Phenomenology of Exclusive $b \rightarrow s \ell^+ \ell^-$ Decays

Danny van Dyk

Universität Siegen

LHCb Workshop Neckarzimmern March 6th 2014

Theor. Physik 1

Phenomenology of $\bar{B} \to \bar{K} \ell^+ \ell^-$

Phenomenology of $\bar{B} \to \bar{K}^* (\to \bar{K}\pi) \ell^+ \ell^-$

Beyond Naive Factorization QCD Improved Factorization Low Recoil OPE

Global Analysis

Phenomenology of $\Lambda_b \to \Lambda \ell^+ \ell^-$

Section 1

Phenomenology of $\bar{B} \to \bar{K} \ell^+ \ell^-$

Kinematics

$$ar{B}(p)
ightarrow ar{K}(k) \, \ell^+(q_1) \, \ell^-(q_2)$$

D. van Dyk (U. Siegen)

Effective Theory

Effective Hamiltonian

$$\mathcal{H}^{\text{eff}} = -\frac{4G_{\text{F}}}{\sqrt{2}} \left[V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i + O\left(V_{ub} V_{us}^*\right) \right] + \text{h.c.}$$

Semileptonic Operators (SM-like: 9,10 chirality-flipped: 9',10')

$$\mathcal{O}_{9(')} = \frac{\alpha_e}{4\pi} \left[\bar{s} \gamma_\mu P_{L(R)} b \right] \left[\bar{\ell} \gamma^\mu \ell \right] \qquad \mathcal{O}_{10(')} = \frac{\alpha_e}{4\pi} \left[\bar{s} \gamma_\mu P_{L(R)} b \right] \left[\bar{\ell} \gamma^\mu \gamma_5 \ell \right]$$

Penguins (photonic: 7(') gluonic: 8(') $\bar{q}q$: 3-6)

$$\mathcal{O}_{7(\prime)} = \left[\bar{s}\sigma_{\mu\nu}P_{R(L)}b\right]F^{\mu\nu} \qquad \qquad \mathcal{O}_{8(\prime)} = \left[\bar{s}\sigma_{\mu\nu}P_{R(L)}b\right]G^{\mu\nu}$$

- + $\mathcal{O}_{7(^{\prime})}$ dominant when dilepton system is almost lightlike
- current/current $(\mathcal{O}_{1,2})$ and QCD Penguins $(\mathcal{O}_{3...6}) \to \mathsf{talk}$ by Th. Feldmann

D. van Dyk (U. Siegen)

Hadronic Matrix Elements

Aim

 \mathcal{H}^{eff} : effective $|\Delta B| = |\Delta S| = 1$ Hamiltonian

$$i\mathcal{M} = \langle \bar{K}\ell^+\ell^- | \mathcal{H}^{\mathsf{eff}} | \bar{B}
angle$$

Factorizable Contributions

leptonic and hadronic currents of operators \mathcal{O}_7 , \mathcal{O}_9 , \mathcal{O}_{10} factorize up to α_e corr.

$$\begin{split} \langle \bar{\mathcal{K}}\ell^{+}\ell^{-}|\mathcal{O}_{9(10)}|\bar{B}\rangle &= \frac{1}{2} \langle \bar{\mathcal{K}}|\bar{s}\gamma_{\mu}(1-\gamma_{5})b|\bar{B}\rangle \times \langle \ell^{+}\ell^{-}|\bar{\ell}\gamma^{\mu}(\gamma_{5})\ell|0\rangle + O\left(\alpha_{e}\right) \\ &= \frac{1}{2} \langle \bar{\mathcal{K}}|\bar{s}\gamma_{\mu}(1-\gamma_{5})b|\bar{B}\rangle \times \left[\bar{u}_{\ell}\gamma^{\mu}(\gamma_{5})v_{\ell}\right] \end{split}$$

Hadronic Matrix Elements

parametrized in terms of three formfactors

$$\langle \bar{K} | \bar{s} \gamma^{\mu} b | \bar{B} \rangle = f_{+}(q^{2}) \Big[(p+k)^{\mu} + \left(1 - \frac{M_{B}^{2} - M_{K}^{2}}{q^{2}} \right) q^{\mu} \Big] + f_{0}(q^{2}) \frac{M_{B}^{2} - M_{\pi}^{2}}{q^{2}} q^{\mu}$$

$$\bar{K} | \bar{s} i \sigma^{\mu\nu} q_{\nu} b | \bar{B} = -\frac{f_{T}(q^{2})}{M_{P} + M_{K}} \Big[q^{2} (p+k)^{\mu} - (M_{B}^{2} - M_{\pi}^{2}) q^{\mu} \Big]$$

D. van Dyk (U. Siegen)

Non-Factorizable Contributions

matrix elements of current-current operators (\mathcal{O}_1 , \mathcal{O}_2), QCD penguins ($\mathcal{O}_3 \dots \mathcal{O}_6$) and chromomagnetic penguin \mathcal{O}_8 do not neccessarily factorize

Calculation

- several methods, applicability depends on q^2
- problem occurs in *all* exclusive decays, not just $ar{B}
 ightarrow ar{K}$
- ullet ightarrow we will return to this

3-body Decay

[see PDG, section 45]

$$\mathrm{d}\Gamma = \frac{1}{(2\pi)^5} \frac{1}{16M^2} \overline{|\mathcal{M}|^2} |\mathbf{p_1^*}| |\mathbf{p_3}| \,\mathrm{d}m_{12} \mathrm{d}\Omega_1^* \,\mathrm{d}\Omega_3$$

identify $q^2 = m_{12}^2$, $M = M_B$, $\mathrm{d}\Omega_1^* = 2\pi \mathrm{d}\cos\theta_\ell$, $p_1 = q_2$, k
 Ω_3 to be integrated out

