masses and decay widths

$$\Delta m = m_H - m_L$$
$$\Delta \Gamma = \Gamma_L - \Gamma_H$$

$$\propto e^{-\Gamma t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\left(\Delta mt\right) \right]$$

 Time evolution of Schrödinger equation

$$i\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{array} \right) = \left(M - \frac{i}{2}\Gamma \right) \left(\begin{array}{c} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{array} \right)$$

 "heavy" and "light" mass eigenstates:

a

$$|B_{H,L}\rangle = p|B^0\rangle \mp q|\overline{B}{}^0\rangle$$

With differ Are they CP eigenstates?

$$= 1 - \left| \frac{q}{p} \right|$$
 Measures CP violation in mixing

$$\cos\left(\Delta mt
ight)
ight]$$

 Probability matter at t beam"

 $\mathcal{P}(\bar{B} \rightarrow B) \neq \mathcal{P}(B \rightarrow \bar{B})$

CP Violation in mixing

 CP-violating semileptonic asymmetry

$$a_{\rm sl} = a = \frac{N(\bar{B} \to B \to f) - N(B \to \bar{B} \to \bar{f})}{N(\bar{B} \to B \to f) + N(B \to \bar{B} \to \bar{f})}$$

- SM prediction A. Lenz, 2012, 1205.1444 [hep-ph]
- Experimental status before LHCb

20

How to measure?

$$a_{\rm sl} = \frac{N(\bar{B} \to B \to f) - N(B \to \bar{B} \to \bar{f})}{N(\bar{B} \to B \to f) + N(B \to \bar{B} \to \bar{f})}$$

• Inclusive like-sign dilepton asymmetry

How to measure?

$$a_{\rm sl} = \frac{N(\bar{B} \to B \to f) - N(B \to \bar{B} \to \bar{f})}{N(\bar{B} \to B \to f) + N(B \to \bar{B} \to \bar{f})}$$

• Untagged asymmetry (used by LHCb)

$$A_{\text{meas}}(t) = \frac{\Gamma(f,t) - \Gamma(\bar{f},t)}{\Gamma(f,t) + \Gamma(\bar{f},t)} = \frac{a_{\text{sl}}^q}{2} - \frac{a_{\text{sl}}^q}{2} \frac{\cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2)}$$

→ oscillating asymmetry as function of decay time
 → no need to know the flavour of the B meson at production

Spurious asymmetries

• Production asymmetry (~1%)

 $A_{\rm P} = \frac{\sigma(\bar{B}) - \sigma(B)}{\sigma(\bar{B}) + \sigma(B)}$

$$A_{\text{meas}}(t) = \frac{\Gamma(f,t) - \Gamma(\bar{f},t)}{\Gamma(f,t) + \Gamma(\bar{f},t)} = \frac{a_{\text{sl}}^d}{2} - \left(A_{\text{P}} + \frac{a_{\text{sl}}^d}{2}\right) \frac{\cos(\Delta m_d t)}{\cosh(\Delta \Gamma_d t/2)}$$

Spurious asymmetries

Production asymmetry (~1%)

$$A_{\rm P} = \frac{\sigma(\bar{B}) - \sigma(B)}{\sigma(\bar{B}) + \sigma(B)}$$

• Detection asymmetries

$$A_D = \frac{\varepsilon(f) - \varepsilon(\overline{f})}{\varepsilon(f) + \varepsilon(\overline{f})}$$

$$A_{\rm meas}(t) = \frac{\Gamma(f,t) - \Gamma(f,t)}{\Gamma(f,t) + \Gamma(\bar{f},t)} = \frac{a_{\rm sl}^d}{2} + \left(A_{\rm D} - \left(A_{\rm P} + \frac{a_{\rm sl}^d}{2}\right) \frac{\cos(\Delta m_d t)}{\cosh(\Delta \Gamma_d t/2)}\right)$$

Time-dependent a_{sl}

- Time-dependent fit to disentangle the *CP* violating asymmetry from the *BO* production asymmetry
- Independent determination of the detection asymmetries with control samples

