Amplitude Analyses

B Workshop Neckarzimmern Jonas Rademacker

Why Amplitude Analyses?

- QM is intrinsically complex:

Wave functions/transition amplitudes etc: $\psi=$ a e eia. Observable: $|\psi|^{2}$.
Only half the information. How do I get the rest?

- Note that the rest is very interesting - CP violation in the SM comes from phases!
- Answer: Interference effects:

$$
\begin{aligned}
& \Psi_{\text {total }}=a e^{i a}+b e^{i \beta}+\ldots \\
& \left|\Psi_{\text {total }}\right|^{2}=\left|a e^{i a}+b e^{i \beta}+\ldots\right|=a^{2}+b^{2}+2 a b \cos (a-\beta)+\ldots
\end{aligned}
$$

Dalitz plot analyses - lots of interfering amplitudes!

Many interfering decay paths contribute to the
same final state

Described by a $A\left(s_{+}, s_{-}\right)$ $\begin{aligned} & \text { sum of complex } \\ & \text { amplitudes }\end{aligned}=\sum_{k} a_{k}\left(s_{+}, s_{-}\right) e^{i \phi_{k}\left(s_{+}, s_{-}\right)}$

3 body decays

$$
\begin{aligned}
d \Gamma & =\left|\mathcal{M}_{f i}\right|^{2} d \Phi \\
& =\left|\mathcal{M}_{f i}\right|^{2}\left|\frac{\partial \Phi}{\partial\left(s_{12}, s_{13}\right)}\right| d s_{12} d s_{13} \\
& =\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
\end{aligned}
$$

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2}
$$

3-body phase space

3-body phase space

3-body phase space

3-body phase space

3-body phase space

3-body phase space

3-body phase space

3-body phase space

3-body phase space

3-body phase space

What happens if nothing happens

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2}
$$

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\boldsymbol{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

What really happens

$D \rightarrow K_{s} \Pi^{+} \Pi^{-}$

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2}
$$

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

What happens if one thing happens

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2}
$$

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

What happens if one thing happens

What happens if one thing happens

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2}
$$

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

What happens if two things

 happens

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

What happens if two things

 happens

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

What happens if something with spin happens

Real dalitz plots

$$
D \rightarrow K_{s} \Pi^{+} \Pi^{-}
$$

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2}
$$

$$
d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

Real Dalitz pots

2.4M $D^{ \pm} \rightarrow \pi^{ \pm} \pi^{\mp} \pi^{ \pm}$decays (LHCb) $\sigma(500)$?

Phys. Lett. B728 (2014) 585

$$
s_{i j} \equiv\left(p_{i}+p_{j}\right)^{2} \equiv m_{i j}^{2} \quad d \Gamma=\frac{1}{(2 \pi)^{2} 32 M^{3}}\left|\mathcal{M}_{f i}\right|^{2} d s_{12} d s_{13}
$$

Calculating amplitudes

- Let us assume(!) that the full amplitude can be calculated as the sum of essentially independent two body processes.
- Doing this results in the so-called "isobar" model.

Calculating amplitudes

- We don't know anything
 about the strong interaction dynamics.
- As a first approximation, we treat each particle as point particle.
- We want a Lorentzinvariant matrix element...

Calculating amplitudes

Jonas Rademacker: Amplitude Analyses

B-workshop
$\frac{1}{s_{23}-m_{R}^{2}-i m_{R} \Gamma}$

Neckarzimmern 18 Feb 2015

Calculating the amplitudes

$\varepsilon_{R}^{\sigma} \quad$ say R has spin 1 (e.g. $K^{*}(892), \rho(770)$ etc)
$q_{23}^{\nu} \equiv p_{2}^{\prime}-p_{3}^{\prime}$

Calculating the amplitudes

$$
\frac{\sqrt{\left(-p_{1} \cdot q_{23}\right.}}{\sqrt{r^{\text {fitude Analyses }}}}
$$

$$
\frac{1}{s_{23}-m_{R}^{2}-i m_{R} \Gamma}
$$

Calculating the amplitudes

Express in terms of $s_{i j}$ if you wish, using $p_{i} \cdot p_{j}=s_{i j}-m_{i}^{2}-m_{2}^{2}$

$$
\frac{\left(-p_{1} \cdot q_{23}\right.}{\sqrt{(\text { litude Analyses }}}
$$

$$
\frac{1}{s_{23}-m_{R}^{2}-i m_{R} \Gamma}
$$

Calculating the amplitudes

Calculating the amplitudes

 Angular Momenta require momenta

$$
\begin{aligned}
& \vec{L}=2 \vec{d} \times \overrightarrow{q_{r}} \\
& L \text { classical mechanics } \\
& p_{1 \mu} \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma} q_{23 \nu} \\
& \text { QM }
\end{aligned}
$$

Blatt Weisskopf Penetration Factors

L	$B_{L}(q)$	$B_{L}^{\prime}\left(q, q_{0}\right)$
0	1	1
1	$\sqrt{\frac{2 z}{1+z}}$	$\sqrt{\frac{1+z_{0}}{1+z}}$
2	$\sqrt{\frac{13 z^{2}}{(z-3)^{2}+9 z}}$	$\sqrt{\frac{\left(z_{0}-3\right)^{2}+9 z_{0}}{(z-3)^{2}+9 z}}$
	where $z=(\|q\| d)^{2}$	and $z_{0}=\left(\left\|q_{0}\right\| d\right)^{2}$

classical
mechanics:
$\mathrm{L}=2 \mathrm{qd}$
QM:
$L^{2}=I(I+1)$

Blatt Weisskopf Penetration Factors

Calculating the amplitudes

 Angular Momenta require momenta

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Calculating the amplitudes

- Width 「 = rate, depends on phase space $=2 q / m$. break-up momentum
- Rate also depends on B_{L}.

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Calculating the amplitudes

- Width 「 = rate, depends on phase space $=2 q / m$. break-up momentum
- Rate also depends on B_{L}.

