Analysing $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$AT LHCB

Neckarzimmern Workshop, 6TH MARCH 2014

Michel De Cian, University of Heidelberg

InTRODUCTION

- This is mostly a walk-through of the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$analysis like it was performed in 2012 \& 2013 in LHCb.
- It should show how an angular analysis with $\mathcal{O}(1000)$ events might look like and where the problems are.

Vintage physics (I)

- The electroweak bosons W and Z^{0} were proposed in the 60ies.
- They are quite heavy with $80 \mathrm{GeV} / c^{2}$ and $91 \mathrm{GeV} / c^{2}$ and were first seen directly at UA1.
- However, in principle, the Z^{0} should also contribute to the process $e^{+} e^{-}$ $\rightarrow \mu^{+} \mu^{-}$, even at lower energies than $\sqrt{s} \sim 91 \mathrm{GeV}$
- Look at $\sqrt{s}=34 \mathrm{GeV}$. Simple calculation yields: Only very small effect of Z^{0} in total cross-section.

Vintage physics (II)

Fig. 13.7 (a) The $\cos \theta$ distribution for the process $\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mu^{-} \mu^{+}$does not follow the $1+\cos ^{2} \theta$ QED prediction. (b) The discrepancy is explained by the interference of the virtual Z and γ contributions. (Compilation by R. Marshall.)

- However, if you look at the differential cross-section, you clearly see the influence of the Z^{0} due to interference terms.
- You have discovered a new particle/effect/... indirectly at a centre-of-mass energy lower than the mass of the particle.
- Even if your total cross-section is according to your prediction of the (standard) model, one might seen new effects when studying angular distributions.

Essentials of the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$Analysis aka: The "Sendung-mit-der-Maus" version

ESSENTIALS OF THE $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANALYSIS

- A particle decays into two particles, with angle α.
- Suppose we can formulate the angular distribution as:

$$
\frac{d \Gamma}{d \alpha}=\frac{1}{2 \pi}[A \cos \alpha+B \sin \alpha+C] \quad \alpha \in[-\pi, \pi]
$$

- The angular terms are given by kinematics / spin only.
- Remember: $\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)$

ESSENTIALS OF THE $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANALYSIS

$$
\frac{d \Gamma}{d \alpha}=\frac{1}{2 \pi}[A \cos \alpha+B \sin \alpha+C] \quad \alpha \in[-\pi, \pi]
$$

- The coefficients contain the physics-information we are interested in.
- Do: Run an experiment, collect data, select your decay, plot number of events as a function of α.
- Fit the angular distribution in collision data with the pdf and extract the coefficients.
- Ask a theorist and compare prediction with experimental result.

Folding TECHNIQUE (I)

- Suppose you don't have enough data to fit both terms.
- Solution: Use a variable transformation ("folding "). Example:

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \alpha} & =\frac{1}{2 \pi}[A \cos \alpha+B \sin \alpha+C] \quad \alpha \in[-\pi, \pi] \\
\alpha \rightarrow-\alpha & \text { if } \alpha<0 \\
\frac{\mathrm{~d} \Gamma}{\mathrm{~d} \alpha} & =\frac{1}{\pi}[A \cos \alpha+C] \quad \alpha \in[0, \pi]
\end{aligned}
$$

- By folding we can use symmetries in the angular distribution to cancel observables without loosing sensitivity. Note: The angular terms are orthogonal.

Folding technique (II)

fit pdf: $\frac{1}{2 \pi}[A \cos \alpha+B \sin \alpha+C]$

fit pdf: $\frac{1}{\pi}[A \cos \alpha+C]$

- Apply transformation to the pdf and to the dataset.
- Results:
- $A=1.03 \pm 0.05$ (without folding)
- $A=1.05 \pm 0.05$ (with folding)
- We have determined A !

AND NOW THE REAL $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANALYSIS

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$DECAY TOPOLOGY

Particle	mass	lifetime $(c \tau)$
B^{0}	$5279 \mathrm{MeV} / c^{2}$	$491.1 \mu \mathrm{~m}$
$K^{* 0}$	$892 \mathrm{MeV} / c^{2}$	$\approx 3 \cdot 10^{-12} \mu \mathrm{~m}$

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$: RARE, BUT EXCITING

- $\mathcal{B}=\left(1.05_{-0.13}^{+0.16}\right) \times 10^{-6}{ }_{\text {(POG] }}$
- Pseudoscalar \rightarrow Vector-Vector decay: Plenty of observables in the angular distribution.

