Measuring the CKM angle γ

J. Blouw

Physikalisches Institut, Universitaet Heidelberg

Tagungsstaette, Neckarzimmern, March 28-30, 2007

Introduction

- The CKM Triangle
- Why γ ?
- Possible ways to measure γ
- Rare decays

Corollary CKM matrix describes quark-flavour changing

- decays described by quark-flavour transformations
- 3 up-type quarks, 3 down-type quarks
- Unitarity requirement imposes constraints on elements

Corollary CKM matrix describes quark-flavour changing

- decays described by quark-flavour transformations
- 3 up-type quarks, 3 down-type quarks
- Unitarity requirement imposes constraints on elements

Corollary CKM matrix describes quark-flavour changing

- decays described by quark-flavour transformations
- 3 up-type quarks, 3 down-type quarks
- Unitarity requirement imposes constraints on elements

Corollary CKM matrix describes quark-flavour changing

- decays described by quark-flavour transformations
- 3 up-type quarks, 3 down-type quarks
- Onitarity requirement imposes constraints on elements

Corollary

CKM matrix describes quark-flavour changing

- decays described by quark-flavour transformations
- 3 up-type quarks, 3 down-type quarks
- Initarity requirement imposes constraints on elements

$$V_{
m CKM} = \left(egin{array}{ccc} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{array}
ight)$$

Corollary CKM matrix describes quark-flavour changing

Example

- decays described by quark-flavour transformations
- 3 up-type quarks, 3 down-type quarks
- Initarity requirement imposes constraints on elements

$$V_{\mathrm{CKM}} = \left(egin{array}{cc} V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \ V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \ V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}} \end{array}
ight)$$

Unitarity yields ($V_{\text{CKM}} \cdot V_{\text{CKM}}^* = \mathbb{1}$)

Unitarity of the CKM matrix

Conclusion The CKM Triangle:

$$V_{\rm ud} V_{\rm ub}^* + V_{\rm cd} V_{\rm cb}^* + V_{\rm td} V_{\rm tb}^* = 0$$

Unitarity of the CKM matrix

Conclusion The CKM Triangle:

 $V_{\rm ud} V_{\rm ub}^* + V_{\rm cd} V_{\rm cb}^* + V_{\rm td} V_{\rm tb}^* = 0$

More triangle exist, *e.g.* for B_s physics:

$$V_{\rm ud} V_{\rm us}^* + V_{\rm cd} V_{\rm cs}^* + V_{\rm td} V_{\rm ts}^* = 0$$

The 3 Angles

$$\begin{aligned} \bullet & \alpha = \operatorname{Arg}\left[-\frac{V_{d}V_{b}^{*}}{V_{dd}V_{b}^{*}}\right] \\ \bullet & \beta = \operatorname{Arg}\left[-\frac{V_{cd}V_{cb}^{*}}{V_{cd}V_{b}^{*}}\right] \\ \bullet & \beta = \operatorname{Arg}\left[-\frac{V_{od}V_{cb}^{*}}{V_{cd}V_{cb}^{*}}\right] \end{aligned}$$

$$egin{aligned} eta_{\mathcal{S}} &= \mathrm{Arg}\left[-rac{V_{\mathrm{ts}}V_{\mathrm{tb}}^{*}}{V_{\mathrm{cs}}V_{\mathrm{cb}}^{*}}
ight] \ eta_{\mathcal{K}} &= \mathrm{Arg}\left[-rac{V_{\mathrm{cs}}V_{\mathrm{cd}}^{*}}{V_{\mathrm{us}}V_{\mathrm{ud}}^{*}}
ight] \end{aligned}$$

The 3 Angles

$$\begin{array}{ll} \bullet & \alpha = \operatorname{Arg}\left[-\frac{V_{d}V_{b}^{*}}{V_{ud}V_{ub}^{*}}\right] \\ \bullet & \beta = \operatorname{Arg}\left[-\frac{V_{cd}V_{cb}^{*}}{V_{d}V_{b}^{*}}\right] \\ \bullet & \beta = \operatorname{Arg}\left[-\frac{V_{ud}V_{cb}^{*}}{V_{cd}V_{cb}^{*}}\right] \end{array}$$

$$egin{aligned} eta_{\mathcal{S}} &= \mathrm{Arg}\left[-rac{V_{\mathrm{ts}}V_{\mathrm{tb}}^{*}}{V_{\mathrm{cs}}V_{\mathrm{cb}}^{*}}
ight] \ eta_{\mathcal{K}} &= \mathrm{Arg}\left[-rac{V_{\mathrm{cs}}V_{\mathrm{cd}}^{*}}{V_{\mathrm{us}}V_{\mathrm{ud}}^{*}}
ight] \end{aligned}$$

