Statistical Methods in Particle Physics

Heidelberg+LHCb Workshop Neckarzimmern

A Fitting and Plotting Package Using MINUIT

Version 5_{-15}

21st February 2012

BONN-MS-99-02

Ian C. Brock

Physikalisches Institut der Universität Bonn Nußallee 12, D-53115 Bonn

 $\label{eq:embedded} EMail: Ian.Brock@cern.ch or brock@physik.uni-bonn.de \\ Homepage: http://pi.physik.uni-bonn.de/^brock/mn_fit.html \\$

Ian C. Brock 22nd February 2012

Part 1

CV of Statistics for Data Analysis

- TASSO PhD unbinned likelihood fit to muon pair forward-backward asymmetry
- Crystal Ball mostly hardware
- CLEO development of Mn_Fit for fitting Y(3S) decays to ππ and invariant mass spectrum – visualisation of MINUIT fit results; ended up as competition for PAW
 - Over 20 years later, Mn_Fit still used in CLEO
- L3 LEP EWWG heavy flavour combinations
- ZEUS looking for new physics
- Lecturing Statistical Methods of Data Analysis
- CLEO-c fitting series of D decays
- ATLAS how to combine measurements
- So far mostly Fortran and Mn_Fit, learning C++ and Root

Overview

- Part 1:
 - Tools and literature
 - Measurements and presentation of data
 - Distributions
 - Central limit theorem
 - Error propagation

- Part 2:
 - Systematic errors
 - Estimation
 - Likelihood
 - Maximum likelihood examples
 - Least squares
 - Straight line fit
 - Bayesian statistics
 - Confidence levels
 - (Hypothesis testing)

Tools and Literature

- Spreadsheets
- Gnuplot etc.
- PAW, Mn_Fit
 - Fortran based
 - "Intuitive"
 commands can
 be abbreviated
- Root
 - Full power and complexity of C++
- Origin etc.

- R. Barlow: Statistics
- A. Frodeson et al: Probability and Statistics in Particle Physics.
- G. Cowan: Statistical Data Analysis
 - S. Brandt: Data Analysis
- W. Verkerke: Data Analysis BND 2004

www.slac.stanford.edu/~verkerke/bnd2004/data_analysis_2004_v17.ppt

- I. Brock Statistical Methods of Data Analysis pi.physik.uni-bonn.de/~brock/teaching/stat_ss11
- MINUIT manual
- Mn_Fit manual pi.physik.uni-bonn.de/~brock/mn_fit.html

Measurements

- Experimental measurement: value ± error
 - Calculate result by combining data
 - Calculate errors
 - Compare with expectations

Measure $g = 9.70 \pm 0.15 \text{ m s}^{-2}$ Expect $g = 9.81 \text{ m s}^{-2}$

- Questions:
 - How to get to result?
 - How to ESTIMATE the errors?
 - Sources of error?
 - Statistical (random fluctuations)
 - Systematic (apparatus, procedure, ...)
 - Random (e.g. intercalibration)
 - Bias (e.g. energy scale)
 - Forgotten/unknown effects

How accurately can you estimate the error? <10% is doing well $\Rightarrow \leq 2$ significant digits for error! I never want to see $g = 9.7034 \pm 0.1545$ m s⁻²

Interpretation of Error

Measure $g = 9.70 \pm 0.15$ m s⁻²

- Engineer:
 - $9.55 \le g \le 9.85$
 - i.e. error indicates tolerance or range of allowed values
- Physicist:
 - Repeat experiment many times
 - $9.55 \le g \le 9.85$ 68% of the time
 - $9.40 \le g \le 10.00$ 95% of the time (assuming Gaussian errors)

Warning: When evaluating systematic errors, tendency is often to treat them as a tolerance and not as a Gaussian error!!

Possible Conclusions

- Good experiment
 - Agrees with expectations
- New discovery
 - Book ticket to Stockholm
- Measurement not good enough
 - How can we improve it?
- Which reaction is the correct one?

- Measurement does not agree with expectations.
- Why?
 - Experiment wrong
 - Errors underestimated
 - New discovery
- Such questions often only asked in this case!
- Even worse:
 - Which error sources move result in "right" direction?

Warning: You are supposed to be *objective!* Do not let *subjective* prejudices influence your considerations

PDG Experience

Just in case you thought professional physicists were completely objective and scientific in their approach!

