
Statistical Methods in Particle 
Physics

Heidelberg+LHCb Workshop
Neckarzimmern

Ian C. Brock
22nd February 2012

Part 1



22/02/12 Statistical Methods - Ian C. Brock 2

CV of Statistics for Data Analysis
TASSO PhD – unbinned likelihood fit to muon pair 
forward-backward asymmetry
Crystal Ball – mostly hardware
CLEO – development of Mn_Fit for fitting (3S) decays to 

 and invariant mass spectrum – visualisation of 
MINUIT fit results; ended up as competition for PAW

Over 20 years later, Mn_Fit still used in CLEO
L3 – LEP EWWG heavy flavour combinations
ZEUS – looking for new physics
Lecturing – Statistical Methods of Data Analysis
CLEO-c – fitting series of D decays
ATLAS – how to combine measurements
So far mostly Fortran and Mn_Fit, learning C++ and 
Root
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Overview

Part 1:
Tools and literature
Measurements and 
presentation of data
Distributions
Central limit theorem
Error propagation

Part 2:
Systematic errors
Estimation

Likelihood
Maximum likelihood 
examples

Least squares
Straight line fit

Bayesian statistics
Confidence levels
(Hypothesis testing)
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Tools and Literature

Spreadsheets
Gnuplot etc.
PAW, Mn_Fit

Fortran based
“Intuitive” 
commands – can 
be abbreviated

Root
Full power and 
complexity of 
C++

Origin etc.

R. Barlow: Statistics
A. Frodeson et al: Probability 
and Statistics in Particle Physics.
G. Cowan: Statistical Data 
Analysis
S. Brandt: Data Analysis
W. Verkerke: Data Analysis BND 
2004
www.slac.stanford.edu/~verkerke/bnd2004/data_analysis_2004_v17.ppt

I. Brock - Statistical Methods of 
Data Analysis
pi.physik.uni-bonn.de/~brock/teaching/stat_ss11

MINUIT manual
Mn_Fit manual
pi.physik.uni-bonn.de/~brock/mn_fit.html

http://www.slac.stanford.edu/~verkerke/bnd2004/data_analysis_2004_v17.ppt
http://pi.physik.uni-bonn.de/~brock/teaching/stat_ss11
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Measurements
Experimental 
measurement:

value ± error
Calculate result by 
combining data
Calculate errors
Compare with 
expectations

Questions:
How to get to result?
How to ESTIMATE the 
errors?
Sources of error?

Statistical (random 
fluctuations)
Systematic (apparatus, 
procedure, ...)

Random (e.g. 
intercalibration)
Bias (e.g. energy scale)
Forgotten/unknown 
effects

Measure
g = 9.70 ± 0.15 m s-2

Expect
g = 9.81 m s-2

How accurately can you estimate the error?
<10% is doing well ⇒  ≤2 significant digits for error!
I never want to see g = 9.7034 ± 0.1545 m s-2
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Interpretation of Error

Engineer:
9.55 ≤ g ≤ 9.85
i.e. error indicates 
tolerance or range of 
allowed values

Physicist:
Repeat experiment 
many times
9.55 ≤ g ≤ 9.85
68% of the time
9.40 ≤ g ≤ 10.00
95% of the time
(assuming Gaussian 
errors)

Measure g = 9.70 ± 0.15 m s-2

Warning: When evaluating systematic errors, tendency is often
to treat them as a tolerance and not as a Gaussian error!!
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Possible Conclusions
Good experiment

Agrees with expectations

New discovery
Book ticket to Stockholm

Measurement not good 
enough

How can we improve it?

Which reaction is the 
correct one? 

Measurement does not 
agree with expectations.
Why?

Experiment wrong
Errors underestimated
New discovery

Such questions often only 
asked in this case!
Even worse:

Which error sources 
move result in “right” 
direction?

Warning: You are supposed to be objective!
Do not let subjective prejudices influence your considerations
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PDG Experience

Just in case you 
thought 
professional 
physicists were 
completely 
objective and 
scientific in their 
approach!
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Data and Their Presentation

Data can be qualitative or quantitative
Only discuss quantitative data here
Discrete (integers, head/tail)

Use list, set or bar chart:
HHHTTHHHTHTTTHHTTHHT
{11 heads, 9 tails}
Bar chart

Continuous (reals/floats)
Histogram common
Height ∝ number of entries? Usual way to fill histograms
Area ∝ number of entries? Appropriate for cross-sections

Heads Tails
0

2

4

6

8

10

12
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Continuous Data

Histogram by far most 
common way of showing data
Bin width?

