Hypothesis Testing and Confidence Intervals/Limits

(Frequentist: Classical, FC, PCL ; Bayesian ; CLg)
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Extension to b):
Confidence interval Cl [a,b] = set of signal strength which can not be excluded

One sided CI [-inf, b]

Outcome of analysis
- expected background event spectrum
- expected signal event spectrum
for predefined signal rate s
- observed event spectrum

Hypothesis tests:
a) Only Background - Discovery
b) Signal + background - Exclusion
= Reject one signal model/strength s

(if s(M) is a function of mass M
then test different M values
- range of rejected mass hypothesis
not a confidence interval for M)

- b called “upper limit” on signal strength

Smallest (largest) signal strength, which can (not) be excluded



- Outcome of analysis

E - expected background event spectrum
E 1 - expected signal event spectrum
< - for predefined signal rate s
vV, - observed event spectrum
g 10" &=
) ;;S'éf 2| Hypothesis tests:
7 __ observed a) Only Background - Discovery
2 L - expected b) Signal + background = Exclusion
X H+lo = Reject one signal model/strength s
o [+20 (if s(M) is a function of mass M

N N \ ?Mthelory » then test different M values

100 120 140 160 180 200 220 240 - range of rgjected mass hypothesis
M 4 [GeV] not a confidence interval for M)

Extension to b):

Confidence interval Cl [a,b] = set of signal strength which can not be excluded
One sided CI [-inf, b] - b called “upper limit” on signal strength
Smallest (largest) signal strength, which can (not) be excluded



Axiomatic Definition and Conditional Probability

Consider set S with subsets A, B, ...
Assign to each set a number between 0 and 1 with

Forall AC S,P(A) >0

P(S) =1
If ANB=0,P(AUB) = P(A) + P(B) fxg:?rﬁg?:%\é&
Conditional probability (for P(B) # 0)) B
P(ANB
P(A|B) = ( )
P(B)
If subsets A,B independent: 2 \

P(AN B) = P(A)P(B)

P(AB) =L (1’22 gB) — P(A)

BNA




Bayes Theorem

From the definition of conditional probability:

P(A|B):P(AHB) P(AHB):P(BQA) P(B|A):P(BHA)

P(B) P(A)
P(B) = > P(B|A;) P(A;)
P(B|A)P(A)
P(AIB) = =1
Thomas Bayes (1702-1761) S \

. An essay towards solving a
i problem in the doctrine of chances,
WREST Philos. Trans. R. Soc. 53 (1763) 370.

Axiomatic definition not helpful in real life.
Need: definition of subsets, rule to assign probability values B NA,

2 Schools: Frequentists and Bayesians

Bayes Theorems holds and is accepted in both schools
Controversy about: what are the subsets, to which probability values can be assigned



Subsets:
Outcome of (repeatable) experiment Any hypothesis

Assignment of probabilities:

Relative frequency in limit nr of trials = inf. Degree of belief in hypothesis
P(A) = lim times outcome is in A P(A) = degree of belief that A is true
n—»o0 n
P (SUSY exists)

P (9.81 m/s? < g < 9.82m/s?)
P (rain in Neckarzimmern on 7.3.2014)

Not defined. Either O or 1. No problem. This is the goal.

Bayesian definition: More general (includes Frequentist definition)
Applicable to singular events, “true” values, ...
Does not care about repeatability of experiment
Needs a-priori probability in application of Bayes theorem



How to use Bayes theorem to update “degree of belief” in light of data

Probability to observe data assuming a hypothesis H (true value of a parameter)
Likelihood function (also used by Frequentists)

\ A-priori probability,

P(f|[—])7r([—]) . |— i.e. before data taking
(not defined in Frequentist

[P(Z|H)m(H)dH school)

P(H|Z) =

Posterior probaélty, .e. \
after analysis of the data Normalisation includes sum/integral

(not defined in Frequentist school) over all possible hypothesis/par. values

No general rule for choice of a-priori probability = “subjective”

“Objective” prior = uniform? - not well defined probability for infinite parameter space
- uniform in 6, 62 sqrt(6), In 6, ... ?
- Jeffrey Prior p(0) = sqrt( Information (6) )
uniform for mean u of Gauss pdf
1/sqrt(u) for Poisson 1/t for exp(-t/ t )



Example: Parameter estimation

Frequentist: maximise likelihood Bayesian: maximise posterior probability

Estimation of mean value 6 of Gaussian PDF

Resolution o = 20. Sample mean yields: x =25
3 likelihood(x:6)
Consider two sample sizes: n=1 (100) 1o n=1
3 n=100
—> Likelihood functions are 01E
Gaussians with o/sqrt(n) = 20 (2) 3
0
g 0025~ = Eniform
Four different a-priori probabilities oozl R

normalised in range 5 to 105

0.015

uniform, 1/x, x2, In(x)

0.005




Ex.: Parameter Estimation - Posterior Probabilities

Sample size n = 1
Large spread in posterior prob.
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on prior probability

For sample size n = infinity Bayesian and Frequentist results identical
Bayesian with uniform a-priority prob. and Frequentist numerical identical

Exception: in special situations e.g. close to a physical boundary

But interpretation is always different in both schools




Hypothesis Testing
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Looking for a signal: test “Background only” hypothesis
Excluding a signal: test “Signal + Background” hypothesis

Either decide before measurement or do always both



Hypothesis Testing (Frequentist Technique)

Null hypothesis H, : hypothesis which you try to falsify / reject
(one can not verify / approve hypothesis)

Test statistic t: any function of your data which is used
to quantify (dis-)agreement with H,

g(t|HO): probability density function PDF for test statistics
under null hypothesis H,
Critical region: range of test statistic for which H, is rejected
03 Nullhypothese H (a)

g(tH )

a: significance (level)

Akzeptanzregion  t, kritische Region

size of test H , akzeptieren H , verwerfen

<t >
error of 1st kind. 02 Fehler erster Art
probability to reject H,,
if Hy is true ol

o. : Signifikanzniveau

o 5 10 15 20




Hypothesis Testing

In principle: infinity many possibilities to choose critical region for given a
(especially for one sided tests you need an alternative hypothesis to decide
what you call inconsistent with null hypothesis)

Alternative hypothesis H, : hypothesis which you would like to approve

g(t|H,): probability density function for test statistics
under alternative hypothesis H,

tk ;: 0.3 | alternative Hypothese H , (b)
6 — g (t ‘ H 1 )dt §6 i Akzeptanzregion  t, kritische Region
—00 B H , akzeptieren H , verwerfen
- < >
0.2 L Fehler zweiter Art

B: error of 2" kind 0.1

M=1-p: power - P

B prob. toreject H, if H, is true o— ) .