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANGULAR DISTRIBUTION (I)

- Decay can be fully described by three angles $\left(\theta_{\ell}, \theta_{K}, \phi\right)$ and the dimuon invariant mass (square) q^{2}.

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANGULAR DISTRIBUTION (II)

$$
\begin{aligned}
\frac{\mathrm{d}^{4}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\right. \\
& \frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}-F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+ \\
& S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+ \\
& S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+ \\
& \left.S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

- The F_{L}, S_{i} depend on q^{2} and contain the information we are interested in.
- The angular terms are... the angular terms.
- Note that this formula adds $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$and $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$ i.e. it's a $\mathcal{C P}$ average.

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANGULAR DISTRIBUTION (II)

- This is the full angular distribution of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$, neglecting lepton masses (and scalar and tensor contributions).
- There are 8 independent, $\mathcal{C P}$ averaged observables that all can be measured experimentally.
- Could in principle also measure $\mathcal{C P}$ asymmetric observables, but then could not profit from adding the datasets.

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ANGULAR DISTRIBUTION (III)

- In 2011, LHCb reconstructed $\approx 900 B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$events: Not enough for full angular fit.
- Apply "folding" technique: $\phi \rightarrow \phi+\pi$ for $\phi<0$.

This cancels four terms in the total angular distribution.

- And leaves:

$$
\begin{aligned}
\frac{\mathrm{d}^{4}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+ \\
& \left.S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

- This expression was fitted to the $1 \mathrm{fb}^{-1}$ of LHCb data at $\sqrt{s}=7 \mathrm{TeV}$ in 2011.

Experimental aspects (I)

 LHCb

- Select signal events with a multivariate classifier (BDT): Based on kinematic quantities (IP, pointing angle, p_{T}) and particle identification for μ, π, K
- Dominated by $B^{0} \rightarrow J / \psi K^{* 0}$ and $B^{0} \rightarrow \psi(2 S) K^{* 0}$ in two regions of q^{2} : Cut out.

Experimental aspects (II)

- Peaking background due to misidentification of particles. e.g. $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$, where $K \rightarrow \pi$.
- Evaluate $m_{K \pi}$ mass under hypothesis that the π is actually a K. Does it peak in the ϕ region?
- Other peaking backgrounds like $B^{0} \rightarrow J / \psi K^{* 0}$, where $\pi \rightarrow \mu$ and $\mu \rightarrow \pi$

Experimental aspects (III)

- Remember: We want to measure an angular distribution and extract physics parameters.
- We need to be sure, the angular distribution reflects the physics.
- Acceptance of detector distorts angular distribution. Need event-by-event correction, determined on simulation.
- Need to have a simulation describing collision data: Correct for particle ID and efficiency (tracking, trigger, ...)-differences in simulation and collision data.

S-wave / Background

(a)

(b)

- $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$is contaminated with s-wave $K \pi$ contributions, stemming from non-resonant decays or higher $K_{(i)}^{(*)}$ states.
- Ideally one would fit for this contribution. However, this adds many terms in the angular distribution.
- Instead: Estimate the S-wave contribution and check with simulation how large the effect on the results is. Add to systematic uncertainty.

Distribution of Events in q^{2} (I)

- Told you that F_{L}, S_{i} depend on q^{2}.
- Need to parametrize / bin in q^{2} to understand dependence.
- This analysis uses $6 q^{2}$ bins. The binning scheme was copied from the analysis of the Belle collaboration.
- See later for a possible unbinned way (in a slightly different context).

Distribution of events in q^{2} (II)

ExAmple of Angular Distribution

Results

DIFFERENTIAL BRANCHING FRACTION

- Note that the theoretical uncertainty is larger than the experimental one.
- This is / was a major showstopper for discovering smallish effects of new physics.
- However, new lattice results can reduce the uncertainty for high q^{2}.

COMPARISON WITH OTHER EXPERIMENTS

More observables

- Angular distribution has 8 independent observables in total. Have only measured 4 of them due to folding. Want to measure the remaining ones as well.
- Could now go on and devise other foldings to extract the remaining S_{4}, S_{6}, S_{7} and S_{8}.
- Or we can try something slightly different...

