Review of Measurements with HERA-B

Prospects for Early Measurements with LHCb

Michael Schmelling – MPI for Nuclear Physics
e-Mail: Michael.Schmelling@mpi-hd.mpg.de

Outline

- The HERA-B Experiment
- Setting the Stage for LHCb
- Selected Physics Topics
- Summary and Conclusions

Disclaimer

Cross sections and rates given below are order-of-magnitude estimates, (usually) NOT the result of detailed studies.
fixed target experiment at the HERA proton ring
C, Al, Ti, W target wires in the beam halo
forward spectrometer - layout similar to LHCb, except . . .
 ➔ only one RICH detector
 ➔ simpler ECAL system (no PS, no SPD)
 ➔ no HCAL
Kinematics

- angular coverage $10 - 220$ mrad
 - pseudorapidity very similar to range covered by LHCb
 $\eta = -\ln \tan \frac{\theta}{2} \sim [2.2 - 5.2] \sim 3.7 \pm 1.5$

- energy of the proton beam $E = 920$ GeV
 - nucleon-nucleon center-of-mass energy
 $\sqrt{s_{NN}} = \sqrt{2m_N E} \approx 42$ GeV
 - boost of center-of-mass system
 $\gamma = \frac{E}{M} \approx \frac{920}{42} \approx 22$
 - rapidity of center-of-mass system
 $y = \frac{1}{2} \ln \frac{E + p}{E - p} = \frac{1}{2} \ln \frac{(E + p)^2}{(E + p)(E - p)} \approx \ln \frac{2E}{M} \approx \ln 44 \approx 3.8$

- HERA-B is a central detector!
- study of pA collisions at $\sqrt{s_{NN}} = 42$ GeV
compare particle flux in LHCb and HERA-B

rule of thumb: \(\Phi \sim \nu_{int} \cdot \ln s \cdot \Delta y \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>Wire</th>
<th>Run</th>
<th>triggers used</th>
<th>interactions</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERA-B nom.</td>
<td>42</td>
<td>Inner</td>
<td>14551</td>
<td>200,000</td>
<td>44,247 ± 464</td>
<td>21,489</td>
</tr>
<tr>
<td>HERA-B MinBias</td>
<td>42</td>
<td>Inner</td>
<td>14577</td>
<td>450,000</td>
<td>127,280 ± 414</td>
<td>39,997</td>
</tr>
<tr>
<td>LHCb 2008</td>
<td>14000</td>
<td>Inner</td>
<td>14606</td>
<td>150,000</td>
<td>21,928 ± 2069</td>
<td>13,679</td>
</tr>
<tr>
<td>LHCb nom.</td>
<td>14000</td>
<td>Upper</td>
<td>14639</td>
<td>300,000</td>
<td>28,520 ± 367</td>
<td>22,553</td>
</tr>
</tbody>
</table>

similar radiation loads for both experiments

→ pile-up events in nominal HERA-B operation

→ “clean” conditions for nominal LHCb running

the very first HERA-B data sets:
2. Setting the Stage for LHCb

How quickly can LHCb collect Minimum Bias events?

<table>
<thead>
<tr>
<th>Lumi</th>
<th>nr-bunches</th>
<th>pp-int/xing</th>
<th>non-empty rate</th>
<th>L0-YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1×10^{29}</td>
<td>* 4</td>
<td>0.15</td>
<td>6 kHz</td>
<td>3 kHz</td>
</tr>
<tr>
<td>2.3×10^{30}</td>
<td>* 16</td>
<td>0.76</td>
<td>94 kHz</td>
<td>47 kHz</td>
</tr>
<tr>
<td>2.6×10^{31}</td>
<td>936 (75 ns)</td>
<td>0.15</td>
<td>1.4 MHz</td>
<td>0.7 MHz</td>
</tr>
<tr>
<td>2.0×10^{32}</td>
<td>2622 (25 ns)</td>
<td>0.4</td>
<td>10 MHz</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

- pessimistic/realistic scenario
 - only 4 colliding bunches at $L = 1.1 \times 10^{29} \text{cm}^{-2}\text{s}^{-1}$
 - no L0-trigger but proper timing
 - 2 kHz random trigger on filled bunches
 - 300 Hz non-empty minimum bias events to disk
 - 10^8 events in approx. 100 hours of running
 - approx. 15 hours with L0 interaction-trigger
Conclusion:

Already in the first weeks after turn-on of the accelerator, LHCb should be able to log at least 10^8 minimum bias events. Even without triggering, those should provide 10 million charm and 500,000 b-events.

