Measuring the CKM angle γ

J. Blouw
Physikalisches Institut, Universitaet Heidelberg

Tagungsstaette, Neckarzimmern, March 28-30, 2007

The LHCb Spectrometer

The LHCb Spectrometer

blouw
Measuring the CKM angle γ

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

Only tree diagrams

But：problem of discrete ambiguities
Solve by using equivalent decay with B_{d} ：
But：very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}$ ，andB ${ }_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
Circumvent problems using assumption of U－spin symmetry $(s \longleftrightarrow d)$
Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

Only tree diagrams

But：problem of discrete ambiguities
Solve by using equivalent decay with B_{d} ：
But：very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}$ ，andB ${ }_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
Circumvent problems using assumption of U－spin symmetry $(s \longleftrightarrow d)$
Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

© Only tree diagrams
But: problem of discrete ambiguities
Solve by using equivalent decay with B_{d} :
But: very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{*+} \pi^{\top}$, andB $\mathrm{B}_{d} \rightarrow \mathrm{D}^{+} \pi^{\top}$
Circumvent problems using assumption of U-spin symmetry $(s \longleftrightarrow d)$
Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

© Only tree diagrams
2 But: problem of discrete ambiguities
Solve by using equivalent decay with B_{d} :
But: very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}$, andB ${ }_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
Circumvent problems using assumption of U-spin symmetry ($s \longleftrightarrow d^{\prime}$)
Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

(1) Only tree diagrams

2 But: problem of discrete ambiguities
3 Solve by using equivalent decay with B_{d} :
But: very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}$, andB ${ }_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
Circumvent problems using assumption of U-spin symmetry $(s \longleftrightarrow d)$
Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

(1) Only tree diagrams

2 But: problem of discrete ambiguities
3 Solve by using equivalent decay with B_{d} :
4. But: very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}, \operatorname{andB}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
Circumvent problems using assumption of U-spin symmetry $(s \longleftrightarrow d)$
Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
γ from $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

(1) Only tree diagrams

2 But: problem of discrete ambiguities
3 Solve by using equivalent decay with B_{d} :
4. But: very small interference effects for $\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}, \operatorname{andB}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
(5) Circumvent problems using assumption of U-spin symmetry ($s \longleftrightarrow d$)
Simultaneous analysis of
$\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
γ from $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}$

Feynmann diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

(1) Only tree diagrams

2 But: problem of discrete ambiguities
3 Solve by using equivalent decay with B_{d} :
4. But: very small interference effects for
$\mathrm{B}_{d} \rightarrow \mathrm{D}^{* \pm} \pi^{\mp}, \operatorname{andB}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$
(5) Circumvent problems using assumption of U-spin symmetry ($s \longleftrightarrow d$)
(6) Simultaneous analysis of $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} K^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$

γ from LHCb(II)

- Sensitivity to γ through
- matrix element $V_{u b} V_{c s}^{*}$
- C.f. $\gamma \sim \arg \left(V_{u b}\right)$
- not enough: need 2nd diagram for intererence:

γ from LHCb(II)

- Sensitivity to γ through
- matrix element $V_{u b} V_{c s}^{*}$
c.f. $\gamma \sim \arg \left(V_{u b}\right)$
- not enough: need 2nd diagram for intererence:

Diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{-} \mathrm{K}^{+}$

γ from LHCb(II)

- Sensitivity to γ through
- matrix element $V_{u b} V_{c s}^{*}$
- c.f. $\gamma \sim \arg \left(V_{u b}\right)$
- not enough: need 2nd diagram for intererence:

Diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{-} \mathrm{K}^{+}$

γ from LHCb(II)

- Sensitivity to γ through
- matrix element $V_{u b} V_{c s}^{*}$
- c.f. $\gamma \sim \arg \left(V_{u b}\right)$
- not enough: need 2nd diagram for intererence:

Diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{-} \mathrm{K}^{+}$

Diagram for $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{+} \mathrm{K}^{-}$

A Combined $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}_{d} \rightarrow \mathrm{D}^{ \pm} \pi^{\mp}$ Analysis

- Interference through mixing
- CP assymetries measure $\gamma+\phi_{s}$
- Tree diagrams only: NO sensitivity to New Physics
- $5400 \mathrm{~B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}$ events/year at LHCb
- $82000 \mathrm{~B}_{s} \rightarrow \mathrm{D}_{s} \pi$ events/year

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

(1) Δm_{s} : mass difference between heavy \& light B-meson

2 $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson
${ }^{3} C_{S}$ depends on ratio of amplitudes of Feynmann diagrams
${ }^{4}$ Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