Esses And Pees

- While all S_{i} observables can be predicted theoretically, they have large theoretical uncertainties.
- We can do a basis-transformation:
- Old basis: $F_{L}, S_{3}-S_{9}(8 \times$ large theo. uncertainty $)$
- New basis: $F_{L}, \frac{d \mathcal{B}}{d q^{2}}, P_{1}, P_{2}, P_{3}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}(2 \times$ large theo. uncertainty, $6 \times$ small theo. uncertainty)

$$
\begin{gathered}
P_{4}^{\prime}=\frac{S_{4}}{\sqrt{F_{L}\left(1-F_{L}\right)}} \quad P_{5}^{\prime}=\frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}} \quad P_{6}^{\prime}=\frac{S_{7}}{\sqrt{F_{L}\left(1-F_{L}\right)}}[\text { sic! }] \\
P_{8}^{\prime}=\frac{S_{8}}{\sqrt{F_{L}\left(1-F_{L}\right)}} \text { (not fully independent) }
\end{gathered}
$$

- Replace the S_{i} observables with the $P_{i}^{(\prime)}$ observables and determine their values on collision data.

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$FOLDED ANGULAR DISTRIBUTION

- The first folding gave us with one transformation 4 observables.
- To extract the other observables, more effort is needed.
- Example: Extracting P_{5}^{\prime} :

$$
\begin{array}{rll}
\phi \rightarrow-\phi & \text { for } & \phi<0 \\
\theta_{\ell} \rightarrow \pi-\theta_{\ell} & \text { for } & \theta_{\ell}>\pi / 2
\end{array}
$$

- Similar foldings for $P_{4}^{\prime}, P_{6}^{\prime}, P_{8}^{\prime}$.

$B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$FOLDED
 ANGULAR DISTRIBUTION

- The folding for P_{5}^{\prime} leads to:

$$
\begin{aligned}
\frac{\mathrm{d}^{4}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}= & \frac{9}{8 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\right. \\
& \frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}-F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& \frac{1}{2} S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+ \\
& \left.\sqrt{F_{L}\left(1-F_{L}\right.} P_{5}^{\prime} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi\right]
\end{aligned}
$$

- Only three observables left after the folding. Now we can fit the distribution.
- Only one of them we are interested in, the other two are " nuisance parameters".
- Selection, corrections, etc. all are the same as for the "first" analysis.

Example of angular distribution

(a)

(c) $\quad q^{2}=4.3-8.68 \mathrm{GeV}^{2} / c^{4}$ for P_{5}^{\prime}
(d)

P_{4}^{\prime} AND P_{5}^{\prime}

- Analysis is performed in the same six bins of q^{2} as the first analysis.
- Good agreement for P_{4}^{\prime} for the full q^{2} range.
- Disagreement for P_{5}^{\prime} for low q^{2}.
- Discrepancy in third bin is about 4 standard deviations. The chance of this happening in one bin out of 24 is about 0.5%.
P_{6}^{\prime} AND P_{8}^{\prime}

- Good agreement for P_{6}^{\prime} for the full q^{2} range.
- Good agreement for P_{8}^{\prime} for the full q^{2} range.

Statistical Uncertainties

(b)

- For some bins the likelihood looked was perfectly parabolic, for some not. Evaluate statistical uncertainty using "Feldmann-Cousins".
- FC:
- For each possible value of x, generate toys (with: removing events and correcting for acceptance).
- Order them according to $R=\frac{\mathcal{L}(x \mid \mu)}{\mathcal{L}\left(x \mid \mu_{\text {best }}\right)}$, where $\mu_{\text {best }}$ is the value of μ that maximises $\mathcal{L}(x \mid \mu)$.
- Determine 68\% CL.
- Construct band and read off interval.

Measuring the zero-crossing point of $A_{F B}(\mathrm{I})$

- Zero-crossing point of $A_{F B}$ is a very clean measurement, as the form factors cancel (to first order).
- $A_{F B}=\frac{\text { Forward-Backward }}{\text { Forward }+ \text { Backward }}$. "Forward " $=\cos \theta_{\ell}>0$
- Zero-crossing point was extracted using "unbinned counting" technique: Make a 2D unbinned likelihood fit to (q^{2}, mass) for "forward" and "backward" events (with respect to $\cos \theta_{\ell}$).

