

### Silicon Photomultipliers

and their application in HEP and Medical Imaging

LHCb Retreat Neckarzimmern, March 2014

Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik, Universität Heidelberg

# Setting the Scene The Standard: Photomultiplier Tubes (PMTs)



### Photon Detection

Purpose : Convert light into a detectable electronic signal Principle : Use photo-electric effect to convert photons to photo-electrons (p.e.)

Requirement :

High Photon Detection Efficiency (PDE)

i.e. high quantum efficiency  $[Q.E. = N_{p.e.}/N_{photons}]$ low surface reflection, ...

Available devices [Examples]:

Photomultipliers [PMT] Micro Channel Plates [MCP] Photo Diodes [PD] Hybrid Photo Diodes [HPD] Visible Light Photon Counters [VLPC] Silicon Photomultipliers [SiPM]

### Photomultipliers

### Principle:

Electron emission from photo cathode Secondary emission from dynodes; dynode gain: 3-50 [f(E)]

Typical PMT Gain: > 10<sup>6</sup> [PMT can see single photons ...]





### Photomultipliers – Dynode Chain



#### Multiplication process:

Electrons accelerated toward dynode Further electrons produced → avalanche Secondary emission coefficient:

 $\delta = #(e^{-} produced)/#(e^{-} incoming)$ 

Typical: 
$$\delta = 2 - 10$$
  
 $n = 8 - 15$   $\rightarrow G = \delta^n = 10^6 - 10^8$ 

 $\begin{array}{ll} \mbox{Gain fluctuation:} & \delta = k U_D; \mbox{ } G = (k U_D)^n \\ & dG/G = n \, dU_D/U_D = n \, dU_B/U_B \end{array}$ 

### Photomultipliers – Photocathode

Bialkali: SbRbCs; SbK<sub>2</sub>Cs



3-step process:

Electron generation via ionization Propagation through cathode Escape of electron into vacuum

 $PDE \approx 10-30\%$ [need specifically developed alloys]



## Photomultipliers – Dynode Chain

Venetian blind Optimization of PMT gain Anode Cathode Anode isolation Box and Linearity grid Transit time Cathode Anode B-field dependence Linear focused PM's are in general Cathode very sensitive to B-fields ! Anode Circular Even to earth field (30-60  $\mu$ T). focused µ-metal shielding required. Light. Photocathode Anod

## Micro Channel Plate



### "2D Photomultiplier"

Gain: 5·10<sup>4</sup> Fast signal [time spread ~ 50 ps] B-Field tolerant [up to 0.1T]

But: limited life time/rate capability

# Solid State PDs From pn-Junctions to Silicon Photomultipliers



### **Basic Semiconductor Properties**



### **Basic Semiconductor Properties**

Intrinsic semiconductor:

Very pure material; charge carriers are created by thermal, optical or other excitations of electron-hole pairs;  $N_{electrons} = N_{holes}$  holds ...

Commonly used: Silicon (Si) or Germanium (Ge); four valence electrons ...

Doped or extrinsic semiconductor:

Majority of charge carriers provided by donors (impurities; doping)

n-type: majority carriers are electrons (pentavalent dopants) p-type: majority carriers are positive holes (trivalent dopants)

Pentavalent dopants (electron donors): P, As, Sb, ... [5<sup>th</sup> electron only weakly bound; easily excited into conduction band]

Trivalent dopants (electron acceptors): AI, B, Ga, In, ... [One unsaturated binding; easily excepts valence electron leaving hole]

### **Basic Semiconductor Properties**

n-doped p-doped **Conduction Band Conduction Band** ······ E<sub>F</sub> Donator States ----- E<sub>i</sub> E, Acceptor E---States Valence Band Valence Band

[source: P. Eckert]

### The pn-Junction

Equilibration process:

Electrons diffuse from n- to p-type semiconductor and recombine ...

Holes diffuse from p- to n-type semiconductor and recombine ...

Resulting electric field counteracts and stops diffusion process ...

$$eU_D = \Delta E_{\text{pot}} = E_C^{(p)} - E_C^{(n)}$$
$$= k_B T \cdot \ln \frac{n_{\text{n-type}}}{n_{\text{p-type}}} = k_B T \cdot \ln \frac{N_D N_A}{n_i^2}$$
$$[\text{using } n = N_C \cdot e^{-(E_C - \mu)/k_B T}, \ p = \dots]$$

At the boundary concentration of mobile carriers is depleted ... [depletion layer]



### The pn-Junction





### The pn-Junction

[picture source: Wikipedia]











[source: P. Eckert]



### Impact Ionization of Electrons and Holes ...

[Kwok K. Ng, Complete Guide to Semiconductor Devices]



## Silicon Photomultiplier

[P. Buzhan et al., ICFA Inst. Bull. 23 (2001) 28]

### Principle:

Pixelized photo diodes operated in Geiger Mode

Single pixel works as a binary device

Energy = #photons seen by summing over all pixels

#### Features:



10<sup>3</sup> pixels/mm<sup>2</sup> 10<sup>6</sup>

р

- < 100 V
- : ca. 30 %

magnetic fields! m temperature ...