C. Bozzi - SL decays at LHCb

"Simpler" for a_{sl}^{s}

• Time-integrated, untagged asymmetry

$$A_{\text{meas}} = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})} = \frac{a_{\text{sl}}^s}{2} + A_{\text{D}} - \underbrace{\left(A_{\text{P}} + \frac{a_{\text{sl}}^s}{2}\right) \frac{\int e^{\Gamma_s t} \cos(\Delta m_s t) \epsilon(t) dt}{\int e^{\Gamma_s t} \cosh(\Delta \Gamma_s t/2) \epsilon(t) dt}}_{\sim 10^{-4}}$$

"Simpler" for a_{sl}^s

• Time-integrated, untagged asymmetry

- Main problem is detection asymmetry.
- Restrict to the $\phi \rightarrow KK$ resonance: only $\mu^{\pm}\pi^{\mp}$ asymmetry contributes.

a_{sl}^{s} with 1fb⁻¹

 Measurement being updated to 3fb⁻¹ using full KKπ Dalitz region $a_{sl}^{s} = (-0.06 \pm 0.50_{stat} \pm 0.36_{syst})\%$

Source	δ (%)
Tracking asymmetries	0.26
Muon asymmetries	0.16
Fitting	0.15
Backgrounds	0.10
Quadratic sum	0.36

Measurement of a_{sl}^d

Plenty of candidates!

$$B^0 \to D^{\pm} \mu^{\mp} \nu_{\mu}$$
 1.8M
 $B^0 \to D^{*\pm} \mu^{\mp} \nu_{\mu}$ 0.34N

Challenges:

- Detection asymmetry for the $\mu^{\pm}\pi^{\mp}K^{\pm}\pi^{\mp}$ final state
- Determination of B momentum \rightarrow k-factor
- Background from charged B and baryon decays

 $B^+ \rightarrow D^{(*)-} \mu^+ X^+$ $\Lambda_h^0 \to D^{(*)-} \mu^+ X_n$

- Normalization from simulation and measured BFs
- production asymmetry from other measurements

 $\begin{aligned} A_{\rm P}(B^{\,{}_{-}}) &= (-0.6 \pm 0.6)\% & \mathsf{B}_{+} \rightarrow \mathsf{J}/\psi\mathsf{K}_{+} \\ A_{\rm P}(\Lambda_b^0) &\sim (-0.9 \pm 1.5)\% & \Lambda_b^0 \rightarrow J/\psi p K^+ \end{aligned}$ $A_{\rm P}(B^+) = (-0.6 \pm 0.6)\%$

Detection asymmetry

- Sources of asymmetry
 - Detector inefficiencies/misalignments/inhomogeneities
 - Different interaction with detector material (nuclear interactions...)
- Use control samples

Detection asymmetry: $A_{\mu\pi}$

- Tracking efficiencies depend on transverse momentum
 - Reweight data sample to obtain a good overlapping kinematic phase space between μ and π . Effective sample size reduced by factor ~0.8
- Muon-ID and trigger asymmetries: use tag-and-probe method on $J/\psi \rightarrow \mu\mu$ decays

Detection asymmetry: $A_{K\pi}$

• Use prompt D⁺ decays into Knn and K_sn

$$A_{K\pi} \equiv \frac{\epsilon(K^+\pi^-) - \epsilon(K^-\pi^+)}{\epsilon(K^+\pi^-) + \epsilon(K^-\pi^+)}$$
$$= A(D \to K\pi\pi)$$
$$- A(D \to K_S\pi)$$
$$- A(K_S)$$

- Several kinematical re-weightings needed
- $A(K_s) = (0.054 \pm 0.011)\%$ [JHEP 07 (2014) 041]

$$A_{K\pi} = (1.15 \pm 0.08(\text{stat}) \pm 0.07(\text{syst}))\%$$
Reweighted (for the D+ mode)

largest systematic uncertainty on a_{sl}^d

Results

 $a_{sl}^{d} = (-0.02 \pm 0.19_{stat} \pm 0.30)\%$

Results

Systematics		
Source	δ (%)	
Detection asymmetry	0.26	
B plus	0.13	
Baryonic background	0.07	
Bs background	0.03	
Fake D background	0.03	
K-factor model	0.03	
Decay time acceptance	0.03	
Mixing frequency	0.02	
Quadratic sum	0.30	

