

Heavy Flavour Experiment Lecture 2

Johannes Albrecht (TU Dortmund)

5th March 2014

- Lecture 1:
 - Introduction to "heavy flavour physics"
 - The Experiments:
 Flavour physics at e⁺e⁻ and at hadron colliders
 - CKM matrix and types of CP violation
 - Precision measurements of the quark mixing matrix
- Lecture 2:
 - "Golden modes for New physics searches" loop zoology

Loop zoology – map of this talk

• Map of flavour transitions and types of loop processes

QCD penguin

5. März 2014

 $\Delta F=2 \text{ box}$

EW penguin

Higgs penguin

3/46

LHCb THCp

	b→s	b→d	c→u	s→d
QCD penguin	A _{CP} (B _s →hhh)	A _{CP} (B⁰→hhh)	∆a _{cP} (D→hh)	K→π ⁰ II ε' /ε
$\Delta F=2 \text{ box}$	ΔM _{Bs} Α_{CP}(B_s→J/ψφ)	$\Delta M_{Bd} = A_{CP}(B^0 \rightarrow J/\psi K_s)$	x,y, q/p	$\Delta M_{K} = \epsilon_{K}$
EW penguin	Β→Κ (*)μμ Β→Χ _s γ	Β→πμμ Β→Χγ	D→X _u I I	K→ $π^0$ II K→ $π^{\pm}$ νν
Higgs penguin	B _s →μμ	Β ⁰→μμ	D→µµ	К ⁰ →µµ

Johannes Albrecht

Loop zoology – map of this talk

Map of flavour transitions and types of loop processes

QCD penguin

 $\Delta F=2 \text{ box}$

EW penguin

Higgs penguin

QCD penguin	$A_{CP}(B_s \rightarrow hhh)$	A _{CP} (B⁰→hhh)	∆a _{cP} (D→hh)	K→π ⁰ II
∆F Detailed	discussion tom Michel & Danny	x,y, q/p	ε /ε ΔM _K ε _K	
EW penguin	Β→Κ (*)μμ Β→Χ _s γ	Β→πμμ Β→Χγ	D→X _u I	$K \rightarrow \pi^0$ $K \rightarrow \pi^{\pm} vv$
Higgs penguin	B _s →μμ	Β⁰→μμ	D→µµ	К ⁰ →µµ

1) QCD penguins or Search for CP violation in charm decays

- Reminder: 3 types of CP violation
 - a) In decay (direct CPV)
 - b) In mixing
 - c) In interference between mixing and decay
- Charm: No evidence yet on CP violation in b) or c) Could there be large direct CP violation in charm penguin decays?

- A priory, consensus was "no"
 - CP violation O(1%) would be "clear sign for NP"

Johannes Albrecht

CP violation in charm: ΔA_{CP}

$$A_{\rm raw}(f) = A_{CP}(f) + A_{\rm D}(f) + A_{\rm P}(D^{*+})$$

- Physical CP asymmetry (very small)
- Detection asymmetry
- Production asymmetry

CP violation in charm: ΔA_{CP}

$$A_{\rm raw}(f) = A_{CP}(f) + A_{\rm D}(f) + A_{\rm P}(D^{*+})$$

- Physical CP asymmetry (very small)
- Detection asymmetry, cancels for $D^0 \rightarrow \pi\pi$, KK
- Production asymmetry

$$\Delta \mathsf{A}_{\mathsf{CP}} = \mathsf{A}_{\mathsf{raw}}(\mathsf{K}^{-}\mathsf{K}^{+}) - \mathsf{A}_{\mathsf{raw}}(\pi^{-}\pi^{+}) = \mathsf{A}_{\mathsf{CP}}(\mathsf{K}^{-}\mathsf{K}^{+}) - \mathsf{A}_{\mathsf{CP}}(\pi^{-}\pi^{+})$$

w/U-spin symmetry: $A_{CP}(K^{-}K^{+}) = -A_{CP}(\pi^{-}\pi^{+})$

Measure CP violation: $D^{*+} \rightarrow D^0 \pi^+$

- LHCb performed two independent measurements
 - "D* tagged": D* $\pm \rightarrow$ D⁰ (\rightarrow K⁺K⁻ or $\pi^+\pi^-$) π^{\pm}
 - \rightarrow pion charge determines D⁰ production flavour

Measure CP violation: $D^{*+} \rightarrow D^0 \pi^+$

- LHCb performed two independent measurements
 - "D* tagged": D* $\pm \rightarrow$ D⁰ (\rightarrow K+K or π + π) π^{\pm}
 - \rightarrow pion charge determines D⁰ production flavour

$$\Delta A_{CP} = [-0.34 \pm 0.15 \text{ (stat)} \pm 0.10 \text{ (syst)}]\%$$

[LHCb-CONF-2013-003]

