Measuring the CKM angle γ

J. Blouw

Physikalisches Institut, Universitaet Heidelberg

Tagungsstaette, Neckarzimmern, March 28-30, 2007
The LHCb Spectrometer

Measuring the CKM angle γ
The LHCb Spectrometer

Measuring the CKM angle γ
Feinmann diagram for $B_s \rightarrow D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \rightarrow D_s^{\ast\pm} \pi^{\mp}$, and $B_d \rightarrow D^{\pm} \pi^{\mp}$
5. Circumvent problems using assumption of U-spin symmetry $(s \leftrightarrow d)$
6. Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^{\mp}$ and $B_d \rightarrow D^{\pm} \pi^{\mp}$
Feynmann diagram for $B_s \to D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \to D_s^{*\pm} \pi^{\mp}$, and $B_d \to D^{\pm} \pi^{\mp}$
5. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
6. Simultaneous analysis of $B_s \to D_s^{\pm} K^{\mp}$ and $B_d \to D^{\pm} \pi^{\mp}$
Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \rightarrow D_s^{\ast\pm} \pi^{\mp}$, and $B_d \rightarrow D^{\pm} \pi^{\mp}$
5. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
6. Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^{\mp}$ and $B_d \rightarrow D^{\pm} \pi^{\mp}$
Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \rightarrow D_s^{*\pm} \pi^\mp$, and $B_d \rightarrow D^\pm \pi^\mp$
5. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
6. Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^\mp$ and $B_d \rightarrow D^\pm \pi^\mp$
Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
 - But: very small interference effects for $B_d \rightarrow D_s^{\pm} \pi^{\mp}$, and $B_d \rightarrow D^\pm \pi^{\mp}$
4. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
5. Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^\mp$ and $B_d \rightarrow D^\pm \pi^{\mp}$
Feynmann diagram for $B_s \to D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \to D^{*\pm} \pi^{\mp}$, and $B_d \to D^{\pm} \pi^{\mp}$
5. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
6. Simultaneous analysis of $B_s \to D_s^{\pm} K^\mp$ and $B_d \to D^{\pm} \pi^{\mp}$

Measuring the CKM angle γ from LHCb
Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \rightarrow D_s^{*\pm} \pi^{\mp}$, and $B_d \rightarrow D_s^{\pm} \pi^{\mp}$
5. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
6. Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^\mp$ and $B_d \rightarrow D_s^{\pm} \pi^{\mp}$
Feynmann diagram for $B_s \rightarrow D_s^+ K^-$

1. Only tree diagrams
2. But: problem of discrete ambiguities
3. Solve by using equivalent decay with B_d:
4. But: very small interference effects for $B_d \rightarrow D^{*\pm}\pi^\mp$, and $B_d \rightarrow D^{\pm}\pi^\mp$
5. Circumvent problems using assumption of U-spin symmetry ($s \leftrightarrow d$)
6. Simultaneous analysis of $B_s \rightarrow D_s^{\pm} K^\mp$ and $B_d \rightarrow D^{\pm}\pi^\mp$
Sensitivity to γ through

- matrix element $V_{ub} V_{cs}^*$
- c.f. $\gamma \sim \arg(V_{ub})$
- not enough: need 2nd diagram for interference:
Sensitivity to γ through
matrix element $V_{ub} V_{cs}^*$

c.f. $\gamma \sim \arg(V_{ub})$

not enough: need 2nd diagram for interference:

Diagram for $B_s \to D_s^- K^+$
\[\gamma \text{ from LHCb(II)}\]

- Sensitivity to \(\gamma\) through matrix element \(V_{ub} V_{cs}^*\)
- \(c.f.\ \gamma \sim \arg(V_{ub})\)
- not enough: need 2nd diagram for interference:

Diagram for \(B_s \to D_s^- K^+\)
\(\gamma \) from LHCb(II)

- Sensitivity to \(\gamma \) through matrix element \(V_{ub} V_{cs}^* \)
- c.f. \(\gamma \sim \text{arg}(V_{ub}) \)
- not enough: need 2nd diagram for interference:

Diagram for \(B_s \rightarrow D_s^- K^+ \)
Diagram for \(B_s \rightarrow D_s^+ K^- \)
A Combined $B_s \rightarrow D_s^{\pm} K^{\mp}$ and $B_d \rightarrow D^{\pm} \pi^{\mp}$ Analysis

