Statistical Methods in Particle Physics

Heidelberg+LHCb Workshop Neckarzimmern

Ian C. Brock $22^{\text {nd }}$ February 2012
Part 1

CV of Statistics for Data Analysis

* TASSO PhD - unbinned likelihood fit to muon pair forward-backward asymmetry
- Crystal Ball - mostly hardware
* CLEO - development of Mn_Fit for fitting Y(3S) decays to $\pi \pi$ and invariant mass spectrum - visualisation of MINUIT fit results; ended up as competition for PAW
- Over 20 years later, Mn_Fit still used in CLEO
* L3 - LEP EWWG heavy flavour combinations
* ZEUS - looking for new physics
- Lecturing - Statistical Methods of Data Analysis
* CLEO-c - fitting series of D decays
- ATLAS - how to combine measurements
* So far mostly Fortran and Mn_Fit, learning C++ and Root

Overview

- Part 1:
- Tools and literature
- Measurements and presentation of data
- Distributions
- Central limit theorem
- Error propagation
- Part 2:
- Systematic errors
- Estimation
- Likelihood
- Maximum likelihood examples
- Least squares
- Straight line fit
- Bayesian statistics
- Confidence levels
- (Hypothesis testing)

Tools and Literature

- Spreadsheets
- Gnuplot etc.
- PAW, Mn_Fit
- Fortran based
- "Intuitive" commands - can be abbreviated
- Root
- Full power and complexity of C++
- Origin etc.
- R. Barlow: Statistics
- A. Frodeson et al: Probability and Statistics in Particle Physics.
- G. Cowan: Statistical Data Analysis
- S. Brandt: Data Analysis
- W. Verkerke: Data Analysis BND 2004
www.slac.stanford.edu/~verkerke/bnd2004/data_analysis_2004_v17.ppt
- I. Brock - Statistical Methods of Data Analysis pi.physik.uni-bonn.de/~brock/teaching/stat_ss11
- MINUIT manual
- Mn Fit manual
pi.physik.uni-bonn.de/~brock/mn_fit.html

Measurements

* Experimental measurement: value \pm error
- Calculate result by combining data
- Calculate errors
- Compare with expectations

$$
\begin{gathered}
\text { Measure } \\
g=9.70 \pm 0.15 \mathrm{~m} \mathrm{~s}^{-2} \\
\text { Expect } \\
g=9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{gathered}
$$

* Questions:
- How to get to result?
- How to ESTIMATE the errors?
- Sources of error?
- Statistical (random fluctuations)
- Systematic (apparatus, procedure, ...)
- Random (e.g. intercalibration)
- Bias (e.g. energy scale)
- Forgotten/unknown effects

How accurately can you estimate the error? $<10 \%$ is doing well $\Rightarrow \leq 2$ significant digits for error! I never want to see $g=9.7034 \pm 0.1545 \mathrm{~m} \mathrm{~s}^{-2}$

Interpretation of Error

$$
\text { Measure } g=9.70 \pm 0.15 \mathrm{~m} \mathrm{~s}^{-2}
$$

- Engineer:
- $9.55 \leq g \leq 9.85$
- i.e. error indicates tolerance or range of allowed values
- Physicist:
- Repeat experiment many times
- $9.55 \leq g \leq 9.85$ 68% of the time
- $9.40 \leq g \leq 10.00$ 95\% of the time (assuming Gaussian errors)

Warning: When evaluating systematic errors, tendency is often to treat them as a tolerance and not as a Gaussian error!!

Possible Conclusions

- Good experiment
- Agrees with expectations
* New discovery
- Book ticket to Stockholm
- Measurement not good enough
- How can we improve it?
* Which reaction is the correct one?
* Measurement does not agree with expectations.
- Why?
- Experiment wrong
- Errors underestimated
- New discovery
* Such questions often only asked in this case!
- Even worse:
- Which error sources move result in "right" direction?

Warning: You are supposed to be objective!
Do not let subjective prejudices influence your considerations

PDG Experience

Just in case you thought professional physicists were completely objective and scientific in their approach!

Data and Their Presentation

- Data can be qualitative or quantitative
- Only discuss quantitative data here
- Discrete (integers, head/tail)
- Use list, set or bar chart:
- HHHTTHHHTHTTTHHTTHHT
- \{11 heads, 9 tails $\}$
- Bar chart

- Histogram common
- Height \propto number of entries?
- Area \propto number of entries?