Measure CP violation: $B \rightarrow D^0 \mu^+ X$

- LHCb performed two (experimentally orthogonal) measurements
 - "D* tagged": D* $\pm \rightarrow$ D⁰ (\rightarrow K+K- or $\pi^+\pi^-$) π^{\pm}
 - "Muon tagged": $B^{\pm} \rightarrow D^{0} (\rightarrow K^{+}K^{-} \text{ or } \pi^{+}\pi^{-}) \mu^{\pm} \nu X$
 - \rightarrow muon charge determines D⁰ production flavour

Measure CP violation: $B \rightarrow D^0 \mu^+ X$

- LHCb performed two (experimentally orthogonal) measurements
 - "Muon tagged": $B^{\pm} \rightarrow D^0 (\rightarrow K^+K^- \text{ or } \pi^+\pi^-) \mu^{\pm} \nu X$
 - \rightarrow muon charge determines D⁰ production flavour

 $\Delta A_{CP} = [+0.49 \pm 0.30 \text{ (stat)} \pm 0.14 \text{ (syst)}]\%$

[arXiv:1303.2614]

Measure CP violation: $B \rightarrow D^0 \mu^+ X$

- LHCb performed two (experimentally orthogonal) measurements
 - "D* tagged": D* $\pm \rightarrow$ D⁰ (\rightarrow K+K- or π + π -) π [±]
 - "Muon tagged": $B^{\pm} \rightarrow D^0 (\rightarrow K^+K^- \text{ or } \pi^+\pi^-) \mu^{\pm} \nu X$

LHCb results dominated by statistics. Situation should become more clear with the analysis of the full 3/fb

Δ F=2 boxes: CP violating phase in B_s mixing

5. März 2014

Johannes Albrecht

14/4

B_s mixing and CP violation

Interference between mixing and decay: \rightarrow measure relative phase ϕ_s

$$\phi_s = \phi_M - 2\phi_D$$

CP asymmetry (for CP eigenstates):

$$A_{CP}(t) = \frac{\Gamma(\overline{B_s^0}(t) \to f_{CP}) - \Gamma(B_s^0(t) \to f_{CP})}{\Gamma(\overline{B_s^0}(t) \to f_{CP}) + \Gamma(B_s^0(t) \to f_{CP})} = -\eta_{CP} \sin(\phi_s) \sin(\Delta m_s t)$$

Standard Model prediction: $\phi_s^{SM} = -0.036 \pm 0.002$ rad CKM-Fitter (*Phys. Rev. D* 84 (2011), 033005)

CPV phase very small → basically a NULL test

B_s mixing and CP violation

Interference between mixing and decay: \rightarrow measure relative phase ϕ_s

$$\phi_s = \phi_M - 2\phi_D$$

CP asymmetry (for CP eigenstates):

Detour: Flavour tagging at hadron colliders

Mistag probability $\omega = \frac{\# tagged wrong}{\# tagged}$

- Opposite side taggers
 - Partially reconstruct second b in event
 - \rightarrow conclude on production flavour
- Same sign taggers
 - Exploit hadronization remnants
- Combine all taggers

The decay $B_s \rightarrow J/\psi \phi$

B_s	:	$J^P = 0^{-1}$ (pseudo scalar)
J/ψ :	:	J^{CP} = 1^{-1-1} (vector)
ϕ :	:	J^{CP} = 1^{-1-1} (vector)

Angular momentum conservation: 0 = J ($J/\psi\phi$) = $|\vec{S} + \vec{L}|$; \rightarrow L = 0,1,2

The decay $B_s \rightarrow J/\psi \phi$

4000

₹3500

m3000 22500

0002 Candidates 000 Candidates 000 Condidates

500

5320

LHCb

5340

B_s	:	$J^P = 0^{-1}$ (pseudo scalar)
J/ψ :	:	J^{CP} = 1^{-1-1} (vector)
ϕ :	:	J^{CP} = 1^{-1-1} (vector)

Angular momentum conservation: $0 = J (J/\psi \phi) = |\vec{S} + \vec{L}|; \rightarrow L = 0,1,2$

 $L = 0,2 \rightarrow CP$ even final state $L = 1 \rightarrow CP$ odd final state

Final state no CP eigenstate but linear combination! Angular analysis, to separate CP even/odd contributions.

5360

5380

27 617

candidates

5400

 $m(J/\psi K^{+}K)$ [MeV/c²]

5420

The decay $B_s \rightarrow J/\psi \phi$

3500

3000 2500 22500

B_s	:	$J^P = 0^{-1}$ (pseudo scalar)
J/ψ :	:	J^{CP} = 1^{-1-1} (vector)
ϕ :	:	J^{CP} = 1^{-1-1} (vector)

Angular momentum conservation: 0 = J ($J/\psi\phi$) = $|\vec{S} + \vec{L}|$; \rightarrow L = 0,1,2

 $L = 0,2 \longrightarrow CP \text{ even final state}$ $L = 1 \longrightarrow CP \text{ odd final state}$

,1,2 5320 5340 5360 5380 5400 5420 m(J/ψK⁺K) [MeV/c²] Final state no CP eigenstate but linear combination!