The 3 Angles

$$\begin{array}{ll} \bullet & \alpha = \operatorname{Arg}\left[-\frac{V_{\rm ud}\,V_{\rm tb}^*}{V_{\rm ud}\,V_{\rm ub}^*}\right] \\ \bullet & \beta = \operatorname{Arg}\left[-\frac{V_{\rm cd}\,V_{\rm cb}}{V_{\rm ud}\,V_{\rm tb}^*}\right] \\ \bullet & \beta = \operatorname{Arg}\left[-\frac{V_{\rm ud}\,V_{\rm tb}}{V_{\rm cd}\,V_{\rm tb}^*}\right] \end{array}$$

$$egin{aligned} eta_{\mathcal{S}} &= \mathrm{Arg}\left[-rac{V_{\mathrm{ts}}V_{\mathrm{tb}}^{*}}{V_{\mathrm{cs}}V_{\mathrm{cb}}^{*}}
ight] \ eta_{\mathcal{K}} &= \mathrm{Arg}\left[-rac{V_{\mathrm{cs}}V_{\mathrm{cd}}^{*}}{V_{\mathrm{us}}V_{\mathrm{ud}}^{*}}
ight] \end{aligned}$$

The 3 Angles

$$\begin{array}{ll} \mathbf{1} & \alpha = \mathrm{Arg} \left[-\frac{V_{\mathrm{d}} V_{\mathrm{b}}^*}{V_{\mathrm{ud}} V_{\mathrm{ub}}^*} \right] \\ \mathbf{2} & \beta = \mathrm{Arg} \left[-\frac{V_{\mathrm{cd}} V_{\mathrm{cb}}^*}{V_{\mathrm{d}} V_{\mathrm{b}}^*} \right] \\ \mathbf{3} & \beta = \mathrm{Arg} \left[-\frac{V_{\mathrm{ud}} V_{\mathrm{bb}}^*}{V_{\mathrm{cd}} V_{\mathrm{cb}}^*} \right] \end{array}$$

$$\beta_{s} = \operatorname{Arg}\left[-\frac{V_{\rm ts}V_{\rm ts}}{V_{\rm cs}V_{\rm ct}^{*}}\right]$$
$$\beta_{K} = \operatorname{Arg}\left[-\frac{V_{\rm cs}V_{\rm ct}^{*}}{V_{\rm us}V_{\rm ut}^{*}}\right]$$

The 3 Angles

$$\begin{array}{ll} \mathbf{1} & \alpha = \mathrm{Arg} \left[-\frac{V_{\mathrm{d}} V_{\mathrm{b}}^*}{V_{\mathrm{ud}} V_{\mathrm{ub}}^*} \right] \\ \mathbf{2} & \beta = \mathrm{Arg} \left[-\frac{V_{\mathrm{cd}} V_{\mathrm{cb}}^*}{V_{\mathrm{d}} V_{\mathrm{b}}^*} \right] \\ \mathbf{3} & \beta = \mathrm{Arg} \left[-\frac{V_{\mathrm{ud}} V_{\mathrm{bb}}^*}{V_{\mathrm{cd}} V_{\mathrm{cb}}^*} \right] \end{array}$$

$$\begin{array}{ll} \boldsymbol{\beta}_{\mathcal{S}} = \mathrm{Arg} \left[-\frac{V_{\mathrm{ts}} V_{\mathrm{tb}}^*}{V_{\mathrm{cs}} V_{\mathrm{cb}}^*} \right] \\ \boldsymbol{\varepsilon} & \boldsymbol{\beta}_{\mathcal{K}} = \mathrm{Arg} \left[-\frac{V_{\mathrm{cs}} V_{\mathrm{cd}}^*}{V_{\mathrm{ts}} V_{\mathrm{td}}^*} \right] \end{array}$$

$\mathbf{B}_{u}^{\pm} \to \pi^{\pm}(\pi^{\pm} + \pi^{\mp})$

- Small branching fraction
- Measure γ through mixing of resonances w/o CP phase
- Direct CP-violating asymmetries

- $\mathcal{B} = (16.2 \pm 1.2 \pm 0.9) \cdot 10^{-6}$
- $(\pi^+ + \pi^-)$ resonance: $\rho^0, f_0, \chi_{c0} \dots$
- access to cp-violation in interference

$$\mathbf{B}_{u}^{\pm} \to \pi^{\pm}(\pi^{\pm} + \pi^{\mp})$$

Small branching fraction

- Measure γ through mixing of resonances w/o CP phase
- Direct CP-violating asymmetries