Measuring the zero-crossing point of $A_{F B}$ (II)

- Extract $A_{F B}=\frac{N_{F} \cdot P D F_{F}\left(q^{2}\right)-N_{B} \cdot P D F_{B}\left(q^{2}\right)}{N_{F} \cdot P D F_{F}\left(q^{2}\right)+N_{B} \cdot P D F_{B}\left(q^{2}\right)}$
- Standard Model theory predicts zero-crossing in 4.0-4.3 GeV^{2} / c^{4} (central values)
[JHEP 1201 (2012) 107][Eur. Phys. J. C41 (2005), 173][Eur. Phys. J. C47 (2006) 625]
- LHCb result: $4.9 \pm 0.9 \mathrm{GeV}^{2} / c^{4}$

Yes, we did some crosschecks

- Surely, if there is a discrepancy in P_{5}^{\prime}, there is also one in S_{5}.
- Measure S_{5} with a "counting" experiment (similar to zero-crossing point) and with an angular fit and compare results.
- Can define S_{5} as an asymmetry between two type of events: $S_{5}=\frac{\text { type } 1-\text { \#type2 }}{\text { \#type1 }+ \text { \#type2 }}$
- There is excellent agreement between fitting and counting.

Yes, we did more crosschecks...

- Cut very hard in selection until essentially no background is left. No effect.
- Apply selection, data-simulation corrections, acceptance correction to $B^{0} \rightarrow J / \psi K^{* 0}$. The values come out as predicted.
- Evaluate many systematic effects: Background angular distribution, signal mass distribution, removing events at large angles, neglecting acceptance correction, ...
- None had a seizable effect.

What is it? Possible Answers:

- A statistical fluctuation. The chance of one bin fluctuating that much (assuming all bins independent) is 0.5%.
- A peaking background nobody could think of. Something else, nobody could think of...
- An underestimation of the theoretical uncertainty.
- If you dare to believe: New physics.

The future!

- Everything I showed so far was performed on data from 2011.
- We have $2 \mathrm{fb}^{-1}$ more to analyse, giving in total ≈ 3000 events.
- What can we do with them?
- Goal would be to do a full angular analysis without folding.
- None of these studies is public yet, cannot show too much...

FULL ANGULAR ANALYSIS

- In principle would like to fit all observables at once to get the values and the correlation matrix.
- Would also like to have a different (finer) binning scheme, to take steep shapes better into account.
- And would like to disentangle B^{0} and \bar{B}^{0}.
- Would also like to have sunny weather every day.
- Realistic seems a full angular analysis with the same binning scheme - or again folding with a finer binning scheme. But not both.
- It might also be possible to gain back the correlation matrix from toy studies. This would allow folding (=more stable) fits and provide the same information as the full analysis.

Amplitude analysis

- $S_{i}=f_{i}\left(A_{\perp}^{L}, A_{\|}^{L}, A_{0}^{L}, A_{\perp}^{R}, A_{\|}^{R}, A_{0}^{R}\right)$. Can we measure the amplitudes directly?
- Need to parametrize q^{2} dependence: $\alpha+\beta q^{2}+\frac{\gamma}{q^{2}}$.
- Can in the end still build observables out of the amplitudes.
- Looks quite promising at the moment, but will be restricted to $q^{2}=1-6 \mathrm{GeV}^{2} / c^{4}$ (as q^{2} parametrisation does not hold anywhere else).

Moment analysis

- All angular terms are orthonormal.
- Basic linear algebra tells you: $g=\sum_{i} c_{i} g_{i}$ with $\left\langle g_{i} \| g_{j}\right\rangle=\delta_{i j}$
- $\Rightarrow c_{i}=\langle g|\left|g_{i}\right\rangle$
- \Rightarrow To extract the angular coefficients, one can multiply distributions with each other.
- Looks quite promising at the moment, but study is only in an early stage.
- A nice thing about the moment analysis: The S -wave terms are orthogonal to all other (P-wave) terms, so they don't need special treatment.
- However, still need to care about acceptance correction.

Other EW penguins

dashed - SM prediction, solid - normalised to measured BR

- There are other electroweak penguin decays which are sensitive to the same underlying physics: $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}, \Lambda_{b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-}, \ldots$
- Less events than for $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$, angular analysis difficult.
- Isn't it fascinating that all branching fractions we measure are at the low end of the prediction?

SUMMARY

- Presented the 2012 \& 2013 analyses of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$.
- Have seen some "interesting" effects in the 2011 data.
- Looking forward to analysing the 2011+2012 data.
- Atlas \& CMS can analyse this decay as well...

