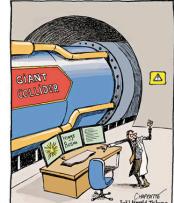
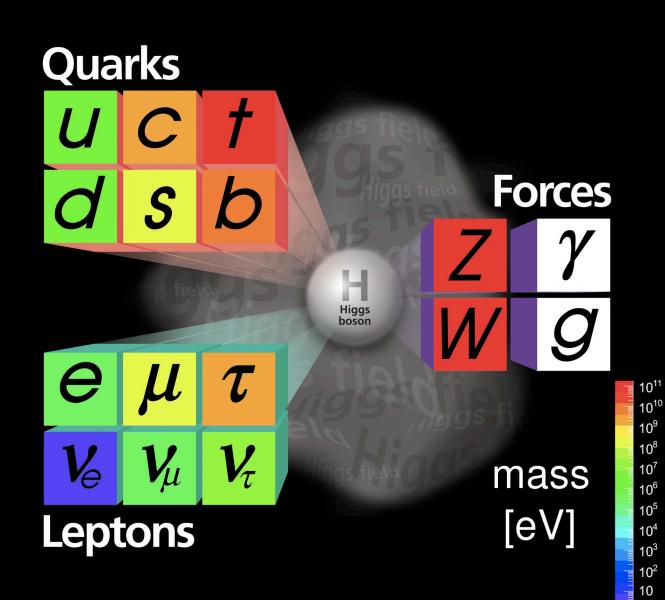


Search for the Higgs Boson of the Standard Model at the LHC

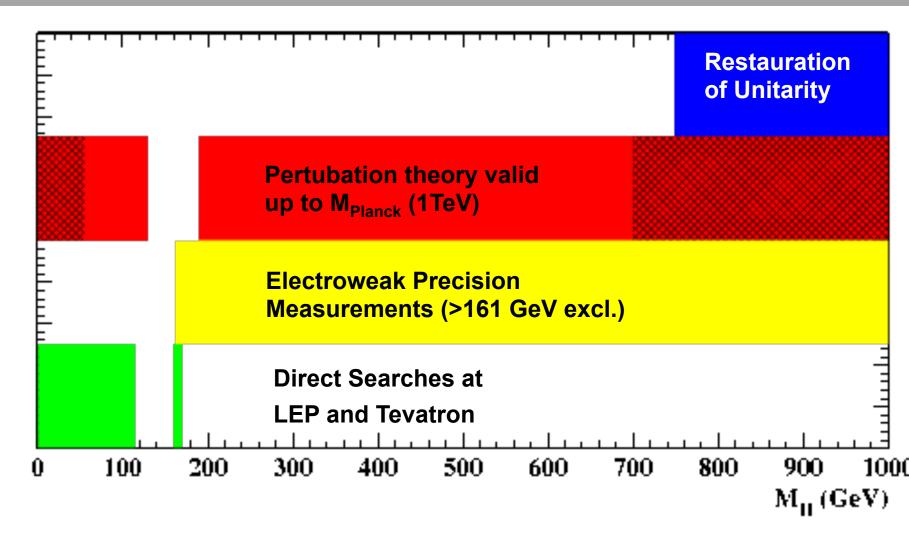


Markus Schumacher Neckarzimmern, 22 February 2012


ATLAS

Collisions That Changed The World

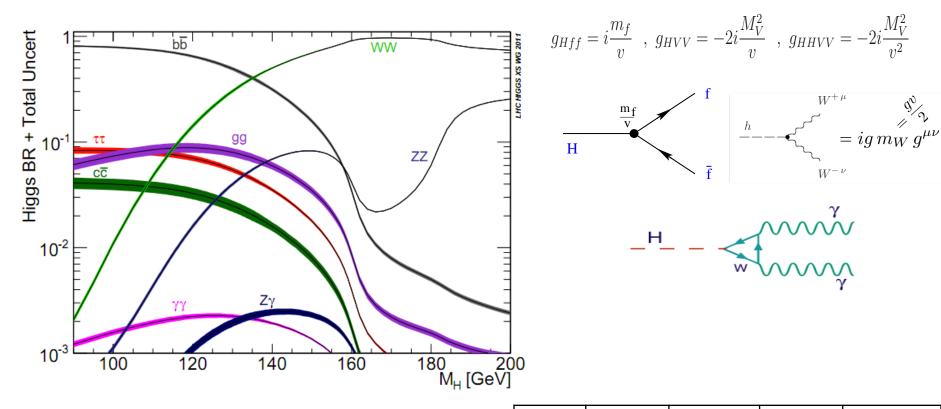
Without the Higgs Boson the SM is Incomplete


in the SM the complete profile of the Higgs is known if we specify its mass

the Higgs boson mass is the last unknown parameter of the SM

whether a Higgs boson is realised in nature is unclear

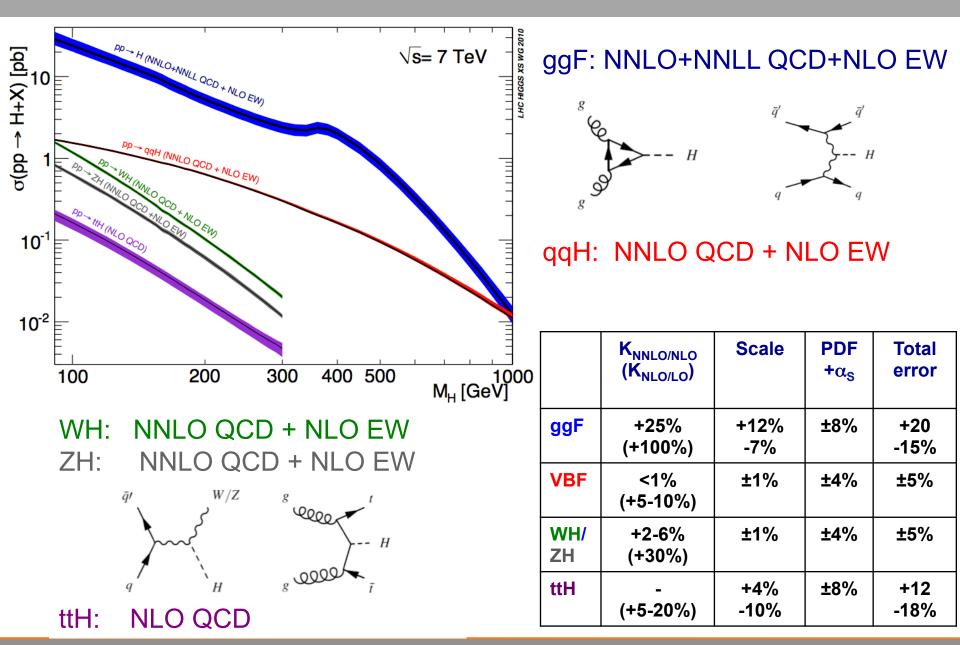
Search for SM Higgs Boson at LHC


Knowledge About the Higgs Boson Mass Before LHC

the Standard Model prefers a light Higgs boson

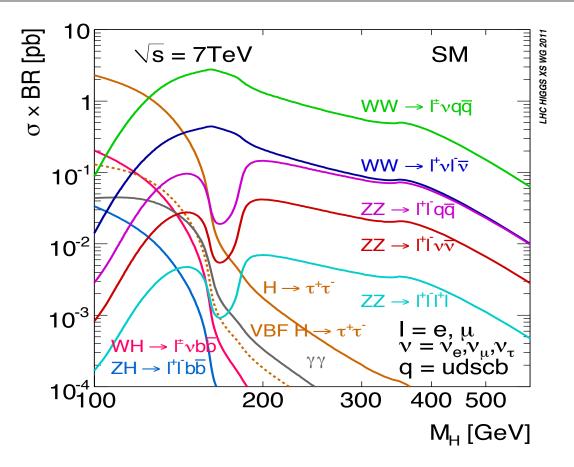
Search for SM Higgs Boson at LHC

Higgs Boson Decay: Branching Ratios



huge common effort by theorists and experimentalists to compile and agree on central values and uncertainties (LHC Higgs Cross Section WG)

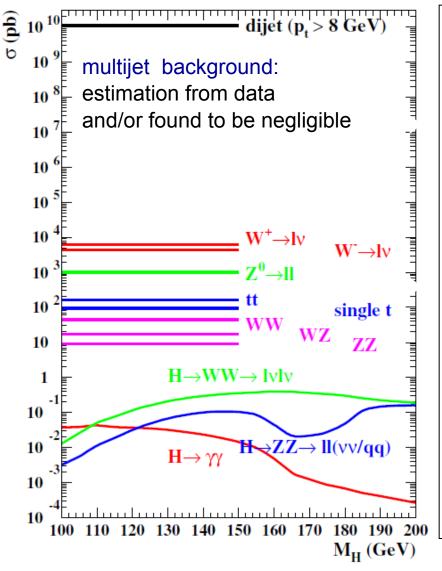
МН	MH Decay		PU	Total	
120 GeV			±2.5%	±5.4%	
	H→bb	±1.3%	±1.5%	±2.8%	
	Н→π	±3.6%	±2.5%	±6.1%	
150 GeV	H→WW	±0.3%	±0.6%	±0.9%	
	H→ZZ	±0.3%	±0.6%	±0.9%	


Search for SM Higgs Boson at LHC

Higgs Boson Production at LHC

Search for SM Higgs Boson at LHC

Signal Rates in Accessible Channels


Events expected to be produced with L=1 fb⁻¹

m _H , GeV	ww→lvlv	zz→4I	γγ
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04

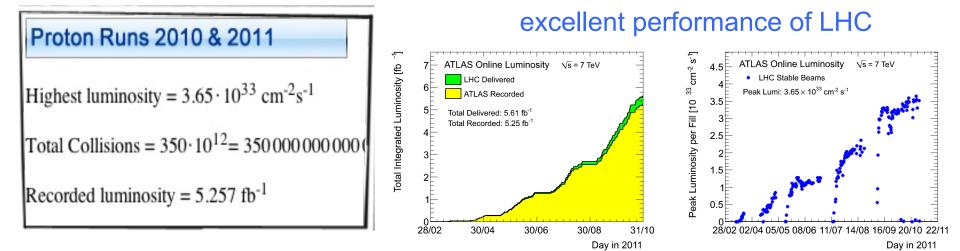
trigger issues and overhelming backgrounds forbid to search in highest rate channels ggf and VBF with $H \rightarrow bb$ and $H \rightarrow VV \rightarrow 4q$

Search for SM Higgs Boson at LHC

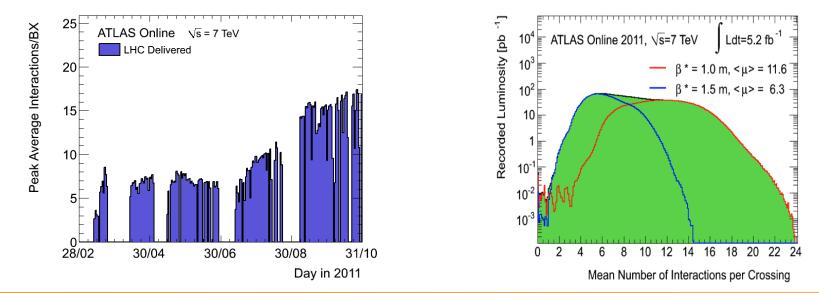
Reminder of the Challenge and Tasks

choose production times decay, which can be triggered and has sufficient rate

 ⇒ identification and reconstruction of physics objects in final state


suppress irreducible backgrounds
 → find discriminating variables
 e.g. topological cuts, mass of H candidate

evaluate backgrounds if possible with as less input from simulation as possible → data-driven

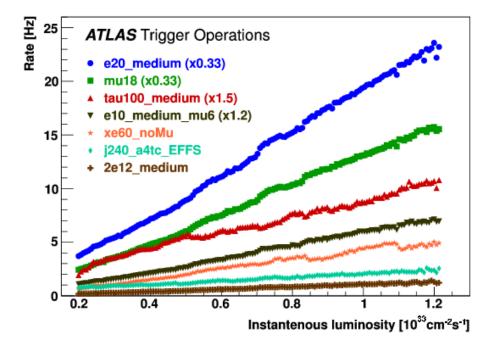

investigate systematic uncertainties

look at findings and interprete results

Luminosity and Pile-up

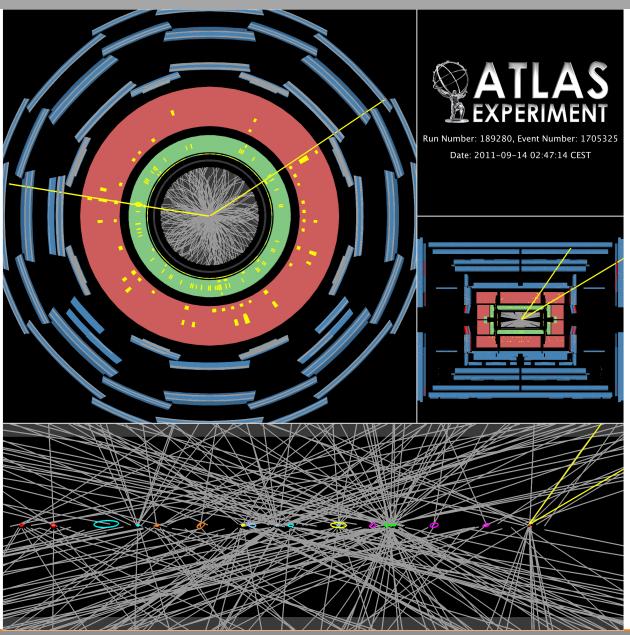
the price to pay: up to 25 overlayed minimum bias interactions

Search for SM Higgs Boson at LHC


Event Selection: 1st Step is the Trigger

The trigger is a function of :

reduce collision rate of 20 MHz to recording rate of few 100 Hz


Event data & Apparatus Physics channels & Parameters

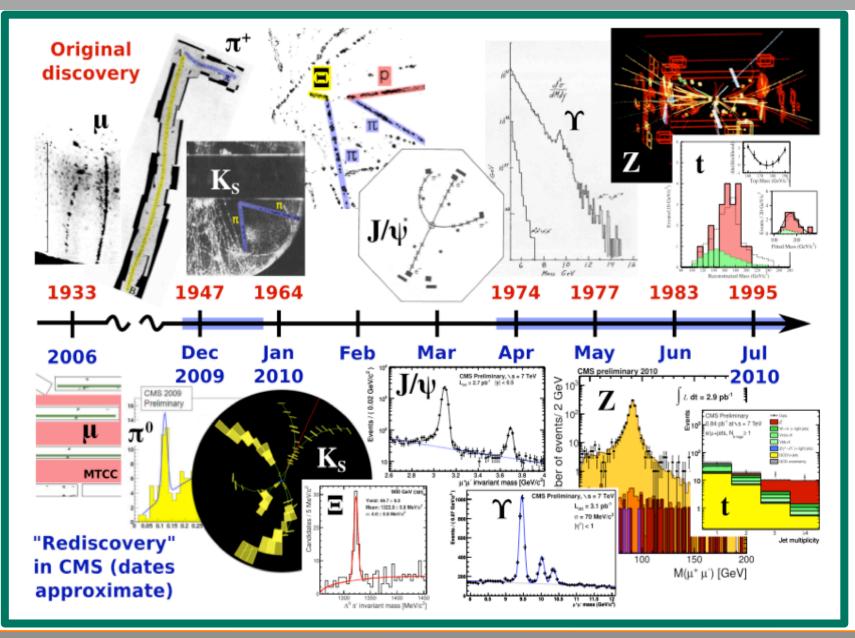
Higgs searches mostly rely on lepton and photon triggers

increase in peak luminosity
→ increase in trigger rate
→ increase in p_t thresholds and use di-object triggers

The Challenge of Pile-Up

detoriates in principle:

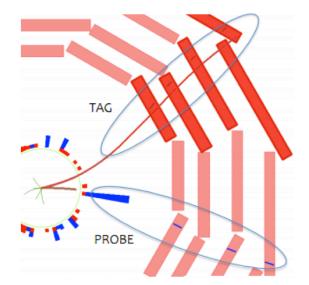
- identification(ID) efficiencies
- isolation efficiencies
- jet energy and missing transverse energy MET resolutions


tools to recover:

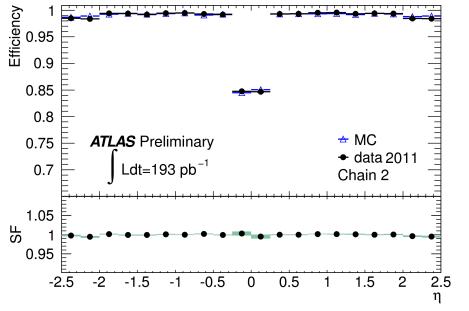
- develop robust ID algorithms
- assign tracks and jets to primary vertex
- correct for pile-up contribution on event by event basis

M. Schumacher

Search for SM Higgs Boson at LHC


Rediscovery of the SM in 2010

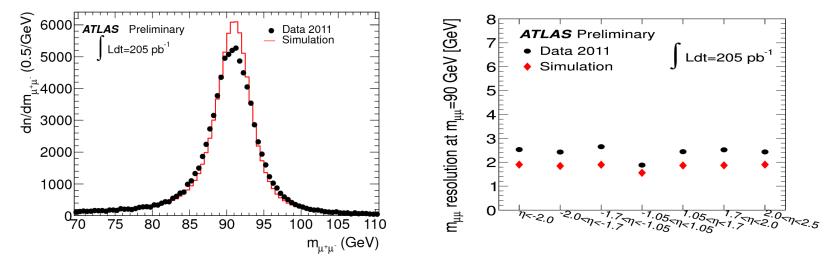
M. Schumacher


Search for SM Higgs Boson at LHC

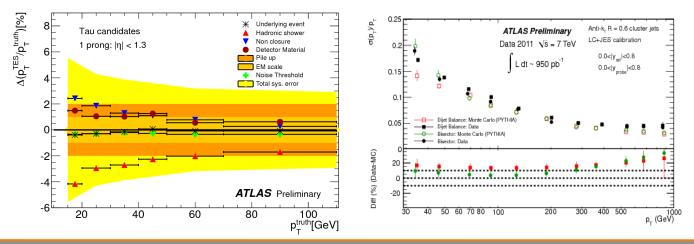
Understanding of Detector: Example Muons

select samples with one tight muon and one track Z and J/ $\Psi \rightarrow \mu_{tight} \mu_{candidate}$ ("tag"&"probe") \rightarrow determine efficiencies in data and simulation

ε_{μ=} ε_{reco/(track)} * ε_{ID/reco} *
ε_{ISO/ID} * ε_{trigger1leg/ISO}


scale factor = data/simulation

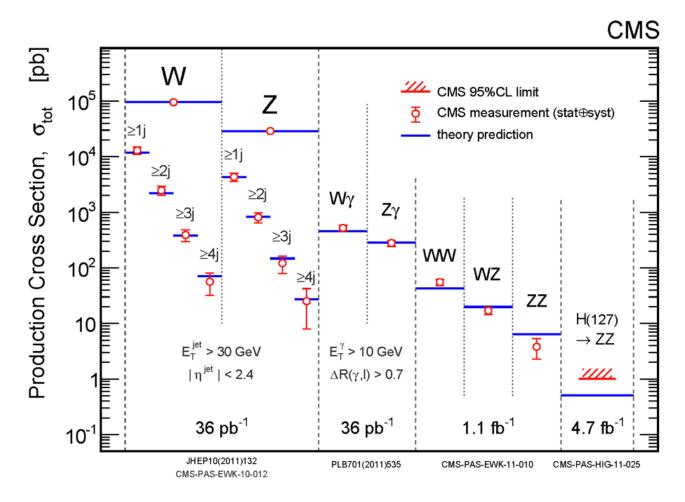
- correct simulation
- use uncertainty to derive systematic uncertainty on event yield


same procedure for electron, taus, flavour tagging,

Understanding of Detector: Example Muons (2)

momentum scale and resolution from $Z \rightarrow \mu\mu$ peak position and width

correct simulation for difference use uncertainty of correction to determine uncertainty on event yield


in similar way for electron, tau leptons, jets, b-jets, missing trans. energy

M. Schumacher

Search for SM Higgs Boson at LHC

Understanding the Background Processes

In ~ 5 fb⁻¹ after selection cuts: ~30M W $\rightarrow \mu(e)v$, ~3M Z $\rightarrow \mu\mu$,ee, ~60k top pairs

Excellent agreement between theory prediction and measurement due to very precise calculations and good understanding of detector performance

M. Schumacher

Search for SM Higgs Boson at LHC

Estimating the Background

a) from simulation only $N^B = \epsilon_{\text{reco,ID,isolation,cuts}} * A * \sigma_{\text{theo}} * L$