• $\mathcal{B} = (16.2 \pm 1.2 \pm 0.9) \cdot 10^{-6}$

- $(\pi^+ + \pi^-)$ resonance: $\rho^0, f_0, \chi_{c0} \dots$
- access to cp-violation in interference

$$\mathbf{B}_{u}^{\pm} \to \pi^{\pm}(\pi^{\pm} + \pi^{\mp})$$

- Small branching fraction
- Measure γ through mixing of resonances w/o CP phase
- Direct CP-violating asymmetries

- $\mathcal{B} = (16.2 \pm 1.2 \pm 0.9) \cdot 10^{-6}$
- $(\pi^+ + \pi^-)$ resonance: $\rho^0, f_0, \chi_{c0} \dots$
- access to cp-violation in interference

$$\mathbf{B}_{u}^{\pm} \to \pi^{\pm}(\pi^{\pm} + \pi^{\mp})$$

- Small branching fraction
- Measure γ through mixing of resonances w/o CP phase
- Direct CP-violating asymmetries

- $\mathcal{B} = (16.2 \pm 1.2 \pm 0.9) \cdot 10^{-6}$
- $(\pi^+ + \pi^-)$ resonance: $\rho^0, f_0, \chi_{c0} \dots$
- access to cp-violation in interference

$\mathbf{B}_u^\pm \to \pi^\pm (\pi^\pm + \pi^\mp)$

- Small branching fraction
- Measure γ through mixing of resonances w/o CP phase
- Direct CP-violating asymmetries

- $\mathcal{B} = (16.2 \pm 1.2 \pm 0.9) \cdot 10^{-6}$
- $(\pi^+ + \pi^-)$ resonance: $\rho^0, f_0, \chi_{c0} \dots$
- access to cp-violation in interference
- \longrightarrow interference between (ρ^0 , f_0) and (χ_{c0}) : sensitivity to CP.

Feynmann Diagram

- $M(\chi_{c0}) = 3414.76 \pm 0.35 \text{ GeV}$
- χ_{c0} is a cc̄-state

A Little Complication

Apply common known Dalitz-plot analysis technique.

- need fit function for each type of resonance:
- *a_i*: unkown (!!) parameter, amplitude fraction
- ² θ_i : unkown parameter, phase(...)
- [®] *F_i*: amplitudes from resonances included in fit
- 1) B^+ yields $\theta_i = \delta_i + \phi_i$
- ² B^- yields $\bar{ heta}_i = \delta_i \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:
- a_i : unkown (!!) parameter, amplitude fraction
- ² θ_i : unkown parameter, phase(...)
- *F_i*: amplitudes from resonances included in fit
- 1) B^+ yields $\theta_i = \delta_i + \phi_i$
- ² B^- yields $\bar{ heta}_i = \delta_i \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{B^+ o \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_i a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- a_i : unkown (!!) parameter, amplitude fraction
- θ_i : unkown parameter, phase(...)
- F_i: amplitudes from resonances included in fit
- B^+ yields $\theta_i = \delta_i + \phi_i$
- ² B^- yields $\bar{ heta}_i = \delta_i \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{B^+ o \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_i a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- a_i: unkown (!!) parameter, amplitude fraction
- θ_i : unkown parameter, phase(...)
- F_i: amplitudes from resonances included in fit
- B^+ yields $\theta_i = \delta_i + \phi_i$
- ² B^- yields $\bar{\theta}_i = \delta_i \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{\mathcal{B}^+
ightarrow \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_i a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- *a_i*: unkown (!!) parameter, amplitude fraction
- 2 θ_i : unkown parameter, phase(...)
- F_i: amplitudes from resonances included in fit
- B^+ yields $\theta_i = \delta_i + \phi_i$
- ² B^- yields $\bar{ heta}_i = \delta_i \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{B^+ o \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_i a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- *a_i*: unkown (!!) parameter, amplitude fraction
- 2 θ_i : unkown parameter, phase(...)
- F_i: amplitudes from resonances included in fit
- B^+ yields $\theta_i = \delta_i + \phi_i$
- ² B^- yields $\bar{ heta}_i = \delta_i \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{B^+ o \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_{i} a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- 1) *a_i*: unkown (!!) parameter, amplitude fraction
- 2 θ_i : unkown parameter, phase(...)
- *F_i*: amplitudes from resonances included in fit Split phase in cp-conserving & cp-violating part:

$$\theta_i = \delta_i + \phi_i$$

- \rightarrow need another decay to disentangle sum of phases
 - B^+ yields $\theta_i = \delta_i + \phi_i$
 - ⁽²⁾ B^- yields $ar{ heta}_i = \delta_i \phi_i$

