Amplitude Analyses

B Workshop Neckarzimmern Jonas Rademacker

Why Amplitude Analyses?

• QM is intrinsically complex:

Wave functions/transition amplitudes etc: $\psi = a e^{i\alpha}$. Observable: $|\psi|^2$.

Only half the information. How do I get the rest?

- Note that the rest is very interesting CP violation in the SM comes from phases!
- Answer: Interference effects:

 $\psi_{\text{total}} = a e^{i\alpha} + b e^{i\beta} + ...$ $|\psi_{\text{total}}|^2 = |a e^{i\alpha} + b e^{i\beta} + ...| = a^2 + b^2 + 2ab \cos(\alpha - \beta) + ...$

Dalitz plot analyses - lots of interfering amplitudes!

Jonas Rademacker: Amplitude Analyses

3 body decays

$$d\Gamma = |\mathcal{M}_{fi}|^2 d\Phi$$

= $|\mathcal{M}_{fi}|^2 \left| \frac{\partial \Phi}{\partial (s_{12}, s_{13})} \right| ds_{12} ds_{13}$
= $\frac{1}{(2\pi)^2 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

S13₄

$$s_{ij}$$
Necka (zimmern p_j^{B}) jeb 2015 m_{ij}^2 5

M _____ 3 1

Jonas Rademacker: Amplitude Analyses

 s_{ij} Necka (zippmen p_j^8) jeb 2015 m_{ij}^2 5

3 2 Μ

M ______ 3 1

 s_{ij} Necka (zip mern p_{j}) Per 2015 m_{ij}^2 5

$$s_{ij}$$
Necka (zipimetri p_j^8 . Heb 2015 m_{ij}^2 5

 s_{ij} Necka (zip mern p_j^{8}) do $2015m_{ij}^2$ 5

What happens if nothing happens

What really happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if one thing happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if one thing happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

What happens if one thing happens

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

11

What happens if something with spin happens

Real dalitz plots

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

Real Dalitz pots

2.4M $D^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm}$ decays (LHCb)

Phys. Lett. B728 (2014) 585

$$s_{ij} \equiv (p_i + p_j)^2 \equiv m_{ij}^2$$

$$d\Gamma = \frac{1}{(2\pi)^2 \, 32M^3} |\mathcal{M}_{fi}|^2 ds_{12} ds_{13}$$

1

0

- Let us assume(!) that the full amplitude can be calculated as the sum of essentially independent two body processes.
- Doing this results in the so-called "isobar" model.

- We don't know anything about the strong interaction dynamics.
- As a first approximation, we treat each particle as point particle.
- We want a Lorentzinvariant matrix element...

19

 ε_R^{σ} say R has spin 1 (e.g. K*(892), $\rho(770)$ etc)

$$\frac{1}{s_{23} - m_R^2 - im_R\Gamma}$$

$$p_{1\,\mu} \quad \varepsilon_R^{\mu*} \frac{1}{s_{23} - m_R^2 - im_R\Gamma} \, \varepsilon_R^{\nu} \quad q_{23\,\nu}$$

$$\sum_{\text{all }\lambda} \qquad p_{1\,\mu} \ \varepsilon_R^{\lambda\mu*} \frac{1}{s_{23} - m_R^2 - im_R\Gamma} \ \varepsilon_R^{\lambda\nu} \ q_{23\,\nu}$$

Jonas Rademacker: Amplitude Analyses

$$\sum_{\text{all }\lambda} \varepsilon_R^{\lambda\mu*} \varepsilon_R^{\lambda\nu} = -g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}$$

$$\sum_{\text{all }\lambda} \qquad p_{1\,\mu} \ \varepsilon_R^{\lambda\mu*} \frac{1}{s_{23} - m_R^2 - im_R\Gamma} \ \varepsilon_R^{\lambda\nu} \ q_{23\,\nu}$$

Jonas Rademacker: Amplitude Analyses

$$p_{1\,\mu} \quad \frac{-g^{\mu\nu} + \frac{p_R^{\mu}p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R\Gamma} \quad q_{23\,\nu}$$

Express in terms of s_{ij} if you wish, using $p_i \cdot p_j = s_{ij} - m_i^2 - m_2^2$

$$\left(-p_{1} \cdot q_{23} + \frac{(p_{1} \cdot p_{R})(q_{23} \cdot p_{R})}{p_{R}^{2}}\right) \frac{1}{s_{23} - m_{R}^{2} - im_{R}\Gamma}$$
Spin factor litude Analyses B-workshop Neckarzimmern 18 Feb 2015 25

$$p_{1\,\mu} \quad \frac{-g^{\mu\nu} + \frac{p_R^{\mu}p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R\Gamma} \quad q_{23\,\nu}$$

Angular Momenta

require momenta

 $\vec{L} = 2 \ \vec{d} \times \vec{q_r}$ clas

classical mechanics

$$L = \sqrt{l(l+1)}$$
 QN

$$p_{1\,\mu} \quad \frac{-g^{\mu\nu} + \frac{p_R^{\mu}p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R\Gamma} \quad q_{23\,\nu}$$

Blatt Weisskopf Penetration Factors

L	$B_L(q)$	$B_L^\prime(q,q_0)$
0	1	1
1	$\sqrt{\frac{2z}{1+z}}$	$\sqrt{\frac{1+z_0}{1+z}}$
2	$\sqrt{\frac{13z^2}{(z\!-\!3)^2\!+\!9z}}$	$\sqrt{\frac{(z_0-3)^2+9z_0}{(z-3)^2+9z}}$
	where $z = (q d)^2$	and $z_0 = (q_0 d)^2$

classical mechanics: L = 2 qd

QM: $L^2 = I(I+1)$

Blatt Weisskopf Penetration Factors

Angular Momenta

require momenta

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma} B_L(q_{rR}, d_R) q_{23\,\nu}$$

- Width Γ = rate, depends on phase space = 2q/m.
- Rate also depends on B_L.