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma\left(m_{23}\right)} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Calculating the amplitudes

- Width 「 = rate, depends on phase space $=2 \mathrm{q} / \mathrm{m}$. break-up momentum
- Rate also depends on BL.

$$
\Gamma\left(m_{23}\right)=\Gamma_{0} \frac{\left(q_{23} / m_{23}\right) B_{L}\left(q_{23}\right)}{\left(q_{0} / m_{R}\right) B_{L}\left(q_{0}\right)}
$$

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma\left(m_{23}\right)} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Calculating the amplitudes

break-up momentum in restframe of decaying resonance

$$
\Gamma\left(m_{23}\right)=\Gamma_{0} \frac{\left(q_{23} / m_{23}\right) B_{L}\left(q_{23}\right)}{\left(q_{0} / m_{R}\right) B_{L}\left(q_{0}\right)}
$$

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma\left(m_{23}\right)} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Calculating the amplitudes

- Width 「 = rate, depends on phase space $=2 \mathrm{q} / \mathrm{m}$. break-up momentum
- Rate also depends on BL.
reconstructed mass $m_{23} \equiv \sqrt{s_{23}}$
break-up momentum in restframe of decaying resonance
centrifugal barrier factor

$$
\Gamma\left(m_{23}\right)=\Gamma_{0} \frac{\left(q_{23} / m_{23}\right) B_{L}\left(q_{23}\right)}{\left(q_{0} / m_{R}\right) B_{L}\left(q_{0}\right)}
$$

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma\left(m_{23}\right)} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Calculating the amplitudes

break-up momentum in restframe of decaying resonance

- Rate also depends on BL.
reconstructed mass $m_{23} \equiv \sqrt{s_{23}}$
the same as numerator, but calculated for "nominal" (peak)

$$
\Gamma\left(m_{23}\right)=\Gamma_{0} \xrightarrow{\left(q_{23} / m_{23}\right) B_{L}\left(q_{23}\right)}\left(q_{0} / m_{R}\right) B_{L}\left(q_{0}\right)
$$

resonance mass.

$$
p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma\left(m_{23}\right)} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu}
$$

Mass dependent width (ignoring ang. mom)

 dashed: fixed width
solid: mass dependent width

$$
\Gamma\left(m_{23}\right)=\Gamma_{0} \frac{\left(q_{23} / m_{23}\right) B_{L}\left(q_{23}\right)}{\left(q_{0} / m_{R}\right) B_{L}\left(q_{0}\right)}
$$

Breit Wigner with angular momentum effects (only)

Amplitude Model

$$
\begin{aligned}
& A_{R}=p_{1 \mu} B_{L}\left(q_{r M}, d_{M}\right) \frac{-g^{\mu \nu}+\frac{p_{R}^{\mu} p_{R}^{\nu}}{p_{R}^{2}}}{s_{23}-m_{R}^{2}-i m_{R} \Gamma\left(m_{23}\right)} B_{L}\left(q_{r R}, d_{R}\right) q_{23 \nu} \\
& \text { sensitivity to phases is one of the } \\
& \mathcal{M}_{f i}=\sum_{R} c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right) \quad \text { key reasons amplitude analyses } \\
& \text { are so interesting. } \\
& P\left(s_{12}, s_{23}\right)=\frac{\left|\mathcal{M}_{f i}\right|^{2}\left|\frac{d \Phi}{d s_{12} d s_{23}}\right|}{\int\left|\mathcal{M}_{f i}\right|^{2}\left|\frac{d \Phi}{d s_{12} d s_{23}}\right| d s_{12} d s_{23}} \\
& =\frac{\left|\mathcal{M}_{f i}\right|^{2}}{\left.\int \mathcal{M}_{f i}\right|^{2} d s_{12} d s_{23}} \\
& \text { within kin boundary }
\end{aligned}
$$

Amplitude Model

$$
\mathcal{M}_{f i}=\sum_{R} c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right)
$$

example: CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	a	$\delta\left[{ }^{\circ}\right]$	Fit fractions [\%]
$K^{*}(892)^{ \pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_{0}^{*}(1430)^{ \pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_{*}^{*}(1430)^{ \pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{*}(1410)^{ \pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
$\rho(770)$	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_{0}(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_{2}(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_{0}(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_{0}(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_{2}	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{ \pm}(\mathrm{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_{0}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_{2}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Amplitude Model

$$
\mathcal{M}_{f i}=\sum_{R} c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right)
$$

example: CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	a	$\delta\left[^{\circ}\right]$	Fit fractions [\%]
$K^{*}(892)^{ \pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_{0}^{*}(1430)^{ \pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_{2}^{*}(1430)^{ \pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{*}(1410)^{ \pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
$\rho(770)$	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_{0}(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_{2}(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_{0}(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_{0}(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_{2}	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{ \pm}(\mathrm{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_{0}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_{2}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Amplitude Model

example: CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	a	$\delta\left[^{\circ}\right]$	Fit fractions [\%]
$K^{*}(892)^{ \pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_{0}^{*}(1430)^{ \pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_{2}^{*}(1430)^{ \pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{*}(1410)^{ \pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
$\rho(770)$	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_{0}(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_{2}(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_{0}(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_{0}(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_{2}	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{ \pm}(\mathrm{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_{0}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_{2}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Amplitude Model

$$
\mathcal{M}_{f i}=\sum_{R} c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right)+a_{0} e^{i \theta_{0}} \quad F F_{R}=\frac{\int\left|c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right)\right|^{2} d s_{12} d s_{23}}{\int\left|\sum_{j} c_{j} e^{i \theta_{j}} A_{j}\left(s_{12}, s_{23}\right)\right|^{2} d s_{12} d s_{23}}
$$

example: CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	a	$\delta\left[^{\circ}\right]$	Fit fractions [\%]
$K^{*}(892)^{ \pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_{0}^{*}(1430)^{ \pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_{2}^{*}(1430)^{ \pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{*}(1410)^{ \pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
$\rho(770)$	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_{0}(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_{2}(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_{0}(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_{0}(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_{2}	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{ \pm}(\mathrm{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_{0}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_{2}^{*}(1430)^{ \pm}(\mathrm{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Amplitude Model

$$
\mathcal{M}_{f i}=\sum_{R} c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right)
$$

example: CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Amplitude Model

$$
\mathcal{M}_{f i}=\sum_{R} c_{R} e^{i \theta_{R}} A_{R}\left(s_{12}, s_{23}\right) \quad+a_{0} e^{i \theta_{0}}
$$

example: CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Mixing formalism for 2-body

$\frac{\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}{\Gamma\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}(t) \approx\left(r_{D}^{K \pi}\right)^{2}+r_{D}^{K \pi} y_{K \pi}^{\prime} \Gamma t+\frac{x_{K \pi}^{\prime 2}+y_{K \pi}^{\prime 2}}{4}(\Gamma t)^{2}$
Where $\binom{x_{K \pi}^{\prime}}{y_{K \pi}^{\prime}}=\left(\begin{array}{cc}\cos \delta_{K \pi} & \sin \delta_{K \pi} \\ \cos \delta_{K \pi} & -\sin \delta_{K \pi}\end{array}\right)\binom{x}{y}$

Time-dependent CPV $\mathrm{D}^{\circ} \rightarrow \mathrm{K}$ s $\pi \pi$

(Belle preliminary)(by now published)

Fit case	Parameter	Fit new result
No CPV	$x(\%)$	$0.56 \pm 0.19_{-0.09-0.09}^{+0.03+0.06}$
	$y(\%)$	$0.30 \pm 0.15_{-0.04-0.06}^{+0.04+0.03}$
No dCPV	$\|q / p\|$	$0.90_{-0.15-0.04-0.05}^{+0.16+0.05}$ $\arg q / p\left(^{\circ}\right)$

see also BaBar Phys. Rev. Lett. 105, 081803 (2010) and CLEO-c Phys. Rev. D 72, 012001 (2005).