LHCb

27 617

candidates

Angular analysis, to separate CP even/odd contributions.

Need to measure three decay amplitudes and two strong phases

Additionally: $\Delta\Gamma$ not negligible \rightarrow need to consider time evolution of $\Gamma_{\rm H}$ and $\Gamma_{\rm L}$

Most precise analysis: combined 1/fb analysis of $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi \pi \pi$ by LHCb

- ϕ_s = 0.01 \pm 0.07 (stat) \pm 0.01 (syst) rad
- $\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst) } \text{ps}^{-1}$
- $\Delta \Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) } \text{ps}^{-1}$

Results of the B_s mixing phase

Most precise analysis: combined 1/fb analysis of $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi \pi \pi$ by LHCb

- $\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst) rad}$
- $\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst)} \text{ ps}^{-1}$
- $\Delta \Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) } \text{ps}^{-1}$

ATLAS untagged result

uncertainty on ϕ_s improved by 40%

ATLAS tagged result

The ATLAS collaboration managed to improve their sensitivity by 40% with the inclusion of flavour tagging (ϵD^2 =1.45%, cf. ~3.5% @ LHCb)

5. März 2014

Johannes Albrecht

$b \rightarrow s$ transitions

General description of Hamiltonian (see T. Feldmann):

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[\underbrace{C_{i}(\mu)O_{i}(\mu)}_{\text{left-handed part}} + \underbrace{C_{i}'(\mu)O_{i}'(\mu)}_{\text{right-handed part}} \right] \begin{bmatrix} i=1,2 & \text{Tree} \\ i=3-6,8 & \text{Gluon penguin} \\ i=7 & \text{Photon penguin} \\ i=9,10 & \text{Electroweak penguin} \\ i=8 & \text{Higgs (scalar) penguin} \\ i=P & \text{Pseudoscalar penguin} \end{bmatrix}$$

b→s transitions are sensitive to: $O_7^{(')}$, $O_9^{(')}$, $O_{10}^{(')}$

 $B^0 \rightarrow K^* \mu^+\mu^-$ is the most prominent channel (large statistics & flavour specific) Studies with rarer $B_s \rightarrow \phi \mu^+\mu^-$, $\Lambda_b^0 \rightarrow \Lambda \mu^+\mu^-$, .. have started

Experimental overview of $b \rightarrow sll$

- Large variety of different final states accessible
- Decays defined in terms of decay angles and $q^2 = m_{uu}^2$
 - typically, angular analyses are performed in 6-7 bins of q^2
 - No measurements can be made near the J/ ψ and ψ (2S) resonances

5. März 2014		Jo	hannes Albr	echt		26/46	K
				ATLAS (preliminary [ATLAS-CONF-201 CMS (preliminary) [CMS-BPH-11-009]	LHCb LHC (-00 (-00 (-00 (-00 (-00 (-00) (-	Cb-CONF-2012-008)3, -006), iv:1205.3422 + 1209.4284 + 1210.4492 + 1211.2674	
$B^+ \to \pi^+ \ \ell \bar{\ell}$		limit		25 <u>+</u> 7	CDF arXiv + ICI	v:1107.3753 + 1108.0695 HEP 2012	
$\Lambda_b \to \Lambda \ell \bar{\ell}$			51 <u>+</u> 7		Babar arX Belle arXiv	iv:1204.3933 v:0904.0770	
$B_s \rightarrow \phi \ell \bar{\ell}$			62 <u>+</u> 9	77 <u>+</u> 10			
$B^0 ightarrow K^0_S \ell ar \ell$			32 <u>+</u> 8	60 <u>+</u> 19			
$B^+ o K^+ \ell \bar\ell$	$153\pm41^{\dagger}$	$162\pm38^\dagger$	319 ± 23	1232 ± 40			
$B^+ \to K^{*+} \ell \bar{\ell}$			24 ± 6	76 ± 16			
$B^0 \to K^{*0} \ell \bar{\ell}$	$137\pm44^{\dagger}$	$247\pm54^\dagger$	288 ± 20	900 ± 34	466±34	415±29	
	471 M <i>BB</i>	605 fb ⁻¹	9.6 fb ⁻¹	1 fb ⁻¹	5/fb	5/fb	
	2012	2009	2011	2011/12	2012		
# of oute	BaBar	Rollo		LHCP			

$B^0 \rightarrow K^* \mu^+ \mu^-$ - Angular Analysis • $B^0 \rightarrow K^* \mu^+ \mu^-$ full decay rate is given as $\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right]$ $-F_L \cos^2 \theta_K \cos 2\theta_\ell +$ $S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi +$ $W'_{\nu} \downarrow W$ $S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6^s \sin^2 \theta_K \cos \theta_\ell +$ $S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi +$ $S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$