1-f prob to “accept” H,, if H, is true



An Example: Test for Mean Value of Gaussian PDF

Null Hypothesis: mean value A=A, Data set of size n (for illustration =2): x,,x,
Test statistic: maximum likelihood estimate R

= arithmetic mean X= ﬁ(xl TX ‘|'Xn)

with PDF given by Gauss Jn

exp (—L(X M) )

with mean A, und Variance o?/n Jxsho) = 752

2mo

Choice of 4 different critical regions with same significance o

L 0
two sided in tails Up:x <Mundx>2" mit [* f)de= [y fo)dr=1e;
one-sided in upper tail Uy:x > )\IH mit /)JH dx o,
one-sided in lower tail Us:x < ALY mit [_Oof X dx =

two-sided in center Up: ) <x <M mit f;vo f(x)dx = f;ow f(x)dx = Ly



An Example: Test for Mean Value of Gaussian PDF

Rows: 4 critical regions

two sided in tails
one-sided in upper talil
one-sided in lower tail
two-sided in center

Left column: critical region for n=2
in data set space

Middle column: PDF for test statistics
for Hy and H, with critical regions

A=A =Ap+1

Right column: power for n=2 and n=10
depending on A4-A
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S. Brandt




An Example: Test for Mean Value of Gauss PDF

U x < umdx> 3! mlf fx)dr=
Uy:x> M mit fkm f(x)dxza;

Uyx <V mit [ f{r)dr=a;

AR R A

U, is unbiased test
power = significance for all A

U,: larger power for A,>A,

Uj: larger power for A,<A,

U,: no useful test
maximal power for A=A\,

S. Brandt




Best test: for given significance level o, maximize power M=1-3

Clx\Ho) -y on W Questions: Which test statistic t?
“ A crikical vegie Which choice of critical region?
': e £ (x1 H‘» Simple hypothesis: completely fixed,
no free parameters to be determined
e from data
X

Neyman-Person-Lemma: a test of a simple null hypothesis H, w.r.t. to the simple

alternative hypothesis H, is a best test, if the critical region is chosen such that
inside it holds:

P(x|Hy) P = probability to observe sample x
> C| (< coutside critical region)
P(X‘HU) c is a constant depending on a

Equivalent statement: the optimal test statistics _
s given by the likelihood ratio | ¢ (x) — P(x|H1)
(or any monotonic function 1/4(, t/(1+t), In t) P(x|Hy)

Challenge in praxis: determination of PDFs for t under different hypothesis



Example for Neyman-Pearson-Test

Test for the mean value A\ in Gauss PDF with known variance o2
Sample of size n: x',x? _x"

Likelihood for data set under hypotheses H,: A = A, und H;: A=A,

1 N N ' N 1 N .
— _ D _ 5 .\2 — - ) _3.\2
f(XIHo)—<mU) exp|: - 213<xf m} FX|Hy) = (\/_G) ep[ 262;« m}

e

The NPL test statistics ~  _ SXHo) 1 i(xm B )\o)z—i(x(j)— A
is given by J(X|Hy) ;

"V

B N
1 .
= exp| =55 1 NOG—AD =20 — A1) Y _xV/ }
j=1

With non-negative constant k the NPL condition for Q is given by :

N 5 Ao — A N < XesS
exp[—ﬁ(Ko—kl)]ZkZO kexp|: 12_: :|{ ;z: X;Sz




Example for Neyman-Pearson-Test

The critical region S_ according to the NPL is given by:

N /
Ao — A : <c, XeS§. <c, XESC
kexp > X { e xgs O (M—M)X{ > . XdS.

X=L1X; + X+ +X,)

c are ¢’ constants depending on choice of significance level a

S. Brandt

(b2) (c2)

NPL: arithmetic mean X'is optimal test statistic
critical region in one tail of distribution

- one-sided test e
a) h<hg: leftsided  b) h>\g right sided 55—

<c", Xe§, X > ¢

X
>c", X ¢S X €S,

NV

There is no uniform most powerful test, due to change in sign of A,-A,



NPL strictly valid only for simple hypothesis
Now: parameter (u) is only fixed under H, but not under H, (composite hyp.)

Proposed test statistic t L é numerator: u fixed
profile likelihood ratio )\(/l ) . | /‘l’? ) to value under H,

) . D denominator:
0<iu=1 L (/1 0 ) find ML estimate for u

In praxis as optimal as NPL. Allows easy treatment of nuisance parameters ®

Wilks theorem (for this special case):

PDF for -2InA is given by a Chi?-PDF with number of degrees of freedom DOF
equal to the number of parameters fixed under H, in the limit of large sample size.
Here: consider only the case of 1 parameter fixed under H,

Applied to Gaussian test of AL = A, versus A # A, Yields:
- test statistic is monotic function of arithmetic mean, two sided test recommended

- PDF for -2In(A) is exactly Chi>—PDF with 1 DOF also for limited sample size



P-value: probability to observe a data set, which is as consistent or less
with null hypothesis as the actual observation

Test statistic: q,

"l PDF for q, under Hy: f(q,|0)
j % cos Critical region: large values of q,
do obs- OPserved value in data
p-value
X0
/ Po =/ f(q0]0) dqo
40.0bs

%

P-value is random variable (c.f. significance level o fixed before measurement)
if P-value = significance level a, then q.,. = q4itical

if P-values less then significance level a then reject null hypothesis

1-P-value = confidence level of the tests

Beware of wrong interpretation: P-value is not probability, that H, is wrong
1-P-value is not probability, that H, is true



P-Value and Significance

f(q,|0)
\/ qD.obs
p-value
%
1 oxz
s en©
p-value
I
k— Z —

If P-Value < predefined value o

then reject null hypothesis

Convention:

for discovery require p-value < 2.87x107
for exclusion require p-value < 0.05

p-value translated to significance Z via
Standard Gauss PDF

Significance of 5 (1.64) corresponds to
P =2.87x107 (0.05)

o 6 T 1 T T T
Q
. § ....................................... \ ........................
:/ /de(I)() %4_ Z=50 |
Z\/ﬁ B
2_ —
D_ —
10‘3' ‘;nﬁ ;n** mrﬁl I1

p-value



Expected Sensitivity

Often interested in sensitivity of experiment:
evaluate p-value under null hypothesis
from median value of test statistic under alternative hypothesis

a) ,Discovery”: reject H,= backgr.-only hyp.
| - determine median of q, under
med,qulu’] alternative sig+background hypothesis
, - determine p-value for median q,,
f(qulu) under null hypothesis = background-only
- expected significance

o)

b) ,Exclusion®: reject Hy,= signal+backgr hyp.
- determine median of q, under
alternative background-only hypothesis
- determine p-value for median q,,
under null hypothesis = signal+background
- expected exclusion




Different Choices For Hypothesis Test
LLR teSt Statlstlcs Higgs Days at Santander 2011 (A. Read)

Tevatron . Ratio of profiled Extracted from  Nuisance
L M é likelihoods priors parameters
—2In———= randomized
0 from priors

)

LHC sampling of test statistic is frequentist, LEP and Tevatron Bayes-frequentist hybrid.
CL_ can be used together with any of these — must be specified! No longer sufficient to write

e.g. “the CL_ method was used”.