Time-dependent CPV $\mathrm{D}^{\circ} \rightarrow \mathrm{K}$ s $\pi \pi$

(Belle preliminary)(by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sensitivity to phases) gives
	x (\%)	$0.56 \pm 0.19_{-0.09-0.09}^{+0.03+0.06}$	(rather than $x^{\prime 2}$ and y^{\prime})
No	y (\%)	$0.30 \pm 0.15_{-0.05-0.06}^{+0.04+0.03}$	
No dCPV	$\begin{gathered} \|q / p\| \\ \arg q / p\left({ }^{o}\right) \end{gathered}$	$\begin{gathered} 0.90_{-0.15-0.04-0.05}^{+0.16+0.05+0.06} \\ -6 \pm 11_{-3-4}^{+3+3} \end{gathered}$	$\left.\checkmark<\begin{array}{c}20000 \\ \text { 0000 }\end{array}\right]$

see also BaBar Phys. Rev. Lett. 105, 081803 (2010) and
CLEO-c Phys. Rev. D 72, 012001 (2005). CLEO-c Phys. Rev. D 72, 012001 (2005).

Time-dependent CPV $\mathrm{D}^{\circ} \rightarrow \mathrm{K}$ s $\pi \pi$

(Belle preliminary)(by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sensitivity to phases) gives
No CPV	$x(\%)$	$0.56 \pm 0.19_{-0.09}^{+0.03+0.096}$	access to x, y (rather than $\mathrm{x}^{\prime 2}$ and y^{\prime})
	$y(\%)$	$\begin{aligned} & 0.00 \pm 0.15_{-0.050 .0 .090}^{+0.090 .09} \\ & 0.30 \end{aligned}$	evidence of CP violation
No dCPV	$\begin{gathered} \|q / p\| \\ \arg q / p\left({ }^{\circ}\right) \end{gathered}$	$\begin{gathered} 0.90_{-0.15-0.04-0.05}^{+0.16+0.05+0.06} \\ -6 \pm 11_{-3-4}^{+3+3+3} \end{gathered}$	

see also BaBar Phys. Rev. Lett. 105, 081803 (2010) and
CLEO-c Phys. Rev. D 72. 012001 (2005). CLEO-c Phys. Rev. D 72, 012001 (2005).

Time-dependent CPV $\mathrm{D}^{\circ} \rightarrow \mathrm{K}$ sпп

(Belle preliminary)(by now published)

Fit case	Parameter	Fit new result
No CPV	x (\%)	$0.56 \pm 0.19_{-0.09}^{+0.03-0.09}$
	y (\%)	$0.30 \pm 0.155_{-0.05-0.06}^{+0.04-0.03}$
No dCPV	$\begin{gathered} \|q / p\| \\ \arg q / p\left({ }^{o}\right) \end{gathered}$	$\begin{gathered} 0.90_{-0.15-0.04-0.05}^{+0.16+0.05-0.06} \\ \quad-6 \pm 11_{-3-4}^{+3+3} \end{gathered}$

Magic of Dalitz plot (sensitivity to phases) gives access to x, y (rather than $x^{\prime 2}$ and y^{\prime})

No evidence of CP violation
Significant systematic uncertainty from amplitude model dependence. (Could be limiting with future LHCb/upgrade statistics.)

$$
M_{+}^{2} \mathrm{GeV}^{2} \quad M^{2}\left(\mathrm{GeV}^{2}\right)
$$

see also BaBar Phys. Rev. Lett. 105, 081803 (2010) and CLEO-c Phys. Rev. D 72, 012001 (2005).

"Isobar" Model

- "Isobar": Describe decay as series of 2-body processes.

- Usually: each resonance described by Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. But not much as long as resonances are reasonably narrow, don't overlap too much.
- General consensus: Isobar OK for P, D wave, but problematic for Swave.Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

Isobar Model with sum of

Breit Wigners

R_{1}

$+$

$$
\frac{1}{s_{12}-m_{1}^{2}-i m_{1} \Gamma_{1}\left(s_{12}\right)}+\frac{1}{s_{12}-m_{2}^{2}-i m_{2} \Gamma_{2}\left(s_{12}\right)}+\frac{1}{s_{12}-m_{3}^{2}-i m_{3} \Gamma_{3}\left(s_{12}\right)} \cdots
$$

- Single resonance well described by Breit Wigner
- Overlapping resonances not so. Theoretically problematic: violates unitarity. From a practical point of view problematic as you might get the wrong phase motion.

Isobar Model with sum of Breit Wigners

4 resonances

32 resonances

Flatté Formula

- Consider $\mathrm{f}_{0}(980)$ (width $\Gamma \approx 40-100 \mathrm{MeV}$). Decays to $\pi \pi$ and KK. To KK only above ~987.4 MeV.
- The availability of the KK final state above 987.4 MeV increases the phase space and thus the width above this threshold.
- Need to take this into account even if I only look at $\mathrm{f}_{0}(980) \rightarrow \pi$.

$$
\Gamma_{f_{0}}(s)=\Gamma_{\pi}(s)+\Gamma_{K}(s)
$$

$$
\begin{aligned}
& \Gamma_{\pi}(s)=g_{\pi} \sqrt{s / 4-m_{\pi}^{2}} \\
& \Gamma_{K}(s)=\frac{g_{K}}{2}\left(\sqrt{s / 4-m_{K^{+}}^{2}}+\sqrt{s / 4-m_{K^{0}}^{2}}\right) \\
& \text { B-workshop } \quad \quad \text { Neckarimmern 18 Feb 2015 } 43
\end{aligned}
$$

K-matrix

$$
\begin{aligned}
S_{f i}=\langle f| S|i\rangle & =I+2 i T \\
T & =K(I-i K)^{-1} \\
K_{i j} & =\sum_{\alpha} \frac{\sqrt{m_{\alpha} \Gamma_{\alpha i}} \sqrt{m_{\alpha} \Gamma_{\alpha j}}}{m_{\alpha}^{2}-m^{2}}
\end{aligned}
$$

- For single channel: Reproduces Breit Wigner
- For single resonance that can decay to different final state: Reproduces Flatté.