Full Angular Distribution

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell} = a(q^2) + b(q^2)\cos\theta_\ell + c(q^2)\cos^2\theta_\ell$$
$$b(q^2)\dots c(q^2): \text{ angular observables, depend on Wilson coefficients}$$

D. van Dyk (U. Siegen)

а

Normalized Angular Distribution

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2}\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell} = \frac{3}{4}\Big(1-F_H\Big)\big(1-\cos^2\theta_\ell\big) + \frac{1}{2}F_H + A_{\mathsf{FB}}\cos\theta_\ell$$

Forward-Backward Asymmetry

counting: how many ℓ^- in positive z direction vs in negative z direction

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}A_{\mathrm{FB}} = \int \mathrm{d}\cos\theta_\ell \operatorname{sign}\cos\theta_\ell \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell}$$

Flat Term

appears as constant (flat) term in the angular distribution as well as $\propto \sin^2 heta_\ell$

D. van Dyk (U. Siegen)

if considering only $\mathcal{C}_{7,9,10,7^{\prime},9^{\prime},10^{\prime}}$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \propto |(\mathcal{C}_9 + \mathcal{C}_{9'}) + (\mathcal{C}_7 + \mathcal{C}_{7'})|^2 + |\mathcal{C}_{10} + \mathcal{C}_{10'}|^2 \qquad A_{\mathrm{FB}} \simeq 0 \simeq F_H$$

Fit to $\mathcal{C}_7\text{,}$ $\mathcal{C}_9\text{,}$ \mathcal{C}_{10}

- only $\bar{B}\to \bar{K}\ell^+\ell^-$ and $\bar{B}\to \bar{K}^*\gamma$
- based on data up to winter 2011/2012

[Beaujean/Bobeth/DvD/Wacker '12] D. van Dyk (U. Siegen)

Section 2

Phenomenology of $\bar{B} \to \bar{K}^* (\to \bar{K} \pi) \ell^+ \ell^-$

Kinematics

D. van Dyk (U. Siegen)

Expand in $\cos \theta_{K^*}$

- use Legendre polynomials (eigenfunction of angular momentum operator \hat{J})
- J = 0 is S wave: broad resonance κ or $K_0^*(800)$
- J = 1 is P wave: $K^*(892)$

S Wave Form Factors [Meißner/Wang '13]

using Light Cone Sum Rules

 $\langle (\bar{K}\pi)_{J=0} | \bar{s} \Gamma b | \bar{B} \rangle$

not so well known as other hadronic matrix elements

D. van Dyk (U. Siegen)

Hadronic Matrix Elements

P Wave Form Factors

• hadronic matrix elements $\langle \bar{K^*} | \bar{s} \Gamma b | \bar{B} \rangle$ parametrized through 7 form factors:

 $\langle \bar{K}^* | \bar{s} \gamma^\mu b | \bar{B} \rangle \sim V \quad \langle \bar{K}^* | \bar{s} \gamma^\mu \gamma_5 b | \bar{B} \rangle \sim A_{0,1,2} \quad \langle \bar{K}^* | \bar{s} \sigma^{\mu\nu} b | \bar{B} \rangle \sim T_{1,2,3}$

- form factors largest source of theory uncertainty amplitude $\sim 10\%-15\% \Rightarrow$ observables: $\sim 20\%-50\%$
 - ▶ from Light Cone Sum Rules [Ball/Zwicky '04, Khodjamirian et al. '11]
 - ▶ from Lattice QCD [Horgan/Liu/Meinel/Wingate '13]
 - extract ratios from low recoil data

[Hambrock/Hiller/Schacht/Zwicky '13, Beaujean/Bobeth/DvD '13]

Differential Decay Rate for pure P-wave state

$$\begin{aligned} \frac{d^4\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_{K^*}d\phi} &\sim J_{1s}\sin^2\theta_{K^*} + J_{1c}\cos^2\theta_{K^*} + J_{1l}\cos\theta_{K^*} \\ &+ (J_{2s}\sin^2\theta_{K^*} + J_{2c}\cos^2\theta_{K^*} + J_{2l}\cos\theta_{K^*})\cos 2\theta_\ell \\ &+ (J_3\cos 2\phi + J_9\sin 2\phi)\sin^2\theta_{K^*}\sin^2\theta_\ell \\ &+ (J_4\sin 2\theta_{K^*} + J_{4l}\cos\theta_{K^*})\sin 2\theta_\ell\cos\phi \\ &+ (J_5\sin 2\theta_{K^*} + J_{5l}\cos\theta_{K^*})\sin\theta_\ell\cos\phi \\ &+ (J_{6s}\sin^2\theta_{K^*} + J_{6c}\cos^2\theta_{K^*})\cos\theta_\ell \\ &+ (J_7\sin 2\theta_{K^*} + J_{6c}\cos\theta_{K^*})\sin\theta_\ell\sin\phi \\ &+ (J_8\sin 2\theta_{K^*} + J_{6l}\cos\theta_{K^*})\sin 2\theta_\ell\sin\phi \,, \end{aligned}$$

