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Abstract

The tracks samples found by the pattern reconstruction algorithms have a high efficiency but also a
large fraction (18.5%) of misidentified tracks, named ghost tracks.

To offer the possibility of having a tracks sample with a high track efficiency (as high as from the
pattern reconstruction algorithms) and in the same time with a very low ghost rate, a neural network
has been developed.

Variables as χ2 probability or number of hits in Vertex Locator are combined with internal pattern
reconstruction algorithm variables as matching χ2 or quality of PatForward tracks in a neural net-
work. The packages TMultiLayerPerceptron and TMVA from ROOT1 software are used to setup the
neural network.

Results of various tests performed with the neural network on best long tracks are presented.

Guide lines of usage of the first neural network tool implemented in the reconstruction software,
Brunel2, are given.
1) http://www.root.cern.ch
2) http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC/brunel/
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1 Introduction

The LHCb detector is a forward spectrometer which covers a pseudo-rapidity range up to 5.2. Tracks
of the particles produced in the pp collision are reconstructed in the LHCb tracking system. This is
composed from Vertex Locator (VeLo), Trigger Tracker (TT) and Tracking Stations (TS). A detailed
LHCb detector description can be found at [1].

There are several tracks categories that can be reconstructed in LHCb: upstream tracks with VeLo
and TT hits, long tracks which use hits from all tracking system, Ttracks with hits from TS and
downstream tracks which combines hist from TT and TS.

The pattern reconstruction algorithms in LHCb software for long tracks are TrackMatching [2] and
PatForward [3]. These algorithms store the found tracks in containers.

General informations about tracks as χ2 probability (P (χ2)) or number of degrees of freedom (n.d.f.)
of the Kalman filter can be combined with specific variable of the pattern reconstruction algorithms
as matching χ2 (χ2

Match) or quality of patforward tracks (QPatForward) in a neural network (NN).
The complete set of variables used in NN is presented in Sec. 2.

Misidentified tracks can be found with a certain probability using this NN. These tracks are classified
as ghost tracks as long as they have less than 70% of hits matching the hits of any final state Monte
Carlo particle. A large amount of ghost tracks can deteriorate signals that are looked for in bb̄ analysis
thus two packages have been used to setup the NN: TMultilayerPerceptron [4] and TMVA [5] from
ROOT software. The NN performance can be seen in Sec. 3.

Results of various NN studies are shown for best long tracks in Sec. 4. The best tracks are stored
in the track container named Default. They are tracks, from all track containers, that pass the Clone
Killer [6] selection. Out of them, the tracks which have been found with TrackMatching and PatFor-
ward algorithms are selected. These are the best long tracks.

A Monte Carlo (MC) sample generated and simulated for B0
→ J/ΨK0

S with J/Ψ → µ+µ− and
K0

S → π+π− was used to select the tracks in the reconstruction software Brunel v31r7.

In Sec. 7 are presented the types of ghosts stored in the track container and their rate evolution with
the NN decision.

A study of the NN behaviour at high luminosity (5 × 1032cm2s−1) is shown in Sec. 5.

NN have been tested also on different MC samples based on other B mesons decay channels. The
results on this studies are illustrated in Sec. 6.

The first version of the NN is implemented in Brunel v31r10 under Tr/NNTools/v1r0 package. Per-
formances of the NN in Brunel v31r9 and details of NN usage in Brunel and DaVinci frameworks
are presented in Sec. 8. The results presented here are compatible with the tests done in Brunel
v31r12.

2 Neural Network Variables

Combining variables that can discriminate between ghost and good tracks in a NN has the advantage
of being more efficient than using cuts on each variable alone. The NN has the capability of learning
how to distinguish between ghost and good tracks in the training phase. The testing phase gives a
feed-back of the learning process, here for each new track a ghost probability is returned.
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In this section the variables used to train the NN are shown. These tracks variables can be classified
in general variables and specific variables to pattern reconstruction algorithms.

The general variables are easily accessible from the track object. The specific variables are built
inside the pattern reconstruction algorithms and then written as additional information to the track.