Decisions to take: which test statistics?
how to deal with systematic uncertainties?

how to determine PDF for test statistic ?
how to handle results close to physical boundary?




Poisson-PDF: Simple Test Statistic t = n_..(yeq

Expected background rate b Z0 oof IR B
Expected signal rate s € ook B. Murray. E
£0.18" b -
Test statistics: observed events n gji;j ___________ . —sb :
with known PDF for “b” and “s+b” 0.12F =
0.1 i T =
0.08[ o -
(s F )" 2 :
: _ —(s+b 0.06F ; : E
P(n;s,b) = I € ( )‘ 0.04F 77 3
LE 0.02 .. e S
o---l---i..l...l...l...l..I-..Ii"'."‘

O 2 4 6 8 10 12

measured value

Test “background only” hypothesis - s=0
One sided test as n<b not considered as hint for existence of signal

00] bn B
po = P(n > ngpsls =0,b) = z s b
N=Ngpg "

P-value and test statistic independent on signal strength



NPL Test for Counting Experiment

The Likelihood to observe n given H, (s=0,b) is: L, = ge—b
n!
The Likelihood to observe n given H, (s,b) is: L= (s 4 b)ne—(s+b)
T 5t n!
_ s+b
- Neyman-Pearson-Lemma: best test given by 7
b
or monotonic function Lgyp

Likelihood ratio is monotonic function of n.
PDF for optimal test statistic is also Poisson distribution

Suppose in real exper

Take e.g. b= 100, s = 20. QO is observed here.

- Counting rate n is optimal test statistic

: S+ oos |- e f(Olb)
Often used: Q — —91n 7 Ot N =
Optimal use of distributions/ combination of channels

- product of likelihoods per bin/channel o P

Q

or sum of In lik. per channel/bin p-value of b only p-value of s+b



Profile Likelihood Ratio for Composite H,

So far: signal rate fixed (known) under alternative hypothesis
Now: find best number of signal events under H, via maximum likelihood fit
i.e. H, is composite hypothesis with signal count as free parameter

(8 - b) e—(s—|—b)

Likelihood function L(n; S, b) —
n!
L(s .
Test statistic: )\(3) _ ( ) A in [0, 1]: .
L( §) 1 good agreement with H,

Enumerator: likelihood for H, (s fixed, for discovery s=0)
Denominator: likelihood for H, (s estimated from data)

N

Maximum likelihood estimate for signal counts: s=mn—>b

Test statistics for discovery (s=0 in enumerator):

In /\(O) — nln(b) —b—nlnn+n In A in [0, -infinity]:

0 good agreement with H,




Comparison of the Test Statistic for Discovery

From Neyman-Pearson-Lemma From profile likelihood ratio
(simple hypothesis): (composite alternative hypothesis H,)

n 25t oy (1 + f) —s| InAM0)=nln(b)-b-nlon+n

Ly

b

o In(L_ L)

S0F < Ink(0)

b

s=8 b=16
If we consider a deviation from

background only hypothesis
only for n>b (e.g. set In A(0) = 0 for n<b)

then both are monotonic and

as optimal as using n

. (for counting experiment neglecting
e, systematic uncertainties)

In A(O) preferred for multiple channels / distributions

PDF

add values of In A (0) for each/bin channel
for -2 In A(0) for ,b only® given by Wilks theorem



Evaluation of p-Values and Signifcances Z

f(q, s +b)

/ p—value

2(nIn2+b—n) §>0 medla |s
QO — ( b ) ) f{qn|b) d[q0| +b]
0 s <0

Calculation of p-values require

- PDF under null hypothesis for observed Z

- in addition PDF under alternative
hypothesis for sensitivity s

PDF know in large n limit due to theorems of Wilks and Wald (advantage w.r.t to t\p, )

Under null hypothesis s=0 F(qol0) = 15( o) + r 1 1 —0/2
theorem of Wilks gives: 10 2\/27 \/7

sqrt(q,) follows standard Gauss for q,20 e
p-values < 0.5. Significance given by Z=® (1 ])0) = V40

Under alternative hypothesis u' (theorem of Wald, non-central Chi2-PDF)

flaolp') = (1 - (“;)) 2(q0) + ;f—\/lq—o P H (“q—" %ﬂ




Quality of Approximation for Counting Exp

For sensitivity: median of Poisson not known analytically
replace median by expectation value or n by s+b (called Asimov Data)

med|[Z]s + b] =

=

Gauss approximations: | o __ T — b
Vb
Wilks approximation n
+ Asimov data: Z:\/2 (nlnngb—n)

med[ZOI1]

ZA:\/2 <(s—|—b)1n<1+g> —3).

oo

&)

Exact values from toy MC show
Jumps“ due to discrete nature of
Poisson PDF

Wilks + Asimov Approximation
good for large ranges of s and b

s/sqrt(b) only good for s<<b
and b not to small



Profile Likelihood Ratio with b from Control Region

10000 !
Selected diphoton sample

° Data 2011+2012
Sig+Bkg Fit (mH=126.8 GeV)

--------- Bkg (4th order polynomial)
ATLAS Preliminary
Hoyy

Control region (CR) for background
with expectation tb (b in SR)
Transfer factor Tt known (MC, ©>>1)
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m)!

Common likelihood function: L(s b) _
Y

“w
3|+
T o

Test statistic = profile likelihood ratio (nuisance parameter b)

L(S, b) numerator: conditional ML estimate for b given s under H,

A(s)

o ~ 7 denumerator: unconditional ML estimate for sand b
L(s,b)

Advantage: -2 In A(s) distributed according to Chi?>-PDF with Nyq=1



Profile likelihood Ratio with b from Control Region

Unconditional maximum likelihood estimates:

§:n—m/7' Z;:m/T

Conditional maximum likelihood ML estimate for b assuming s:

b( )= nt+m—(1+7)s+/(n+m—(1+7)s)2 +4(1+7)sm
%= 2(1+7)

A n+m
Conditional ML estimate for b assuming s=0: b(O) = 1+
-

Plugging this in yields A(s=0) and — 2n A(s=0) = q,

n+m
(1+7)n

Using Wilks approximation and 7
Asimov data set (n=s+b, m=tb) yields:

—2 (n In

. _ P
Similar more lengthy expression for ~ s+(1+7) S
(expected) exclusion significance ly= [‘2 ((5+b) In {(1 P40 +7hIn |1+




Quality of Approximation fort=1
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Optimising the Sensitivity of a Selection

7% g 2 |
%. — Z, = — signal
-—— background
E .ol — s/\b+a? 186
_______ s=157 s=80
b=16 b=0.20
10} 1
0.5
/
% 20 40 60 80 100 % 20 40 60 80 100
Xeut X

Different optimal work point in selection for small background yields
Translation of T to relative background uncertainty o,/b
1/2
b? 0ts /
-3 lIl 1 - 5
op | blo+o})

(s4+b)(b+0P)
b+ (s+b)o?

