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Overview

Part 1:
Tools and literature
Measurements and 
presentation of data
Distributions
Central limit theorem
Error propagation

Part 2:
Systematic errors
Estimation

Likelihood
Maximum likelihood 
examples

Least squares
Straight line fit

Bayesian statistics
Confidence levels
(Hypothesis testing)
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Systematic Errors

How should we handle 
systematic errors both within a 
single measurement and when 
we combine measurements?
Error usually due to a flaw or 
inaccuracy in measuring 
apparatus, e.g. a voltage 
offset
With systematic errors 
repeating measurements does 
not help, i.e. measurements 
are not independent of each 
other and CLT does not apply 
when combining them
More data can help you to 
determine them better

Systematic error is not a 
systematic mistake – if we 
know a measurement should 
be corrected by 1.05 ± 0.03
Not making the correction is a 
systematic mistake
Should correct data by 1.05 
and take uncertainty (0.03) as 
systematic error
Often correction made and 
then for systematic error 
uncorrected data used – 
this is probably an 
overestimate
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Avoiding or Minimising 
Systematic Errors

Order of measurements
Do not measure current at voltages of 0,1,2,...,10 V
Much better 7,3,4,6,9,1,... V, i.e. in a random order to 
minimise effects of apparatus drift – does not get rid of 
effects, but randomises them
Worry about hysteresis

For absolute value measure sometimes coming from above and 
sometimes from below
For slope always come from same side

Cross-checks
Redundant triggers
Different ways of determining energy scale – test 
beam, particle masses, pT balance etc.
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Sanity (Consistency) Checks

Decide beforehand if a procedure is a consistency 
check or evaluation of an uncertainty
Make as many sanity checks as you can
Do not blindly rely on Monte Carlo – check it with data
Use a sample of events where no effect is expected

e.g. wrong charge combinations for a mass peak
Measure CP asymmetry for sample of events known to have no 
asymmetry

Vary your fitting procedure and look for changes in result

Is the variation consistent with a statistical fluctuation?
Yes: consistency check
No:  source of systematic uncertainty

What is consistent?
A−B

2
=A

2
−B

2
If better technique, B,

 saturates the MVB
 – see later
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Sanity Checks

What to do if a sanity check fails?
Check your analysis
Check it again
Explain exactly what you do to someone else 
and then realise what your mistake is 
(amazing how often this works!)
Incorporate as a systematic error as last 
resort

What if sanity (consistency) check OK?
Do not incorporate it into your systematic 
error
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Evaluating Systematic Errors

Consider possible sources at planning stage of 
experiment

Make intelligent guesses on their size;
Consider how to calibrate your devices and check 
the calibrations
Do not forget environmental factors 
(temperature, pressure, humidity, …)

Make sure you record them!
Check for effects by repeating under same 
nominal conditions at random times, then e.g. 
plot vs. temp. and evaluate correlation 
coefficient
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Evaluating Systematic Errors

Theory errors are tough to evaluate
You have 2 possible models – what is the 
systematic error?

Take average and spread as error – rarely 
done
Use one model and deviation of 2nd model as 
systematic error

Quote as one-sided or two-sided error?
Once again probably an overestimate
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Evaluating Systematic Errors

What about tolerances?
Your technician constructs chamber with a tolerance of 0.2 mm
What do you give for error on a length of 10 mm? ±0.2 mm?
NO! Prob. distribution is flat, so use error of 0.4/√12 = 0.12 mm

Suppose you have 2 (theory/MC) models A,B
If they are extreme scenarios (truth always between A and B), 
take variance to be that of a uniform distribution with width A-B

If they are typical scenarios (JETSET vs. HERWIG) error given by:

=
∣A−B∣

2
⋅@=

∣A−B∣

2

=
∣A−B∣

12

Factor √[N/(N-1)] to get
unbiased estimate of σparent
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Cut variation
Most used (and abused?) 
way of assigning 
systematic uncertainty due 
to incomplete  detector 
simulation etc
Vary your cuts by a bit 
(how much?)
Measure new data yield
Measure new MC efficiency
Take difference in 
corrected yield as 
systematic uncertainty
Common recommendation 
is to vary cut by resolution 
of variable

p 105 0.835 125.8
110 0.865 127.2
100 0.803 124.5

p+p
p-p

Is the variation 
consistent with a 
statistical fluctuation?

I would say yes, and it 
should not be counted 
as a systematic effect

sys=127.2−124.5/2=1.4
x=125.8±1.4

pp−p
2

=
110

0.8652−
105

0.8352

pp−p=1.9
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Low statistics
Warning I: Cut variation does not give an precise 
measure of the systematic uncertainty due 
data/MC disagreement!
Your systematic error is dominated by a potentially 
large statistical error from the small
number of events in data between 
your two cut alternatives

This holds independent of
your MC statistics

You could see a large 
statistical fluctuation
→ error overestimated
You could see no change
due to statistical fluctuation 

 error underestimated

Taken from W. Verkerke
BND 2004
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Data and Simulation
give same efficiency
for nominal and
alternate cut, so 

zero systematic 
is evaluated 
(in limit N→∞)

even though data and
MC are clearly different

Different dependence
Warning II: Cut variation doesn’t catch all types of data/
MC discrepancies that may affect your analysis
Error may be fundamentally underestimated
Example of discrepancy missed by cut variation:

Nominal cut

Data

Alternate cut

Cut variation is a good sanity check, 
but not necessarily a good estimator for systematic uncertainty

Simulation

Taken from W. Verkerke
BND 2004
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Combining Systematic Errors

Evaluated and estimated the size of errors, now 
combine them
As the errors are independent of each other 
combine them in quadrature
In many case 1 or 2 dominate – try to reduce them
Don't forget that most of the values you give are 
not much better than educated guesses!
As statistical and systematic errors are again 
independent of each other can use CLT and 
combine in quadrature; better to quote them 
separately:

See at a glance their relative size
A=−10.2±0.4(stat.)±0.3(sys.)
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Combining Systematic Errors

Common (but not statistically correct) is to 
estimate systematic errors conservatively, 
i.e. probably overestimated. Probably OK if 
you have forgotten a source, but who says 

that the size of the source you have 
forgotten is compensated by your 

conservative estimate?
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Propagating Systematic Errors

Use techniques learned above
Consider 2 measurements x1, x2 common 
systematic error, S, and random errors σ1, σ2

Set up covariance matrix?
Treat x1 as if is made of 2 parts: x1

R with error σ1 
and x1

S with common error S; same for x2

x1
R, x2

R uncorrelated

x1
S, x2

S 100% correlated

x1
R, x2

S are independent
V (x1) = 〈x1

2
〉−〈x1〉

2

=〈(x1
R
+ x2

S
)
2
〉−〈(x1

R
+ x2

S
)〉

2

= σ1
2
+ S2



02/03/12 Statistical Methods - Ian C. Brock 16

Propagating Systematic Errors

Have variance, what about covariance?

3 of 4 cross products involve xR

x1
S and x2

S are 100% correlated

Error matrix is:

We are now set – can propagate errors, calculate 
correlation coefficients etc.

V  = (σ1
2
+ S2 S2

S2 σ2
2
+ S2)

cov (x1, x2) = 〈x1 x2〉−〈x1〉〈x2〉

= 〈(x1
R
+ x1

S
)(x2

R
+ x2

S
)〉−〈(x1

R
+ x1

S
)〉 〈(x2

R
+ x2

S
)〉

= 〈x1
S x2

S
〉−〈x1

S
〉 〈x2

S
〉  = S2
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Propagating Systematic Errors
If systematic error is fraction of the value we have 
S1 = x1, S2 = x2

Follow same procedure to calculate covariance 
between x1 and x2 – still completely correlated:

More generally, if we have several measurements and 
some are correlated between all, while others are 
correlated between a subset, follow same procedure 
and split measurement into more parts.
This is the standard procedure. You always try to split 
the measurements into parts that are either 
independent or completely correlated – much easier 
than trying to determine correlation coefficients.

V  = (σ1
2+ ϵ2 x1

2 ϵ2 x1 x2

ϵ2 x1 x2 σ2
2+ ϵ2 x2

2)
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Estimation

Have a set of measurements
Know how to combine them
What is the “best” way to combine them
Process is called estimation in statistics

An estimator is a procedure 
applied to the data sample 

which gives a numerical value 
for a property of the parent 

population or, as appropriate, a 
property or parameter of the 

parent distribution
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Properties of Estimators

Make a measurement or series of measurements; 
results are samples drawn from a parent population 
that contains all possible results
Want to measure a property of the parent distribution, 
but can only sample it
From sample want to estimate the true value of the 
property  and how far wrong our measurement may be
Could be that sample is drawn from a distribution 
function that arises from some basic law. Function has 
both properties and parameters
Often not distinguished, for Poisson μ is both, for 
Gaussian μ and σ are both
For binomial p is a parameter, but its mean and width 
are np and np(1-p)
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Properties of Estimators

Isn't best method obvious? Often but by no 
means always the case. 
As soon as distributions get non-Gaussian 
things get more complicated. May not even be 
possible to define “best” estimator!
Important properties for an estimator:
Consistency
Bias
Efficiency
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Properties of Estimators

Define a few (more) symbols
Trying to measure property a
Estimator of a denoted by â
Apply estimator â to N measurements of 
sample
â can and will vary from true value. 
Law of large numbers says effect should get 
smaller and smaller as N → ∞, provided 
measurements are independent
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Estimators for Average 
Student Height

1)Sum heights and divide  by # of measurements, N
2)Sum heights of 1st 10, divide by 10, ignore the rest
3)Sum heights and divide by (N-1)
4) Ignore data, answer is 1.80 m
5)Add tallest and shortest and divide by 2
6)Height for which ½ students above and ½ below 

(median)
7)Multiply heights and take Nth root (geometric mean)
8)Take most popular height (mode)
9)Add 2nd, 4th, 6th and divide by N/2 (or (N-1)/2)

All are valid estimators (even 2,3,4)
Which is “best”?
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Consistency

Consistency means that difference between estimator 
and true value should vanish for large N

Are estimators 1) to 9) consistent?
2) and 4) not consistent, 
3) OK as for large N dividing by N or (N-1) gives same 
result 
1)     Law of large numbers implies

1), 3), 9) therefore consistent
5), 6), 7), 8) need more work. Whether they are 
consistent depends on how we want to define average 
and shape of distributions. For symmetric distributions 
all the same, but not for asymmetric

=
x1x2xN

N
=x

x  as N∞

lim
N→∞

â=a
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Bias

â may be smaller or larger than a, but hope that 
chances that it overestimates a are same as 
underestimates a
This is called an unbiased estimator:
Apply to 1)
clearly unbiased

3) biased
2) and 9) unbiased
Still not enough to find “best” estimator

〈 â〉=a

〈μ̂〉 = 〈 x1+ x2+…+ xN

N 〉
=

〈x 〉+ 〈x〉+ …+ 〈x〉
N

=
N 〈x 〉

N
 = μ



02/03/12 Statistical Methods - Ian C. Brock 25

Efficiency + Robustness
Estimator is efficient if its variance is small, i.e. want 
estimator that is in general as close as possible to true 
value
cf 9) and 1): 
9) only uses half of data, so its variance will be twice as large