2.1 General Variables

From the track Kalman fit the P (χ2) and n.d.f. variables are used. The separation power on best long
tracks can be seen in Fig. 1 and in Fig. 2, respectively.
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Figure 1: The P (χ2) distribution for best long
tracks. The histograms are normalized to 1.

n.d.f.
0 5 10 15 20 25 30 35 40 45 50

e
n
t
r
i
e
s

b
i
n

NΣ
/

e
n
t
r
i
e
s

b
i
n

N

0

10

20

30

40

50

60

-310×

BestLong Tracks

Good Tracks
Ghost Tracks

Figure 2: The n.d.f. distribution for best long
tracks. The histograms are normalized to 1.
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Figure 3: The NTThits distribution for best long
tracks. The histograms are normalized to 1.
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Figure 4: The NV eLohits distribution for best long
tracks. The histograms are normalized to 1.
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The number of hits in TT (NTThits) and the one in VeLo (NV eLohits) are also used. These are pre-
sented in Fig. 3 and in Fig. 4, respectively.

In the studies presented here the number of tracks in an event (Ntracks/ev.) and the track pseudo-
rapidity (η) complete the general variables list. Their spectra can be seen in Fig. 5 and Fig. 6,
respectively. The variable Ntracks/ev. is removed in version v1r0, see Sec. 8.
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Figure 5: The Ntracks/ev. distribution for best
long tracks. The histograms are normalized to 1.
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Figure 6: The NV eLohits distribution for best long
tracks. The histograms are normalized to 1.

2.2 Specific Variables

Long tracks are built having as seed the VeLo track segment. To the seed are added TS hits in
PatForward algorithm and matched TS track segments in TrackMatching algorithm.
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Figure 7: The NComTS distribution for PatForward
tracks. The histograms are normalized to 1.
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One specific variable is the number of candidates found for one track which have 70% of the TS
hits in common, as in PatForward, or which have the same TS track segment, as in TrackMatch-
ing (NComTS). Fig. 7 and Fig. 8 illustrate the NComTS variable for PatForward and TrackMatching
sample, respectively.

A key variable in the TrackMatching algorithm is χ2
Match. Thus for these tracks χ2

Match and the
difference in χ2 between the first and the second candidate of a track (∆χ2) are used in NN. The
sorting of the candidates is done from lowest χ2 to highest χ2, for more details see [7]. The χ2

Match

and ∆χ2 distributions are presented in Fig. 9 and Fig. 10 respectively.
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Figure 9: The χ2
Match distribution for Match

tracks. The histograms are normalized to 1.
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Figure 10: The ∆χ2 distribution for Match tracks.
The histograms are normalized to 1.
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Figure 11: The QPatForward distribution for Pat-
Forward tracks. The histograms are normalized
to 1.
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Figure 12: The ∆QPatForward distribution for
PatForward tracks. The histograms are normal-
ized to 1.

With a similar key role the QPatForward is built in the PatForward algorithm. This variable together

page 9



Identification of Ghost Tracks using Neural Networks
LHCb Note Issue: 1 Ref:LHCb 2007-158 Date: December 21, 2007
3 Neural Network Performance

with the difference in QPatForward (∆QPatForward) between first and second candidate are complet-
ing the list of specific variables. Here the ordering is done with respect to QPatForward, see [7]. In
Fig. 11 one can observe the QPatForward distribution and in Fig. 12 the ∆QPatForward one.

The different structures seen in the differential variables of the pattern recognition algorithms are
due to the fact that in TrackMatching a cut is applied on χ2

Match and all candidates with smaller
χ2

Match are taken as tracks, while in PatForward the number of accepted candidates is limited due to
the selection in steps of the best candidates, see [3].

3 Neural Network Performance

In order to check the training process of the NN one has to investigate the separation power of the
NN, see Fig. 13, and its performances.

The performance of the NN presented in this
paper is illustrated using two distributions.
Each NN can be described by the Background
Rejection vs. Signal Efficiency distribution as
shown in Fig. 14.

The red curve shows the NN performance for
training and testing on TrackMatching (Match)
container, the blue curve on PatForward con-
tainer and the black one on best long tracks
container.