Appropriate for statistics
Similar to resolution 
(measurement accuracy)
Enough bins to see structure

Don't forget to label the axes
Make sure scale and labels are 
large enough
Pie charts are a good way to 
split data in different 
categories
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Two Dimensions

Area ∝ Entries

Surface

Lego

Table

“Scatter plot” with # dots  bin entries also popular
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Colour and Two Dimensions

Root:
// Set colour palette
Int_t *colors = 0;
gStyle->SetPalette(1, colors);

Colour can be very 
helpful,

but don't forget
most journals are in 

black & white!



22/02/12 Statistical Methods - Ian C. Brock 13

Morals
Presentation should be:

Simple
Clear
True

Do
Indicate suppressed 0
Label the axes
Give units and binning
Make sure scale and labels 
are large enough (usually 
not!)

Do not use style of almost all 
stock market plots!

Don't forget: There are lies, damn lies and statistics
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Statistics

Average values
Spread
Covariance and 
correlations
Common distributions

Binomial, Poisson, 
Gauss

Central limit theorem
Weighted mean

PDG averaging
Combining errors
Error propagation
Systematic errors
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Mean

Set of unbinned data (measurements)
{ x1, x2, ..., xN }

Mean is:

For binned data

nj entries in bin

xj bin centre

x̄=
1
N
∑
i=1

N

xi

x̄=
1
N
∑
j=1

Nbin

n j x j

xj

nj

x

f̄ =
1
N
∑
i=1

N

f (x i)

f̄ =
1
N
∑
j=1

Nbin

n j f (x j)

f  is any function of x
e.g. f = ax, f = x2



22/02/12 Statistical Methods - Ian C. Brock 16

Alternative Average Values

Mode - most probable value
Fine for  high statistics; 
fluctuations large for low statistics
Well suited for skew distributions, 
e.g. Landau
(charge deposited in thin material)

Median - half data points are below and half above
Odd # measurements? – middle value
Even # measurements? – arithmetic mean of central 
2 values
Binned data? - centre of bin 
for which < ½ data below and < ½ data above

Geometric mean
Harmonic mean

Rarely used in 
particle physics

Median

Mode

Mean
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Characterising the Spread

Variance:

Standard Deviation

σ≡√V (x)=√x2
−x̄2

V (x) =
1
N
∑

i
(x i−x̄ )

2

=
1
N
∑

i
(xi

2
−2x i x̄+x̄2)

=
1
N
∑

i

xi
2
−

1
N

2 x̄∑
i

xi+
1
N

x̄2∑
i

1

= x2
−2 x̄2

+x̄2

= x2
−x̄2

Iterative formula for 
evaluating spread

V N=
(N−1)

N
V N−1+

(x−x̄N−1)
2

N

Be careful of computer 
precision. Often good to take 

a rough estimate of the 
mean

(x−x0)
2
=(x−x̄)2+( x̄−x0)

2
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R.M.S. and FWHM + Higher Orders

R.M.S. = Standard deviation for above definition
FWHM (full width half maximum)

Useful for asymmetric distributions or ones with 
long tails
Problems with fluctuations with low statistics
For a Gaussian: FWHM = 2.35 

Skewness (tests for asymmetry)

Moments:
rth moment rth central moment 

γ(x) =
1

N σ3∑
i

(x i−x̄ )
3 =

1
σ3 (x−x̄)3

1
N
∑

i

xi
r 1

N
∑

i

xi−xr
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Several Variables

Know how to plot 2 variables
Mean and spread of each can also be calculated
How do we characterise dependence on each 
other?

Gaussians all
have same σ
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Covariance and Correlation

Data sample with pairs of variables:
{ (x1, y1), (x2, y2), .., (xN, yN) }

Calculate    as before
Covariance tells you dependence on each other:

If     variables are independent

x̄ , ȳ ,V (x) ,V (y )

cov (x , y ) =
1
N
∑

i

(xi−x̄)(y i− ȳ)

=
1
N
∑

i

xi y i−
∑ xi

N
∑ y i

N
= x y−x̄⋅ȳ

x y= x̄⋅ȳ
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Covariance and Correlation