Data and Their Presentation

- Data can be qualitative or quantitative
- Only discuss quantitative data here
- Discrete (integers, head/tail)
 - Use list, set or bar chart:
 - НННТТНННТНТТТННТТННТ
 - {11 heads, 9 tails}
 - Bar chart

- Continuous (reals/floats)
 - Histogram common
 - Height ∝ number of entries?
 - Area \propto number of entries?

Usual way to fill histograms Appropriate for cross-sections

Continuous Data

- Histogram by far most common way of showing data
- Bin width?
 - Appropriate for statistics
 - Similar to resolution (measurement accuracy)
 - Enough bins to see structure
- Don't forget to label the axes
- Make sure scale and labels are large enough
- Pie charts are a good way to split data in different categories

Colour and Two Dimensions

Morals

- Presentation should be:
 - Simple
 - Clear
 - True
- Do
 - Indicate suppressed 0
 - Label the axes
 - Give units and binning
 - Make sure scale and labels are large enough (usually not!)
- Do not use style of almost all stock market plots!

Don't forget: There are lies, damn lies and statistics

Statistics

- Average values
- Spread
- Covariance and correlations
- Common distributions
 - Binomial, Poisson, Gauss
- Central limit theorem
- Weighted mean

- PDG averaging
- Combining errors
- Error propagation
- Systematic errors

Mean

Set of unbinned data (measurements)

{ $x_1, x_2, ..., x_N$ } Mean is: f is any function of xe.g. f = ax, $f = x^2$ $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ $\bar{f} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$

- For binned data $\bar{x} = \frac{1}{N} \sum_{j=1}^{Nbin} n_j x_j$ $\bar{f} = \frac{1}{N} \sum_{j=1}^{Nbin} n_j f(x_j)$
 - n_i entries in bin
 - x_j bin centre

Alternative Average Values Median

Mode

- Mode most probable value
 - Fine for high statistics; fluctuations large for low statistics
 - Well suited for skew distributions, e.g. Landau (charge deposited in thin material)

- Median half data points are below and half above
 - Odd # measurements? middle value
 - Even # measurements? arithmetic mean of central 2 values
 - Binned data? centre of bin for which < $\frac{1}{2}$ data below and < $\frac{1}{2}$ data above
- Geometric mean
 Harmonic mean
 Harmonic mean

22/02/12

Statistical Methods - Ian C. Brock

Characterising the Spread

Variance:

Variance:

$$V(x) = \frac{1}{N} \sum_{i} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{N} \sum_{i} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})$$

$$V_{N} = \frac{(N-1)}{N} V_{N-1} + \frac{(x - \bar{x}_{N-1})^{2}}{N}$$

$$= \frac{1}{N} \sum_{i} x_{i}^{2} - \frac{1}{N} 2 \bar{x} \sum_{i} x_{i} + \frac{1}{N} \bar{x}^{2} \sum_{i} 1$$

$$= \frac{x^{2} - 2\bar{x}^{2} + \bar{x}^{2}}{\bar{x}^{2} - \bar{x}^{2}}$$
Be careful of computer
precision. Often good to take
a rough estimate of the
mean
 $(\overline{x - x_{0}})^{2} = (\overline{x - \bar{x}})^{2} + (\overline{x} - x_{0})^{2}$

R.M.S. and FWHM + Higher Orders

- R.M.S. = Standard deviation for above definition
- FWHM (full width half maximum)
 - Useful for asymmetric distributions or ones with long tails
 - Problems with fluctuations with low statistics
 - For a Gaussian: FWHM = 2.35σ
- Skewness (tests for asymmetry) $\gamma(x) = \frac{1}{N\sigma^3} \sum_i (x_i - \bar{x})^3 = \frac{1}{\sigma^3} \overline{(x - \bar{x})^3}$
- Moments:
 - rth_moment

 $\frac{1}{N}\sum_{i}x_{i}^{r}$

rth central moment

$$\frac{1}{N}\sum_{i}\left(x_{i}-\bar{x}\right)^{r}$$

22/02/12

Statistical Methods - Ian C. Brock

Several Variables

- Know how to plot 2 variables
- Mean and spread of each can also be calculated
- How do we characterise dependence on each other?
 Gauss with p = 0.000
 Gauss with p = 0.100
 Gauss with p = 0.100
 Gauss with p = 0.500