$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

- Only angle θ_{ℓ} and q^{2} for description of decay:

$$
\begin{equation*}
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{\ell}}=\frac{3}{4}\left(1-F_{H}\right) \sin ^{2} \theta_{\ell}+\frac{1}{2} F_{H}+A_{F B} \cos \theta_{\ell} \tag{1}
\end{equation*}
$$

- Branching fraction smaller than for $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$, but cleaner. About 1200 events to analyse in $1 \mathrm{fb}^{-1}$.
- Good agreement with Standard Model, including resonance at high- q^{2} (compatible with $\psi(4160)$).

$$
B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}
$$

$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$

- Very similar to $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$, however, less B_{s}^{0} produced than B^{0}. Only ~ 175 signal events in $1 \mathrm{fb}^{-1}$.
- Decay is not self-tagging, as $\phi \rightarrow K^{+} K^{-}$.
- Need to restrict to observables invariant under $B_{s}^{0} \leftrightarrow \bar{B}_{s}^{0}: F_{L}, S_{3,4,7}$, $A_{5,6,8,9}$.
- Only projections in one angles fitted, not full 3D-fit.
- Angular observables show good agreement with SM.
$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$

dashed - SM prediction, solid - normalised to measured BR
- However the branching fraction is significantly lower than the SM prediction.
$\Lambda_{b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-}$

- Even less signal than for $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$, ~ 80 events in $1 \mathrm{fb}^{-1}$.
- Still most precise measurement of branching fraction.
- Basically no events at low q^{2} (but very large uncertainties).

$B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$

- $b \rightarrow d$ process, suppressed by $\left|V_{t d} / V_{t s}\right|^{2}$ compared to $b \rightarrow s$
- LHCb observed ~ 25 signal candidates in $1 \mathrm{fb}^{-1}$.
- Measured branching fraction of: $(2.3 \pm 0.6 \pm 0.1) \cdot 10^{-8}$, in good agreement with Standard Model.

More penguins

- $B^{0} \rightarrow K^{* 0} e^{+} e^{-}$: Interesting at low q^{2}, where muon mass cannot be neglected anymore.
- More EW penguin measurements: $\mathcal{C P}$ asymmetry and isospin asymmetry in $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}, B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$.
- None of the other modes (except isospin asymmetry) shows such a large deviation.
- However, none of the other modes has the same sensitivity to " P_{5}^{\prime}-physics" as $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$.

BDT input variables

- the B^{0} pointing to the primary vertex, flight-distance and IP χ^{2} with respect to the primary vertex, p_{T} and vertex quality $\left(\chi^{2}\right)$;
- the $K^{* 0}$ and dimuon flight-distance and IP χ^{2} with respect to the primary vertex (associated to the $\left.B^{0}\right), p_{T}$ and vertex quality $\left(\chi^{2}\right)$;
- the impact parameter χ^{2} and the $\Delta L L(K-\pi)$ and $\Delta L L(\mu-\pi)$ of the four final state particles.

Possible interpretations (I)

- Matias et al. did a combined fit of observables of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$, $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}, B^{0} \rightarrow K^{* 0} \gamma$ to extract the Wilson coefficients.
- Split Wilson coefficients in $\mathcal{C}_{i}^{(\prime)}=\mathcal{C}_{i, S M}^{(\prime)}+\mathcal{C}_{i, N P}^{(\prime)}$
- Determine best fit point and confidence intervals.
- Looks like a clear case for NP...

Possible interpretations (II)

- Straub et al. did a combined fit of observables of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$, $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}, B_{s}^{0} \rightarrow \mu^{+} \mu^{-}, B^{0} \rightarrow K^{* 0} \gamma$. They also included results from other experiments besides LHCb.
- The trend is the same as for Matias et al., however the picture is a bit less clear.

Possible interpretations (III)

- Van Dyk et al. did a Bayesian analysis using observables of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}, B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}, B_{s}^{0} \rightarrow \mu^{+} \mu^{-}, B^{0} \rightarrow K^{* 0} \gamma$ (and other information) where the QCD-uncertainties were allowed to float (using a prior).
- They conclude: "In the absence of substantial improvements in the handling of subleading contributions to the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$amplitudes and given the statistical evaluation, we are therefore forced to conclude that the SM interpretation of the data is more economical than a New Physics hypothesis."
$A_{T}^{(2)} \mathrm{AND} A_{T}^{(R e)}$

- $S_{3}=\frac{1}{2}\left(1-F_{L}\right) A_{T}^{(2)}$
- $A_{F B}=\frac{3}{4}\left(1-F_{L}\right) A_{T}^{(R e)}$

Likelihood for P_{5}^{\prime}, bin 3

(b)

- (Profile) likelihood for P_{5}^{\prime} in bin 3.