Covariance is generalisation of variance
Carries dimensions

Scale it by standard deviation

Correlation coefficient, 
-1 ≤  ≤ 1

-1: 100% anticorrelated,
   e.g. weight/stamina, 
   BR for 2 decay channels
0: uncorrelated
   e.g. height/IQ
+1: 100% correlated
   e.g. height/weight

Independent of scale &
a shift in zero point

ρ =
cov (x , y)

σxσ y

=
x y−x̄ ȳ
σxσ y

If x and y correlated
their variances are also affected
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Covariance Matrix

One measurement has n elements with values:
x(1), x(2), ..., x(n)

Define covariance between each pair:

These form elements of an n x n symmetric 
matrix:

Correlation matrix is dimensionless form of 
covariance matrix:

cov x i , x j=x i , x j−xi⋅x j

V ij=cov(x(i) , x( j))

V ij=
cov (x(i), x( j))

σiσ j
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Deriving a Distribution

Throw a coin in air 4 times, probability to get 4,3,2,1,0 
heads:
Expected probability distribution:
Do exercise by hand or on a computer
(see next slide)
As number of measurements increases
observation closer and closer to
expectation
Law of large numbers:

P 4 =
1

16

P 3 =
1
4

P 2 =
3
8

P 1 =
1
4

P 0 = 1
16

lim
N →∞

N (r )=N⋅P (r )
Expected
frequency

distribution

Observed
frequency

distribution

Sample
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Frequency Distributions

Number of Heads
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Expectation Value

Expectation value (as for histogram)

Law of large numbers:

Properties:

Add:

Multiply: 

(unless f and g are independent)

〈r 〉=∑
r

r P (r )

lim
N∞

f=〈 f 〉

〈 f +g〉=∑ ( f +g)P (r )=∑ f P (r )+∑ g P (r )=〈 f 〉+〈g〉

〈 f g〉≠〈 f 〉 〈g〉
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Probability Density Function

Continuous variables
P(x) dx is probability to get a value between x and 
(x + dx)
Total probability must be 1

For continuous distributions

∫
−∞

+∞

P (x)dx=1

〈x 〉 =∫
−∞

+∞

x P (x)dx

〈 f 〉 =∫
−∞

+∞

f (x)P (x)dx

Measurement → Mean
Theoretical distribution → Expectation value

x
〈r 〉
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Binomial Distribution

Processes where result can be one of two values, 
e.g. tossing coin, detector channel fires or not
Prob. success = p, Prob. Failure = (1-p) = q
n trials, prob. for r successes and (n-r) failures?
Number of ways to select r from n is: n! / r! (n-r)!
r successes with prob. p;
(n-r) failures with prob. (1-p)
⇒ total prob. pr(1-p)(n-r)

Properties: P (r ;p ,n)=pr (1−p)(n−r ) n!
r !(n−r )!

〈r 〉 = np
V = np(1−p)
σ = √np(1−p)

Convention: 
Before “;” variable of interest
After “;” dependencies
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Examples
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Detector Efficiency

Single layer efficiency in 
design 95%
Need 3 points to 
reconstruct track
Track reconstruction 
prob. with:
3 layers: P(3;0.90,3):
(0.95)3 = 0.857
4 layers: P(3;0.90,4) + 
P(4;0.90,4)
4(0.95)3(0.05)1 + (0.95)4 = 
0.986
5 layers: P(3;0.90,5) + ...
10(0.95)3(0.05)2 + 
5(0.95)4(0.05)1 + (0.95)5 = 
0.999

What if real detector 
efficiency is only 90%?
3 layers: 0.729
4 layers: 0.948
5 layers: 0.991

Moral:
Redundancy is very 
important!
Always consider effect of 
lower than expected 
efficiency + dead channels 
when designing detector
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Measuring Detector Efficiency
Prob. to get a hit in all 
5 detector layers is:
P(5; p,5) = (p)5

Use this to measure and 
extract p

Now calculate 
P(4; p,5), P(3; p,5),...
Compare with 
measurements
If agree all layers are 
equally efficient and your 
measured value is OK

Suppose detector has a 
crack covering 5% solid 
angle. What would we 
measure?

In order to have a 
binomial distribution 
inefficiency must be 
randomly distributed

P 0 ;p ,5 =0.05
P 1,2,3,4 ;p ,5 =0.0
P 5 ;p ,5 =0.95

Warning: Do not blindly use a distribution
Think about assumptions made for a distribution to be valid
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Poisson Distribution

Discrete events, but number of trials unknown
Derive as limit of binomial with n → ∞

Properties:

2 classes of event each follow a Poisson, sum is 
also Poisson distributed with expectation value:
 =  A + B

P (r ;λ)=e−λ
λ

r

r !