- enough statistics for publishable results already at 10^{-6} fb$^{-1}$!
- examples will be discussed below
- remember: 2 fb$^{-1}$ per nominal LHCb year

physics analyses

- no existing data at $\sqrt{s} = 14$ TeV – everything is new . . .
 - interesting in its own right
 - stepping stones towards the LHCb b-physics program

Note:

Harvesting the initial physics already needs a working experiment, although neither ultimate precision in calibration nor HLT is required.
Check list for first data

requirements

- proper time alignment of all subdetectors
- data logging capabilities at the nominal rate of 2 kHz
- computing infrastructure for quasi-online reconstruction and analysis of 10^8 Events (0.5% of the nominal annual data volume)

calibration tasks

- setting up and debugging of L0-trigger and HLT
 - initially run trigger offline or in transparent mode
- local and global alignment of tracking detectors
- calibration of the RICH detectors with identified particles
- ECAL calibration with π^0s
- systematic studies, for example
 - azimuthal symmetry of particle flow and charge ratios
- luminosity determination
- Monte Carlo tuning . . . not only for LHCb
general considerations

- σ_{mb}: pp inelastic minimum bias cross section
- N_{mb}: number of minimum bias events recorded/scrutinized
- σ: cross section for a given signal
- ε: efficiency for seeing a signal event, which includes
 - limited phase space coverage of the experiment
 - detector efficiencies
 - BR for a specific decay channels of final state particles
 - selection cuts to suppress background
- the number of signal events S then becomes
 \[S = \frac{\sigma \varepsilon}{\sigma_{mb}} N_{mb} \]
- relation between signal and required minimum bias statistics
 \[\log_{10} N_{mb} = \log_{10} S - \log_{10} \left(\frac{\sigma \varepsilon}{\sigma_{mb}} \right) \]
assume in the following $S = 100$ as “analysis threshold”, i.e.

$$\log_{10} N_{mb} = 2 - \log_{10} \left(\frac{\sigma \varepsilon}{\sigma_{mb}} \right)$$

significance K in units of standard deviations of such a measurement depends on the number of background events B

$$K = \frac{S}{\sqrt{S + B}} = \frac{\sqrt{S}}{\sqrt{1 + B/S}}$$

- $B/S = 0 \Rightarrow K = 10$
- $B/S = 3 \Rightarrow K = 5$

try to get some estimates for σ and ε in various channels

- use published HERA-B data; apply scaling to cross sections
 - scale light flavours with inelastic pp-cross section
 - scale heavy flavours with σ_{cc} and σ_{bb}

- LHCb DC04 results (mainly b-physics)
-> resulting (gu)estimates:

<table>
<thead>
<tr>
<th>process</th>
<th>σ/mb</th>
<th>ε</th>
<th>$\log_{10}(\sigma\varepsilon/\sigma_{mb})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow \pi^\pm X$</td>
<td>3000</td>
<td>0.1</td>
<td>0.48</td>
</tr>
<tr>
<td>$pp \rightarrow \pi^0 X$</td>
<td>1500</td>
<td>0.01</td>
<td>−0.82</td>
</tr>
<tr>
<td>$pp \rightarrow K^0 X$</td>
<td>23</td>
<td>0.02</td>
<td>−2.34</td>
</tr>
<tr>
<td>$pp \rightarrow \Lambda X$</td>
<td>11</td>
<td>0.01</td>
<td>−2.95</td>
</tr>
<tr>
<td>$pp \rightarrow \bar{\Lambda} X$</td>
<td>4.5</td>
<td>0.01</td>
<td>−3.35</td>
</tr>
<tr>
<td>$pp \rightarrow \Phi X$</td>
<td>2.5</td>
<td>0.004</td>
<td>−4.00</td>
</tr>
<tr>
<td>$pp \rightarrow D X$</td>
<td>6</td>
<td>0.0004</td>
<td>−4.62</td>
</tr>
<tr>
<td>$pp \rightarrow J/\psi X$</td>
<td>0.133</td>
<td>0.008</td>
<td>−4.97</td>
</tr>
<tr>
<td>$pp \rightarrow b\bar{b} \rightarrow J/\psi X$</td>
<td>0.133</td>
<td>0.008</td>
<td>−6.25</td>
</tr>
<tr>
<td>$pp \rightarrow \Upsilon X$</td>
<td>0.0002</td>
<td>0.01</td>
<td>−7.48</td>
</tr>
<tr>
<td>$pp \rightarrow B_d(J/\psi K_s)$</td>
<td>0.0002</td>
<td>0.0006</td>
<td>−8.92</td>
</tr>
</tbody>
</table>

with $\frac{\sigma_{LHCb}^{mb}}{\sigma_{HERA-B}^{mb}} = \frac{100 \text{ mb}}{40 \text{ mb}}$, $\frac{\sigma_{LHCb}^{cc}}{\sigma_{cc}^{HERA-B}} = \frac{10 \text{ mb}}{50 \text{ μb}}$ and $\frac{\sigma_{LHCb}^{bb}}{\sigma_{bb}^{HERA-B}} = \frac{500 \text{ μb}}{15 \text{ nb}}$
Overview

![Graph showing physics reach vs integrated luminosity]

- Trigger needed to go beyond 10^{11} events - i.e. to b-physics!
3. Selected Physics Topics

Preliminaries: Measurements without B-Field

- π^0 reconstruction
 - first signal seen by HERA-B
 - ECAL was the first detector able to take data
 - calibration of ECAL
 - mapping of radiation length
 - cross check GEANT
 - basis for all studies using photons or π^0

- search for $J/\psi \rightarrow e^+e^-$ signals
 - use a high-p_T ECAL trigger
 - need at least partial coverage by ECAL plus overlap with some layers of the vtx-detector
 - use vertex-detector to veto photons
 - requires only lateral alignment in the sensitive coordinate
Compare production of positive and negative particles

- minimum requirement: working Main Tracker
- study ratios of single (or double) differential distributions

\[R_\eta = \frac{dN^+/d\eta}{dN^-/d\eta} \]
\[R_{p_T} = \frac{dN^+/dP_T^2}{dN^-/dP_T^2} \]
\[R_\phi = \frac{dN^+/d\phi}{dN^-/d\phi} \]

- very simple measurement
- can be done with very low integrated luminosity
- vital for understanding charge asymmetries
- first check of the quality of the simulation
- important input for tuning of (minbias) Monte Carlo generators
Phase Space Coverage of HERA-B

- phase space coverage ϕ vs η of charged tracks
- average number of reconstructed tracks
- average p_t of reconstructed tracks
- comparison of data and Monte Carlo

tracks/event - Carbon

mean p_t - Carbon

HERA-B and Prospects for LHCb – Selected Physics Topics

M. Schmelling / Neckarzimmern / March 12-14, 2008
Measurements of V^0 Production

- **neutral particles with weak decays into two charged tracks**

 - minimum requirement: working VeLo and Main Tracker
 - experimental signature:
 - secondary vertex
 - oppositely charged tracks
 - momentum pointing back to the primary vertex
 - most important V^0-signals:
 - $K^0_{(s)} \rightarrow \pi^+ \pi^-$
 - $\Lambda \rightarrow p \pi^-$
 - $\bar{\Lambda} \rightarrow \bar{p} \pi^+$