Vb =of = g Iy = [2 ((s+b)ln

In the limit of small s/b and s
small o,/b this reduces to /b + o?



Using Distributions / Combination of Channels

Consider each bin in final discriminant and channels as independent counting exp.

Correlation among bins: a) common signal strength u = 0/0,,,4arq
b) sys. uncertainties described by nuisance parameters 6

(059 Bbﬂbtot)

Expectation in bin of SRand CR:  E[n;| = us; + b; E[m;] = u;(0)

Observation n bins of SR and n= (nl,...,nN) m = (mq,....my)
m bins of CR:
N . M mi
_ (:U’Sj + b]) ’ —(ps;+b;) Up, —ug
L(1.0)=]] o Hm—k.e
j=1 J k=1 ‘

fixed assuming H,

NS
)\(,U) — L('u’ 9) é conditional ML estimate assuming H,
L(,&, 0) (L. é unconditional ML estimate

Again: PDFs for -2 In A(u) known due to Wilks® and Wald’s theorems



Profiled Likelihood Test Statistic for Discovery

H,: only background - u=0 H,: signal and background,
u parametrises strength w.r.t. “standard predicton”

Test statistic gy (9 A0) /1> 0] MO) btw. 0:H, like and 1:H, like

A > (, between 0 and infinifity
g <Ol " o'H,like  >> 0 Hylike

One sided test, only positive signal strength considered as deviation from H,

o LI AL LU L BN B AL LU B DA
o 10 s = 7 TeV (2011), JLdt = 4.8 fb™
= 1 ATLAS :s —8TeV (2012), [Ldt=5.9 fb"
f(q,0) 3 ’ = ”
— 10"
/ %G, 102k _
1072 Eo7/11 EPS Prei. .. [ g 90
- — Observed . .~ Tl
p-value 10%E - Expectea ™ e e e 46
1 Q3 |- 12/11 CERN Prel. T
/ N S
1 O_ ------ Xpecte ‘~~~~~ ~~~~~~ hEE—
107 ‘Spring 2012 PRD N 5o
Observed N S el
1 8L - Expected ) )
% 0_9 07/12 CERN Prel.
1070 SN e M IR | 60
w 0-10 1 _I- ----- l %le?cltelcil 11 1 I 11 1 1 I 11 1 1 I‘“I‘ 11 l“]::-l--l ElxlpeICtledl 1
PO = f(q0|0) dqo 110 115 120 125 130 135 140 145 150
d0,0bs - my [GeV]




Profiled Likelihood Test Statistic for Exclusion

H,: signal+background = p=1 H,: background only
u parametrises strength w.r.t. “standard prediction”

Test statistic q,: ( L(u,O(u)) >0 , . )
: g FET [ 2 p<y
Ap) =4 Gy =«
i
L{p,0(n)) <0, ( >
L 1,(0,0(0)) ‘

For negative signal strength set it to 0 and determine then nuisance pars.
One sided test, only signal strength < u considered as inconsistent with H,

Ha ) - critical region different test statistic then for discovery

o f(q,10) .
/ / " here values ~0 are signal+background
/ : like observations

M%%CL decrease tested u until
P-value = significance level a




The ,,Problem* with the Pure Frequentist Method

L > (’jzbs | signal+background) =

oo

~obs
'

£ (Gl . 65) da,

Pure frequentist would stop and say: ,signal + background® hypothesis is
excluded with a confidence level CLg,50f 1- p,

,Problem®: Spurious exclusion of signals with no sensitivity (s<<b)

large s

power M= 1-13
large w.r.t.
significance
level a

f(q, )

/

— critical region

/ .
/ \
\
\
\
\
\

f(q,l0)

signal+BG-like &< - BG only like,

By construction: probability to reject w if u is true is o
for s<<b probability to reject very small u if u=0 is true ~ a + epsilon
- probability to exclude hypotheses with zero signal

(due to downwards fluctuation) ~ a

— critical region

s<<b
powerM = 1-3
~ significance
level a

,Spurious exclusion w/o sensitivity”




~Solutions* to the , Problem*

1) CLg technique (A. Read, T. Junk)
ad hoc correction to “normal” p-value(s+b) p, £(q| b) Frobs

3 e (g] s+b)

CLstp  Prob(t < tesls +)
CLg a P’I’Ob(t < tobs%)

q
cL" Cqu-b

CLg =

b J@D)
hypothesis rejected at CL= 1-a if

1st kind smaller) CL\;

CLs < o (true error of e f(q]s+b)

2) Power constrained tests: two requirements for rejection
a) p,<5% b) minimal power in test against H, ,b-only*
M=1-B =1-p,>16% ; > 50%, ...

and in the context of upper limit setting:
3) Bayesian Limits or 4) Feldman-Cousins Limits



Limit Setting / Confidence Intervals

90
- (b) LHCb Vs =7 TeV
80 ® data
B W7z -7, T,
70 — E1QCD
- [MEWK
60 (7
- EIWW
- WA’ IH 1A > x,

MSSM
M =125
tanP = 60

events / (5 GeV)
s 3

(O8]
)

[\
)

[
)

)

20 40 60 80 100 120
M. . [GeV]

Give a confidence interval for signal strength at xy% confidence level
two-sided: [s-As,,S+AsS,] one sided = upper limit s
Either decide before measurement or do always both or use FC unified approach



Cl: Attempt for a probability statement connecting measurement with true value

Frequentist: - objects to / can not make probability assignment to true values
- construct a confidence interval Cl [a,b] at xy% CL from data

in such a way that in a sequence of repeated identical measurements
the fraction xy% of such intervals contains the true value

- "the coverage probability of the interval is XY %"

- no problems with “empty” intervals: m? <-1eV?, s<-0.3 @95% CL

Bayesian: - wants to make statement about probability of true value
from single measurement
- credibility interval / Bayesian confidence interval [a,b] at xy% CL
- probability / degree of belief that true values lies in [a,b] is xy%
- coverage and outcome of not observed experiments not interesting
- all information is in observed likelihood function - likelihood principle
- ,empty” intervals are meaningless in Bayesian interpretation
- as usual: needs to assume an a-priori probability



Classical Frequentist Intervals

Neyman construction for equal tailed ClatCL=1—-a—-=1-y a=p=y/2

~~

Consider: estimate 6 for parameter & and measured value gobs-

Need PDF for estimate for all possible true values 6 g(g; 9) :

Specify tail probabilities e.g. == 0.025 (0.16) and determine
functions u,(6) und v(6) with:

_ & 1 F ]
@ = P(O Z ’Ll,a(g)) S vB 74
= /ua(e)g(e;é’)dé’
05 ' ' -
B = PO <vs(0)) /b
g ?
va(0) N B W
= 0; 0) do --
/—oo g( ) 0 » / /////////h‘.
0 1 2 3 -1 5

D

fora=0, u,60) > inf - ]-inf,Db] ,upper limitb"
forB=0, vy6)>-inf > [a, +inf] Jower limita"



Classical Frequentist Intervals

A

Region btw. u,(6) and v(6) is the confidence belt  P(lg(0) <0 <uqs(f)) =1-a -7

Boundaries of confidence interval given .0
by intersect of observed value

>
l(0) < b(o) <9, POO) = 0)=p0 Correct coverage
by construction




Cl from Inversion of Hypothesis Test

The Confidence belt is the acceptance
region of all possible hypothesis tests.