A Little Complication

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{B^+ o \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_{i} a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- 1) *a_i*: unkown (!!) parameter, amplitude fraction
- 2 θ_i : unkown parameter, phase(...)
- *F_i*: amplitudes from resonances included in fit Split phase in cp-conserving & cp-violating part:

$$\theta_i = \delta_i + \phi_i$$

→ need another decay to disentangle sum of phases • B^+ yields $\theta_i = \delta_i + \phi_i$ • B^- yields $\bar{\theta}_i = \delta_i - \phi_i$

- Apply common known Dalitz-plot analysis technique.
- need fit function for each type of resonance:

$$egin{array}{rll} \mathcal{F}_{\mathcal{B}^+ o \pi^+ \pi^- \pi^+}(s_1,s_2) &=& \left|\sum_i a_i e^{i heta_i} F_i(s_1,s_2)
ight| \ s_{12} &=& \left(p_1^\mu + p_2^\mu
ight) \cdot \left(p_1^\mu + p_2^\mu
ight) \ s_{23} &=& \left(p_2^\mu + p_3^\mu
ight) \cdot \left(p_2^\mu + p_3^\mu
ight) \end{array}$$

- 1) *a_i*: unkown (!!) parameter, amplitude fraction
- 2 θ_i : unkown parameter, phase(...)
- *F_i*: amplitudes from resonances included in fit Split phase in cp-conserving & cp-violating part:

$$\theta_i = \delta_i + \phi_i$$

- \rightarrow need another decay to disentangle sum of phases
 - 1 B^+ yields $\theta_i = \delta_i + \phi_i$
 - 2 B^- yields $\overline{\theta}_i = \delta_i \phi_i$

$b\bar{b}$ production at BaBar

$b\bar{b}$ production at BaBar

J. Blouw

reconstruct B[±]

- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, \odot \ \, \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- ⁴ $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{\rm B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, \odot \ \, \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- ⁴ $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{\rm B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, \odot \ \, \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- ⁴ $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{\rm B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, \odot \ \, \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- ⁴ $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{\rm B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:

(Babar: Amplitude Analysis of the Decay $B^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$, hep-ex/0507025)

- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, \odot \ \, \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- $^{a}~~m_{
 m ES}=\sqrt{(s/2+p_{i}\cdot p_{B})^{2}/E_{i}^{2}-p_{
 m B}^{2}}$
- 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\Box \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- ⁴ $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{\rm B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\Delta E = E_{\rm B}^* \sqrt{s}/2,$
- $m_{
 m ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{
 m B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- ³ $\Delta E = E_{\rm B}^* \sqrt{s}/2,$

a
 $m_{
m ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 - p_{
m B}^2}$

5 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, {}^{\scriptstyle 3} \Delta E = E_{\rm B}^* \sqrt{s}/2,$
- $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 p_{\rm B}^2}$
- 6 2 independent variables

- reconstruct B[±]
- which π belongs to which?
- through which resonance did the $\pi's$ go?
- Example 1: BaBar analysis:
- 3 identical particles in final state
- use Dalitz-plot analysis
- $\ \, \mathbf{\Delta} \boldsymbol{E} = \boldsymbol{E}_{\mathrm{B}}^* \sqrt{\boldsymbol{s}}/\mathbf{2},$
- $m_{\rm ES} = \sqrt{(s/2 + p_i \cdot p_B)^2 / E_i^2 p_{\rm B}^2 }$
- 2 independent variables

$e^+ + e^- ightarrow \Upsilon(4\mathrm{S}) ightarrow (bar{b})$: at $\sqrt(s) = 10.5~\mathrm{GeV}$

- 1 Use kinematics of $(b\bar{b})$ production at resonance
- (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- ⁴ construct "invariant" masses of 2 combinations of π 's:

$e^+ + e^- ightarrow \Upsilon(4\mathrm{S}) ightarrow (bar{b})$: at $\sqrt(s) = 10.5~\mathrm{GeV}$