- Interference through mixing
- CP asymmetries measure $\gamma + \phi_s$
- Tree diagrams only: NO sensitivity to New Physics
- 5400 $B_s \rightarrow D_s K$ events/year at LHCb
- 82000 $B_s \rightarrow D_s \pi$ events/year
\[A_{CP}(D_s^+K^-) = \frac{B_s \to D_sK^-(t) - \bar{B}_s \to D_sK^-(t)}{B_s \to D_sK^-(t) + \bar{B}_s \to D_sK^-(t)} \]

dependence:

\[A_{CP}(D_s^+K^-) = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t/2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t/2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D_s^-K^+ \) analysis
Time-dependent Asymmetries

\[A_{\text{CP}}(D_s^+K^-) = \frac{B_s \to D_sK^-(t) - \bar{B}_s \to D_sK^-(t)}{B_s \to D_sK^-(t) + \bar{B}_s \to D_sK^-(t)} \]

dependence:

\[A_{\text{CP}}(D_s^+K^-) = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t/2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t/2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D_s^-K^+ \) analysis
Time-dependent Asymmetries

\[A_{CP}(D_s^+ K^-) = \frac{B_s \rightarrow D_s K^- (t) - \bar{B}_s \rightarrow D_s K^- (t)}{B_s \rightarrow D_s K^- (t) + \bar{B}_s \rightarrow D_s K^- (t)} \]

dependence:

\[A_{CP}(D_s^+ K^-) = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t/2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t/2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D_s^- K^+ \) analysis
Time-dependent Asymmetries

\[A_{CP}(D^+_sK^-) = \frac{B_s \to D_sK^-(t) - \bar{B}_s \to D_sK^-(t)}{B_s \to D_sK^-(t) + \bar{B}_s \to D_sK^-(t)} \]

dependence:

\[A_{CP}(D^+_sK^-) = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t/2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t/2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D^-_sK^+ \) analysis
Time-dependent Asymmetries

\[\mathcal{A}_{CP}(D_s^+ K^-) = \frac{B_s \rightarrow D_s K^-(t) - \bar{B}_s \rightarrow D_s K^-(t)}{B_s \rightarrow D_s K^-(t) + \bar{B}_s \rightarrow D_s K^-(t)} \]

dependence:

\[\mathcal{A}_{CP}(D_s^+ K^-) = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t / 2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t / 2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D_s^- K^+ \) analysis
Time-dependent Asymmetries

\[A_{CP}(D_s^+K^-) = \frac{B_s \rightarrow D_sK^-(t) - \bar{B}_s \rightarrow D_sK^-(t)}{B_s \rightarrow D_sK^-(t) + \bar{B}_s \rightarrow D_sK^-(t)} \]

dependence:

\[A_{CP}(D_s^+K^-) = \frac{C_s \cos \Delta m_s t + S_s \sin \Delta m_s t}{\cosh(\Delta \Gamma_s t/2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t/2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D_s^-K^+ \) analysis

\[S_s(\bar{S}_s) \sim \sin(\phi_s + \gamma \pm \delta_s) \]
Time-dependent Asymmetries

\[A_{\text{CP}}(D_s^+K^-) = \frac{B_s \rightarrow D_sK^-(t) - \bar{B}_s \rightarrow D_sK^-(t)}{B_s \rightarrow D_sK^-(t) + \bar{B}_s \rightarrow D_sK^-(t)} \]

dependence:

\[A_{\text{CP}}(D_s^+K^-) = \frac{C_s \cos \Delta m_st + S_s \sin \Delta m_st}{\cosh(\Delta \Gamma_s t/2) - A_{\Delta \Gamma_s} \sinh(\Delta \Gamma_s t/2)} \]

1. \(\Delta m_s \): mass difference between heavy & light B-meson
2. \(\Delta \Gamma_s \): lifetime difference between heavy & light B-meson
3. \(C_s \) depends on ratio of amplitudes of Feynmann diagrams
4. Similarly done for \(D_s^-K^+ \) analysis

\[S_s(\bar{S}_s) \sim \sin(\phi_s + \gamma \pm \delta_s) \]

\[A_{\Delta \Gamma_s} \sim - \cos(\phi_s + \gamma \pm \delta_s) \]
LHCb Simulated Results

From ~ 5 years of LHCb data:

1. Phase of $D_s^+K^- \delta_s + (\gamma + \phi_s)$
2. Phase of $D_s^-K^+ \delta_s - (\gamma + \phi_s)$
3. ϕ_s deduced from $B_s \rightarrow J/\psi\phi$ analysis \implies determine γ.
4. $\Delta m_s \sim 20$ ps$^{-1}$: $\sigma_{\gamma} \approx 14^\circ$
5. Solve discrete ambiguities with help of $B_d \rightarrow D^+\pi^-$
LHCb Simulated Results

From ~ 5 years of LHCb data:

1. Phase of $D_s^+ K^- \delta_s + (\gamma + \phi_s)$
2. Phase of $D_s^- K^+ \delta_s - (\gamma + \phi_s)$
3. ϕ_s deduced from $B_s \to J/\psi \phi$ analysis \Longrightarrow determine γ.
4. $\Delta m_s \sim 20 \text{ ps}^{-1}$: $\sigma_\gamma \approx 14^\circ$
5. Solve discrete ambiguities with help of $B_d \to D^+ \pi^-$
LHCb Simulated Results

From ~ 5 years of LHCb data:

1. Phase of $D_s^+ K^- \delta_s + (\gamma + \phi_s)$
2. Phase of $D_s^- K^+ \delta_s - (\gamma + \phi_s)$
3. ϕ_s deduced from $B_s \rightarrow J/\psi \phi$ analysis \Rightarrow determine γ.
4. $\Delta m_s \sim 20 \text{ ps}^{-1}: \sigma_\gamma \approx 14^\circ$
5. Solve discrete ambiguities with help of $B_d \rightarrow D^+ \pi^-$
LHCb Simulated Results

From \sim 5 \text{ years} of LHCb data:

1. Phase of $D_s^+ K^- \delta_s + (\gamma + \phi_s)$
2. Phase of $D_s^- K^+ \delta_s - (\gamma + \phi_s)$
3. ϕ_s deduced from $B_s \to J/\psi \phi$ analysis \implies \text{determine } \gamma.
4. $\Delta m_s \sim 20 \text{ ps}^{-1}$: $\sigma_\gamma \approx 14^\circ$
5. Solve discrete ambiguities with help of $B_d \to D^+ \pi^-$
LHCb Simulated Results

From \(\sim 5 \) years of LHCb data:

1. Phase of \(D_s^+K^- \delta_s + (\gamma + \phi_s) \)
2. Phase of \(D_s^-K^+ \delta_s - (\gamma + \phi_s) \)
3. \(\phi_s \) deduced from \(B_s \to J/\psi\phi \) analysis \(\Rightarrow \) determine \(\gamma \).
4. \(\Delta m_s \sim 20 \) ps\(^{-1} \): \(\sigma_\gamma \approx 14^\circ \)
5. Solve discrete ambiguities with help of \(B_d \to D^+\pi^- \)
LHCb Simulated Results

From \(\sim 5 \) years of LHCb data:

1. Phase of \(D_s^+ K^- \) \(\delta_s + (\gamma + \phi_s) \)
2. Phase of \(D_s^- K^+ \) \(\delta_s - (\gamma + \phi_s) \)
3. \(\phi_s \) deduced from \(B_s \to J/\psi\phi \) analysis \(\Longrightarrow \) determine \(\gamma \).
4. \(\Delta m_s \sim 20 \text{ ps}^{-1} \): \(\sigma_\gamma \approx 14^\circ \)
5. Solve discrete ambiguities with help of \(B_d \to D^+\pi^- \)
γ from $B \rightarrow h^+ h^-$

1. time-dependent CP-asymmetries for $B^0_d \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$
2. But: penguin diagram contributes!
3. $A_{\text{dir}}, A_{\text{mix}}$ depend on $\phi_s, \phi_d \& \gamma$
4. and on ratio of penguin to tree amplitudes: $de^{i\theta}$
5. with U-spin symmetry: $d_{\pi \pi} = d_{KK}$, $\theta_{\pi \pi} = \theta_{KK}$
6. ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
7. 4 measurements, 3 unknowns \Rightarrow extract $\gamma, \sigma_\gamma = 5^\circ$
\(\gamma \) from \(B \to h^+ h^- \)