Cl for a parameter 6

find all true hypothetical values 6 which
are not rejected in a test of size 1-CL
given the observed value 6,

An upper limit b for 6 is the smallest values for which holds p, 2 y.

In practical life: for given sizes / tail probabilites o and 3
find largest a and smallest b, fulfilling the equations:

0= / 9(6:0)d8 = 1 - G(6,5; 0)
0

éobs R R N
5 / 9(6;0)d0 = G(Bops:b)




Determination of CI

The recipe to find [a, b] reduces to solve

(©.@) R R o0 R .
a = / 9(9;9)d9=[ 9(0:a) do .
ua(0) obs
vg(0) N 0, R R
B = /B 9(0;9)d0=/0bsg(9;b)d9.
e e
3 )
% 1 F a e,obs @ - % 1 r é°'?s b o 7
05 r - 05 -
’ 0 1 5 ° 0 4 5
- 0

— a is hypothetical value of 0 for which PO > 0,ps) = .
— b is hypothetical value of 6 for which p(g < Oops) = 0.



Cl for Estimator in Gaussian PDF

W (6 —6)> Confidence belt for 0=1 at 90 % CI
9(979)_ 2eXp o 9 2
\/ 270 %5 .
_ _ _ E | Feldman /
Very simple if variance known and constant: S E-Tebusing: Y
X N: /3
H . Oops — @ - F 4 .
a = 1_G(90b87a70é):1_q) 7 55 [ // ] Cl =
A = [ / 4 u=xl,0d4o
N 90 s b ’ " / .
ﬂ — G(eobs;b7 Ué) =o ( ’ ) ) n / // ]
Ué 1 - Y4 / ]
-2 -1 0 1 2 3 4
SOIVed by Measured Mean x
~ 1 cuinn | WO Sided One sided
- . O 1-7/2) 1-9 o l1-a) 1-a
= Oops + 05,27 (1 —0) [ 060 [ 0843
2 0.9544 2 0.9772
3 0.9973 3 0.9987
For a=p=0.16 4 1-6.3x107°
[Q_O-é’9+0'é] 5 1-57x107
1-0 Intervall 6 1-20x107




Cl for Estimator in Gaussian PDF

J0:0) — 1 exp (_ (é2— 29)2> Confidence belt for o=1 at 90 % Cl
1/2#09% T4 R S T
_ _ . [ | Feldman /
Very simple if variance known and constant: 5 prp-Chusing. o]
: i: A
a = 1—G(éobs;a,aé):1—@(90bs_a> = //
99 2 E 4 -
A Oops — b o f // 4
ﬂ - G(eobs;b7 Ué) = ( obs R ) ) : / // ;
0'9 1 - V4 / ]
0 2:'/1””0””1'”/2””3””4
SOIVed by _ _ Measured Mean x
i o1 (1 ) « Two sided One sided
a = — 0} —
AR -y 0172 [1-a & '(1-q)
= Oobs + 0@ (1= 0) 090 164 090 1282
0.95  1.960 095 1.645
For a=p= 0.16 0.99  2.576 0.99  2.326
0—0,,0+0) 0.999 329
1-0 Intervall 0.9999 3.89




Cl at Physical Boundary

Gaussian estimator with known variance allowed range: true value 6 = 0.

Classical Neyman construction yields upper limit:

) —1
example: observation =-2 variance =1 ; CL=95%

2> b=-2+1.645=-0.355 CI ,empty” / completely in unphysical region

Frequentist: no problem. If true value is ,0%, 5% of all Cl should not contain ,,0*
Bayesian: not satisfactory. Worked for years, spent many Euros to get this answer.

Option 0: increase CL until upper limit > 0
CL=99% 2>b =-2+236=0.326 b <<resolution=1 - arbitrary
even worse: adjust CL for best limit CL =97.725% - b=10-°
this option is not to be used!



Cl at Physical Boundary: Solutions

Option 1: replace measurement by boundary value if measurement in unphysical region

- upper limit (CL = 68%) > resolution

- for measurement above border identical to classical ClI
- coverage 100% for measurement in unphysical region
(equivalent to Power Constrained Limit with minimal power = 50%)

Option 2: Bayesian limit

P(sz) = LT

J L@ p)m(u)dp

Hup
CL=1—-a= / P(p;x)dp

— OO

Mfup L(z; p)m(p)dp

CLzl—oz::Loo

Ll ) () dp

Implement physical boundary
via m(n): m(u) = 0 in forbidden region
mostly: m(u) = const else

Integrate posterior-PDF
P (u | x) to get correct credibility

Coverage larger than quoted CL,
but not goal of Bayesian method



Bayesian Upper Limit for Gauss PDF

Condition for upper limit

Hup
I L(x; p)m(p)dp

Yields ratio of two integrasl over Gauss PDF

starting at physical boundary

Unphysical | Physical

g(ala) =

Likelihood function

A-priori probability

~ ) = 0 forp<0
L T — ex 2702
( : ,U) p = const. for >0
Hup _=w?
[ exp Varo? dp
(|O{)(Oé) CL:]_—a: 0

J#

g(a 16) (before

region region

& normalization)

ala)m(

400 _(z—w)?
f exp \/27ra dlu
0

Bayesian upper limit at 95% CL

usins .

f(alo) f
~ irfgh;iiiu
region
¢ =1
g 9 B. Cc
G or o 8t
Confidence limit 1 - ¢ 7E
of
Upper limit always > 0
4
Coverage greater CL o
For large measured x approaching 2
classical limit of x+1.64 (o=1) —_—

W

4 5 6 7
Measured Mean x



CLg for Continuous Random Variable

P-value(u)

CLg =

P-value(u)

P(ZIZ < Zobs; :LL)

1 — P-value(u = 0)  Power(u = 0vs. 1) B P(x < Zops; 0 = 0)

A hypothesis is called excluded at confidence level CLif CLg=1-CL

Motivation for this “ad hoc” correction of P-value (A. Read 1997) later in lecture
Gaussian example: small (large) value of x inconsistent with u (u=0) hypothesis

Lobs _(:E_/'L)Q
[ dxexp Vormo? dx
— OO
CLg = p— G0

[ dxexp Voro? dx

= T T -

=S - B. Murray -
_S [

S B 3

a 08~ —p ]

I Sb 4

0.6? N

0.4f i -

0.2 ]

C E L e | ]

8 6 4 2 0 2 a4 6 8

measured value

Numerically identical to Bayesian limit

black = 1-P-value(0)

vvvvvvvvvvvvvv

B. Murray 5

measured value, x

95% CL upper limit on

CLgg = classical limit
CLg = CLg limit

LA L L L L L L L L B

(€]