### Silicon Photomultiplier



## Silicon Photomultiplier



### SiPM – Single Photon Spectrum



10-50 µm



SiPM: array of SPADs connected in parallel ... [SPAD: single pixel avalanche diode]

10-50 µm

## Silicon Photomultiplier

### SiPM:

Array of SPADs connected in parallel ...

One quenching resistor per SPAD [from 100k $\Omega$  to several M $\Omega$ ]

Common bias applied to SPADs ... [10-20% over breakdown voltage]

SPADs fire independently ...

Output: Sum of signals by individual cells ...

i.e: for small light pulses (N $_{\gamma} \ll N_{\text{pixels}})$  SiPMs work as analog photon counters ...



[source: A. Tadday]



(Re-) Charge



### SiPM – Typical Signal Shape



### SiPM – Single Photon Spectrum







## SiPM – Single Photon Spectrum





### SiPM – Electrical Model

[source: W. Shen]



Pixel capacitance

 $C_{\text{pxl}}$ 

Cq

Cd

 $C_{s}$ 

 $R_q$ 

 $\mathsf{R}_\mathsf{d}$ 

- Parasitic capacitance
- Capacitance of inactive pixels
- Stray capacitance
- Quench resistor
- Space charge resistance





Zecotek

## SiPM Developers & Products

MEPhl/Pulsar (Moscow) - Dolgoshein CPTA (Moscow) - Golovin Zecotek (Singapore) - Sadygov Amplification Technologies (Orlando, USA) Hamamatsu Photonics (Hamamatsu, Japan) SensL (Cork, Ireland) AdvanSiD (former FBK-irst Trento, Italy) STMicroelectronics (Italy) **KETEK** (Munich) RMD (Boston, USA) ExcelitasTechnologies (former PerkinElmer) MPI Semiconductor Laboratory (Munich) Novel Device Laboratory (Beijing, China) Philips (Netherlands)

. . . .

#### Note:

Every producer uses its own name ...

MRS APD, MAPD, SiPM, SSPM, MPPC, SPM, DAPD, PPD, SiMPI , dSiPM ...



# SiPM Features Dark Count Rates, After Pulsing, PDE ...



## Summary of Properties

### Pros:

High gain Compactness Insensitive to magnetic fields Low operation voltage

### Cons:

Limited dynamical range Cross-talk, after-pulsing High dark-rate Temperature sensitivity [ 10<sup>5</sup> to 10<sup>7</sup>
[ 1 to 3 mm<sup>2</sup>
[ up to few T
[ 30 - 70 V

```
[ N<sub>pxl</sub> = O(1000)
[ 1-10%
[ 0.1 to few MHz
[ 20-50 mV/K
```

### Gain and Single Pixel Charge

Every pixel works as digital device ...

Gain Single pixel charge: [Typical: G ~ 10<sup>5</sup> - 10<sup>7</sup>]  $Q_{pxl} = C_{pxl} \cdot (U_{bias} - U_{br})$  $= C_{pxl} \cdot U_{over}$ 3000r 61380 Entries Mean 66.72 SiPM Output: RMS 24.79 2500 1 pe [for low Npe ...] 2000  $Q_{out} = N_{pe} \cdot Q_{pxl}$ Events 1500 0 pe SiPM Gain: 1000 [for low x-talk; after-pulsing ...] 500  $= Q_{pxl}/Q_e$ G i.e G ~ Uover 0<u>`</u>0 20 40 60 80 140 160 180 100 120 Charge [QDC-Channels]

## Gain and Single Pixel Charge

[source: Y. Musienko, FNAL]

### But ...



### Pixel-to-Pixel Uniformity

[source: Y. Musienko, FNAL]



### Photon Detection Efficiency



[source: A. Tadday]



## Geometrical or Fill Factor

Non-sensitive zones between cells reduce Photon Detection Efficiency ...

Silicon resistors and aluminum conductors are not photon-sensitive and hence reduce the active area ...

Smaller pixel size yields small  $\varepsilon_{\text{geo}}$  ... [Tradeoff between dynamic range and PDE ...]

Typical:  $\varepsilon_{geo} = 60-80\%$ [for 50-100 µm cell pitch]

Improved  $\varepsilon_{geo}$ using MQR technique ... [Metal quench resistors ...]

[Hamamatsu, IEEE 2013]

[Polysilicon Resistor]







**MPPC** 100 µm pixels

Pulsar SiPM 42 µm pitch

35 µm pixels

## Quantum Efficiency

[source: W. Shen]





### Avalanche Triggering Probability

[source: A. Tadday]



### Photon Detection Efficiency

[source: Y. Musienko, FNAL]



## Dark Count Rate

Unwanted noise due to creation of electron hole-pairs without involvement of photon ...