Gaussians all have same σ

Covariance and Correlation

- Data sample with pairs of variables:
 { (x₁, y₁), (x₂, y₂), ..., (x_N, y_N) }
- Calculate \bar{x} , \bar{y} , V(x), V(y) as before
- Covariance tells you dependence on each other: $cov(x, y) = \frac{1}{N} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$ $= \frac{1}{N} \sum_{i} x_i y_i - \frac{\sum_{i} x_i}{N} \frac{\sum_{i} y_i}{N}$

 $= \overline{x}\overline{v} - \overline{x}\cdot\overline{v}$

• If $\overline{x y} = \overline{x} \cdot \overline{y}$ variables are independent

Covariance and Correlation

Gauss with $\rho = 0.0000$

- Covariance is generalisation of variance
- Carries dimensions
 - Scale it by standard deviation
- Correlation coefficient, ρ

• $-1 \le \rho \le 1$

- -1: 100% anticorrelated, e.g. weight/stamina, BR for 2 decay channe
- 0: uncorrelated e.g. height/IQ
- +1: 100% correlated e.g. height/weight
- Independent of scale & a shift in zero point

Gauss with $\rho = 0.100$

If x and y correlated their variances are also affected

cov(x, y)

 $x y - \overline{x} \overline{y}$

Gauss with 0 = 0.500

Covariance Matrix

One measurement has n elements with values:

 $X_{(1)}, X_{(2)}, \dots, X_{(n)}$

- Define covariance between each pair: $cov(x_{(i)}, x_{(j)}) = \overline{x_{(i)}, x_{(j)}} - \overline{x_{(i)}} \cdot \overline{x_{(j)}}$
- These form elements of an n x n symmetric matrix:

 $V_{ij} = cov(x_{(i)}, x_{(j)})$

 Correlation matrix is dimensionless form of covariance matrix:

$$V_{ij} = \frac{cov(x_{(i)}, x_{(j)})}{\sigma_i \sigma_j}$$

Deriving a Distribution

•	Throw a coin in air 4 times, probability to get 4,3,2,1,0								
	heads:	P(4)	=	$\frac{1}{10}$					
٠	Expected probability distribution:	~ /		16					
*	Do exercise by hand or on a computer (see next slide)	P(3)	=	$\frac{1}{4}$					
•	As number of measurements increases observation closer and closer to	P(2)	=	$\frac{3}{8}$					
	expectation	P(1)	=	1					
•	Law of large numbers:	()		4					
	Observed frequency	P(0)	=	$\frac{1}{16}$					
	distribution $\lim_{N \to \infty} N(r) = N \cdot P(r)$		ted	ed					
	$N \rightarrow \infty$	freque distrib	ency utio	n					
22/0	12/12 Statistical Methods - Jan C. Brock			23					

universitätbo

Frequency Distributions

Expectation Value

• Expectation value (as for histogram) $\langle r \rangle = \sum r P(r)$

Law of large numbers:
$$\lim_{N \to \infty} \overline{f} = \langle f \rangle$$

- Properties:
 - Add:

$$\langle f+g \rangle = \sum (f+g)P(r) = \sum fP(r) + \sum gP(r) = \langle f \rangle + \langle g \rangle$$

Multiply:

 $\langle f g \rangle \neq \langle f \rangle \langle g \rangle$ (unless f and g are independent)

Probability Density Function

- Continuous variables
 - P(x) dx is probability to get a value between x and (x + dx)
- Total probability must be 1 $\int_{-\infty}^{+\infty} P(x) dx = 1$

For continuous distributions
$$\langle x \rangle = \int_{-\infty}^{+\infty} x P(x) dx$$

 $\langle f \rangle = \int_{-\infty}^{+\infty} f(x) P(x) dx$

$$\begin{array}{ll} \mbox{Measurement} & \rightarrow \mbox{Mean} & \overline{x} \\ \mbox{Theoretical distribution} & \rightarrow \mbox{Expectation value } \langle r \rangle \end{array}$$

Binomial Distribution

- Processes where result can be one of two values, e.g. tossing coin, detector channel fires or not
- Prob. success = p, Prob. Failure = (1-p) = q
- n trials, prob. for r successes and (n-r) failures?
 - Number of ways to select r from n is: n! / r! (n-r)!
 - r successes with prob. p;
 (n-r) failures with prob. (1-p)
 ⇒ total prob. $p^r(1-p)^{(n-r)}$
- Properties:

$$P(r;p,n) = p^{r}(1-p)^{(n-r)} \frac{n!}{r!(n-r)!}$$

$$\begin{cases} \langle r \rangle = np \\ V = np(1-p) \\ \sigma = \sqrt{np(1-p)} \end{cases}$$