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma} B_L(q_{rR}, d_R) q_{23\,\nu}$$

- Width Γ = rate, depends on phase space = 2q/m.
- Rate also depends on B_L .

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma(m_{23})} B_L(q_{rR}, d_R) q_{23\,\nu}$$

- Width Γ = rate, depends on phase space = 2q/m.
- Rate also depends on B_L .

$$\Gamma(m_{23}) = \Gamma_0 \frac{(q_{23}/m_{23}) B_L(q_{23})}{(q_0/m_R) B_L(q_0)}$$

$$p_{1\,\mu} B_L(q_{rM}, d_M) \frac{-g^{\mu\nu} + \frac{p_R^{\mu} p_R^{\nu}}{p_R^2}}{s_{23} - m_R^2 - im_R \Gamma(m_{23})} B_L(q_{rR}, d_R) q_{23\,\nu}$$

Jonas Rademacker: Amplitude Analyses

Mass dependent width (ignoring ang. mom)

dashed: fixed width

solid: mass dependent width $\Gamma(m_{23}) = \Gamma_0 \frac{(q_{23}/m_{23})}{(q_0/m_R)} \frac{B_L(q_{23})}{B_L(q_0)}$

Breit Wigner with angular momentum effects (only)

$$A_{R} = p_{1\,\mu} B_{L}(q_{rM}, d_{M}) \frac{-g^{\mu\nu} + \frac{p_{R}^{\mu}p_{R}^{\nu}}{p_{R}^{2}}}{s_{23} - m_{R}^{2} - im_{R}\Gamma(m_{23})} B_{L}(q_{rR}, d_{R}) q_{23\,\nu}$$

$$\mathcal{M}_{fi} = \sum_{R} c_{R} e^{i\theta_{R}} A_{R}(s_{12}, s_{23})$$

sensitivity to phases is one of the key reasons amplitude analyses are so interesting.

$$P(s_{12}, s_{23}) = \frac{\left|\mathcal{M}_{fi}\right|^2 \left|\frac{d\Phi}{ds_{12} ds_{23}}\right|}{\int \left|\mathcal{M}_{fi}\right|^2 \left|\frac{d\Phi}{ds_{12} ds_{23}}\right| ds_{12} ds_{23}}\right|}$$
$$= \frac{\left|\mathcal{M}_{fi}\right|^2}{\int \left|\mathcal{M}_{fi}\right|^2 ds_{12} ds_{23}}$$
within kin boundary

Jonas Rademacker: Amplitude Analyses

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23})$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$K^{*}(892)^{\pm}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^*(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$\bar{K^{*}(1410)^{\pm}}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$ \rho(1450) $	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^*(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23})$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$\overline{K^{*}(892)^{\pm}}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^*(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{\tilde{*}}(1410)^{\pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^*(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23}) + a_0 e^{i\theta_0}$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$\overline{K^{*}(892)^{\pm}}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^*(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{\tilde{*}}(1410)^{\pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
$\rho(770)$	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$\rho(1450)$	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$\tilde{K_{2}^{*}}(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\mathcal{M}_{fi} = \sum_{R} c_R e^{i\theta_R} A_R(s_{12}, s_{23}) + a_0 e^{i\theta_0}$$

$$FF_{R} = \frac{\int \left| \mathbf{c}_{R} e^{i\theta_{R}} A_{R}(s_{12}, s_{23}) \right|^{2} ds_{12} ds_{23}}{\int \left| \sum_{j} \mathbf{c}_{j} e^{i\theta_{j}} A_{j}(s_{12}, s_{23}) \right|^{2} ds_{12} ds_{23}}$$

example:

CDF: PHYSICAL REVIEW D 86, 032007 (2012)

Resonance	а	δ [°]	Fit fractions [%]
$\overline{K^*(892)^{\pm}}$	1.911 ± 0.012	132.1 ± 0.7	61.80 ± 0.31
$K_0^*(1430)^{\pm}$	2.093 ± 0.065	54.2 ± 1.9	6.25 ± 0.25
$K_2^*(1430)^{\pm}$	0.986 ± 0.034	308.6 ± 2.1	1.28 ± 0.08
$K^{\tilde{*}}(1410)^{\pm}$	1.092 ± 0.069	155.9 ± 2.8	1.07 ± 0.10
ho(770)	1	0	18.85 ± 0.18
$\omega(782)$	0.038 ± 0.002	107.9 ± 2.3	0.46 ± 0.05
$f_0(980)$	0.476 ± 0.016	182.8 ± 1.3	4.91 ± 0.19
$f_2(1270)$	1.713 ± 0.048	329.9 ± 1.6	1.95 ± 0.10
$f_0(1370)$	0.342 ± 0.021	109.3 ± 3.1	0.57 ± 0.05
$ \rho(1450) $	0.709 ± 0.043	8.7 ± 2.7	0.41 ± 0.04
$f_0(600)$	1.134 ± 0.041	201.0 ± 2.9	7.02 ± 0.30
σ_2	0.282 ± 0.023	16.2 ± 9.0	0.33 ± 0.04
$K^{*}(892)^{\pm}(\text{DCS})$	0.137 ± 0.007	317.6 ± 2.8	0.32 ± 0.03
$K_0^*(1430)^{\pm}(\text{DCS})$	0.439 ± 0.035	156.1 ± 4.9	0.28 ± 0.04
$K_2^{*}(1430)^{\pm}(\text{DCS})$	0.291 ± 0.034	213.5 ± 6.1	0.11 ± 0.03
Nonresonant	1.797 ± 0.147	94.0 ± 5.3	1.64 ± 0.27
Sum			107.25 ± 0.65