- analysis:
 - select oppositely charge tracks
 - require secondary vertex
 - require momentum to point back to the primary vertex
 - assign masses according to decay channel
 - histogram invariant masses
First V^0-Signals seen by HERA-B
good topic for a first physics paper

- simple early measurement, though not trivial
- can evolve quickly with improving understanding of alignment
- cross section ratios don’t require luminosity
 \[
 \frac{\sigma(\Lambda)}{\sigma(\bar{\Lambda})}(y, p_T)
 \]

 ➔ important input for models of strangeness production
 ➔ stepping stones towards \(c\)- and \(b\)-physics

- important for RICH calibration since particle-ID is done by relativistic kinematics
 ➔ consider \(\pm\)-pairs (with detached vertex)
 ➔ take the common direction of flight
 ➔ plot transverse momentum versus
 ➔ asymmetry of longitudinal momenta
 ➔ identify regions of phase space with enhanced \(p\) or \(\bar{p}\)-content

 ➔ “Armenteros-Podolanski plot”
Particle identification by relativistic kinematics

- two-body decay of a heavy particle with mass M
- energy-momentum conservation determines the absolute value of the center-of-mass momenta of the daughter particles
- Lorentz-transformation yields lab-momenta of the daughter particles as a function of the decay-angle θ

basic relations:

\[
M = \sqrt{p_{cm}^2 + m_1^2} + \sqrt{p_{cm}^2 + m_2^2}
\]

\[
p_L = \gamma p_{cm}^L + \gamma \beta E_{cm}
\]

\[
p_T = p_{cm}^T
\]

\[
E_{cm}^2 = m^2 + p_{cm}^2
\]

\[
p_{cm}^L = \pm p_{cm} \cdot \cos \theta
\]

\[
p_{cm}^T = p_{cm} \cdot \sin \theta
\]
initial results:

\[p_{cm}^2 = \frac{1}{4M^2} (M^4 + m_1^4 + m_2^4 - 2m_1^2M^2 - 2m_2^2M^2 - 2m_1^2m_2^2) \]

\[E_{1cm}^c = \frac{1}{2M} (M^2 + m_1^2 - m_2^2) \]

\[E_{2cm}^c = \frac{1}{2M} (M^2 - m_1^2 + m_2^2) \]

next, consider the asymmetry of the longitudinal momenta:

\[\alpha = \frac{p_L^{(1)} - p_L^{(2)}}{p_L^{(1)} + p_L^{(2)}} = \frac{(p_{cm} \cos \theta + \beta E_{1cm}^c) - (-p_{cm} \cos \theta + \beta E_{2cm}^c)}{(p_{cm} \cos \theta + \beta E_{1cm}^c) + (-p_{cm} \cos \theta + \beta E_{2cm}^c)} = \frac{2p_{cm} \cos \theta + \beta (E_{1cm}^c - E_{2cm}^c)}{\beta (E_{1cm}^c + E_{2cm}^c)} = \frac{2p_{cm} \cos \theta + \frac{E_{1cm}^c - E_{2cm}^c}{M}}{\beta M} = \frac{2p_{cm}}{\beta M} \cos \theta + \frac{m_1^2 - m_2^2}{M^2} \]

result:

\[\alpha = \alpha_0 + \frac{r_{\alpha}}{\beta} \cos \theta \quad \text{with} \quad \alpha_0 = \frac{m_1^2 - m_2^2}{M^2} \quad \text{and} \quad r_{\alpha} = \frac{2p_{cm}}{M} \]
consider the relativistic limit $\beta \to 1$

The asymmetry of the longitudinal momenta of the daughters is bounded:

$$\alpha_0 - r_\alpha < \alpha < \alpha_0 + r_\alpha$$

A combined view of α and p_T suggests itself. One has

$$\frac{\alpha - \alpha_0}{r_\alpha} = \cos \theta \quad \text{and} \quad \frac{p_T}{p_{cm}} = \sin \alpha$$

and thus

$$\frac{(\alpha - \alpha_0)^2}{r^2_\alpha} + \frac{p^2_T}{p^2_{cm}} = 1$$

i.e. in the (α, p_T)-plane particles from a two-body decay define an ellipse.