K-matrix

K-matrix

- Note that the K-matrix approach is still an approximation.
- While it ensures unitarity (by construction), it is not completely theoretically sound/motivated (and violates analyticity).
- And it does not in any way address this:

What theorists think of all this

(a few slides from a recent LHCb Amplitude Analysis Workshop with experimentalists and theorists)

Modeling hadron physics

Standard treatment: sum of Breit-Wigners
Propagator: $i G_{k}(s)=\varlimsup_{k}=i /\left(s-M_{k}^{2}+i M_{k} \Gamma_{k}\right)$

Scattering:

Production: $\quad \sum_{k}^{\otimes} \underset{k}{ } \quad=\left(\sum_{k} i g_{k} G_{k}(s) \alpha_{k}\right)+i \beta$
Problems:
\rightarrow Wrong threshold behavior (cured by $\Gamma=\Gamma(s)$)
\rightarrow Violates unitarity \longrightarrow wrong phase motion
\rightarrow Parameters reaction dependent only pole positions and resides universal!

Sum of Breit Wigners

3-body Dalitz plot (theory)

A simple Dalitz plot: $\phi \rightarrow 3 \pi$

- 2×10^{6} events in 1834 bins

KLOE 2003

- analyzed in terms of:
sum of 3 Breit-Wigners $\left(\rho^{ \pm}, \rho^{0}\right)$
+ constant background term

Problem:

\longrightarrow unitarity fixes Im/Re parts
\longrightarrow adding a contact term destroys this relation

Sum of Breit Wigners with non-resonant term

Factorising the form factor into universal and reactionspecific parts

$$
F(s)=P(s) \Omega(s)
$$

$$
\text { Christoph Hanhart }^{\text {and }}
$$

$\rightarrow \Omega(s)$ is universal and fixed in elastic regime (Omnès function)
$\rightarrow P(s)$ reaction specific and contains e.g.
\triangleright higher thresholds
\triangleright inelastic resonances

3-body Dalitz plot (theory)

Bastion Kubis
takes into account
$\mathcal{F}(s)=a \Omega(s)\left\{1+\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}} \frac{\sin \delta_{1}^{1}\left(s^{\prime}\right) \hat{\mathcal{F}}\left(s^{\prime}\right)}{\left|\Omega\left(s^{\prime}\right)\right|\left(s^{\prime}-s\right)}\right\}$
Omnès takes into account just this

3-body Dalitz plot (theory)

calculable (but interaction-dependent)

$$
\mathcal{F}(s)=\Omega(s)\left\{\begin{array}{l}
\left.a+b s+\frac{s^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{1}^{1}\left(s^{\prime}\right) \hat{\mathcal{F}}\left(s^{\prime}\right)}{\left|\Omega\left(s^{\prime}\right)\right|\left(s^{\prime}-s\right)}\right\}, ~ . ~
\end{array}\right.
$$

fit to data

Formalism applied to $\phi \rightarrow \pi п \pi^{\circ}$

Experimental comparison to $\phi \rightarrow 3 \pi$

- successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

\longrightarrow pairwise interaction only (with correct $\pi \pi$ scattering phase)

Formalism applied to $\phi \rightarrow \pi п \pi^{\circ}$

Experimental comparison to $\phi \rightarrow 3 \pi$

- successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

\longrightarrow full 3-particle rescattering, only overall normalization adjustable

Formalism applied to $\phi \rightarrow \pi п \pi^{\circ}$

Experimental comparison to $\phi \rightarrow 3 \pi$

- successive slices through Dalitz plot:

Niecknig, BK, Schneider 2012

\longrightarrow full 3-particle rescattering, 2 adjustable parameters (additional "subtraction constant" to suppress inelastic effects)

Formalism applied to $\phi \rightarrow \pi п \pi^{\circ}$

Experimental comparison to $\phi \rightarrow 3 \pi$

- successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" - inseparable from "resonance"

Formalism applied to $\mathrm{D} \rightarrow \pi$ пK

(Slices through) Dalitz plot $D^{+} \rightarrow \pi^{+} \pi^{+} K^{-}$

- Omnès fit: $\chi^{2} /$ ndof ≈ 1.42
("isobar model" + non-resonant background waves)
Fit limited to full dispersive solution: $\chi^{2} /$ ndof ≈ 1.11
$M(K \pi)<M\left(n^{\prime}\right)+M(K) \approx 1.45 \mathrm{GeV}$ elastic approximation breaks down beyond.
\longrightarrow visible improvement similar to $\phi \rightarrow 3 \pi$
- full fit in terms of 7 complex subtraction constants
(-1 phase, -1 overall normalisation)
Niecknig, BK in progress

Summary / Open questions

Dalitz plot analyses

- rigorous using modern phase shift input
- allow to understand ad-hoc "background"
- ideal demonstration case: $\phi \rightarrow 3 \pi$ (elastic, one partial wave)
- implementation: + linear combination of basis functions
- basis functions different for each decay

Open questions / problems

- inelastic effects
\triangleright we understand $I=0$ S-wave $\pi \pi \leftrightarrow K \bar{K} \leftrightarrow f_{0}(980)$
\longrightarrow may attempt $D \rightarrow 3 \pi / \pi K \bar{K}$
\triangleright how to parametrise "small" inelastic effects ($\eta^{\prime} K$ in πK)?
- complex subtractions - can we understand imaginary parts?
- uncertainties in πK phase shifts? can we learn about them?
- high-energy extensions ($B \rightarrow 3 h$ Dalitz plots??)

Das Model

- There are, for most cases we care about, no theoretically sound amplitude models...
- However, there are "good enough" models. What's good enough depends on the purpose.
- So what to do? Suggest a mix of....
- model-independent approaches
- "good enough" models of various levels of sophistication
- improve models (there is - and that's fairly new real, tangible, progress!)

A few recent applications of amplitude analyses.

The $Z(4430)$ question:

Is this peak in the $\psi(2 S) \pi^{-}$invariant mass, seen first by BELLE in 2008 when analysing $B \rightarrow \psi(2 S) \pi^{-} K^{+}$, really a resonance?

Big thing - charged 4quark state

The problem is that this is just the 1-D projection of a 4-D distribution...