Usual way to fill histograms
Appropriate for cross-sections

- Histogram by far most common way of showing data
- Bin width?
- Appropriate for statistics
- Similar to resolution (measurement accuracy)
- Enough bins to see structure
- Don't forget to label the axes
- Make sure scale and labels are large enough
- Pie charts are a good way to split data in different categories

Two Dimensions

Area \propto Entries

Surface

File: /home/brock/mn_fit/Linux/test_data/hbook_example.his				
ID	10	10	10	51
IDB	1	0	2	0
Symbol	12			-1

Different ways of showing 2-D Plots

Lego

Table
"Scatter plot" with \# dots \propto bin entries also popular

Colour and Two Dimensions

Colour can be very helpful, but don't forget most journals are in black \& white!

```
Root:
// Set colour palette
Int_t *colors \(=0\);
gStyle->SetPalette(1, colors);
```


Morals

- Presentation should be:
- Simple
- Clear
- True
* Do
- Indicate suppressed 0
- Label the axes
- Give units and binning
- Make sure scale and labels are large enough (usually not!)
* Do not use style of almost all stock market plots!

Don't forget: There are lies, damn lies and statistics

Statistics

- Average values
- Spread
- Covariance and correlations
- PDG averaging
- Combining errors
- Error propagation
- Systematic errors
- Common distributions
- Binomial, Poisson, Gauss
- Central limit theorem
- Weighted mean

Mean

- Set of unbinned data (measurements)

$$
\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

Mean is: f is any function of x
$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
e.g. $f=a x, f=x^{2}$

$$
\bar{f}=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

- For binned data
$\bar{x}=\frac{1}{N} \sum_{j=1}^{\text {Nbin }} n_{j} x_{j} \quad \bar{f}=\frac{1}{N} \sum_{j=1}^{\text {Nbin }} n_{j} f\left(x_{j}\right)$
- n_{j} entries in bin
- x_{j} bin centre

Alternative Average Values

- Mode - most probable value
- Fine for high statistics;
fluctuations large for low statistics
- Well suited for skew distributions, e.g. Landau
(charge deposited in thin material)

- Median - half data points are below and half above
- Odd \# measurements? - middle value
- Even \# measurements? - arithmetic mean of central 2 values
- Binned data? - centre of bin
for which $<1 / 2$ data below and $<1 / 2$ data above
- Geometric mean

Characterising the Spread

- Variance:

$$
\begin{aligned}
V(x) & =\frac{1}{N} \sum_{i}\left(x_{i}-\bar{\chi}\right)^{2} \\
& =\frac{1}{N} \sum_{i}\left(x_{i}^{2}-2 x_{i} \bar{\chi}+\bar{\chi}^{2}\right)
\end{aligned}
$$

$$
=\frac{1}{N} \sum_{i} x_{i}^{2}-\frac{1}{N} 2 \bar{x} \sum_{i} x_{i}+\frac{1}{N} \bar{x}^{2} \sum_{i} 1
$$

Iterative formula for evaluating spread

$$
V_{N}=\frac{(N-1)}{N} V_{N-1}+\frac{\left(x-\bar{x}_{N-1}\right)^{2}}{N}
$$ a rough estimate of the mean

$$
\overline{\left(x-x_{0}\right)^{2}}=\overline{(x-\bar{x})^{2}}+\left(\bar{x}-x_{0}\right)^{2}
$$

$$
=\overline{x^{2}}-2 \bar{x}^{2}+\bar{x}^{2} \quad \text { Be careful of computer }
$$

$$
=\overline{x^{2}}-\bar{x}^{2} \quad \text { precision. Often good to take }
$$

- Standard Deviation

$$
\sigma \equiv \sqrt{V(x)}=\sqrt{\overline{x^{2}}-\bar{x}^{2}}
$$

R.M.S. and FWHM + Higher Orders

- R.M.S. = Standard deviation for above definition
- FWHM (full width half maximum)
- Useful for asymmetric distributions or ones with long tails
- Problems with fluctuations with low statistics
- For a Gaussian: FWHM $=2.35 \sigma$
- Skewness (tests for asymmetry)

$$
\gamma(x)=\frac{1}{N \sigma^{3}} \sum_{i}\left(x_{i}-\bar{x}\right)^{3}=\frac{1}{\sigma^{3}} \overline{(x-\bar{x})^{3}}
$$

- Moments:
- rth moment

$$
\frac{1}{N} \sum_{i} x_{i}^{r}
$$

Several Variables

- Know how to plot 2 variables
- Mean and spread of each can also be calculated
- How do we characterise dependence on each other?