- ϵ = efficiency (reco., ID, isolation, topological cuts)
- A = acceptance (phase space cuts)
- $\sigma_{\text{theo}}\text{=}$ inclusive cross section, mostly from theory
- L = integrated luminosity

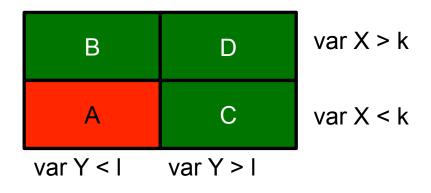
uncertainties: detector performance related $\epsilon_{reco,ID,isolation}$ vary efficiency scale factor, E resolutions and scales

acceptance A: compare event generators, choice of α s, renormalisation μ_r and factorisation μ_r scales PDF sets

 σ_{theo} : evaluate uncertainty from μ_{f} , μ_{r} , α_{s} , PDF sets

L: ~4%

for signal process: only way to estimate uncertainties on expected event yield and shape of final discriminating observable

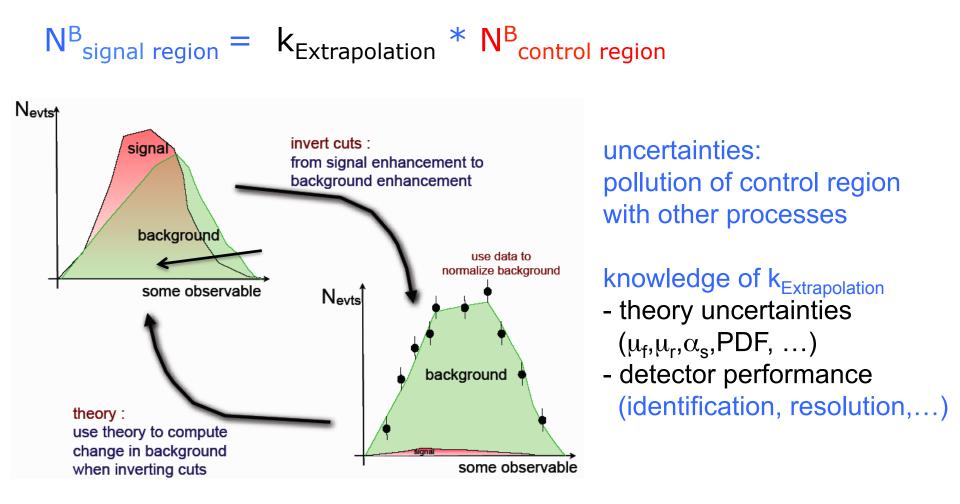

M. Schumacher

Estimating the Background (2)

b) almost completely data driven

- use parametric model for description of mass distribution, fixed in side band uncertainties from model choice, statistics in sidebands, ...
- select signal free control sample in data to obtain shape and to large extend also normalisation from data

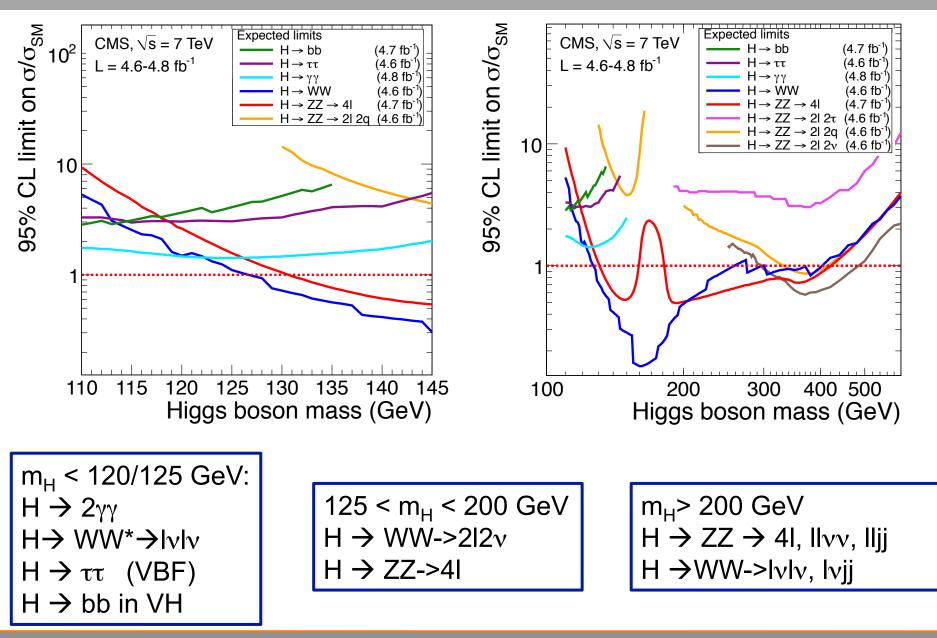
uncertainties from selection of control sample, pollution of other processes, agreement of shape in signal and control region, ...



"ABCD-method" assumptions:

- observables X and Y uncorrelated
- control regions B,C,D dominated by
- background to be estimated
- shape of obervable of interest same in A and B or A and C or all regions

prediction in signal region A: $n_A(m) = B/D n_C(m)$

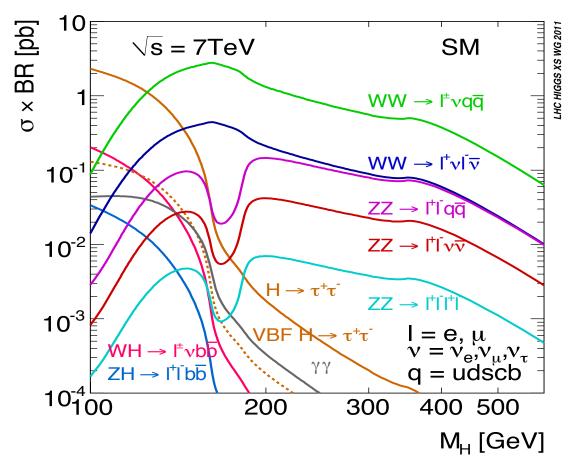

c) normalisation from control region in data (inversion of some selection criteria) ratio of signal/control region and shape of observable from simulation

most common method, called "data-driven" but still ... input from simulation

M. Schumacher

Sensitive Search Channels in Different Mass Ranges

M. Schumacher


Search for SM Higgs Boson at LHC

Higgs Boson Search Channels

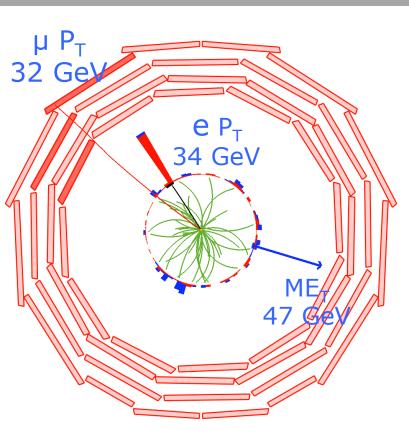
	ATLAS			CMS		
channel	Lumi	Mass Range	Sub chan.	Lumi	Mass range	Sub chan.
Н→үү	4.9	110-150	9	4.8	110-150	5
Η→ττ	1.1	100-150	4	4.6	110-145	9
H→bb	1.1	110-130	4	4.7	110-135	5
H→WW→lvlv	2.1	110-300	6	4.6	110-600	5
H→WW→lvqq	1.1	240-600	2			-
H→ZZ→4I	4.8	110-600	3	4.7	110-600	3
H→ZZ→2l2τ				4.7	190-600	8
H→ZZ→2l2v	2.1	200-600	2	4.6	250-600	2
H→ZZ→2l2q	2.1	200-600	4	4.6	130-164 225-600	6

CMS: 42 subchannels, all published with full 2011 data set ATLAS: 34+n subchannels, hopefully all finalized for Moriond 2012

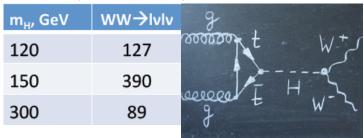
High Signal Rates → Early Sensitivity

rule of thumb:

you need to expect 3 signal events after full selection to exclude such a hypothesis


Events expected to be produced with L=1 fb⁻¹

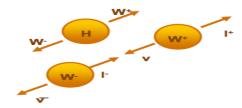
m _H , GeV	ww→lvlv	zz→4I	٧Y
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04


 $H \rightarrow WW \rightarrow I_V I_V$ second highest rate for $M_H > 150$ GeV, earliest sensitivity at LHC

H→WW→Ivqq suffers from large W+jets background ony considered for M_H>240 GeV in ATLAS

CMS: $H \rightarrow WW \rightarrow I_V I_V$

Events expected to be produced with L=1 fb⁻¹



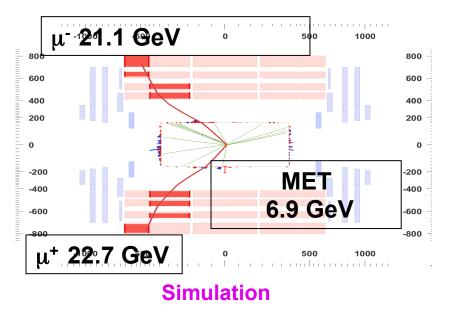
No mass reconstruction

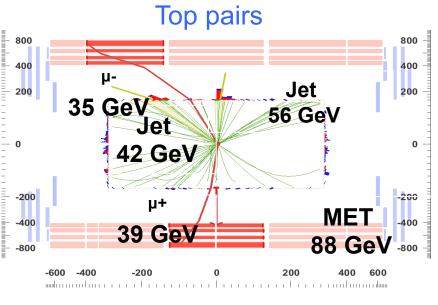
 \rightarrow signal extraction from event counting

Signature: (ee, eµ,µµ considered)

- 2 isolated, high p_T leptons with small opening angle $\Delta \phi$

- Large Missing Transverse Energy MET

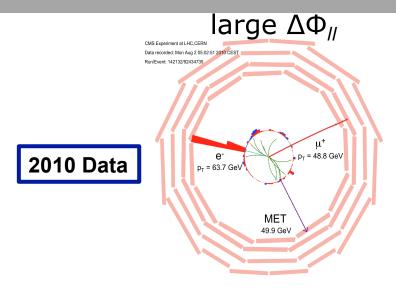

Analysis optimized for 3 exclusive jet multiplicities (0,1,2 jets) and for different Higgs mass hypotheses


- p_T^{-1} , M_{\parallel} , M_T , $\Delta \phi$ discriminating variables
- VBF selections for the 2-jet case

For 0,1 jet bin: also multivariate technique

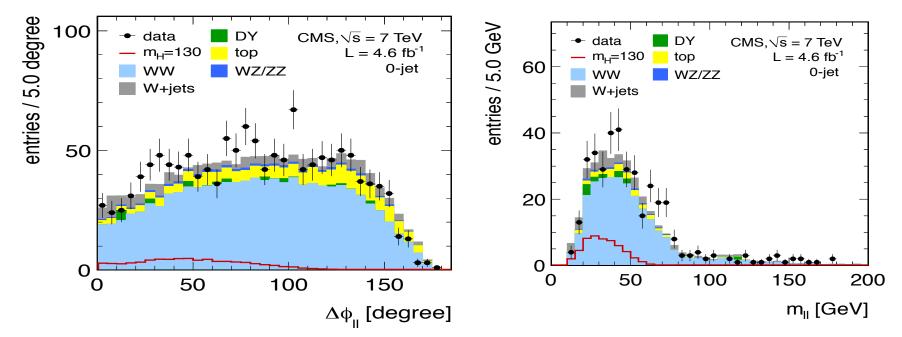
WW \rightarrow Iv Iv Preselection

Drell-Yan


Simulation

veto on Z: |M_{II}-M_Z|>30 GeV MET requirement apply top-tagger (soft muon, etc.) veto tagged events

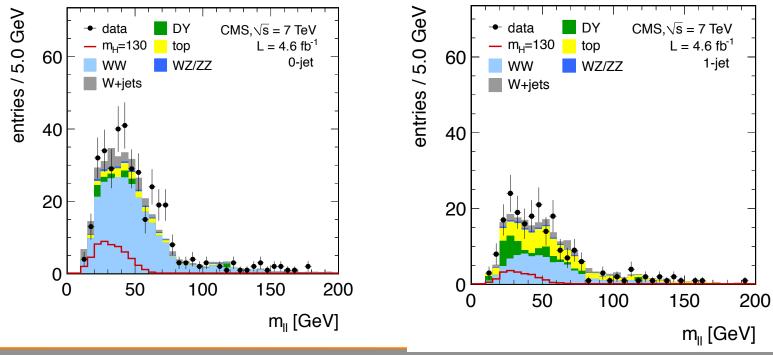
against WZ,ZZ backgrounds: veto 3rd lepton


at this stage 1359/909/703 events in 0,1,2 jet topologies signal efficiency (M_H =130 GeV) = 5.5%

After WW→IvIv Preselection

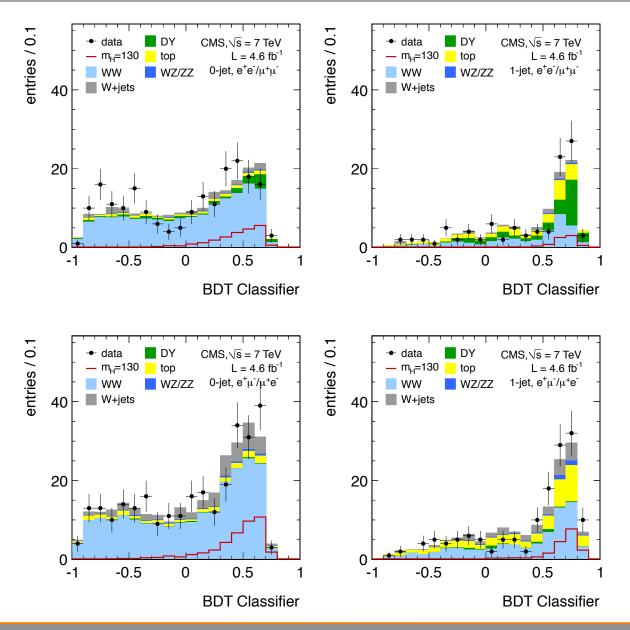
background dominated by WW→IvIv

further jet topology dependent selection



Search for SM Higgs Boson at LHC

Final selection for $H \rightarrow WW \rightarrow I_V I_V$


	1.	11.1.1						
$m_{\rm H}$	data	all bkg.	$pp \rightarrow W^+W^-$	top	W + jets	$WZ + ZZ + W\gamma^{(*)}$	${\rm Z}/\gamma^* ightarrow \ell^+ \ell^-$	${ m H} ightarrow { m W}^+ { m W}^-$
				0-	jet category			
120	136	136.7 ± 12.7	100.3 ± 7.2	6.7 ± 1.0	14.7 ± 4.7	6.1 ± 1.5	8.8 ± 9.2	15.7 ± 0.8
130	193	191.5 ± 14.0	142.2 ± 10.0	10.6 ± 1.6	17.6 ± 5.5	7.4 ± 1.6	13.7 ± 7.8	45.2 ± 2.1
160	111	101.7 ± 6.8	82.6 ± 5.4	10.5 ± 1.4	3.0 ± 1.5	2.2 ± 0.4	3.4 ± 3.4	122.9 ± 5.6
200	159	140.8 ± 6.8	108.2 ± 4.5	23.3 ± 3.1	3.4 ± 1.5	3.2 ± 0.3	2.7 ± 3.7	48.8 ± 2.2
400	109	110.8 ± 5.8	59.8 ± 2.7	35.9 ± 4.7	5.5 ± 1.8	9.3 ± 1.1	0.2 ± 0.2	17.5 ± 0.8
	1-jet category							
120	72	59.5 ± 5.9	27.0 ± 4.7	17.2 ± 1.0	5.4 ± 2.4	3.2 ± 0.6	6.6 ± 2.3	6.5 ± 0.3
130	105	79.9 ± 7.7	38.5 ± 6.6	25.6 ± 1.4	6.5 ± 2.5	4.0 ± 0.6	5.3 ± 2.5	17.6 ± 0.8
160	86	70.8 ± 6.0	33.7 ± 5.5	27.9 ± 1.4	3.2 ± 1.4	1.9 ± 0.3	4.2 ± 1.4	60.2 ± 2.6
200	111	130.8 ± 6.7	49.3 ± 2.2	59.4 ± 2.8	5.2 ± 1.8	2.2 ± 0.1	14.6 ± 5.3	25.8 ± 1.1
400	128	123.6 ± 5.3	44.6 ± 2.2	60.6 ± 2.9	6.2 ± 2.1	3.9 ± 0.5	8.3 ± 3.2	12.2 ± 0.5
	2-jet category							
120	8	11.3 ± 3.6	1.3 ± 0.2	5.5 ± 2.8	0.7 ± 0.6	1.8 ± 1.5	1.9 ± 1.4	1.1 ± 0.1
130	10	13.3 ± 4.0	1.6 ± 0.2	6.5 ± 3.2	0.7 ± 0.6	1.8 ± 1.5	2.7 ± 1.9	2.7 ± 0.2
160	12	15.9 ± 4.6	1.9 ± 0.2	8.4 ± 3.9	1.2 ± 0.8	1.8 ± 1.5	2.7 ± 1.9	12.2 ± 0.7
200	13	17.8 ± 5.0	2.2 ± 0.2	9.4 ± 4.2	1.2 ± 0.8	1.8 ± 1.5	3.2 ± 2.1	8.4 ± 0.5
400	20	23.8 ± 6.4	3.5 ± 0.3	14.1 ± 5.8	1.1 ± 0.8	1.9 ± 1.5	3.3 ± 2.1	2.5 ± 0.1

	l ma ar (lmin			
m _H	$p_{\mathrm{T}}^{\ell,\mathrm{max}}$	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$	$m_{\ell\ell}$	$\Delta \phi_{\ell\ell}$	m_{T}
[GeV]	[GeV]	[GeV]	[GeV]	[°]	[GeV]
	>	>	<	<	[,]
120	20	10 (15)	40	115	[80,120]
130	25	10 (15)	45	90	[80,125]
160	30	25	50	60	[90,160]
200	40	25	90	100	[120,200]
250	55	25	150	140	[120,250]
300	70	25	200	175	[120,300]
400	90	25	300	175	[120,400]

Search for SM Higgs Boson at LHC

$H \rightarrow WW \rightarrow I_V I_V$: Boosted Decision Tree Analysis

no significnt deviation from background expectation observed

M. Schumacher

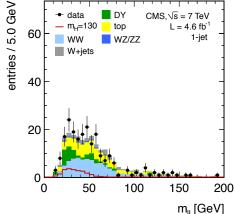
Search for SM Higgs Boson at LHC

H→WW→IvIv Background Estimation

signal region (SR): 2 tight leptons, small m_{\parallel} , veto on top-tagged events

W+jets and multijet with "fake" leptons: Δ_{BG} ~35%

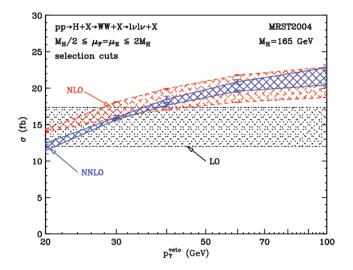
define control region (CR) with 1 tight (t) and 1 loose (I) lepton determine $\epsilon_{I \rightarrow t}$ from independent sample with non-prompt lepton weight events in CR by $\epsilon_{I \rightarrow t}$ / (1- $\epsilon_{I \rightarrow t}$)


top quark production: Δ_{BG} ~10 to 25%

CR= top-tagged events determine $\epsilon_{top-tag}$ from top enriched b-tagged sample SR= CR x (1- $\epsilon_{top-tag}$)/ $\epsilon_{top-tag}$

WW production (for $M_H < 200$ GeV, otherwise from simulation only): $\Delta_{BG} \sim 10\%$ CR= $m_{II} > 100$ GeV SR= k_{MC} CR

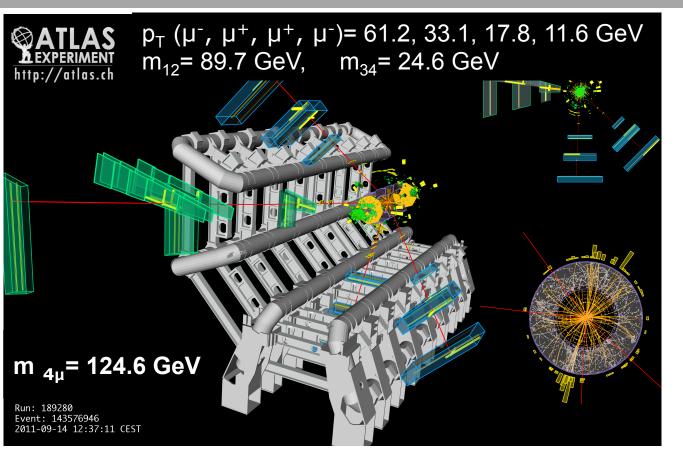
Drell-Yan: $\Delta_{BG} \sim 50\%$ CR = $|m_{\parallel} - M_Z| < 7.5 \text{ GeV}$ subtract non Z backgroundSR = $k_{MC} CR$ from e_{μ} sample


other backgrounds (WZ,ZZ, Wγ) from simulation

H→WW→IvIv Uncertainties

background yield: 15% (stat. uncertainty in CRs, dominated by WW)

signal efficiency: 20% dominated by theory uncertainties


WW + 0 jet:Veto jet of $p_T > 30 \text{ GeV}$ WW + 1 jet:1 jet of $p_T > 30 \text{ GeV}$ WW + 2 jet:2 jet of $p_T > 30 \text{ GeV}$ - VBF like