BELLE, Phys. Rev. Lett. 100 (2008) 142001, arXiv:0708.1790.

The 2-D illustration of this 4-D question

$D^{\circ} \rightarrow K_{s} \pi \pi$

$\pi \pi$
resonance
near $2 \mathrm{GeV}^{2}$?

thing is made in this paper, it's a paper about CPV in charm).

The 2-D illustration of this 4-D question

CDF PHYSICAL REVIEW D 86, 032007 (2012) (no claim of any such thing is made in this paper, it's a paper about CPV in charm).

Not a (new) $\pi \pi$ resonance

$Z(4430) \rightarrow \psi(2 S) \pi^{-}$in $B \rightarrow \psi(2 S) \pi^{-} \mathrm{K}^{+} ?$

$Z(4430) \rightarrow \psi(2 S) \pi^{-}$in $B \rightarrow \psi(2 S) \pi^{-} K^{+} ?$

LHCb's evidence for the $Z(4430)$ in $B \rightarrow \psi(2 S) \pi^{-} K^{+}$

Amplitude fit:
$>13.9 \sigma$ in amplitude fit for $\mathbf{Z (4 4 3 0)}$ (and $>9.7 \sigma$ for ${ }^{1+}$ relative other JP assignments)

Model-independent

Model-indep. description of K^{*} resonances (w/o Z) incompatible with data, clear excess in Z(4430) region

Jonas Rademacker: Amplitude Analyses

Phase Motion

Fit where K^{*} amplitudes are allowed to float, but Z amplitude is described modelindependently by complex numbers in 6 bins of $m(\psi(2 S) \pi)$ confirms resonance-like phase motion

Tetraquark candidate travels

XYZ like states

- Plenty of new charm

Tetraquark
Tightly bound diquark \& anti-diquark

Pentaquark
S= +1
Baryon

- and how/where do n

Diagrams and many results from Chengping Shen's

XYZ like states

- Plenty of new charm

Tetraquark
Tightly bound diquark \& anti-diquark

Molecule
Pentaquark
$\mathrm{S}=+1$
Baryon

$q \bar{q}$-gluon hybrid mesons

- and how/where do v

XYZ like states

```
XYZ papers published in 2013 and 2014 (incomplete list)
X(3872)
LHCb: PRL 110, 222001 (2013)
BES III: Phys. Rev. Lett. 112, 092001 (2014)
BELLE: Phys. Rev. Lett. 110252002 (2013) Y(4008, 4260, 4360, 4660)
BES III Phys. Rev. Lett. 110, 252001 (2013) Z(3900, 4020, 4200, 4430)
BELLE: Phys. Rev. Lett. 110252002 (2013) BELLE: Phys. Rev. D 89, 072015 (2014) LHCb (2014): Phys.Rev.Lett. 112 (2014) 222002 BELLE (2014): Phys.Rev. D88 (2013) 074026 (no) Zcs
```

BES III Phys. Rev. Lett. 111, 242001 (2013)
BaBar: PRD 89, 111103(R) (2014)
BES III: PRL 111, 032001 (2013)X(3823)

- and how/where do w

Spectroscopy

$\mathrm{B}_{\mathrm{s}} \rightarrow \overline{\mathrm{D}} \mathrm{K}-\pi^{+}$

DK spectra in $\mathrm{B} \rightarrow \mathrm{DK}^{-} \pi^{+}$at

- Amongst many new results: The D*su(2860) does exist - not only once, but twice:
$\mathrm{B} \rightarrow \overline{\mathrm{D}} \mathrm{K}^{-} \pi^{+}$Dalitz plot analysis finds two particles in the same mass region, one with spin 1, one with spin 3.

LHCb (Phys.Rev. D90 (2014) 072003)

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \pi п \mathrm{CP}$ content

PRD 86, 052006 (2012)

- Amplitude analysis to evaluate the CP content of $B_{s} \rightarrow J / \psi \pi \pi$
- 4-dimensional analysis: 2 masses, 2 helicity angles.
- Result:

Resonance	Normalized fraction (\%)
$f_{0}(980)$	69.7 ± 2.3
$f_{0}(1370)$	21.2 ± 2.7
non-resonant $\pi^{+} \pi^{-}$	8.4 ± 1.5
$f_{2}(1270), \Lambda=0$	0.49 ± 0.16
$f_{2}(1270),\|\Lambda\|=1$	0.21 ± 0.65

- Nearly all (>97.7\% at 95 C.L.) CP-odd

- \Rightarrow No need for angular analysis to extract ϕ_{s} !
(see also arXiv:1302.1213 for an amplitude analysis of $B_{s} \rightarrow J / \psi K K$

Model-independent check

projection of weighted events onto m(пп)

- Decay rate can be expressed in terms of spherical harmonics

$$
\frac{d \Gamma}{d(\cos \theta)}=a_{l}^{m} Y_{l}^{m}(\cos \theta)
$$

- These can be related to different S, P, D amplitude components.
- To project out a given component:

$$
\begin{aligned}
& a_{l}^{m}=\int Y_{l}^{m}(\cos \theta) \frac{d \Gamma}{d(\cos \theta)} d(\cos \theta) \\
& \approx \sum_{\text {events }} Y_{l}^{m}\left(\cos \theta_{i}\right) \\
&=\text { sum of weighted events }
\end{aligned}
$$

$B_{s} \rightarrow J / \psi \pi \Pi$ for ϕ_{s}

$B_{s} \rightarrow J / \psi \pi п$ for ϕ_{s}

Combined $B_{s} \rightarrow J / \psi K K$ and $B_{s} \rightarrow J / \psi \pi \pi$ for ϕ_{s}

arXiv:1304.2600 (2013)
ϕ_{s} very sensitive to NP. But no NP effects seen, yet...
$\Delta \Gamma_{\text {s }}$ less sensitive to NP $\left(\propto \cos \left(\phi^{\text {new }}\right)\right)$, but impressive validation of HQE calculation.

SM: $\quad \phi_{s}^{S M}=-0.036 \pm 0.002 \mathrm{rad}$
$\mathrm{LHCb}: \quad \phi_{s}=0.07 \pm 0.09$ (stat) ± 0.01 (syst) rad,

$$
\begin{aligned}
\Gamma_{s} \equiv\left(\Gamma_{\mathrm{L}}+\Gamma_{\mathrm{H}}\right) / 2 & =0.663 \pm 0.005 \text { (stat) } \pm 0.006 \text { (syst) } \mathrm{ps}^{-1} \\
\Delta \Gamma_{s} \equiv \Gamma_{\mathrm{L}}-\Gamma_{\mathrm{H}} & =0.100 \pm 0.016 \text { (stat) } \pm 0.003 \text { (syst) } \mathrm{ps}^{-1}
\end{aligned}
$$

Loops vs Trees

- Expect no New Physics in Trees

- New Physics in loops?

