Measuring the CKM angle γ

J. Blouw

Physikalisches Institut, Universitaet Heidelberg

Tagungsstaette, Neckarzimmern, March 28-30, 2007

The LHCb Spectrometer

blouw

The LHCb Spectrometer

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- Circumvent problems using assumption of U-spin symmetry (s → d)
- 6 Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm {
 m K}^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- Circumvent problems using assumption of U-spin symmetry (s → d)
- 6 Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm {
 m K}^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

Only tree diagrams

- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- 6 Circumvent problems using assumption of U-spin symmetry (s ←→ d)
- 6 Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm {
 m K}^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- Circumvent problems using assumption of U-spin symmetry (s → d)
- 6 Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm {
 m K}^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- Circumvent problems using assumption of U-spin symmetry (s → d)
- 6 Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm K^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

$\underset{\gamma \text{ from } B_{\textbf{\textit{s}}} \rightarrow D_{\textbf{\textit{s}}}K}{\text{ from } B_{\textbf{\textit{s}}} \rightarrow D_{\textbf{\textit{s}}}K}$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for B_d → D^{*±}π[∓], andB_d → D[±]π[∓]
- Solution of U-spin symmetry (s ←→ d)
- 6 Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm K^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

$\underset{\gamma \text{ from } B_{\textbf{\textit{s}}} \rightarrow D_{\textbf{\textit{s}}}K}{\text{ from } B_{\textbf{\textit{s}}} \rightarrow D_{\textbf{\textit{s}}}K}$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- ⁵ Circumvent problems using assumption of U-spin symmetry (s ←→ d)
- Simultaneous analysis of ${
 m B}_s
 ightarrow {
 m D}_s^\pm K^\mp$ and ${
 m B}_d
 ightarrow {
 m D}^\pm \pi^\mp$

$\underset{\gamma \text{ from } B_{\textbf{\textit{s}}} \rightarrow D_{\textbf{\textit{s}}}K}{\text{ from } B_{\textbf{\textit{s}}} \rightarrow D_{\textbf{\textit{s}}}K}$

Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

- Only tree diagrams
- But: problem of discrete ambiguities
- Solve by using equivalent decay with B_d:
- But: very small interference effects for

- ⁵ Circumvent problems using assumption of U-spin symmetry (s ←→ d)
- ⁶ Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^{\mp}$ and $B_d \rightarrow D^{\pm} \pi^{\mp}$

- Sensitivity to γ through
- matrix element $V_{ub}V_{cs}^*$
- c.f. $\gamma \sim \arg(V_{ub})$
- o not enough: need 2nd diagram for intererence:

- Sensitivity to γ through
- matrix element $V_{ub}V_{cs}^*$
- c.f. $\gamma \sim \arg(V_{ub})$
- o not enough: need 2nd diagram for intererence:

Diagram for $B_{{\mbox{\scriptsize s}}} \to D_{{\mbox{\scriptsize s}}}^- K^+$

- Sensitivity to γ through
- matrix element $V_{ub}V_{cs}^*$
- c.f. $\gamma \sim \arg(V_{ub})$
- o not enough: need 2nd diagram for intererence:

Diagram for $B_{{\mbox{\scriptsize s}}} \to D_{{\mbox{\scriptsize s}}}^- K^+$

- Sensitivity to γ through
- matrix element $V_{ub}V_{cs}^*$
- c.f. $\gamma \sim \arg(V_{ub})$
- not enough: need 2nd diagram for intererence:

Diagram for $B_s \rightarrow D_s^- K^+$

Diagram for ${\rm B}_{\it s} \rightarrow {\rm D}_{\it s}^+ {\rm K}^-$

A Combined $B_s \rightarrow D_s^{\pm} K^{\mp}$ and $B_d \rightarrow D^{\pm} \pi^{\mp}$ Analysis

- Interference through mixing
- CP assymetries measure $\gamma + \phi_s$
- Tree diagrams only: NO sensitivity to New Physics
- 5400 $B_s \rightarrow D_s K$ events/year at LHCb
- 82000 $B_s \rightarrow D_s \pi$ events/year