Many of these are limited by control mode statistics

$a_{sl}^{d} = (-0.02 \pm 0.19_{stat} \pm 0.30)\%$

Most precise single measurement to date. Consistent with SM. Statistically limited

$$|V_{ub}|$$
: tensionTM

Measure $|V_{ub}|$ at hadron colliders?
The $\Lambda_b \rightarrow p \mu \nu$ decay

 Λ_b

- Baryonic version of $B \rightarrow \pi l v$
- Cleaner at LHCb as protons are rarer than kaons/pions
- $\Lambda_{\rm b}$ not produced at B Factories, but produced at LHC half as often as B mesons
- Signature in detector: displaced muon-proton vertex
- Event though suppressed, it is not a rare decay
 - Expect 0.5M events after trigger and preselection
 - Only need ~10k to get good enough statistical precision
- Tight selection to control backgrounds and systematic effects

Precise using 1

Analysis strategy

- Normalize signal yield to $\Lambda_b \rightarrow \Lambda_c(pK\pi)\mu\nu$
 - Cancel many systematic uncertainties, including the one related to the production of Λ_b baryons
- Restrict signal and normalization to kinematic region where LQCD is accurate:
 - $q^2 > 15 \ GeV^2$ (signal) and $q^2 > 7 \ GeV^2$ (normalization)

W. Detmold, C. Lehner, and S. Meinel, arXiv:1503.01421

Analysis strategy

- Normalize signal yield to $\Lambda_b \rightarrow \Lambda_c(pK\pi)\mu\nu$
 - Cancel many systematic uncertainties, including the one related to the production of Λ_b baryons
- Restrict signal and normalization to kinematic region where LQCD is accurate:

- $q^2 > 15 \ GeV^2$ (signal) and $q^2 > 7 \ GeV^2$ (normalization)

$$\frac{|V_{ub}|^2}{|V_{cb}|^2} = \frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_\mu)_{q^2 > 15 \text{ GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)_{q^2 > 7 \text{ GeV}^2}} (R_{\text{FF}} \to 0.5 \text{ GeV}^2) (R_{pp} \to 0$$

 $\cdot R_{\mathrm{FF}}$ = (0.68 ± 0.07)

W. Detmold, C. Lehner, and S. Meinel, arXiv:1503.01421

Isolation

- Signal has no additional tracks coming from the secondary vertex
- Tight vertex rejects 50% of background due to Λ_c lifetime (0.2ps)
- Veto on charged tracks close to the pµ vertex 90% rejection for 80% efficiency

Corrected mass

- No constraint from beam energy at a hadron machine
- Use constraint given by measurable flight direction

$$m_{\rm corr} = \sqrt{m_{h\mu}^2 + p_\perp^2} + p_\perp$$

 Improve signal and background separation by requiring low uncertainty on m_{corr}

Reduced q² dependence

- Using the Λ_b mass as a constraint \rightarrow quadratic equation for $p_v \rightarrow 2$ -fold ambiguity
- Theory most accurate at high q²
- Require both solutions above 15GeV² to avoid cross-feed

Fit to data

Ratio of branching fractions

$$\begin{aligned} \frac{\mathcal{B}(\Lambda_b^0 \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2}} &= & \frac{N(\Lambda_b^0 \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2}}{N(\Lambda_b^0 \to (\Lambda_c^+ \to pK^- \pi^+)\mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2}} \\ &\times \frac{\epsilon (\Lambda_b^0 \to (\Lambda_c^+ \to pK^- \pi^+)\mu \nu)_{q^2 > 7 \,\mathrm{GeV}^2}}{\epsilon (\Lambda_b^0 \to p\mu^- \overline{\nu}_{\mu})_{q^2 > 15 \,\mathrm{GeV}^2}} \end{aligned}$$

- Relative efficiencies determined from simulation, with corrections from data. Main differences due to
 - Two extra tracks for normalization
 - Vertex efficiency (Λ_c lifetime)
 - Cut on corrected mass error

$$\frac{\epsilon(\Lambda_b^0\to p\mu\nu)}{\epsilon(\Lambda_b^0\to\Lambda_c\mu\nu)}=3.52\pm0.20$$

Ratio of branching fractions

$$\frac{\mathcal{B}(\Lambda_b^0 \to p \mu^- \overline{\nu}_\mu)_{q^2 > 15 \,\text{GeV}^2}}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu \nu)_{q^2 > 7 \,\text{GeV}^2}} = (1.00 \pm 0.04(\text{stat}) \pm 0.08(\text{syst})) \times 10^{-2}$$