• Use kinematics of $(b\bar{b})$ production at resonance

- (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- ⁴ construct "invariant" masses of 2 combinations of π 's:

$$e^+ + e^-
ightarrow (4S)
ightarrow (bar{b})$$
 : at $\sqrt(s) = 10.5~{
m GeV}$

- 1 Use kinematics of $(b\bar{b})$ production at resonance
- 2 (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- ⁴ construct "invariant" masses of 2 combinations of π 's:

$$e^+ + e^-
ightarrow (4S)
ightarrow (bar{b})$$
 : at $\sqrt(s) = 10.5~{
m GeV}$

- 1 Use kinematics of $(b\bar{b})$ production at resonance
- 2 (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- e construct "invariant" masses of 2 combinations of π 's:

$$e^+ + e^-
ightarrow \Upsilon(4S)
ightarrow (bar{b})$$
 : at $\sqrt(s) = 10.5~{
m GeV}$

- Use kinematics of $(b\bar{b})$ production at resonance
- 2 (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- 4 construct "invariant" masses of 2 combinations of π 's:

$$e^+ + e^- \rightarrow \Upsilon(4S) \rightarrow (b\bar{b})$$
 : at $\sqrt{(s)} = 10.5 \text{ GeV}$

- 1 Use kinematics of $(b\bar{b})$ production at resonance
- 2 (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- 4 construct "invariant" masses of 2 combinations of π 's:

$$e^+ + e^- \rightarrow \Upsilon(4S) \rightarrow (b\bar{b})$$
 : at $\sqrt{(s)} = 10.5 \text{ GeV}$

- 1 Use kinematics of $(b\bar{b})$ production at resonance
- 2 (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- 4 construct "invariant" masses of 2 combinations of π 's:

J. Blouw

e.g. $B^+ \to \pi_1^+(\pi_2^-\pi_3^+)$

$$e^+ + e^-
ightarrow \Upsilon(4S)
ightarrow (bar{b})$$
 : at $\sqrt(s) = 10.5 \text{ GeV}$

- 1 Use kinematics of $(b\bar{b})$ production at resonance
- 2 (Compare with LHCb: $E(b\bar{b})$ and $p(b\bar{b})$ not a priori known!)
- kinematic constraints from bb production help to suppress background
- 4 construct "invariant" masses of 2 combinations of π 's:

e.g.
$$B^+ \to \pi_1^+(\pi_2^-\pi_3^+)$$

 $s_{13} = m_{\pi_1^+\pi_2}^2$
 $s_{23} = m_{\pi_2^+\pi_2}^2$

Ò

Dalitz Plot Analysis

Example:
$$D^0 o K_s^0 \pi^+ \pi^-$$

Example: $D^0 \rightarrow K^0_s \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- What did we expect?
 - *R_k*: mass distribution
 - T_k : angular-dependent amplitude
 - B R_k usual a Breit-Wigner

4
$$T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$$

⁵ $T_k^{(2)} = rac{4}{3} [3(ec{
ho} \cdot ec{q})^2 - (\left|ec{
ho}\right| \left|ec{q}\right|)^2$

- 1 Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- ² Resonances from $(\pi^+ + K_s^0 = K^{*+}(892))$

Example: $D^0 \rightarrow K^0_s \pi^+ \pi^-$

Plot invariant masses

- Why observe structure in Dalitz plot?
- What did we expect?
 - *R_k*: mass distribution
 - T_k : angular-dependent amplitude
 - \bigcirc R_k usual a Breit-Wigner

4
$$T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$$

⁵ $T_k^{(2)} = rac{4}{3} [3(ec{p} \cdot ec{q})^2 - (\left|ec{p}\right| \left|ec{q}\right|)^2$

- Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- ² Resonances from $(\pi^+ + K_s^0 = K^{*+}(892))$

Example:
$$D^0
ightarrow K^0_s \pi^+ \pi^-$$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- What did we expect?
 - \square R_k : mass distribution
 - T_k : angular-dependent amplitude
 - \bigcirc R_k usual a Breit-Wigner

4
$$T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$$

⁵ $T_k^{(2)} = rac{4}{3} [3(ec{
ho} \cdot ec{q})^2 - (\left|ec{
ho}\right| \left|ec{q}\right|)^2$

- Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- ² Resonances from $(\pi^+ + K_s^0 = K^{*+}(892))$

Example: $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- What did we expect?

- \blacksquare R_k : mass distribution
- T_k : angular-dependent amplitude
- \circ R_k usual a Breit-Wigner
- 4 $T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$
- ⁵ $T_k^{(2)} = \frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 (|\vec{p}| |\vec{q}|)^2]$

- Resonances from $(\pi^- + \pi^+ = \rho^0, f_0(989))$
- ² Resonances from $(\pi^+ + K_s^0 = K^{*+}(892))$

Example: $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- What did we expect?