Gaussians all have same σ

Gauss with $\rho=-0.7000$

Gauss with $\rho=-0.9900$

Gauss with $\rho=0.9900$

Covariance and Correlation

- Data sample with pairs of variables:

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

- Calculate $\bar{x}, \bar{y}, V(x), V(y)$ as before
- Covariance tells you dependence on each other:

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\frac{1}{N} \sum_{i} x_{i} y_{i}-\frac{\sum x_{i}}{N} \frac{\sum y_{i}}{N} \\
& =\overline{x y}-\bar{x} \cdot \bar{y}
\end{aligned}
$$

- If $\overline{x y}=\bar{x} \cdot \bar{y}$ variables are independent

Covariance and Correlation

- Covariance is generalisation of variance ${ }^{\rho}=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}$
- Carries dimensions
- Scale it by standard deviation
- Correlation coefficient, ρ - $-1 \leq \rho \leq 1$
- -1: 100% anticorrelated, e.g. weight/stamina, BR for 2 decay channe
- 0: uncorrelated e.g. height/IQ
- +1: 100% correlated e.g. height/weight
- Independent of scale \& a shift in zero point

If x and y correlated their variances are also affected

Covariance Matrix

- One measurement has n elements with values:

$$
x_{(1)}, x_{(2)}, \ldots, x_{(n)}
$$

- Define covariance between each pair:

$$
\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)=\overline{x_{(i)}}, x_{(j)}-\overline{\chi_{(i)}} \cdot \overline{\bar{x}_{(j)}}
$$

- These form elements of an $n \mathrm{x} n$ symmetric matrix:

$$
V_{i j}=\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)
$$

- Correlation matrix is dimensionless form of covariance matrix:

$$
V_{i j}=\frac{\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)}{\sigma_{i} \sigma_{j}}
$$

Deriving a Distribution

- Throw a coin in air 4 times, probability to get 4,3,2,1,0 heads:
- Expected probability distribution:
- Do exercise by hand or on a computer (see next slide)
- As number of measurements increases observation closer and closer to expectation
- Law of large numbers: Observed frequency $P(4)=\frac{1}{16}$
$P(3)=\frac{1}{4}$
$P(2)=\frac{3}{8}$
$P(1)=\frac{1}{4}$

$$
P(0)=\frac{1}{16}
$$ distribution

$$
\lim _{N \rightarrow \infty} N(r)=N \cdot P(r) \quad \begin{aligned}
& \text { Expected } \\
& \text { frequency } \\
& \text { distribution }
\end{aligned}
$$

Frequency Distributions

Number of Heads

Sum of 1000 Experiments

Expectation Value

- Expectation value (as for histogram)

$$
\langle r\rangle=\sum_{r} r P(r)
$$

- Law of large numbers:

$$
\lim _{N \rightarrow \infty} \bar{f}=\langle f\rangle
$$

- Properties:
- Add:

$$
\langle f+g\rangle=\sum(f+g) P(r)=\sum f P(r)+\sum g P(r)=\langle f\rangle+\langle g\rangle
$$

- Multiply:

$$
\langle f g\rangle \neq\langle f\rangle\langle g\rangle
$$

(unless f and g are independent)

Probability Density Function

- Continuous variables
- $P(x) d x$ is probability to get a value between x and $(x+d x)$
- Total probability must be $1 \int_{-\infty}^{+\infty} P(x) d x=1$
- For continuous distributions $\begin{aligned}\langle x\rangle & =\int_{-\infty}^{+\infty} x P(x) d x \\ \langle f\rangle & =\int_{-\infty}^{+\infty} f(x) P(x) d x\end{aligned}$

```
Measurement }\quad\mathrm{ M
Theoretical distribution }->\mathrm{ Expectation value }\langler
```


Binomial Distribution

- Processes where result can be one of two values, e.g. tossing coin, detector channel fires or not
- Prob. success $=p$, Prob. Failure $=(1-p)=q$
- n trials, prob. for r successes and ($n-r$) failures?
- Number of ways to select r from n is: n ! / r ! $(n-r)$!
- r successes with prob. p;
($n-r$) failures with prob. (1-p)
\Rightarrow total prob. $p^{r}(1-p)^{(n-r)}$
- Properties:

$$
P(r ; p, n)=p^{r}(1-p)^{(n-r)} \frac{n!}{r!(n-r)!}
$$

$$
\begin{array}{ccc}
\langle r\rangle & = & n p \\
V & = & n p(1-p) \\
\sigma & = & \sqrt{n p(1-p)}
\end{array}
$$