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) - \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) + \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}$$

dependence:

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

- 1 Δm_s : mass difference between heavy & light B-meson
- ² $\Delta\Gamma_s$: lifetime difference between heavy & light B-meson
- C_s depends on ratio of amplitudes of Feynmann diagrams
- 4 Similarly done for $D_s^-K^+$ analysis

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) - \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) + \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}$$

dependence:

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

1) Δm_s : mass difference between heavy & light B-meson

- 2 ΔΓ_s: lifetime difference between heavy & light B-meson
- C_s depends on ratio of amplitudes of Feynmann diagrams
- 4 Similarly done for $D_s^-K^+$ analysis

$$\mathcal{A}_{\rm CP}({\rm D}_{{\rm s}}^+{\rm K}^-) = \frac{{\rm B}_{{\rm s}} \rightarrow {\rm D}_{{\rm s}}{\rm K}^-(t) - \bar{{\rm B}}_{{\rm s}} \rightarrow {\rm D}_{{\rm s}}{\rm K}^-(t)}{{\rm B}_{{\rm s}} \rightarrow {\rm D}_{{\rm s}}{\rm K}^-(t) + \bar{{\rm B}}_{{\rm s}} \rightarrow {\rm D}_{{\rm s}}{\rm K}^-(t)}$$

dependence:

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

1) Δm_s : mass difference between heavy & light B-meson

- 2 ΔΓ_s: lifetime difference between heavy & light B-meson
- C_s depends on ratio of amplitudes of Feynmann diagrams
- 4 Similarly done for $D_s^-K^+$ analysis

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) - \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) + \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}$$

dependence:

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

• Δm_s : mass difference between heavy & light B-meson

- ² $\Delta\Gamma_s$: lifetime difference between heavy & light B-meson
- C_s depends on ratio of amplitudes of Feynmann diagrams
- 4 Similarly done for $D_s^-K^+$ analysis

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) - \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}{{\rm B}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t) + \bar{{\rm B}}_{s} \rightarrow {\rm D}_{s}{\rm K}^{-}(t)}$$

dependence:

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

- 1 Δm_s : mass difference between heavy & light B-meson
- 2 ΔΓ_s: lifetime difference between heavy & light B-meson
- C_s depends on ratio of amplitudes of Feynmann diagrams
- 4 Similarly done for $D_s^-K^+$ analysis

$$\mathcal{A}_{\rm CP}({\rm D}^+_{\mathcal{S}}{\rm K}^-) = \frac{{\rm B}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t) - \bar{{\rm B}}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t)}{{\rm B}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t) + \bar{{\rm B}}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t)}$$

dependence:

$$\mathcal{A}_{\rm CP}({\rm D}_{s}^{+}{\rm K}^{-}) = \frac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

- 1 Δm_s : mass difference between heavy & light B-meson
- 2 ΔΓ_s: lifetime difference between heavy & light B-meson
- C_s depends on ratio of amplitudes of Feynmann diagrams
- 4 Similarly done for $D_s^-K^+$ analysis

 $S_s(\bar{S}_s) \sim sin(\phi_s + \gamma \pm \delta_s)$

$$\mathcal{A}_{\rm CP}({\rm D}_{\mathcal{S}}^+{\rm K}^-) = \frac{{\rm B}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t) - \bar{{\rm B}}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t)}{{\rm B}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t) + \bar{{\rm B}}_{\mathcal{S}} \rightarrow {\rm D}_{\mathcal{S}}{\rm K}^-(t)}$$

dependence:

$$\mathcal{A}_{ ext{CP}}(ext{D}_{s}^{+} ext{K}^{-}) = rac{C_{s}\cos\Delta m_{s}t + S_{s}\sin\Delta m_{s}t}{\cosh(\Delta\Gamma_{s}t/2) - A_{\Delta\Gamma_{s}}\sinh(\Delta\Gamma_{s}t/2)}$$