Experiments typically measure sub-set of these observables by integrating out some parts

classical observable measured for the FIRST time by LHCb

~Largest sample: 1000 events (LHCb) \rightarrow not enough for a full fit

Simplifying the analysis

By exploiting symmetries: this form can be reduced to ... $\hat{\phi} = \begin{cases} \phi + \pi & \text{if } \phi < 0 \\ \phi & \text{otherwise} \end{cases}$ $\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_\ell d\cos\theta_K d\hat{\phi}} = \frac{9}{16\pi} \left[F_L \cos^2\theta_K + \frac{3}{4}(1 - F_L) \right]$

$$\frac{1}{/\mathrm{d}q^2} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\hat{\phi}} = \frac{9}{16\pi} \left[F_\mathrm{L}\cos^2\theta_K + \frac{3}{4}(1 - F_\mathrm{L})(1 - \cos^2\theta_K) - F_\mathrm{L}\cos^2\theta_K(2\cos^2\theta_\ell - 1) + \frac{1}{4}(1 - F_\mathrm{L})(1 - \cos^2\theta_K)(2\cos^2\theta_\ell - 1) + \frac{1}{4}(1 - F_\mathrm{L})(1 - \cos^2\theta_K)(2\cos^2\theta_\ell - 1) + \frac{3}{4}(1 - \cos^2\theta_K)(1 - \cos^2\theta_\ell)\cos^2\theta_\ell + \frac{4}{3}A_{\mathrm{FB}}(1 - \cos^2\theta_K)\cos^2\theta_\ell + \frac{4}{3}A_{\mathrm{FB}}(1 - \cos^2\theta_K)\cos^2\theta_\ell + \frac{4}{3}(1 - \cos^2\theta_K)\cos^2\theta_\ell + \frac{4}{3}A_{\mathrm{FB}}(1 - \cos$$

Simpler expression remains, sensitive to F_L, A_{FB}, S₃, A₉
 Lost sensitivity to terms 4, 5,7 and 9

Danny See Micher

Forward-backward Asymmetry

FBMSSMFlavor Blind MSSMGMSSM:Non Minimal Flavor Violating MSSMUED:One universal extra dimension

Johannes Albrecht

Forward-backward Asymmetry

Forward-backward Asymmetry

One very famous variable: $A_{FB} \propto -Re[(2C_7^{eff} + \frac{q^2}{m_b^2}C_9^{eff})C_{10}]$ = 1Theory Binned = LHCb = ATLAS = CMS

Generally very good agreement with SM in the observables F_L , A_{FB} , S_3 , A_9

Johannes Albrecht

backward

$B^0 \rightarrow K^* \mu^+ \mu^-$: Alternative transformation of the fit

- Earlier we lost sensitivity to 4 terms to simplify the fit
- Now: extract the observables related to those terms!
- To extract these observables, apply different transforms, e.g.

 $P_{4}' S_{4} \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \phi \to \pi - \phi & \text{for } \theta_{\ell} > \pi/2\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2 \end{cases}$ $P_{5}' S_{5} \begin{cases} \phi \to -\phi & \text{for } \phi < 0\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \phi < 0\\ \theta_{\ell} \to \pi - \theta_{\ell} & \text{for } \theta_{\ell} > \pi/2 \end{cases}$ 🎽 Standard Observables Theoretically cleaner observables

Plus observables for the 7th and 8th terms

Danny See $B^0 \rightarrow K^* \mu^+ \mu^-$: Alternative analysis

Extract four "transverse" observables:

Local fluctuation in P_5 ' is 3.7 σ from the SM prediction

 \rightarrow is the "look elsewhere effect" applicable here?

- \rightarrow Discussion session
- Significantly more data on tape already
 - LHCb has three times this data on tape
 - CMS + ATLAS can also measure P5'

5. März 2014

Johannes Albrecht

Full angular analysis needed & planned

... has just started.

- Interesting local discrepancy in P₅'
 - few others tension less significant in other observables
- Possibly due to:
 - statistical fluctuation

D. vanDyk et al, 1310.2478

- SM theoretical prediction not fully correct (QCD effects not fully understood???)
- New Physics:

different value for some Wilson coefficients, ex: C_9 , or C_9 and C_9 ', including the possibility of Z' particle with a mass around few TeV

Descotes-Genon, Matias, Virto arXiv:1307.5683 Gauld, Goertz, Haisch arXiv:1308.1959 Altmannshofer, Straub arXiv:1308.1501

Danny See Micher

Theory prediction: Standard Model

decay	SM			
$B_s \rightarrow \mu^+ \mu^-$	3.5±0.3 x 10 ⁻⁹			
$B^0 \rightarrow \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰			

SM: Buras, Isidori et al: arXiv:1208.0934 Mixing effects: Fleischer et al, arXiv:1204.1737

Left handed couplings → helicity suppressed

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

First search by CLEO in 1984:

PHYSICAL REVIEW D VOLUME 30, NUMBER 11 1 DECEMBER 1

Two-body decays of B mesons

B. Search for exclusive \overline{B}^{0} decays into two charged leptons

Our search for the $\pi^+\pi^-$ final state is not sensitive to the mass of the final-state particles, provided that they are light, since the mass enters only in the energy constraint. Therefore, the upper limit of 0.05% applies for any finalstate particles with a pion mass or less. When the finalstate particles are leptons the limits are improved by using the lepton identification capabilities of the CLEO detector.¹⁴ For the decay $\overline{B}{}^0 \rightarrow \mu^+\mu^-$, we improve our limit by requiring that both muons penetrate the iron and produce signals in drift chambers. We find no such events. After correcting for detection efficiency (33%), we set an upper limit of 0.02% at 90% confidence for this decay. We im-

The Experimental Quest for $B\!\to\mu^+\mu^-$

LHCb: Phys Rev Lett 110 (2013) 021801 (2.1 fb⁻¹) CMS: J. High Energy Phys 04 (2012) 033 (5.0 fb⁻¹) ATLAS: ATLAS-CONF-2013-076 (5.0 fb⁻¹) CDF: Phys. Rev. D 87, 072003 (2013) (9.7 fb⁻¹) D0: Phys. Rev. D87 07.2006 (2013) (10.4 fb⁻¹)

5. März 2014

Search strategy: Example LHCb

Measurement of exclusion limits or decay rates

New results for $B \rightarrow \mu^+ \mu^-$

LHCb

* Nov 2012: LHCb found the first evidence for $B_{s}^{} \to \mu^{+}\mu^{-}$ using 2.1fb^-1

ng 2.110 ⁻¹	
ars technica Build for the new Windows Store.	
A NAIN MENU AV STORIER 25 JOBS FORIMAS SCIENTIFIC METHOD / SCIENCI SPIEGEL ONLINE	E
B B C N	
NEWS SCIENCE & ENVIRONMENT NEWSCI	entist
Home UK Africa Asia Europe Latin America Mid-East US & Canada Business 12 November 2012 Last updated at 13:30 GMT 9.0K Share NACHRICHTEN VIDEC	Scie
Popular physics theory running out o Da Pacil Onlin hiding places	Femall Health Science Money RightMind
By Pallab Gheek Dature Home News U.S. Statement Rever U.S. Statement Rever Lass Statement Rev	ORG
No Extra Alice INF Home Nows & Common / Research Information of science	condensed Matter Optics & Parth Electronics Technology Chemistry Condensed Matter Optics & Photonics Superconductivity Plasma Phy magnetry: LHCb presents
The finding wave > wascal scaled > MATURE / NEWS	ecay
Many researchave confirme	10 fb ⁻¹ (7TeV)+1.1 fb ⁻¹ (8TeV) BDT>0.7
LHCb: Evidence University of the signs of radically new particles get no joy to	4.4
Which SUSY models are affected by the recent LHCb result	
	5500 6.000 D (-)7(-21

5. März 2014

New results for $B \rightarrow \mu^+ \mu^-$

LHCh

- Nov 2012: LHCb found the first evidence for $B_s \rightarrow \mu^+\mu^-$ using 2.1fb⁻¹
- Update: full dataset: 3fb⁻¹
 - Improved BDT
 - Expected sensitivity: 5.0σ

- Update to 25fb⁻¹
 - Cut based → BDT based

- Improved variables
- Expected sensitivity: 4.8σ

Combined LHCb + CMS result

Observation:

$$BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

$${\sf BR}(B^0\to\mu^+\mu^-)={\sf 3.6}^{+1.6}_{-1.4}\times{\sf 10}^{-10}$$

[see here [arXiv:1307.2448] for speculations about enhanced BR(B₀)

LHCb-CONF-2013-012, CMS-PAS-BPH-13-007

Implications of $B_s \rightarrow \mu^+ \mu^-$

Allowed parameter space 2011:

- Future key measurements:
 - ratio of decay rates of $B^0 {\rightarrow} \ \mu^+ \mu^- / \ B_s {\rightarrow} \ \mu^+ \mu^-$
 - →allows, e.g., test of "Minimal Flavour Violation" hypothesis
 - Lifetime of $B_s \rightarrow \mu^+ \mu^-$
 - \rightarrow new, theoretically clean observable that is largely unconstrained

- Interest in flavour measurements stronger than ever
- Most generally, the agreement with the SM is excellent
 Large NP contributions O(SM) ruled out in many cases
- However, interesting anomalies start to emerge
 - Assumptions are carefully re-assessed on the TH side
 - Measurements need to be confirmed
- The search has just started
 - With LHCb with (1+2)/fb at 7 and 8 TeV
 → not all recorded data is analyzed
 - ATLAS and CMS have an growing heavy flavour programme
 - Bright (near) future with Belle-II, LHC 2015++, LHCb-upgrade, ...