Theoretically best computation for incl. $\sigma_{total}, \sigma_{\geq 1}, \sigma_{\geq 2}$ $\rightarrow \sigma_0 = \sigma_{total}, \sigma_{\geq 1}, \sigma_1 = \sigma_{\geq 1}, \sigma_{\geq 2}, \sigma_{\geq 2}$

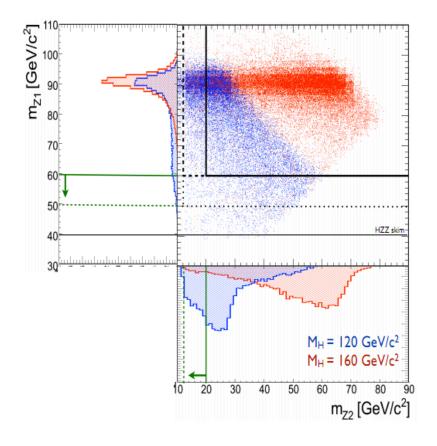
→ correlated uncertainties on jet bin cross sections with size between 10 and 30%

δσ _{≥0}	+12-7%
δσ _{≥1}	±20%
δσ _{≥2}	±30% (NLO) ±70% (LO)

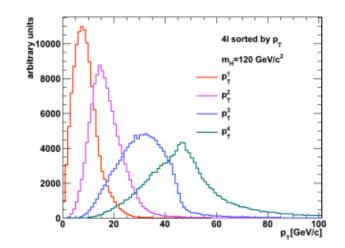
Still the golden channel: $H \rightarrow ZZ^{(*)} \rightarrow 4I$

Events expected to be produced with L=1 fb⁻¹

m _H , GeV	ww→lvlv	zz→4I	γγ
120	127	1.5	43
150	390	4.6	16
300	89	3.8	0.04


Very tiny cross section \rightarrow thus high efficiency must be conserved

Very clean final state: 4 high pt leptons, isolated from primary vertex


M. Schumacher

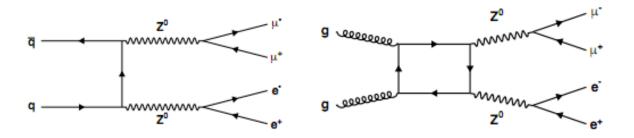
Search for SM Higgs Boson at LHC

M_{Z1} versus M_{Z2} and Lepton p_t -spectra

lowering the p_t-thresholds increases signifcantly the sensitivity to low mass Higgs boson

challenge: lower the p_t-threshold as much as possible but retain good separation and understanding

Trigger: 2e 12 GeV or 1e 20 to 22 GeV or 2μ 10 GeV or 1 μ 18 GeV Offline: $4 \mid p_t > 7 \text{ GeV}$, $2 \mid \text{with pt} > 20 \text{ GeV}$ Z1: $|M_{12}-M_7| < 15 \text{ GeV}$ $m_{4\ell}$ (GeV) <120 130140 150160 165180 190 m_{34} threshold (GeV) 1530 30 20253540 50Z2: $M_{min} < M_{34} < 115 \text{ GeV}$


Neckarzimmern, 22 February 2012

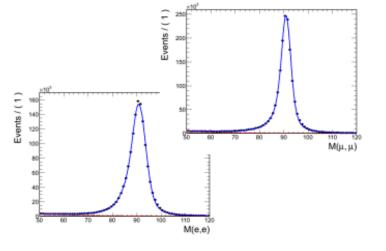
>200

60

Irreducible Background processes

Irreducible background: $qq \rightarrow ZZ^{(*)} \rightarrow 4I gg \rightarrow ZZ^{(*)} \rightarrow 4I$

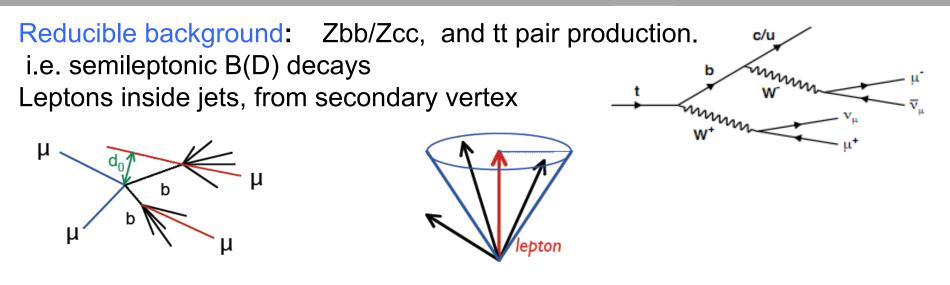
precise reconstruction of M_Z and $M_{\rm 4l}$


estimate from MC simulation (uncertainties as for signal):

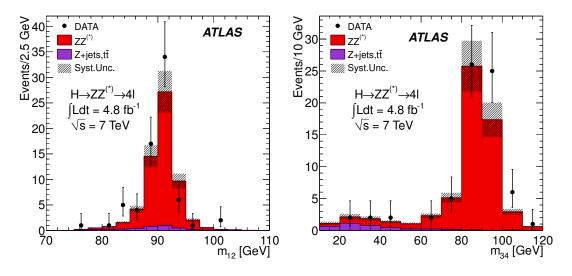
$$\left(\sigma_{NLO}^{q\bar{q}\rightarrow ZZ\rightarrow 4l}\times \varepsilon_{MC}^{q\bar{q}\rightarrow ZZ\rightarrow 4l}+\sigma_{LO}^{gg\rightarrow ZZ\rightarrow 4l}\times \varepsilon_{MC}^{gg\rightarrow ZZ\rightarrow 4l}\right)\times L$$

crosscheck: normalisation to $Z \rightarrow II$ rate in data

$$\frac{\sigma_{_{NLO}}^{q\bar{q}\rightarrow ZZ\rightarrow 4l}+\sigma_{_{LO}}^{gg\rightarrow ZZ\rightarrow 4l}}{\sigma_{_{NNLO}}^{q\bar{q}\rightarrow Z\rightarrow 2l}}\times\frac{\varepsilon_{_{MC}}^{ZZ\rightarrow 4l}}{\varepsilon_{_{MC}}^{Z\rightarrow 2l}}\times N_{data}^{Z\rightarrow ll}$$

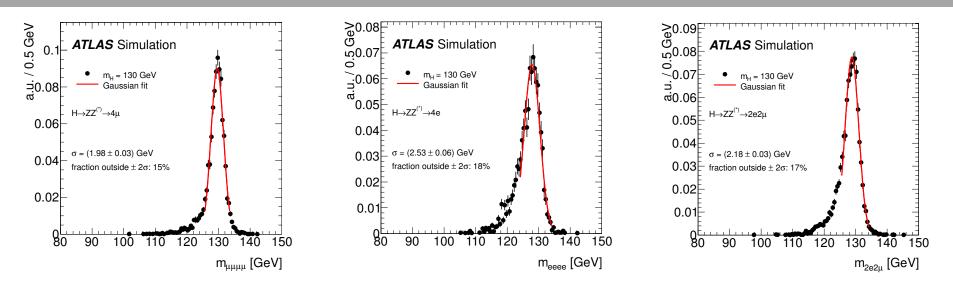

Iuminosity uncert. cancel in the ratio the TH uncertainties ~ 10% (PDF4LHC prescription + QCD scales)

M. Schumacher


Search for SM Higgs Boson at LHC

Reducible Background Processes

Instrumental background:


QCD and Z/W+light jets. Events with jets faking leptons (mostly electrons)

M. Schumacher

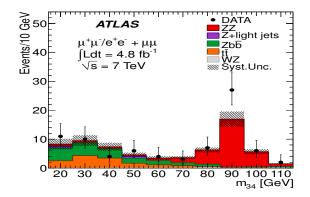
Search for SM Higgs Boson at LHC

Signal: Mass Resolution and Efficiencies

Signal:

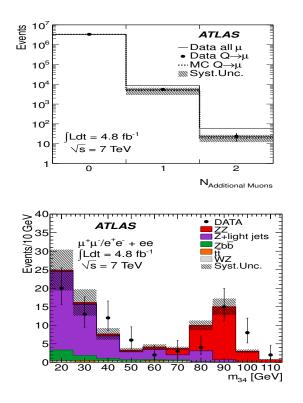
Efficiency: $4e/4\mu/2e2\mu$ 14/27/18% at 130 GeV (45/60/52% at 360 GeV) Mass resolution: 2.5/2.0/2.2 GeV for $4e/4\mu/2e2\mu$ at 130 geV For M_H>350 width dominated by natural width of Higgs boson

Systematic uncertainties:


 μ efficiency: 0.2% e efficiency: 2 to 8%

- e energy resolution: 0.6% on M_{41} in 4e channel
- + theory uncertainties from total σ and modeling of signal in simulation

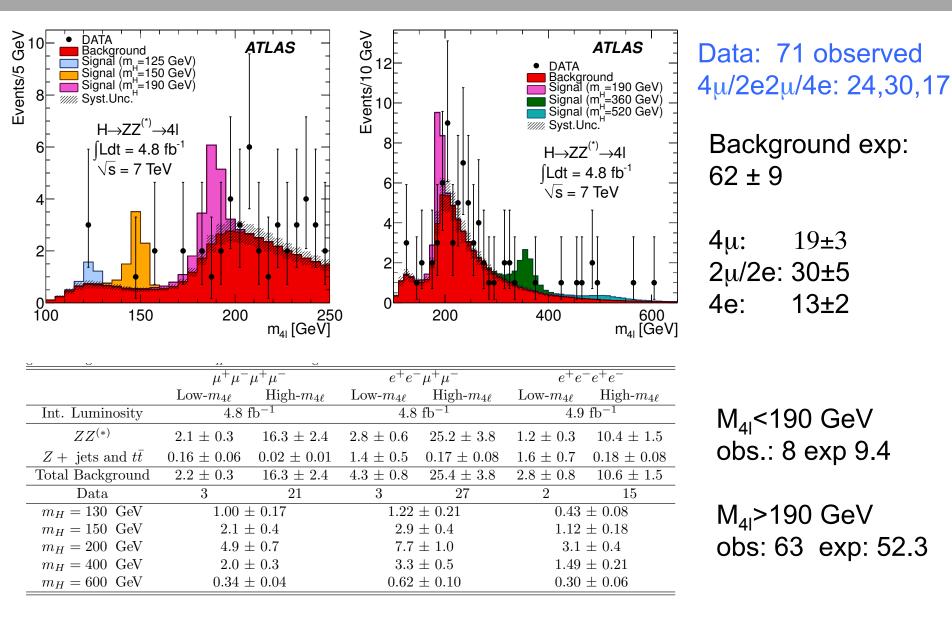
Estimation of Reducible Backgrounds


Z+jets control sample: full selection w/o isolation and impact parameter requirements on leptons building m₃₄ pair

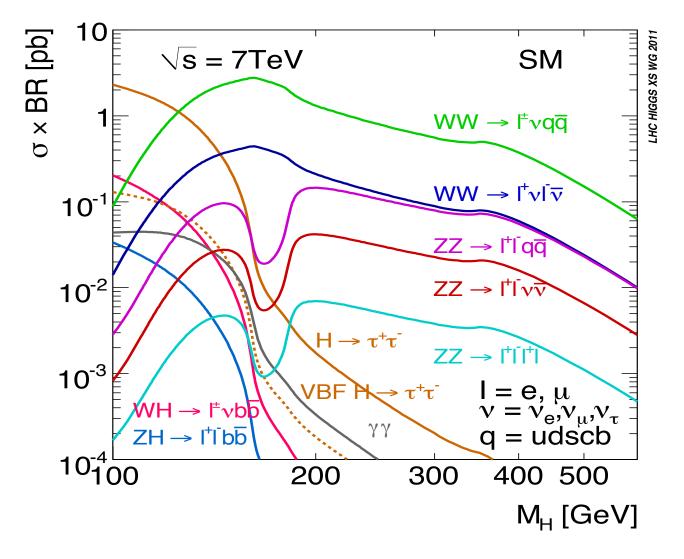
 $Z+\mu\mu$: dominated by Zbb and Zcc (subtract Z+light jets by applying fake rate)

Z+ee: dominated by Z+ light jets

for both extrapolate from CR to SR uncertainty 45 and 40%



top pairs: control region M_{12} from $e\mu + M_{34}$ from same flavour confirms normalisation from simulation


M. Schumacher

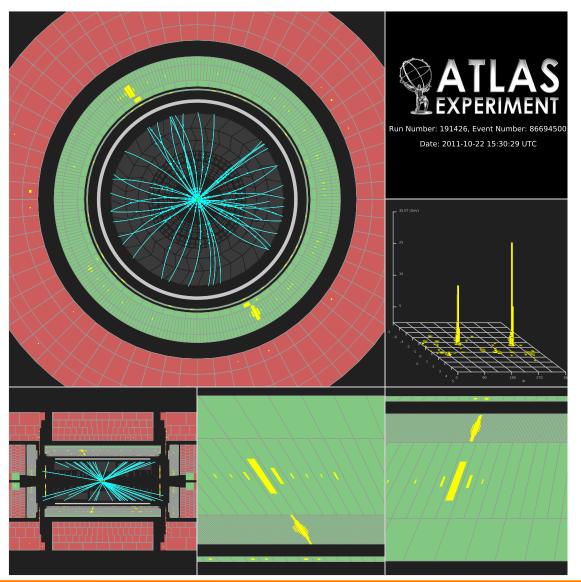
Search for SM Higgs Boson at LHC

Results: H→ZZ→4I

Very Low Mass Channels (M_H<130 GeV)

 $H \rightarrow \gamma \gamma$ $H \rightarrow \tau \tau$ (mainly VBF) $VH, H \rightarrow bb$

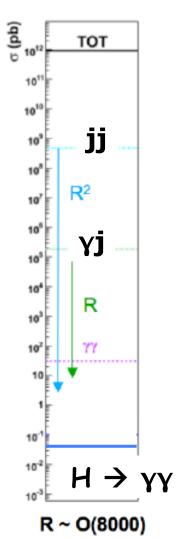
Search for SM Higgs Boson at LHC


$H \rightarrow 2$ Photons (M_H from 110 to 150 GeV)

signal topology: 2 isolated photons

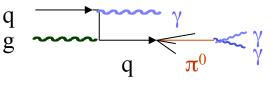
ATLAS

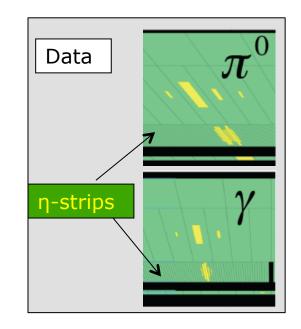
Trigger: $2 \gamma E_T > 20 \text{ GeV}$


Offline: $E_T(1) > 40 GeV$ $E_T(2) > 25 GeV$

M. Schumacher

Search for SM Higgs Boson at LHC

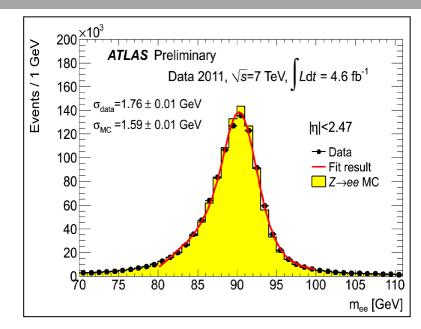

H→ 2 Photons: Background Suppression



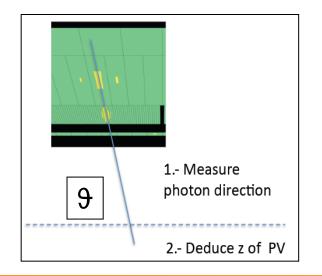
 \rightarrow discriminate photon from jet ID efficiency = 65 to 95% $(E_{T} 25 \text{ to } 80 \text{ GeV})$ rejection of jets $R \sim O(8000)$ isolation: E< 5 GeV in Δ R=0.3 $\epsilon^2 = 87\%$ irreducible: yy q

reducible: γ-jet, 2jet-jet

 \rightarrow excellent reconstruction of M_{$\gamma\gamma$}

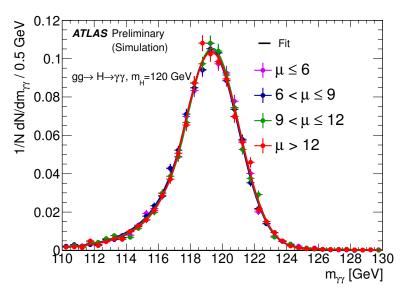


H \rightarrow 2 γ : Mass Reconstruction m²_{YY}= 2 E₁ E₂ (1-cos α)


energy E

from Z, $J/\psi \rightarrow ee$, $W \rightarrow ev$ data +MC:

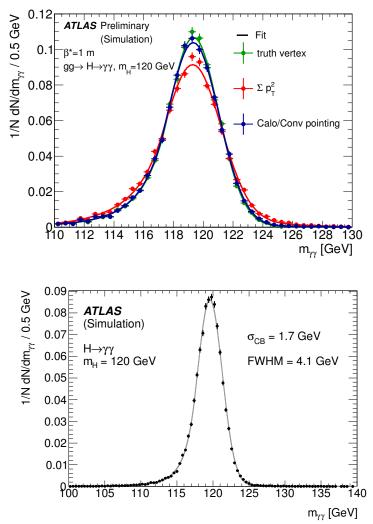
- energy scale at m_Z known to ~ 0.5%
- linearity better than 1%
- "uniformity" (constant term of resolution)
 1% (barrel) -1.7 % (end-cap)


opening angle $\boldsymbol{\alpha}$

select primary vertex (~10/BX in 6 cm) via
a) non converted photons:
intersect of photon direction from
1st and 2nd sampling with beam line
b) converted photons:
impact in calo. and conversion vertex

H \rightarrow 2 γ : Mass Reconstruction m²_{YY}= 2 E₁ E₂ (1-cos α)