∑
r=0

∞

P (r ;λ) = 1

〈r 〉 = λ

V = λ
σ = √λ
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Poisson Characteristics

For  < 1 , most probable value is 0!
For  integer,  and   ( -1)  are equally likely

  is mean, but not mode!

Poisson is wider than binomial
Long tail to +ve values for small λ
Shape changes significantly as  increases
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Neutrinos from supernovae
No of events 0 1 2 3 4 5 6 7 8 9

No. of intervals 1042 860 307 78 15 3 0 0 0 1

Prediction 1064 823 318 82 16 2 0.3 0.03 0.003 0.0003
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Gaussian Distribution

Most common, useful 
and used distribution 
in statistics:

Can always express it 
in a standard form:

P (x ;μ ,σ)=
1

σ √2π
e−(x−μ)2/2σ2

P (z ;0,1)=
1

√2π
e−z2/2

where z=(x−μ)/σ

FWHM = 2.35
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Properties of Gaussian

Can calculate mean and 
variance analytically

For large mean Poisson 
and Gaussian similar
How big?
Some say  = 5 ; 
I prefer  = 10

∫
−∞

+∞

P (x ;μ ,σ)dx = 1

∫
−∞

+∞

x P (x ;μ ,σ)dx = μ

∫
−∞

+∞

(x−μ)2 P (x ;μ ,σ)dx = σ
2

Definite integrals from 
tables or numerical 
integration

Get one-sided errors from 
two-sided value for which 
double the area lies 
outside

68.3% of area in range μ±σ

95.5% of area in range μ±2σ
99.7% of area in range μ±3σ

90% of area in range μ±1.65σ

95% of area in range μ±1.96σ
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Uniform Distribution

Express as probability density:

Evaluate variance

Often occur in detectors. 
Particle went through, but you do not know where.
Resolution is size of detector / √12

P (x) =
1

(b−a)
for a⩽x⩽b

= 0 elsewhere

V (x) = ∫
−∞

+∞

(x−x̄)2 P (x)dx

=
1

12
(b−a)2
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Central Limit Theorem

Take the sum, X, of N independent variables xi, 
where i=1,2,3,...,n
Each xi is taken from a distribution with mean μi 
and variance Vi (or i

2)

Distribution of X has following characteristics:

Expectation value:

Variance:

Tends to a Gaussian as N → ∞

〈X 〉=∑
i=1

N

μi

〈V (X )〉=∑
i=1

N

V i=∑
i=1

N

σi
2

This is why
Gaussian is so

important!
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The CLT at Work
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The CLT at Work

See that Gaussian 
really appears!
For it to work 
important that
V  ≫ Vi
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Measurement with Several 
Error Sources

Measured value:

For each error source

where       is the measurement error due to 
source k
CLT says that xi is Gaussian distributed around
      with variance given by sum of individual 
variances 

xi=〈xi〉+δ xi
(1)+δ xi

(2)+δ xi
(3)+δ xi

(N )

〈δ xi
(k)〉=0

σ i
(k)

〈xi〉
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Applications of CLT

Repeated measurements:
Expected value always the 
same: μ
Variance always the same: σ

Expected value of average
Measurement differs from 
expectation by
With more measurements 
get closer and  closer to true 
value as a function of 1/√N 

〈X 〉=∑μ=Nμ

x̄=X /N
〈 x̄ 〉=μ

V (x̄)=
1
N2∑V i=

σ
2

N
〈 x 〉

V  x
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Weighted Mean

How do you deal with 
measurements of same 
quantity that each have a 
different error?
e.g. measure speed with 
2 different radar devices
4 measurements with 
accuracy of ±4 ms-1 would 
give an error on average of 
±2 ms-1 
Give measurement with 
accuracy ±2 ms-1 4 times 
the weight of measurement 
with accuracy ±4 ms-1

General recipe: Each 
measurement is given a 
weight:

x̄ =
∑

i

xi
2/σi

2

∑
i

1 /σi
2

V (x̄) =
1

∑
i

1 /σi
2
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Are You Allowed to Average?

Is this reasonable??
No, neither of the 
measurements is within 1σ 
of the mean!