Status of B_{s.d} mixing and New Physics

 → within experimental precision, no hint for New Physics

Status of B_{s.d} mixing and New Physics

B⁰:

$$\mathcal{A}_{mix} = \mathcal{A}_{mix}^{SM} + \mathcal{A}_{mix}^{NP} = \mathcal{A}_{mix}^{SM} \times \Delta$$

 $\Delta_{s} = |\Delta_{s}|e^{i\phi_{s}^{NP}}$ $\Delta_{d} = |\Delta_{d}|e^{i\phi_{d}^{NP}}$

excluded area has CL > 0.68 2 SM point $\Delta m_d \& \Delta m_s$ α_{exp} 0 $\sin(\phi_{d}^{A}+2\beta_{d})$ -1 $A_{SL} \& a_{SL} (B_{A}) \& a_{SL} (B_{S})$ New Physics in $B_d - \overline{B}_d$ mixing -2 fitter -2 -1 0 2 $\operatorname{Re} \Delta_{d}$

1.5 σ "tension" → need more data

lm ∆_d

48/46 Hich

3

Angular analysis

Fit differential decay rates (for B_s^0 and \overline{B}_s^0):

 $\frac{\mathrm{d}^{4}\Gamma(B_{s}^{0}\to J/\psi\phi)}{\mathrm{d}t\,\mathrm{d}\cos\theta_{\mu}\,\mathrm{d}\varphi_{h}\,\mathrm{d}\cos\theta_{K}} = f(\phi_{s},\Delta\Gamma_{s},\Gamma_{s},\Delta m_{s},|A_{\perp}|,|A_{\parallel}|,|A_{s}|,\delta_{\perp},\delta_{\parallel},\ldots)$

5. März 2014

1) CP violation

tul

CP violation in B_s mixing

- Interference between mixing and decay leads to CPV phase $\phi_s = \phi_M 2\phi_D$
- Precise SM calculation for ϕ_s possible (small penguin contribution)

 ϕ_s^{SM} = -0.0363±0.0016rad

CKMFitter, hep-ph:0406184

- Additional contributions from New Physics possible $\phi_s = \phi_s {}^{SM} + \phi_s {}^{NP}$
- Requires time dependent, flavour tagged angular analysis

Summary of $B_s \rightarrow J/\psi \phi$ measurements

	CDF	D0	LHCb	ATLAS	CMS*)
$\int {\cal L}$ [fb $^{-1}$]	9.6	8.0	1.0	4.9	5.0
$\#B_s \to J/\psi KK(f_0)$	11k	5.6k	27.6k (7.4k)	22.7k	14.5k
ϵD^2 OS [%]	1.39 ± 0.05	2.48 ± 0.22	2.29±0.22	1.45±0.05	-
ϵD^2 SS [%]	3.5±1.4	-	0.89±0.18	-	-
σ_t [fs]	100	100	48	100	-
Reference	PRL 109(2012)	PRD85(2012)	PRD87(2013)	ATLAS-CONF-	CMS-PAS
	171802	032006	112010	2013.029	BPH-11-006

* CMS: $\Delta\Gamma$ only: 0.048 \pm 0.024 \pm 0.003 ps⁻¹

The importance of Flavour tagging

ATLAS untagged result

uncertainty on ϕ_s improved by 40%

ATLAS tagged result

Evidence for $B_s \rightarrow \mu^+ \mu^-$

Highlight after 25 years of searches (Argus 1987)

• New analysis: 3.5σ evidence for decay $B_s \rightarrow \mu^+\mu^-$ (HCP 12)

HCP2012

In good agreement with SM, but 40% uncertainty

First branching fraction measured:

$$BR(B_s \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$$

- Limits obtained by other experiments:
 - CMS (5fb⁻¹): BR < 7.7 x 10⁻⁹ (sensitivity ~ LHCb with 2011+2012 dataset)
 - ATLAS (2.4fb⁻¹): BR < 22 x 10⁻⁹
 - CDF (10fb⁻¹): BR < 31 x 10⁻⁹, D0 (10.4fb⁻¹): BR < 15 x 10⁻⁹

LHCb analysis strategy

Selection

- Muon based triggers
- Soft selection to reduce size of dataset
- Similar to control channels
- BDT based preselection for signal & control channels

Signal and background likelihoods

- Multivariate classifier combining topological and kinematic information (BDT)
- Invariant mass

Normalization

 Convert number of observed events in branching fraction by normalizing with channels of known BR

Extraction of the limit

- Extract observation / exclusion measurement using the CLs method
- Determine branching fraction with unbinned ML fit

tu

Signal discrimination

Discrimination is achieved by a BDT with 9 input variables

B candidate:

- proper time
- impact parameter
- transverse momentum
- B isolation

muons:

- min p_T
- min IP significance
- distance of closest approach
- muon isolation,
- polarization angle

this choice of variables avoids correlation with invariant mass

Signal discrimination: BDT input

Optimization and training on MC $B^0_s \rightarrow \mu^+\mu^-$ signal and $b\overline{b} \rightarrow \mu^+\mu^-X$ background Same definition of BDT is used for 7 TeV and 8 TeV data, since most of the input variables are in very good agreement (checked on $B^{\pm} \rightarrow J/\Psi K^{\pm}$)