 Δ*m_s*: mass difference between heavy & light B-meson
 ΔΓ_s: lifetime difference between heavy & light B-meson
 C_s depends on ratio of amplitudes of Feynmann diagrams
 Similarly done for D_s⁻K⁺ analysis S_s(S_s) ~ sin(φ_s + γ ± δ_s)

$$m{A}_{\Delta \Gamma_{m{s}}} \sim -\cos(\phi_{m{s}} + \gamma \pm \delta_{m{s}})$$

- 1) Phase of $\mathrm{D}^+_s\mathrm{K}^ \delta_s+(\gamma+\phi_s)$
- ² Phase of $D_s^-K^+$ $\delta_s (\gamma + \phi_s)$
- ^a ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Longrightarrow determine γ .
- 4 $\Delta m_s \sim$ 20 ps⁻¹: $\sigma_\gamma \approx$ 14°
- ⁵ Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$

From \sim 5 years of LHCb data:

1 Phase of $\mathrm{D}^+_s\mathrm{K}^ \delta_s+(\gamma+\phi_s)$

- ² Phase of $\mathrm{D}_{s}^{-}\mathrm{K}^{+}$ $\delta_{s}-(\gamma+\phi_{s})$
- ^a ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Longrightarrow determine γ .
- 4) $\Delta m_s \sim$ 20 ps⁻¹: $\sigma_\gamma pprox$ 14°
- ⁵ Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$

From \sim 5 years of LHCb data:

1 Phase of $\mathrm{D}^+_s\mathrm{K}^ \delta_s+(\gamma+\phi_s)$

² Phase of $D_s^-K^+ \delta_s - (\gamma + \phi_s)$

^a ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Longrightarrow determine γ .

- 4) $\Delta m_s \sim$ 20 ps⁻¹: $\sigma_\gamma pprox$ 14°
- ⁵ Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$

- 1) Phase of $\mathrm{D}^+_s\mathrm{K}^ \delta_s+(\gamma+\phi_s)$
- 2 Phase of $D_s^-K^+ \delta_s (\gamma + \phi_s)$
- ³ ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Longrightarrow determine γ .
- $^{_{(4)}}$ $\Delta m_s \sim$ 20 ps⁻¹: $\sigma_\gamma pprox$ 14°
- ⁶ Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$

- 1) Phase of $\mathrm{D}^+_s\mathrm{K}^ \delta_s+(\gamma+\phi_s)$
- ² Phase of $D_s^-K^+ \delta_s (\gamma + \phi_s)$
- ³ ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Longrightarrow determine γ .
- $\Delta m_s \sim 20 \text{ ps}^{-1}$: $\sigma_\gamma \approx 14^\circ$
- ⁵ Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$

- 1) Phase of $\mathrm{D}^+_s\mathrm{K}^ \delta_s+(\gamma+\phi_s)$
- ² Phase of $D_s^-K^+ \delta_s (\gamma + \phi_s)$
- 3 ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Longrightarrow determine γ .
- \bullet $\Delta m_s \sim$ 20 ps⁻¹: $\sigma_\gamma \approx$ 14°
- ⁵ Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$

γ from $\mathbf{B} \rightarrow h^+ h^-$

- 1) time-dependent CP-asymmetries for ${\rm B}^0_{\rm d} \to \pi^+\pi^-$
- $^{2} \quad \text{and} \ B_{s} \to K^{+}K^{-}$
- But: penguin diagram contributes!
- 4) $A_{
 m dir}, A_{
 m mix}$ depend on ϕ_s, ϕ_d & γ
- and on ratio of penguin to tree amplitudes: de^{iθ}
- with U-spin symmetry: $d_{\pi\pi} = d_{\rm KK}, \ \theta_{\pi\pi} = \theta_{\rm KK}$
- 7 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_{\gamma} = 5^{\circ}$

Tree diagram:

γ from $\mathbf{B} \rightarrow h^+ h^-$

- 1) time-dependent CP-asymmetries for ${\rm B}^0_{\rm d} \to \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!
- 4 $\textit{A}_{
 m dir},\textit{A}_{
 m mix}$ depend on $\phi_{\textit{s}},\phi_{\textit{d}}$ & γ
- and on ratio of penguin to tree amplitudes: de^{iθ}
- with U-spin symmetry: $d_{\pi\pi} = d_{\rm KK}, \ \theta_{\pi\pi} = \theta_{\rm KK}$
- 7 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns \implies extract γ , $\sigma_{\gamma} = 5^{\circ}$

