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. . . Some introductory remarks . . .

Disclaimer:

The dynamics of strong and weak interactions in B-decays
is very complex and has many faces . . .

. . . I will not be able to cover everything, . . .

. . . but I hope that some theoretical and phenomenological
concepts become clearer.
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. . . Some introductory remarks . . .

Physical processes involve Different typical Energy/Length Scales:

⇒ Short-distance Dynamics vs. Long-distance Dynamics

e.g. for b-decays:

New physics : δx ∼ 1/ΛNP

Electroweak interactions : δx ∼ 1/MW

Short-distance QCD(QED) corrections : δx ∼ 1/MW → 1/mb

Hadronic effects : δx < 1/mb

→ Sequence of Effective Field Theories (EFT)
→ Perturbative and Non-Perturbative Strong Interaction Effects

(7→ renormalization-group improved perturbation theory)

→ Definition of Hadronic Input Parameters (Functions)
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Central Notions / Theoretical Jargon

Factorization:
1 Separation of Scales in (RG-improved) Perturbation Theory
2 Simplification of Exclusive Hadronic Matrix Elements

Operator-Product Expansion (OPE):
Short-distance expansion (x → 0) of time-ordered operator products,
corresponding to |q2| → ∞ in Fourier transform:∫

d4x eiq·x T (φ(x)φ(0)) =
∑

i

ci (q2)Oi (0)
“Wilson Coefficients” ci (q2)

“Effective” Operators Oi (0)

Effective (Quantum) Field Theories:
Effective Lagrangian / Hamiltonian:

Feynman rules reproduce the dynamics of low-energy modes.
High-energy (short-distance) information in coefficient (functions).
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Outline

Example: b → cdū Decays
separation of scales in loop diagrams
current-current operators (chirality, colour)
matching and running of Wilson coefficients

Another Example: b → s(d)qq̄ Decays
strong penguin operators
electroweak operators

From b → cdū to B → Dπ
naive factorization
QCD factorization (BBNS)
factorizable and non-factorizable topologies

B → ππ and B → πK
factorization theorem with spectator interaction
effective-theory description
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Example: b → cdū decays
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b → cdū decay at Born level

Full theory (SM) → Fermi model

(
g

2
√

2

)2
J(b→c)
α

−gαβ+ qαqβ

M2
W

q2−M2
W

J
(d→u)

β

|q|�MW−→ GF√
2

J(b→c)
α gαβ J

(d→u)

β

Energy/Momentum transfer limited by mass of decaying b-quark.
b-quark mass much smaller than W -boson mass.

|q| ≤ mb � mW
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Effective Theory:

Analogously to muon decay, transition described in terms of
current-current interaction, with left-handed charged currents

J(b→c)
α = Vcb [c̄ γα(1− γ5) b] , J

(d→u)

β = V ∗ud
[
d̄ γβ(1− γ5) u

]
Effective operators only contain light fields (!)
("light" quarks, leptons, gluons, photons).

Effect of large scale MW in effective Fermi coupling constant:

g2

8M2
W
−→ GF√

2
' 1.16639 · 10−5 GeV−2
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Quantum-loop corrections to b → cdū decay

4-momentum of the W -boson in the loop is an
internal integration parameter d4q,

each component taking values between −∞ and +∞.

⇒We cannot simply expand in |q|/MW !

⇒ Need a method to separate the cases |q| ≥ MW and |q| � MW .
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IR and UV regions in the Effective Theory

full theory = IR region
( |q| � MW

MW →∞

)
+ UV region

( |q| & MW

mb,c → 0

)

= +

I(αs; mb
Mw
, mc

mb
)/GF ' IIR(αs; mb

µ
, mc

mb
) + IUV (αs; µ

mW
)
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( |q| � MW

MW →∞

)
+ UV region

( |q| & MW

mb,c → 0

)