Signal discrimination: BDT response

BDT output defined to be flat for signal, and peaked at zero for background

Signal BDT shape from $B^{0}_{(s)} \rightarrow h^{+}h'^{-}$ events, which have same topology as the signal (use sample triggered independent of the signal, to avoid bias)

Background BDT shape is

evaluated on the dimuon mass sidebands

Analysis is performed in BDT bins

BDT binning optimized on
7 TeV data → 8 bins

- For 8 TeV data we merged the two most sensitive bins (BDT>0.8), since we had no events on the mass sidebands:

8 TeV data \rightarrow 7 bins

- I) Interpolation of dimuon resonances:
 J/Ψ and Ψ(2S),
 Υ(1S), Υ (2S), Υ (3S)
- 2) From $B^{0}(s) \rightarrow h^{+}h'^{-}$
- Results are in agreement:

 $\sigma_{B^0} = (24.63 \pm 0.13_{\text{stat}} \pm 0.36_{\text{syst}}) \text{ MeV}/c^2$

8 TeV data:

 $\sigma_{B_s^0} = (25.04 \pm 0.18_{\text{stat}} \pm 0.36_{\text{syst}}) \text{ MeV}/c^2$

~1% difference observed between 7 TeV and 8 TeV data

For the signal mass pdf we use a Crystal Ball: transition point of the radiative tail from simulated events smeared to reproduce the measured resolution

Mass-BDT plane

8 TeV data

High likelihood event I

5. März 2014

tul

High likelihood event (zoom)

5. März 2014

Normalization to channels with known BR

wrt signal: similar trigger, one more track

wrt signal:different trigger, same topology

b fragmentation f_d/f_s (updated)

• LHCb has measured the fraction of $b \rightarrow B_s$ in two ways:

 $\frac{f_s}{f_d} = 0.256 \pm 0.020$

- − Ratio of $B_s \rightarrow D_s \mu X$ to $B \rightarrow D^+ \mu X$
- − Ratio of $B_s \rightarrow D_s \pi^+$ to $B \rightarrow D^+ K$ and $B^0 \rightarrow D^+ \pi^+$

[PRD85 (2012) 032008]

(newly updated: 1fb⁻¹ @ 7 TeV)

> [LHCb-PAPER-2012-037] in preparation

> > 63/46

Found to be dependent of p_T

Combined result

- For the p_T values involved:
 effect smaller than 0.02
 → negligible
- Stability 7 vs 8 TeV checked
 B⁺→J/ψK⁺/B_s→J/ψφ ratio stable

5. März 2014

Normalization to channels with known BR

The main background source in the $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ signal window, $m(B^{0}_{s})\pm 60 \text{ MeV/c}^{2}$, is combinatorial from $b\overline{b}^{-} \rightarrow \mu^{+}\mu^{-}X$

For CLs computation, the expected background yield in the signal region is evaluated from a fit to the mass sidebands, for each BDT bin separately

An exponential shape is assumed

For BDT values <0.5 this is by far the dominant bkg source in the mass range [4900-6000] MeV/c²

Peaking backgrounds

- Improvement of combinatorial background interpolation by inclusion of backgrounds from exclusive decays in the fit
 - Contribution in signal window: only $B_{(s)} \rightarrow h^+h^{-}$ (identical treatment as 2011)
 - Mass shape different from exponential
 → bias the background interpolation (new):
 - $B^0 \rightarrow \pi^+ \mu^- \nu$
 - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$, $B^0 \rightarrow \pi^0 \mu^+ \mu^-$ (considered together) Both have a negligible contribution in the B⁰ and B_s mass windows
- Exclusive background parameters used as priors in the fit (allowed to vary within 1σ)
 - Yield from relative normalization to $B^+ \rightarrow J/\psi K^+$
 - Mass and BDT shape from full MC
- Background systematic reduced (2011 was comparison exp-double exp)

Expected events in
[4.9 - 6] GeV, BDT > 0.8

$$B^0 \rightarrow \pi^- \mu^+ \nu_\mu$$
 4.04 ± 0.28
 $B^0_{(s)} \rightarrow h^+ h^- \text{ misID}$ 1.37 ± 0.11
 $B^{+(0)} \rightarrow \pi^{+(0)} \mu^+ \mu^-$ 1.32 ± 0.39

Observed pattern of events

- Mass sideband fit to extrapolate background
 - Combinatorial background and $B^0 \rightarrow \pi^+ \mu^+ \nu$ $B \rightarrow \pi \mu^+ \mu^ B_{(s)} \rightarrow h^+ h^{-} (misID)$
- Same fit has been repeated on 2011
 - Combinatorial component reduced in high BDT bins
 - Impact on published results evaluated

5000 5200

5400 5600

5800 6000

 $m_{\mu^+\mu^-}$ [MeV/c²]

Johannes Albrecht

5000 5200 5400 5600 5800 6000

 $m_{\mu^+\mu^-}$ [MeV/c²]

5400 5600 5800 6000

 $m_{\mu^+\mu^-}$ [MeV/ c^2]