1. Time-dependent CP-asymmetries for \(B_d^0 \to \pi^+ \pi^- \) and \(B_s \to K^+ K^- \)

2. But: penguin diagram contributes!

3. \(A_{\text{dir}}, A_{\text{mix}} \) depend on \(\phi_s, \phi_d \) & \(\gamma \)

4. and on ratio of penguin to tree amplitudes: \(de^{i\theta} \)

5. with U-spin symmetry: \(d_{\pi\pi} = d_{KK}, \theta_{\pi\pi} = \theta_{KK} \)

6. \(\phi_s \) from \(B_s \to J/\psi \phi \) and \(\phi_d \) from \(B_d \to J/\psi K_s \)

7. 4 measurements, 3 unknowns

8. \(\Rightarrow \) extract \(\gamma, \sigma_\gamma = 5^\circ \)
\[\gamma \text{ from } B \rightarrow h^+ h^- \]

1. Time-dependent CP-asymmetries for \(B_d^0 \rightarrow \pi^+ \pi^- \)
2. and \(B_s \rightarrow K^+ K^- \)
3. But: penguin diagram contributes!
4. \(A_{\text{dir}}, A_{\text{mix}} \) depend on \(\phi_s, \phi_d \) & \(\gamma \)
5. and on ratio of penguin to tree amplitudes: \(de^{i\theta} \)
6. with U-spin symmetry: \(d_{\pi \pi} = d_{KK} \), \(\theta_{\pi \pi} = \theta_{KK} \)
7. \(\phi_s \) from \(B_s \rightarrow J/\psi \phi \) and \(\phi_d \) from \(B_d \rightarrow J/\psi K_s \)
8. 4 measurements, 3 unknowns \(\implies \) extract \(\gamma, \sigma_\gamma = 5^\circ \)
\(\gamma \) from \(B \to h^+ h^- \)

1. time-dependent CP-asymmetries for \(B^0_d \to \pi^+ \pi^- \)
2. and \(B_s \to K^+ K^- \)
3. But: penguin diagram contributes!

\[
A_{CP}(t) = A_{\text{dir}} \cos(\Delta mt) + A_{\text{mix}} \sin(\Delta mt)
\]

4. \(A_{\text{dir}}, A_{\text{mix}} \) depend on \(\phi_s, \phi_d \) & \(\gamma \)
5. and on ratio of penguin to tree amplitudes: \(de^{i\theta} \)
6. with U-spin symmetry: \(d_{\pi\pi} = d_{KK} \)
7. \(\theta_{\pi\pi} = \theta_{KK} \)
8. \(\phi_s \) from \(B_s \to J/\psi \phi \) and \(\phi_d \) from \(B_d \to J/\psi K_s \)
9. 4 measurements, 3 unknowns \(\implies \) extract \(\gamma, \sigma_\gamma = 5^\circ \)
\(\gamma \) from \(B \rightarrow h^+ h^- \)

1. Time-dependent CP-asymmetries for \(B_d^0 \rightarrow \pi^+ \pi^- \)
2. And \(B_s \rightarrow K^+ K^- \)
3. But: penguin diagram contributes!

\[
A_{CP}(t) = A_{\text{dir}} \cos(\Delta mt) + A_{\text{mix}} \sin(\Delta mt)
\]

4. \(A_{\text{dir}}, A_{\text{mix}} \) depend on \(\phi_s, \phi_d \) & \(\gamma \)
5. And on ratio of penguin to tree amplitudes: \(de^{i\theta} \)
6. With U-spin symmetry: \(d_{\pi\pi} = d_{KK} \), \(\theta_{\pi\pi} = \theta_{KK} \)
7. \(\phi_s \) from \(B_s \rightarrow J/\psi \phi \) and \(\phi_d \) from \(B_d \rightarrow J/\psi K_s \)
8. 4 measurements, 3 unknowns \(\Rightarrow \) extract \(\gamma, \sigma_\gamma = 5^\circ \)
1. Time-dependent CP-asymmetries for $B_d^0 \to \pi^+\pi^-$ and $B_s \to K^+K^-$.
2. But: penguin diagram contributes!