' +

I(αs; mb
Mw
, mc

mb
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IR and UV regions in the Effective Theory

full theory = IR region
( |q| � MW

MW →∞

)
+ UV region

( |q| & MW

mb,c → 0

)

' +

I(αs; mb
Mw
, mc

mb
)/GF ' 〈O〉loop(αs; mb

µ
, mc

mb
) + C′(αs; µ

mW
)× 〈O′〉tree

l l
1-loop matrix element of
operator O in Eff. Th.

independent of MW

UV divergent→ µ

1-loop coefficient for
new operator O′ in EFT

independent of mb,c

IR divergent→ µ
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Effective Operators for b → cdū

short-distance QCD corrections preserve chirality;
quark-gluon vertices induce second colour structure.

Heff =
GF√

2
VcbV ∗ud

∑
i=1,2

Ci (µ)Oi + h.c. (b → cdū)

Current-Current Operators: (b → cdū, analogously for b → qq′q̄′′ decays)

O1 = (d
a
Lγαub

L ) (cb
Lγ
αba

L)

O2 = (d
a
Lγαua

L) (cb
Lγ
αbb

L)

The Wilson Coefficients Ci (µ) contain all information about
Short-Distance Physics ≡ Dynamics above a Scale µ
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Wilson Coefficients in Perturbation Theory

• 1-loop result:

Ci (µ) =

{
0

1

}
+
αs(µ)

4π

(
ln

µ2

M2
W

+
11
6

){
3

−1

}
+O(α2

s)

Question : How do we choose the renormalization scale µ ?
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Wilson Coefficients in Perturbation Theory

• 1-loop result:

Ci (µ) =

{
0

1

}
+
αs(µ)

4π

(
ln

µ2

M2
W

+
11
6

){
3

−1

}
+O(α2

s)

Question : How do we choose the renormalization scale µ ?

Answer :

”Matching”

For µ ∼ MW the logarithmic term is small, and αs(MW )
π � 1

→ Ci (MW ) can be calculated in Fixed-order Perturbation Theory

In this context, MW is called the Matching Scale.
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Anomalous Dimensions

In order to compare with experiment / hadronic models, the matrix
elements of EFT operators are needed at low-energy scale µ ∼ mb

Only the combination ∑
i

Ci (µ) 〈Oi〉(µ)

is µ-independent (in perturbation theory).
⇒ Need Wilson coefficients at low scale !

Scale dependence can be calculated in perturbation theory:
Loop diagrams in EFT are UV divergent
⇒ anomalous dimensions (matrix):

∂

∂ lnµ
Ci (µ) ≡ γji (µ) Cj (µ) =

(
αs(µ)

4π
γ

(1)
ji + . . .

)
Cj (µ)

γ = γ(αs) has a perturbative expansion.
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RG Improvement (“running”)

In our case:

γ(1) =

(
−2 6

6 −2

) {
Eigenvectors: C± = 1√

2
(C2 ± C1)

Eigenvalues: γ(1)
± = +4, −8

Formal solution of differential equation: (separation of variables)

ln
C±(µ)

C±(M)
=

∫ lnµ

ln M

d lnµ′ γ±(µ′) =

∫ αs(µ)

αs(M)

dαs

2β(αs)
γ±(αs)

Perturbative expansion of anomalous dimension and β-function:

γ =
αs

4π
γ

(1) + . . . , 2β ≡
dαs

d lnµ
= −

2β0

4π
α

2
s + . . .

C±(µ) ' C±(MW ) ·
(

αs(µ)

αs(MW )

)−γ(1)
± /2β0

(LeadingLogApprox)
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Numerical values for C1,2 in the SM [Buchalla/Buras/Lautenbacher 96]

operator: O1 O2

Ci (mb): -0.514 (LL) 1.026 (LL)

-0.303 (NLL) 1.008 (NLL)

(modulo parametric uncertainties from MW ,mb, αs(MZ ) and QED corr.)