Loops vs Trees

- Expect no New Physics in Trees

Can penguins be bad?

http://youtu.be/5ljmOSFtoJc

Can penguins be bad?

http://youtu.be/5ljmOSFtoJc

Can penguins be bad?

http://youtu.be/5ljmOSFtoJc

They can.

Measuring γ

Measuring γ

$\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

CP violation is an interference effect

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

CP violation is an interference effect

CP violation is an interference effect

CP violation is an interference effect

Multi-Generational Flavour Physics

Edward V. Brewer (1883-1971)

Multi-Generational Flavour Physics

Edward V. Brewer (1883-1971)
Regrettably, CLEO recently deceased - but her data live on.

CLEO-c

```
e}\mp@subsup{e}{}{+}\mp@subsup{e}{}{-}->\psi(3770)->\textrm{DD
```

- Threshold production of correlated DD.
- Final state must be CP-even with $\mathrm{L}=1$: D mesons must have opposite intrinsic CP.
- Final state is also flavour-neutral.
- That gives us access to both amplitude and phase across the Dalitz plot.

CLEAN-c

$$
\psi(3770) \rightarrow \mathrm{D}^{0}\left(\mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}\right) \overline{\mathrm{D}}^{0}\left(\mathrm{~K}^{+} \pi^{-}\right)
$$

CP and flavour tagged D°

CP and flavour tagged D°

CP and flavour tagged D° at CLEO

Model independent γ fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

- Binned decay rate:
\mathcal{T}_{i} known from flavour-

$$
\left.\Gamma\left(B^{ \pm} \rightarrow D\left(K_{s} \pi^{+} \pi^{-}\right) K^{ \pm}\right)_{i}=\quad \text { specifc } D \text { decays (e.g. } \mathrm{D}^{*}\right)
$$

$$
\mathcal{T}_{i}+r_{B}^{2} \mathcal{I}_{-i}+\xrightarrow{2 r_{\mathrm{B}} \sqrt{\mathcal{T}_{\mathrm{i}} \mathcal{T}_{-i}}\left\{c_{\mathrm{i}} \cos (\delta \pm \gamma)+\mathrm{s}_{\mathrm{i}} \sin (\delta \pm \gamma)\right\}, ~}
$$

(weighted) average of $\cos \left(\delta_{D}\right)$ and $\sin \left(\delta_{D}\right)$ over bin i, where $\delta_{D}=$ phase difference between $\mathrm{D} \rightarrow$ Ksпп and $\mathrm{Dbar} \rightarrow$ Ksпп

- Binning such that such that $\mathrm{c}_{\mathrm{i}}=\mathrm{c}_{-\mathrm{i}}, \mathrm{s}_{\mathrm{i}}=-\mathrm{s}_{-\mathrm{i}}$
- Distribution sensitive to $\mathrm{c}_{\mathrm{i}}, \mathrm{si}_{\mathrm{i}}, \mathrm{r}_{\mathrm{B}}, \delta$ and γ.
- To extract fromealistic numbers of B events need exterr input from CLEO's quantum-correlated DDbar pairs.

Optimal binning

- Best γ sensitivity if phase difference δ_{D} is as constant as possible over each bin ${ }^{[1]}$.
- Plot shows CLEO-c's 8 bins, uniform in δ_{D}, (based on BaBar isobar model*).
- Choice of model will not bias result. (At worst a bad model would reduce the statistical precision of the result.)

Binning at CLEO-c based on BaBar model*

LHCb model-independent γ from $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K}$ sпा $) \mathrm{o} \mathrm{K}$ and $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K}$ KKK) DK

- Binned, model-independent analysis using CLEO-c input.

Phys. Rev. D 82112006.

- Plots show LHCb 2012 data
- Result of combined analysis (2011 \& 2012 data, Ksпт \& KsKK):

$$
\begin{aligned}
\gamma & =(57 \pm 16)^{\circ} \\
\delta_{B} & =\left(124_{-17}^{+15}\right)^{\circ} \\
r_{B} & =\left(8.8_{-2.4}^{+2.3}\right) \times 10^{-2}
\end{aligned}
$$

Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007)
BELLE's first model-independent γ measurement: PRD 85 (2012) 112014

LHCb's γ combination

technique \& 2011 data: Phys. Lett. B726 (2013) 151

- LHCb combines inputs from
$\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{hh}{ }^{\prime}\right) \mathrm{D}^{ \pm}$
$\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \pi \pi \pi) \mathrm{D}^{ \pm}$
$\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}\right.$ SKK) $\mathrm{DK}^{ \pm}$
$\left.\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \pi п \pi)\right)_{\mathrm{D}} \mathrm{K}^{ \pm}$
- Result:

$$
\gamma=(67.2 \pm 12)^{o}
$$

- More channels available, including $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{ \pm}, \mathrm{B}^{0} \rightarrow \mathrm{DK}^{*}$.
- Most recent addition: $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{s} \mathrm{~K} \pi\right)_{\mathrm{D}} \mathrm{K}^{ \pm}$ (see arXiv:1402.2982, 2014)

World averages by CKM Fitter

previous world average $\gamma=68^{\circ} \pm 12^{\circ}$ (Moriond 2012):

LHCb's γ combination

- LHCb combines inputs from
$\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{hh}{ }^{\prime}\right) \mathrm{D}^{ \pm}$
$\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \pi \pi \pi) \mathrm{D}^{ \pm}$
$\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K} \mathrm{K}_{\mathrm{K}} \mathrm{K}\right)_{\mathrm{D}} \mathrm{K}^{ \pm}$
$\left.\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \pi п \pi)\right)_{\mathrm{D}} \mathrm{K}^{ \pm}$
- Result:

$$
\gamma=(67.2 \pm 12)^{o}
$$

- More channels available, including $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{ \pm}, \mathrm{B}^{0} \rightarrow \mathrm{DK}^{*}$.
- Most recent addition: $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{\mathrm{s}} \mathrm{K} \pi\right)_{\mathrm{D}} \mathrm{K}^{ \pm}$ (see arXiv:1402.2982, 2014)

World averages by CKM Fitter

LHCb model-dependent γ from $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \text { sпп) })_{\mathrm{D}} \mathrm{K}$

$$
\gamma=\left(84_{-42}^{+49}\right)^{-}
$$

Why stop here

- Why stop at 3-body decays?
- 4-body amplitude analyses very promising for γ measurement at LHCb.
- Tricky... "Dalitz Plot" becomes 5dimensional, phase space not flat, spin factors more complicated...