$$A_{CP}(t) = A_{dir} \cos(\Delta mt) + A_{mix} \sin(\Delta mt)$$

4. A_{dir}, A_{mix} depend on ϕ_s, ϕ_d & γ and on ratio of penguin to tree amplitudes: $de^{i\theta}$

5. With U-spin symmetry: $d_{\pi\pi} = d_{KK}$, $\theta_{\pi\pi} = \theta_{KK}$

6. ϕ_s from $B_s \to J/\psi\phi$ and ϕ_d from $B_d \to J/\psi K_s$

7. 4 measurements, 3 unknowns \implies extract $\gamma, \sigma_\gamma = 5^\circ$
\(\gamma \) from \(B \to h^+h^- \)

1. time-dependent CP-asymmetries for \(B^0_d \to \pi^+\pi^- \)
2. and \(B_s \to K^+K^- \)
3. But: penguin diagram contributes!

\[
A_{CP}(t) = A_{\text{dir}} \cos(\Delta mt) + A_{\text{mix}} \sin(\Delta mt)
\]

4. \(A_{\text{dir}}, A_{\text{mix}} \) depend on \(\phi_s, \phi_d \) & \(\gamma \)
5. and on ratio of penguin to tree amplitudes: \(de^{i\theta} \)
6. with U-spin symmetry: \(d_{\pi\pi} = d_{KK}, \theta_{\pi\pi} = \theta_{KK} \)
7. \(\phi_s \) from \(B_s \to J/\psi\phi \) and \(\phi_d \) from \(B_d \to J/\psi K_s \)
8. 4 measurements, 3 unknowns \(\implies \) extract \(\gamma, \sigma_\gamma = 5^\circ \)
γ from $B \rightarrow h^+ h^-$

1. time-dependent CP-asymmetries for $B_d^0 \rightarrow \pi^+ \pi^-$
2. and $B_s \rightarrow K^+ K^-$
3. But: penguin diagram contributes!

$$A_{CP}(t) = A_{dir} \cos(\Delta mt) + A_{mix} \sin(\Delta mt)$$

4. A_{dir}, A_{mix} depend on ϕ_s, ϕ_d & γ
5. and on ratio of penguin to tree amplitudes: $de^{i\theta}$

6. with U-spin symmetry: $d_{\pi \pi} = d_{KK}$, $\theta_{\pi \pi} = \theta_{KK}$
7. ϕ_s from $B_s \rightarrow J/\psi \phi$ and ϕ_d from $B_d \rightarrow J/\psi K_s$
8. 4 measurements, 3 unknowns \Rightarrow extract $\gamma, \sigma_{\gamma} = 5^\circ$
\[\gamma \text{ from } B \rightarrow h^+ h^- \]

1. time-dependent CP-asymmetries for \(B^0_d \rightarrow \pi^+ \pi^- \)
2. and \(B_s \rightarrow K^+ K^- \)
3. But: penguin diagram contributes!

\[A_{CP}(t) = A_{\text{dir}} \cos(\Delta m t) + A_{\text{mix}} \sin(\Delta m t) \]

4. \(A_{\text{dir}}, A_{\text{mix}} \) depend on \(\phi_s, \phi_d \) & \(\gamma \)
5. and on ratio of penguin to tree amplitudes: \(de^{i\theta} \)
6. with U-spin symmetry: \(d_{\pi \pi} = d_{KK} \), \(\theta_{\pi \pi} = \theta_{KK} \)
7. \(\phi_s \) from \(B_s \rightarrow J/\psi \phi \) and \(\phi_d \) from \(B_d \rightarrow J/\psi K_s \)
8. 4 measurements, 3 unknowns \(\implies \) extract \(\gamma, \sigma_\gamma = 5^\circ \)
Conclusions

1. **Determine γ from tree-diagrams only:**
 $B_s \rightarrow D^\pm_s K^\mp$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - ϕ_s measured with $B_s \rightarrow J/\psi \phi$ analysis

2. **Determine γ from $B_s \rightarrow K^\pm K^\mp$ and $B^0 \rightarrow \pi^+\pi^-$**
 - Measure 2 time-dependent CP asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from $B_s \rightarrow J/\psi \phi$ and $B^0 \rightarrow J/\psi K_s$

3. \Rightarrow sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only:
 $B_s \rightarrow D_s^{\pm} K^{\mp}$

 - Use U-spin symmetry to resolve discrete ambiguities

2. Measure time-dependent CP-asymmetry
 ϕ_s measured with $B_s \rightarrow J/\psi \phi$ analysis

3. Determine γ from $B_s \rightarrow K^{\pm} K^{\mp}$ and $B^0 \rightarrow \pi^+ \pi^-$

 - Measure 2 time-dependent CP asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from $B_s \rightarrow J/\psi \phi$ and $B^0 \rightarrow J/\psi K_s$