→ center of the ellipse:

$$(\alpha_0, 0) = \left(\frac{m^2_1 - m^2_2}{M^2}, 0 \right)$$

→ radii of the ellipse:

$$(r_\alpha, r_{p_T}) = \left(\frac{2 p_{cm}}{M}, p_{cm} \right)$$
Example: V^0-decays

- K^0-decay
 \[M = 0.498 \text{ GeV} \]
 \[m_{1,2} = 0.140 \text{ GeV} \]
 \[p_{cm} = 0.206 \text{ GeV} \]
 \[\alpha_0 = 0 \]
 \[r_\alpha = 0.827 \]

- Λ-decay
 \[M = 1.116 \text{ GeV} \]
 \[m_1 = 0.938 \text{ GeV} \]
 \[m_2 = 0.140 \text{ GeV} \]
 \[p_{cm} = 0.101 \text{ GeV} \]
 \[\alpha_0 = \pm 0.691 \]
 \[r_\alpha = 0.181 \]
Hyperon Production at HERA-B

- systematic study of strangeness production
 - as a function of the number of strange quarks
 - as a function of target mass
 - as a function of the kinematics x_F, y, p_T
- further topics: polarization, correlations between strange particles, . . .
- can also be done to LHCb
$D^0 \rightarrow K\pi$

$J/\psi \rightarrow \mu^+\mu^-$

- 200 million minimum bias events recorded
- small, but significant signals seen
- D-signals require working RICH
- still among the best results for absolute cross sections
- needed as normalization e.g. for J/ψ triggered events
Vector-Meson Production and Cronin Effect

- requirement: working RICH and Main Tracker
- important building block for advanced analyses
- single Kaon tagging is sufficient to find the ϕ-signal
 - also interesting for RICH calibration
- at HERA-B first seen for K^*: Cronin-Effect
 \[\sigma_{pA} = \sigma_{pp} A^\alpha \]
 \[\text{with } \alpha = f(p_T) \]
- only phenomenological explanations
 - e.g. recattering in nucleus
 → Another good candidate for an early physics paper

- measurement of $J/\psi \to \mu^+\mu^-$-cross section
- minimum requirement: working MUON-system and Main Tracker
- production ratios for open charm, based on $D^0 \to K\pi$, $D^\pm \to K\pi\pi$
- requirement: RICH plus perfectly calibrated VeLo

 önemli building blocks for many CP and rare decay analyses!

expected signal from opposite charge di-muon candidates in 10^8 min-bias events

DC04-analysis with tight cuts based on 1.28×10^7 min-bias events
- minimum requirement: working MUON-system, Main Tracker and VeLo
- reconstruct $J/\psi \rightarrow \mu^+\mu^-$
- disentangle fractions of prompt and detached J/ψs
- relate J/ψ yield to primary $c\bar{c}$ and $b\bar{b}$ cross sections, using as input fragmentation functions measured e.g. at LEP

(plot by Wenbin Qian)
Result from HERA-B

Measurement of $b\bar{b}$-cross section at $\sqrt{s} = 42$ GeV

scatter plot of invariant mass vs decay length and resulting cross section

Other Measurements in the $c\bar{c}$ System

- J/ψ production via $\chi_c \to J/\psi\gamma$ decays ($J^{PC}(\chi_c) = \{0, 1, 2\}^{++}$)
- J/ψ spin alignment
- $\psi' \to J/\psi\gamma$
proposed new states of 4-quarks and 1 antiquark

for example:

$$\Theta^+ (uudd\bar{s}) \rightarrow pK_s^0$$

$$\Xi^{-} (ddss\bar{u}) \rightarrow \Xi^- \pi^-$$

HERA-B results:

- based upon min-bias
 - $200 \cdot 10^6$ events
 - $2.2 \cdot 10^6 K_s^0$
 - $4.7 \cdot 10^3 \Xi^-$
- no signal found!
A quick look into single lepton triggered data...