(potential) New Physics modifications:

new left-handed interactions (incl. new phases)

C1,2(MW )→ C1,2(MW ) + δNP(MW ,MNP)

new chiral structures⇒ extend operator basis (LR,RR currents)
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Next Example: b → s(d) qq decays
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b → s(d) qq̄ decays – Current-current operators

→

Now, there are two possible flavour structures:

VubV ∗us(d) (ūLγµbL)(s̄(d)Lγ
µuL) ≡ λu O(u)

2 ,

VcbV ∗cs(d) (c̄LγµbL)(s̄(d)Lγ
µcL) ≡ λc O(c)

2 ,

Again, αs corrections induce independent colour structures O(u,c)
1 .
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b → s(d) qq̄ decays – strong penguin operators

New feature: Penguin Diagrams→ additional operator structures

→

smaller Wilson coefficients
(suppressed by αs / loop factor)

Strong penguin operators: O3−6

Chromomagnetic operator: Og
8

Question : CKM factor of Penguin Pperators? (for mu,c � mt )
Answer :
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b → s(d) qq̄ decays – strong penguin operators

New feature: Penguin Diagrams→ additional operator structures

→

smaller Wilson coefficients
(suppressed by αs / loop factor)

Strong penguin operators: O3−6

Chromomagnetic operator: Og
8

Question : CKM factor of Penguin Pperators? (for mu,c � mt )
Answer : −λt = (λu + λc) = −VtbV ∗ts(d)
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Eff. Hamiltonian for b → s(d)qq̄ decays (QCD only)

Heff =
GF√

2

∑
i=1,2

Ci (µ)
(
λu O(u)

i + λc O(c)
i

)

− GF√
2
λt

6∑
i=3

Ci (µ)Oi −
GF√

2
λt Cg

8 (µ)Og
8

O3 = (s̄a
Lγµba

L)
∑
q 6=t

(q̄b
Lγ
µqb

L ) , O4 = (s̄a
Lγµbb

L)
∑
q 6=t

(q̄b
Lγ
µqa

L) ,

O5 = (s̄a
Lγµba

L)
∑
q 6=t

(q̄b
Rγ

µqb
R) , O6 = (s̄a

Lγµbb
L)
∑
q 6=t

(q̄b
Rγ

µqa
R) ,

Og
8 =

gs

8π2 mb (s̄L σ
µν T A bR) GA

µν .

gluon couples to left- and right-handed currents.

chromomagnetic operator requires one chirality flip ! (ms is set to zero)
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Matching and running for strong penguin operators

Matching coefficients depend on top mass,

Ci = Ci (µ, xt ) , xt = m2
t /M

2
W

Matching of chromomagnetic operator is scheme-dependent.
Usually, one considers scheme-independent linear combination:

Cg, eff
8 = Cg

8 +

6∑
i=1

zi Ci

Again, operators mix under RG running (→ anomalous-dimension matrix)
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Electroweak Corrections

Penguin and box diagrams with additional γ/Z exchange:
→ Electroweak Penguin Operators O7−10

O7 =
2
3

(s̄a
Lγµba

L)
∑
q 6=t

eq (q̄b
Lγ
µqb

L ) , O8 =
2
3

(s̄a
Lγµbb

L)
∑
q 6=t

eq (q̄b
Lγ
µqa

L) ,

O9 =
2
3

(s̄a
Lγµba

L)
∑
q 6=t

eq (q̄b
Rγ

µqb
R) , O10 =

2
3

(s̄a
Lγµbb

L)
∑
q 6=t

eq (q̄b
Rγ

µqa
R) .

depend on electromagnetic charge of final state quarks !

→ Electromagnetic operators Oγ7
main contribution to b → s(d)γ decays.

→ Semileptonic operators O9V , O10A

main contribution to b → s`+`− decays.
[→ more in Danny’s lecture]

→ electroweak corrections to matching coefficients
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Electroweak Corrections

Penguin and box diagrams with additional γ/Z exchange:
→ Electroweak Penguin Operators O7−10

depend on electromagnetic charge of final state quarks !