© Δm_{s} : mass difference between heavy \& light B-meson
2 $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson
${ }^{3} C_{S}$ depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

(1) Δm_{s} : mass difference between heavy \& light B-meson
(2) $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson
${ }^{3} C_{S}$ depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

(1) Δm_{s} : mass difference between heavy \& light B-meson

2 $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson
3 C_{s} depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

(1) Δm_{s} : mass difference between heavy \& light B-meson
(2) $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson

3 C_{s} depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

(1) Δm_{s} : mass difference between heavy \& light B-meson

2 $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson
3 C_{s} depends on ratio of amplitudes of Feynmann diagrams
(4) Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

$$
S_{s}\left(\bar{S}_{s}\right) \sim \sin \left(\phi_{s}+\gamma \pm \delta_{s}\right)
$$

Time-dependent Asymmetries

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)-\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}{\mathrm{B}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)+\overline{\mathrm{B}}_{s} \rightarrow \mathrm{D}_{s} \mathrm{~K}^{-}(t)}
$$

dependence:

$$
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{D}_{s}^{+} \mathrm{K}^{-}\right)=\frac{C_{s} \cos \Delta m_{s} t+S_{s} \sin \Delta m_{s} t}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-A_{\Delta \Gamma_{s}} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

(1) Δm_{s} : mass difference between heavy \& light B-meson

2 $\Delta \Gamma_{s}$: lifetime difference between heavy \& light B-meson
3 C_{s} depends on ratio of amplitudes of Feynmann diagrams
(4. Similarly done for $\mathrm{D}_{s}^{-} \mathrm{K}^{+}$analysis

$$
\begin{aligned}
& S_{s}\left(\bar{S}_{s}\right) \sim \sin \left(\phi_{s}+\gamma \pm \delta_{s}\right) \\
& A_{\Delta \Gamma_{s}} \sim-\cos \left(\phi_{s}+\gamma \pm \delta_{s}\right)
\end{aligned}
$$

LHCb Simulated Results

From ~ 5 years of LHCb data:

(1) Phase of $\mathrm{D}_{s}^{+} \mathrm{K}^{-} \delta_{s}+\left(\gamma+\phi_{s}\right)$
2. Phase of $\mathrm{D}_{s}^{-} \mathrm{K}^{+} \delta_{s}-\left(\gamma+\phi_{s}\right)$
${ }^{3} \phi_{S}$ deduced from $\mathrm{B}_{S} \rightarrow J / \psi \phi$ analysis \Longrightarrow determine γ.
(4) $\Delta m_{s} \sim 20 \mathrm{ps}^{-1}: \sigma_{\gamma} \approx 14^{\circ}$
${ }^{5}$ Solve discrete ambiguities with help of $\mathrm{B}_{d} \rightarrow D^{+} \pi^{-}$

LHCb Simulated Results

From ~ 5 years of LHCb data:

(1) Phase of $\mathrm{D}_{s}^{+} \mathrm{K}^{-} \delta_{s}+\left(\gamma+\phi_{s}\right)$

Phase of $\mathrm{D}_{s}^{-} \mathrm{K}^{+} \delta_{s}-\left(\gamma+\phi_{s}\right)$
ϕ_{s} deduced from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis \Longrightarrow determine γ.
$\Delta m_{s} \sim 20 \mathrm{ps}^{-1}: \sigma_{\gamma} \approx 14^{\circ}$
Solve discrete ambiguities with help of $\mathrm{B}_{d} \rightarrow D^{+} \pi^{-}$

LHCb Simulated Results

From ~ 5 years of LHCb data:

(1) Phase of $\mathrm{D}_{s}^{+} \mathrm{K}^{-} \delta_{s}+\left(\gamma+\phi_{s}\right)$

2 Phase of $\mathrm{D}_{s}^{-} \mathrm{K}^{+} \delta_{s}-\left(\gamma+\phi_{s}\right)$
ϕ_{s} deduced from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis \Longrightarrow determine γ.
$\Delta m_{s} \sim 20 \mathrm{ps}^{-1}: \sigma_{\gamma} \approx 14^{\circ}$
Solve discrete ambiguities with help of $\mathrm{B}_{d} \rightarrow D^{+} \pi^{-}$

LHCb Simulated Results

From ~ 5 years of LHCb data:

(1) Phase of $\mathrm{D}_{s}^{+} \mathrm{K}^{-} \delta_{s}+\left(\gamma+\phi_{s}\right)$