The Background Rejection refers to the fraction
of ghost tracks rejection when a cut on the NN
decision is applied and it is calculated with
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Figure 13: NN separation power: good (signal)
vs. ghost (background) tracks.

respect to the initial value of the ghost rate in the sample. If all ghost tracks are removed, Background
Rejection is 1 ( 100%), but almost no track is left and the Track Efficiency will go towards 0.

The Signal Efficiency gives a measure of how many of the good tracks from the initial fraction
remains when a cut on the NN decision is used. When all tracks are kept the Signal Efficiency is 1
( 100%), but no ghost track is rejected and the Background Rejection is 0.

An interpretation of the NN performance in terms of Track Efficiency vs. Ghost Rate can be seen in
Fig. 15.

The Track Efficiency is calculated as the ratio between the total number of found tracks that were
associated to a final state MC particle and the total number of MC reconstructible particles. Under
MC reconstructible particle it is understood the MC particle which can be reconstructed using the
VeLo and the TS detector information, see [8]. The association between a track and a MC particle is
done when at least 70% of the track hits belong to the MC particle.

The Ghost Rate represents the relative amount of tracks that could not be associated to a final state
MC particle from the total number of tracks which were found.
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4 Studies on Different Types of Tracks in an Event

4.1 Physics Signal Tracks

In order to validate the NNTools, a series of studies have been performed. One of them involves to
the tracks that belong to the decay products of the B meson decay which is simulated. These tracks
are named physics signal tracks.
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Figure 16: Schematic view of a B0
→ J/ΨK0

S

decay.

Ghost Rate [%]
0 2 4 6 8 10 12 14 16 18 20

 
E
f
f
i
c
i
e
n
c
y
 
[
%
]

- π,
+ π,

- µ,
+ µ

0

10

20

30

40

50

60

70

80

90

100

)-π+π(s
0)K-µ+µ(ΨJ/→0B

BestLong Tracks

p > 0 GeV
p > 2 GeV
p > 3 GeV

Figure 17: Physics Signal Tracks Efficiency vs.
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In Fig. 16 a schematic view is presented for an event where a B0
→ J/ΨK0

S is produced. The
µ+, µ−, π+ and π− coming from the grand-mother B0 are the physics signal tracks for this type of
events.

The efficiency for the physics signal tracks is defined as ratio between the tracks that can be as-
sociated to the B0 meson final state decay particles and the number of reconstructible decay MC
particles, see Fig. 17.

The four tracks are counted individually, e.g. if only three decay MC particles are reconstructible
and the three corresponding tracks are found, the physics signal tracks efficiency will be 100%.

This distribution is plotted also for different momentum cuts: for the black curve no cut is applied,
the red one has a cut of p > 2 GeV and the green curve shows the case when tracks have p > 3 GeV.

4.2 Opposite Side Tagger Tracks

The event where a bb̄ pair of quarks is produced is one of the most interesting ones for the LHCb.

Such an event can be split in two parts: one of the physics signal where all decay particles of a
B0 meson are reconstructed, see Sec. 4.1, and one with tracks originating from the same vertex as
second quark of the produced pair or decay particles of the B0 meson, opposite side tagger.

In Fig. 18 one can see a schematic view of such an event.
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Figure 18: Schematic view of a bb̄ event.
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Figure 19: Opposite Side Tagger Tracks Effi-
ciency vs. Ghost Rate.

The opposite side tagger tracks efficiency, calculated as physics tracks efficiency in Sec. 4.1, is
plotted with respect to the ghost rate in Fig. 19.
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4.3 Electron and Positron Tracks

The electron and positron tracks were also
studied. In Fig. 20 the track efficiency in case
of electrons and positrons which have as mother
or grand-mother the B mesons is presented as
a function of the ghost rate. The observed steps
structure is due to small amount of electrons and
positrons in the MC sample.

The distribution is plotted also for electron and
positron tracks with p > 2 GeV, see the red curve,
and p > 3 GeV, the green curve.

The efficiency drops when the momentum cut is
set to 3 GeV with ∆Efficiency = −6% compared
with no momentum cut distribution.
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Figure 20: Electrons Tracks Efficiency vs.
Ghost Rate.