»
[$)]
TTITTT
|

- | B. Murray

w
[
T

[\
N o1 W
T T T[T T[T T

1.5

8 6 4 2 0 2 4 6 8

measured value, x



f(a, ) N . Upper limit from inversion of hypothesis test
—> critical region
All values u 2y, are called excluded

N f(qMIO)

/ First normal condition for exclusion of a value of u:

measurement x is in critical region (o, ) for a test of u
/ o or p-value for x is smaller than size of test a=1-CL
% Supplemented by second condition:

sufficient sensitivity for discrimination of u
from alternative hypothesis u'=0
or power M=1-f of testing u’ vs u 2 minimal value

— critical region

Power M defined with critical My’ (n) =P(x € wu‘:“/)
region or via p-value w.r.t.
° * My (p) = P(p < alp)

f(q,10)

Procedure: determine “usual” upper limit w,,
Find minimal u value which has minimal power M, W i,

The PCL u*,, is then given by larger of the two:  p1,, = max(fiup, fmin)
For M., ,=16% u ., = “median expected — 1 ¢~ under hypothesis u' =0



PCL for Gauss-PDF with u* =0

Critical region in a test of u with size o
f<p—od(1—-0a)

u=0, o=1

y =088 o=t The “usual” limit is then given by:

fup = [+ c® (1 - a)

The power of the test for u w.r.t. =0

D S R T 3X4 My(pn) = P (ﬂ <p—od (1 - Oz)|0)
= 1 T T T MO(:LL) =< (g - (I)_l(l - Oé))
=09 o=1,04=005 -

0.8 |
ool FTH="29 _ &power of the test for u w.r.t. u'=0
0.6 - fora=0.05and o= 1
0.5 G. Cowan et al.
0.4\ - MO(O) e’
0.3~ 7 Moy(p) > « for all >0
0.2 |
0-3—/ | | | - M_. =16% > w.. =0.64
0 1 2 3 4 M..=50% 2> u ., = 1.64



PCL for Gauss-PDF with u* =0

Requiring a minimal power @ (E — & 11— a)) > Mmin

u=0, o=1 o

u=0.64, o=1 Minimal limit is: Hmin = O <(I)_1(Mmin) + q)_l(l — a))
‘ . —1
Unconstrained limit:  fup = £+ 0P (1 — o)

Replace normal limitif : [ < a@‘l(Mmin)

||||||||||

4 3 =2 -4 0 1 2 3 ;21
= 8 .
£ | —po PCL given by
5 ol oayesmn /oL L/ {U((I’l(Mmin) +01=a) <@ (M)
s ,[,L;klp _
5 / fi+0®71(1-a) otherwise .
4 3. Cowan et V4
.| Lo S/ Fora=0.05 M,=16% o="1
° // Qup = YUmeas + 1,64 Wmin = -1+1.64 = 0.64
1 e / u‘*up = maX (-1, umeas) + 1.64
° 7, 2 0 2 4

a = 0.05 gives d71(1 — a) = 1.64

=



95% CL Limit on o/cg,,

Hup

Power Constraint Limits at Work

Cowan et al.

median unconstrained limit
median + lo

observed unconstrained limit
s PCL

10?

10

ATLAS

—e— Observed, PCL
----- Expected, PCL
\!S=7 TeV - + 1o, PCL
4 [J+20,PCL
Ldt~35 pb1 —=— Observed, CL_
..... Expected, CLs

""’ﬂ L L

Tevatron exclusion

:l LEP exclusion

—_
o
o

200 300 400 500 600
my, [GeV]

" { g ((I)_l(Mmin) + (I)_l(l - OZ)) < Uq)_l(Mmin)
Hup =

p+od 11— a) otherwise .

for M,;,=16%:

replace ,observed” classical limit
by expected — 1 o under b-only
hypothesis if less than this value

PCL used in first ATLAS Higgs boson
searches from 2010 data at 7 TeV

expected limit: median value of u

which will be excluded under BG-only
green and yellow bands are 68% (95%)
confidence intervals around this

expected CLg limit worse due to division
by 1-p-value(b-only) = 0.5 on average



upper limit

Different Upper Limits and Their Coverage

Gauss-PDF with variance =1

physical region u= 0
(PCL with M_,;=16%, equivalent to replace observation by -1 if < -1)

—PCL
---------- Classical

............ BayeS|an / CLS
4 2 0 2 4

CL=95%

G. Cowan

—_k

coverage probability

Bayesian / CLS

=>

PCL: coverage known either desired one or 100%
CLs : now preferred at LHC as used for long time and
equivalent to Bayesian with flat a-priori probability




In principle: decide before measurement whether to quote one- or two-sided interval
In praxis: if two-sided Cl at XY% CL does not contain 0 then

quote two-sided Cl at 68% CL, else upper limit at 95% CL

—> this is the flip-flop problem with too small coverage

One and two-sided Cl at 90% CL for variance =1

6 M 6 AT
/§ b | Fefpman Wi
4§ g é 4E / :
= F / . . E / E
53k 4 : 53 F / ]
= T / . ﬁk: / ]
2 F // . 25 // /f
1; // ; 1; // ///E
0 7 /1012%_4 0;"/ 4.

[ 111 L4111 [
-1 0 1 2 3
Measured Mean x

.

Measured Mean x

_m one-sided: measured x + 1.28 two-sided: measured x £ 1.64



Flip-Flop-Problem for Mean of Gauss-PDF

Feldnmian/
Cousihs

/

| | IIII\III L1l IIIIiII

-1

0

1 2

Measured Mean x

3

Assumption: flip-flop at 3
for X ops > 3 two-sided Cl
else one-sided ClI

Problem:

for 1.36 <u <4.28
coverage is only 85%
I.e. smaller than quoted
value of CL=90%

Solution unified approach / unified confidence intervals

Re-discovered for HEP in 1998 by Feldman and Cousins



Construction of Cl using Likelihood Ratio

Ordering principle: include possible measured x values according to
decreasing likelihood ratio R(x) in confidence belt

Maximum likelihood estimator for u ¥ best = X for x20
given true value constrained to=0: Mpest =0 forx<0

1//2m, x>0
exp(—22/2) /2w, = < 0.

Likelihood for x assuming w . P(x|pipest) = {

Likelihood ratio R(x) R(z) - Plajp) [ exp(—(z —p)*/2), 220
defined according to : P (] thest exp(ap — 2/2), <0

22
Determine x, and x, from / P(x|p)dx = a.
T

1

With condition R(x,) = R(x2)



Feldman-Cousins Cl for Gauss-PDF

Gauss PDF with variance =1, physical allowed range u=0
Confidence belt at 90% CL

. Fre A g {2t
- / - P(x‘ﬂbest) GXP(W‘N2/2); z <0
-+ - / .
5 i f ..
= P 3 / P(x|p)dr = «.
2 - / = 1
L E // //f .
] R = R(2)

Measured Mean x

FIG. 10. Plot of our 90% confidence intervals for mean of a Gaussian, constrained to be
non-negative, described in the text.