 $J_i \equiv J_i(q^2, k^2)$: 12 angular observables

Differential Decay Rate for mixed P- and S-wave state

$$\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{\ell}d\cos\theta_{K^{*}}d\phi} \sim J_{1s}\sin^{2}\theta_{K^{*}} + J_{1c}\cos^{2}\theta_{K^{*}} + J_{1i}\cos\theta_{K^{*}} + (J_{2s}\sin^{2}\theta_{K^{*}} + J_{2c}\cos^{2}\theta_{K^{*}} + J_{2i}\cos\theta_{K^{*}})\cos 2\theta_{\ell} + (J_{3}\cos 2\phi + J_{9}\sin 2\phi)\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{\ell} + (J_{4}\sin 2\theta_{K^{*}} + J_{4i}\cos\theta_{K^{*}})\sin 2\theta_{\ell}\cos\phi + (J_{5}\sin 2\theta_{K^{*}} + J_{5i}\cos\theta_{K^{*}})\sin\theta_{\ell}\cos\phi + (J_{6s}\sin^{2}\theta_{K^{*}} + J_{6c}\cos^{2}\theta_{K^{*}})\cos\theta_{\ell} + (J_{7}\sin 2\theta_{K^{*}} + J_{7i}\cos\theta_{K^{*}})\sin\theta_{\ell}\sin\phi + (J_{8}\sin 2\theta_{K^{*}} + J_{8i}\cos\theta_{K^{*}})\sin 2\theta_{\ell}\sin\phi,$$

 $J_i \equiv J_i(q^2, k^2)$: 18 angular observables

Transversity Amplitudes

Angular Observables

 J_i functionals of $A_S, A_a, A_{ab}, a, b = t, 0, \|, \bot$ e.g.

$$J_3(q^2) = rac{3eta_\ell}{4} ig[|A_\perp|^2 - |A_\parallel|^2ig] \, .$$

 β_{ℓ} : lepton velocity in dilepton rest frame

$$m_\ell^2/q^2
ightarrow 0 \Rightarrow eta_\ell
ightarrow 1$$

Transversity Amplitudes

contractions of hadronix matrix elements with polarization vectors

$$\begin{aligned} A_{\perp} \propto \langle K^{*}(k,\eta^{*}) | \bar{s} \gamma^{\mu} P_{L} b | \bar{B} \rangle \varepsilon_{\mu}^{*}(+) + \left[\varepsilon(+) \to \varepsilon(-) \right] &\sim V \\ A_{\parallel} \propto \langle K^{*}(k,\eta^{*}) | \bar{s} \gamma^{\mu} P_{L} b | \bar{B} \rangle \varepsilon_{\mu}^{*}(+) - \left[\varepsilon(+) \to \varepsilon(-) \right] &\sim A_{1} \\ A_{0} = \langle K^{*}(k,\eta^{*}) | \bar{s} \gamma^{\mu} P_{L} b | \bar{B} \rangle \varepsilon_{\mu}^{*}(0) &\sim A_{12} \end{aligned}$$

 ε : artifical polarization vector

 η : polarization vector of K^* meson

D. van Dyk (U. Siegen)

Observables

Decay Width

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = 2J_{1s} + J_{1c} - \frac{2}{3}J_{2s} - \frac{1}{3}J_{2c}$$

Leptonic Forward-Backward Asymmetry

as in $\bar{B} \to \bar{K} \ell^+ \ell^-$, integrated over $\cos \theta_{K^*}$ and ϕ

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}A_{\mathrm{FB}} = \int \mathrm{d}\cos\theta_\ell \operatorname{sign}\cos\theta_\ell \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell} = J_{6s} + \frac{1}{2}J_{6c} \quad \xrightarrow{\mathrm{SM}} J_{6s}$$

some form factor uncertainties cancel

Longitudinal/Transverse Polarization

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2}\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_{K^*}} = \frac{3}{4}F_T\sin^2\theta_{K^*} + \frac{3}{2}F_L\cos^2\theta_{K^*}$$

considerable theory uncertainty due to form factors

D. van Dyk (U. Siegen)

014 17 / 52

Transversity Amplitudes

$$\begin{aligned} A_{\perp}^{L(R)} \propto & \left(\left(\mathcal{C}_{9} - \mathcal{C}_{9'} \right) + \frac{M_{B}^{2}}{q^{2}} \left(\mathcal{C}_{7} - \mathcal{C}_{7'} \right) \mp \left(\mathcal{C}_{10} - \mathcal{C}_{10'} \right) \right) \\ A_{\parallel}^{L(R)} \propto & \left(\left(\mathcal{C}_{9} + \mathcal{C}_{9'} \right) + \frac{M_{B}^{2}}{q^{2}} \left(\mathcal{C}_{7} + \mathcal{C}_{7'} \right) \mp \left(\mathcal{C}_{10} + \mathcal{C}_{10'} \right) \right) \\ A_{0}^{L(R)} \propto & \left(\left(\mathcal{C}_{9} + \mathcal{C}_{9'} \right) + \left(\mathcal{C}_{7} + \mathcal{C}_{7'} \right) \mp \left(\mathcal{C}_{10} + \mathcal{C}_{10'} \right) \right) \end{aligned}$$

complementary sensitivity to $\bar{B} \rightarrow \bar{K} \ell^+ \ell^-!$

Observables

$$A_{\mathrm{FB}} \propto \, \mathrm{Re}\left(A_{\perp}A_{\parallel}^{*}
ight) \longrightarrow \, \mathrm{Re}\left(\left(\mathcal{C}_{9}+rac{M_{B}^{2}}{q^{2}}\mathcal{C}_{7}
ight)\mathcal{C}_{10}^{*}
ight)$$

D. van Dyk (U. Siegen)

Fits to C_7 , C_9 , C_{10} • based on $\overline{B} \to \overline{K}^* \gamma$ and • $\overline{B} \to \overline{K} \ell^+ \ell^-$

D. van Dyk (U. Siegen)

♦: SM value

[Beaujean/Bobeth/DvD/Wacker '12]