Throw out one of the 
results?
Remember:
2/3 measurements should be 
within 1σ; 1/3 should be 
outside
If more than 5% outside 2σ 
start getting suspicious

Don't forget the 
ozone hole:

v1 = 67±4ms−1

v2 = 53±2ms−1

v = 55.8±1.8ms−1

So unexpected was the 
hole that for several 

years computers 
analysing ozone data had 
systematically thrown out 

readings that should 
have pointed to its 

growth
New Scientist, 31 March 1988
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PDG Recipe

What is a reasonable 
estimate of error on 
mean when 
measurements vary by 
more than their errors 
indicate they should?
First calculate 
weighted mean
Then calculate 2:

If we expect each 
measurement to differ from 
its mean by about 1σ, 
expect 2 ≈ N 
2/(N-1) < 1: Everything OK, 
use simple weighted average
2/(N-1)  1≫ : Tough. Calculate 
average and guess error or do 
not average
2/(N-1) > 1: Some or all errors 
underestimated?

χ
2
=∑

i

(xi−x̄)2

σi
2
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PDG Recipe for 2/(N-1) > 1
Scale all errors by a factor:

What if we have small and 
large errors to combine?
Evaluate S using only 
measurements with small 
errors
Only use those errors for which

Large errors do not contribute 
to            but can make 
significant contribution to S

Correlations between 
measurements ignored here 
– can be taken into account

S=√χ2
/(N−1)

σ i<σ0=3√N σ x̄

Ideogram can be helpful

x̄ ,σ x̄

Measurement represented by
Gaussian with mean xi and
error σxi, area ∝ 1/σxi
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Combination of Errors
Measure a quantity, but 
want a physical 
parameter that is a 
function of that quantity
Simplest case f linear 
function of x
(variance V(x), error σx)

If f is an arbitrary function 
of x, make a Taylor 
expansion about point x0:

Taylor expansion has to 
be valid, i.e. df/dx 
constant within 2-3σ of x0

V  f  = 〈 f 2
〉−〈 f 〉2

= 〈axb2〉−〈axb〉2

= a2
〈x2

〉2ab 〈x 〉b2

−a2
〈x 〉2−2ab 〈x〉−b2

= a2 〈x2〉−〈x 〉2 
= a2V x

 f = ∣a∣ x

f (x)≈ f (x0)+(x−x0)(df
dx )x=x0

V ( f ) ≈ (df
dx )

2

V (x)

σ( f ) ≈ ∣df
dx∣σ(x)

f =axb
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Functions of Two or More 
Variables

Linear function:

General function – Taylor expansion:

f = axbyc
V  f  = a2 〈x2

〉−〈x 〉2 b2 〈y2
〉−〈y 〉2 2ab 〈x y 〉−〈x 〉 〈y 〉 

= a2V x b2V y 2abcov x , y 

V ( f ) = (df
dx )

2

V (x)+(df
dy )

2

V (y)+2(df
dx )(df

dy )cov (x , y)

σ f
2 = (df

dx )
2

σx
2+(df

dy )
2

σ y
2+2(df

dx )(df
dy )ρσxσ y
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Gaussian Error Propagation

If x and y are independent:

One example: A, B,  independent 
measurements with errors:

V ( f ) = (df
dx )

2

V (x)+( df
dy )

2

V (y)

σ f
2 = (df

dx )
2

σx
2+( df

dy )
2

σ y
2+(df

dz )
2

σz
2

y = AsinBcos
 y

2 = sin2
 A

2
cos2

B
2
Acos−Bsin

2
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Standard Formulae
f = x±y

V  f  = V x V y 
 f

2 =  x
2
 y

2

f = x / y

V  f  = 1y 
2

V x− x
y2 

2

V y 

 f

f 
2

=  x

x 
2

 y

y 
2

f = x y
V  f  = y2V xx2V y 

 f

f 
2

=  x

x 
2

 y

y 
2

f = x2

V  f  = 2x 2V x 

 f

f  = 2  x

x 

f = 1/x2

V  f  = − 2
x3 

2

V x

 f

f  = 2 x

x 

f = ln x

V  f  = 1x 
2

V x

 f =  x /x
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Efficiency

Particle through detector
Signal or no signal →  Binomial

With error propagation:
Need independent variables 
N1 = n, N1 + N2 = N 

What are V(N1), V(N2)?