Convention:
Before ";" variable of interest After ";" dependencies

Examples

Binomial Probability Distribution

Number of successes, r

Detector Efficiency

- Single layer efficiency in design 95\%
- Need 3 points to reconstruct track
- Track reconstruction prob. with:
- 3 layers: $P(3 ; 0.90,3)$: $(0.95)^{3}=\mathbf{0 . 8 5 7}$
- 4 layers: $P(3 ; 0.90,4)+$ P(4;0.90,4) $4(0.95)^{3}(0.05)^{1}+(0.95)^{4}=$ 0.986
- 5 layers: $P(3 ; 0.90,5)+\ldots$ $10(0.95)^{3}(0.05)^{2}+$ $5(0.95)^{4}(0.05)^{1}+(0.95)^{5}=$ 0.999

Measuring Detector Efficiency

- Prob. to get a hit in all 5 detector layers is: $P(5 ; \mathrm{p}, 5)=(p)^{5}$
- Use this to measure and extract p
- Now calculate $P(4 ; p, 5), P(3 ; p, 5), \ldots$
- Compare with measurements
- If agree all layers are equally efficient and your measured value is OK
- Suppose detector has a crack covering 5\% solid angle. What would we measure?

$$
\begin{array}{ll}
P(0 ; p, 5) & =0.05 \\
P(1,2,3,4 ; p, 5) & =0.0 \\
P(5 ; p, 5) & =0.95
\end{array}
$$

- In order to have a binomial distribution inefficiency must be randomly distributed

Warning: Do not blindly use a distribution
Think about assumptions made for a distribution to be valid

Poisson Distribution

- Discrete events, but number of trials unknown
- Derive as limit of binomial with $n \rightarrow \infty$

$$
P(r ; \lambda)=\frac{e^{-\lambda} \lambda^{r}}{r!}
$$

- Properties:

$$
\begin{aligned}
\sum_{r=0}^{\infty} P(r ; \lambda) & =1 \\
\langle r\rangle & = \\
V & =\lambda \\
\sigma & = \\
& \sqrt{\lambda}
\end{aligned}
$$

- 2 classes of event each follow a Poisson, sum is also Poisson distributed with expectation value: $\lambda=\lambda_{A}+\lambda_{B}$

Poisson Characteristics

- For $\lambda<1$, most probable value is 0 !
- For λ integer, λ and ($\lambda-1$) are equally likely
- λ is mean, but not mode!
- Poisson is wider than binomial
- Long tail to +ve values for small λ
- Shape changes significantly as λ increases

Neutrinos from supernovae

No of events	0	1	2	3	4	5	6	7	8

Number of Events

Gaussian Distribution

- Most common, useful and used distribution in statistics:
$P(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- Can always express it in a standard form:
$P(z ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$
where $z=(x-\mu) / \sigma$

Gaussian Probability Distribution

Properties of Gaussian

- Can calculate mean and variance analytically

- For large mean Poisson and Gaussian similar
- How big?
- Some say $\lambda=5$; I prefer $\lambda=10$
- Definite integrals from tables or numerical integration
68.3\% of area in range $\mu \pm \sigma$ 95.5% of area in range $\mu \pm 2 \sigma$ 99.7% of area in range $\mu \pm 3 \sigma$ 90% of area in range $\mu \pm 1.65 \sigma$ 95% of area in range $\mu \pm 1.96 \sigma$
* Get one-sided errors from two-sided value for which double the area lies outside

Uniform Distribution

- Express as probability density:

$$
\begin{aligned}
P(x) & =\frac{1}{(b-a)} & \text { for } a \leqslant x \leqslant b \\
& =0 & \text { elsewhere }
\end{aligned}
$$

- Evaluate variance

$$
\begin{aligned}
V(x) & =\int_{-\infty}^{+\infty}(x-\bar{x})^{2} P(x) d x \\
& =\frac{1}{12}(b-a)^{2}
\end{aligned}
$$

- Often occur in detectors.
- Particle went through, but you do not know where.
- Resolution is size of detector / $\sqrt{ } 12$