Fits to $\mathcal{C}_7\text{,}$ $\mathcal{C}_9\text{,}$ \mathcal{C}_{10}

• based on $\bar{B}
ightarrow \bar{K}^* \gamma$ and

$$\blacktriangleright B \to K\ell^+\ell^-$$
$$\blacktriangleright \overline{B} \to \overline{K}^*\ell^+\ell^- \text{ small } a^2$$

♦: SM value

[Beaujean/Bobeth/DvD/Wacker '12]

Fits to $\mathcal{C}_7\text{,}$ $\mathcal{C}_9\text{,}$ \mathcal{C}_{10}

• based on $\bar{B}
ightarrow \bar{K}^* \gamma$ and

 $\overline{B} \to \overline{K}^* \ell^+ \ell^- \text{ small } q^2$ $\overline{B} \to \overline{K}^* \ell^+ \ell^- \text{ large } q^2$

Section 3

Beyond Naive Factorization

Charm Resonances

$$ar{B}
ightarrow ar{K}^{(*)} \psi(n) (
ightarrow \ell^+ \ell^-)$$

Narrow Resonances: J/ψ and $\psi(2s)$

- experiments veto q^2 -region of narrow charmonia J/ψ and $\psi(2s)$
- however: resonance affects observables outside the veto!

• treat region below J/ψ (aka large recoil) differently than above $\psi(2s)$

Subsection 1

QCD Improved Factorization

Preliminaries

when $q^2 \ll m_b^2 \Rightarrow E_{\mathcal{K}^{(*)}} \sim m_b$

- final state $K^{(*)}$ almost light-like (collinear)
- decompose four-momenta in collinear (n_+) and anticollinear (n_-) direction

$$k^{\mu} = rac{n_{-}k}{2}n^{\mu}_{+} + k^{\mu}_{\perp} + rac{n_{+}k}{2}n^{\mu}_{-}$$

 $n_{-}k \sim m_{b}, \ n_{+}k \sim \Lambda_{\sf QCD}
ightarrow {\sf Soft}$ Collinear Effective Theory

Ingredients (I)

Form Factor Symmetry Relations

- reduce 3 $B \rightarrow K$ form factors down to 1 (ξ_P)
- reduce 7 $B \to K^*$ form factors down to 2 $(\xi_{\perp}, \xi_{\parallel})$
- ξ s are called *soft form factors*

Symmetry-breaking Corrections

- hadronic matrix elements that cannot be expressed through ξs
- new universal hadronic parameters enter (e.g. $\lambda_{B,+}^{-1}$ from $B^- \to \gamma \ell^- \bar{\nu}_\ell$)

Loop Corrections

- $q ar{q}$ loops (up to two loop) perturbatively calculated [Greub et al, Seidel '04]
- calculate hadronic matrix elements [Beneke/Feldmann/Seidel '01 & '04]

►
$$C_7 \times \xi_{\perp(\parallel)} \rightarrow \mathcal{T}_{\perp(\parallel)}(q^2)$$
, polarization dep.

Reduction of Hadronic Uncertainties: AFB Zero Crossing

$$s_0: A_{FB}(q^2 = s_0) = 0$$

$$s_0 = +3.4 \pm 0.6$$
 \xrightarrow{QCDF} $s_0^{QCDF} = 4.0 \pm 0.3$

Results

Factorization

• transversity amplitudes factorize up to power supressed terms $A_{\perp}^{L,R} \sim X_{\perp}^{L,R} \times \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} \times \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} \times \xi_{\parallel}$

 $\xi_{\perp,\parallel}$: soft form factors $X_i^{L,R}$: combinations of Wilson coefficients [Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence $[{\tt Krüger}/{\tt Matias}~{\tt '05, Egede et al.}~{\tt '08}~\&~{\tt '10}]$

$$\begin{aligned} A_{T}^{(2)} &= \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \sim J_{3} \\ A_{T}^{(3)} &= \frac{|A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R*}A_{\parallel}^{R}|}{\sqrt{|A_{0}|^{2}|A_{\parallel}|^{2}}} \sim J_{4}, J_{7} \\ A_{T}^{(4)} &= \frac{|A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R*}A_{\perp}^{R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \sim J_{5}, J_{8} \\ \end{aligned}$$

D. van Dyk (U. Siegen)

- $c\bar{c}$ loops should be under control for $q^2 \ll 4m_c^2$
- however: QCDF only includes some corrections, not all of them
- more inclusively: Light Cone Sum Rules (with its own caveats)
- $1/m_b$ corrections are of interest, could explain putative $B \to K^* \ell^+ \ell^-$ -Anomaly

Subsection 2

Low Recoil OPE

Local OPE [Grinstein/Pirjol '04, Beylich/Buchalla/Feldmann '11]

$$i\int \mathrm{d}^4 x e^{iqx} \langle \bar{K}^* | T\{\mathcal{O}_i(0), j^{\mathrm{e.m.}}_{\mu}(x)\} | \bar{B} \rangle = \sum_{j,k} \mathcal{C}_{i,j,k}(q^2/m_b^2, \mu) \langle \mathcal{O}_j^{(k)} \rangle_{\mu}$$

Operators

- k=3 form factors, α_s corrections known, absorbed into effective Wilson coefficients $\mathcal{C}_{7,9} \rightarrow \mathcal{C}_{7,9}^{\mathrm{eff}}$
- k = 4 absent

 $k=5~\Lambda^2/m_b^2\sim 2\%~{\rm corrections,~first~new~had.~matrix~elements} \\ {\rm explicitly:~<1\%~for~} q^2=15 {\rm GeV}^2~{\rm [Beylich/Buchalla/Feldmann]}$

k = 6 first isospin breaking correction, Λ^3/m_b^3 suppressed

D. van Dyk (U. Siegen)

Phenomenology of exclusive $b \rightarrow s \ell^+ \ell^-$

06.03.2014 29 / 52

Low Recoil

SM basis + chirality flipped [Bobeth/Hiller/DvD '10 & '12]