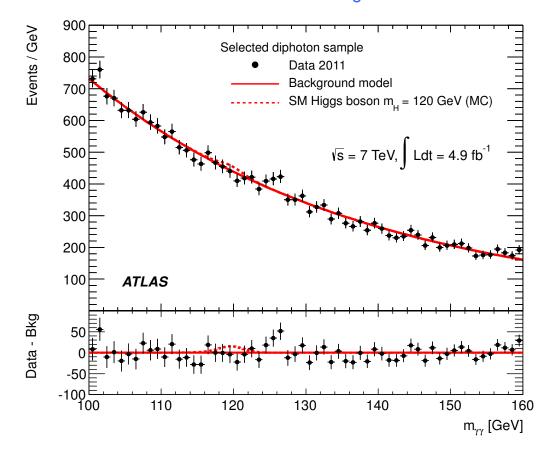
robust against pileup



mass resolution 1.7 GeV 80% in +-1.4 σ window

$$N \cdot \begin{cases} e^{-t^2/2} & \text{if } t > -\alpha_{\text{CB}} \\ \left(\frac{n_{\text{CB}}}{\alpha_{\text{CB}}}\right)^{n_{\text{CB}}} \cdot e^{-\alpha_{\text{CB}}^2/2} \cdot \left(\frac{n_{\text{CB}}}{\alpha_{\text{CB}}} - \alpha_{\text{CB}} - t\right)^{-n_{\text{CB}}} & \text{otherwise} \end{cases}$$

$$t = (m_{\gamma\gamma} - m_H - \delta_{\mathrm{m}_{\mathrm{H}}}) / \sigma_{\mathrm{CB}}$$


contribution to resolution from α negligible

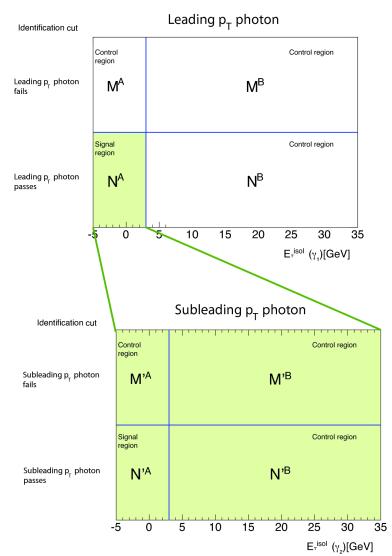
Search for SM Higgs Boson at LHC

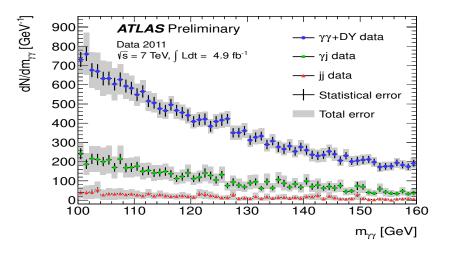
H→ 2 Photons: Inclusive Mass Spectrum

inclusive mass spectrum ($\varepsilon_{Signal} \sim 35\%$) 22489 events

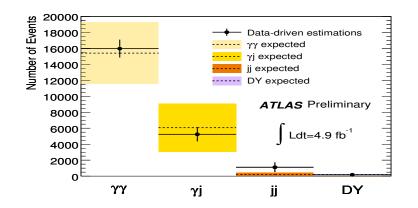
m _H [GeV]	110	115	120	125	130	135	140	145	150
$\sigma \times BR$ [fb]	45	44	43	40	36	32	27	22	16
Signal events	69	72	72	69	65	58	50	41	31
Efficiency [%]	31	33	34	35	37	37	38	38	39

background shape described by a single exponential (no simulation used) (checked with double exponential and 2nd order Bernstein polynom)


syst. uncertainty: difference in 4 GeV window between exp. and MC prediction

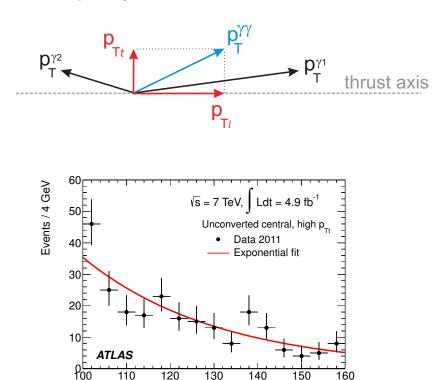

M. Schumacher

Search for SM Higgs Boson at LHC

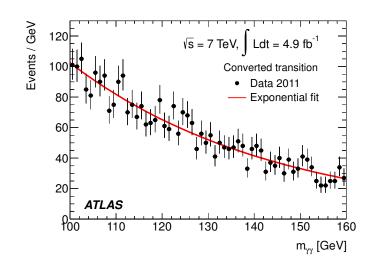

$H \rightarrow 2$ Photons: Sample Composition

from double-sideband "A=B*C/D" method

	$\gamma\gamma$	γj	jj	Drell-Yan
Events	16000 ± 1100	5230 ± 890	1130 ± 600	165 ± 8
Fraction	$(71\pm5)\%$	$(23\pm4)\%$	$(5\pm3)\%$	$(0.7\pm 0.1)\%$



Search for SM Higgs Boson at LHC

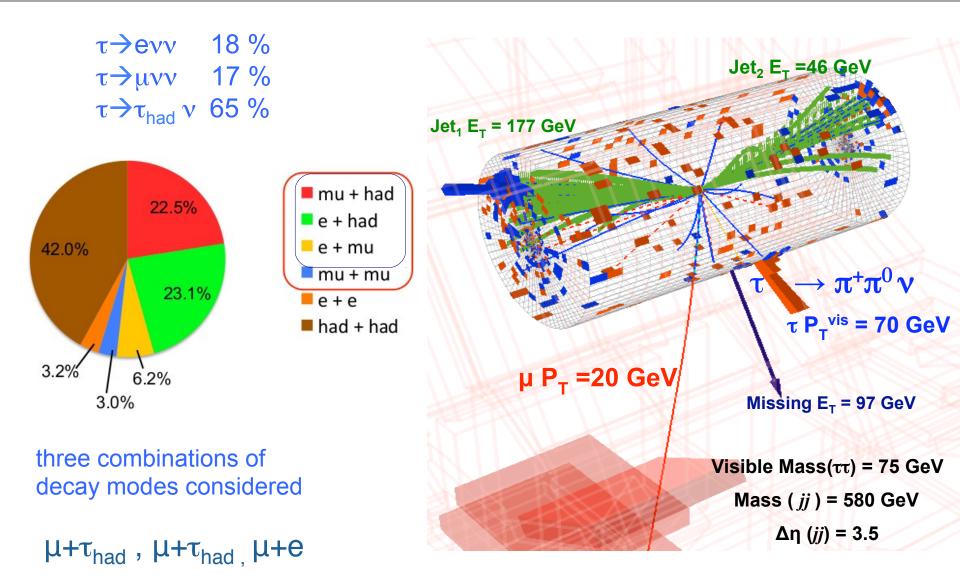

ATLAS: $H \rightarrow 2$ Photons - Analysis Optimisation

enhance signal/background ratio and mass resolution by splitting in 9 categories:

converted/ non converted central / foward/ transition low high $p_T^{\gamma\gamma} > (\leq)40$ GeV

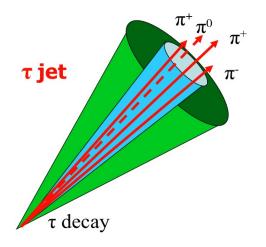
		1	
Category	$\sigma_{\rm CB}$ FWHM	$N_{\rm S}$ $N_{\rm D}$	S/B
Unconverted central, low $p_{\rm Tt}$	1.4 3.4	9.1 1763	0.05
Unconverted central, high $p_{\rm T}$	1.4 3.3	2.6 235	0.11
Unconverted rest, low $p_{\rm Tt}$	1.7 4.0	$17.7 \ \ 6234$	0.02
Unconverted rest, high $p_{\rm Tt}$	1.6 3.9	4.7 1006	0.04
Converted central, low $p_{\rm Tt}$	1.6 3.9	6.0 1318	0.03
Converted central, high $p_{\rm Tt}$	1.5 3.6	1.7 184	0.08
Converted rest, low $p_{\rm Tt}$	2.0	17.0 7311	0.01
Converted rest, high $p_{\rm Tt}$	1.9 4.5	4.8 1072	0.03
Converted transition	2.3 5.9	8.5 3366	0.01
All categories	1.7 4.1	72.1 22489	0.02

Search for SM Higgs Boson at LHC


m_{vv} [GeV]

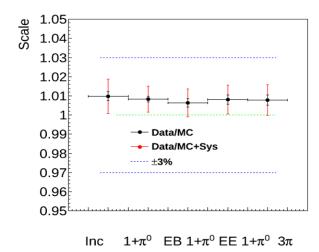
ATLAS H \rightarrow 2 γ : Systematic Uncertainties

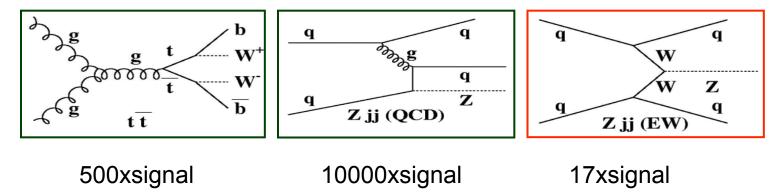
Signal event yield	
Photon reconstruction and identification	$\pm 11\%$
Effect of pileup on photon identification	$\pm 4\%$
Isolation cut efficiency	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Higgs boson cross section (scales)	$^{+12}_{-8}\%$
Higgs boson cross section (PDF+ α_s)	$\pm 8\%$
Higgs boson $p_{\rm T}$ modeling	$\pm 1\%$
Luminosity	$\pm 3.9\%$
Signal mass resolution	
Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Effect of pileup on energy resolution	$\pm 3\%$
Photon angular resolution	$\pm 1\%$
Signal mass position	
Photon energy scale	$\pm 0.7~{\rm GeV}$
Signal category migration	
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$
Conversion rate	$\pm 4.5\%$
Background model	$\pm(0.1-7.9)$ events


Category	Events
Unconverted central, low $p_{\rm Tt}$	± 2.8
Unconverted central, high $p_{\rm Tt}$	± 0.1
Unconverted rest, low $p_{\rm Tt}$	± 5.9
Unconverted rest, high $p_{\rm Tt}$	± 0.7
Converted central, low $p_{\rm Tt}$	± 1.8
Converted central, high $p_{\rm Tt}$	± 0.1
Converted rest, low $p_{\rm Tt}$	± 7.9
Converted rest, high $p_{\rm Tt}$	± 0.8
Converted transition	± 1.7

CMS: SM H→ττ with 4.6 fb⁻¹ (110-145 GeV)

Search for SM Higgs Boson at LHC


CMS: SM H→ττ with 4.6 fb⁻¹ (110-145GeV)

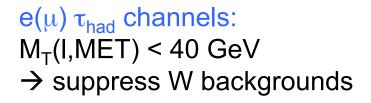

select τ decay products

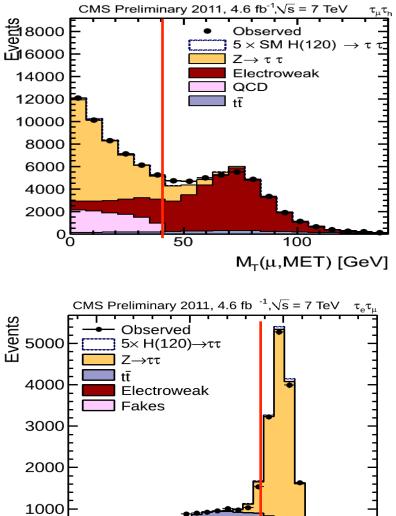
- τ_{had} energy scale Δ =3%

- τ_{had} efficiency $\Delta = 6\%$

backgrounds: reducible ------→ irreducible vor VBF

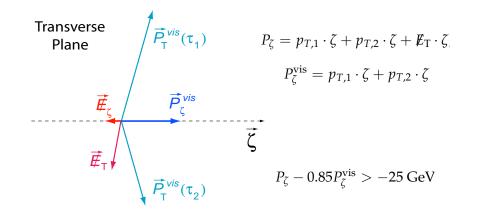
kinematics, colour flow,...

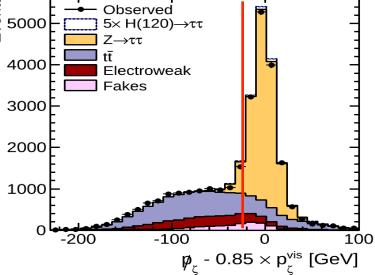

mass reconstruction


M. Schumacher

Searches for Higgs Bosons at LHC (Part II)

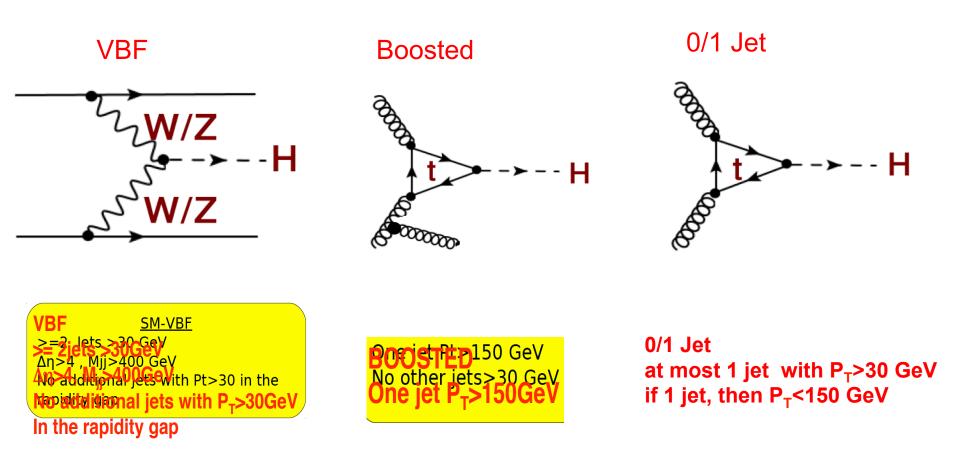
YETI 2012. Durham, 10 January 2012

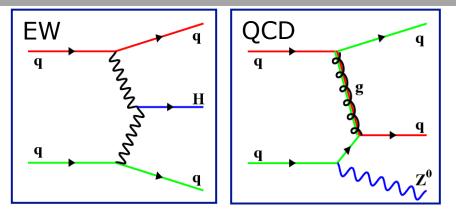

CMS: SM $H \rightarrow \tau \tau$ examples of topological cuts



eµ channel:

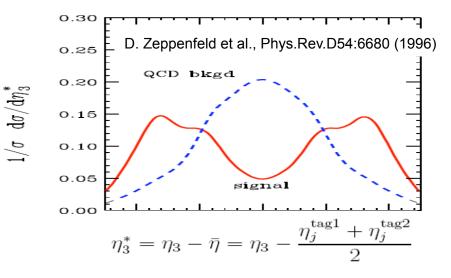
projection on bisector of tau decays

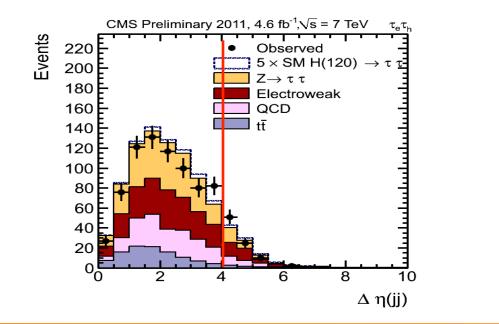


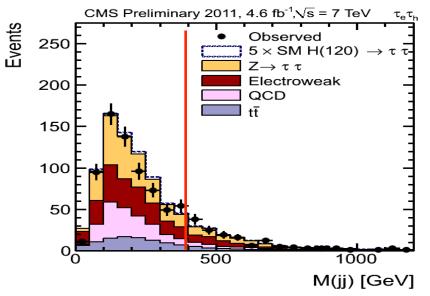

Search for SM Higgs Boson at LHC

CMS: SM $H \rightarrow \tau\tau$ categories

- optimize sensitivity by splitting in jet/topology categories
- → past has shown: VBF has highest sensitivity but all production modes considered: gg→H, VBF, W(Z)H, ttH

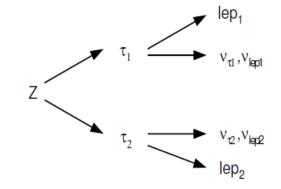



CMS: SM H $\rightarrow \tau\tau$ VBF selection



exploit different colour flow

veto on 3rd jet btw. tagging jets


Search for SM Higgs Boson at LHC

Mass Reconstruction: Missing Mass Calculator

Elagin, Murat, Pranko, Safonov, Nucl.Instrum.Meth. A654 (2011) 481

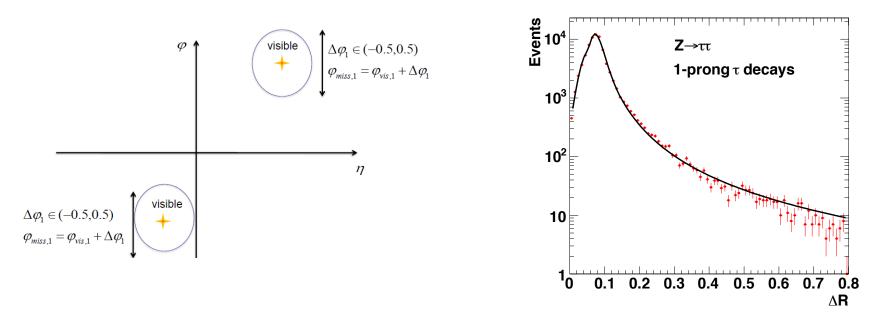
idea: also fully reconstruct τ 4-vectors \rightarrow invariant di-tau mass assumption: MET only from neutrinos

 $\tau \tau \rightarrow$ had had 2ν : 6 unknowns 2x (px,py,pz) $\tau \tau \rightarrow$ lep had 3ν : 7 unknowns: 2 x(Px,Py,Pz) + m_{$\nu\nu$} $\tau \tau \rightarrow$ lep lep 4ν : 8 unknowns: 2 x(Px,Py,Pz) + 2x m_{$\nu\nu}$ </sub>

four kinematic constraints (non linear equations)

2 MET_{x/y} from vs only $2 m_{\tau}$ constraints

 \rightarrow need to assume 2 to 4 values for neutrino momenta to solve equations

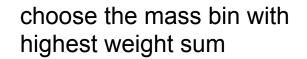

scan phase space and solve equations for each point

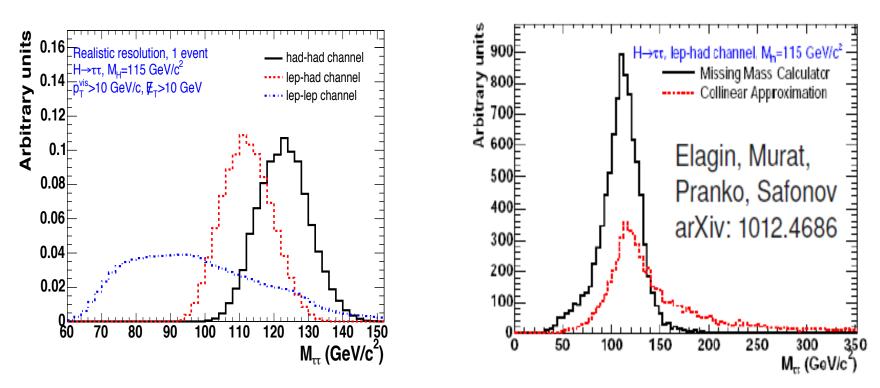
M. Schumacher

Missing Mass Calculator

scan phase space solve equations for each point

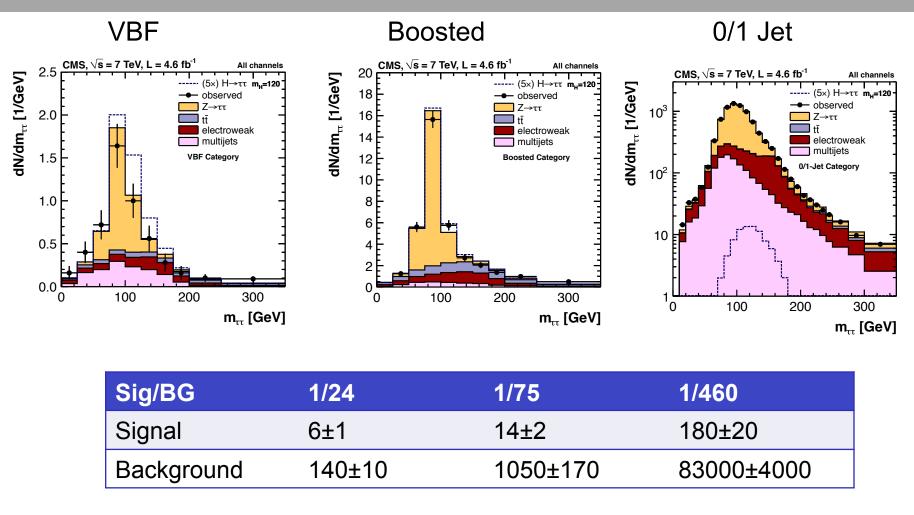
calculate probability for each phasespace point to stem from 2 tau decays


phase space weight = $\mathcal{P}(\Delta R_1, p_{\tau 1}) \times \mathcal{P}(\Delta R_2, p_{\tau 2}) \times \mathcal{P}(\Delta E_{\Gamma_x}) \times \mathcal{P}(\Delta E_{\Gamma_y})$

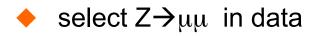

includes weight for MET resolution

$$\mathcal{P}(\not\!\!\!E_{\Gamma_{x,y}}) = \exp\left(-\frac{(\Delta \not\!\!\!\!E_{\Gamma_{x,y}})^2}{2\sigma^2}\right)$$

Missing Mass Calculator


distribution of weighted mass solutions for one event

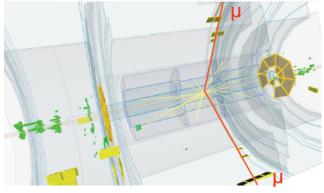
ATLAS and CMS are using a similar method CMS: $\sigma_M/M \sim 21\%$ no detailed comparison for VBF topology btw. collinear mass and MMC

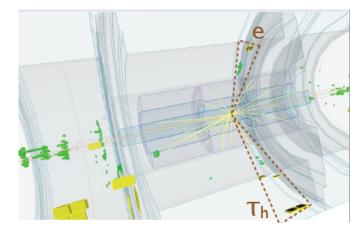

CMS: SM H $\rightarrow \tau\tau$ Mass Distributions and Event Yields

largest background $Z \rightarrow \tau \tau \rightarrow$ estimate from "embedding" W+jets, multijet with fake $\tau s \rightarrow$ use events with same charge sign