- select opposite charge pairs
 - secondary vertex downstream of the primary vertex
 - assign pion masses
 - invariant mass consistent with K^0_s
- combine with another positive track
 - assign proton mass
 - construct invariant mass with the V^0
- highly significant signal at the $\Theta^+\text{-mass}$
A quick look into single lepton triggered data...

- select opposite charge pairs
 - secondary vertex downstream of the primary vertex
 - assign pion masses
 - invariant mass consistent with K^0_s
- combine with another positive track
 - assign proton mass
 - construct invariant mass with the V^0
- highly significant signal at the Θ^+-mass

-but:
- the “signal” was fake
- the positive track was used twice
- could also be caused by a feature of the track finding program which splits a single true track into two independent ones...
Yet Another “Signal” . . .

HERA-B data with a single high-p_T** lepton trigger**

- study invariant mass spectrum of $\pi^+\pi^-$-pairs
- “clear” $B_0 \rightarrow \pi^+\pi^-$ signal . . .
 - $m(B_0) = 5.279$ GeV
 - $\text{BR}(B_0 \rightarrow \pi^+\pi^-) = 4.6 \times 10^{-6}$
 - approx. 3 million triggered events . . .

![Graph showing invariant mass spectrum](image)

- fluctuations do happen!
Prospects for B-Physics at LHCb

- **Integrated luminosity for first 5σ signals**
 - Based on DC04 studies (numbers by Olivier Schneider):
 - www.cern.ch/lhcb-phys/DC04_physics_performance

<table>
<thead>
<tr>
<th>Lumi(pb$^{-1}$)</th>
<th>Channel</th>
<th>MinBias events</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>$B_d \to D^{*-} \mu^+\nu$</td>
<td>$9.0 \cdot 10^8$</td>
</tr>
<tr>
<td>0.039</td>
<td>$B_u \to J/\psi(\mu^+\mu^-)K^+$</td>
<td>$3.9 \cdot 10^9$</td>
</tr>
<tr>
<td>0.046</td>
<td>$B_d \to D^+\pi^-$</td>
<td>$4.6 \cdot 10^9$</td>
</tr>
<tr>
<td>0.062</td>
<td>$B_d \to J/\psi(\mu^+\mu^-)K^{*0}$</td>
<td>$6.2 \cdot 10^9$</td>
</tr>
<tr>
<td>0.418</td>
<td>$B_d \to K^+\pi^-$</td>
<td>$4.2 \cdot 10^{10}$</td>
</tr>
<tr>
<td>0.427</td>
<td>$B_s \to J/\psi(\mu^+\mu^-)\phi$</td>
<td>$4.3 \cdot 10^{10}$</td>
</tr>
<tr>
<td>0.500</td>
<td>$B_s \to D_s^-\pi^+$</td>
<td>$5.0 \cdot 10^{10}$</td>
</tr>
<tr>
<td>1.176</td>
<td>$B_d \to K^{*}\gamma$</td>
<td>$1.2 \cdot 10^{11}$</td>
</tr>
<tr>
<td>1.490</td>
<td>$B_s \to K^+K^-$</td>
<td>$1.5 \cdot 10^{11}$</td>
</tr>
<tr>
<td>2.101</td>
<td>$B_d \to \pi^+\pi^-$</td>
<td>$2.1 \cdot 10^{11}$</td>
</tr>
</tbody>
</table>

→ B-Physics with exclusive decays requires HLT
Interesting LHC physics possible already with 10^8 minimum bias events

many use cases . . .

- calibration of detector components
- (final) commissioning of trigger system
- first luminosity determination
- full test of computing model with real data
- first steps on the road to b-physics
- basis for tuning of (minbias) Monte Carlo
- first physics papers, such as
 - particle ratios and V^0-production and heavier hyperons
 - ϕ-crosss section and other vector meson resonances
 - studies of the charmonium system and open charm
 - measurement of $c\bar{c}$ and $b\bar{b}$ cross sections, . . .