Source	Relative uncertainty $(\%)$
$\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$	$^{+4.7}_{-5.3}$
Trigger	3.2
Tracking	3.0
Λ_c^+ selection effici	ency 3.0
N^* shapes	2.3
Λ_b^0 lifetime	1.5
Isolation	1.4
Form factor	1.0
Λ_b^0 kinematics	0.5
q^2 migration	0.4
PID	0.2
Total	$+7.8 \\ -8.2$

$|V_{ub}|$ result

Using PDG exclusive average of $|V_{cb}|$:

$$|V_{ub}| = (3.27 \pm 0.15_{exp} \pm 0.17_{theory} \pm 0.06_{|Vcb|}) \times 10^{-3}$$

Measuring $|V_{ub}|: B_s \rightarrow K\mu\nu$

Error budget from Lattice QCD more favourable for $B_s \rightarrow K\mu\nu$ than $B \rightarrow \pi\mu\nu$

Measuring $|V_{ub}|: B_s \rightarrow K\mu\nu$

- Use corrected mass to distinguish between background components
- Use charged and neutral isolation criteria in BDT
- Veto partially reconstructed backgrounds

 Bs2KMuNu_13512010, SSbkg_data2012, Bs2JpsiPhi_13144001,

 Bd2JpsiKst_11144001, Bu2JpsiK_12143001,

 Bs2DsMuNu_Cocktail_13774002, Bsd2Kstkpi0MuNu_13512410,

 Bsd2Kst1430kpi0MuNu_13512420, Bd2Rhopi0piMuNu_11512400,

 Lb2PMuNu_15512013

C. Bozzi - SL decays at LHCb

Measuring $|V_{ub}|: B_s \rightarrow K\mu\nu$

• Neutral isolation: Veto partially reconstructed K*+ backgrounds by looking at combination of photon pairs into π^0 candidates

- B→Iv measures ff x |V_{ub}|, sensitive to NP at tree level
- Helicity suppressed!
 →Measure B→τν
 - ightarrow rather impossible at LHCb
- Add gluons and measure $B \rightarrow \phi \mu v$
- Look also for $B_c \rightarrow \phi \mu \nu$
- BR(B+ $\rightarrow \phi \mu \nu$)/BR(B_c $\rightarrow \phi \mu \nu$) ~ $|V_{ub}|^2/|V_{cb}|^2$!
- Analysis just starting
 - Building on work done for $B_s \rightarrow K\mu\nu$

- B→Iv measures ff x |V_{ub}|, sensitive to NP at tree level
- Helicity suppressed! \rightarrow Measure B $\rightarrow \tau v$
 - ightarrow rather impossible at LHCb
- Add gluons and measure $B \rightarrow \phi \mu v$
- Look also for $B_c \rightarrow \phi \mu v$
- BR(B+ $\rightarrow \phi \mu \nu$)/BR(B_c $\rightarrow \phi \mu \nu$) ~ $|V_{ub}|^2/|V_{cb}|^2$!
- Analysis just starting
 - Building on work done for $B_s \rightarrow K\mu\nu$

 \overline{s}

- B→Iv measures ff x |V_{ub}|, sensitive to NP at tree level
- Helicity suppressed!
 →Measure B→τν
 - ightarrow rather impossible at LHCb
- Add gluons and measure $B \rightarrow \phi \mu v$
- Look also for $B_c \rightarrow \phi \mu v$
- BR(B+ $\rightarrow \phi \mu \nu$)/BR(B_c $\rightarrow \phi \mu \nu$) ~ $|V_{ub}|^2/|V_{cb}|^2$!
- Analysis just starting
 - Building on work done for $B_s \rightarrow K \mu v$

- B→Iv measures ff x |V_{ub}|, sensitive to NP at tree level
- Helicity suppressed!
 →Measure B→τν
 - ightarrow rather impossible at LHCb
- Add gluons and measure $B \rightarrow \phi \mu v$
- Look also for $B_c \rightarrow \phi \mu \nu$
- BR(B+ $\rightarrow \phi \mu \nu$)/BR(B_c $\rightarrow \phi \mu \nu$) ~ $|V_{ub}|^2/|V_{cb}|^2$!
- Analysis just starting
 - Building on work done for $B_s \rightarrow K \mu v$