Harder to quantify is robustness.
How stable is estimator against large measurement 
fluctuations, wrong data, wrong assumptions for the 
underlying  p.d.f. etc?
Maximum likelihood discussed below is usually most 
efficient estimator, but can be very sensitive to form of 
p.d.f.
Efficiency of estimator depends on p.d.f. Often the case 
that the most efficient estimator is biased – needs to be 
corrected
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Likelihood
Set  of measurements    + estimator â of the 
true quantity a
Apply estimator and hope that         is close 
to a; depends on the measurements xi

To decide on estimator proceed in other direction: 
Assume a form for the p.d.f.; data values xi are drawn 
from this distribution
Distribution is a function of x and of a, i.e. we treat a as 
a parameter rather than a property of the distribution
Can then make statements such as “If I take a sample 
of N values from this distribution and use it to calculate

  on average the value â of  that I find will 
be <â>”

x1 , x2 ,…, xN

â(x1 , x2 ,…, xN)

â(x1 , x2 ,… , xN)



02/03/12 Statistical Methods - Ian C. Brock 27

Likelihood

Probability to get a series of measurements

Called likelihood and depends on both measurements 
and true value a
Can define expectation value for any function of whole 
sample

x1 , x2 ,… , xn

Lx1, x ,2 , xN ;a = P x1 ;aP x2 ;a⋯P xN ;a

= ∏
i=1

N

P xi ;a

〈 f x1, x2,, xN 〉 = ∫⋯∫ f x1, x ,2 , xN Lx1, x2,, xN ;adx1 dx2dxN

= ∫ f LdX

〈 a〉 = ∫ a LdX

〈 a2
〉 = ∫ a2 LdX

Expectation 
value of 

estimator
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Likelihood

Consistency for estimator:
Often depends on p.d.f
6), 7), 8) all consistent if distribution is symmetric
5) also then consistent
1), 3) and 9) always consistent
Bias can be evaluated in same way. Often easy to 
correct.
If     is unbiased
If estimator is consistent, bias vanishes for N → ∞
Efficient estimator?
If we know P(x; a) can calculate V(â)

lim
N∞

〈 a−a〉=0

〈 â〉=b ,then (â−b)

V ( â)=〈 â2〉−〈 â 〉2
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Minimum Variance Bound 
(MVB)

Can show that V(â) is limited by:

Useful relationship:

If for some estimator, â, V(â) is equal to MVB, 
estimator is “efficient” ‒ it satisfies the MVB
Efficiency given by MVB/V(â)

V  a
1

〈d ln L /da2〉

〈 d
2 ln L

d a2 〉=−〈 d ln Ld a 
2

〉

MVB
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Example 1 – Estimators of Mean

Sample mean is a consistent and unbiased 
estimate of true mean:

 is standard deviation of parent distribution,
N is number of data values

μ̂=x̄
V (μ̂)=σ2

/N
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Gaussian:

Likelihood depends on parameter , hence:

Expression does not depend on xi, so:

Example 1 – Estimators of Mean

d2 ln L

d2
=−

N


2

MVB=
2

N

Variance from CLT,
so estimator is efficient

P x i ; =
1

 2
e−xi−

2
/22

ln L = −∑
i

xi−
2

22
−N ln 2
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Example 1 – Estimators of Mean

Uniform distribution, where limits are not known
Sample mean is consistent and unbiased, but not 
most efficient.
More efficient is 2 most extreme measurements:

Variance goes as 1/N2 instead of 1/N for sample 
mean!

μ̂ =
1
2 [min(xi)+max (xi)]

V (μ̂) = W 2

2(N+ 1)(N+ 2)

Reason to use head/tail for
position in microstrip detectors
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Landau Distribution

Landau – particle passing 
through material. dE/dx 
follows Landau – large tail 
to high energies

Use sample mean to 
estimate true mean
Long tails lead to inefficient 
estimator

Better is to ignore a certain 
fraction of the 
measurements in the tail
e.g. mean energy loss 7.5, 
width 1.0,
20 measurements
Simulation shows efficiency of 
mean can be increased from 
44% to 55% (width of 
estimator distribution is 0.35), 
if highest 9/20 measurements 
are ignored
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Landau Distribution

Use Moyal to simulate Landau

Peaks at 0 and has mean 1.27
Use transformation to 
generate any Ē and width, W

Distributions similar, but not 
such a great match!
CERN library has a better 
function G110: 
Landau Distribution DENLAN

x=1.27E−E /W

f  x dx=
1

2
exp −12  xexp−x 
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Truncated Means
Truncated mean usually 
used as estimator of 
dE/dx in tracking 
chambers
Similar arguments apply 
for other distributions 
with long tails, e.g. 
Double exponential and 
Breit-Wigner (Cauchy)
Plot efficiency vs. r, 
(1-2r)N/2 largest and 
smallest measurements 
ignored
r=0    means median,
r=0.5 means sample mean
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Estimator of Variance
Assuming true mean is 
known use:

Consistent and unbiased

If  not known use 
sample mean?
Biased:

Bessel's correction:

Is a consistent and bias 
free estimator

V x=
1
N
∑ xi−

2

〈V x〉=
N−1

N
V x≠V x

V x=s2
=

1
N−1

∑ xi−x 
2

Variance of estimator?
Have to evaluate:

Complicated
For large N simplifies to

Can also apply Bessel's 
correction if necessary 

〈V̂ (x)2〉−〈V̂ (x)〉2

V V x  = 1
N

[ 〈x−4〉−〈x−2〉2 ]

= 24

N
 for Gaussian
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Estimator of Standard Deviation

Obvious estimator:

Consistent, but may be 
biased
Calculate variance by 
propagating errors – for 
N reasonably large

Make 40 
measurements find 
estimate for  of 6.0, 
can quote result as:

 = V x 
= s  with Bessel

V   =
〈x−4〉−〈x−2 〉2

4 N2

=
2

2 N
 for Gaussian

s =


2N−1
 for unbiased est.