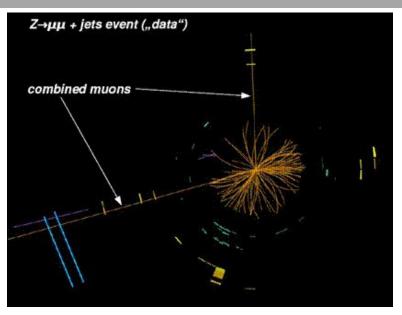
Estimation of $Z \rightarrow \tau \tau$ via "Embedding"

♦ Z→π: Z→µµ same topology in collinear approximation apart from energy deposits of myon and tau lepton decay products BR(H→µµ) negligible → signal free

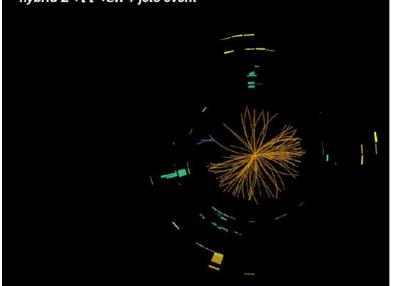

- For the replace μ in data with τ decay from simulation
- re-reconstruct event (e.g. MET)

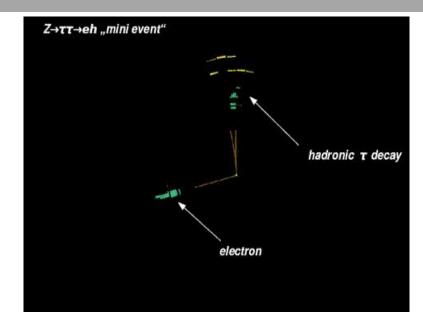

Advantage:

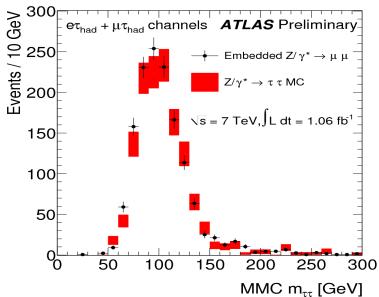
- underlying event
- detector noise


from data itself

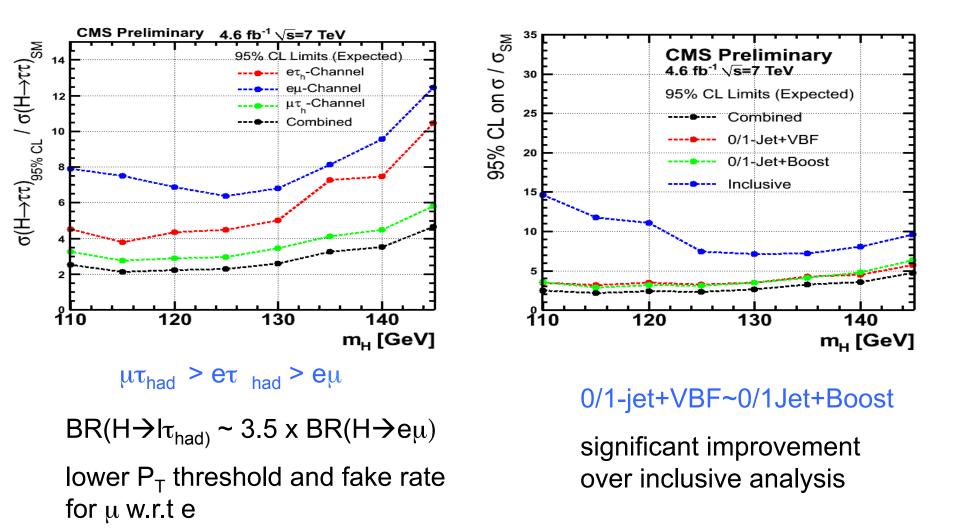
- pile up
- fake MET





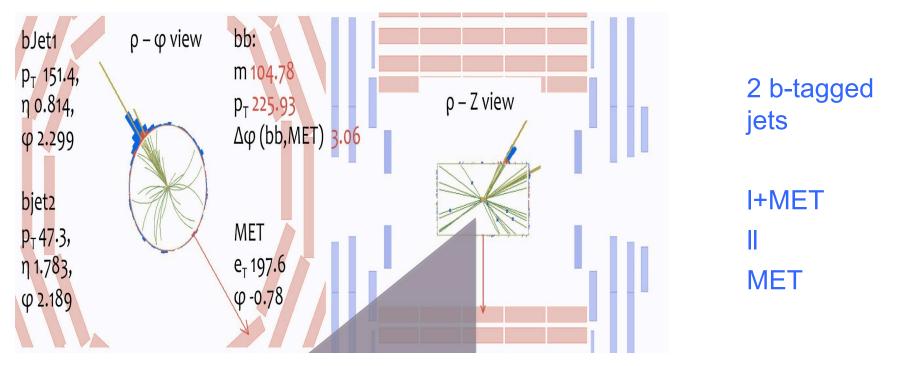

ATLAS: "Embedding" Works Well

hybrid Z→TT→eh + jets event



M. Schumacher

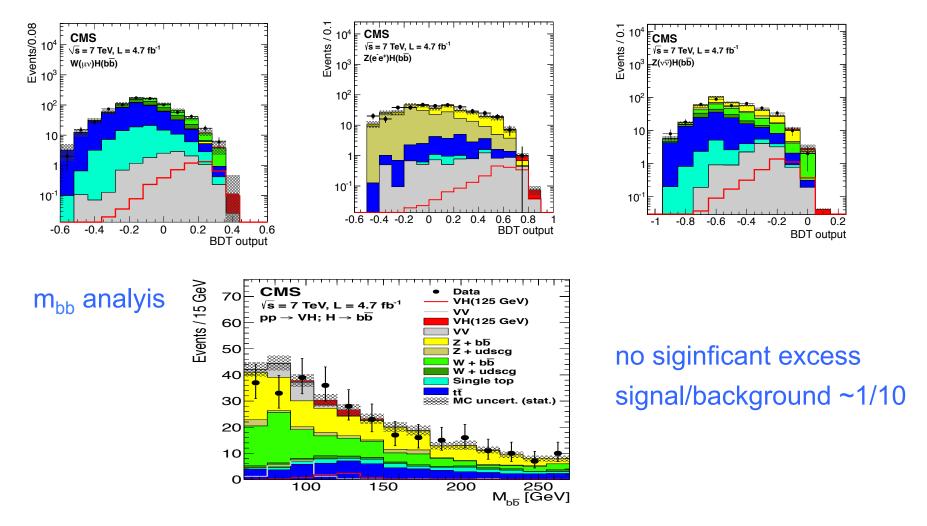
Search for SM Higgs Boson at LHC


CMS: SM H $\rightarrow \tau\tau$ Expected Sensitivity

beware: December expected limits, now ~15% worse (source unknown)

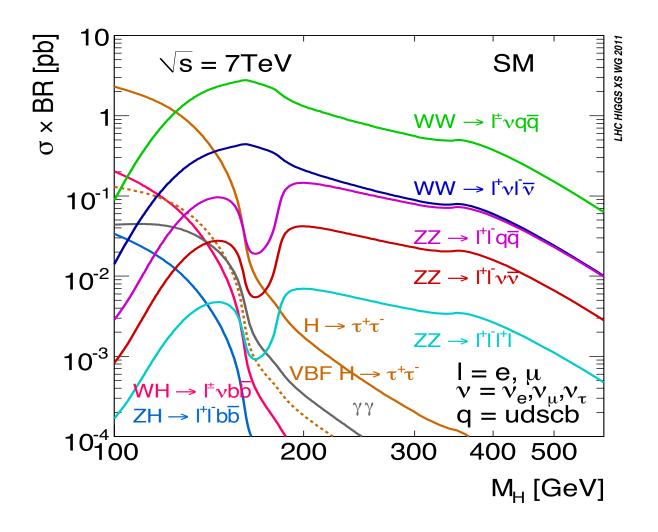
CMS: $H \rightarrow bb$ with 4.7 fb⁻¹ (110 - 135 GeV)

gluon fusion and VBF not usable, overwhelmed by backgrounds \rightarrow associated production with weak gauge boson

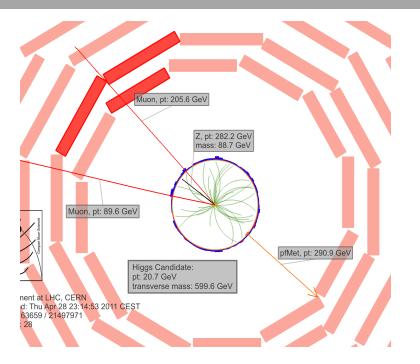


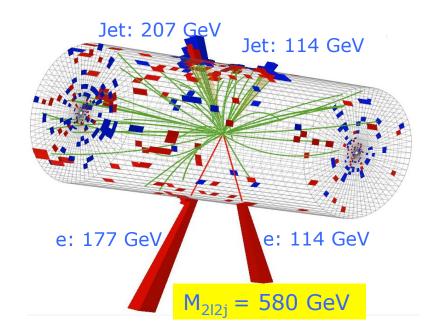
use topologies with large boost of Higgs (100 to 160 GeV on P^T_{H/V})
→ better signal-to-background ratio by supression of top backgrounds
mass resolution ~10%
5 subchannels: WH→Iv bb ZH→II bb ZH→vv bb (I=e,μ)

M. Schumacher


CMS: $H \rightarrow bb$ with 4.7 fb-1 (100 – 160 GeV)

boosted decision tree analysis


backgrounds from various control regions: uncertainty 10 to 35%

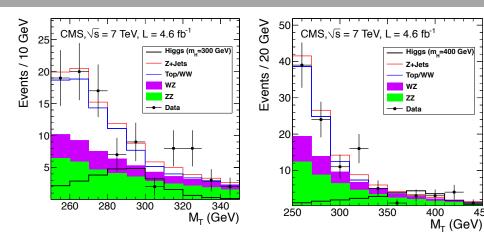

Additional high mass channels

$ZZ \rightarrow IIqq ZZ \rightarrow IIvv ZZ \rightarrow II\tau\tau WW \rightarrow Ivqq$

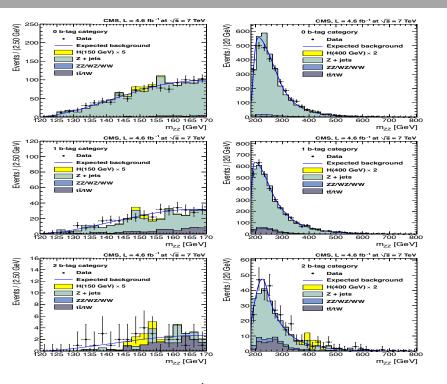
$H \rightarrow ZZ \rightarrow II vv$ and $Z \rightarrow II qq$

 $M_{II} = M_Z \pm 15 \text{ GeV } P_T^{II} > 55 \text{ GeV}$ MET, b-veto, veto 3rd lepton

final discriminant: transverse mass


$$M_{\rm T}^2 = \left(\sqrt{p_{\rm T}(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_{\rm T}^{\rm miss^2} + M(\ell\ell)^2}\right)^2 - (\vec{p}_{\rm T}(\ell\ell) + \vec{E}_{\rm T}^{\rm miss})^2$$

one or two Z candidates, no MET separate in 0,1,2 bjets,


final discriminat M_{2l2j} mass resolution~10GeV

CMS: $H \rightarrow ZZ \rightarrow II vv$ and $Z \rightarrow II qq$

450

m _H	ZZ	WZ	Top/WW/	Z+Jets	Total	Expected	Data
(GeV)			W+jets/Z→ ττ		Background	Signal	
250	36.0±0.2±2.6	24.0±0.3±2.0	65.0±3.8±5.8	15.0±15.0	140.0 ± 3.8 ± 16.0	22.0±2.2	142
300	23.0±0.2±1.7	13.0±0.2±1.1	18.0±1.1±3.0	6.3±6.3	60.0±1.1±7.3	21.0±2.1	64
350	16.0±0.1±1.1	7.0±0.2±0.6	2.0±0.1±1.0	4.1±4.1	29.0±0.3±4.4	21.0±2.5	26
400	12.0±0.1±0.9	4.6±0.1±0.4	< 1.1	2.7 ± 2.7	19.0 ± 0.2 ± 2.9	17.0±2.0	18
500	7.5±0.1±0.5	2.0±0.1±0.2	< 1.1	1.4±1.4	$11.0 \pm 0.1 \pm 1.5$	7.4±1.3	14
600	3.9±0.1±0.3	0.8±0.1±0.1	< 1.1	0.6±0.6	5.3±0.1±0.7	2.9±0.7	5

	0 b-tag	1 b-tag	2 b-tag		
$m_{ZZ} \in [125, 170]$					
observed yield	1087	360	30		
expected background (m_{jj} sideband)	1050 ± 54	324 ± 28	19 ± 5		
expected background (MC)	1089 ± 39	313 ± 20	24 ± 4		
$m_{ZZ} \in [1]$	83, 800]				
observed yield	3036	3454	285		
expected background (m_{jj} sideband)	3041 ± 54	3470 ± 59	258 ± 17		
expected background (MC)	3105 ± 39	3420 ± 41	255 ± 11		
signal expectation (MC)					
m _H =150 GeV	10.1 ± 1.5	4.1 ± 0.6	1.6 ± 0.3		
$m_{\rm H}$ =250 GeV	24.5 ± 3.5	21.7 ± 3.0	8.1 ± 1.7		
m _H =350 GeV	29.6 ± 4.3	26.0 ± 3.7	11.8 ± 2.5		
$m_{\rm H}$ =450 GeV	16.5 ± 2.4	15.8 ± 2.2	7.9 ± 1.7		
<i>m</i> _H =550 GeV	6.5 ± 1.0	6.5 ± 0.9	3.6 ± 0.8		

Interlude: Methodology of Hypothesis Testing at LHC

only basic ideas, for details and technical issues see:

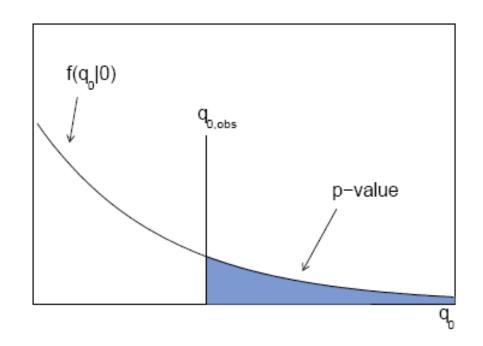
profile likelihood	Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. <i>Eur.Phys.J.</i> , C71:1554, 2011.
look elsewhere effect	Eilam Gross and Ofer Vitells. Trial factors for the look elsewhere effect in high energy physics. <i>The European Physical Journal C - Particles and Fields</i> , 70:525–530, 2010. 10.1140/epjc/s10052-010-1470-8.
CL _S method	A. L. Read. Presentation of search results: the CLs technique. J. Phys. G: Nucl. Part. Phys., 28, 2002.
	A. L. Read. Modified frequentist analysis of search results (the CLs method). in Proceedings of the First Workshop on Confidence Limits, CERN, Geneva, Switzerland, 2000.
	Thomas Junk. Confidence level computation for combining searches with small statistics. <i>Nucl.Instrum.Meth.</i> , A434:435–443, 1999.

LHC combination procedure ATL-PHYS-PUB-2011-11 CMS NOTE-2011/005

Search for SM Higgs Boson at LHC

Basics of Hypothesis Testing

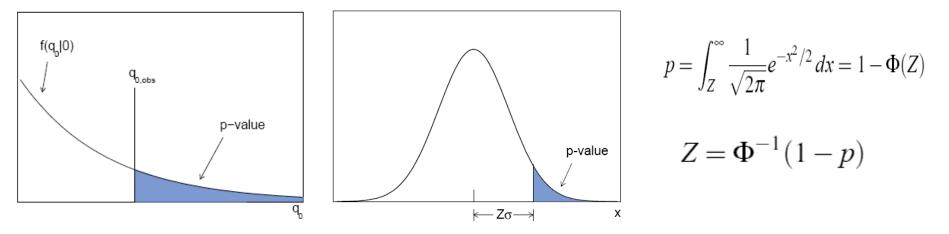
Specify what are you looking for: obervation or exclusion of signal


Phrase null hypothesis H_0 as opposite to what you are interested in as you can only falsify/reject hypothesis but not approve them

Observation of Higgs \rightarrow H₀: no Higgs, only SM background processes Exclusion of Higgs \rightarrow H₀: Higgs and SM background processes

Quantify agreement with H₀ by choosing a test statistic t (any function of your data) at LHC: perfect agreement t=0 deviation t>0

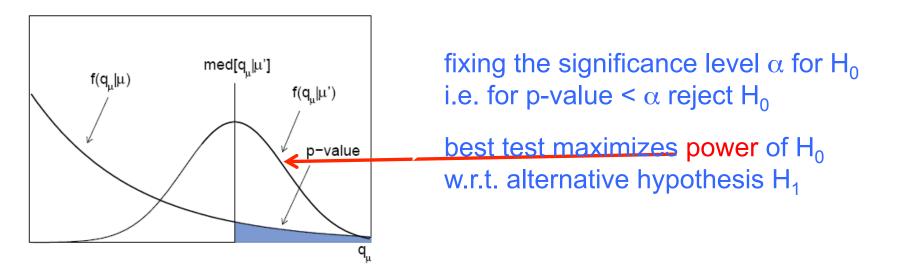
Get probability densitiy function for $t=q_0$ and calculate p-value


$$p_0 = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) \, dq_0$$

P-Value, Significance and Confidence Level

if p-Value < predefined value (signifcance level, error of first kind) then reject null hypothesis

convention: for discovery require p-value (BG only) < 2.87x10⁻⁷ for exclusion require p-value (Higgs+BG) < 0.05


p-value can be translated in significance via Standard Gauss pdf. a significance of 5 (1.64) corresponds to $P= 2.87 \times 10^{-7}$ (0.05)

if p-Value is x then one says "this hypothesis is excluded with a confidence level of CL=1-x" the frequency of false exclusion (error of 1st kind) is x.