Expect N1 =   N signals

For error propagation to work 
need error on N1 “small”, i.e. 
N1 “large”

For large N1 binomial → 
Poisson with mean N and 
variance N = N1

For N2 mean (1- ) N and 
variance (1- ) N = N2

ϵ = n/N
V (ϵ) = N ϵ(1−ϵ)/N2

σ ϵ = √ ϵ(1−ϵ)

N

 =
N1

N1N2

V  =
1

N1N2
4 N2

2V N1N1
2V N2

V  =
1

N1N2
4 N2

2 N1N1
2 N2

=
1−

N
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Efficiency
What is the variance if the measured efficiency is 0 or 
1?
Following formulae above set it to 0??
Mn_Fit follows formula originally built into program MULFIT 
from Paul Avery for all efficiencies:

This form make some assumptions about the “prior” - see 
Bayesian statistics and leads to a biased efficiency estimator, 
but it has a nice behaviour for n=0 and n=N!

If  = 0  or  = 1  add unbiased estimate of n/N to error:
Claim is that this gives a better estimate of the confidence 
interval

V =
n1N−n1

N3N22

 = n1N−n1

N3N22


1
N2
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Gaussian Error Propagation 
General Case

n variables:

Covariance for 2 variables in a sample defined as:

Consider 2 variables in a joint PDF
which describes probability to measure values

Expectation value for each variable given by

and  

x1 , x2 , x3 , , xn

cov xi , x j = xi−xi x j −x j 
= xix j −xi x j

P x1 , x2 , , xn

〈x(1)〉 , 〈x(2)〉 ,…, 〈x(n)〉

μ(1) ,μ(2) ,…,μ(n)

 i≡〈xi〉
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General Case

Define covariance as

Each of these is one element of the covariance 
(error) matrix:

Diagonal elements are variances.
Correlation matrix is dimensionless equivalent

cov (x(i) , x( j)) = 〈(x(i)−μi) (x( j)−μ j )〉
= 〈x(i)x( j)〉−μiμ j

V i j=cov xi , x j 

i j=
cov xi , x j 

 i j
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One Step Further!

Suppose we have m functions 
of n variables
Each x(i) has an associated variance, hence also fk.

The fk are correlated because they share x(i)

Variance on fk:

Expand fk as a Taylor series around expectation values 
for x(i)

fk are now a linear combination of the x(i), so can use 
previous variance formula:

f 1 , f 2 , , f m

x1 , x2 , , xn

V  f k=〈 f 2
〉−〈 f 〉2

f k≈ f k1,2, ,n ∂ f k

∂x1
x1−1 ∂ f k

∂x2
x2−2⋯

V  f k=∑
i  ∂ f k

∂ xi

2

V xi∑
i
∑
j≠i 

∂ f k

∂ xi
 ∂ f k

∂ x j 
cov xi , x j
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One Step Further!

But, fk and fl are also correlated, so we have to 
determine their covariance:

Looks horrible, try  a sum:

Getting better, try a matrix:

With Vx and Vf as error matrices for x and f

〈 f k f l〉−〈 f k〉〈 f l〉≈〈x1−1x1−1〉  ∂ f k

∂x1
 ∂ f k

∂x1
〈x1−1x2−2〉  ∂ f k

∂ x1
 ∂ f k

∂x2


cov  f k , f l=∑
i
∑

j  ∂ f k

∂xi
 ∂ f l

∂ x j
cov xi , x j 

Gki= ∂ f k

∂ xi


V f=GV x
G

m x m
n x nm x n
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Example 1

f  is a function of 2 variables x and y, with errors 
σx, σy and correlation coefficient ρ

G=∂ f
∂x

,
∂ f
∂ y 

V f = ∂ f
∂x

, ∂ f
∂ y   x

2 x y

 x y  y
2 

∂ f
∂x
∂ f
∂ y


V f = ∂ f

∂x 
2

x
2 ∂ f

∂ y 
2

 y
22 ∂ f

∂x ∂ f
∂ y x y

Standard error propagation formula with 2 variables
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Example 2

Transform track chamber measurement (r, ,  z) to 
Cartesian coordinates (x, y, z)
x = r cos ,  y = r sin, no error on r (chamber 
construction)

G=
cos −r sin 0
sin r cos 0

0 0 1
V x y z = cos −r sin 0

sin r cos 0
0 0 1

0 0 0
0 

2 0

0 0  z
2 cos sin 0

−r sin r cos 0
0 0 1

= 


2 y2 −
2 x y 0

−
2 x y 

2 x2 0

0 0  z
2 Plausible?

Close to =0 error only 
on y and not on x ☺

x, y correlation is -1 ☺
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