Convention: Before ";" variable of interest After ";" dependencies

Examples

28

Detector Efficiency

- Single layer efficiency in design 95%
- Need 3 points to reconstruct track
- Track reconstruction prob. with:
 - **3 layers**: P(3;0.90,3): (0.95)³ = **0.857**
 - 4 layers: P(3;0.90,4) + P(4;0.90,4)4(0.95)³(0.05)¹ + (0.95)⁴ = 0.986
 - 5 layers: P(3;0.90,5) + ... 10(0.95)³(0.05)² + 5(0.95)⁴(0.05)¹ + (0.95)⁵ = 0.999

- What if real detector efficiency is only 90%?
 - 3 layers: 0.729
 - 4 layers: 0.948
 - 5 layers: 0.991
- Moral:
 - Redundancy is very important!
 - Always consider effect of lower than expected efficiency + dead channels when designing detector

22/02/12

Measuring Detector Efficiency

- Prob. to get a hit in all
 5 detector layers is:
 P(5; p,5) = (p)⁵
 - Use this to measure and extract p
- Now calculate
 P(4; p,5), P(3; p,5),...
 - Compare with measurements
 - If agree all layers are equally efficient and your measured value is OK

- Suppose detector has a crack covering 5% solid angle. What would we measure?
 - $\begin{array}{ll} P(0;p,5) &= 0.05 \\ P(1,2,3,4;p,5) &= 0.0 \\ P(5;p,5) &= 0.95 \end{array}$
- In order to have a binomial distribution inefficiency must be randomly distributed

Warning: Do not blindly use a distribution Think about assumptions made for a distribution to be valid

Poisson Distribution

- Discrete events, but number of trials unknown
- Derive as limit of binomial with $n \rightarrow \infty$
- Properties: $\sum_{r=0}^{\infty} P(r;\lambda) = \frac{e^{-\lambda}\lambda^{r}}{r!}$ V = λ $\langle r \rangle = \lambda$ $\sigma = \sqrt{\lambda}$
- 2 classes of event each follow a Poisson, sum is also Poisson distributed with expectation value: $\lambda = \lambda_A + \lambda_B$

Poisson Characteristics

- For $\lambda < 1$, most probable value is 0!
- For λ integer, λ and (λ -1) are equally likely
 - λ is mean, but not mode!
- Poisson is wider than binomial
- Long tail to +ve values for small λ
- Shape changes significantly as λ increases
 22/02/12 Statistical Methods Ian C. Brock

Neutrinos from supernovae

No of events	0	1	2	3	4	5	6	7	8	9
No. of intervals	1042	860	307	78	15	3	0	0	0	1
Prediction	1064	823	318	82	16	2	0.3	0.03	0.003	0.0003

Gaussian Distribution

 Most common, useful and used distribution in statistics:

$$P(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

 Can always express it in a standard form:

Properties of Gaussian

 Can calculate mean and variance analytically

$$\int_{-\infty}^{+\infty} P(x;\mu,\sigma) dx = 1$$
$$\int_{-\infty}^{+\infty} x P(x;\mu,\sigma) dx = \mu$$
$$\int_{-\infty}^{+\infty} (x-\mu)^2 P(x;\mu,\sigma) dx = \sigma^2$$

- For large mean Poisson and Gaussian similar
 - How big?
 - Some say $\lambda = 5$; I prefer $\lambda = 10$

- Definite integrals from tables or numerical integration
- $\begin{array}{lll} 68.3\% & \text{of area in range} & \mu\pm\sigma \\ 95.5\% & \text{of area in range} & \mu\pm2\sigma \\ 99.7\% & \text{of area in range} & \mu\pm3\sigma \\ 90\% & \text{of area in range} & \mu\pm1.65\sigma \\ 95\% & \text{of area in range} & \mu\pm1.96\sigma \end{array}$
- Get one-sided errors from two-sided value for which double the area lies outside