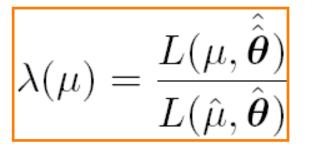
Choices to take and optimal test

Decisions to take:

- i) test statistics t \rightarrow ratio of (profiled) likelihoods
- ii) how to deal with syst. uncertainties \rightarrow nuisance parameters + profiling
- iii) derivation of pdfs for t under hypotheses \rightarrow often asymptotics usable

without systematics best test is given by the Neyman-Pearson-Lemma: best test statistic = ratio of likelihoods under simple hypothesis H_1 and H_0

t_{NP} = L(data | signal+background) / L(data | background)


Test Statistic at LHC: Ratio of Profiled Likelihood

- $\mu \cdot s(\theta)$ signal yield and shape of final discriminant $\sigma = \mu \cdot \sigma_{SM}$
 - $b(\theta)$ background yield and shape of final discriminant
 - $\tilde{\theta}_i$ estimate for nuisance parameters θ
 - → parametrize systematic uncertainties on yields and shapes from e.g. efficiencies, theo. σ , extrapolation from control to signal region contrained from data via auxilary measurements $p(\tilde{\theta}|\theta)$

Complete likelihood function is given by:

$$\mathcal{L}(\text{data} \mid \mu \cdot s(\theta) + b(\theta)) = \mathcal{P}(\text{data} \mid \mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta} \mid \theta)$$

Fix μ only under null hypothesis H_0 and estimate it from data via maximum likelihood method under alternative hypothesis H_1

- μ fixed under ${
 m H_0}$
- $\hat{\boldsymbol{\theta}}$ maximum likelihood estimate under H₀
 - maximum likelihood estimates under H₁

Ratio of Profiled Likelihoods: Simple Example

Assume: simple counting experiment in signal region SR with unknown background expecation b (b is nuisance parameter)

Control region CR for background e.g sideband yields in SR and CR related via SR =1/ τ CR (τ known, uncertainty would give additional nuisance parameter)

Observation gives: *n* events in SR *m* events in CR

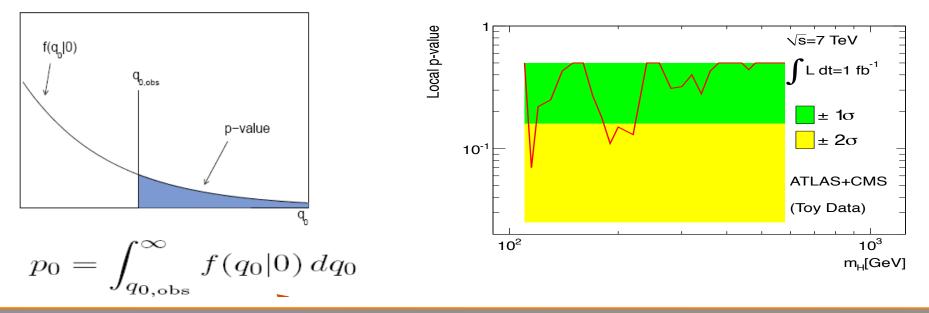
Each follow Poisson distribution: $n \sim \text{Poisson}(s+b)$ $m \sim \text{Poisson}(\tau b)$

Common likelihood function:

$$L(s,b) = \frac{(s+b)^n}{n!} e^{-(s+b)} \frac{(\tau b)^m}{m!} e^{-\tau b}$$

Test statistic = ratio of profiled likelihoods:

(in nominator s is fixed under H₀
 s=0 for discovery,
 s= nominal signal value for exclusion)


$$\lambda(s) = \frac{L(s,\hat{\hat{b}})}{L(\hat{s},\hat{b})}$$

Profiled Likelihood Test Statistic for Discovery

H₀: only background $\rightarrow \mu$ =0 H₁: signal and background, μ parametrises strength w.r.t. SM Higgs predicton

test statistic
$$\mathbf{q}_0$$
:
 $q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0 \\ 0 & \hat{\mu} < 0 \end{cases}$
 $\lambda(0)$ btw. 0: \mathbf{H}_1 like and 1: \mathbf{H}_0 like \rightarrow \mathbf{q}_0 between 0 and infinifity 0: \mathbf{H}_0 like \rightarrow 0 \mathbf{H}_1 -like

one sided test, only positive signal strength considered as deviation from H₀

M. Schumacher

Search for SM Higgs Boson at LHC

The "Look Elsewhere Effect" (LEE)

So far: local p-value/ significance = prob. to see such an excess at fixed M_H as we specified M_H in the alternative hypothesis H_1

$$t_{\rm fix} = -2\ln\frac{L(0, m_0)}{L(\hat{\mu}, m_0)} \quad p_{\rm fix} = \int_{t_{\rm fix,obs}}^{\infty} f(t_{\rm fix}|0) dt_{\rm fix} \quad Z_{\rm fix} = \Phi^{-1}(1 - p_{\rm fix})$$

now ask: prob. to see such an excess anywhere in given mass range \rightarrow let mass be a nuisance parameter in fit of new test statistic

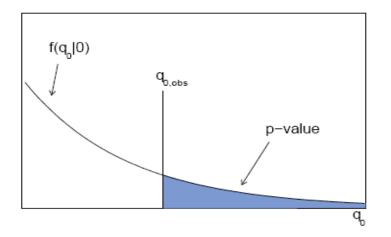
$$t_{\text{float}} = -2\ln\frac{L(0)}{L(\hat{\mu}, \hat{m})} \qquad p_{\text{float}} = \int_{t_{\text{float,obs}}}^{\infty} f(t_{\text{float}}|0) dt_{\text{float}}$$

p_{float} also called global p-value. calculation very cumbersome. lot of MC experiments

 $F_{\text{trials}} \equiv \frac{p_{\text{float}}}{p_{\text{fix}}}$

trial factor ~ number of independent search regions in considered mass range. can be calculated approximately with little MC simulation

Profiled Likelihood Test Statistic for Exclusion


 H_0 : signal+background → µ=1 H_1 : background only µ parametrises strength w.r.t. SM Higgs predicton

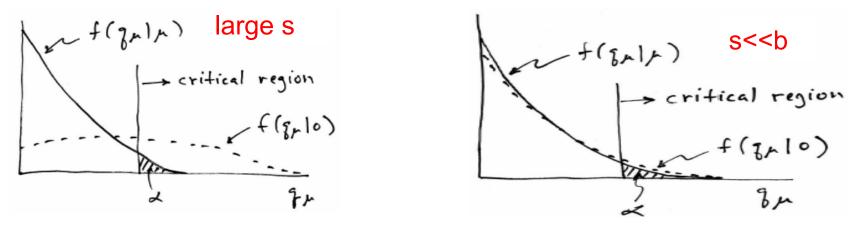
ŝ

test statistic q_{μ} :

$$\tilde{\lambda}(\mu) = \begin{cases} \frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta})} & \hat{\mu} \ge 0, \\ \frac{L(\mu, \hat{\hat{\theta}}(\mu))}{L(0, \hat{\hat{\theta}}(0))} & \hat{\mu} < 0. \end{cases} \qquad \tilde{q}_{\mu} = \begin{cases} -2\ln\tilde{\lambda}(\mu) & \hat{\mu} \le \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$

for negative signal strength set it to 0 and determine then nuisance pars. one sided test, only signal strength< μ considered as inconsistent with H_0

different test statistic then for discovery


here values ~0 are signal+background like observations

The "Problem" with the Pure Frequentist Method

$$p_{\mu} = P(\tilde{q}_{\mu} \ge \tilde{q}_{\mu}^{obs} | \text{signal+background}) = \int_{\tilde{q}_{\mu}^{obs}}^{\infty} f(\tilde{q}_{\mu} | \mu, \hat{\theta}_{\mu}^{obs}) d\tilde{q}_{\mu}$$

Pure frequentist would stop and say: "signal+background" hypothesis is exlcuded with a confidence level CL_{S+B} of 1- p_{μ}

"Problem": Spurious exclusion of signals with no sensitivity (s<<b)

signal+BG-like $\leftarrow \rightarrow$ BG only like, even less than exp. from BG only

by construction: probability to reject μ if μ is true is α probability to reject μ if μ =0 is only slighty greater than α for s<<b. \rightarrow probability to exlcude hypotheses with zero signal $\sim \alpha$ "spurios exclusion"

M. Schumacher

Search for SM Higgs Boson at LHC

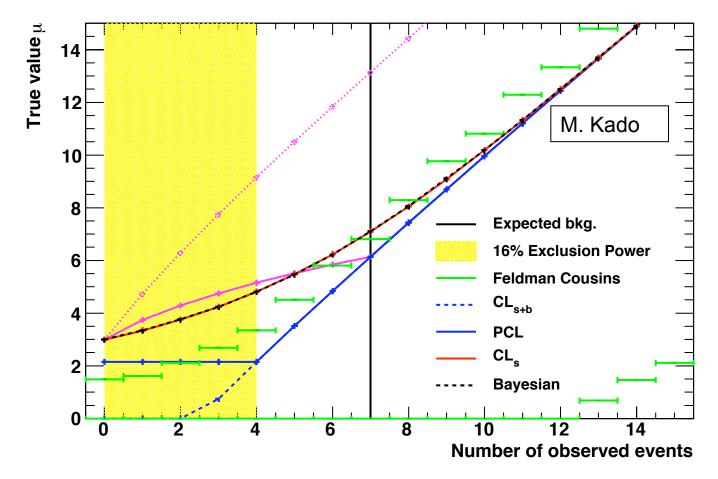
A Solution: the CL_s Method

Spurious exclusion caused by downwards fluctuation of background → penalize such outcomes in an "ad hoc" way

$$1-p_{b} = P(\tilde{q}_{\mu} \ge \tilde{q}_{\mu}^{obs} | \text{background-only}) = \int_{q_{0}^{obs}}^{\infty} f(\tilde{q}_{\mu} | 0, \hat{\theta}_{0}^{obs}) d\tilde{q}_{\mu}$$

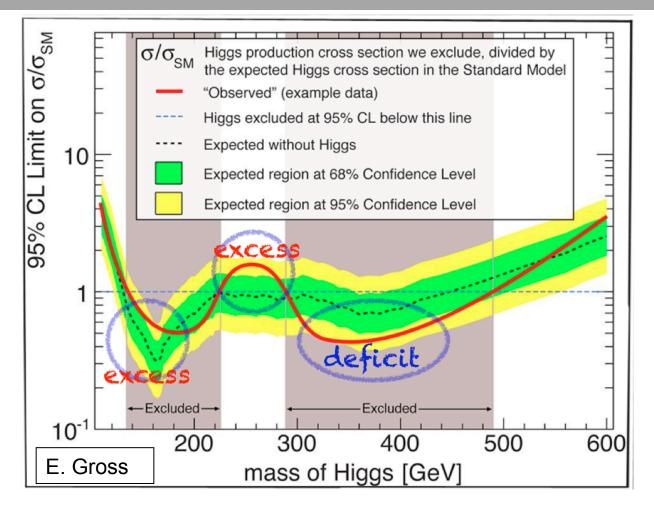
$$p_{\mu} = P(\tilde{q}_{\mu} \ge \tilde{q}_{\mu}^{obs} | \text{signal+background}) = \int_{\tilde{q}_{\mu}^{obs}}^{\infty} f(\tilde{q}_{\mu} | \mu, \hat{\theta}_{\mu}^{obs}) d\tilde{q}_{\mu}$$

$$CL_{s} = p_{\mu} / (1-p_{b})$$
Caveat: p_{b} ist not equal p_{0}
different test statistic
$$CL_{s} = p_{\mu} / (1-p_{b})$$
Caveat: p_{b} ist not equal p_{0}
different test statistic
$$CL_{s} = p_{\mu} / (1-p_{b})$$
Caveat: p_{b} ist not equal p_{0}
different test statistic
$$CL_{s} = p_{\mu} / (1-p_{b})$$
Caveat: p_{b} ist not equal p_{0}
different test statistic
$$CL_{s} = p_{\mu} / (1-p_{b})$$
Caveat: p_{b} ist not equal p_{0}
different test statistic
$$CL_{s} = p_{\mu} / (1-p_{b})$$
Caveat: p_{b} ist not equal p_{0}
different test statistic
$$CL_{s} = p_{\mu} / (1-p_{b})$$

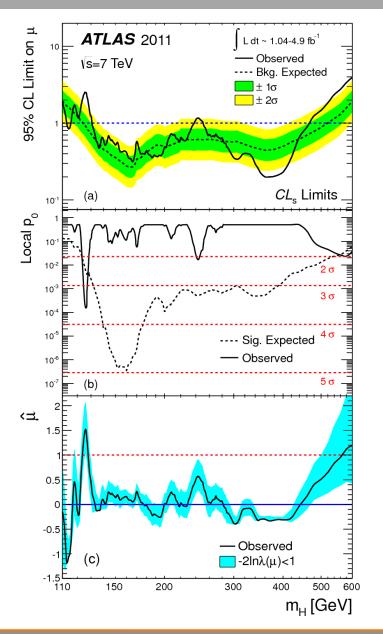

if CL_S<5% we call a μ hypothesis excluded at 95% CL (but true coverage larger)

upper limit on μ : adjust/find smalles value of μ to value for which $CL_S \leq 5\%$

M. Schumacher


Comparison of Different Limit Derivations at 95% CL

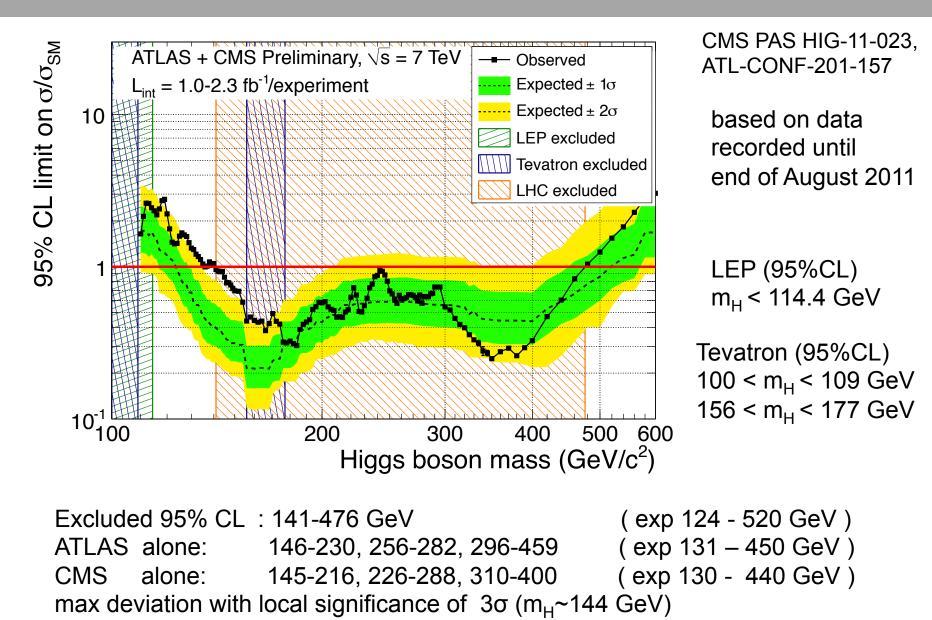
simple counting experiment with a background expectation of 7 events


if $CL_S < 5\%$ we call a μ hypothesis excluded at 95% CL (true coverage larger) CL_S and Bayesian limit with flat prior in signal rate mathematically identical in praxis also very similar results for test statistics used at LHC (Tevatron, LEP)

Typical Exclusion Plot Looks Like This ...

expected limit: median value of μ which will be excluded under H₁ BG-only green and yellow bands are 68% (95%) confidence ntervals around this

Interpretation of Results is Threefold



signal +background hypothesis exclusion: for each hypothetical signal mass determine minimum signal strength μ which can be excluded at 95% CL

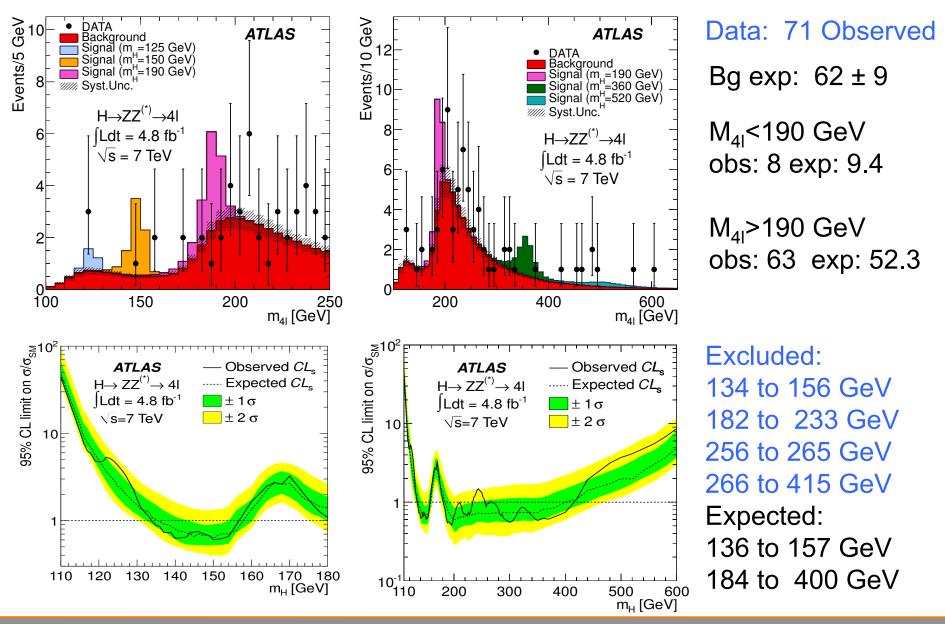
background hypothesis compability: evaluate p-value for each hypothetical signal mass → local p-value + global p-value from trials factor

compability with SM Higgs boson hypothesis: estimate best signal strength compatible with observation

First Combination of ATLAS and CMS on 18.11.2011

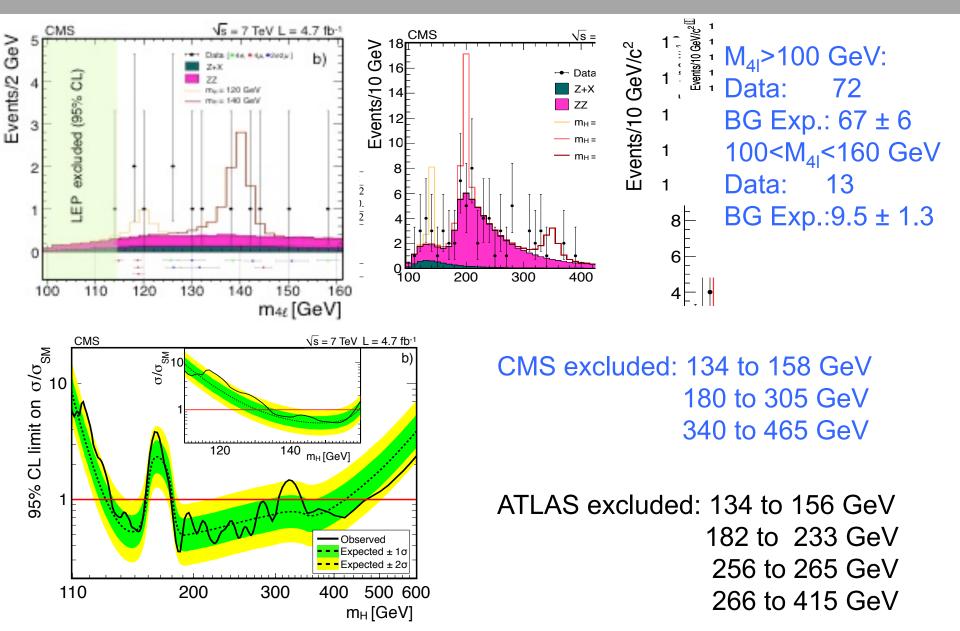
M. Schumacher

Combination of Higgs Boson Searches

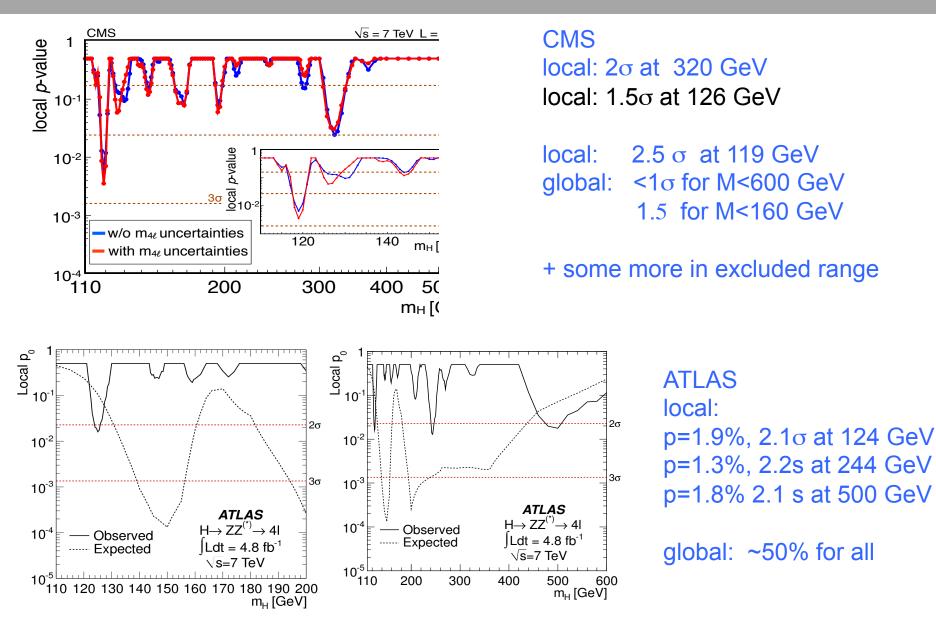

	ATLAS			CMS		
channel	Lumi	Mass Range	Sub chan.	Lumi	Mass range	Sub chan.
Η→γγ	4.9	110-150	9	4.8	110-150	5
Η→ττ	1.1	not incl.	4	4.6	110-145	9
H→bb	1.1	not incl.	4	4.7	110-135	5
$H \rightarrow WW \rightarrow I_V I_V$	2.1	110-300	6	4.6	110-600	5
H→WW→lvqq	1.1	240-600	2			-
H→ZZ→4I	4.8	110-600	3	4.7	110-600	3
H→ZZ→2l2τ				4.7	190-600	8
H→ZZ→2l2v	2.1	200-600	2	4.6	250-600	2
H→ZZ→2l2q	2.1	200-600		4.6	130-164 225-600	6

CMS 42 channels + 156 to 222θ ATLAS 26 channels in combinationcorrelation of uncertainties taken into account:eg. luminosity, identification efficiencies, E scale and resolution, PDF,