Semileptonic B decays in $\mathsf{D}^{**}\mu\nu$

- $B \rightarrow D^{**}\mu\nu$ decays relatively poorly measured
- Sum of exclusive final states falls short of inclusive $X_c \mu v$
- Look for $B \rightarrow D^{**}\mu\nu$ with $D^{**} \rightarrow D^*\pi$ by fitting $D^*\pi$ inv. mass

- Hints for decays into new resonances, previously unobserved
- Non-resonant D*π decays
 merged with combinatorial
 background

Two new broad resonances: shapes taken from previous LHCb analysis in different production modes.

O(10⁴) narrow resonances decays: Could also measure form factors!

State	Yield	Stat. error	Syst. error	Tot. error	Significance (σ)
$D_1(2420)^0$	39245	± 302	± 2037	± 2059	19.1
$D_2^*(2460)^0$	16289	± 281	± 1391	± 1419	11.5
$D_J^*(2650)^0$	2663	± 208	± 479	± 522	5.1
$D_J^*(2760)^0$	807	± 113	± 179	± 212	3.8

Semileptonic B decays in $D^{**}\mu\nu$

- Can also measure D*π(π) final states "inclusively" without looking at invariant mass
- Fit impact parameter with respect to D*µ vertex

 Λ_{h} form factors

- In HQET, the partial decay width is determined by six form factors
- In the heavy quark limit \rightarrow "Isgur-Wise" function $\xi(w)$
- Parameters of this function can be determined by measuring the exclusive $\Lambda_b \rightarrow \Lambda_c \mu \nu$ rate, with $\Lambda_c \rightarrow p \ K \pi$, in bins of w
- Need to subtract feed-down from higher resonances

C. Bozzi - SL decays at LHCb

 Λ_b form factors

$$\frac{d\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)}{dw} = \frac{G_F^2 m_{\Lambda_b}^5 |V_{cb}|^2}{24\pi^3} K(w) \boldsymbol{\xi}_{\Lambda_b}^2(w)$$

$$w = \frac{m(\Lambda_b)^{\text{S200}}}{\sum_{a=2}^{7000}} \frac{1}{m(a)} \frac{M_b^{\text{Baseline fit}}}{\Lambda_c(2625) \text{ yields: } 22965 \pm 266}} \frac{1}{2} \frac{1$$

 Unfold the measured w distribution and correct for efficiency

 Λ_{h} form factors

$$\frac{d\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)}{dw} = \frac{G_F^2 m_{\Lambda_b}^5 |V_{cb}|^2}{24\pi^3} K(w) \boldsymbol{\xi}_{\Lambda_b}^2(w)$$

$$w = \frac{m(\Lambda_b)^{8200}}{\sum_{j=2}^{7000}} \frac{1}{m(1.65)} \frac{m(2.65)^{200}}{m(1.65)^{100}} \frac{1}{2} \frac$$

- Unfold the measured w distribution and correct for efficiency
- Fit Isgur-Wise function (in the HQ limit)
- Repeat fit by using form factor parameterization from Lattice QCD

• Access to $|V_{cb}|$: need to find suitable normalization channel

Testing Lepton Flavour Universality with semi-tauonic B decays

Measurement of $R(D^*) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$

- Theoretically clean, cancellation of form factor uncertainties
 - Dominant uncertainty due to knowledge of helicitysuppressed amplitude
 - SM: R(D*) = 0.252(3)
 PRD 85 094025 (2012)
- Use $\tau \rightarrow \mu \nu \nu$ decays
 - Same visible final state
 - Large well-measured BF (17%)

Signal-to-background separation

In B rest frame, three key kinematic variables:

Rest frame approximation at LHCb

 $(\gamma \beta_z)_{\bar{B}} = (\gamma \beta_z)_{D^* \mu} \implies (p_z)_{\bar{B}} = \frac{m_B}{m(D^* \mu)} (p_z)_{D^* \mu}$

- B boost along z >> boost of decay products in the rest frame
- Avoids 2-fold ambiguity when solving for B momentum with missing particles
- 18% resolution on B momentum approximation