 $-\infty$

Uniform Distribution

Express as probability density:

$$P(x) = \frac{1}{(b-a)} \text{ for } a \leq x \leq b$$

= 0 elsewhere

Evaluate variance

$$V(x) = \int_{-\infty}^{+\infty} (x - \bar{x})^2 P(x) dx$$

= $\frac{1}{12} (b - a)^2$

- Often occur in detectors.
 - Particle went through, but you do not know where.
 - \bullet Resolution is size of detector / $\sqrt{12}$

Central Limit Theorem

- Take the sum, X, of N independent variables x_i, where i=1,2,3,...,n
- Each x_i is taken from a distribution with mean μ_i and variance V_i (or σ_i²)
- Distribution of X has following characteristics:
- Expectation value: $\langle X \rangle = \sum_{i=1}^{N} \mu_i$ • Variance: $\langle V(X) \rangle = \sum_{i=1}^{N} V_i = \sum_{i=1}^{N} \sigma_i^2$ This is why Gaussian is so important!

The CLT at Work

The CLT at Work

- See that Gaussian really appears!
- For it to work important that $V \gg V_i$

Measurement with Several Error Sources

Measured value:

$$x_i = \langle x_i \rangle + \delta x_i^{(1)} + \delta x_i^{(2)} + \delta x_i^{(3)} + \delta x_i^{(N)}$$

For each error source

 $\langle \delta x_i^{(k)} \rangle = 0$

where $\sigma_i^{(k)}$ is the measurement error due to source k

• CLT says that x_i is Gaussian distributed around $\langle x_i \rangle$ with variance given by sum of individual variances

Applications of CLT

- Repeated measurements:
 - Expected value always the same: μ
 - Variance always the same: σ

$$\langle \mathbf{X} \rangle = \sum \mu = N \mu$$
$$\bar{\mathbf{x}} = X/N$$
$$\langle \bar{\mathbf{x}} \rangle = \mu$$
$$V(\bar{\mathbf{x}}) = \frac{1}{N^2} \sum V_i = \frac{\sigma^2}{N}$$

- Expected value of average $\langle ar{x}
 angle$
- Measurement differs from expectation by $V(\bar{x})$
- With more measurements get closer and closer to true value as a function of $1/\sqrt{N}$ 22/02/12 Statistical Methods - Ian C. Brock

Weighted Mean

- How do you deal with measurements of same quantity that each have a different error?
- e.g. measure speed with
 2 different radar devices
 - 4 measurements with accuracy of ±4 ms⁻¹ would give an error on average of ±2 ms⁻¹
 - Give measurement with accuracy ±2 ms⁻¹ 4 times the weight of measurement with accuracy ±4 ms⁻¹

 General recipe: Each measurement is given a weight:

Are You Allowed to Average?

- $v_1 = 67 \pm 4 \,\mathrm{ms}^{-1}$
- $v_2 = 53 \pm 2 \,\mathrm{ms}^{-1}$
- $\bar{v} = 55.8 \pm 1.8 \,\mathrm{ms}^{-1}$
- Is this reasonable??
 - $\hfill \hfill \hfill$
- Throw out one of the results?
- Remember:
 - 2/3 measurements should be within 1σ; 1/3 should be outside
 - If more than 5% outside 2σ start getting suspicious

 Don't forget the ozone hole:

> So unexpected was the hole that for several years computers analysing ozone data had systematically thrown out readings that should have pointed to its growth New Scientist, 31 March 1988

PDG Recipe

- What is a reasonable estimate of error on mean when measurements vary by more than their errors indicate they should?
- First calculate weighted mean
- Then calculate χ^2 :

$$\chi^2 = \sum_i \frac{(x_i - \bar{x})^2}{\sigma_i^2}$$

- If we expect each measurement to differ from its mean by about 1σ, expect $\chi^2 ≈ N$
 - $\chi^2/(N-1) < 1$: Everything OK, use simple weighted average
 - $\chi^2/(N-1) \gg 1$: Tough. Calculate average and guess error or do not average
 - $\chi^2/(N-1) > 1$: Some or all errors underestimated?