→ Electromagnetic operators Oγ7

Oγ7 =
e

8π2 mb (s̄L σµν bR) Fµν
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Electroweak Corrections

Penguin and box diagrams with additional γ/Z exchange:
→ Electroweak Penguin Operators O7−10

depend on electromagnetic charge of final state quarks !

→ Electromagnetic operators Oγ7
main contribution to b → s(d)γ decays.

→ Semileptonic operators O9V , O10A

O9V = (s̄L γµ bL) (¯̀γµ `) ,

O10A = (s̄L γµ bL) (¯̀γµγ5 `)

main contribution to b → s`+`− decays.
[→ more in Danny’s lecture]

→ electroweak corrections to matching coefficients
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Summary: Effective Theory for b-quark decays

“Full theory”↔ all modes propagate
Parameters: MW ,Z ,MH ,mt ,mq , g, g′, αs . . . ↑ µ > MW

Ci (MW ) = Ci

∣∣
tree

+ δ
(1)
i

αs(MW )
4π + . . . matching: µ ∼ MW

“Eff. theory”↔ low-energy modes propagate.
High-energy modes are “integrated out”.
Parameters: mb,mc ,GF , αs,Ci (µ) . . .

↓ µ < MW

∂
∂ lnµ Ci (µ) = γji (µ) Cj (µ) anomalous dimensions

Expectation values of operators 〈Oi〉 at µ = mb.
All dependence on MW absorbed into Ci (mb)

resummation of logs
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From b → cdū to B̄0 → D+π−
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From b → cdū to B̄0 → D+π−

In experiment, we cannot see the quark transition directly.
Rather, we observe exclusive hadronic transitions,
described by hadronic matrix elements, like e.g.

〈D+π−|Hb→cdū
eff |B̄0

d 〉 = VcbV ∗ud
GF√

2

∑
i=1,2

Ci (µ) ri (µ)

ri (µ) = 〈D+π−|Oi |B̄0
d 〉
∣∣∣
µ

The hadronic matrix elements ri contain
QCD (and also QED) dynamics below the scale µ ∼ mb.
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"Naive" Factorization of hadronic matrix elements

ri = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸

• Quantum fluctuations above µ ∼ mb already in Wilson coefficients
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"Naive" Factorization of hadronic matrix elements

ri = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸

form factor decay constant

• Part of (low-energy) gluon effects encoded in simple/universal had. quantities
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"Naive" Factorization of hadronic matrix elements

ri = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸

Question : Why is naive factorization not exact ?
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"Naive" Factorization of hadronic matrix elements

ri (µ) = 〈D+|J(b→c)
i |B̄0

d 〉︸ ︷︷ ︸ 〈π−|J(d→u)
i |0〉︸ ︷︷ ︸ + corrections(µ)

Answer : Gluon cross-talk between π− and B → D
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QCD factorization [Beneke/Buchalla/Neubert/Sachrajda 2000]

light quarks in π−have large energy (in B rest frame)

gluons from the B → D transition see ”small colour-dipole”

⇒ corrections to naive factorization dominated by
gluon exchange at short distances δx ∼ 1/mb

New feature: Light-cone distribution amplitudes φπ(u)

Short-distance corrections to naive factorization given as convolution

ri (µ) '
∑

j

F (B→D)
j

∫ 1

0

du
(

1 +
αsCF

4π
tij (u, µ) + . . .

)
fπ φπ(u, µ)

φπ(u) : distribution of momentum fraction u of a quark in the pion.

tij (u, µ) : perturbative coefficient function (depends on u)

F (B→D)
j : form factors known from B → D`ν
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Light-cone distribution amplitude for the pion

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1

1.2

1.4

ΦΠHuL
(for illustration only)

• Exclusive analogue of parton distribution function:
PDF: probability density (all Fock states)

LCDA: probability amplitude (one Fock state, here: qq̄)

• Phenomenologically relevant

〈u−1〉π =

∫ 1

0

du
u
φπ(u) ' 3.3± 0.3

[from sum rules, lattice, exp.]
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Complication: Annihilation in B̄d → D+π−

Second topology for hadronic matrix element possible:

”Tree” (class-I) ”Annihilation” (class-III)

annihilation is formally power-suppressed by Λhad/mb

more difficult to estimate (colour-dipole argument does not apply!)