- *R_k*: mass distribution
- T_k : angular-dependent amplitude
- \circ R_k usual a Breit-Wigner
- 4 $T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$
- ⁶ $T_k^{(2)} = \frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 (|\vec{p}| |\vec{q}|)^2$

- Provide $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- Resonances from $(\pi^+ + K_s^0 = K^{*+}(892))$

J. Blouw

Dalitz Plot Analysis

Example: $D^0 \rightarrow K_s^0 \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- What did we expect?

- \bigcirc R_k : mass distribution
- T_k : angular-dependent amplitude
- \circ R_k usual a Breit-Wigner
- 4 $T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$
- ⁵ $T_k^{(2)} = \frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 (|\vec{p}| |\vec{q}|)^2$

- ¹ Resonances from $(\pi^- + \pi^+ = \rho^0, f_0(989))$
- Presonances from $(\pi^+ + K_s^0 = K^{*+}(892))$

Example: $D^0
ightarrow K^0_s \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- ³ What did we expect? Decay rate:

Resonances...

- ¹ Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- Resonances from $(\pi^+ + K_s^0 = K^{*+}$ (892))

$$rac{d \mathsf{\Gamma}}{d s_{13} d s_{23}} = \left| \mathcal{M}
ight|^2 \propto \left| \sum_k c_k e^{i heta_k} \mathcal{D}_k(s_{12}, s_{23})
ight|^2$$

 $\mathcal{D}_k = \mathcal{R}_k \times \mathcal{T}_k$

- R_k: mass distribution
- T_k : angular-dependent amplitude
- B R_k usual a Breit-Wigner
- 4 $T_k^{(0)} = 1, \ T_k^{(1)} = -2 \vec{p} \cdot \vec{q}$

⁵
$$T_k^{(2)} = \frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 - (\left| \vec{p} \right| \left| \vec{q} \right|)^2$$

J. Blouw

Dalitz Plot Analysis

Example: $D^0
ightarrow K^0_s \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- ³ What did we expect? Decay rate:

$\left| rac{d \Gamma}{d s_{13} d s_{23}} = \left| \mathcal{M} ight|^2 \propto \left| \sum_k c_k e^{i heta_k} \mathcal{D}_k(s_{12}, s_{23}) ight|^2$

 $\mathcal{D}_k = \mathbf{R}_k \times \mathbf{T}_k$

- *R_k*: mass distribution
- 2 T_k : angular-dependent amplitude
- *R_k* usual a Breit-Wigner
- 4 $T_k^{(0)} = 1, \ T_k^{(1)} = -2 \vec{p} \cdot \vec{q}$
- ⁵ $T_k^{(2)} = \frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 (|\vec{p}| |\vec{q}|)^2$

- ¹ Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- Provide the second sec

J. Blouw

Dalitz Plot Analysis

Example: $D^0
ightarrow K^0_s \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- ³ What did we expect? Decay rate:

$\left| rac{d\Gamma}{ds_{13}ds_{23}} = \left| \mathcal{M} \right|^2 \propto \left| \sum_k c_k e^{i heta_k} \mathcal{D}_k(s_{12}, s_{23}) ight|^2$

 $\mathcal{D}_k = \mathbf{R}_k \times \mathbf{T}_k$

- *R_k*: mass distribution
- 2 T_k : angular-dependent amplitude
- B Rk usual a Breit-Wigner
- $\begin{array}{l} {}^{_{4}} \quad T_k^{(0)} = 1, \, T_k^{(1)} = -2 \vec{p} \cdot \vec{q} \\ {}^{_{5}} \quad T_k^{(2)} = \frac{4}{3} [3 (\vec{p} \cdot \vec{q})^2 (\left| \vec{p} \right| \left| \vec{q} \right| \end{array}$

- ¹ Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- Provide the second sec

Example: $D^0
ightarrow K^0_s \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- ³ What did we expect? Decay rate:

$\left|rac{d\Gamma}{ds_{13}ds_{23}}=\left|\mathcal{M} ight|^2\propto\left|\sum_k c_k e^{i heta_k}\mathcal{D}_k(s_{12},s_{23}) ight|^2$

 $\mathcal{D}_k = \mathbf{R}_k \times \mathbf{T}_k$

- *R_k*: mass distribution
- 2 T_k : angular-dependent amplitude
- *R_k* usual a Breit-Wigner
- 4 $T_k^{(0)} = 1, T_k^{(1)} = -2\vec{p}\cdot\vec{q}$ $T_k^{(2)} = 4[2(\vec{p} \cdot \vec{q})^2 - (|\vec{p}|)^2]$

Resonances...