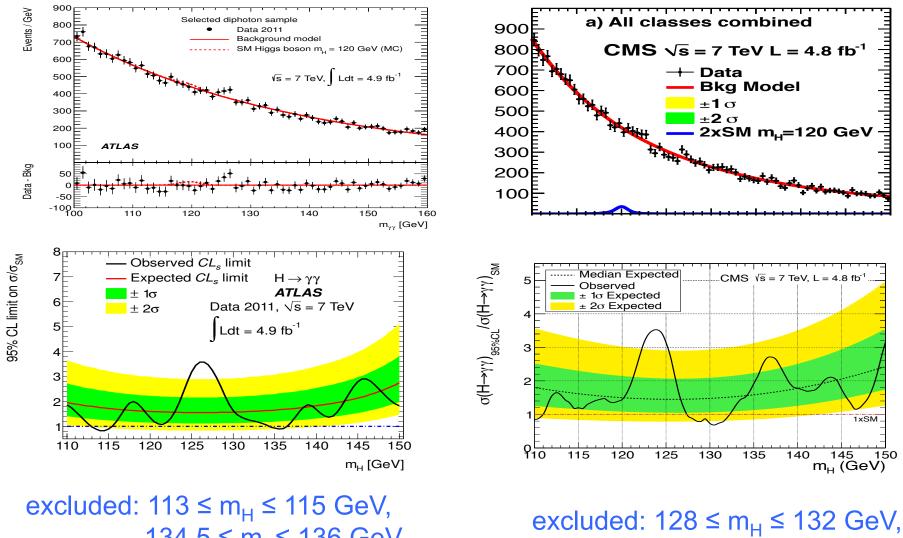
M. Schumacher


Search for SM Higgs Boson at LHC

ATLAS: Exclusion limits for $H \rightarrow ZZ \rightarrow 4I$


Search for SM Higgs Boson at LHC

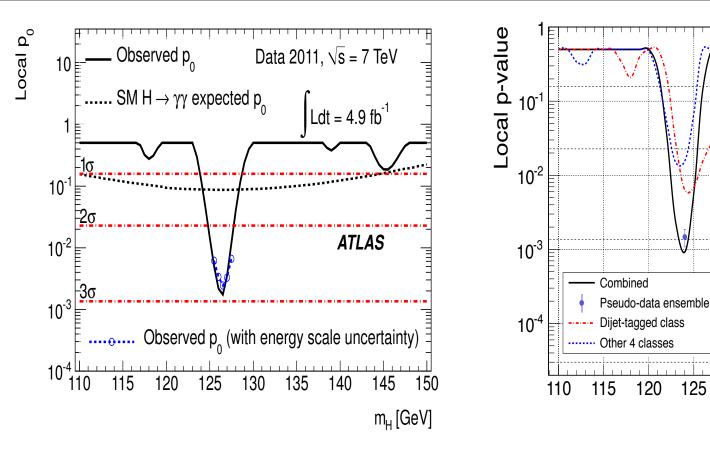
CMS: Exclusion limits for $H \rightarrow ZZ \rightarrow 4I$


Search for SM Higgs Boson at LHC

H→ZZ→4I Observed "Excesses"

Search for SM Higgs Boson at LHC

$H \rightarrow 2 \gamma$: Exclusion Limits



134.5 ≤ m_{H} ≤ 136 GeV (exp: 1.6 to 2.7 x σ_{SM})

(exp: 1.4 to 2.4 x σ_{SM})

Search for SM Higgs Boson at LHC

$H \rightarrow 2 \gamma$: Observed "Excesses"

max. deviation at $m_H \sim 126.5 \pm 0.9$ GeV: local p_0 -value: 0.27% (2.9 σ) global p_0 -value: $\sim 7\%$ (1.5 σ) expected from SM Higgs: $\sim 1.4\sigma$ max. deviation at $m_H = 124$ GeV: local p_0 -value: 0.09% (3.1 σ) global p_0 -value: 3.9% (1.8 σ) fitted signal strength: 2.1±0.6 x SM

130

135

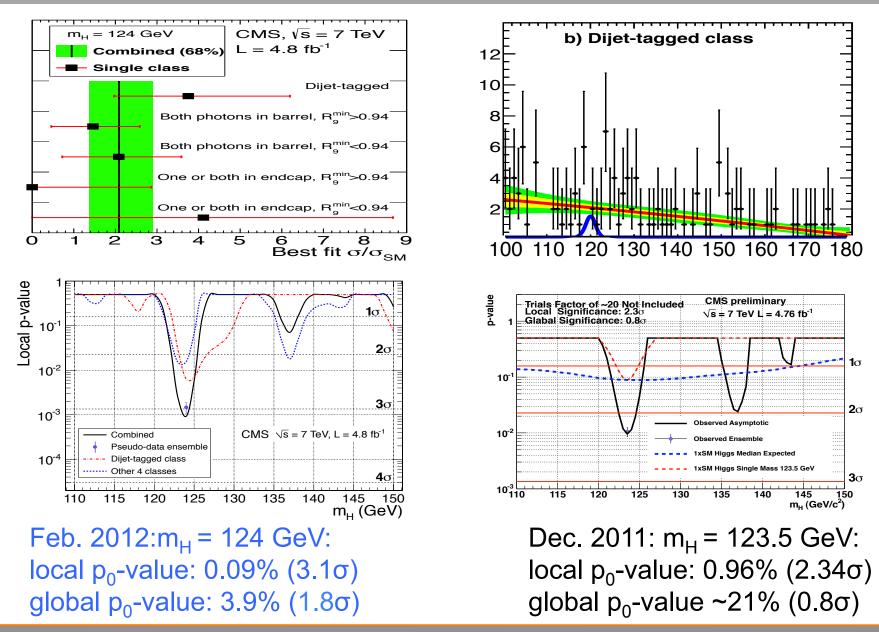
1σ

2σ

3σ

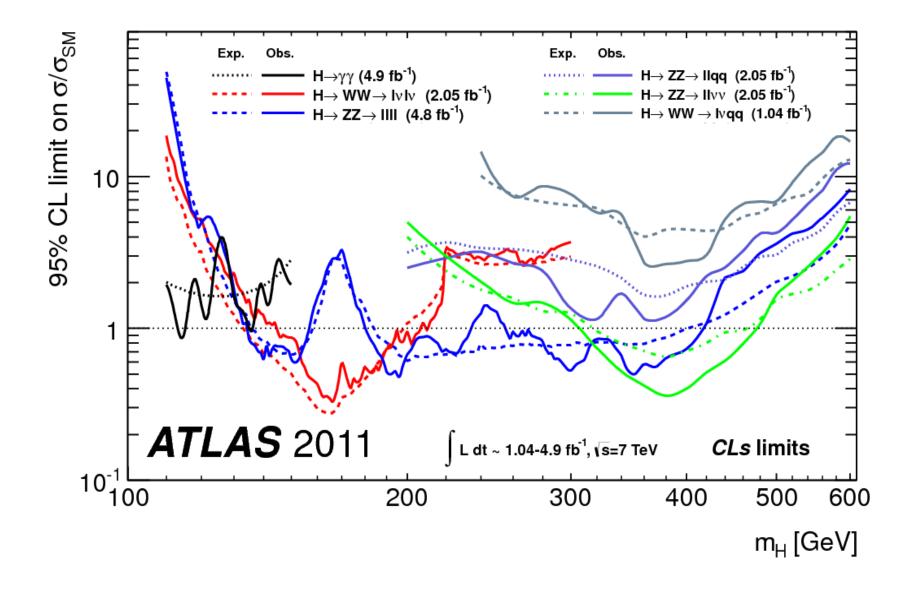
4σ

150

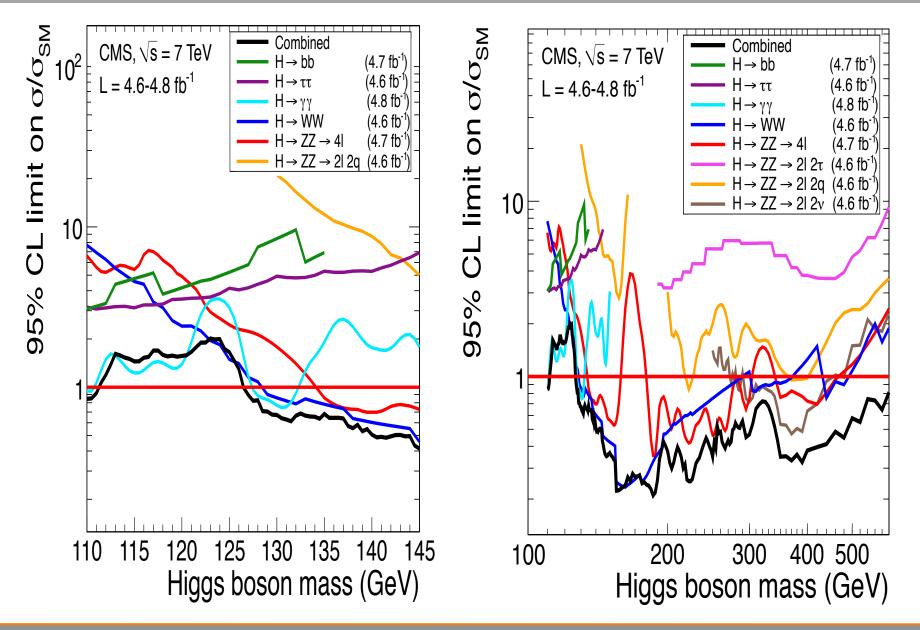

145

m_µ (GeV)

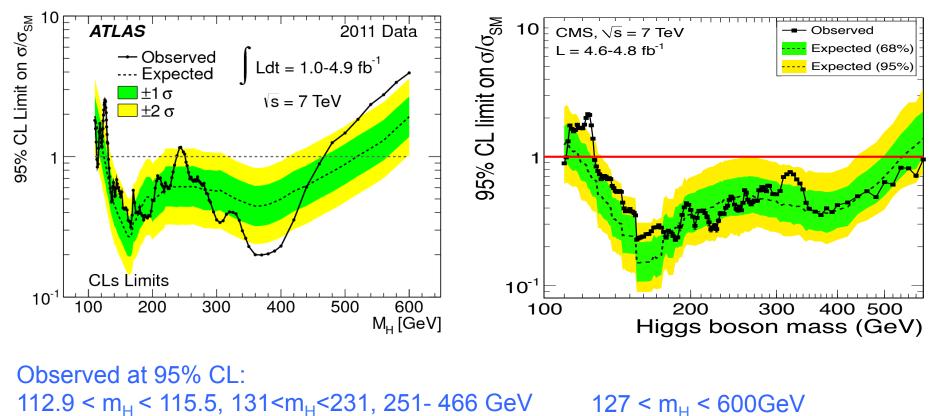
CMS $\sqrt{s} = 7$ TeV, L = 4.8 fb⁻¹


140

CMS H $\rightarrow\gamma\gamma$ from Dec 11 to Feb 12: New Dijet Class



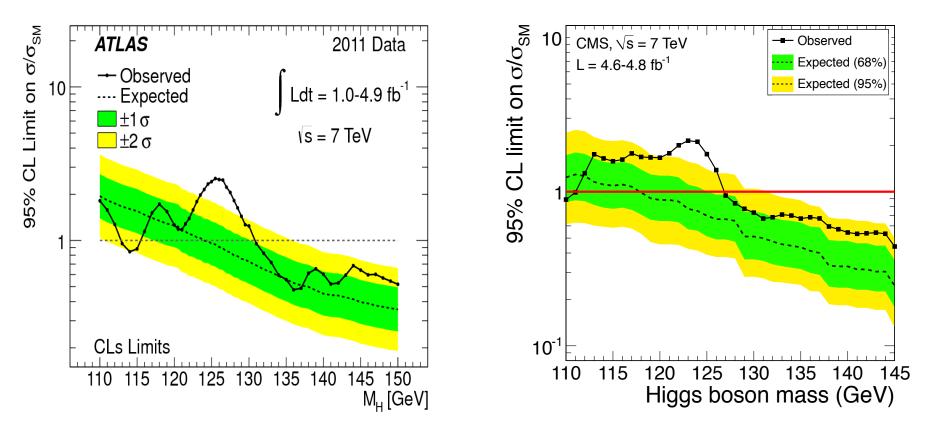
Search for SM Higgs Boson at LHC


ATLAS: Exclusion by Individual Channels

CMS: Exclusion by Individual Channels

Combined Exclusion Limits

Expected at 95% CL: $124 < M_H < 519 \text{ GeV}$


118 < m_H < 543 GeV

Observed at 99% CL: 133 <m_H < 230 GeV, 260< m_H <437 GeV

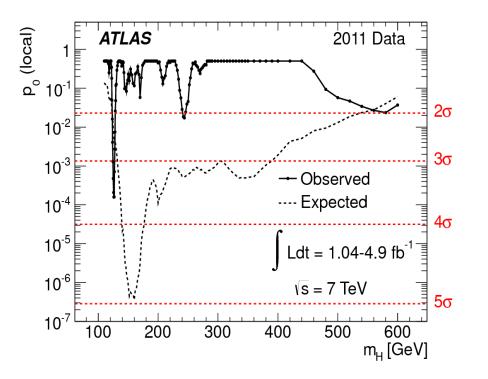
129 < m_H< 525 GeV

ATLAS: 2.5 σ deficit w.r.t BG only at 300 to 400 GeV, global probability 30%

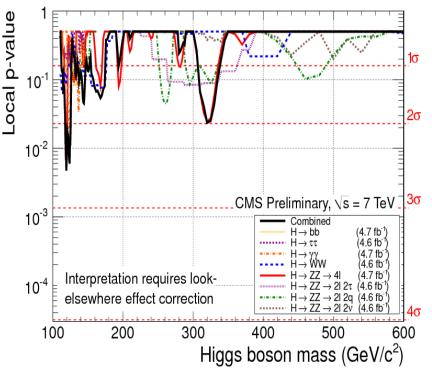
Combined Exclusion Limit: Low Mass Range

Observed at 95% CL: 112.9< m_H<115.5 GeV 131< m_H<150++

Expected at 95% CL: 124 < M_H < 519 GeV 127 < m_H < 600GeV


118 < m_H < 534 GeV

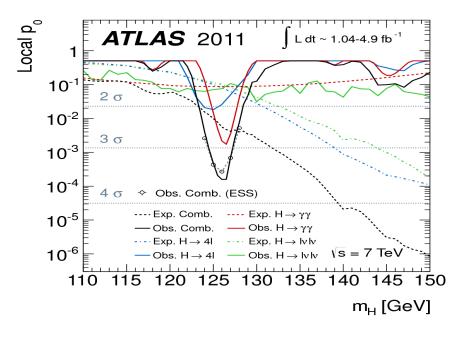
in both experiments observed exclusion weaker than expected


M. Schumacher

Search for SM Higgs Boson at LHC

Consistency with Background-Only Hypothesis

CMS: Dec 2012

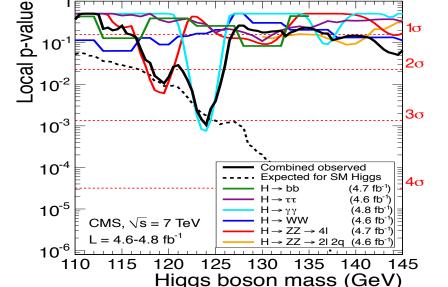


Maximum deviation from background-only expectation observed for $m_{\rm H}{\sim}126~GeV$

244 GeV: $H \rightarrow ZZ \rightarrow 4I$ >460 GeV: several channels Max. deviation from background-only observed for $m_H \sim 119$ and 124 GeV

119 GeV: 3 H→4I events 124 GeV: H→2γ events 325 GeV: 9 H→4I events

Consistency with BG-Only: Low Mass

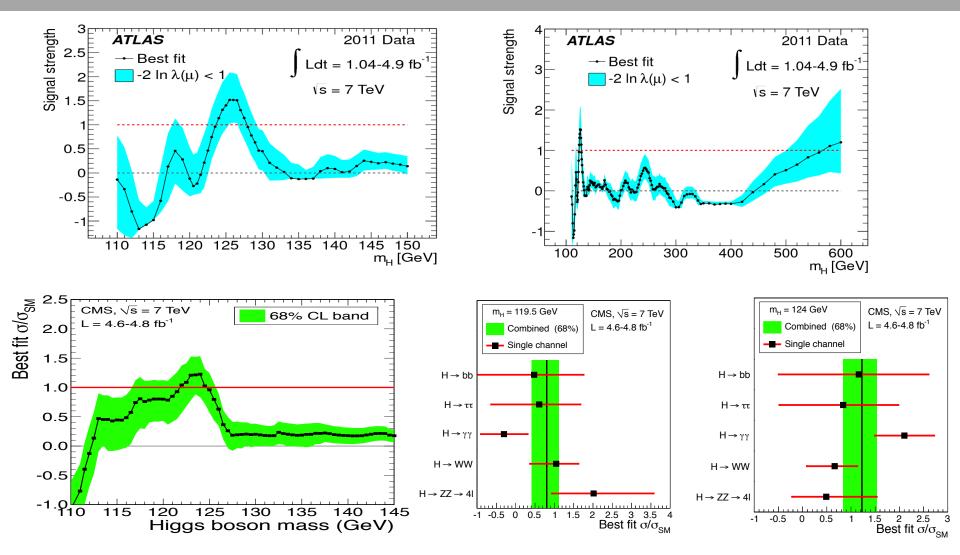


Maximum deviation for $m_H \sim 126 \text{ GeV}$

Local p₀-value: $1.9 \times 10^{-4} = 3.6\sigma$ (~2.8 σ H \rightarrow $\gamma\gamma$, 2.1 σ H \rightarrow 4I, 1.4 σ H \rightarrow IvIv)

```
Expected for M_H=126 GeV: 2.5\sigma (~ 1.4\sigma per channel)
```

Global p_0 -value: 0.6% (2.5 σ) mass range 110 to 146 GeV 1.4% (2.2 σ) mass range 110 to 600 GeV

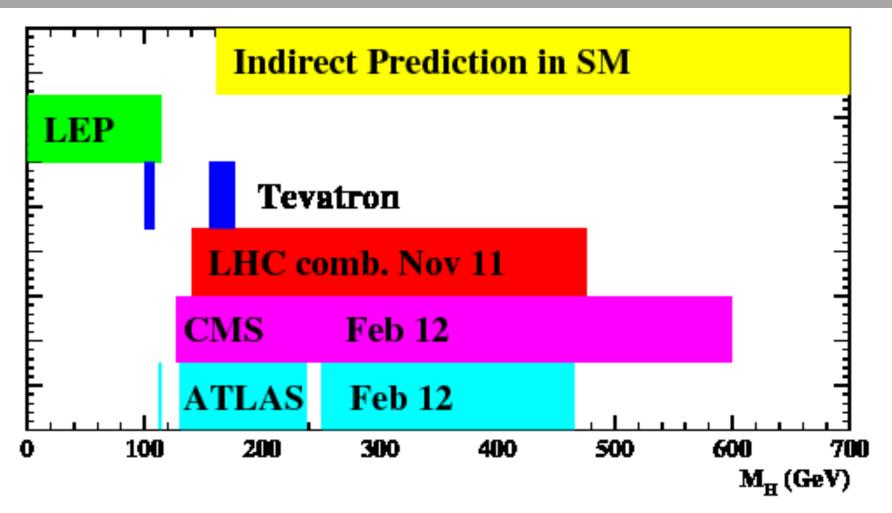

Max. deviation for m_H~ 124 GeV

Minimal local p-value 0.001 = 3.1σ

Global p-value 2.1σ mass range 110 to 145 GeV 1.6s mass range 110 to 600 GeV

Search for SM Higgs Boson at LHC

Best Fit for Signal Strength w.r.t. SM Rate

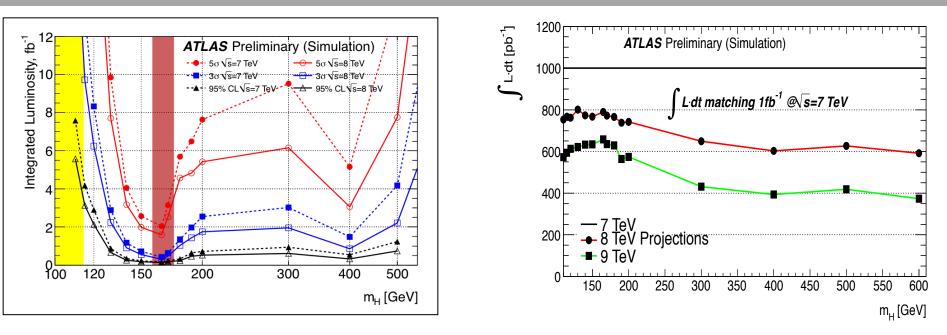


Mass values with highest signal strength parameter slightly different But not an inconsistent picture