Jonas Rademacker: Amplitude Analyses

$$\frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} (t) \approx (r_D^{K\pi})^2 + r_D^{K\pi} y'_{K\pi} \Gamma t + \frac{x'_{K\pi}^2 + y'_{K\pi}^2}{4} (\Gamma t)^2$$

where
$$\begin{pmatrix} x'_{K\pi} \\ y'_{K\pi} \end{pmatrix} = \begin{pmatrix} \cos \delta_{K\pi} & \sin \delta_{K\pi} \\ \cos \delta_{K\pi} & -\sin \delta_{K\pi} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

CLEO-c Phys. Rev. D 72, 012001 (2005).

(Belle preliminary) (by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sen	sitivity to phases) gives r^{2} and r^{2}
No CPV	$egin{array}{c} x(\%) \ y(\%) \end{array}$	$\begin{array}{c} 0.56 \pm 0.19 \substack{+0.03 + 0.06 \\ -0.09 - 0.09 \\ 0.30 \pm 0.15 \substack{+0.04 + 0.03 \\ -0.05 - 0.06 \end{array}} \end{array}$		40000
No dCPV	$\frac{ q/p }{\arg q/p(^o)}$	$\begin{array}{r} 0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}\\ -6\pm11^{+3+3}_{-3-4}\end{array}$		$30000 \\ 20000 \\ 10000 \\ 0.5 1 1.5 2 2.5 3$
			M ₊ ² GeV ²	M ² (GeV ²)

see also BaBar <u>Phys. Rev. Lett. 105, 081803 (2010)</u> and CLEO-c <u>Phys. Rev. D 72, 012001 (2005).</u>

Jonas Rademacker (Bristol, LHCb)

Measuring CP violation in 3- and 4-body decays

(Belle preliminary) (by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sensitivity to phases) gives access to $x = y$ (rather than x'^2 and y')
No CPV	x(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$	No evidence of CP violation
No dCPV	q/p	$\begin{array}{c} 0.30 \pm 0.13 \substack{+0.05 - 0.06 \\ -0.05 - 0.04 - 0.05 \end{array}$	Ш 8000 6000 4000 4000
	$\arg q/p(^{o})$	$-6 \pm 11^{+3+3}_{-3-4}$	$M_{1}^{2000} = M_{1.5}^{2000} = \frac{10000}{0.5} = \frac{1000}{0.5} = \frac{1000}$
		a DaDay Dhua Day Latt	105 001000 (0010) and

see also BaBar <u>Phys. Rev. Lett. 105, 081803 (2010)</u> and CLEO-c <u>Phys. Rev. D 72, 012001 (2005).</u>

see also previous result: Phys. Rev. Lett. 99, 131803 (2007).

(Belle preliminary) (by now published)

Fit case	Parameter	Fit new result	Magic of Dalitz plot (sensitivity to phases) gives $2000000000000000000000000000000000000$
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}{}^{+0.06}_{-0.09}$	No evidence of CP violation
No dCPV	y(70) q/p $\arg q/p(^o)$	$\begin{array}{c} 0.30 \pm 0.13 +0.05 \\ -0.05 \ -0.06 \ -0.06 \ -0.06 \ -0.05 \ -0.06 \ -0.05 \ -0.05 \ -0.05 \ -0.05 \ -6 \pm 11 \substack{+3 \\ -3 \ -4 \ -4 \ -4 \ -4 \ -4 \ -4 \ -4 \$	Significant systematic uncertainty from amplitude model dependence. (Could be limiting with future LHCb/upgrade statistics.)
			$M_{\star}^2 \text{ GeV}^2$ $M_{\star}^2 (\text{GeV}^2)$

see also BaBar <u>Phys. Rev. Lett. 105, 081803 (2010)</u> and CLEO-c <u>Phys. Rev. D 72, 012001 (2005).</u>

"Isobar" Model

• "Isobar": Describe decay as series of 2-body processes.

- Usually: each resonance described by Breit Wigner lineshape (or similar) times factors accounting for spin.
- Popular amongst experimentalists, less so amongst theorists: violates unitarity. But not much as long as resonances are reasonably narrow, don't overlap too much.
- General consensus: Isobar OK for P, D wave, but problematic for Swave.Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

- Single resonance well described by Breit Wigner
- Overlapping resonances not so. Theoretically problematic: violates unitarity. From a practical point of view problematic as you might get the wrong phase motion.

Isobar Model with sum of Breit Wigners

<u>4 resonances</u> <u>32 resonances</u>

Flatté Formula

- Consider f₀(980) (width $\Gamma \approx 40-100$ MeV). Decays to $\pi \pi$ and KK. To KK only above ~987.4 MeV.
- The availability of the KK final state above 987.4 MeV increases the phase space and thus the width above this threshold.
- Need to take this into account even if I only look at f₀(980)→ππ.

$$\Gamma_{f_0}(s) = \Gamma_{\pi}(s) + \Gamma_K(s)$$

$$\Gamma_{\pi}(s) = g_{\pi} \sqrt{s/4 - m_{\pi}^2},$$

$$\Gamma_{K}(s) = \frac{g_{K}}{2} \left(\sqrt{s/4 - m_{K^+}^2} + \sqrt{s/4 - m_{K^0}^2} \right)$$

K-matrix

$$S_{fi} = \langle f|S|i \rangle = I + 2iT$$
$$T = K(I - iK)^{-1}$$
$$K_{ij} = \sum_{\alpha} \frac{\sqrt{m_{\alpha}\Gamma_{\alpha i}}\sqrt{m_{\alpha}\Gamma_{\alpha j}}}{m_{\alpha}^2 - m^2}$$

- For single channel: Reproduces Breit Wigner
- For single resonance that can decay to different final state: Reproduces Flatté.