Central Limit Theorem

- Take the sum, X, of N independent variables x_{i}, where $i=1,2,3, \ldots, n$
- Each x_{i} is taken from a distribution with mean μ_{i} and variance $V_{i}\left(\right.$ or $\left.\sigma_{i}^{2}\right)$
- Distribution of X has following characteristics:
- Expectation value: $\langle X\rangle=\sum_{i=1}^{N} \mu_{i}$
- Variance:

$$
\begin{aligned}
& \langle V(X)\rangle=\sum_{i=1}^{N} V_{i}=\sum_{i=1}^{N} \sigma_{i}^{2} \begin{array}{c}
\text { This is why } \\
\text { Gaussian is so } \\
\text { important! }
\end{array} \\
& \mathrm{n} \text { as } N \rightarrow \infty . \begin{array}{l}
\text {. }
\end{array}
\end{aligned}
$$

The CLT at Work

Sum of 2 uniform variables

Sum of 5 uniform variables

Sum of 3 variables

The CLT at Work

- See that Gaussian really appears!
- For it to work important that $V \gg V_{i}$

Measurement with Several Error Sources

- Measured value:

$$
x_{i}=\left\langle x_{i}\right\rangle+\delta x_{i}^{(1)}+\delta x_{i}^{(2)}+\delta x_{i}^{(3)}+\delta x_{i}^{(N)}
$$

- For each error source

$$
\left\langle\delta x_{i}^{(k)}\right\rangle=0
$$

where $\sigma_{i}^{(k)}$ is the measurement error due to source k

- CLT says that x_{i} is Gaussian distributed around $\left\langle x_{i}\right\rangle$ with variance given by sum of individual variances

Applications of CLT

- Repeated measurements:
- Expected value always the same: μ
- Variance always the same: σ

$$
\begin{gathered}
\langle X\rangle=\sum \mu=N \mu \\
\bar{x}=X / N \\
\langle\bar{x}\rangle=\mu \\
V(\bar{x})=\frac{1}{N^{2}} \sum V_{i}=\frac{\sigma^{2}}{N}
\end{gathered}
$$

- Expected value of average $\langle\bar{x}\rangle$
* Measurement differs from expectation by $V(\bar{x})$
- With more measurements
 get closer and closer to true value as a function of $1 / \sqrt{ } N$

Weighted Mean

- How do you deal with measurements of same quantity that each have a different error?
* e.g. measure speed with 2 different radar devices
- 4 measurements with accuracy of $\pm 4 \mathrm{~ms}^{-1}$ would give an error on average of $\pm 2 \mathrm{~ms}^{-1}$
- Give measurement with accuracy $\pm 2 \mathrm{~ms}^{-1} 4$ times the weight of measurement with accuracy $\pm 4 \mathrm{~ms}^{-1}$
- General recipe: Each measurement is given a weight:

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i} x_{i}^{2} / \sigma_{i}^{2}}{\sum_{i} 1 / \sigma_{i}^{2}} \\
V(\bar{x}) & =\frac{1}{\sum_{i} 1 / \sigma_{i}^{2}}
\end{aligned}
$$

Are You Allowed to Average?

$$
\begin{aligned}
v_{1} & =67 \pm 4 \mathrm{~ms}^{-1} \\
v_{2} & =53 \pm 2 \mathrm{~ms}^{-1} \\
\bar{v} & =55.8 \pm 1.8 \mathrm{~ms}^{-1}
\end{aligned}
$$

- Is this reasonable??
- No, neither of the measurements is within 1σ of the mean!
* Throw out one of the results?
- Remember:
- 2/3 measurements should be within $1 \sigma ; 1 / 3$ should be outside
- If more than 5% outside 2σ start getting suspicious

PDG Recipe

- What is a reasonable estimate of error on mean when measurements vary by more than their errors indicate they should?
- First calculate weighted mean
* Then calculate χ^{2} :

$$
\chi^{2}=\sum_{i} \frac{\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{i}^{2}}
$$

* If we expect each measurement to differ from its mean by about 1σ, expect $\chi^{2} \approx N$
- $\chi^{2} /(N-1)<1$: Everything OK, use simple weighted average
- $\chi^{2} /(N-1) \gg 1$: Tough. Calculate average and guess error or do not average
- $\chi^{2} /(N-1)>1$: Some or all errors underestimated?