3. \implies sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only:
 $B_s \rightarrow D_s^\pm K^\mp$
 1. Use U-spin symmetry to resolve discrete ambiguities
 2. Measure time-dependent CP-asymmetry
 3. ϕ_s measured with $B_s \rightarrow J/\psi \phi$ analysis

2. Determine γ from $B_s \rightarrow K^\pm K^\mp$ and $B^0 \rightarrow \pi^+ \pi^-$
 1. Measure 2 time-dependent CP asymmetries
 2. Problem: penguin diagram contributes
 3. Need angles ϕ_s and ϕ_d from $B_s \rightarrow J/\psi \phi$ and $B^0 \rightarrow J/\psi K_s$

3. \Rightarrow sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only:
 $B_s \to D_s^{\pm} K^\mp$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - ϕ_s measured with $B_s \to J/\psi \phi$ analysis

2. Determine γ from $B_s \to K^{\pm} K^\mp$ and
 $B^0 \to \pi^+ \pi^-$
 - Measure 2 time-dependent CP asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from
 $B_s \to J/\psi \phi$ and $B^0 \to J/\psi K_s$

3. \Rightarrow sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only: $B_s \rightarrow D_s^{\pm} K^{\mp}$
 - Use U-spin symmetry to resolve discrete ambiguities
 - Measure time-dependent CP-asymmetry
 - ϕ_s measured with $B_s \rightarrow J/\psi \phi$ analysis

2. Determine γ from $B_s \rightarrow K^{\pm} K^{\mp}$ and $B^0 \rightarrow \pi^+ \pi^-$
 - Measure 2 time-dependent CP asymmetries
 - Problem: penguin diagram contributes
 - Need angles ϕ_s and ϕ_d from $B_s \rightarrow J/\psi \phi$ and $B^0 \rightarrow J/\psi K_s$
 - \Rightarrow sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only:
 \[B_s \rightarrow D_s^\pm K^\mp \]
 1. Use U-spin symmetry to resolve discrete ambiguities
 2. Measure time-dependent CP-asymmetry
 3. ϕ_s measured with $B_s \rightarrow J/\psi \phi$ analysis

2. Determine γ from $B_s \rightarrow K^\pm K^\mp$ and $B^0 \rightarrow \pi^+ \pi^-$
 1. Measure 2 time-dependent CP asymmetries
 2. Problem: penguin diagram contributes
 3. Need angles ϕ_s and ϕ_d from $B_s \rightarrow J/\psi \phi$ and $B^0 \rightarrow J/\psi K_s$

3. \Rightarrow sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only:
 \[B_s \rightarrow D_s^{\pm} K^{\mp} \]
 1. Use U-spin symmetry to resolve discrete ambiguities
 2. Measure time-dependent CP-asymmetry
 3. ϕ_s measured with $B_s \rightarrow J/\psi \phi$ analysis

2. Determine γ from $B_s \rightarrow K^{\pm} K^{\mp}$ and $B^0 \rightarrow \pi^+ \pi^-$
 1. Measure 2 time-dependent CP asymmetries
 2. Problem: penguin diagram contributes
 3. Need angles ϕ_s and ϕ_d from $B_s \rightarrow J/\psi \phi$ and $B^0 \rightarrow J/\psi K_s$

3. \Rightarrow sensitivity to New Physics through Penguin diagram
Conclusions

1. Determine γ from tree-diagrams only:
 $B_s \rightarrow D_s^\pm K^\mp$
 1. Use U-spin symmetry to resolve discrete ambiguities
 2. Measure time-dependent CP-asymmetry
 3. ϕ_s measured with $B_s \rightarrow J / \psi \phi$ analysis

2. Determine γ from $B_s \rightarrow K^\pm K^\mp$ and $B^0 \rightarrow \pi^+ \pi^-$
 1. Measure 2 time-dependent CP asymmetries
 2. Problem: penguin diagram contributes
 3. Need angles ϕ_s and ϕ_d from $B_s \rightarrow J / \psi \phi$ and $B^0 \rightarrow J / \psi K_s$

3. \Rightarrow sensitivity to New Physics through Penguin diagram

Measuring the CKM angle γ