• transversity amplitudes factorize

$$A_{\perp,\parallel,0}^{L,R} \sim \boldsymbol{C}_{\pm}^{L,R} \times \boldsymbol{f}_{\perp,\parallel,0} + O\left(\frac{\alpha_{s}\Lambda}{m_{b}}, \frac{\mathcal{C}_{7}\Lambda}{\mathcal{C}_{9}m_{b}}\right)$$

f_i: helicity form factors

 $C_{\pm}^{L,R}$: combinations of Wilson coeff.

$$\begin{aligned} C_{+}^{L(R)} &= (\mathcal{C}_{9} + \mathcal{C}_{9'}) + \frac{M_{B}^{2}}{q^{2}}(\mathcal{C}_{7} + \mathcal{C}_{7'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10'}) \\ C_{-}^{L(R)} &= (\mathcal{C}_{9} - \mathcal{C}_{9'}) + \frac{M_{B}^{2}}{q^{2}}(\mathcal{C}_{7} - \mathcal{C}_{7'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10'}) \end{aligned}$$

• 4 combinations of Wilson coefficients enter observables:

$$\rho_1^{\pm} \sim |\mathcal{C}_{\pm}^R|^2 + |\mathcal{C}_{\pm}^L|^2$$

$$\operatorname{Re}(\rho_2) \sim \operatorname{Re}\left(\mathcal{C}_{+}^R \mathcal{C}_{-}^{R*} - \mathcal{C}_{-}^L \mathcal{C}_{+}^{L*}\right) \text{ and } \operatorname{Re}(\cdot) \leftrightarrow \operatorname{Im}(\cdot)$$

Optimized Observables at Low Recoil

"Form Factor Free" Observables

- optimized for low recoil: $H_T^{(1,2,3,4,5)}$ [Bobeth/Hiller/DvD '10 & '12]
- $H_{T}^{(1)}$: probes low-recoil framework before new physics
- $H_{\tau}^{(2,3,4,5)}$: access to combination of Wilson coefficients

"Short-Distance Free" Observables

- form factor ratios, relevant for comparison with lattice
- SM: all ratios f_i/f_i available, chirality-flipped: only f_0/f_{\parallel}

D. van Dyk (U. Siegen)

Words of Caution

OPE at low recoil makes use of quark-hadron duality X(q²) be some observable, then

$$\int \mathrm{d}q^2 X_{\mathrm{OPE}}(q^2) \simeq \int \mathrm{d}q^2 X_{\mathrm{hadronic}}(q^2)$$

but

$$X_{\text{OPE}}(q^2) \neq X_{\text{hadronic}}(q^2)$$

• expectation and data [Beylich/Buchalla/Feldmann '11]: good agreement

- LHCb 2013: Surprise, we see a broad resonance!
- Theorists: Not surprised!
- Theorists: Also, $X_{OPE} \neq X_{non-resonant}!$
- LHCb 2013: ...

D. van Dyk (U. Siegen)

Section 4

Global Analysis

Definition of model-independent for the purpose of this work:

Basis of Operators \mathcal{O}_i

- include as many \mathcal{O}_i beyond SM as needed/as few as possible
- balancing act, test statistically if choice of basis describes data well!

Wilson Coefficients C_i

- treat C_i as uncorrelated, generalized couplings
- constrain their values from data
- model builders: confront new physics models with constraints

SM-like Coefficients

• fix $\mathcal{C}_{7,9,10}$ to SM values (NNLL)

Chirality-flipped Coefficients

• fix
$$\mathcal{C}_{7'}=m_s/m_b\,\mathcal{C}_7$$
, fix $\mathcal{C}_{9',10'}=0$

Nuisance Parameters

- fit nuisance parameters
- informative priors
 - ▶ form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

SM-like Coefficients

• fit $\mathcal{C}_{7,9,10}$

Chirality-flipped Coefficients

• fix
$$\mathcal{C}_{7'}=m_s/m_b\,\mathcal{C}_7$$
, fix $\mathcal{C}_{9',10'}=0$

Nuisance Parameters

- fit nuisance parameters
- informative priors
 - ► form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

SM-like Coefficients

• fit $\mathcal{C}_{7,9,10}$

Chirality-flipped Coefficients

• fit $\mathcal{C}_{7',9',10'}$

Nuisance Parameters

- fit nuisance parameters
- informative priors
 - ► form factors: light-cone sum rules [Khodjamirian/Mannel/Pivovarov/Wang '10]
 - power corrections: power-counting assumptions
 - CKM: tree-level fit [UTfit]
 - quark masses [PDG]

Sensitivity to Fit Parameters

Overview

	$\mathcal{C}_{7(')}$	$\mathcal{C}_{9(')}$	$\mathcal{C}_{10(')}$	hadronic parameters
$B_s ightarrow \mu^+ \mu^-$	_	_	\checkmark	f_{B_s}
$B o X_s \gamma$	\checkmark	_	_	2 HQE matrix elements
$B o X_s \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	2 HQE matrix elements
$B o K^* \gamma$	\checkmark	_	_	1 FF parameter
$B \to K^* \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	6 FF parameters
$B o K \ell^+ \ell^-$	\checkmark	\checkmark	\checkmark	2 FF parameters