2 Phase of $\mathrm{D}_{s}^{-} \mathrm{K}^{+} \delta_{s}-\left(\gamma+\phi_{s}\right)$
(3) ϕ_{s} deduced from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis \Longrightarrow determine γ.
$\Delta m_{s} \sim 20 \mathrm{ps}^{-1}: \sigma_{\gamma} \approx 14^{\circ}$
Solve discrete ambiguities with help of $\mathrm{B}_{d} \rightarrow D^{+} \pi^{-}$

LHCb Simulated Results

From ~ 5 years of LHCb data:

(1) Phase of $\mathrm{D}_{s}^{+} \mathrm{K}^{-} \delta_{s}+\left(\gamma+\phi_{s}\right)$

2 Phase of $\mathrm{D}_{s}^{-} \mathrm{K}^{+} \delta_{s}-\left(\gamma+\phi_{s}\right)$
(3) ϕ_{s} deduced from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis \Longrightarrow determine γ.
(4) $\Delta m_{s} \sim 20 \mathrm{ps}^{-1}: \sigma_{\gamma} \approx 14^{\circ}$

Solve discrete ambiguities with help of $\mathrm{B}_{d} \rightarrow D^{+} \pi^{-}$

LHCb Simulated Results

From ~ 5 years of LHCb data:

(1) Phase of $\mathrm{D}_{s}^{+} \mathrm{K}^{-} \delta_{s}+\left(\gamma+\phi_{s}\right)$

2 Phase of $\mathrm{D}_{s}^{-} \mathrm{K}^{+} \delta_{s}-\left(\gamma+\phi_{s}\right)$
(3) ϕ_{s} deduced from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis \Longrightarrow determine γ.
(4) $\Delta m_{s} \sim 20 \mathrm{ps}^{-1}: \sigma_{\gamma} \approx 14^{\circ}$
(5) Solve discrete ambiguities with help of $\mathrm{B}_{d} \rightarrow D^{+} \pi^{-}$
(1) time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
But: penguin diagram contributes!
$A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$
and on ratio of penguin to tree amplitudes: $d e^{i \theta}$

Tree diagram:

$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$
© time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$

But: penguin diagram contributes!
$A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$
and on ratio of penguin to tree amplitudes: $d e^{i \theta}$

Tree diagram:

$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$
(1) time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
${ }^{3}$ But: penguin diagram contributes!
$A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$ and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
with U-spin symmetry: $d_{\pi \pi}=d_{K K}$,
$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

(1) time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
${ }^{3}$ But: penguin diagram contributes!
$A_{C P}(t)=A_{\mathrm{dir}} \cos (\Delta m t)+A_{\text {mix }} \sin (\Delta m t)$ $A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$ and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
with U-spin symmetry: $d_{\pi \pi}=d_{K K}$,
$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

(1) time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
${ }^{3}$ But: penguin diagram contributes!
$A_{C P}(t)=A_{\mathrm{dir}} \cos (\Delta m t)+A_{\text {mix }} \sin (\Delta m t)$
(4) $A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$ and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
with U-spin symmetry: $d_{\pi \pi}=d_{\mathrm{kK}}$,
$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

© time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
(3) But: penguin diagram contributes!
$A_{C P}(t)=A_{\mathrm{dir}} \cos (\Delta m t)+A_{\text {mix }} \sin (\Delta m t)$
(4) $A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$
(5) and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
with U-spin symmetry: $d_{\pi \pi}=d_{\mathrm{KK}}$,
$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

γ from $\mathrm{B} \rightarrow h^{+} h^{-}$
© time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
(3) But: penguin diagram contributes!

$$
A_{C P}(t)=A_{\mathrm{dir}} \cos (\Delta m t)+A_{\operatorname{mix}} \sin (\Delta m t)
$$

(4) $A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{S}, \phi_{d} \& \gamma$
(5) and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
6 with U-spin symmetry: $d_{\pi \pi}=d_{K K}$,
$\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

γ from $\mathrm{B} \rightarrow h^{+} h^{-}$
© time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
${ }^{3}$ But: penguin diagram contributes!

$$
A_{C P}(t)=A_{\mathrm{dir}} \cos (\Delta m t)+A_{\text {mix }} \sin (\Delta m t)
$$

(4) $A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{S}, \phi_{d} \& \gamma$
(5) and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
(6) with U-spin symmetry: $d_{\pi \pi}=d_{K K}$, $\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
(7) ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
4 measurements, 3 unknowns
\Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