=6.0±0.7
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The Different 

Standard deviation of a data sample:

Unbiased estimator:

For parent distribution (same symbol, but in 
terms of expectation values):

Know the true mean:

= 1
N∑i

xi−x 
2

=〈x2
〉−〈x 〉2

= 1
N−1∑i

xi−x 
2

= 1
N∑i

xi−
2

Effect of 
differences small 
for large N, but 
be careful for 

small N
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Maximum Likelihood
Value of â which maximises

Determine value of a for which probability of 
measurements x1, x2, ..., xN is maximum. Sum is 
easier to use than product, so usually take 
logarithm
In fact use -ln L, as most programs minimise 
rather than maximise
Consider a set of 20 measurements of angular 
distribution which should follow

Normalised for range -1 ≤ θ ≤ +1, so gives probability directly

L(x ,1 x2,… , xN )=∏ P (xi ;a)

P (x ;a)=
1
2
(1+ ax) with x=cosθ
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Angular Distribution
Look at likelihood as a 
function of a:

Maximum 
around â = -0.6

Slope = 0

2nd derivative 
flatIf 2nd derivative flat, 

likelihood follows a parabola,
so likelihood function is Gaussian
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Particle Lifetime

Unstable particle with 
lifetime . Measure 
decay time – should 
follow:

How to we estimate 
lifetime from 
measurements, ti? 

Differentiate w.r.t. the 
“true” value :

Can therefore 
estimate ML 
analytically; it is just 
sample mean of 
measurements

P t ; = 
1


e−t /

ln L = ∑
i

ln1 e−t i /
= ∑

i
[−t i


−ln]

d ln L
d

= ∑
i [−

t i

2
−

1
 ]

0 = ∑
i [−

t i

2−
1
 ] at max.

 =
1
N∑i

t i
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Particle Lifetime

Experiment unrealistic, 
as it is assumed that all 
possible times can be 
measured. 
Suppose we have an 
upper limit, T 
(probably have both):

Change in p.d.f. is 
small, but ...

Differentiating and 
setting to 0, we obtain:

Can't be solved 
analytically anymore
Extend in a similar way 
for lower and upper 
limits

P t ; = 
1


e−t /

1−e−T /


ln L=∑
i
[−ln−

ti


ln 1−e−T /]

=
1
N∑i

t i
1
N∑i

T e−ti / 

1−e−t i/ 
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ML for a Gaussian

Suppose we have {xi} 
measurements of a 
quantity, each with a 
different precision, i

xi taken from 
Gaussian with mean  
and i – we want to 
find , and i are 
known

Differentiate w.r.t.  
and set to 0:

Exactly same as form 
derived before for 
weighted mean

ln L=∑
i

−ln  i2 −∑
i

xi−
2

2 i
2

∑
i 

xi−

 i
2  = 0

  = 
∑

i

xi / i
2

1/i
2
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ML for a Gaussian

Set of measurements from a distribution with a mean ; 
resolution of each measurement is same but unknown.
Want to estimate  and 
Differentiate ln L w.r.t  and 

∑ xi− = 0

∑
xi−

2


3 −∑

1


= 0

 = 1
N∑ xi


2 =

1
N∑ xi−x 

2

This was 1st guess at estimator 
for variance, but it is biased!
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Properties of ML Estimator

Usually consistent, but often biased!
Invariant under parameter transformations
In above example estimator for variance is:

Same as that of standard deviation squared
Reason is that we are always looking for turning point 
of likelihood. At this point a = a1, but also a2 = a1

2

Such an invariance is incompatible with an unbiased 
estimator as df/da is involved in transformation

Can show that for large N the ML estimator fulfils 
the MVB and is therefore an efficient estimator


2 = 1

N∑ xi−x 
2
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Errors on ML Estimator

Can show that

provided d2 ln L / da2 is almost constant for a close to a0

In large N limit log likelihood is a parabola and 
likelihood follows a Gaussian. Standard deviation of 
Gaussian is 1/√A, which is also the standard 
deviation of the estimator â
Can read off errors on  from plot of ln L vs. a
Note that this does not only apply to large N limit, 
as even if ln L(a) is not parabolic we can 
presumably find a variable a' which is

Lx ,1 x2, , xN ;a∝exp−A [a−ax1, x2,, xN ]
2
/2

A=−〈 d
2 ln L
da2 〉=−d2 ln L

da2 ∣
a=a
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Errors on ML Estimator

1 error reduces ln L by 0.5
2 error reduces ln L by 2.0
3 error reduces ln L by 4.5
In case of transformation to 
a'  corresponds to ln L(a') 
changing by 0.5
Calculate corresponding a; 
errors are no longer 
necessarily symmetric
Same procedure for 2 
limits, but 2 errors not 
necessarily 2x bigger for 
finite N
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ML and Histograms

So far considered each 
measurement individually
Measurements often 
binned into histogram with 
bin width x
Want to fit prob. dist. to 
contents of each bin
Distribution gives # events 
in each bin
Actual number distributed 
according to a Poisson with 
expectation value j for 
each bin

How do we obtain j?

Depends on parameter 
a. Write down ln L:

P n j ; j=
 j

n j e j

n j!

ln L = ∑
j=1

Nbin

ln  j
n j e− j

n j! 
= ∑

j=1

Nbin

[n j ln j− j−ln n j! ]

= ∑
j=1

Nbin

[n j ln
 j

n j

− j−n j]const

Nice form for numerical 
maximisation – also 

works for nj = 0
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ML for Several Variables

Generalise previous method. Have to solve p 
simultaneous equations, where p is number of 
variables:

Covariance is given by matrix inversion of the 
matrix of 2nd derivatives:

∂ ln Lx1, x2,, xN ;a1,a2, ,ap

∂a j

=0

cov−1
ai ,a j=−〈 ∂

2 ln L
∂ai∂a j

〉=〈 ∂ ln L
∂ai

∂ ln L
∂a j

〉=− ∂
2 ln L
∂ai∂a j

∣
a= a
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ML for Several Variables