- ¹ Resonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- Provide the second sec

Example: $D^0
ightarrow K^0_s \pi^+ \pi^-$

- Plot invariant masses
- Why observe structure in Dalitz plot?
- ³ What did we expect? Decay rate:

$\left|rac{d\Gamma}{ds_{13}ds_{23}}=\left|\mathcal{M} ight|^2\propto\left|\sum_k c_k e^{i heta_k}\mathcal{D}_k(s_{12},s_{23}) ight|^2$

 $\mathcal{D}_k = \mathbf{R}_k \times \mathbf{T}_k$

- *R_k*: mass distribution
- 2 T_k : angular-dependent amplitude
- B_k usual a Breit-Wigner

$$T_k^{(0)} = 1, \ T_k^{(1)} = -2\vec{p}\cdot\vec{q}$$

•
$$T_k^{(2)} = \frac{4}{3} [3(\vec{p} \cdot \vec{q})^2 - (|\vec{p}| |\vec{q}|)^2]$$

Resonances...

- Besonances from $(\pi^{-} + \pi^{+} = \rho^{0}, f_{0}(989))$
- Resonances from $(\pi^+ + K_s^0 = K^{*+}$ (892))

Dalitz: $B^{\pm} \rightarrow \pi^{\mp} \pi^{\pm} \pi^{\pm}$

Usual Dalitz plot

Note: resonances occur at bounderies...

Rescale co-ordinates:

Empty space from charm vetoes

Dalitz from BB background

$B\bar{B}$ background: usual co-ordinates

Holes are from charm vetoes

re-scaled co-ordinates:

Results Mass projections

Projection from B^+ onto $m(\pi^+\pi^-)$

Projection from B⁻ onto $m(\pi^-\pi^-)$

J. Blouw

Results Mass projections

Project from B⁻ onto $m(\pi^-\pi^-)$

Projection from B^+ onto $m(\pi^+\pi^+)$

J. Blouw

9 $B^+ \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$: (16.2 ± 1.2 ± 0.9) × 10⁻⁶ 2 $\rho^0(770)\pi^{\pm}(\rho^0 \to \pi^+\pi^-)$: (8.8 ± 1.0 ± 0.6) × 10⁻⁶ 3 $\rho^0(1450)\pi^{\pm}(\rho^0 \to \pi^+\pi^-)$: (1.0 ± 0.6 ± 0.4) × 10⁻⁶ 4 $f_0(980)\pi^{\pm}(f_0 \to \pi^+\pi^-)$: (1.2 ± 0.6 ± 0.5) × 10⁻⁶ 5 $\chi_{c0}\pi^{\pm}(\chi_{c0} \to \pi^+\pi^-)$: < 0.3 at 90% CL

 $B^+ \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$: $(16.2 \pm 1.2 \pm 0.9) \times 10^{-6}$ $\rho^0(770)\pi^{\pm}(\rho^0 \to \pi^+\pi^-)$: $(8.8 \pm 1.0 \pm 0.6) \times 10^{-6}$ $\rho^0(1450)\pi^{\pm}(\rho^0 \to \pi^+\pi^-)$: $(1.0 \pm 0.6 \pm 0.4) \times 10^{-6}$ $f_0(980)\pi^{\pm}(f_0 \to \pi^+\pi^-)$: $(1.2 \pm 0.6 \pm 0.5) \times 10^{-6}$ $\chi_{c0}\pi^{\pm}(\chi_{c0} \to \pi^+\pi^-)$: < 0.3 at 90% CL

 $\begin{array}{l} \bullet B^{+} \to \pi^{\pm}\pi^{\pm}\pi^{\mp} : (16.2 \pm 1.2 \pm 0.9) \times 10^{-6} \\ \bullet \rho^{0}(770)\pi^{\pm}(\rho^{0} \to \pi^{+}\pi^{-}) : (8.8 \pm 1.0 \pm 0.6) \times 10^{-6} \\ \bullet \rho^{0}(1450)\pi^{\pm}(\rho^{0} \to \pi^{+}\pi^{-}) : (1.0 \pm 0.6 \pm 0.4) \times 10^{-6} \\ \bullet f_{0}(980)\pi^{\pm}(f_{0} \to \pi^{+}\pi^{-}) : (1.2 \pm 0.6 \pm 0.5) \times 10^{-6} \\ \bullet \chi_{c0}\pi^{\pm}(\chi_{c0} \to \pi^{+}\pi^{-}) : < 0.3 \text{ at } 90\% \text{ CL} \end{array}$