Th. Feldmann OPE/Factorization/EFT 28 / 41



Still more complicated: B− → D0π−

Second topology with spectator quark going into light meson:

”Tree” (class-I) ”Tree” (class-II)

class-II amplitude does not factorize into simpler objects
(again, colour-transparency argument does not apply)

again, it is power-suppressed compared to class-I topology
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Non-factorizable: B̄0 → D0π0

In this channel, class-I topology is absent:

”Tree” (class-II) ”Annihilation” (class-III)

The whole decay amplitude is power-suppressed!
Naive factorization is not even a first-order approximation!
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Isospin analysis for B → Dπ

Employ isospin symmetry between (u, d) of strong interactions.

Final-state with π (I = 1) and D (I = 1/2) described by only two isospin amplitudes:

A(B̄d → D+π−) =

√
1
3
A3/2 +

√
2
3
A1/2 ,

√
2A(B̄d → D0π0) =

√
4
3
A3/2 −

√
2
3
A1/2 ,

A(B− → D0π−) =
√

3A3/2 ,

QCDF: A1/2/A3/2 =
√

2 + corrections, relative strong phase ∆θ small

Isospin amplitudes from experimental data [Fleischer et al., arXiv:1012.2784]∣∣∣∣ A1/2√
2A3/2

∣∣∣∣ = 0.676± 0.038 , cos ∆θ = 0.930+0.024
−0.022

(similar for B → D∗π)

→ Corrections to QCDF sizeable — Strong phases remain small
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B → ππ and B → πK
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B → ππ and B → πK

Naive factorization:

Both final-state mesons are light and energetic.

Colour-transparency argument applies for class-I and class-II topologies.

B → π(K ) form factors at large recoil fairly well known (QCD sum rules)
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QCDF for B → ππ and B → πK decays (BBNS 1999)

Factorization formula has to be extended:

Vertex corrections are treated as in B → Dπ
Include penguin (and electroweak) operators from Heff.
Take into account new (long-distance) penguin diagrams! (→ Fig.)

Additional perturbative interactions involving spectator in B-meson
(→ Fig.)

Sensitive to the distribution of the spectator momentum ω
−→ light-cone distribution amplitude φB(ω)
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Additional diagrams for QCDF corrections in B → πK (example)

−→ additional contributions to the hard coefficient functions tij (u, µ)

ri (µ)
∣∣∣
hard
'
∑

j

F (B→π)
j (m2

K )

∫ 1

0
du
(

1 +
αs

4π
tij (u, µ) + . . .

)
fK φK (u, µ)
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ri (µ)
∣∣∣
hard
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∑

j

F (B→π)
j (m2

K )

∫ 1

0
du
(

1 +
αs

4π
tij (u, µ) + . . .

)
fK φK (u, µ)
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Spectator corrections in QCDF

−→ additive correction to naive factorization

∆ri (µ)
∣∣∣

spect.
=

∫
du dv dω

(
αs

4π
hi (u, v , ω, µ) + . . .

)
× fK φK (u, µ) fπ φπ(v , µ) fB φB(ω, µ)

Distribution amplitudes for all three mesons involved!
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New ingredient: LCDA for the B-meson

0.5 1 1.5 2 Ω ÈGeVÈ
0.1

0.2

0.3

0.4

0.5

0.6

ΦBHΩL

• Phenomenologically relevant:

〈ω−1〉B =

∫ ∞
0

dω
ω
φB(ω) ≈ 2 GeV−1 (at µ =

√
mbΛ ' 1.5 GeV)

(from QCD sum rules [Braun/Ivanov/Korchemsky])

(from HQET parameters [Lee/Neubert])

Large logarithms ln mb/Λhad can be resummed using SCET
√
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Complications for QCDF in B → ππ, πK etc.