Look at fit results etc. 
using forms such as 
contour plots
Such plots also 
illustrate if the 
parameters are 
correlated or not 
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Extended Maximum Likelihood

Up to now ML worked 
with a total prob. of 1
Implicitly assumes we 
know number of events
If we measure something 
for fixed length of time, 
number of events no 
longer fixed
Introduce extended 
maximum likelihood 
(EML)
Total number of events 
given by:

Expect  events, 
probability to observe N 
is given by:

Form likelihood:

Maximise to determine a. 
Increasing normalisation 
of Q increases L; -ν term 
compensates, 
maximisation finds 
balance

∫Q x ;adx=

e−ν νN

N !

ln L = ∑ [ ln P (xi ; a) ]−ν+ N ln ν

= ∑ [ ln ν P (xi ;a)]−ν

= ∑ lnQ (xi ;a)−ν
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Extended Maximum Likelihood
Properties of EML and ML 
very similar: bias for 
finite N and 
asymptotically efficient
Can also generalise to 2 
or more parameters
As for lifetime, 
acceptance affects 
normalisation of prob. 
dist.  If algebra too hard, 
use EML instead of ML 
and let overall 
normalisation vary
Arrange things so that 
normalisation changes, 
but shape does not

ML and EML solutions will 
then have same solution 
for max and fitted # of 
events  is same as 
“true” number N

See that this is 
empirically the case for 
numerical 
maximisation

Drawback is errors are 
larger than for ML, as 
problem believes that 
number of events can 
fluctuate
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Comments on ML

ML is sensible way to 
estimate values of unknown 
parameters. Returns the 
values for which 
measurements are most 
probable (not the most 
probable values for the 
parameters)

☺ In limit N → ∞ ML estimator 
is unbiased and Gauss 
distributed about a with a 
variance that fulfils MVB

☺ No loss of information. 
Binning not necessary

☺ Straightforward to extend to 
many parameters

  For small N, ML estimator 
usually biased

  You have to know form for 
P(x; a) and it had better be 
correct. ML gives you no 
information about how well 
your data fit the form you 
are using

  Rarely possible to evaluate 
d ln L / da analytically. 
Have to use numerical 
minimisation techniques, 
e.g. MINUIT. Don't forget to 
include normalisation 
factors when differentiating
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Least Squares

G.U. Yule & M.G. Kendall, An Introduction to 
Statistics (1958):
It was formerly the custom, and it is still so in works on 
the theory of observations to derive the method of least 
squares from certain theoretical considerations, the 
assumed normality of the errors of observations being 
one such. It is, however, more than doubtful whether the 
conditions for the theoretical validity of the method are 
realised in statistical practice, and the student would do 
well to regard the method as recommended chiefly by 
its comparative simplicity and by the fact that it has 
withstood the test of experience. 
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Least Squares

Consider a set of r data 
(x,y) pairs. xi known 
exactly, yi have errors i

y are given by f(x), which 
depends on one or more 
parameters to be 
estimated
Invoking CLT, distribution 
of yi about true y is given 
by Gaussian. Prob. for a 
certain yi for a given xi is:

Form ln L:

To maximise 
likelihood minimise 1st 
term;

P (y i ;a)=
1

σi√2π
e−(y i− f (xi ;a))

2 /2σi
2

ln L=−1
2
∑ [ (y i− f (xi ; a))

σi ]
2

−∑ lnσi√2π

∑ [ (y i− f (xi ;a))
σi ]

2
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Least Squares

Can either derive 
principle or regard it as 
a sensible estimator. 
Need to minimise:

Find value of a for 
which 2 is minimum

Solve this for a to find 
estimator â
Also use formula to find 
error on estimator as 
solution gives â as a 
function of yi. Errors on 
yi known so can use 
error propagation
Easy to extend to 
several variables a1, a2, 
ap with p simultaneous 
eqn. with p unknowns

χ2=∑ [ (y i− f (xi ;a))
σi ]

2

d2

da ∣a=a = 0

∑
1
 i

2

df xi ;a

da [y i− f xi ;a]∣
a=a

= 0
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A Word of Caution
What are i?

Take a binned 
histogram – number 
of entries in each bin 
follows a Poisson
Variance is then i; as 
this is not known used 
ni instead?

Suppose we expect 5 
entries in a bin – 
Poisson error is 
√5 = 2.23

Fluctuations mean we 
sometimes have 3 
entries and 
sometimes 7
Assign errors of √3 = 
1.73 and √7 = 2.64. 
Weight given to 
entries differs by a 
factor 7/3 = 2.33!

Warning: Should really have ≥10 
entries per bin in order for least 
squares method to be valid, if 

measured frequency distribution 
used to estimate the errors!
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Straight Line Fit
Function:

Assume errors on data 
points are all same; 
minimise:

Differentiate w.r.t. c, then 
m and set to 0:

f x ;m,c =mxc

∑
i

y i−mx i−c2

−2∑
i

(yi−m̂xi−ĉ) = 0

̄y−m̂ ̄x−ĉ = 0
−2∑

i

xi(yi−m̂xi−ĉ) = 0

x y−m̂x2
−ĉ x̄ = 0
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Straight Line Fit

Solve for    and

Last form is much 
easier to remember 
and shows that line 
goes through centre 
of gravity of points 

m̂ =
x y− ̄x ̄y

x2−( ̄x)2

=
cov (x , y)

V (x)

ĉ =
x2 ̄y− ̄x x y

x2
−( ̄x)2

= ȳ−m̂ x̄

m c

( x̄ , ̄y )

Determine errors via 
error propagation:

m̂ = ∑i

(xi−x̄)

N (x2
−( x̄)2)

yi

V (m̂) = ∑
i [

(xi−x̄)