PDG Recipe for $\chi^2/(N-1) > 1$

- Scale all errors by a factor: $S = \sqrt{\chi^2/(N-1)}$
- What if we have small and large errors to combine?
 - Evaluate S using only measurements with small errors
 - Only use those errors for which $\sigma_i < \sigma_0 = 3 \sqrt{N} \sigma_{\bar{x}}$
 - Large errors do not contribute to \bar{x} , $\sigma_{\bar{x}}$ but can make significant contribution to \pmb{S}
- Correlations between measurements ignored here
 - can be taken into account

Ideogram can be helpful

Measurement represented by Gaussian with mean x_i and error σ_{xi} , area $\propto 1/\sigma_{xi}$

Combination of Errors

- Measure a quantity, but want a physical parameter that is a function of that quantity
- Simplest case *f* linear function of *x* (variance V(x), error σ_x) *f*=*a*x+*b*

$$V(f) = \langle f^2 \rangle - \langle f \rangle^2$$

= $\langle (ax+b)^2 \rangle - \langle (ax+b) \rangle^2$
= $a^2 \langle x^2 \rangle + 2ab \langle x \rangle + b^2$
 $-a^2 \langle x \rangle^2 - 2ab \langle x \rangle - b^2$
= $a^2 [\langle x^2 \rangle - \langle x \rangle^2]$
= $a^2 V(x)$
 $\sigma_f = |a| \sigma_x$

22/02/12

 If f is an arbitrary function of x, make a Taylor expansion about point x₀:

 $f(x) \approx f(x_0) + (x - x_0) \left(\frac{df}{dx}\right)_{x = x_0}$ $V(f) \approx \left(\frac{df}{dx}\right)^2 V(x)$ $\sigma(f) \approx \left|\frac{df}{dx}\right| \sigma(x)$

 Taylor expansion has to be valid, i.e. *df/dx* constant within 2-3σ of x₀

Functions of Two or More Variables

Linear function:

$$f = ax+by+c$$

$$V(f) = a^{2}(\langle x^{2}\rangle - \langle x\rangle^{2}) + b^{2}(\langle y^{2}\rangle - \langle y\rangle^{2}) + 2ab(\langle xy\rangle - \langle x\rangle\langle y\rangle)$$

$$= a^{2}V(x) + b^{2}V(y) + 2abcov(x,y)$$

General function – Taylor expansion:

$$V(f) = \left(\frac{df}{dx}\right)^2 V(x) + \left(\frac{df}{dy}\right)^2 V(y) + 2\left(\frac{df}{dx}\right) \left(\frac{df}{dy}\right) cov(x, y)$$

$$\sigma_f^2 = \left(\frac{df}{dx}\right)^2 \sigma_x^2 + \left(\frac{df}{dy}\right)^2 \sigma_y^2 + 2\left(\frac{df}{dx}\right) \left(\frac{df}{dy}\right) \rho \sigma_x \sigma_y$$

Gaussian Error Propagation

If x and y are independent:

$$V(f) = \left(\frac{df}{dx}\right)^2 V(x) + \left(\frac{df}{dy}\right)^2 V(y)$$

$$\sigma_f^2 = \left(\frac{df}{dx}\right)^2 \sigma_x^2 + \left(\frac{df}{dy}\right)^2 \sigma_y^2 + \left(\frac{df}{dz}\right)^2 \sigma_z^2$$

 One example: A, B, θ independent measurements with errors:

$$y = A\sin\theta + B\cos\theta$$

$$\sigma_y^2 = \sin^2\theta \sigma_A^2 + \cos^2\theta \sigma_B^2 + (A\cos\theta - B\sin\theta)\sigma_\theta^2$$

Standard Formulae

$$f = x \pm y$$

$$V(f) = V(x) + V(y)$$

$$\sigma_f^2 = \sigma_x^2 + \sigma_y^2$$

$$f = x^{2}$$

$$V(f) = (2x)^{2}V(x)$$

$$\left(\frac{\sigma_{f}}{f}\right) = 2\left(\frac{\sigma_{x}}{x}\right)$$

$$f = 1/x^{2}$$

$$V(f) = \left(-\frac{2}{x^{3}}\right)^{2}V(x)$$

$$\left(\frac{\sigma_{f}}{f}\right) = 2\left(\frac{\sigma_{x}}{x}\right)$$

$$f = \ln x$$

$$V(f) = \left(\frac{1}{x}\right)^2 V(x)$$

$$\sigma_f = \sigma_x / x$$

$$f = x y$$

$$V(f) = y^{2}V(x) + x^{2}V(y)$$

$$\left(\frac{\sigma_{f}}{f}\right)^{2} = \left(\frac{\sigma_{x}}{x}\right)^{2} + \left(\frac{\sigma_{y}}{y}\right)^{2}$$

$$\begin{aligned} f &= x/y \\ V(f) &= \left(\frac{1}{y}\right)^2 V(x) + \left(-\frac{x}{y^2}\right)^2 V(y) \\ \left(\frac{\sigma_f}{f}\right)^2 &= \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2 \end{aligned}$$