K-matrix

- Note that the K-matrix approach is still an approximation.
- While it ensures unitarity (by construction), it is not completely theoretically sound/motivated (and violates analyticity).
- And it does not in any way address this:

What theorists think of all this

(a few slides from a recent LHCb Amplitude Analysis Workshop with experimentalists and theorists)

Modeling hadron physics

Standard treatment: sum of Breit-Wigners

Propagator: $iG_k(s) = \frac{1}{k} = i/(s - M_k^2 + iM_k\Gamma_k)$

Problems:

- \rightarrow Wrong threshold behavior (cured by $\Gamma = \Gamma(s)$)
- \rightarrow Violates unitarity \rightarrow wrong phase motion
- Parameters reaction dependent only pole positions and resides universal!

Sum of Breit Wigners

3-body Dalitz plot (theory)

Bastian Kubis

A simple Dalitz plot: $\phi ightarrow 3\pi$

• analyzed in terms of:

sum of 3 Breit–Wigners (ρ^{\pm} , ρ^{0})

+ constant background term

Problem:

- \rightarrow unitarity fixes Im/Re parts
- \longrightarrow adding a contact term destroys this relation
Sum of Breit Wigners with non-resonant term

Last Judgement (Detail) by Fra Angelico

Factorising the form factor into universal and reactionspecific parts

inelastic resonances

Ľ

3-body Dalitz plot (theory)

$$\mathcal{F}(s) = a \Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}^{\text{this}}$$

$$\frac{\text{Omnès}}{\text{takes into}}$$

$$account just this + + \cdots$$

calculable (but interaction-dependent)

$$\mathcal{F}(s) = \Omega(s) \left\{ \begin{array}{l} a + b \, s + \frac{s^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$
fit to data

 \rightarrow pairwise interaction only (with correct $\pi\pi$ scattering phase)

 \rightarrow full 3-particle rescattering, only overall normalization adjustable

Bastian Kubis

→ full 3-particle rescattering, 2 adjustable parameters (additional "subtraction constant" to suppress inelastic effects)

Bastian Kubis

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" inseparable from "resonance"

Formalism applied to $D \rightarrow \pi \pi K$

 full fit in terms of 7 complex subtraction constants (-1 phase, -1 overall normalisation) Niecknig, BK in progress

Summary / Open questions

Dalitz plot analyses

- rigorous using modern phase shift input
- allow to understand ad-hoc "background"

non-resonant contribution

Bastian Kubis

- ideal demonstration case: $\phi \rightarrow 3\pi$ (elastic, one partial wave)
- implementation: + linear combination of basis functions
 basis functions different for each decay

Open questions / problems

- inelastic effects
 - \triangleright we understand I = 0 S-wave $\pi\pi \leftrightarrow K\bar{K} \leftrightarrow f_0(980)$

 \longrightarrow may attempt $D \rightarrow 3\pi / \pi K \bar{K}$

▷ how to parametrise "small" inelastic effects ($\eta' K$ in πK)?

- complex subtractions can we understand imaginary parts?
- uncertainties in πK phase shifts? can we learn about them?
- high-energy extensions ($B \rightarrow 3h$ Dalitz plots??)

Das Model

The Model

- There are, for most cases we care about, no theoretically sound amplitude models...
- However, there are "good enough" models. What's good enough depends on the purpose.
- So what to do? Suggest a mix of....
 - model-independent approaches
 - "good enough" models of various levels of sophistication
 - improve models (there is and that's fairly new real, tangible, progress!)

A few recent applications of amplitude analyses.

The Z(4430) question:

BELLE, Phys. Rev. Lett. 100 (2008) 142001, arXiv:0708.1790.

The 2-D illustration of this 4-D question

The 2-D illustration of this 4-D question

Jonas Rademacker: Amplitude Analyses

B-workshop

$Z(4430) \rightarrow \psi(2S)\pi^{-}$ in $B \rightarrow \psi(2S)\pi^{-}K^{+}$?

B-workshop

$Z(4430) \rightarrow \psi(2S)\pi^{-}$ in $B \rightarrow \psi(2S)\pi^{-}K^{+}?$

Belle 2008 1D ("K* veto region") PRL 100, 142001 (2008) Z(4430)-Events/0.01 GeV K*→Kπ⁻ 20 hka 3.B 4.06 4.3 Μ(π^{*}ψ^{*}) (GeV) 4.65 $M(Z) = 4433 \pm 4 \pm 2 \text{ MeV}$ 45⁺¹⁸ +30 MeV $\Gamma(Z) =$ significance 6.5σ

Belle 2013 ΔI ("K* veto region") 35_{f} PRD 88, 074026 (2013) 30F With Z(4430)-25 20 10 15 16 17 18 19 21 22 23 20 M²(ψ',π), GeV²/c⁴ $M(Z) = 4485^{+22}_{-22} + 28$ MeV Takes $K\pi$ mass distribution as is $\Gamma(Z) = 200^{+41}_{-46} - 35^{-35} \text{ MeV}$

 6.4σ (5.6 σ with sys.)