N (x2−( ̄x)2) ]
2

σ2

= σ2

N (x2−( x̄)2)

V (ĉ) = ∑
i [

(x2− ̄x xi)

N (x2−( ̄x)2) ]
2

σ2

= σ2 x2

N (x2−( x̄)2)
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Straight Line Fit

Covariance given by:

See that if xi are scaled 
such that  the 
estimators
are uncorrelated
Note that quantities such 
as V(x), V(y) are for 
whole sample and not a 
single measurement

cov  m, c=
2
x

N x2
−x2 

 m, c=−
x

x2

m, cx=0

2=
V y 


2 1−x , y
2 

Can calculate 2 without 
determining m, c
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Weighted Straight Line Fit

Now have to minimise:

Equations are same as before except simple averages 
become weighted averages and N becomes sum of 
weights:

∑
i

y i−mxi−c2

i
2

∑ y i

N

∑ y i /i

2

∑1 /i
2


2


2
=
∑ i

2
/i

2

∑ 1/i
2
=

N

∑1 / i
2
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Extrapolation

Want to know value of y 
for a given value of x 
including error:

Covariance term is 
important   are 
anticorrelated
If      are not 
correlated, so better to 
fit:

y= mxc
V Y =V  cX2V  m2 X cov  m, c 

m, c

x=0 m, c

y= mx−x c'

V Y =


2
X−x2

N x2
−x2




2

N

x

   x−x
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Systematic Errors

In addition to random error we have a common 
systematic error, S, on all points?

Points are now correlated, so have to use full error 
propagation formula

Apply to estimator for m:

as
If S is constant 2nd term is 0, so we get previous error from slope 
– as expected as systematic error can only move all points up or 
down

V f=GV x G̃

m̂=∑i

(xi−x̄)

N (x2
−( x̄)2)

y i

cov (yi , y j)=δij σ
2
+ S2

V (m̂) =
1

N (x2
−( ̄x)2)

∑
i
∑

j

(x i−x̄)(x j−x̄)cov (y i , y j)

=
1

N (x2
−( x̄)2) [∑i (x i−x̄)σ2

+∑
i
∑

j

(xi−x̄)(x j− ̄x)S2

]
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Systematic Errors

Variance for estimator of c is more work...

Result is as one would probably naively expect
Analysis can be extended to case where 
different points have different sizes of error (or 
errors are relative and not absolute) etc.

V (ĉ) = x2σ2

N (x2
−( x̄)2)

+ S2
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Least Squares and Low 
Statistics

True 2 to be minimised

Much simpler numerically is: 

Be careful with # entries per 
bin!
What to do about bins with 
zero entries?

Usual solution (PAW/Root?) 
is to ignore them!
Mn_Fit gives 0 entries and 
error of 1 – better but not 
totally satisfactory


2
=∑

j=1

Nbin n j− f j
2

f j


2
=∑

j=1

Nbin n j− f j
2

n j

Area from 2 fit 10% too low!
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2 Distribution

2 small means measurements 
are close to expectations, large 
indicates something may have 
gone wrong. To quantify it 
need form:

n is number of points in sum 
minus number of variables 
adjusted to minimise 2, called 
number of degrees of freedom 
(n.d.f)

P (χ2 ;n) =
2−n/2

Γ (n/2)
χ2(n /2−1)e−χ2

/2

Γ (x+ 1) = x!

x! =∫
0

∞

ux e−u du

Mean n
Variance 2n
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Probability Definitions

Frequency definition:
Perform experiment N times
Outcome A occurs M times
As N → ∞, M/N tends to limit 
defined as P(A)

Set of all possible cases 
called collective or 
ensemble
Probability is a property of 
both experiment and 
collective
Supposes it is possible to 
repeat experiment many 
times under identical 
conditions

Conditional probability 
p(a|b) is probability for a 
given that b is true
Bayes theorem (Rev. 
Thomas Bayes 1763) uses 
construction

gives

Probability for b regardless 
of a is: 

p a∣bp b=P a∧b=p b∣apa

p a∣b=
pb∣apa

p b

p b=p b∣ap ap b∣a[1−p a]
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Bayesian Statistics
Example (from Barlow):
Cherenkov counter to separate  from  K. 
Arrange refractive index such that  produces 
Cherenkov light while K does not – threshold 
Cherenkov
Probability for detector to give a signal for  
95%
Probability to get accidental signal from K 6%
Particle beam contains 90%  and 10%  K
Use conditional probability to evaluate 
probability that particle is  or  K if we see a 
signal and if we do not:
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Bayesian Statistics

See a signal – probability that it is from a ?

With signal pretty sure it is a pion. 
Probability also not very sensitive to beam purity and 
efficiency.
What is probability that particle is a K?

Fine to use method to identify , but not for K

p ∣signal =
p signal∣

p signal∣p p signal∣K p K 
p 

= 0.95
0.95×0.900.06×0.10

×0.90 = 99.3%

p K∣no signal =
p no signal∣K 

p no signal∣p p no signal∣K p K 
p K 

= 0.94
0.05×0.900.94×0.10

×0.10 = 67.6%

p K∣signal=0.7%
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Bayesian Statistics
Above calculation used frequency definition
What about question such as:

Given a particular experimental result, what is 
probability that theory is true – try to quantify our 
“degree of belief”:

If prob. for a result given a certain theory is 0, then 
result disproves theory as then also
Result unlikely given theory, reduces prob. theory is 
correct
Qualified by initial prob. that theory is correct
Probability that one gets a particular result – to get 
this necessary to consider all alternatives and sum 
probabilities

p theory∣result=
p result∣theory

p result 
p theory 

p theory∣result=0
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Bayesian Statistics
Often think we are using frequency definition, but be 
aware that Bayesian interpretation often implied
Measure mass of electron as 520 ± 10 keV/c2

Claim true mass close to 520 keV/c2 and lies with 68% 
probability between 510 and 530 keV/c2