22/02/12

Statistical Methods - Ian C. Brock

Efficiency

- Particle through detector
 - Signal or no signal \rightarrow Binomial

$$\epsilon = n/N$$

$$V(\epsilon) = N\epsilon(1-\epsilon)/N^{2}$$

$$\sigma_{\epsilon} = \sqrt{\frac{\epsilon(1-\epsilon)}{N}}$$

- With error propagation:
 - Need independent variables $N_1 = n, N_1 + N_2 = N$ $\epsilon = \frac{N_1}{N_1 + N_2}$

$$V(\epsilon) = \frac{1}{(N_1 + N_2)^4} \Big(N_2^2 V(N_1) + N_1^2 V(N_2) \Big)$$

- What are $V(N_1)$, $V(N_2)$?
 - Expect $N_1 = \epsilon N$ signals
 - For error propagation to work need error on N₁ "small", i.e. N₁ "large"
 - For large N_1 binomial \rightarrow Poisson with mean ϵN and variance $\epsilon N = N_1$
 - For N_2 mean $(1-\epsilon)N$ and variance $(1-\epsilon)N = N_2$

$$V(\epsilon) = \frac{1}{(N_1 + N_2)^4} \left(N_2^2 N_1 + N_1^2 N_2 \right)$$
$$= \frac{\epsilon (1 - \epsilon)}{N}$$

Efficiency

- What is the variance if the measured efficiency is 0 or 1?
 - Following formulae above set it to 0??
 - Mn_Fit follows formula originally built into program MULFIT from Paul Avery for all efficiencies:

$$V(\epsilon) = \frac{(n+1)(N-n+1)}{(N+3)(N+2)^2}$$

- This form make some assumptions about the "prior" see Bayesian statistics and leads to a biased efficiency estimator, but it has a nice behaviour for n=0 and n=N!
- If $\epsilon = 0$ or $\epsilon = 1$ add unbiased estimate of n/N to error:
 - Claim is that this gives a better estimate of the confidence interval

$$\sigma(\epsilon) = \sqrt{\frac{(n+1)(N-n+1)}{(N+3)(N+2)^2}} + \frac{1}{N+2}$$

Gaussian Error Propagation General Case

• *n* variables:

 $\boldsymbol{X}_{(1)}$, $\boldsymbol{X}_{(2)}$, $\boldsymbol{X}_{(3)}$, \ldots , $\boldsymbol{X}_{(n)}$

- Covariance for 2 variables in a sample defined as: $cov(x_{(i)}, x_{(j)}) = \overline{(x_{(i)} - \overline{x_{(i)}})(x_{(j)} - \overline{x_{(j)}})}$ $= \overline{x_{(i)}x_{(j)}} - \overline{x_{(i)}} \overline{x_{(j)}}$
- Consider 2 variables in a joint PDF which describes probability to measure values P(x₍₁₎, x₍₂₎,..., x_(n))
- Expectation value for each variable given by $\langle x_{(1)} \rangle, \langle x_{(2)} \rangle, \dots, \langle x_{(n)} \rangle$ $\mu_i \equiv \langle x_{(i)} \rangle$

and $\mu_{(1)}, \mu_{(2)}, \dots, \mu_{(n)}$

General Case

Define covariance as

$$cov(\mathbf{x}_{(i)}, \mathbf{x}_{(j)}) = \langle (\mathbf{x}_{(i)} - \boldsymbol{\mu}_i) (\mathbf{x}_{(j)} - \boldsymbol{\mu}_j) \rangle$$
$$= \langle \mathbf{x}_{(i)} \mathbf{x}_{(j)} \rangle - \boldsymbol{\mu}_i \boldsymbol{\mu}_j$$

 Each of these is one element of the covariance (error) matrix:

$$V_{ij} = cov(x_{(i)}, x_{(j)})$$

- Diagonal elements are variances.
- Correlation matrix is dimensionless equivalent

$$\rho_{ij} = \frac{cov(x_{(i)}, x_{(j)})}{\sigma_i \sigma_j}$$

One Step Further!