- no empty intervals, automatic transition from one-sided to two-sided CI
- for large measured values of x Cl identical to classical (for Gauss-PDF)
- for small measured value of x FC-CI longer than classical ClI

(this is the price one has to pay when avoiding flip-flop-problem)



Different Upper Limits and Their Coverage

Gauss PDF with variance =1, physical region u= 0
Upper limit at 95% CL and coverage
(PCL with M . =16% (50%), equivalent to replacing observation by -1 if <-1 (0 if < 0))

= 8 ; i Fry
£ ’ — =
= 7l POL My =016 G. Cowan § G. Cowan
g |
Classical o .
Q. . & 1p—=p =
R SR Bayesian / CL ° |
2 O || T e e
__PCLM_ =05 ©
min d>) ...................
Sl Feldman-Cousin$ 38
4
3 097 __PcLM_=0.16
1 A T N Classical / F-C full
2 . ----- Bayesian / CLS
----- : /"/ ~PCLM_ =05
1 / s S T s F-C upper edge
_- :...-.- S - - 0.8 | | ! 1
0 : < 0 1 2 3 4 5

a

FC gives smallest upper limits for large negative values
FC/unified approach can be supplemented by power constraint



Upper Limits for Gauss-PDF at 95% CL

FC unified

Classical Bayesian / CLg

=10
=10 2_16:” g B
= E g
[} - ® oF 0 9
o 9 B O 9r o
2 % oL =z + 1.640 (95%C.L.) =T =T
8f 3: or )y
7f III 7; - 7; ya =
6F A 6F 6f -
5f A 5f 5t = =
af af af = =4
3 = 3 /£ af = =
2F P 2 ,_E ,', 7
F ek pa 7
1 A [ . £ -
- / I: — II
03271 0 1 2 3 4 5 6 7 032 1 0 1 2 3 4 5 6 7 0 ved ARNEE RENEE REEE SN A
Measured Mean x Measured Mean x -3 2 -1 0 1 2 3 4 5 6 7
Measured Mean x
0
0
PCL 50% PCL 16 %
3‘107” T T T T T T T T T 3‘107\\ T TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT TTTT
S r e F ]
o 9fF o of . ;
=t puL=max(0,2) + 1.64 s 7t pyuL = max(—1,x) + 1.64 ] Cousins
8¢ 8F
7t = 7 =
: = 6f e
: £ 5 =
4; /,I 4f ,',
3 = 3" =
2 = 2F =
1 ',,
(-;3 2 -1 0 1 2 3 4 5 6 7 93 2 -1 0 1 2 3 4 5 6 7

Measured Mean x Measured Mean x



Confidence Intervals for Poisson-PDF

A\ n = observed events = ML estimate \ for A
f(n; )\) — exp(—)\) Target: confidence interval for A

Due to the discreteness of nthe ,confidence , — P(5\ ~ u@()\))
belt” equations can not be fulfilled exactly e.g. N

> P(S‘ > Uoz()‘))

,Conservative” modification of equations e.qg:
Plg(A) < A< ug(N) > 1-a-f
Pla<A<b)>1l—-a-p

Hence over-coverage per construction

Nobs—1 Nobs—1 n

a
. _ —Qa
Inversion of test o = Eifn@—l— E f(n;a)=1- E e
N=Nyps n=0
Solve numericall Mobs Mobs 1n,
b

the equtions = g = Zf n;b) = Z

nO



Determination of Cl for Poisson-Parameter

Simple case: no observed event 3 = e_b — b= —logf
hence at CL=95% )= - log(0,05) =2.9% ~ 3.

For general case use relation btw. Poisson-PDF and Chi2-PDF

00
Z et = / fx2 (Z; Ndof — 2(n0bs + 1))dZ
2

= 11— FXQ (2)\; Ndof = 2(”01)3 + 1))7

The borders of the Cl are obtained via the cumulative of the Chi2-PDF

untere Schranke a obere Schranke b
a = 0.1 a = 0.05 B =0.1 B = 0.05

1 1 Nops | COL = 90% CL = 95% | CL = 90% CL = 95%
N - . R 0 - - 2.30 3.00
a = = F 2 (Oé, ndof - 277/068 )7 1 0.105 0.051 3.89 4.74
2 X 2 0.532 0.355 5.32 6.30
3 1.10 0.818 6.68 7.75
1 1 4 1.74 1.37 7.99 9.15
e _ _ . R 5 2.43 1.97 9.27 10.51
b _ 2 FX2 (1 /67 ndof — 2(77’063 + 1)) 6 3.15 2.61 10.53 11.84
7 3.89 3.29 11.77 13.15
8 4.66 3.98 12.99 14.43
9 5.43 4.70 14.21 15.71
10 6.22 5.43 15.41 16.96




Upper limit for Poisson-PDF with Background

Upper limit s at CL=1-y Mobs s+ p)n
given by solving the v = P(n < Nobs: S,b) — Z ( t ) 6—(3+b)
equation from test inversion =0 n!

Boundaries of Cl s, s, determined using Chi?-PDF:

1

-1 o 12 T | | |
Sjn = —F o, 2n) —b ®
o > Y2 ( ) ? (@)

1 B 10 6 events observed .
sup==F 5 (1-8;2(n+1)) - b -

2 X ;m 8 G. Cowan .
same as for ,b=0"-Db -g 6 .
—> called ,background subtraction® ®©

O
4 -
n<b canyields,, <0
2 -
For uncertainty in background 0
use profile likelihood ratio test statistic 0 2 = 6 8 10 12

and Wilk's and Wald's approximation
if b not too small.



Expected Limit at Physical Boundary

e.g. for b=2.5and n =0 we find upper limit of syp = —0.197 (CL = 0.90)

increase CL to 0.95 yields S,p = 0.496

,Ccheating” with CL = 0.917923 yields Syp = 10!

naive argument: for b =2.5 - variance is V2.5 =1.6. how can limit be so small?

MC simulation:

determine median limit under
,b-only“ hypothesis (s = 0)
- expected limit

distribution of 95% CL upper limits
forb=25,s=0.

- Median s, = 4.44

SUup

NI N T

10

15




Bayesian Upper Limit for Poisson-PDF

Bayesian upper limitto CL=1-a | /SHP (s|n)ds = J23 Ln|s) n(s) ds
to be derived from oo p ffooo L(n|s) m(s)ds
with likelihood function and uniform prior in physical region
(8 _I_ b)n — S-I-b = s 2 0
L(n|s) = e~ ¥V ") =10 otherwise

n,—(s+b) o~ B
Posterior probability: | p(s|n) = (s+b)"e I'b,n+1)= [, x"e “dx

Sup a
Need so solve: l—a= / p(sln)ds / Y'edx=T(n+1)F,(2a,2(n+1))
0 0

1
Upper limit given by Sup = EFx_zl p,2(n+1)]—b

Frequentist formula modified |, — 1 _ ¢ (1 —F,2(2b,2(n+ 1)])
by replacing (1-a. ) by p




Bayesian limit with uniform prior first
proposed by O. Helene (1983)
Condition can be rewritten as

m—o(Sup +0)™/m!