Does not agree with freq. definition – electron has only 
one mass and measurement either agrees with it or not

Have to use Bayesian statistics to say something about 
true mass. If we know nothing about electron mass, 
take probability distribution for mass to be flat:

Use Bayes theorem to turn it around:

Assumes that p(me) is constant – if not information should 
be included before inverting

p (m∣me)∝e−(m−me)
2 /2σ2

p (me∣m)∝e−(m−me)
2 /2σ2
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Bayesian Statistics
If we are trying to measure 
the value of a parameter a 
and have measured a value 
x, Bayes theorem can be 
written as:

Gives prob. that a 
parameter has a value a, 
given a measurement x, in 
terms of the prob. that we 
measure x given a 
particular value of the 
parameter
Can determine the latter 
using a likelihood fit

p (a∣x)=p (x∣a)⋅
p (a)
p (x)

To say something about 
“true” value need to say 
something about p(x) and 
p(a). 
p(x) is prod. density for data – 
fixed and can be absorbed 
into normalisation
p(a) interpreted as “degree of 
belief”, usually called the 
prior
p(a|x) called posterior
Know nothing about p(a) – 
take a uniform distribution
Otherwise have to include 
information
Betting is a good example, odds are 
way of quantifying degree of belief
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Confidence Levels

Want to be able to say 
with a certain level of 
certainty that a result lies 
in a particular range or is 
less than or greater than 
a certain value
e.g. bags of rice filled 
with a mass of 500g with 
a standard deviation of 
5g, can say with 95% 
confidence level (c.l.) that 
weight of any particular 
bag is between 490 and 
510g

In general want to say a 
value x lies with a certain 
confidence, C, between 2 
values x- and x+

3 possible conventions
1) Symmetric interval

2) Shortest interval
3) Central interval

P (x−≤x≤x+ )=∫
x−

x+

P (x)dx=C

x−=−x−

∫
−∞

x−

P (x)dx=∫
x+

+ ∞

P (x)dx=(1−C)/2
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Confidence Levels

Central interval mostly used
For symmetric distributions 
definitions are equivalent
Often interested in one-
sided limits:

For Gaussian take +1.64 to 
define 95% c.l. upper limit and 
±1.96 to define a 95% central 
confidence interval

P x≤x=∫
−∞

x−

P x dx=C  or 

P x≥x−=∫
x−

∞

P x dx=C
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Confidence Levels and 
Estimation

Want to know value of a 
parameter X,
have measured value x, 
know resolution of 
apparatus V(x)
Want to turn our 
knowledge about x and 
V(x) into a c.l. statement 
about X
Simply saying that with 
68% X lies between x- 
and x+ contains 
Bayesian assumption 
about prior

Example:
Weight of an empty dish 
is 25.30 ± 0.14 g
Add sample of powder 
and weigh again
Weight now 
25.50 ± 0.14 g
Powder 
0.20 ± 0.20 g? 
16% chance weight of 
powder is negative?
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Confidence Levels and 
Estimation

Proceed more carefully
Parameter has a value X, 
which we are trying to 
measure
Measurements, x, follow a 
prob. dist. P(x; X)
For each value of X, can 
construct a confidence 
interval such that 90% 
measurements in range
Limits vary for different X – 
draw as a function of x 
Region between curves 
called confidence belt
Construct diagram before 
you see the data!
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Confidence Levels and 
Estimation

Make a measurement
Draw vertical line from 
this value up to x- curve

Read off upper limit X+

Meaning is that if real X is 
X+ or greater, prob. to get 
a measurement x- or 
smaller is 5%
Similarly for x+ curve

Quote 90% confidence 
interval as X- to X+
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Confidence Levels and 
Estimation

Quote 90% confidence interval for X as range X- to X+

Means in the frequency interpretation, if you make a 
large # measurements, 90% of them will be between x- 
and x+ by construction

If we use each of measurements to set limits on true 
value of X, statement on range will be true 90% or time
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Confidence Levels for 
Gaussians

Conversion from horizontal 
to vertical scale when 
P(x;X) follows a Gaussian
Measurement x with known 
resolution , have to find 
values X- and X+ such that

Turn around and say x lies 
1.64 (90% c.l.) above X-:

∫
x

∞
1

 2
e−x '−X−

2
/22

dx '=0.05 and

∫
−∞

x
1

 2
e−x '−X

2
/22

dx '=0.05

∫
−∞

X−

1
 2

e−x'−x−
2
/22

dx '=0.05 Curves in general figure are straight
lines with unit gradient for Gaussian
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Confidence Levels for Poisson

Observe n events, which 
follow a Poisson with 
(unknown) mean N – want 
confidence interval
90% c.l. upper limit defined 
by

Meaning: If true value of N 
really N+, prob. of getting n 
or smaller is 10%. If  larger 
prob. of getting n is smaller

Invert things for lower limit

∑
r=n+ 1

∞

P (r ; N + )=0.90  or

∑
r=0

r=n

P (r ; N + )=0.10
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Confidence Levels with Constraints

Measure a quantity that you 
know cannot be less than or 
greater than a certain value 
for physics reasons
Measure mass of neutrino 
from tritium endpoint – you 
can set a limit on m


2, so it 

must be positive
Suppose we measure

Want to set a 95% c.l. limit 
on mass squared – go up 
from measured value by 
1.64

Limit is 0.01?!

m

2
=−0.32±0.20eV2

/c4

If I has measured -0.22, 
limit would be 0.11 and with 
-0.39 limit would be 
negative
Such a low limit is not 
strictly wrong, but it is 
certainly dishonest!
Way out of dilemma is to 
use Bayesian approach.
Have measurement, x, with 
a Gaussian error and a true 
value X. Invoke:

p (X∣x)=
p (x∣X )p (X )

p (x)
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Confidence Levels with Constraints

p(x|X) is prob. dist. for 
getting a result x given a 
true value X and can be 
calculated
p(x) is probability of result 
and can be absorbed into 
normalisation
p(X) usually assumed to 
be flat, hence: 