Reconstructed fit variables

Partially reconstructed backgrounds

- Main backgrounds (other than normalization): partially reconstructed B decays
 - D*(*)μν, D*3πX, D*D(s)(*)X...
 - use isolation criteria (MVA) and/or τ flight length
- Assess compatibility of every other reconstructed track with $\mathsf{D}^*\mu$ vertex
 - Vertex quality with PV and SV, change in displacement of SV, pT, alignment of track and $D^*\mu$ momenta
- Build BDT to discriminate "SV-like" and "PV-like" tracks
 - Use cuts to select signal-enriched and background-enriched samples, to be used as control samples

Semileptonic backgrounds

- Sizeable contributions from semileptonic decays to excited charm mesons
- Study their shapes with control samples enriched in **one** or two additional pions

PRL 115, 111803 (2015)

PRL 115, 111803 (2015)

Semileptonic backgrounds

- Sizeable contributions from semileptonic decays to excited charm mesons
- Study their shapes with control samples enriched in one or two additional pions

Double-charm backgrounds

- $B \rightarrow D^*D_{(s)}X$ decays can lead to very similar shapes to the semitauonic decay (e.g. $B \rightarrow D^*D_s (\rightarrow \phi \mu \nu)$ + many others)
- Very large number of decays modes, physics models for many of them not well established
- Dedicated *D**µ*K*± control sample used to constrain **shapes**

Signal region fit

- No additional particles
- 3D fit to m_{miss}^2 , E_{μ} , in 4 bins of q^2 .
- Simultaneously fit 3 control regions defined by isolation criteria

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$

- In agreement with Babar and Belle
- 2.1 σ higher than the SM

PRL 115, 111803 (2015)

Systematics

Model uncertainties	Absolute size $(\times 10^{-2})$	
Simulated sample size	2.0	Expected to be reduced
Misidentified μ template shape	1.6	
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6	
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5	
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_{\mu})$	0.5	
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4	Will scale down
Corrections to simulation	0.4	with more data
Combinatorial background shape	0.3	
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3	
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1	
Total model uncertainty	2.8	
Normalization uncertainties	Absolute size $(\times 10^{-2})$	
Simulated sample size	0.6	
Hardware trigger efficiency	0.6	
Particle identification efficiencies	0.3	
Form-factors	0.2	
$\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)$	< 0.1	
Total normalization uncertainty	0.9	
Total systematic uncertainty	3.0	

HFAG average of R(D) and R(D*)

Difference with the SM at 3.9σ level

Other semi-tauonic decays

 $B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^* \tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^* 3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D^*3\pi(X)) / Br(B \rightarrow D^*\tau v; \tau \rightarrow 3\pi(\pi^0) v)_{SM} \sim 100$
- Suppress with *inverted vertex topology*

$B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Doing semileptonic physics without leptons in the final state!
- The $B \rightarrow D^* \tau \nu$ decay, with $\tau \rightarrow 3\pi(\pi^0)$ leads to a $D^* 3\pi(X)$ final state
- Nothing is more common than this final state in a typical B decay
- $Br(B \rightarrow D^* 3\pi(X)) / Br(B \rightarrow D^* \tau v; \tau \rightarrow 3\pi(\pi^0) v)_{SM} \sim 100$
- Suppress with *inverted vertex topology*

 $B \rightarrow D^* \tau \nu$, with $\tau \rightarrow 3\pi(\pi^0)$

- Remaining background from B^0 decays where the 3π vertex is transported away from the D^0 vertex by a **charm carrier**: D_s , D^+ or D^0 (in order of importance)
- $Br(B \rightarrow D^* D'; D' \rightarrow 3\pi) / Br(B \rightarrow D^*\tau v; \tau \rightarrow 3\pi(\pi^0) v)_{SM}$ ~10
- LHCb has three very good 'weapons' to suppress this background:
 - Background partial reconstruction
 - Dynamics of 2π , 3π system
 - Neutral isolation
- Use multi-variate analysis to maximize discrimination
- Expect statistical uncertainties at the 6% level
- Must keep systematic at the same level
 - Limitation due to the large error (11% PDG 2014) on the normalisation $Br(B^0 \rightarrow D^*3\pi)$ is now overcome by new Babar measurement at 4%, shown last Sunday at Moriond EW!