Possible processes:

Thermal excitation Field assisted excitation [Tunneling Process]

Electron (hole) drifts to high-field area creating avalanche ...

Resulting signal indistinguishable from genuine photon induced SiPM signal ...





### Cross Talk



### After-Pulsing





### Cross Talk



### After-Pulsing





[P. Eckert et al., NIM A620 (2010) 217]



[D. McNally, G-APD workshop, GSI, Feb. 2009] [source: Y. Musienko, FNAL]

To reduce optical cross-talk trenches are introduced to separate neighboring pixels ...



### **Temperature Sensitivity**

[source: A. Tadday]



## Breakdown voltage increases with temperature

Interactions with lattice vibrations i.e. phonons slows down charge carriers; higher field needed for breakdown

## SiPM gain decreases with temperature

Large pixel capacitance causes extra large temperature dependence

$$\frac{dG}{dT} = -\frac{dC_{\rm pxl}}{q_e} \cdot \frac{dU_{\rm break}}{dT}$$

### Linearity and Dynamic Range

7 SiPMs respond linearly only  $N_{\gamma} \cdot \text{PDE}'$ exp if number of detected photons is significantly below number of cells ... 5 [V. Andreev et al., NIM A540 (2005) 368 Otherwise Number of pixels fired -og(Count rate correction needed ... 1000 N<sub>fired</sub>: # fired pixels 3  $N_{v}$ : # incident photons 2 HV5760 100  $\Diamond 0$  . N'<sub>tot</sub>: effective # pixels 1024 HV252.0 V **⊘**HV**403**6 PDE': effective PDE 10 Effective Quantities account for 0 dark count rate, after-pulse probability, 200 400 800 1200 600 1000 1400 light pulse time and spacial structure, Threshold [mV] operation conditions etc. ... Fig. 3. Dark rate dependence on threshold for different bias Number of photoelectrons

## Single Photon Time Resolution

[source: Y. Musienko, FNAL]



#### CPTA/Photonique 1 mm<sup>2</sup> SSPM response to a 35 ps FWHM laser pulse (λ=635 nm)



SiPMs have excellent timing properties!

## Philips – Digital SiPMs



### Main Features:

Geometric factor: > 50% Tile fill factor: > 70% Dark Rate: < 5(7) MHz

Disabling of individual cells Active quenching & recharge

Integrated TDC [ $\sigma = 8 \text{ ps}$ ] Variable trigger [1-4 photons

| PHYSICAL CHARACTERISTICS                                      | DPC6400-22-44                            | DPC3200-22-44                            |
|---------------------------------------------------------------|------------------------------------------|------------------------------------------|
| OUTER DIMENSIONS                                              | 32.6 x 32.6 mm <sup>2</sup>              | 32.6 x 32.6 mm <sup>2</sup>              |
| PIXEL PITCH (H X V)                                           | 4.0 mm x 4.0 mm                          | 4.0 mm x 4.0 mm                          |
| PIXEL ACTIVE AREA                                             | 3.9 x 3.2 mm <sup>2</sup>                | 3.9 x 3.2 mm <sup>2</sup>                |
| NUMBER OF CELLS PER PIXEL<br>CELL SIZE                        | 6396<br>59.4 x 32 μm²                    | 3200<br>59.4 × 64 μm <sup>2</sup>        |
| SPECTRAL RESPONSE RANGE                                       | 380 nm – 700 nm                          | 380 nm – 700 nm                          |
| PEAK SENSITIVITY WAVELENGTH $(\lambda_P)$                     | 420 nm                                   | 420 nm                                   |
| PHOTON DETECTION EFFICIENCY (PDE) @ $\lambda_p$ (PIXEL LEVEL) | 30 %                                     | 40 %                                     |
| PIXEL FILL FACTOR (ALREADY INCLUDED IN PDE)                   | 54 %                                     | 74 %                                     |
| TILE FILL FACTOR                                              | 75%                                      | 75%                                      |
| DARK COUNT RATE (95% CELLS ACTIVE)                            | < 5 MHz / pixel at room<br>temperature   | < 7 MHz / pixel at room<br>temperature   |
|                                                               | 27 +/- 0.5 V                             | 27 +/- 0.5 V                             |
| TEMPERATURE DEPENDENCE OF PDE                                 | -0.33%/°C in the range of 15°C<br>- 25°C | -0.33%/°C in the range of 15°C<br>- 25°C |
| INTRINSIC TIMING RESOLUTION*                                  | 44 ps                                    | 44 ps                                    |



## SiPM Response Simulation

### GosSiP Framework:

[2012 JINST 7 P08011]

- Detailed model of SiPM response for arbitrary operation conditions ...
- Customizable SiPM properties ...
- Input parameters from basic characterization measurements ...
- Model for whole dynamic range including saturation region ...
- Integrable into Geant4 ...

Framework allows:

Detailed studies and optimization of SiPM and combined scintillator/SiPM response ...