γ from $\mathrm{B} \rightarrow h^{+} h^{-}$
(1) time-dependent CP-asymmetries for $\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \pi^{+} \pi^{-}$
(2) and $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
${ }^{3}$ But: penguin diagram contributes!

$$
A_{C P}(t)=A_{\mathrm{dir}} \cos (\Delta m t)+A_{\text {mix }} \sin (\Delta m t)
$$

4. $A_{\text {dir }}, A_{\text {mix }}$ depend on $\phi_{s}, \phi_{d} \& \gamma$
(5) and on ratio of penguin to tree amplitudes: $d e^{i \theta}$
(6) with U-spin symmetry: $d_{\pi \pi}=d_{K K}$, $\theta_{\pi \pi}=\theta_{\mathrm{KK}}$
(7) ϕ_{s} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and ϕ_{d} from $B_{d} \rightarrow J / \psi \mathrm{K}_{\mathrm{s}}$
(8) 4 measurements, 3 unknowns \Longrightarrow extract $\gamma, \sigma_{\gamma}=5^{\circ}$

Tree diagram:

Penguin diagram:

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$

Use U-spin symmetry to resolve discrete ambiguities
2. Measure time-dependent

CP-asymmeiry
3. ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
2. Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$

Measure 2 time-dependent CP asymmetries
Problem: penguin diagram contributes
Need angles ϕ_{s} and ϕ_{d} from
$\mathrm{B}_{\mathrm{s}} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
${ }^{3} \Longrightarrow$ sensitivity to New Physics through
Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
Measure time-dependent
CP-asymmetry
(3) ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
2) Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$

Measure 2 time-dependent CP asymmetries
Problem: penguin diagram contributes
Need angles ϕ_{s} and ϕ_{d} from
$\mathrm{B}_{s} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
(3) \Longrightarrow sensitivity to New Physics through

Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
(2) Measure time-dependent CP-asymmetry
ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
2. Determine γ from $\mathrm{B}_{S} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$

Measure 2 time-dependent CP asymmetries
Problem: penguin diagram contributes
Need angles ϕ_{s} and ϕ_{d} from
$\mathrm{B}_{\mathrm{s}} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow j / \psi \mathrm{K}_{\mathrm{s}}$
\Longrightarrow sensitivity to New Physics through
Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
(2) Measure time-dependent

CP-asymmetry
(3) ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
2. Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$

Measure 2 time-dependent CP asymmetries
Problem: penguin diagram contributes
Need angles ϕ_{s} and ϕ_{d} from
$\mathrm{B}_{s} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
\Rightarrow sensitivity to New Physics through
Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
(2) Measure time-dependent

CP-asymmetry
(3) ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
(2) Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
© Measure 2 time-dependent CP asymmetries
2 Problem: penguin diagram contributes
3. Need angles ϕ_{s} and ϕ_{d} from
$\mathrm{B}_{s} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
\Rightarrow sensitivity to New Physics through
Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
(2) Measure time-dependent

CP-asymmetry
(3) ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
(2) Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
© Measure 2 time-dependent CP asymmetries
(2) Problem: penguin diagram contributes

Need angles ϕ_{s} and ϕ_{d} from
$\mathrm{B}_{s} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
\Longrightarrow sensitivity to New Physics through
Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
(2) Measure time-dependent

CP-asymmetry
(3) ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
(2) Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
© Measure 2 time-dependent CP asymmetries
2 Problem: penguin diagram contributes
(3) Need angles ϕ_{s} and ϕ_{d} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
\Longrightarrow sensitivity to New Physics through
Penguin diagram

Conclusions

(1) Determine γ from tree-diagrams only: $\mathrm{B}_{s} \rightarrow \mathrm{D}_{s}^{ \pm} \mathrm{K}^{\mp}$
(1) Use U-spin symmetry to resolve discrete ambiguities
(2) Measure time-dependent CP-asymmetry
3 ϕ_{s} measured with $\mathrm{B}_{s} \rightarrow J / \psi \phi$ analysis
(2) Determine γ from $\mathrm{B}_{s} \rightarrow \mathrm{~K}^{ \pm} \mathrm{K}^{\mp}$ and $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
© Measure 2 time-dependent CP asymmetries
2 Problem: penguin diagram contributes
(3) Need angles ϕ_{s} and ϕ_{d} from $\mathrm{B}_{s} \rightarrow J / \psi \phi$ and $\mathrm{B}^{0} \rightarrow J / \psi \mathrm{K}_{s}$
3 \Longrightarrow sensitivity to New Physics through Penguin diagram