Atwood, Soni: Phys.Rev. D68 (2003) 033003

Coherence Factor Analysis of

- Treat $K 3 \pi$ like two-body decay with single effective strong phase δ_{D}.
- Complex coherence parameter $Z=c+i s=R e^{i \delta}$ with coherent factor $R<1$.

$$
\begin{gathered}
\Gamma\left(\mathrm{B}^{-} \rightarrow\left(\mathrm{K}^{+} 3 \pi\right)_{\mathrm{D}} \mathrm{~K}^{-}\right) \propto r_{B}^{2}+\left(r_{D}^{K 3 \pi}\right)^{2}+2 R_{K 3 \pi} r_{B} r_{D}^{K 3 \pi} \cdot \cos \left(\delta_{B}+\delta_{D}^{K 3 \pi}-\gamma\right) \\
r_{B}=\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right| \quad r_{D}=\left|\frac{A\left(D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right)}{A\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right)}\right|
\end{gathered}
$$

Coherence Factor Analysis of

- Treat K3п like two-body decay with single effective strong phase δ_{D}.
- Complex coherence parameter $Z=c+i s=R e^{i \delta}$ with coherent factor $R<1$.

$$
\Gamma\left(\mathrm{B}^{-} \rightarrow\left(\mathrm{K}^{+} 3 \pi\right)_{\mathrm{D}} \mathrm{~K}^{-}\right) \propto r_{B}^{2}+\left(r_{D}^{K 3 \pi}\right)^{2}+2 R_{K 3 \pi} r_{B} r_{D}^{K 3 \pi} \cdot \cos \left(\delta_{B}+\delta_{D}^{K 3 \pi}-\gamma\right)
$$

- CLEO-c used coherent $\psi(3770) \rightarrow$ DD events to measure R, δ_{D} for Kாாா and Кпп.

Theory:
Atwood, Soni: Phys.Rev. D68
(2003) 033003

CLEO-c input:
Phys.Rev.D80:03,105,2009
Phys.Lett. B731 (2014) 197203 LHCb CPV result:
Physics Letters B 723 (2013), 44

D° Mixing as input to γ from $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

This process is sensitive to the same D-D interference effects that pollute this measurement.

D° Mixing as input to γ from $B^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

$D \overline{\mathrm{D}}$ tagged with $\mathrm{D}^{*} \rightarrow \mathrm{D} \mathrm{\pi}$
$>\frac{\Gamma\left(D^{0} \rightarrow K^{+} 3 \pi\right)}{\Gamma\left(D^{0} \rightarrow K^{-} 3 \pi\right)}(t)=r_{D}^{K 3 \pi^{2}}+r_{D}^{K 3 \pi}\left(y R e Z^{K 3 \pi}+x \operatorname{Im} Z^{K 3 \pi}\right) \Gamma t+\frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}$

D° Mixing as input to γ from $B^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

$D \overline{\mathrm{D}}$ tagged with $\mathrm{D}^{*} \rightarrow \mathrm{D} \mathrm{\pi}$
$>\frac{\Gamma\left(D^{0} \rightarrow K^{+} 3 \pi\right)}{\Gamma\left(D^{0} \rightarrow K^{-} 3 \pi\right)}(t)=r_{D}^{K 3 \pi^{2}}+r_{D}^{K 3 \pi}\left(y R e Z^{K 3 \pi}+x \operatorname{Im} Z^{K 3 \pi}\right) \Gamma t+\frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}$

Unpublished, unofficial preview: $\mathrm{D} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{-} \pi^{+}$coherence factor from mixing at LHCb

LHCb B ${ }^{ \pm \rightarrow D(K п п п) ~} K^{ \pm}$

A closer look at Z

$$
\begin{aligned}
& \frac{\Gamma\left(B^{-} \rightarrow D K^{-}, D \rightarrow f\right)_{\Omega}}{\Gamma\left(B^{-} \rightarrow D K^{-}, D \rightarrow \bar{f}\right)_{\bar{\Omega}}}=r_{D, \Omega}^{2}+r_{B}^{2}+r_{D, \Omega} r_{B}\left|Z_{\Omega}^{f}\right| \cos \left(\delta_{B}-\delta_{\Omega}^{f}-\gamma\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{Z}_{\Omega}^{f} \equiv \frac{1}{\mathcal{A}_{\Omega} \mathcal{B}_{\Omega}} \int_{\Omega}\left\langle f_{\mathbf{p}}\right| \hat{H}\left|D^{0}\right\rangle\left\langle f_{\mathbf{p}}\right| \hat{H}\left|\bar{D}^{0}\right\rangle^{*}\left|\frac{\partial^{n} \phi}{\partial\left(p_{1} \ldots p_{n}\right)}\right| \mathrm{d}^{n} p .
\end{aligned}
$$

amplitude of D (Dbar) going to 5-D phase space point p

$$
\begin{aligned}
& \text { Binning is good for you } \\
& \text { arXiv:1412.7254 } \\
& \frac{\Gamma\left(B^{-} \rightarrow D K^{-}, D \rightarrow f\right)_{\Omega}}{\Gamma\left(B^{-} \rightarrow D K^{-}, D \rightarrow \bar{f}\right)_{\bar{\Omega}}}=r_{D, \Omega}^{2}+r_{B}^{2}+r_{D, \Omega} r_{B}\left|\mathcal{Z}_{\Omega}^{f}\right| \cos \left(\delta_{B}-\delta_{\Omega}^{f}-\gamma\right) \\
& \mathcal{Z}_{\Omega}^{f} \equiv \frac{1}{\mathcal{A}_{\Omega} \mathcal{B}_{\Omega}} \int_{\Omega}\left\langle f_{\mathbf{p}}\right| \hat{H}\left|D^{0}\right\rangle\left\langle f_{\mathbf{p}}\right| \hat{H}\left|\bar{D}^{0}\right\rangle^{*}\left|\frac{\partial^{n} \phi}{\partial\left(p_{1} \ldots p_{n}\right)}\right| \mathrm{d}^{n} p . \\
& \text { Mean |Z| increases if you bin in terms of } \\
& \text { the phase difference between } D \text { and } \\
& \text { Dbar amplitudes. } \\
& \text { Turns out: if you have sufficiently many } \\
& \text { bins, you can extract } \gamma \text { model- } \\
& \text { independently, even w/o input from the } \\
& \text { charm threshold. }
\end{aligned}
$$