5200

5000

 $m_{\mu^{+}\mu^{-}}$ [MeV/ c^{2}]

5200 5400 5600 5800 6000

5000

5. März 2014

5. März 2014

 Evaluate compatibility with background only and signal+background hypotheses (CLs method)

${ m B^0}{ ightarrow}\mu^+\mu^-$	expected (bkg)	expected (SM+bkg)	observed	1-CLb
2012	9.6 x 10 ⁻¹⁰	10.5 x 10 ⁻¹⁰	12.5 x 10 ⁻¹⁰	0.16
2011+2012	6.0 x 10 ⁻¹⁰	7.1 x 10 ⁻¹⁰	9.4 x 10 ⁻¹⁰	0.11

Results for $B_s \rightarrow \mu^+ \mu^-$: Limits and significance

 Evaluate compatibility with background only and background+signal hypotheses (CLs method)

• This is the first evidence of the decay $B_s \rightarrow \mu^+ \mu^-$!

- Unbinned maximum likelihood fit to the mass spectra
 - 8 BDT bins of 7 TeV and 7 BDT bins of 8 TeV data are treated simultaneously
 - mass range [4900-6000] MeV/c²
- Free parameters: $\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-)$, $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)$ and combinatorial background
- The signal yield in each BDT bin is constrained to the expectation from $B^{0}_{(s)} \rightarrow h^{+}h'^{-}$ calibration
- The yields and pdf's for all of the relevant exclusive backgrounds are constrained to their expectations
- Additional systematic studies on background composition/parameterization:
 - add the $B^{0}{}_{s} \rightarrow K{}^{}\mu{}^{}\nu_{\mu}$ component to the exclusive bakground
 - change the combinatorial pdf from single to double exponential, to account for possible residual contributions from $\Lambda^0{}_b$ and $B^+{}_c\,$ decays
 - the syst error induced on $\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-)$ is $\pm 0.2 \times 10^{-9}$

Fit projections

5. März 2014

Fit projections: zoom

results from 7 TeV and 8 TeV are compatible at $\sim 1.5\sigma$

7 TeV data,

BDT >0.7

Precise predictions

Conclusions

- Combined analysis on 1.0fb⁻¹ @ √s=7TeV and 1.1fb⁻¹ @ √s=8TeV
- Upper exclusion limit @ 95% CL BR(B⁰→ μ⁺μ⁻) < 9.4 x 10⁻¹⁰ worlds best single experiment limit
- Excess of $B_s \rightarrow \mu^+\mu^-$ candidates with a signal significance of to 3.5 standard deviations (bkg only p-value: 5 x 10⁻⁴)
- The branching fraction is measured as

$$BR(B_s \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$$

75/46 Hich

Some example distributions:

Some example distributions:

Generally very good agreement in these "classical observables" → bounds on the New Physics scale between 0.5 and ~15TeV are set

Observables with limited dependence on form-factor uncertainty have been proposed by several authors:

Kruger-Matias (2005), Matias et al. (2012), Egede-Matias-Hurth-Ramon-Reece (2008), Bobeth-Hiller-Van Dyk (2010-11), Beciveric-Schneider (2012)

N.D.: There are other observables which are combination of those presented here

$$\begin{array}{rcl} A_{\rm T}^{(2)} &=& \frac{2S_3}{(1-F_L)} \\ A_{\rm T}^{Re} &=& \frac{S_6}{(1-F_L)} \\ P_4^{\prime} &=& \frac{S_4}{\sqrt{(1-F_L)F_L}} \\ P_5^{\prime} &=& \frac{S_5}{\sqrt{(1-F_L)F_L}} \\ P_6^{\prime} &=& \frac{S_7}{\sqrt{(1-F_L)F_L}} \\ P_8^{\prime} &=& \frac{S_8}{\sqrt{(1-F_L)F_L}} \end{array}$$

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1 - F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K + \frac{1}{4}(1 - F_\mathrm{L})\sin^2\theta_K \cos 2\theta_\ell \\ & - F_\mathrm{L}\cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2}(1 - F_\mathrm{L})A_\mathrm{T}^{(2)}\sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + \\ & \sqrt{F_L(1 - F_\mathrm{L})}P_4'\sin 2\theta_K \sin 2\theta_\ell \cos \phi + \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})}P_5'\sin 2\theta_K \sin \theta_\ell \cos \phi + \\ & (1 - F_\mathrm{L})A_{Re}^\mathrm{T}\sin^2\theta_K \cos \theta_\ell + \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})}P_6'\sin 2\theta_K \sin \theta_\ell \sin \phi + \\ & \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})}P_8'\sin 2\theta_K \sin 2\theta_\ell \sin \phi + (S/A)_9\sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \end{bmatrix}$$

Johannes Albrecht

New observables in $B^0 \rightarrow K^* \mu^+ \mu^-$

LHCb-PAPER-2013-037

0.5% probability to see such a deviation with 24 independent measurements.