Tree diagram:

γ from B \rightarrow h^+h^-

- time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!
- 4 $\textit{A}_{
 m dir},\textit{A}_{
 m mix}$ depend on $\phi_{\textit{s}},\phi_{\textit{d}}$ & γ
- and on ratio of penguin to tree amplitudes: *de^{iθ}*
- with U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- ϕ_s from ${
 m B}_s o J/\psi \phi$ and ϕ_d from $B_d o J/\psi {
 m K}_{
 m s}$
- 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

γ from $\mathbf{B} \rightarrow h^+ h^-$

- time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- ⁴ $\textit{A}_{
 m dir},\textit{A}_{
 m mix}$ depend on $\phi_{\textit{s}},\phi_{\textit{d}}$ & γ
- and on ratio of penguin to tree amplitudes: de^{iθ}
- with U-spin symmetry: $d_{\pi\pi} = d_{KK}, \ \theta_{\pi\pi} = \theta_{KK}$
- 7 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns ⇒ extract γ , $\sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

- time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- A_{dir}, A_{mix} depend on ϕ_s , ϕ_d & γ
- and on ratio of penguin to tree amplitudes: *de^{iθ}*
- with U-spin symmetry: $d_{\pi\pi} = d_{\rm KK}, \ \theta_{\pi\pi} = \theta_{\rm KK}$
- 7 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

- 1) time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- Adir, $A_{
 m mix}$ depend on $\phi_s, \phi_d \& \gamma$
- and on ratio of penguin to tree amplitudes: de^{iθ}
- with U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- 7 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

blouw

- time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- $A_{
 m dir}, A_{
 m mix}$ depend on ϕ_{s}, ϕ_{d} & γ
- and on ratio of penguin to tree amplitudes: *de^{iθ}*
- with U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- 7 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

blouw

- 1) time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- 4) $\textit{A}_{
 m dir},\textit{A}_{
 m mix}$ depend on $\phi_{\textit{s}},\phi_{\textit{d}}$ & γ
- and on ratio of penguin to tree amplitudes: *de^{iθ}*
- with U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- 2 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

blouw

- 1) time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+\pi^-$
- ² and $B_s \rightarrow K^+K^-$
- But: penguin diagram contributes!

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- 4) $\textit{A}_{
 m dir},\textit{A}_{
 m mix}$ depend on $\phi_{\textit{s}},\phi_{\textit{d}}$ & γ
- and on ratio of penguin to tree amplitudes: *de^{iθ}*
- with U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$
- 2 ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
- 4 measurements, 3 unknowns ⇒ extract γ , $\sigma_{\gamma} = 5^{\circ}$

Tree diagram:

Penguin diagram:

blouw

Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$

- Use U-spin symmetry to resolve discrete ambiguities
- Measure time-dependent CP-asymmetry
- $\bigcirc \phi_s$ measured with $\mathrm{B}_s \to J \ / \ \psi \phi$ analysis
- ² Determine γ from $B_s \to K^{\pm}K^{\mp}$ and $B^0 \to \pi^+\pi^-$
 - Measure 2 time-dependent CP
 - asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from
 - $\mathrm{B}_{s}
 ightarrow J \ / \ \psi \phi \ \mathrm{and} \ \mathrm{B}^{0}
 ightarrow J \ / \ \psi \mathrm{K}_{s}$
- $\circledast \implies$ sensitivity to New Physics through Penguin diagram