M. Schumacher

Search for SM Higgs Boson at LHC

Current Knowledge about the Higgs boson mass



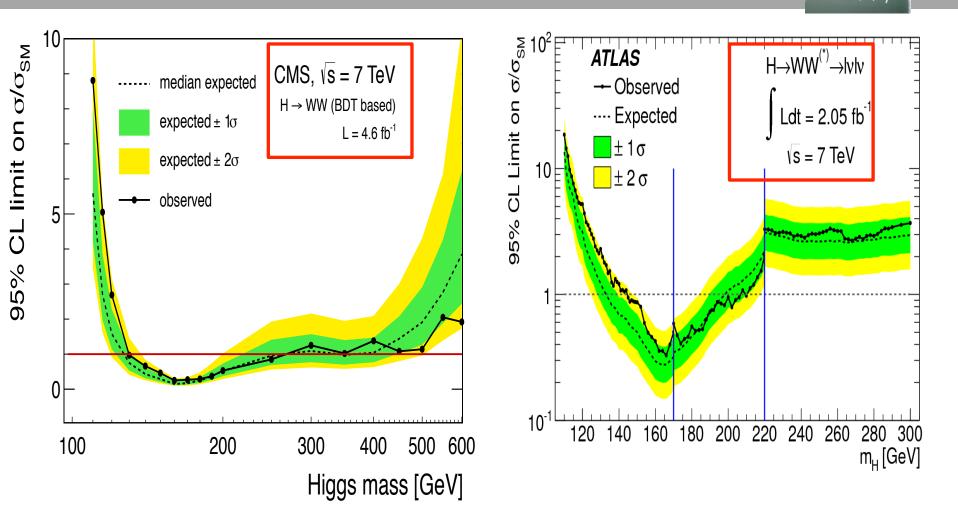
the Standard Model still prefers a light Higgs boson only M_{H} = 115.5 to 127 GeV not excluded

only more data can tell whether excesses are hint for a new particle

Search for SM Higgs Boson at LHC

Prospects

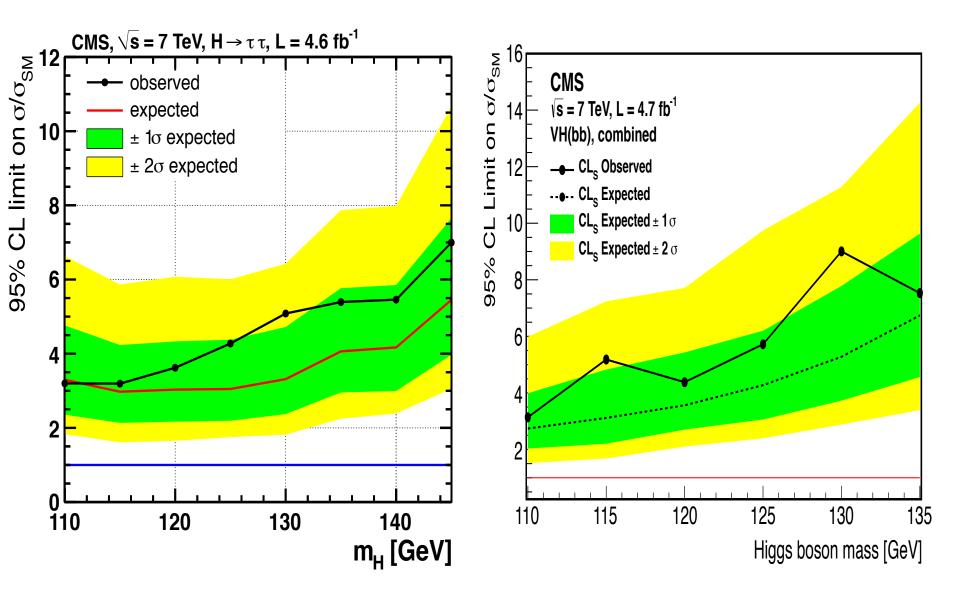
Higgs production at low M_H increased by 20% to 30% from 7 to 8 TeV center-of-mass rough estimate: 0.8 fb⁻¹@ 8 TeV äquivalent to 1.0 fb⁻¹ at 7 TeV


MORE DATA \rightarrow 2012 run: (Fabiola Gianotti, Dec 13th) ~ 20 fb⁻¹ of delivered luminosity needed to: achieve 5 σ evidence at m_H~ 125 GeV with ~ 3 σ per channel (ATLAS alone) achieve 5 σ evidence down to ~ 116 GeV (ATLAS+CMS combined) exclude m_H ~ 125 GeV if the excess is due to a fluctuation "Contingency": analysis improvements; $\sqrt{s}=8$ TeV (~ 10% sensitivity gain)

2012: the year of the Higgs boson (or not) ...

Backup

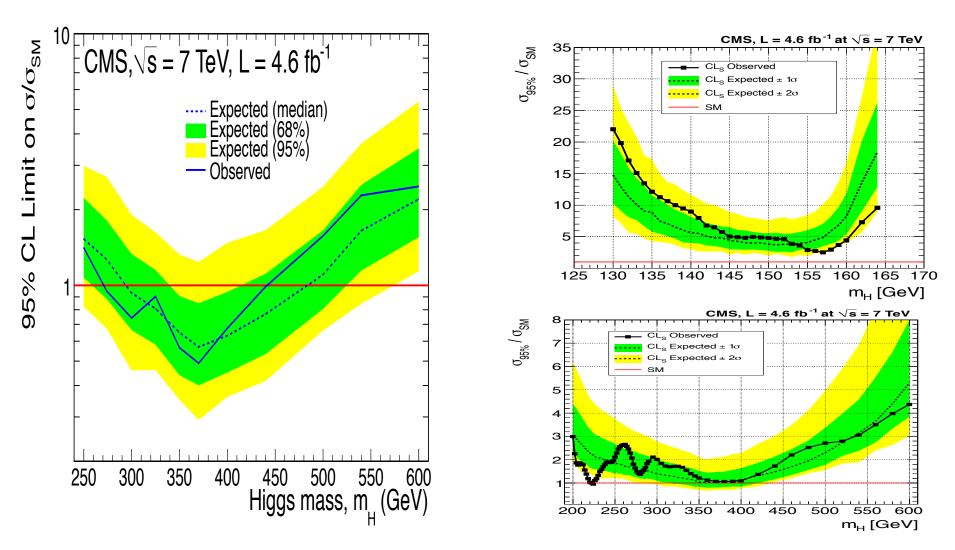
Exclusion limit for $H \rightarrow WW \rightarrow I_V I_V$

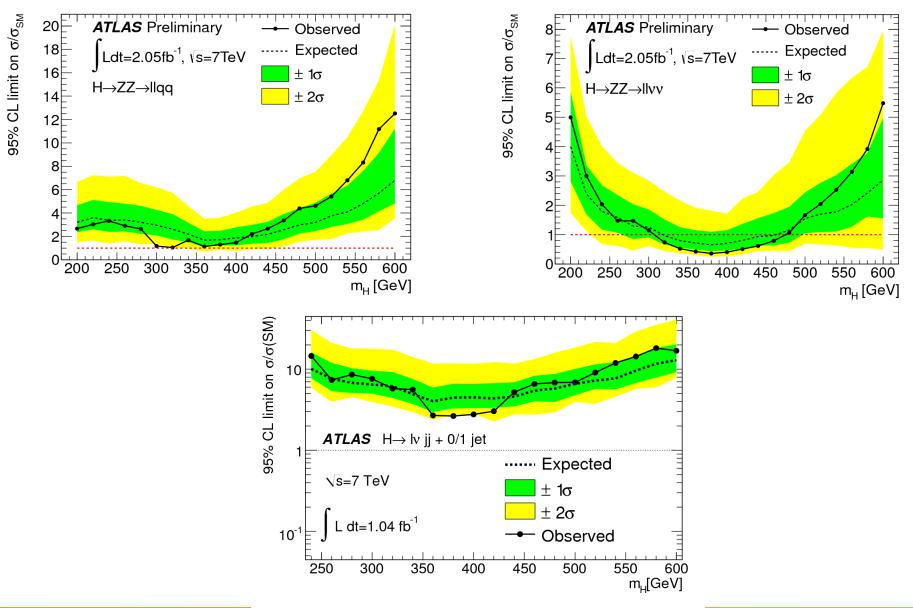


Observed exclusion: 129 to 270 GeV Expected exclusion : 127 to 270 GeV

145 to 206 GeV 134 to 200 GeV

Search for SM Higgs Boson at LHC


CMS: SM $H \rightarrow \tau\tau$ and $H \rightarrow bb$ Exclusion Limits


CMS: $H \rightarrow ZZ \rightarrow II vv$ and $H \rightarrow ZZ \rightarrow II qq$

$H \rightarrow ZZ \rightarrow II vv$

$H \rightarrow Z Z \rightarrow II qq$

ATLAS: Limits for High Mass Channels

Search for SM Higgs Boson at LHC

ATLAS: $H \rightarrow \tau\tau$ and $H \rightarrow bb$ with 1.1 fb-1

 $\tau \tau \rightarrow || 4 \nu$

 (\mathbf{h})

$\tau \tau \rightarrow l \tau_{had} 3 \nu$ $W \rightarrow I_V$ Z→II inclusive 1 jet $p_T > 40 \text{ GeV}$ Events / 10 GeV ATLAS Preliminary 220 ATLAS Preliminary ATLAS Preliminary channels 45Ē Entries / 10 GeV data Entries / 10 GeV data 🔶 Data 2011 Signal × 20 (m =115 GeV) Signal × 20 (m₁=115 GeV) 200Ē 40Ē L dt=1.04 fb⁻¹ L = 1.06 fb L dt=1.04 fb Indudu ----- A(120)/H/h → τ τ, tan β=20 180 Total BG 35 — Total BG Z/γ ($\rightarrow \tau \tau$) emb 160 30 25 – Z – Top Others 140 Top ∭ W+jets Dibosor Diboson 200 25 120 🕅 QCD multi-jet Multiiet 20 100Ē 🏽 stat 20 150 15 ATLAS Preliminary 80 15 10 60 100 $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 1.06 \text{ fb}^{-1}$ 10 5 40 50 20 5 0^t 150 250 50 100 200 0^E 00 50 100 150 200 250 아 50 100 150 200 250 300 350 400 [GeV] m_{bb} 50 100 150 200 250 300 350 400 m_{bb} [GeV] MMC m_{rt} [GeV] m,, [GeV] ^{ws}120 120 م و/و **Observed** (CLs) ATLAS Preliminary Η→ττ Ldt=1.04 fb⁻¹, √s=7 TeV Expected (CLs) Observed CLs \pm 1 σ Expected CLs 95% C.L. limit o 00 00 VH, $H \rightarrow bb$ $\pm 2\sigma$ $\pm 2 \sigma$ **ATLAS Preliminary** $\pm 1\sigma$ 60 $\sqrt{s} = 7 \text{ TeV}, \ Ldt = 1.06 \text{ fb}^{-1}$ 40 60 30 40 20 10 20 0 100 110 130 140 150 120 115 120 125 110 130 m_H [GeV]

Higgs mass [GeV]

Comparison of Hypothesis Testing Techniques

LLR test statistics

	Test statistic	Test statistic	Nuisance parameters	Pseudo- experiments
LEP	$-2\ln \frac{L(\mu,\tilde{\theta})}{L(0,\tilde{\theta})}$	Simple LR	Fixed by MC	Nuisance parameters randomized about MC
Tevatron	$-2\ln\frac{L(\mu,\hat{\hat{\theta}})}{L(0,\hat{\theta})}$	Ratio of profiled likelihoods	Extracted from priors	Nuisance parameters randomized from priors
LHC	$-2\ln\frac{L(\mu,\hat{\hat{\theta}})}{L(\hat{\mu},\hat{\theta})}$	Profile likelihood ratio	Profiled (fit to data)	New nuisance parameters fitted for each pseudo-exp.

LHC sampling of test statistic is frequentist, LEP and Tevatron Bayes-frequentist hybrid. CL_s can be used together with any of these – must be specified! No longer sufficient to write e.g. "the CL_s method was used". Higgs Days at Santander 2011 (A. Read)

CMS: LEE from Local to Global P-values

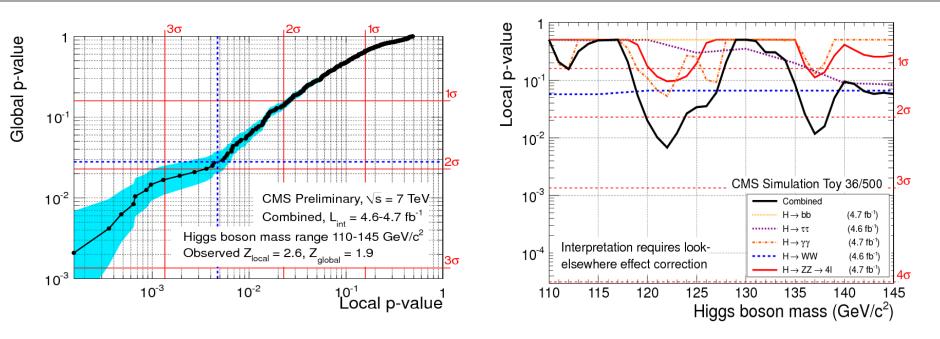
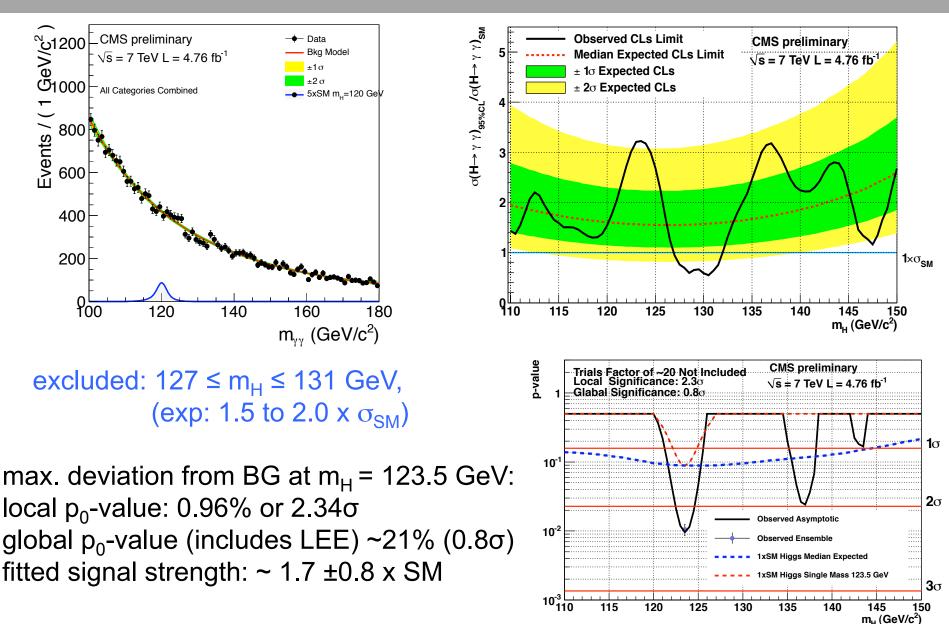
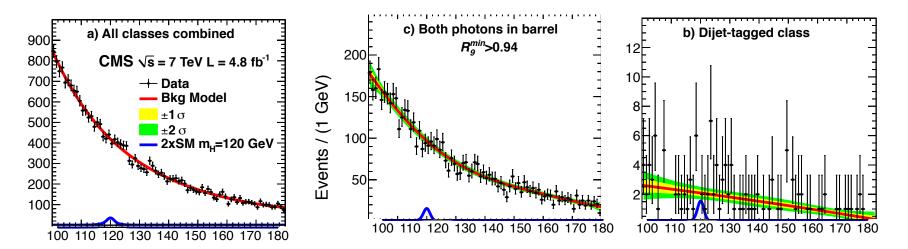



Figure 16 shows the probability of observing a minimum *local p*-value equal or smaller than some predefined threshold. This probability is the *global p*-value. One can see that the *global p*-value corresponding to the observed $p_{min} = 0.005$ is 0.026, which implies a *global* significance of 1.9σ . An example of a *p*-value scan obtained in one of the 500 pseudo-data sets is shown in Fig. 17.

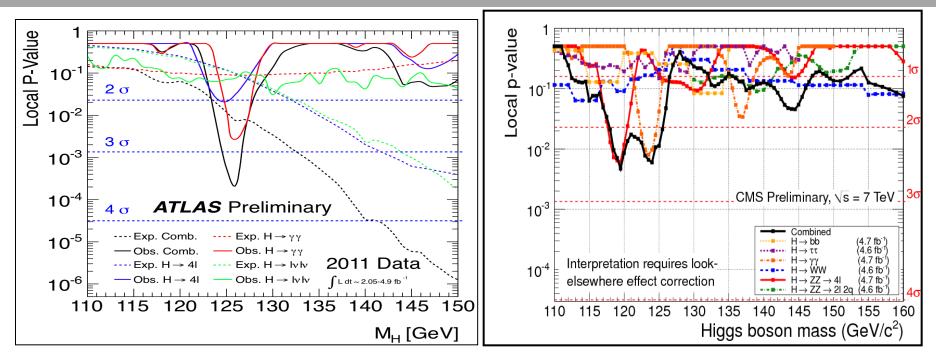
$$p_{global} = p_{min} + N_0 e^{-Z_{max}^2/2}$$

M. Schumacher

CMS H \rightarrow 2 Photons: November 2011


CMS: $H \rightarrow \gamma \gamma$ - Analysis Optimisation

enhance signal/background ratio and mass resolution by splitting in 5 categories:


converted/ non converted ($R_9^{min</>.94}$) and barrel/endcap (η_{max}) \rightarrow 4 classes

5th class new since December 2011: VBF topology (2 jets, m_{jj} , $\Delta \eta_{jj}$,...) improves sensitivity by 10%

$m_{\rm H}=120{\rm GeV}$	Both photo	ons in barrel	One or bot	Dijet	
m _H -120 Gev	$R_9^{\min} > 0.94$	$R_9^{\min} < 0.94$	$R_9^{\min} > 0.94$	$R_9^{\min} < 0.94$	tag
SM signal expected	25.2 (33.5%)	26.6 (35.3%)	9.5 (12.6%)	11.4 (14.9%)	2.8 (3.7%)
Data (events/GeV)	97.5 (22.8%)	143.4 (33.6%)	76.7 (17.9%)	107.4 (25.1%)	2.3 (0.5%)
$\sigma_{\rm eff}$ (GeV)	1.39	1.84	2.76	3.19	1.71
FWHM/2.35 (GeV)	1.19	1.53	2.81	3.18	1.37

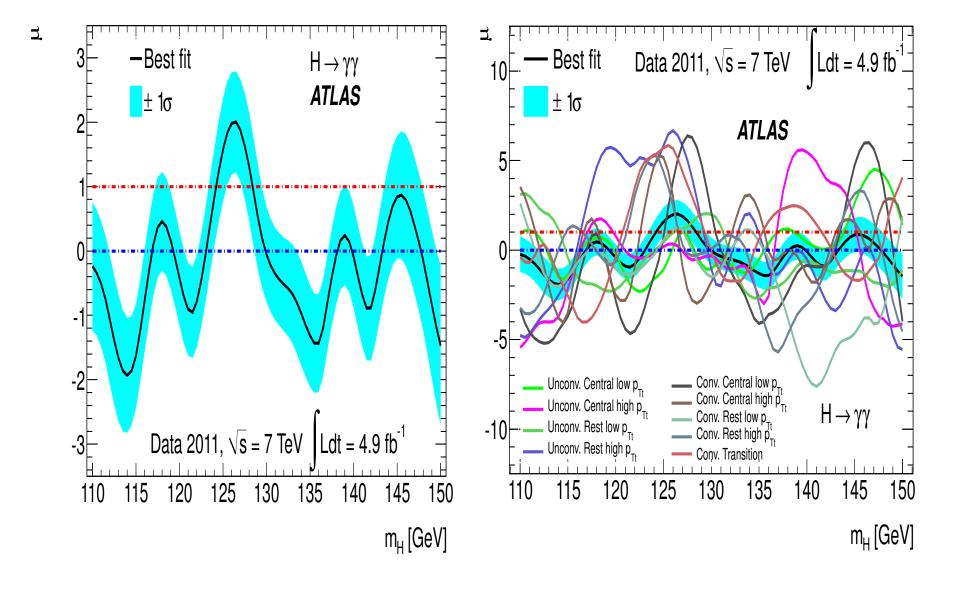
Dec: 2011 Consistency with BG-Only: Low Mass

Maximum deviation for $m_{H} \sim 126 \text{ GeV}$

Local p₀-value: $1.9 \times 10^{-4} = 3.6\sigma$ (~2.8 σ H \rightarrow yy, 2.1 σ H \rightarrow 4I, 1.4 σ H \rightarrow IvIv)

```
Expected for M_H=126 GeV: ~ 2.4\sigma (~ 1.4\sigma per channel)
```

Global p_0 -value: 0.6% (2.5 σ) mass range 110 to 146 GeV 1.4% (2.2 σ) mass range 110 to 600 GeV Max. deviation for $m_H \sim 119$ and 124 GeV


Minimal local p-value: 0.5% (2.6 σ)

Global p-value 2.6% (1.9σ) mass range 110 to 145 GeV 38% (0.6σ) mass range 110 to 600 GeV

M. Schumacher

Search for SM Higgs Boson at LHC

ATLAS: Best Fit for Signal Strength in $H \rightarrow 2$ Photons