- Suppose we have *m* functions *f*₁, *f*₂,..., *f*_m of *n* variables *x*₍₁₎, *x*₍₂₎,..., *x*_(n)
- Each $x_{(i)}$ has an associated variance, hence also f_k .
- The f_k are correlated because they share $x_{(i)}$
- Variance on f_k : $V(f_k) = \langle f^2 \rangle \langle f \rangle^2$
- Expand f_k as a Taylor series around expectation values for x_(i)

$$f_{k} \approx f_{k}(\mu_{1}, \mu_{2}, \dots, \mu_{n}) + \left(\frac{\partial f_{k}}{\partial x_{(1)}}\right)(x_{(1)} - \mu_{1}) + \left(\frac{\partial f_{k}}{\partial x_{(2)}}\right)(x_{(2)} - \mu_{2}) + \dots$$

f_k are now a linear combination of the *x_(i)*, so can use previous variance formula:

$$\mathbf{V}(f_{k}) = \sum_{i} \left(\frac{\partial f_{k}}{\partial x_{(i)}} \right)^{2} \mathbf{V}(x_{(i)}) + \sum_{i} \sum_{j \neq i} \left(\frac{\partial f_{k}}{\partial x_{(i)}} \right) \left(\frac{\partial f_{k}}{\partial x_{(j)}} \right) \mathbf{Cov}(x_{(i)}, x_{(j)})$$

22/02/12

Statistical Methods - Ian C. Brock

One Step Further!

 But, f_k and f_l are also correlated, so we have to determine their covariance:

 $\langle f_k f_l \rangle - \langle f_k \rangle \langle f_l \rangle \approx \langle (x_{(1)} - \mu_1) (x_{(1)} - \mu_1) \rangle \left(\frac{\partial f_k}{\partial x_{(1)}} \right) \left(\frac{\partial f_k}{\partial x_{(1)}} \right) + \dots + \langle (x_{(1)} - \mu_1) (x_{(2)} - \mu_2) \rangle \left(\frac{\partial f_k}{\partial x_{(1)}} \right) \left(\frac{\partial f_k}{\partial x_{(2)}} \right)$

- Looks horrible, try a sum: $cov(f_k, f_l) = \sum_i \sum_j \left(\frac{\partial f_k}{\partial x_{(i)}}\right) \left(\frac{\partial f_l}{\partial x_{(j)}}\right) cov(x_{(i)}, x_{(j)})$
- Getting better, try a matrix: $G_{ki} = \left(\frac{\partial f_k}{\partial x_{(i)}}\right)$
- With V_x and V_f as error matrices for x and f

Example 1

f is a function of 2 variables x and y, with errors
 σ_x, σ_y and correlation coefficient ρ

$$G = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$
$$V_{f} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \left(\begin{array}{cc}\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y}\\\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}\end{array}\right) \left(\begin{array}{c}\frac{\partial f}{\partial x}\\\frac{\partial f}{\partial y}\end{array}\right)$$
$$V_{f} = \left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2} + 2\left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \rho \sigma_{x} \sigma_{y}$$

Standard error propagation formula with 2 variables

Example 2

- Transform track chamber measurement (r, φ, z) to Cartesian coordinates (x, y, z)
- $x = r \cos \phi$, $y = r \sin \phi$, no error on r (chamber construction) $\boldsymbol{G} = \begin{pmatrix} \cos \phi & -r \sin \phi & 0 \\ \sin \phi & +r \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $V_{xyz} = \begin{pmatrix} \cos\phi & -r\sin\phi & 0\\ \sin\phi & +r\cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0\\ 0 & \sigma_{\phi}^{2} & 0\\ 0 & 0 & \sigma_{\phi}^{2} \end{pmatrix} \begin{pmatrix} \cos\phi & \sin\phi & 0\\ -r\sin\phi & +r\cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{vmatrix} \sigma_{\phi}^{2} y^{2} & -\sigma_{\phi}^{2} x y & 0 \\ -\sigma_{\phi}^{2} x y & \sigma_{\phi}^{2} x^{2} & 0 \\ 0 & 0 & \sigma_{z}^{2} \end{vmatrix}$ **Plausible?** Close to $\phi = 0$ error only on y and not on $x \bigcirc$ x, y correlation is -1 \bigcirc