- Determine γ from tree-diagrams only: $\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}^{\pm} \mathbf{K}^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - $\bigcirc \phi_s$ measured with $B_s \rightarrow J / \psi \phi$ analysis
- ² Determine γ from $\mathbf{B}_s \to \mathbf{K}^{\pm} \mathbf{K}^{\mp}$ and $\mathbf{B}^0 \to \pi^+ \pi^-$
 - Measure 2 time-dependent CP
 - asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from
 - $\mathrm{B}_{s}
 ightarrow J \ / \ \psi \phi \ \mathrm{and} \ \mathrm{B}^{0}
 ightarrow J \ / \ \psi \mathrm{K}_{s}$
- $\circledast \implies$ sensitivity to New Physics through Penguin diagram

- Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - ϕ_s measured with $B_s \rightarrow J / \psi \phi$ analysis
- ² Determine γ from $\mathbf{B}_s \to \mathbf{K}^{\pm} \mathbf{K}^{\mp}$ and $\mathbf{B}^0 \to \pi^+ \pi^-$
 - Measure 2 time-dependent CP
 - asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from
 - $\mathrm{B}_{s}
 ightarrow J \ / \ \psi \phi \ \mathrm{and} \ \mathrm{B}^{0}
 ightarrow J \ / \ \psi \mathrm{K}_{s}$
- $\circledast \implies$ sensitivity to New Physics through Penguin diagram

- **Determine** γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - 3 ϕ_s measured with $B_s \rightarrow J / \psi \phi$ analysis
- ² Determine γ from $B_s \to K^{\pm}K^{\mp}$ and $B^0 \to \pi^+\pi^-$
 - Measure 2 time-dependent CP
 - asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from
 - $\mathrm{B}_{s}
 ightarrow J \ / \ \psi \phi \ \mathrm{and} \ \mathrm{B}^{\mathrm{0}}
 ightarrow J \ / \ \psi \mathrm{K}_{s}$
- $\circledast \implies$ sensitivity to New Physics through Penguin diagram

- Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - 3 ϕ_s measured with $\mathrm{B}_s \to J \ / \ \psi \phi$ analysis
- 2 Determine γ from $B_s \to K^{\pm}K^{\mp}$ and $B^0 \to \pi^+\pi^-$
 - Measure 2 time-dependent CP asymmetries
 - 2 Problem: penguin diagram contributes
 - Solution Need angles ϕ_s and ϕ_d from $B_s \rightarrow J / \psi \phi$ and $B^0 \rightarrow J / \psi K_s$
- $\circledast \implies$ sensitivity to New Physics through Penguin diagram

- Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - 3 ϕ_s measured with $\mathrm{B}_s \to J \ / \ \psi \phi$ analysis
- 2 Determine γ from $B_s \to K^{\pm}K^{\mp}$ and $B^0 \to \pi^+\pi^-$
 - Measure 2 time-dependent CP asymmetries
 - 2 Problem: penguin diagram contributes
 - Solution Need angles ϕ_s and ϕ_d from $B_s \rightarrow J / \psi \phi$ and $B^0 \rightarrow J / \psi K_s$
- $\circledast \implies$ sensitivity to New Physics through Penguin diagram

- Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - 3 ϕ_s measured with $B_s \rightarrow J / \psi \phi$ analysis
- 2 Determine γ from $B_s \to K^{\pm}K^{\mp}$ and $B^0 \to \pi^+\pi^-$
 - Measure 2 time-dependent CP asymmetries
 - Problem: penguin diagram contributes
 - 3 Need angles ϕ_s and ϕ_d from
 - $\mathrm{B}_{s} \rightarrow J \ / \ \psi \phi$ and $\mathrm{B}^{0} \rightarrow J \ / \ \psi \mathrm{K}_{s}$
- $) \implies$ sensitivity to New Physics through Penguin diagram

- Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - 3 ϕ_s measured with $\mathrm{B}_s \to J \ / \ \psi \phi$ analysis
- 2 Determine γ from $B_s \to K^{\pm}K^{\mp}$ and $B^0 \to \pi^+\pi^-$
 - Measure 2 time-dependent CP asymmetries
 - Problem: penguin diagram contributes
 - Solution Need angles ϕ_s and ϕ_d from $B_s \rightarrow J / \psi \phi$ and $B^0 \rightarrow J / \psi K_{sl}$