Gets even better if we divide the 5-D space into bins

Gets even better if we divide the 5-D space into bins

(all simulated data)

Searches for CPV by comparing binned Dalitz plots

PhysRevD.84.112008

- Compare yields in CP-conjugate bins
$S_{C P}=\frac{N_{i}-\alpha \bar{N}_{i}}{\sigma\left(N_{i}-\alpha \bar{N}_{i}\right)}$
$\alpha=\frac{N_{\text {total }}}{\bar{N}_{\text {total }}}$
- Calculate p-value for noCPV hypothesis based on

$$
\chi^{2}=\sum\left(S_{C P}^{i}\right)^{2}
$$

- Model iñdependent. Many production and detection effects cancel.
$330 \mathrm{k} \mathrm{D}^{+} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{+}$in $35 / \mathrm{pb}$

5-D binned analysis in $D^{\circ} \rightarrow K^{+} K^{-} \Pi^{+} \Pi^{-}, D^{\circ} \rightarrow \pi^{+} \Pi^{-} \Pi^{+} \Pi^{-}$

LHCb 1fb-1 Phys.Lett. B726 (2013) 623-633

- Binning in 5dimensional hypercuboids.
- Adaptive binning to ensure similar number of entries per bin.
- Plots show for each bin the range in invariant mass squared and S_{cp} value in that bin.

Model-dependent CPV search in $\mathrm{D}^{\circ} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \Pi^{+} \Pi^{-}$

1-D projections of 5-D amplitude fit
(D°, D° bar combined, charge assignments in $\mathrm{m}^{2}\left(\mathbf{K}^{+} \pi^{-}\right)$etc are for D° and are reversed for Dobar)

CLEO: Phys.Rev. D85 122002 (2012)

Towards γ with $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}(\mathrm{KK} п \pi) \mathrm{K}^{ \pm}$

Signal

Control Channel

Nicole Skidmore \& Jeremy Dalseno (Bristol)

CPV in $\mathrm{B}^{ \pm} \rightarrow \pi^{ \pm} \mathrm{K}^{+} \mathrm{K}^{-}$

Large

local Acp at low $m(K K)^{2}$, not associated to a resonance
local:

$$
A_{C P \text { bin }}=\frac{N_{\mathrm{bin}}\left(B^{-}\right)-N_{\mathrm{bin}}\left(B^{+}\right)}{N_{\mathrm{bin}}\left(B^{-}\right)+N_{\mathrm{bin}}\left(B^{+}\right)}
$$

Also found large local CPV in low mass regions w/o clear association to known resonances in other $\mathrm{B}^{ \pm} \rightarrow$ hhh modes: $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}, B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}, B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}, B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$

Conclusions

- Amplitude Analyses are a very powerful tool used at LHCb and elsewhere for wide variety of measurements, including
- searching for new resonances and characterising them

- precision CP violation and mixing measurements in charm and beauty
- They are not "just" Dalitz plots. Vectors in final state, 4 body analyses,..
- Most remarkable strength: unique sensitivity to phases.
- Most annoying weakness: theoretically not well understood. This is
 increasingly problematic with increasingly ginormous data samples.
- Theorists are making tangible progress on theoretically sound models.
- Future: improved models, model independent methods, pragmatic compromises.

Credits

Special thanks to Antimo Palano and Marco Pagapallo, from whose excellent talks I lifted a particularly large number of plots.

Backup

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{DK} \pi$ at LHCb

- Resolved the $\mathrm{D}_{\mathrm{sJ}}{ }^{*}(2860)$ state into spin 1 and spin 3 states
- Now part of a renaissance in $\mathrm{D}(\mathrm{s})$ spectroscopy (15 citations so far)
- Other results
- Mass, width and spin of $D_{s 2}{ }^{*}$
- Fit fractions
- Branching fractions
- Complex amplitudes

$$
\begin{aligned}
m\left(D_{s 1}^{*}(2860)^{-}\right) & =2859 \pm 12 \pm 6 \pm 23 \mathrm{MeV} / c^{2}, \\
\Gamma\left(D_{s 1}^{*}(2860)^{-}\right) & =159 \pm 23 \pm 27 \pm 72 \mathrm{MeV} / c^{2} \\
m\left(D_{s 3}^{*}(2860)^{-}\right) & =2860.5 \pm 2.6 \pm 2.5 \pm 6.0 \mathrm{MeV} / c^{2} \\
\Gamma\left(D_{s 3}^{*}(2860)^{-}\right) & =53 \pm 7 \pm 4 \pm 6 \mathrm{MeV} / c^{2}
\end{aligned}
$$

First model-independent γ measurement (BELLE)

Flavour-tagged D \rightarrow Ksпп Dalitz plot

$$
\begin{aligned}
\gamma & =\left(77.3_{-14.9}^{+15.1} \pm 4.2 \pm 4.3\right)^{\circ} \\
r_{B} & =0.145 \pm 0.030 \pm 0.011 \pm 0.011 \\
\delta_{B} & =(129.9 \pm 15.0 \pm 3.9 \pm 4.7)^{\circ},
\end{aligned}
$$

where the last uncertainty on y of 4.3° the former model uncertainty of 8.9°

BELLE: arXiv:1106.4046. See also Anton Poluektov's talk at Moriond EW 2011 (from which I lifted several of the plots shown here): http:// belle.kek.jp/belle/talks/moriondEW11/poluektov.pdf
CLEO-c input:Phys.Rev.D82:112006,2010.

LHCb model-independent γ from $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{\text {s }} \pi \pi\right)_{\mathrm{D}} \mathrm{K}$ and $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{\mathrm{s}} \mathrm{KK}\right)_{\mathrm{o}} \mathrm{K}$

- Binned, model-independent

 analysis using CLEO-c input.Phys. Rev. D 82112006.

- Plots show LHCb 2012 data - the colours represent the bins, shaped to optimise sensitivity.
- Result of combined analysis (2011 \& 2012 data, Ks $\pi \pi$ \& KsKK):

$$
\begin{aligned}
\gamma & =(57 \pm 16)^{\circ} \\
\delta_{B} & =\left(124_{-17}^{+15}\right)^{\circ} \\
r_{B} & =\left(8.8_{-2.4}^{+2.3}\right) \times 10^{-2}
\end{aligned}
$$

CLEO-c input:: Phys. Rev. D 82112006.
Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007)
BELLE's first model-independent γ measurement: PRD 85 (2012) 112014

B->DK, D->3pi with BES \& Mixing

arXiv: 1412.7254
(accepted by JHEP)