PDG Recipe for $\chi^{2} /(\mathbf{N}-1)>1$

- Scale all errors by a factor:

$$
S=\sqrt{\chi^{2} /(N-1)}
$$

- What if we have small and large errors to combine?
- Evaluate S using only measurements with small errors
- Only use those errors for which $\sigma_{i}<\sigma_{0}=3 \sqrt{N} \sigma_{\bar{x}}$
- Large errors do not contribute to $\bar{\chi}, \sigma_{\bar{x}}$ but can make significant contribution to S
- Correlations between measurements ignored here - can be taken into account

Ideogram can be helpful

Measurement represented by Gaussian with mean x_{i} and error $\sigma_{x i}$ area $\propto 1 / \sigma_{x i}$

Combination of Errors

- Measure a quantity, but want a physical parameter that is a function of that quantity
- Simplest case flinear function of x (variance $V(x)$, error σ_{x})

$$
f=a x+b
$$

$V(f)=\left\langle f^{2}\right\rangle-\langle f\rangle^{2}$
$=\left\langle(a x+b)^{2}\right\rangle-\langle(a x+b)\rangle^{2}$
$=a^{2}\left\langle x^{2}\right\rangle+2 \mathrm{ab}\langle x\rangle+b^{2}$ $-a^{2}\langle x\rangle^{2}-2 \mathrm{ab}\langle x\rangle-b^{2}$
$=a^{2}\left|\left\langle\chi^{2}\right\rangle-\langle x\rangle^{2}\right|$
$=a^{2} V(x)$
$\sigma_{f}=|a| \sigma_{x}$

Functions of Two or More Variables

- Linear function:

$$
\begin{aligned}
f & =a x+b y+c \\
V(f) & =a^{2}\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)+b^{2}\left(\left\langle y^{2}\right\rangle-\langle y\rangle^{2}\right)+2 a b(\langle x y\rangle-\langle x\rangle\langle y\rangle) \\
& =a^{2} V(x)+b^{2} V(y)+2 a b \operatorname{cov}(x, y)
\end{aligned}
$$

- General function - Taylor expansion:

$$
\begin{aligned}
V(f) & =\left(\frac{d f}{d x}\right)^{2} V(x)+\left(\frac{d f}{d y}\right)^{2} V(y)+2\left(\frac{d f}{d x}\right)\left(\frac{d f}{d y}\right) \operatorname{cov}(x, y) \\
\sigma_{f}^{2} & =\left(\frac{d f}{d x}\right)^{2} \sigma_{x}^{2}+\left(\frac{d f}{d y}\right)^{2} \sigma_{y}^{2}+2\left(\frac{d f}{d x}\right)\left(\frac{d f}{d y}\right) \rho \sigma_{x} \sigma_{y}
\end{aligned}
$$

Gaussian Error Propagation

- If x and y are independent:

$$
\begin{aligned}
V(f) & =\left(\frac{d f}{d x}\right)^{2} V(x)+\left(\frac{d f}{d y}\right)^{2} V(y) \\
\sigma_{f}^{2} & =\left(\frac{d f}{d x}\right)^{2} \sigma_{x}^{2}+\left(\frac{d f}{d y}\right)^{2} \sigma_{y}^{2}+\left(\frac{d f}{d z}\right)^{2} \sigma_{z}^{2}
\end{aligned}
$$

- One example: A, B, θ independent measurements with errors:

$$
\begin{aligned}
y & =A \sin \theta+B \cos \theta \\
\sigma_{y}^{2} & =\sin ^{2} \theta \sigma_{A}^{2}+\cos ^{2} \theta \sigma_{B}^{2}+(A \cos \theta-B \sin \theta) \sigma_{\theta}^{2}
\end{aligned}
$$

Standard Formulae

$$
\begin{aligned}
f & =x \pm y \\
V(f) & =V(x)+V(y) \\
\sigma_{f}^{2} & =\sigma_{x}^{2}+\sigma_{y}^{2}
\end{aligned}
$$

$$
f=x^{2}
$$

$$
V(f)=(2 x)^{2} V(x)
$$

$$
\left(\frac{\sigma_{f}}{f}\right)=2\left(\frac{\sigma_{x}}{x}\right)
$$

$$
\begin{aligned}
f & =1 / x^{2} \\
V(f) & =\left(-\frac{2}{x^{3}}\right)^{2} V(x) \\
\left(\frac{\sigma_{f}}{f}\right) & =2\left(\frac{\sigma_{x}}{x}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
f & =\ln x \\
V(f) & =\left(\frac{1}{x}\right)^{2} V(x) \\
\sigma_{f} & =\sigma_{x} / x
\end{aligned}
$$

$$
\begin{aligned}
f & =x / y \\
V(f) & =\left(\frac{1}{y}\right)^{2} V(x)+\left(-\frac{x}{y^{2}}\right)^{2} V(y) \\
\left(\frac{\sigma_{f}}{f}\right)^{2} & =\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
f & =x y \\
V(f) & =y^{2} V(x)+x^{2} V(y) \\
\left(\frac{\sigma_{f}}{f}\right)^{2} & =\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}
\end{aligned}
$$