 3π

Signal reconstruction

$$|\vec{p}_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta)}$$

- Reconstruct $\boldsymbol{\tau}$ and B kinematics by exploiting vertex separation
- Choose $\boldsymbol{\theta}$ such that argument of square root vanishes
- Good resolution on kinematical variables

Current status

Statistical uncertainty on signal ~6%

Outlook

- The measurements of CP asymmetries in mixing (a_{sl}^{s}, a_{sl}^{d}) and of the CKM matrix element $|V_{ub}|$ show that it is possible to do precision physics in semileptonic decays of b hadrons even in the harsh environment of LHCb
- Decays with taus in the final state look promising. For $B \rightarrow D^* \tau v$:
 - Leptonic mode: same level of precision (~10%) as B Factories
 - 3-prong mode: aiming at statistical precision at the 6% level.
- Further exploit other modes with taus:

- $B \rightarrow D^0 \tau \nu, B_s \rightarrow D_s \tau \nu, \Lambda_b \rightarrow \Lambda_c \tau \nu$

 Several tools and techniques are being exploited to reconstruct SL decays, suppress backgrounds and disentangle "ground state" signals from higher "excitations"

backup

Composition of SL width

Composition of SL width

LHCb [PLB 698 (2011) 14]

•

Improving isolation

JHEP06(2012)058

Inclusive W and Z production in the forward region at Vs = 7 TeV

- Transverse momentum & energy in a cone around muon in W decays successfully employed in measurement of inclusive W production
- Possible use in SL decays as discriminating variables to veto decays with extra "activity".

Semileptonic publications

- CP violation and $\Delta m_{d,s}$ studies
 - Semileptonic asymmetries a_{sl}^{s} [PLB 728 (2014) 607] ΔA_{CP} [JHEP 07 (2014) 041] and [PLB 723 (2013) 33] A_{Γ} [arXiv:1501.06777]
 - CP violation in charm
 - $-B_s, B_d$ oscillations
- *bb* cross section at 7 TeV
- *b*-hadron production fractions
- $B_s \rightarrow D_s^{**} X \mu \nu$ branching ratio
- V_{ub} measurement

[PRD 85 (2012) 032008]

(2015)

[arXiv:1504.01568, submitted to Nature Physics]

[PLB 694 (2010) 209]

 Δm_{ds} [EPJC 73 (2013) 12, 2655]

$\Lambda_b \rightarrow \Lambda_c$ form factor

- Use $\Lambda_b \rightarrow \Lambda_c \mu \nu$, with $\Lambda_c \rightarrow p K \pi$.
- Add 2 pions to observe of excited $\Lambda_c(2595)$ and $\Lambda_c(2625)$
 - Subtract from inclusive $\Lambda_{\rm c}\,\mu\,X$
- Use neutrino-reconstruction to get 4-velocity transfer, w
 - Use SVD method for deconvolution

• Analysis in advanced state.

- Expect uncertainty on $\rho^2 \approx 0.08$
- Systematics from w resolution, detector efficiencies and ${\Lambda_c}^*$ modeling
- Is there a good normalization channel to extract V_{cb} ?

Right-handed currents?

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ub}^L (\bar{u}\gamma_\mu P_L b + \epsilon_R \bar{u}\gamma_\mu P_R b) (\bar{\nu}\gamma^\mu P_L l) + h.c.$$

The dependence on a right handed current is different for $\Lambda_b \rightarrow p \mu \nu$ as there is also an axial vector current

Right-handed currents disfavoured

Can we do more at LHCb?

- Exclusive measurements are challenging
- First exclusive $|V_{ub}|$ using $\Lambda_b \rightarrow p \ \mu \nu$ paves the way for other semileptonic decays
 - $\Lambda_b \to \Lambda_c \ \mu \ \nu \qquad B_s \to K \mu \nu \text{ and } B_s \to D_s \mu \nu$
 - $B \rightarrow \rho(\pi \pi) \mu v$ Other options: B_c ?
- Problem: **normalization** to CF decay (as in V_{ub}).
- Normalization uncertainties:
 - *bb* cross-section \rightarrow **19%**

LHCb: [PLB 694 (2010) 209]

- Need normalization channel, or
- use (almost) fully reconstructed OS tag.
- *b*-hadron production fractions

LHCb: [PRD 85 (2012) 032008]

- Branching fractions for B_s and Λ_b not well known.
- Precision on **rest-frame observables** (q^2) .
 - Neutrino reconstruction
 - Same-side tagging

Can we do more at LHCb?