(no K* model) and attempts to

reproduce structure in $\psi(2S)\pi^{-}$.

from angular momentum effects.

Works within statistics.

LHCb's evidence for the Z(4430) in $B \rightarrow \psi(2S)\pi^-K^+$

Jonas Rademacker: Amplitude Analyses

Tetraquark candidate travels

XYZ like states

)

)

)

Diagrams and many results from Chengping Shen's 2014, KEK October 28-31 at B2TIP Workshop talk

67

XYZ like states

)

)

)

67

XYZ like states

)

Spectroscopy

$B_s \rightarrow \overline{D}K^-\pi^+$

B-workshop

 Amongst many new results: The D*_{sJ}(2860) does exist - not only once, but twice:

B→ $\overline{D}K^-\pi^+$ Dalitz plot analysis finds two particles in the same mass region, one with spin 1, one with spin 3.

DK spectra in $B \rightarrow DK^-\pi^+$ at

Jonas Rademacker: Amplitude Analyses

$B_s \rightarrow J/\psi \pi \pi CP$ content

PRD 86, 052006 (2012)

- Amplitude analysis to evaluate the CP content of $B_s \rightarrow J/\psi \pi \pi$
- 4-dimensional analysis: 2 masses, 2 helicity angles.

Result:

Resonance

 $f_0(980)$ 69.7 ± 2.3 $f_0(1370)$ 21.2 ± 2.7 non-resonant $\pi^+\pi^ 8.4 \pm 1.5$ $f_2(1270), \Lambda = 0$ 0.49 ± 0.16 0.21 ± 0.65 $f_2(1270), |\Lambda| = 1$

- Nearly all (>97.7% at 95 C.L.) CP-odd
- \Rightarrow No need for angular analysis to extract $\phi_s!$

(see also arXiv:1302.1213 for an amplitude analysis of $B_s \rightarrow J/\psi KK$

Model-independent check

PRD 86, 052006 (2012)

 Decay rate can be expressed in terms of spherical harmonics

$$\frac{d\Gamma}{d(\cos\theta)} = a_l^m Y_l^m(\cos\theta)$$

- These can be related to different S, P, D amplitude components.
- To project out a given component:

$$a_l^m = \int Y_l^m(\cos\theta) \frac{d\Gamma}{d(\cos\theta)} d(\cos\theta)$$
$$\approx \sum_{\text{events}} Y_l^m(\cos\theta_i)$$
= sum of weighted events

$B_s \rightarrow J/\psi \pi\pi$ for φ_s

$B_s \rightarrow J/\psi \pi\pi$ for φ_s

k	$f_k(heta_\mu, heta_K,arphi_h)$	N_k	a_k	b_k	$ $ c_k	d_k
1	$2\cos^2\theta_K\sin^2\theta_\mu$	$ A_0 ^2$	1	D	C	-S
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \varphi_h \right)$	$ A_{ } ^2$	1	D	C	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \varphi_h\right)$	$ A_{\perp} ^2$	1		C	<i>S</i>
4	$\sin^2\theta_K \sin^2\theta_\mu \sin 2\varphi_h$	$ A_{\parallel}A_{\perp} $	$ c \sin(0 \pm - \delta_{\parallel})$	$S\cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_{T}\sin 2\theta_{\mu}\cos \varphi_{h}$	$ A_0A_{\parallel} $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel} - \delta_0)$	$-S\cos(\delta_{\parallel}-\delta_{0})$
0	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K\sin 2\theta_\mu\sin \varphi_h$	$ A_0A_\perp $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}\sin^2\theta_{\mu}$	$ A_{\rm S} ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\theta_K\sin2\theta_\mu\cos\varphi_h$	$ A_{\rm S}A_{\parallel} $	$C\cos(\delta_{\parallel} - \delta_{\rm S})$	$S\sin(\delta_{\parallel} - \delta_{\rm S})$	$\cos(\delta_{\parallel} - \delta_{\rm S})$	D sin $(\delta_1 - \delta_5)$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_K\sin 2\theta_\mu\sin\varphi_h$	$ A_{\rm S}A_{\perp} $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$-D\sin(\delta, \delta)$	$\sigma_{\rm SIII}(o_{\perp} - \delta_{\rm S})$	$S\sin(\delta_{\perp}-\delta_{\rm S})$
10	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$	Agla	$C_{cos}(o_0 - o_S)$	$S\sin(\delta_0 - \delta_{\rm S})$	$\boxed{\cos(\delta_0 - \delta_{\rm S})}$	$D\sin(\delta_0 - \delta_{\rm S})$

Combined $B_s \rightarrow J/\psi$ KK and $B_s \rightarrow J/\psi \pi\pi$ for ϕ_s

arXiv:1304.2600 (2013) supersedes previous results: Phys. Rev. Lett. 108 (2012) 101803 Physics Letters B 713 (2012) 378

 ϕ_s very sensitive to NP. But no NP effects seen, yet...

 $\Delta\Gamma_s$ less sensitive to NP (\sim cos(ϕ^{new})), but impressive validation of HQE calculation.

SM: $\phi_s^{SM} = -0.036 \pm 0.002 \text{ rad}$ LHCb: $\phi_s = 0.07 \pm 0.09 \text{ (stat)} \pm 0.01 \text{ (syst) rad,}$ $\Gamma_s \equiv (\Gamma_{\rm L} + \Gamma_{\rm H})/2 = 0.663 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1}$ $\Delta \Gamma_s \equiv \Gamma_{\rm L} - \Gamma_{\rm H} = 0.100 \pm 0.016 \text{ (stat)} \pm 0.003 \text{ (syst) ps}^{-1}$

Loops vs Trees

• Expect no New Physics in Trees

• New Physics in loops?