Efficiency

- Particle through detector
- Signal or no signal \rightarrow Binomial

$$
\begin{aligned}
\epsilon & =n / N \\
V(\epsilon) & =N \epsilon(1-\epsilon) / N^{2} \\
\sigma_{\epsilon} & =\sqrt{\frac{\epsilon(1-\epsilon)}{N}}
\end{aligned}
$$

- With error propagation:
- Need independent variables $N_{1}=n, N_{1}+N_{2}=N$
$\epsilon=\frac{N_{1}}{N_{1}+N_{2}}$
$V(\epsilon)=\frac{1}{\left(N_{1}+N_{2}\right)^{4}}\left(N_{2}^{2} V\left(N_{1}\right)+N_{1}^{2} V\left(N_{2}\right)\right)$
- What are $V\left(N_{1}\right), V\left(N_{2}\right)$?
- Expect $N_{1}=\epsilon N$ signals
- For error propagation to work need error on N_{1} "small", i.e. N_{1} "large"
- For large N_{1} binomial \rightarrow Poisson with mean ϵN and variance $\epsilon N=N_{1}$
- For N_{2} mean (1- $\left.\epsilon\right) N$ and variance (1-є) $N=N_{2}$

$$
\begin{aligned}
V(\epsilon) & =\frac{1}{\left(N_{1}+N_{2}\right)^{4}}\left(N_{2}^{2} N_{1}+N_{1}^{2} N_{2}\right) \\
& =\frac{\epsilon(1-\epsilon)}{N}
\end{aligned}
$$

Efficiency

* What is the variance if the measured efficiency is 0 or 1?
- Following formulae above set it to 0??
- Mn_Fit follows formula originally built into program MULFIT from Paul Avery for all efficiencies:

$$
V(\epsilon)=\frac{(n+1)(N-n+1)}{(N+3)(N+2)^{2}}
$$

- This form make some assumptions about the "prior" - see Bayesian statistics and leads to a biased efficiency estimator, but it has a nice behaviour for $n=0$ and $n=N$!
- If $\epsilon=0$ or $\epsilon=1$ add unbiased estimate of n / N to error:
- Claim is that this gives a better estimate of the confidence interval

$$
\sigma(\epsilon)=\sqrt{\frac{(n+1)(N-n+1)}{(N+3)(N+2)^{2}}}+\frac{1}{N+2}
$$

Gaussian Error Propagation General Case

- n variables:

$$
x_{(1)}, x_{(2)}, x_{(3)}, \ldots, x_{(n)}
$$

- Covariance for 2 variables in a sample defined as: $\left.\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)=\overline{x_{(i)}}-\overline{X_{(i)}}\right)\left(x_{(j)}-\overline{x_{(j)}}\right)$
$=\overline{X_{(i)} x_{(j)}}-\overline{X_{(i)}} \overline{x_{(j)}}$
- Consider 2 variables in a joint PDF which describes probability to measure values

$$
P\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)
$$

* Expectation value for each variable given by

$$
\left\langle x_{(1)}\right\rangle,\left\langle x_{(2)}\right\rangle, \ldots,\left\langle x_{(n)}\right\rangle
$$

and $\mu_{(1)}, \mu_{(2)}, \ldots, \mu_{(n)}$

General Case

- Define covariance as

$$
\begin{aligned}
\operatorname{cov}\left(x_{(i)}, x_{(j)}\right) & =\left\langle\left(x_{(i)}-\mu_{i}\right)\left(x_{(j)}-\mu_{j}\right)\right\rangle \\
& =\left\langle x_{(i)} x_{(j)}\right\rangle-\mu_{i} \mu_{j}
\end{aligned}
$$

- Each of these is one element of the covariance (error) matrix:

$$
V_{i j}=\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)
$$

- Diagonal elements are variances.
- Correlation matrix is dimensionless equivalent

$$
\rho_{i j}=\frac{\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)}{\sigma_{i} \sigma_{j}}
$$

One Step Further!