- Exclusive measurements are challenging
- First exclusive $|V_{ub}|$ using $\Lambda_b \rightarrow p \ \mu \nu$ paves the way for other semileptonic decays
 - $\Lambda_b \to \Lambda_c \ \mu \ \nu \qquad B_s \to K \mu \nu \text{ and } B_s \to D_s \mu \nu$
 - $B \rightarrow \rho(\pi \pi) \mu v$ Other options: B_c ?
- Problem: **normalization** to CF decay (as in V_{ub}).
- Normalization uncertainties:
 - bb cross-section \rightarrow 19%
 - Need normalization channel, or
 - use (almost) fully reconstructed OS tag.
 - b-hadron production fractions
 - Branching fractions for B_s and Λ_b not well known.
- Precision on **rest-frame observables** (q^2) .
 - Neutrino reconstruction
 - Same-side tagging

Separate higher $D_s \& \Lambda_c$ resonances

C. Bozzi - SL decays at LHCb

Composition of SL width

Composition of inclusive $B \rightarrow X_c l v$ width not fully understood.

- Recent update by BaBar bridges half of the gap.
- 8.5% still unknown.

Composition of SL width

- LHCb can study for resonant $B \rightarrow X_c l v$ structure
 - Including radial excitations $D^{(*)}$
 - High statistics invariant mass spectrum
- **Example**: spectroscopy from **prompt** samples:

Same-side tagging (B_{s2}^{*})

• Narrow width: $B_{s2}^* \rightarrow B^+ K^-$ additional constraint

- Possible use for:
 - $B^+ \rightarrow \rho(\pi \pi) \mu \nu$: Angular analysis to extract form factors and $|V_{ub}|$
 - $B^+ \rightarrow D \mu \nu$: Study of D^{**} states and in $D^0 \tau \nu$.
 - $B^+ \rightarrow KK \ \mu \nu$: **ss-popping** in $b \rightarrow u$. First measurement of $B^+ \rightarrow \phi \ \mu \nu$
- Extend to **neutral B mesons**: $B_{s2}^* \rightarrow B^0 K^0$

Big picture

$B \rightarrow D^* \tau v$ at LHCb

- Experimentally challenging due to additional neutrino(s)
- Two tau decay modes being studied:

leptonic: $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ 3-prong: $\tau \rightarrow 3\pi (\pi^0) \nu_{\tau}$

• Main backgrounds: partially reconstructed B decays

- D*(*)μν, D*3πX, D*D(s)(*)X...

- use isolation criteria (MVA) and/or τ flight length
- Find and fit distributions which differentiate **signal** and **background**.

$B \rightarrow D^* \tau v$ at LHCb

- Experimentally challenging due to additional neutrino(s)
- Two tau decay modes being studied:

leptonic: $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ 3-prong: $\tau \rightarrow 3\pi (\pi^0) \nu_{\tau}$

• Main backgrounds: **partially reconstructed B decays**

- D*(*)μν, D*3πX, D*D(s)(*)X...

- use isolation criteria (MVA) and/or τ flight length
- Find and fit distributions which differentiate **signal** and **background**.

Toy data (leptonic mode)

B rest frame variables computed with "boost approximation":

- *B* boost >> energy release in the decay
- Assume $\gamma \beta_{z,visible} = \gamma \beta_{z,total}$
- Use *B* flight direction to measure transverse component of missing momentum
- ~18% resolution on *B* momentum

Control samples (leptonic mode)

Get templates directly from data. Look for events:

- with one or more tracks selected by isolation MVA, to get samples enriched in $B \rightarrow D^{**}(D^*\pi(\pi))\mu\nu$
- with a track with loose kaon ID, to get a sample enhanced in $B \rightarrow D^*DX$

1200

1000F

800F

600F

400

200

Example of templates for $B \rightarrow D^{**}(D^*\pi)\mu\nu$ obtained with toy data

G. Ciezarek, Mainz workshop

 $B \rightarrow D \mu \nu$

 $B \to D \ \tau \, \nu$

 $B \rightarrow D D X$

 $B \rightarrow D^{\mu} \mu \nu$

10

 $Q^2 (GeV / c^2)^2$

Comb. + Fake

10000