Know X cannot be <0

p(X) is therefore a step 
function and we have:

With this equation can 
calculate c.l.
For case above find that 
Prob. of exceeding 1.6σ is 
0.055
Prob. of exceeding 2.78σ 
is 0.00274 (5% of 0.055).
95% c.l. upper limit is
-0.32 + 2.78 x 0.2 = 0.24

p X∣x =
e−x−X 2 /22

  2

p X∣x=
e−x−X 2 /22

∫
0

∞

e−x−X '2 /22

dX '
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Confidence Levels with Constraints

This is an honest upper limit.
If another variables used, X2 or 1/X upper limit 
would be different, as assumption of ignorance 
means different things for different variables
A flat distribution in X is no longer flat as a 
function of X2

Confidence levels may appear to be simple, but 
in practice you have to be very careful and 
sometimes only sensible way to proceed is to 
use Bayesian statistics
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Student's t Distribution

Up to now assumed that 
we know the resolution of 
our measurements
What if make several 
measurements (e.g. of 
mass) and use them to 
estimate resolution?
Have to use measured 
mean as true mean not 
known. Unbiased 
estimator is:

(x - )/  is distributed 
according to unit 
Gaussian

Different distribution, due 
to uncertainty on 
Distribution of t follows 
Student's t distribution:

Gaussian-like for large N, 
larger tails for small N

n is n.d.f. N if  is known, 
(N-1) if unbiased estimator 
used

=s= N
N−1

x−x 2

t=
x−


f t ;n=
 n1 /2

 nn /2
1

1t2/nn1/2
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Hypothesis Testing

Want to know if a certain hypothesis or theory 
agrees or disagrees with measurement.
Need to pose question (hypothesis) and then 
test whether hypothesis is accepted or rejected
Note that most of the time this can only be 
done with a certain level of confidence
Often necessary to consider alternative 
hypothesis
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Hypothesis Testing

Hypotheses can be simple:
Data drawn from a Poisson with mean 4.5

Composite:
Data drawn from Poisson with mean >4.5
Data drawn from Poisson with mean that has 
to estimated from data

Sometimes make a wrong decision:
Type I Error: You reject a true hypothesis
Type II Error: You accept a false hypothesis
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Significance
How often a Type I error 
happens is called 
significance of the test
Evaluate some quantity x 
to test hypothesis that 
prob. dist. has some form 
PH(x).

Divide range of x into a 
region we accept and one 
we reject. Acceptance 
region PH(x) is large

Probability to reject true 
hypothesis determined by 
integrating  over rejection 
region
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Power

If alternative hypothesis 
is  a simple hypothesis 
(no free parameters), its 
prob. dist. PA(x) is known

Want to know prob. we 
will accept this false 
hypothesis
Evaluate

integrate over 
everywhere outside 
rejection region
Power of test defined as 
(1-)

=∫
A

P Ax dx
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Tests

Ideally want test for which both  and  small
Possible if prob. dist.  very different

Often hard to achieve
Have to decide which error you are most happy 
with

Beware of test with small  
20 people make a measurement wanting to test 
if a hypothesis is true
One of them likely to reject hypothesis at 5% 
level
OK, except he publishes and other 19 don't 
bother!
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Tests

Test for which  and  small as possible called 
Neyman-Pearson test. Only possible if 
hypothesis and alternative are simple
Want to make  small for given 
Large

for given

Test sounds nice, but rarely used as alternative 
hypothesis is usually not simple 

∫
A

P Axdx=1−

∫
R

PH xdx=
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Null Hypothesis

Sounds negative, but 
probably most important 
and most used 
hypothesis
What does it mean when 
you say your data are 
consistent with a new 
effect being there: global 
warming, new 
elementary particle, ...
Meaningless statement, 
unless you can rule out 
all other alternative 
hypotheses with a certain 
c.l.

As so often in statistics you 
have to argue backwards!
Make Null Hypothesis that 
there is no effect and see if 
your data can rule out this 
hypothesis
If null hypothesis succeeds 
you have not shown it is 
right, you can just say that 
if some new effect is there, 
it is at a level too small to 
be observed by your 
experiment and you can set 
some c.l. on the size of it
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Looking for New Physics

How to look for new 
physics?
Often histogram many 
quantities and look for a 
peak
Statistical fluctuations 
mean if you look at 
enough histograms you 
will see a peak 
somewhere

Is it significant?
Is it consistent with null 
hypothesis?

Simple example – radioisotope 
decays.
See 87 events, expect 54 
background
Fluctuations √54 = 7.35
Difference (87-54)/7.35 = 4.5 
probably have a signal
Method OK, if you know expected 
energy.
If not? Resolution of 3 keV and 
look for peak in 1 MeV range.
Discovery c.l. lower than highest 
c.l for null hypothesis by:

C.L.disc≈1−1000 /31−C.L.max
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(Some of the) Topics Left Out
Separating signal and background
Goodness of fit – Run test, Kolmogorov test
Fraction fitting
Linear least squares
BLUE (Best Linear Unbiased Estimator)
Useful when combining different measurements 
with correlations
Profile likelihood
MINUIT
Comparing samples
Smoothing and spline fitting
...
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Conclusions
At all stages of data analysis think about what you 
are doing!
Convince yourself that the statistical methods you 
are using are appropriate
Likelihood is very powerful, but don't forget 
robustness
Fitting:
Don't blindly use least squares or likelihood option
Try to avoid correlated parameters 
If possible fit for the parameter you want m2 and 
not m as c.l. limits are not the same
What level should such lectures start at? Can one 
assume binomial, Poisson, etc. are known?
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