Loops vs Trees New Physics n loops? • Expect no New Physics in Trees S φ S E=MC S b h K_s В B^+ d d U U

Can penguins be bad?

http://youtu.be/5ljmOSFtoJc

Jonas Rademacker: Amplitude Analyses

Can penguins be bad?

http://youtu.be/5ljmOSFtoJc

Jonas Rademacker: Amplitude Analyses

Can penguins be bad?

http://youtu.be/5ljmOSFtoJc

They can.

Measuring γ

$B^{\pm} \rightarrow DK^{\pm}$

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

 $(K_{\rm S}\pi^+\pi^-)_{\rm D}$

8,199

Belle

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 0540

Atwood, Dunietz and Soni Phys.Rev.Lett. ration Phys.Rev. D70 (2004) 072003

 $(K_{\rm S}\pi^+\pi^-)_{\rm D}$

<u>Gronau, Wyler Phys.Lett.B265:172-176,1991</u>, (GLW), <u>Gronau, London Phys.Lett.B253:483-</u> 78 (1997) 3257-3260 (ADS) <u>Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 0540</u>

1^b

3,19<mark>91 (GLW)</mark> <u>Atwo</u> Belle Collaboration

Atwood, Dunietz and Soni Phys.Rev.Lett. ation Phys.Rev. D70 (2004) 072003

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 0540

 For D→3-body decays, the interference takes place in an abstract 2-D space (Dalitz plot)

 Analysing the Dalitz plot of the D decay, in D's that come from B[±]'s, gives access to

γ

8,1991 (GLW) <u>Atwood, Dunietz and Soni</u> Phys.Rev.Lett. Belle Collaboration Phys.Rev. D70 (2004) 072003

Multi-Generational Flavour Physics

Edward V. Brewer (1883 – 1971)

Multi-Generational Flavour Physics

Edward V. Brewer (1883 – 1971)

Regrettably, CLEO recently deceased - but her data live on.

Jonas Rademacker: Amplitude Analyses

B-workshop

Gwards Precision Measurements

$e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

CLEAN-c

82

CP and flavour tagged D°

CP and flavour tagged D°

CP and flavour tagged D° at CLEO

Model independent γ fit

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

• Binned decay rate:

$$\Gamma \left(B^{\pm} \to D(K_s \pi^+ \pi^-) K^{\pm} \right)_i = \frac{\text{specifc D decays (e.g. D^*)}}{T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \left\{ c_i \cos \left(\delta \pm \gamma\right) + s_i \sin \left(\delta \pm \gamma\right) \right\}}$$

(weighted) average of $\cos(\delta_D)$ and $\sin(\delta_D)$ over bin i, where δ_D = phase difference between D→Ksnn and Dbar→Ksnn

- Binning such that such that $C_i = C_{-i}$, $S_i = -S_{-i}$
- Distribution sensitive to c_i , s_i , r_B , δ and γ .
- To extract y from realistic numbers of B events need extern input from CLEO's quantum-correlated DDbar pairs.

 \mathcal{T}_i known from flavour-

Optimal binning

- Best γ sensitivity if phase difference δ_D is as constant as possible over each bin^[1].
- Plot shows CLEO-c's 8 bins, uniform in δ_D , (based on BaBar isobar model*).
- Choice of model will not bias result. (At worst a bad model would reduce the statistical precision of the result.)

[1] Bondar, Poluektov hep-ph/0703267v1 (2007)

LHCb model-independent γ from $B^{\pm} \rightarrow (K_{S}\pi\pi)_{D}K$ and $B^{\pm} \rightarrow (K_{S}KK)_{D}K$ LHCb 2011 Result: Phys. Lett. B718 (2012) 43

- Binned, model-independent analysis using CLEO-c input. Phys. Rev. D 82 112006.
- Plots show LHCb 2012 data
- Result of combined analysis (2011 & 2012 data, K_Sππ & K_SKK):

 $\gamma = (57 \pm 16)^{\circ}$ $\delta_B = (124^{+15}_{-17})^{\circ}$ $r_B = (8.8^{+2.3}_{-2.4}) \times 10^{-2}$

CLEO-c input:: Phys. Rev. D 82 112006.

Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007) BELLE's first model-independent γ measurement: PRD 85 (2012) 112014

B-workshop

LHCb's y combination

- LHCb combines inputs from $B^{\pm} \rightarrow (hh')_D K^{\pm}$ $B^{\pm} \rightarrow (K_S \pi \pi)_D K^{\pm}$ $B^{\pm} \rightarrow (K_S K K)_D K^{\pm}$ $B^{\pm} \rightarrow (K \pi \pi \pi)_D K^{\pm}$
- Result:
 - $\gamma = (67.2 \pm 12)^o$
- More channels available, including $B^{\pm} \rightarrow D\pi^{\pm}, B^{0} \rightarrow DK^{*}.$
- Most recent addition: B[±]→(K_SKπ)_DK[±] (see <u>arXiv:1402.2982</u>, 2014)

previous world average $\gamma=68^\circ\pm12^\circ$ (Moriond 2012):