Form Factors

- interplay between $B \to X_s\{\gamma, \ell^+\ell^-\}$ and $B \to K^*\{\gamma, \ell^+\ell^-\}$
- some $B o K^* \ell^+ \ell^-$ obs. form-factor insensitive by construction
- some $B \to K^* \ell^+ \ell^-$ obs. dominantly sensitive to form factor ratios

D. van Dyk (U. Siegen)

Measurements Entering Analysis

$B ightarrow K^* \ell^+ \ell^- \;\; q^2 \in extsf{[1,6]} extsf{GeV}^2$, $q^2 \ge M_{\psi'}^2$	$B ightarrow K^* \gamma$		
 B, A_{FB}, F_L, A²_T new: A^{re}_T, P'₄, P'₅, P'₆ 	 <i>B</i>, <i>S_{K*γ}</i>, <i>C_{K*γ}</i> BaBar, Belle, CLEO 		
• ATLAS, BaBar, Belle, CDF, CMS, LHCb			
$B o \mathcal{K} \ell^+ \ell^ q^2 \in [1,6]$ GeV², $q^2 \ge M_{\psi'}^2$	$B ightarrow X_{s} \gamma$ $E_{ m min}^{\gamma} = 1.8 { m GeV}$		
 <i>B</i> BaBar, Belle, CDF, LHCb 	<i>B</i>BaBar, Belle, CLEO		
$B_s \to \mu^+ \mu^-$	$B o X_{s} \ell^+ \ell^ q^2 \in [1,6] { m GeV}^2$		
 ∫ dτ B(τ) CMS, LHCb 	<i>B</i>BaBar, Belle		

Further Theory Constraints

Form Factors from Lattice QCD (LQCD)

- $B \rightarrow K$ form factors available from LQCD
 - data only at high q^2 : 17 23 GeV²
 - no data points given
- reproduce 3 data points from z-parametrization
 - ▶ $q^2 \in \{17, 20, 23\} \text{ GeV}^2$
 - use as constraint, incl. covariance matrix

$B \rightarrow K^*$ Form Factor (FF) Relation at $q^2 = 0$

- FF $V, A_1 \propto \xi_\perp + \dots$ [Charles et al. hep-ph/9901378]
 - ▶ no α_s corrections [Burdmann/Hiller hep-ph/0011266, Beneke/Feldmann hep-ph/0008255]
 - Large Energy Limit: $V(0) = (1.33 \pm 0.4) \times A_1(0)$
- LCSR constraint: $\xi_{\parallel}(0) = 0.10^{+0.03}_{-0.02}$, to avoid $\xi_{\parallel}(q^2) \propto A_0(q^2) < 0$.
- see also FF fits by [Hambrock/Hiller/Schacht/Zwicky 1308.4379]

[HPQCD arxiv:1306.2384]

however: further SM prediction exist, much larger uncertainty (JC)
 [Jäger/Camalich 1212.2263]

• our take on SM prediction $\langle P_5' \rangle_{[1,6]} = -0.34^{+0.09}_{-0.08}$ (BBvD) see also backups for $P_{4,6}'$ and [2, 4.3] bins

difference: treatment of unknown power corrections (form factor corrections, *c̄c* resonances)

D. van Dyk (U. Siegen)

JC BBvD

Results SM(*v***-only)**

Pull Values at Best-Fit Point

largest pulls

 $-3.4\sigma~\langle F_L
angle_{[1,6]}$, BaBar 2012

 $-2.6\sigma~\langle F_L
angle_{[1,6]}$, ATLAS 2013

 $-2.4\sigma~\langle P_4'
angle_{ ext{[14.18,16]}}$, LHCb 2013

+2.5*σ* $\langle \mathcal{B} \rangle_{[16,19.21]}$, Belle 2009 +2.2*σ* $\langle A_{FB} \rangle_{[16,19]}$, ATLAS 2013 +2.1*σ* $\langle P'_5 \rangle_{[1,6]}$, LHCb 2013

p Values

- *p* value 0.10
- taking out ATLAS, BaBar $\langle F_L \rangle_{[1,6]}$: p value increases to 0.38

Summary

- · decent to good fit, no New Physics signal
- we find power corrections on top of QCDF results at large recoil

D. van Dyk (U. Siegen)

Parametrization of Power Corrections @ Large Recoil

• six parameters $\zeta_{\chi}^{L(R)}$ for the [1,6] bin

$$egin{aligned} &\mathcal{A}_{\chi}^{L(R)}(q^2)\mapsto \zeta_{\chi}^{L(R)}\mathcal{A}_{\chi}^{L(R)}(q^2)\,,\quad \chi=\perp,\parallel,0 \end{aligned}$$

• on top of QCDF correction to transversity amplitudes

improved understanding of power corrections desirable

D. van Dyk (U. Siegen)

Results (SM Basis)

 \bullet : Standard Model, \times : best-fit point

(light-) red: 68% CL (95% CL) for full dataset

blue solid (blue dashed): 68% CL (95% CL) for selection

post HEP'13 (selection)

- with $B \to X_s \{\gamma, \ell^+ \ell^-\}$
- $B_s \rightarrow \mu^+ \mu^-$ from LHCb and CMS
- same data as

[Descotes-Genon/Matias/Virto 1307.5683] exclusive decays limited:

- ▶ only $B \to K^* \ell^+ \ell^-!$
- only LHCb data!
- ▶ only $q^2 \in [1, 6]$ GeV²
- best-fit point similar to

[Descotes-Genon et al. 1307.5683]

▶ less tension, only $\lesssim 2\sigma$ ▶ $C_9 - C_9^{SM} \simeq -1.3 \pm 0.5$

Results (SM Basis)

♦: Standard Model, ×: best-fit point

(light-) red: 68% CL (95% CL) for full dataset

blue solid (blue dashed): 68% CL (95% CL) for selection

post HEP'13 (full)

- SM-like uncertainty reduced by ~ 2 compared to 2012
- SM at the border of 1σ
- flipped-sign barely allowed at 1σ (26% of evidence)
- cannot confirm NP findings
 - ▶ in (C_7, C_9)

[Descotes-Genon et al. 1307.5683]

- $\zeta_{\chi}^{L(R)}$ as in SM(ν -only)
- *p* value: 0.08 (@SM-like sol.)