Annihilation topologies are numerically important.
BBNS use conservative model estimates.

Some power-corrections are numerically enhanced
by ”chiral factor”

µπ
fπ

=
m2
π

2fπ mq

Many decay topologies interfere with each other.

Many hadronic parameters to vary.

→ Depending on specific mode, hadronic uncertainties sometimes quite large.
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Summary

Weak b-quark decays described by Effective Hamiltonian:

Current-current and Penguin and Box operators Oi .
Wilson Coefficients encode short-distance dynamics in SM or NP.
QCD effects between MW and mb via Renormalization-Group.

Exclusive Amplitudes for non-leptonic decays:

Hadronic Matrix Elements of Oi contain QCD dynamics below mb.
“Naive” Factorization in terms of form factors and decay constant.
QCD (improved) Factorization: include complicated gluon cross talk.
Factorizable and non-factorizable “Flavour Topologies”
Factorization Theorems: soft and collinear modes in HQET / SCET.
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Summary

” When looking for New Physics, . . .
. . . do not forget about the complexity of the Old Physics ! ”

. . . more in Danny’s lecture . . .
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Backup Slides
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Effective-Theory Description for B → ππ, πK
Characterization of relevant field modes below µ ∼ mb: (in B-meson rest frame)

The heavy b-quark:

Heavy quark approximately behaves as Static Source of Colour

pµb = mbvµ + kµ , with |kµ| � mb

kµ: soft (residual) momentum. vµ = (1,~0): B-meson velocity.

The b-quark propagator is approximated as

i
/pb −mb + iε

=
i (/pb + mb)

p2
b −m2

b + iε
' imb (/v + 1)

2mb v · k + iε
=

i
v · k + iε

1 + /v
2

This corresponds to a kinetic term for an effective b-quark field hv

Lkin = h̄v (i v · D) hv , with (/v − 1) hv = 0

→ Heavy Quark Effective Theory (HQET)
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Effective-Theory Description for B → ππ, πK
Characterization of relevant field modes below µ ∼ mb: (in B-meson rest frame)

Fast (massless) light quarks in energetic pions and kaons:

Quarks move approximately collinear to their parent mesons.

pµcoll = p+
nµ−
2

+ pµ⊥ + p−
n̄µ+
2
, with p− � |p⊥| � p+

pµ⊥: small transverse momentum. nµ± = (1, 0⊥,±1): light-like.

Collinear quark propagator is approximated as

i /pcoll

p2
coll + iε

'
i p+/n−

p+p− + p2
⊥ + iε

=
i

p− + p2
⊥/p+ + iε

/n−
2

This corresponds to a kinetic term for an effective collinear field ξc

Lkin = ξ̄c

(
i n− · D + i /D⊥

1
in+D

i /D⊥

)
/n+

2
ξc , with /n− ξc = 0

→ Soft Collinear Effective Theory (SCET)
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Effective-Theory Description for B → ππ, πK

Characterization of relevant field modes below µ ∼ mb: (in B-meson rest frame)

Soft-collinear interactions:
Invariant mass of a gluon coupled to soft-collinear quark current:

(ksoft − pcoll)
2 ' −p+ (n− · k) ∼ O(E Λhad)

→ hard-collinear modes (relevant for spectator interactions)

Subtlety: Soft-collinear vertices have to be multipole-expanded according
to the different sizes for the typical wave-lengths involved.

Heavy-to-light currents:

A generic heavy-to-light current (with arbitrary Dirac matrix Γ) matches onto:

q̄(0) Γ Q(0) −→ ξ̄c(0) Γ hv (0) + . . .

→ Soft Collinear Effective Theory (SCET)
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