World averages by CKM Fitter

LHCb's y combination

- LHCb combines inputs from $B^{\pm} \rightarrow (hh')_D K^{\pm}$ $B^{\pm} \rightarrow (K_S \pi \pi)_D K^{\pm}$ $B^{\pm} \rightarrow (K_S K K)_D K^{\pm}$ $B^{\pm} \rightarrow (K \pi \pi \pi)_D K^{\pm}$
- Result:
 - $\gamma = (67.2 \pm 12)^o$
- More channels available, including $B^{\pm} \rightarrow D\pi^{\pm}, B^{0} \rightarrow DK^{*}.$
- Most recent addition: B[±]→(K_SKπ)_DK[±] (see <u>arXiv:1402.2982</u>, 2014)

previous world average $\gamma=68^\circ\pm12^\circ$ (Moriond 2012):

World averages by CKM Fitter

Jonas Rademacker: Amplitude Analyses

LHCb model-dependent γ from B[±] \rightarrow (K_S $\pi\pi$)_DK

 $\gamma = (84^{+49}_{-42})^{\circ}$

Why stop here

Jonas Rademacker: Amplitude Analyses

 CLEO-c used coherent ψ(3770)→DD events to measure R, δ_D for Kπππ and Kππ°.

Jonas Rademacker: Amplitude Analyses

D° Mixing as input to γ from B[±]→DK[±]

D° Mixing as input to γ from B[±]→DK[±]

Unpublished, unofficial preview: $D \rightarrow K^{-}\pi^{+}\pi^{-}\pi^{+}$ coherence factor from mixing at LHCb

<u>CLEO-c input:</u> Phys.Rev.D80:031105,2009 Phys.Lett. B731 (2014) 197-203 D-mixing input: Phys.Lett. B728 (2014) 296-302

Jonas Rademacker: Amplitude Analyses

A closer look at Z

 $\frac{\Gamma\left(B^{-} \to DK^{-}, D \to f\right)_{\Omega}}{\Gamma\left(B^{-} \to DK^{-}, D \to \bar{f}\right)_{\bar{\Omega}}} = r_{D,\Omega}^{2} + r_{B}^{2} + r_{D,\Omega}r_{B}\left|\mathcal{Z}_{\Omega}^{f}\right|\cos(\delta_{B} - \delta_{\Omega}^{f} - \gamma)$

$$\mathcal{A}_{\Omega} \equiv \sqrt{\int_{\Omega} |\langle f_{\mathbf{p}} | \hat{H} | D^0 \rangle|^2 \left| \frac{\partial^n \phi}{\partial (p_1 \dots p_n)} \right| \mathrm{d}^n p}, \qquad \mathcal{B}_{\Omega} \equiv \sqrt{\int_{\Omega} |\langle f_{\mathbf{p}} | \hat{H} | \overline{D}^0 \rangle|^2 \left| \frac{\partial^n \phi}{\partial (p_1 \dots p_n)} \right| \mathrm{d}^n p},$$

$$\mathcal{Z}_{\Omega}^{f} \equiv \frac{1}{\mathcal{A}_{\Omega}\mathcal{B}_{\Omega}} \int_{\Omega} \langle f_{\mathbf{p}} | \hat{H} | D^{0} \rangle \langle f_{\mathbf{p}} | \hat{H} | \overline{D}^{0} \rangle^{*} \Big| \frac{\partial^{n} \phi}{\partial (p_{1} \dots p_{n})} \Big| d^{n} p_{n}$$

amplitude of D (Dbar) going to 5-D phase space point p

Binning is good for you

Gets even better if we divide the 5-D space into bins

Gets even better if we divide the 5-D space into bins

(all simulated data)

arXiv:1412.7254 (accepted by JHEP)

Searches for CPV by comparing binned Dalitz plots

PhysRevD.84.112008

• Compare yields in CP-conjugate bins

$$S_{CP} = \frac{N_i - \alpha \overline{N}_i}{\sigma (N_i - \alpha \overline{N}_i)}$$
$$\alpha = \frac{N_{\text{total}}}{\overline{N}_{\text{total}}}$$

 Calculate p-value for no-CPV hypothesis based on

$$\chi^2 = \sum \left(S_{CP}^i \right)^2$$

• Model independent. Many production and detection effects cancel.

330k D+ \rightarrow K⁻K⁺ π ⁺ in 35/pb

5-D binned analysis in $D^{\circ} \rightarrow K^+K^-\pi^+\pi^-$, $D^{\circ} \rightarrow \pi^+\pi^-\pi^+\pi^-$

- Binning in 5dimensional hypercuboids.
- Adaptive binning to ensure similar number of entries per bin.
- Plots show for each bin the range in invariant mass squared and S_{CP} value in that bin.

Model-dependent CPV search in $D^{\circ} \rightarrow K^+ K^- \pi^+ \pi^-$

Towards γ with $B^{\pm} \rightarrow D(KK\pi\pi)K^{\pm}$

Nicole Skidmore & Jeremy Dalseno (Bristol)

Also found large local CPV in low mass regions w/o clear association to known resonances in other B[±]→hhh modes: B[±]→K[±]π⁺π⁻, B[±]→K[±]K⁺K⁻, B[±]→π[±]π⁺π⁻, B[±]→π[±]K⁺K⁻

Conclusions

- Amplitude Analyses are a very powerful tool used at LHCb and elsewhere for wide variety of measurements, including
 - searching for new resonances and characterising them
 - precision CP violation and mixing measurements in charm and beauty
- They are not "just" Dalitz plots. Vectors in final state, 4 body analyses,...
- Most remarkable strength: unique sensitivity to phases.
- Most annoying weakness: theoretically not well understood. This is increasingly problematic with increasingly ginormous data samples.
- Theorists are making tangible progress on theoretically sound models.
- Future: improved models, model independent methods, pragmatic compromises.