Dm0 0" /m!

o =¢e °Up

Numerical identical result derived by G. Zech (1988) in different context

e (+D (54 p)"

P(n;s+b)= =

n—n

stems from  P(n;s+b)= Z 2, P(ny,; b)P(ngs)

n,=0n.=0

If N<b we know background in data<b

-> renormalilze background PDF
and replace it in compound PDF

Find upper limit s by solving (with e=a.)

Zech's interpetation 2

(not accepted by many Frequentist
as one conditions on data, but known
as the PDG formula for many years)

P'(ny; b) P(ny; b)/ Z P(ny; b)

nb—O

N

N
=Y P(n;s+b)/ Y P(nyb)

n=0 n,=0

different. The limit in the “frequency interpretation”
can be stated as follows: for an infinitely large number
of experiments, looking for a signal with expectation s
and Poisson distributed background with mean b, where
the background is restricted to values of less than or
equal to N, the frequency of observing N or less events
is €.




CLg Limit for Poisson PDF

A. Read (1997): applied Zech'’s “background

conditioning” to the LEP test statistic Q

Clg =

CLs-I—b — Ps—i—b(Q < Qobs)
CLy = Py(Q < Qops)

CLS = CL3+b/CLb.

“confidence in the signal-only hypothesis”

nsiry

de

o T
Ty Ty
[ B SN

Probabiliry
R & 8 =

A hypothesis is exlcuded at confidence level CL if

1-CLy; <CL

Applied to Poisson case yields Zech’s formula:

P(X S Xobs) B P(n S nObS)
P(X; < Xys) Pl <ngy

(L =

=1

)

Nghs e'(b+3)(b+s)"
n=(

Enobs ﬂ
=0l

002 [

T T | T T T | T T | T T ] T T :
Dbserved .
Expected for background LEP o

Expected for signal (m_=115.6 GeVic' )
+ background

Remark: denominator is not
1-p-value for the b-only hyp.
The sum would only run
from O up to n_-1.

Calling it the power is
correct (I think)



Classical and CLg Limit compared for Poisson PDF

So22- 7 [B.Muray| - Expected background b = 3
§ o2 E Expected signal yield s =3
8 %2 xpected signal yield s
o Y. . -
o016 | | é 5 =
o3 o e T E Bottom left: cumulative of Poisson
o1 | s E distributions
382: _______ E and their ratio CLg
0.04F S = _ .
0.02- .. ey Bottom right: upper limits from
002 4 e e 10 2 classical approach CL,
measured value CLS technique
= [T T
S 1—CLB J 2—12_I I I [ L B B B
E o T 1 S f .
= L[ j E - B. Murray | ]
g L B. Murray | | 5 105 y :
= 10" L _§ _I% 8:— ...... ]
& - o I -
] 2 6 _
______ . S - ]
L Cst E L O CLSb _Z
—CL ; - .
_____ S 4 2— ... _CLS -
0o 2 4 6 8 10 12 O e I T Tom

measured value, x measured value, x



classical v.up (1-B=0.95)

Classical and Bayesian/CLg Limits at 95% CL

12

10

Classical

(@)

G. Cowan

2 4 6 8 10 12

Upper limit can be ,,0"

1
fup =P (1-4:20n41)) -

for b= 0 identical

independent on b forn=0 .

Bayesian v,up (1-B=0.95)

-
N

-
o

(as]

Upper limit always = 3 le‘“(l‘Fx2[2b72(”“)D

Bayesian/Zech/CLg

(b)

G. Cowan

1
Sup = Eszl [P, 2(n+1)]—b

for n>>b also identical
other b values Bayesian> classical limit >“conservative” coverage > CL




Known background =3

One-sided Cl at CL=90%

P(nlp) = (14 0)" exp(—(u + 0))/n!

Two-sided Cl at CL=90%

15 —/——

14 et s

13 |-+iCdusis

12 -

11 s
=.10 -
5 9 e 5
e = s
El | E
& 6 %
»n 5 A

| =

3

) |

1 R

0 -

01 23456728 9101112131415
Measured n
For ,Flip-Flop® again to small coverage
Construction of confidence () — L(nls,b)
belt via likelihood ratio L(n|s,b)

15
14
13
12
11

—
o O

SN ~1 0

hn

S = W s

FRId

LOUSINS A

0123454678 9101112131415

Measured n

n—=ob

where s =
s

n > b,

otherwise



R = P(n|w)/P(n|tpest)

Construction of confidence belt

for u=0.5, b=3

Standard

P(xly)

P( 1)

rank

UL.

C.L.

0.030

0.0

0.050

0.607

0.106

0.0

0.149

0.708

0.185

0.0

0224

0.826

0216

0.0

0.224

0.963

0.189

1.0

0.195

0.966

0.132

2.0

0.175

0.753

0.077

3.0

0.161

0.480

0.039

4.

0.149

0.259

o0 (A |ON | | (W | — [ | =

0.017

3.0

0.140

0.121

|

wignal Mean

= =
[l L

|
WO O

o T S o S T O L T L S, B e's

confidence belt for b=3

o1 2 3 4 5 6 78 9101112131415
Measured n




Simple counting experiment with exactly known background expectation of 7 events

g__ [ 5 3 ; T T T | T T | T T T | T T T | T T ]
s 14— |
m — —]
> - -
S 121 ]
= B ]
10— —
8— ]
B Expected bkg. ]
61— 16% Exclusion Power ]
- Feldman Cousins 7]
4 - I CI's+b _
u ' —— PCL -
P A — —— CL, .
— I e Bayesian 7

ot e | ol e b L

2 4 6 8 10 12 14

Number of observed events

- if CLg<56% we call a u hypothesis excluded at 95% CL (true coverage larger)

- CLg and Bayesian limit with flat prior in signal rate mathematically identical
in praxis also very similar results for test statistics used at LHC (Tevatron, LEP)

- PCL= power constrained limit: require that power = 16% (cut off at expected -10)



Conclusions

probably its already quite
l]ate when we arrive here

-> thanks for your attention
and please ask questions
now or at the bar
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Coverage of Cl for Poisson-PDF

Due to discrete nature of Poisson random variable the coverage is per construction
larger than quoted CI also for Frequentist methods for most true values

B — ! ! 1 & [ T T a
s 1-94 s 194 total
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o [+
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PDF for Exclusion Test Statistic

Flquli) = ® (#I;PJ) 5(q.) + %\/IQ_W\/lq_uexp [—% ( u — (1 ;#’))2]

1 1 1 1
f(QNLU') 5 (qu) W \/@e

Flau') = o (g - =10)

P =1 = Flgulu) = 1—(/3,)