Results (SM+SM' Basis)

 \bullet : Standard Model, \times : best-fit points,

(light-) red: 68% CL (95% CL) for full dataset

- four solutions A' through D'
 - ▶ A' = SM like, 39% of ev.
 - B' =flipped signs, 41% of ev.
 - ► C', D' suppressed: 5% and 15% of evidence

- for A' (SM-like sol.)
 - ▶ *p* value 0.09
 - $C_9 C_9^{SM} = -0.8^{+0.2}_{-0.5}$
 - ► 2σ deviation from SM
 - $\zeta_{\chi}^{L(R)}$ decrease wrt. SM(ν -only) and SM basis

- model comparison using Bayes factor and model priors
- compare scenarios only at SM-like solution A(')
- adjust priors to contain only A(')
- results
 - ▶ SM(*v*-only) wins over SM basis: odds of 100:1
 - ► SM(ν-only) wins over SM+SM' basis: odds of 22:1
 - ▶ SM+SM' basis wins over SM basis: odds of 4.5:1

Section 5

Phenomenology of $\Lambda_b \to \Lambda \ell^+ \ell^-$

Kinematics (unpolarized Λ_b)

 $\Lambda_b(p,s_b) \to \Lambda(k,s_\Lambda)(\to N(k_1) \pi(k_2)) \,\ell^+(q_1) \,\ell^-(q_2)$

$\vec{z_1} \xrightarrow{\vec{x_1}} \phi_1 \xrightarrow{p} \vec{n} \xrightarrow{\vec{n}} J/\psi \xrightarrow{\mu^+} \phi_2 \xrightarrow{\vec{y_2}} \vec{z_2}$	Momenta $q = q_1 + q_2$ $ar q = q_1 - q_2$
$\begin{array}{c} p & p \\ \theta_2 = \theta_\ell, \ \phi_2 = 0 \\ \theta_1 = \theta_\Lambda, \ \phi_1 = \phi \end{array} \qquad \qquad \theta = 0 \\ \begin{array}{c} \mu = 0 \\ \mu_1 = \theta_\Lambda, \ \phi_1 = \phi \end{array}$	$k = k_1 + k_2$ $\bar{k} = k_1 - k_2$ Holicity Angles (4) where (5)
$4m_\ell^2 \le q^2 \le (M_{\Lambda_b}^2 - M_{\Lambda})^2$ $-1 \le \cos heta_\ell \le 1$ $k^2 = M_{\Lambda}^2$ $-1 \le \cos heta_{\Lambda} \le 1$ $0 \le \phi < 2\pi$	two hel. angles, similar to $B \to K^* \ell^+ \ell^-$ $k \cdot \bar{q} \propto \cos \theta_\ell$ $\bar{k} \cdot q \propto \cos \theta_\Lambda$ $\bar{k} \cdot \bar{q} \sim \cos \phi$ one azimuthal angle ϕ

D. van Dyk (U. Siegen)

 $\Lambda \to N\pi$

Branching Fractions

[PDG '13]

- $\Gamma[\Lambda \rightarrow p\pi^{-}]/\Gamma[\Lambda] = 0.639 \pm 0.005$
- $\Gamma[\Lambda \rightarrow n\pi^0]/\Gamma[\Lambda] = 0.358 \pm 0.005$
- $\hookrightarrow \ \Gamma[\Lambda \to N\pi]/\Gamma[\Lambda] = 0.997 \pm 0.008$

$s ightarrow u \bar{u} d$ Decay

- secondary decay $\Lambda \rightarrow N\pi$ is *weak* decay
- $\hookrightarrow \text{ parity violation}$
 - one parameter

$$lpha=$$
 0.642 \pm 0.013

$\Lambda_b \rightarrow \Lambda$ Hadronic Matrix Elements / Background

Form Factors (for massless leptons)

$$egin{aligned} &\langle \Lambda(k,s_\Lambda) | ar{s} \gamma^\mu b | \Lambda_b(p,s_b)
angle \sim f_\perp^V, f_0^V \ &\langle \Lambda(k,s_\Lambda) | ar{s} \gamma^\mu \gamma_5 b | \Lambda_b(p,s_b)
angle \sim f_\perp^A, f_0^A \ &\langle \Lambda(k,s_\Lambda) | ar{s} i \sigma^{\mu
u} q_
u b | \Lambda_b(p,s_b)
angle \sim f_\perp^T, f_0^T \ &\langle \Lambda(k,s_\Lambda) | ar{s} i \sigma^{\mu
u} q_
u \gamma_5 b | \Lambda_b(p,s_b)
angle \sim f_\perp^{T5}, f_0^{T5} \end{aligned}$$

Non-resonant Background

$$\Lambda_b \to N \pi \ell^+ \ell^-$$

- supressed by small CKM matrix element: $\propto V_{tb}V_{td}^* \ll V_{tb}V_{ts}^*$
- Λ: very narrow peak

D. van Dyk (U. Siegen)

Form Factor Relations

Relations

• leading in $1/m_b$ expansion

$$f_{\perp}^{T(T5)} \sim \kappa f_{\perp}^{V(A)} \qquad \qquad f_{0}^{T(T5)} \sim \kappa \frac{m_{b}^{2}}{q^{2}} f_{0}^{V(A)}$$

universality of transversity amplitudes, compare $ar{B}
ightarrow ar{\mathcal{K}}^*$ FFs