Credits

Special thanks to Antimo Palano and Marco Pagapallo, from whose excellent talks I lifted a particularly large number of plots.
Backup

$B_s \rightarrow DK\pi$ at LHCb

- Resolved the D_{sJ}*(2860) state into spin 1 and spin 3 states
 - Now part of a renaissance in D(s) spectroscopy (15 citations so far)
- Other results
 - Mass, width and spin of D_{s2}^*
 - Fit fractions
 - Branching fractions
 - Complex amplitudes

 $m(D_{s1}^{*}(2860)^{-}) = 2859 \pm 12 \pm 6 \pm 23 \text{ MeV}/c^{2}, ^{-1}$ $\Gamma(D_{s1}^{*}(2860)^{-}) = 159 \pm 23 \pm 27 \pm 72 \text{ MeV}/c^{2},$ $m(D_{s3}^{*}(2860)^{-}) = 2860.5 \pm 2.6 \pm 2.5 \pm 6.0 \text{ MeV}/c^{2},$ $\Gamma(D_{s3}^{*}(2860)^{-}) = 53 \pm 7 \pm 4 \pm 6 \text{ MeV}/c^{2},$

First model-independent y measurement (BELLE)

LHCb model-independent γ from B[±] \rightarrow (K_S $\pi\pi$)_DK and $B^{\pm} \rightarrow (K_S K K)_D K$ LHCb-CONF-2013-004

LHCb 2011 Result: Phys. Lett. B718 (2012) 43

Binned, model-independent n^{2} [GeV²/ c^{4}] LHCb preliminary LHCb preliminary analysis using CLEO-c input. $\int L dt = 2.0 \text{ fb}^{-1}$ $\int L dt = 2.0 \text{ fb}^{-1}$ Phys. Rev. D 82 112006. B+ R n_{+}^{2} Plots show LHCb 2012 data - the colours represent the bins, shaped to optimise sensitivity. 1 2 3 $m^2 \Gamma C \sim V^2 / c^{41}$ Result of combined analysis (2011) $m_{1}^{2} [GeV^{2}/c^{4}]$ GeV²/ LHCb preliminary LHCb preliminary & 2012 data, K_Sππ & K_SKK): 1.8 $\int L dt = 2.0 \text{ fb}^{-1}$ $\int \mathbf{L} \, \mathrm{d}t = \mathbf{E} \mathbf{D} \mathbf{f} \mathbf{h}^{-1}$ ~<u></u>_+E 1.4 1.4 $\gamma = (57 \pm 16)^{\circ}$ 1.2 1.2 $\delta_B = (124^{+15}_{-17})^{\circ}$ $1.6^{K_{\rm s}^{2}}$ 1.2 1.4 1.6. (Gel/.8c⁴) 1.2 1.4 $m_{\perp}^{2} [GeV^{2}/c^{4}]$ m_{-}^{2} [GeV²/ c^{4}]

 $r_B = (8.8^{+2.3}_{-2.4}) \times 10^{-2}$

CLEO-c input:: Phys. Rev. D 82 112006.

Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007) BELLE's first model-independent γ measurement: PRD 85 (2012) 112014

B->DK, D->3pi with BES & Mixing

 \sim .

LHCb scenario	$D^0 \min_{\mathrm{X}?}$	charm threshold	$\left \begin{array}{c} \sigma(\gamma) \\ [^{\circ}] \end{array} \right $	$\sigma(\delta_B)$ $[^\circ]$	$\begin{array}{l} \sigma(r_B) \\ \times 10^2 \end{array}$	$ \begin{aligned} \sigma(x_+) \\ \times 10^2 \end{aligned} $	$\sigma(y_+) \ imes 10^2$	$\sigma(x_{-}) \ imes 10^2$	$\sigma(y_{-}) \ imes 10^2$	
run I	Y	none	26	47	1.6	8.7	9.1	8.8	8.2	
run II			22	29	1.4	7.6	6.9	4.5	4.0	
upgr			15	14	0.17	4.7	5.2	0.56	0.98	
run I	Y	CLEO global	20	29	0.82	6.4	5.7	6.6	5.9	
run II			15	19	0.62	5.4	3.9	2.5	2.7	
upgr			11	10	0.16	3.8	2.8	0.44	0.50	
run I	Y	BESIII global	19	25	0.78	6.4	5.5	6.5	5.8	
run II			14	18	0.57	5.4	3.9	2.4	2.7	
upgr			9.0	8.2	0.15	3.7	2.7	0.43	0.48	
run I	Ν	CLEO binned	46	35	3.2	6.9	6.5	8.6	10	
run II			50	34	3.3	6.9	6.7	8.9	11	
upgr			52	35	3.3	7.6	6.7	8.9	11	
run I	Ν	BESIII binned	40	24	2.6	4.1	5.0	5.7	6.2	
run II			34	17	2.5	3.6	4.1	5.0	5.1	
upgr			39	14	2.9	3.9	4.1	4.3	5.6	
run I	Y	CLEO binned	16	18	0.78	2.1	3.5	2.6	3.1	
run II			12	13	0.53	1.7	3.1	1.7	2.0	
upgr			7.8	7.2	0.15	1.1	2.6	0.40	0.46	
run I	Y	BESIII binned	12	14	0.68	1.6	2.6	2.0	2.5	<u>a</u>
run II			8.6	9.6	0.47	0.90	2.1	1.5	1.5	(.
upgr			4.1	3.9	0.14	0.53	1.3	0.35	0.38	(2

arXiv:1412.7254 (accepted by JHEP)

Jonas Rademacker: Amplitude Analyses