- Suppose we have m functions $f_{1}, f_{2}, \ldots, f_{m}$ of n variables $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$
- Each $x_{(i)}$ has an associated variance, hence also f_{k}.
- The f_{k} are correlated because they share $x_{(i)}$
- Variance on $f_{k}: V\left(f_{k}\right)=\left\langle f^{2}\right\rangle-\langle f\rangle^{2}$
- Expand f_{k} as a Taylor series around expectation values for $x_{(i)}$

$$
f_{k} \approx f_{k}\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)+\left(\frac{\partial f_{k}}{\partial x_{(1)}}\right)\left(x_{(1)}-\mu_{1}\right)+\left(\frac{\partial f_{k}}{\partial x_{(2)}}\right)\left(x_{(2)}-\mu_{2}\right)+\cdots
$$

- f_{k} are now a linear combination of the $x_{(i)}$, so can use previous variance formula:

$$
V\left(f_{k}\right)=\sum_{i}\left(\frac{\partial f_{k}}{\partial x_{(i)}}\right)^{2} V\left(x_{(i)}\right)+\sum_{i} \sum_{j \neq i}\left(\frac{\partial f_{k}}{\partial x_{(i)}}\right)\left(\frac{\partial f_{k}}{\partial x_{(j)}}\right) \operatorname{cov}\left(x_{(i)}, x_{(j)}\right)
$$

One Step Further!

- But, f_{k} and f_{l} are also correlated, so we have to determine their covariance:
$\left\langle f_{k} f_{l}\right\rangle-\left\langle f_{k}\right\rangle\left\langle f_{l}\right\rangle \approx\left\langle\left(x_{(1)}-\mu_{1}\right)\left(x_{(1)}-\mu_{1}\right)\right\rangle\left(\frac{\partial f_{k}}{\partial x_{(1)}}\right)\left(\frac{\partial f_{k}}{\partial x_{(1)}}\right)+\ldots+\left\langle\left(x_{(1)}-\mu_{1}\right)\left(x_{(2)}-\mu_{2}\right)\right\rangle\left(\frac{\partial f_{k}}{\partial x_{(1)}}\right)\left(\frac{\partial f_{k}}{\partial x_{(2)}}\right)$
- Looks horrible, try a sum:

$$
\operatorname{cov}\left(f_{k}, f_{l}\right)=\sum_{i} \sum_{j}\left(\frac{\partial f_{k}}{\partial x_{(i)}}\right)\left(\frac{\partial f_{l}}{\partial x_{(j)}}\right) \operatorname{cov}\left(x_{(i)}, x_{(j)}\right)
$$

- Getting better, try a matrix:

$$
G_{k i}=\left(\frac{\partial f_{k}}{\partial x_{(i)}}\right)
$$

- With $\boldsymbol{V}_{\boldsymbol{x}}$ and $\boldsymbol{V}_{\boldsymbol{f}}$ as error matrices for x and f

Example 1

- f is a function of 2 variables x and y, with errors σ_{x}, σ_{y} and correlation coefficient ρ

$$
\left.\begin{array}{c}
\boldsymbol{G}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \\
\boldsymbol{V}_{\boldsymbol{f}}=\quad\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right)\left(\frac{\partial f}{\partial x}\right. \\
\frac{\partial f}{\partial y}
\end{array}\right),
$$

Standard error propagation formula with 2 variables

Example 2

- Transform track chamber measurement (r, ϕ, z) to Cartesian coordinates (x, y, z)
- $x=r \cos \phi, y=r \sin \phi$, no error on r (chamber construction)

$$
\boldsymbol{G}=\left(\begin{array}{ccc}
\cos \phi & -r \sin \phi & 0 \\
\sin \phi & +r \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
V_{x y z} & \left.=\left(\begin{array}{ccc}
\cos \phi & -r \sin \phi & 0 \\
\sin \phi & +r \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sigma_{\phi}^{2} & 0 \\
0 & 0 & \sigma_{z}^{2}
\end{array}\right| \begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-r \sin \phi & +r \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left|\begin{array}{ccc}
\sigma_{\phi}^{2} y^{2} & -\sigma_{\phi}^{2} x y & 0 \\
-\sigma_{\phi}^{2} x y & \sigma_{\phi}^{2} x^{2} & 0 \\
0 & 0 & \sigma_{z}^{2}
\end{array}\right|>\begin{array}{c}
\text { Plausible? } \\
\text { Close to } \phi=0 \text { error only } \\
\text { on } y \text { and not on } x \odot \\
x, y \text { correlation is }-1 \odot
\end{array}
\end{aligned}
$$