• next-to-leading order in $1/m_b$

$$f_0^{T(T5)} \sim \kappa f_0^{V(A)} + \sum a_n \chi_n(q^2)$$

 $\chi_n(q^2)$: subleading Isgur-Wise functions

Impact on Amplitudes

$$A_0 \propto C_9 + rac{m_b^2}{q^2} C_7 \qquad \delta A = O\left(rac{C_7 \Lambda_{ extsf{QCD}}}{C_9 m_b}
ight) = O\left(1\%
ight)$$

D. van Dyk (U. Siegen)

Universal Short-Distance Structure

up to corrections $\mathcal{C}_7/\mathcal{C}_9 imes \Lambda/m_b$

$$\begin{aligned} A_{\perp_{1}}^{L(R)} &= -2NC_{+}^{L(R)}f_{\perp}^{V}\sqrt{s_{-}} & A_{\parallel_{1}}^{L(R)} &= +2NC_{-}^{L(R)}f_{\perp}^{A}\sqrt{s_{+}} \\ A_{\perp_{0}}^{L(R)} &= +\sqrt{2}NC_{+}^{L(R)}f_{0}^{V}\frac{M_{\Lambda_{b}}+M_{\Lambda}}{\sqrt{q^{2}}}\sqrt{s_{-}} & A_{\parallel_{0}}^{L(R)} &= -\sqrt{2}NC_{-}^{L(R)}f_{0}^{A}\frac{M_{\Lambda_{b}}-M_{\Lambda}}{\sqrt{q^{2}}}\sqrt{s_{+}} \end{aligned}$$

 $s_{\pm}(q^2)$: kinematic functions

$$C_{+}^{L(R)} = \left((\mathcal{C}_{9} + \mathcal{C}_{9'}) + \frac{m_{b}^{2}}{q^{2}} (\mathcal{C}_{7} + \mathcal{C}_{7'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10'}) \right)$$
$$C_{-}^{L(R)} = \left((\mathcal{C}_{9} - \mathcal{C}_{9'}) + \frac{m_{b}^{2}}{q^{2}} (\mathcal{C}_{7} - \mathcal{C}_{7'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10'}) \right)$$

D. van Dyk (U. Siegen)

Angular Distribution

General Case

$$\frac{8\pi}{3} \frac{\mathsf{d}^4 \Gamma}{\mathsf{d} q^2 \,\mathsf{d} \cos \theta_\ell \,\mathsf{d} \cos \theta_\Lambda \,\mathsf{d} \phi} = \mathcal{K}(q^2, \cos \theta_\ell, \sin \theta_\ell, \phi)$$

$$\begin{split} & \mathcal{K} = \left(K_{1ss} \sin^2 \theta_{\ell} + K_{1cc} \cos^2 \theta_{\ell} + K_{1sc} \sin \theta_{\ell} \cos \theta_{\ell} + K_{1s} \sin \theta_{\ell} + K_{1c} \cos \theta_{\ell} \right) \\ & + \left(K_{2ss} \sin^2 \theta_{\ell} + K_{2cc} \cos^2 \theta_{\ell} + K_{2sc} \sin \theta_{\ell} \cos \theta_{\ell} + K_{2s} \sin \theta_{\ell} + K_{2c} \cos \theta_{\ell} \right) \cos \theta_{\Lambda} \\ & + \left(K_{3ss} \sin^2 \theta_{\ell} + K_{3cc} \cos^2 \theta_{\ell} + K_{3sc} \sin \theta_{\ell} \cos \theta_{\ell} + K_{3s} \sin \theta_{\ell} + K_{3c} \cos \theta_{\ell} \right) \sin \theta_{\Lambda} \cos \phi \\ & + \left(K_{4ss} \sin^2 \theta_{\ell} + K_{4cc} \cos^2 \theta_{\ell} + K_{4sc} \sin \theta_{\ell} \cos \theta_{\ell} + K_{4s} \sin \theta_{\ell} + K_{4c} \cos \theta_{\ell} \right) \sin \theta_{\Lambda} \sin \phi \end{split}$$

With SM-like and Chirality-flipped Operators

$$K_{1sc} = K_{1s} = K_{2sc} = K_{2s} = K_{3ss} = K_{3cc} = K_{3c} = K_{4ss} = K_{4sc} = 0$$

D. van Dyk (U. Siegen)

Observables

Differential Decay Width

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = K_{1cc} + 2K_{1ss}$$

Forward-Backward Asymmetries

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}A^{\ell}_{\mathsf{FB}} = \frac{3}{2}K_{1c} \qquad \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}A^{\Lambda}_{\mathsf{FB}} = \frac{1}{2}\left(K_{2cc} + 2K_{2ss}\right) \qquad \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}A^{\ell\Lambda}_{\mathsf{FB}} = \frac{1}{4}K_{2c}$$

Chirality-flipped Operators

two new combinations of Wilson coefficients: ρ_3^{\pm} , $\rho 4$ complementary to ρ_1^{\pm} , $\rho_2!$

SM basis (no chirality-flipped operators)

$$A_{\mathsf{FB}}^{\ell} \sim \frac{\rho_2}{\rho_1} \qquad \qquad A_{\mathsf{FB}}^{\Lambda} \sim \alpha \qquad \qquad A_{\mathsf{FB}}^{\ell\Lambda} \sim \alpha \frac{\rho_2}{\rho_1}$$

D. van Dyk (U. Siegen)