$$\begin{array}{ll} \mathbf{B}^{+} \to \pi^{\pm}\pi^{\pm}\pi^{\mp} : (16.2 \pm 1.2 \pm 0.9) \times 10^{-6} \\ \mathbf{2} \quad \rho^{0}(770)\pi^{\pm}(\rho^{0} \to \pi^{+}\pi^{-}) : (8.8 \pm 1.0 \pm 0.6) \times 10^{-6} \\ \mathbf{9} \quad \rho^{0}(1450)\pi^{\pm}(\rho^{0} \to \pi^{+}\pi^{-}) : (1.0 \pm 0.6 \pm 0.4) \times 10^{-6} \\ \mathbf{4} \quad f_{0}(980)\pi^{\pm}(f_{0} \to \pi^{+}\pi^{-}) : (1.2 \pm 0.6 \pm 0.5) \times 10^{-6} \\ \mathbf{5} \quad \chi_{c0}\pi^{\pm}(\chi_{c0} \to \pi^{+}\pi^{-}) : < 0.3 \text{ at } 90\% \text{ CL} \end{array}$$

$$\begin{array}{ll} \mathbf{B}^{+} \to \pi^{\pm}\pi^{\pm}\pi^{\mp} &: (16.2 \pm 1.2 \pm 0.9) \times 10^{-6} \\ \mathbf{2} & \rho^{0}(770)\pi^{\pm}(\rho^{0} \to \pi^{+}\pi^{-}) &: (8.8 \pm 1.0 \pm 0.6) \times 10^{-6} \\ \mathbf{9} & \rho^{0}(1450)\pi^{\pm}(\rho^{0} \to \pi^{+}\pi^{-}) &: (1.0 \pm 0.6 \pm 0.4) \times 10^{-6} \\ \mathbf{4} & f_{0}(980)\pi^{\pm}(f_{0} \to \pi^{+}\pi^{-}) &: (1.2 \pm 0.6 \pm 0.5) \times 10^{-6} \\ \mathbf{5} & \chi_{c0}\pi^{\pm}(\chi_{c0} \to \pi^{+}\pi^{-}) &: < 0.3 \text{ at } 90\% \text{ CL} \end{array}$$

¹ B⁺
$$\rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$$
 : (16.2 \pm 1.2 \pm 0.9) \times 10⁻⁶
² $\rho^{0}(770)\pi^{\pm}(\rho^{0} \rightarrow \pi^{+}\pi^{-})$: (8.8 \pm 1.0 \pm 0.6) \times 10⁻⁶
³ $\rho^{0}(1450)\pi^{\pm}(\rho^{0} \rightarrow \pi^{+}\pi^{-})$: (1.0 \pm 0.6 \pm 0.4) \times 10⁻⁶
⁴ $f_{0}(980)\pi^{\pm}(f_{0} \rightarrow \pi^{+}\pi^{-})$: (1.2 \pm 0.6 \pm 0.5) \times 10⁻⁶
⁵ $\chi_{c0}\pi^{\pm}(\chi_{c0} \rightarrow \pi^{+}\pi^{-})$: < 0.3 at 90% CL

Conclusion No χ_{c0} signal(!)

Results & Conclusions

¹ B⁺
$$\rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$$
 : (16.2 \pm 1.2 \pm 0.9) \times 10⁻⁶
² $\rho^{0}(770)\pi^{\pm}(\rho^{0} \rightarrow \pi^{+}\pi^{-})$: (8.8 \pm 1.0 \pm 0.6) \times 10⁻⁶
³ $\rho^{0}(1450)\pi^{\pm}(\rho^{0} \rightarrow \pi^{+}\pi^{-})$: (1.0 \pm 0.6 \pm 0.4) \times 10⁻⁶
⁴ $f_{0}(980)\pi^{\pm}(f_{0} \rightarrow \pi^{+}\pi^{-})$: (1.2 \pm 0.6 \pm 0.5) \times 10⁻⁶
⁵ $\chi_{c0}\pi^{\pm}(\chi_{c0} \rightarrow \pi^{+}\pi^{-})$: < 0.3 at 90% CL

Conclusion

No χ_{c0} signal(!) \Rightarrow CP-violation measurement not possible!!!