5 Neural Networks at High Luminosity

The performance of the NN at high luminosity, 5 × 1032cm2s−1, can be seen for track efficiency in
Fig. 21 and for physics signal tracks efficiency in Fig. 22. The red curve shows the NN performance
at nominal luminosity, 2× 1032cm2s−1. The NN behaviour shows that one can reduce the ghost rate
for the high luminosity events to 10% with minimal losses in efficiency.
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Figure 21: Track Efficiency vs. Ghost Rate at
nominal and high luminosity.
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Ghost Rate at nominal and high luminosity.
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6 Test on a Different B Meson MC Sample

Another useful test is to check the NN trained on one B meson MC sample on a sample with a
different B meson.

To perform this test the B+
→ D0K+ has been chosen. The decay of the D0

→ K0
Sπ+π− and

K0
S → π+π− makes this MC sample a lot different from the tracks topology of the B0

→ J/ΨK0
S

decay with J/Ψ → µ+µ− and K0
S → π+π−.
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Figure 23: Track Efficiency vs. Ghost Rate for
different MC samples.
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Figure 24: Physics Signal Tracks Efficiency vs.
Ghost Rate for different MC samples.

In order to test the NN, three histograms are plotted in Fig. 23 for track efficiency vs. ghost rate and
in Fig. 24 for physics signal track efficiency vs. ghost rate.

The red curves show the NN performance for testing procedure on B0
→ J/ΨK0

S when training
was done on the same B0

→ J/ΨK0
S MC sample.

The blue curves indicate the NN performance for testing procedure on B+
→ D0K+ when training

was done on the same B+
→ D0K+ MC sample.

The black curves depict the NN performance for testing procedure on B+
→ D0K+, but in this

case the training was done on the B0
→ J/ΨK0

S MC sample. In order to observe these black curves
one has to zoom in the blue curves. It can be seen that the black curves emulate the blue ones. This
observation shows that one can use the NN trained on one B meson MC sample to other MC samples
with different B mesons.

7 Ghost Types

One important question at this stage is how can the NN performance be further improved?

For this, one has to identify which ghost tracks are rejected and how evolves their rejection with the
NN decision.
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Figure 25: Classification of ghost tracks.

NN Decision
0 0.2 0.4 0.6 0.8 1

G
h
o
s
t
 
R
a
t
e
 
[
%
]

0

2

4

6

8

10

12

14

16

18

20
BestLong Tracks

Track Efficiency(to x7)
all ghosts
VeLo/T-Station mismatch
T-Station ghost
VeLo ghost

Figure 26: Ghost types Rate evolution as a
function of the NN decision. The corresponding
Track Efficiency, down-scale factor 7, of the NN
decision is illustrated by the magenta curve.

A classification of the ghost tracks is illustrated in Fig. 25.

Three major types of ghosts can be seen:

– ghost which have the VeLo track segment not associated to a MC particle;

– ghost that are build with TS track segment identified as ghost;

– ghost made of good VeLo and TS track segments, but with a wrong matching between them.

The evolution of the ghost rate with the NN decision can be seen in Fig 26 for the three types of
ghosts and the total rate.

The blue curve shows the ghost rate evolution for tracks with a ghost VeLo segment, the green
one for tracks with a ghost TS segment and the red one for tracks that have the VeLo and the TS
segments mismatched. The dominant contribution to the ghost rate belongs to tracks that have a
ghost TS segment.

In order to have a better orientation in Track Efficiency vs. Ghost Rate space, in Fig. 26 is plotted
also the track efficiency as a function of NN decision with a down-scaled factor of 7, the magenta
curve.

8 Implementation in the LHCb Software

The tests presented until now were performed in Brunel version v31r7. In order to commission the
NN as a tool to LHCb software an additional test is needed in the Brunel version v31r9.

A comparison between the NN performances in the two Brunel versions can be seen in Fig. 27 for
track efficiency and in Fig. 28 for physics track signal efficiency. Improvements of the track fit and
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Figure 27: Track Efficiency vs. Ghost Rate for
different Brunel versions.
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Figure 28: Physics Signal Tracks Efficiency vs.
Ghost Rate for different Brunel versions.

algorithms make possible a better starting value for the track efficiency. Due to these improvements
the NN performance is systematically better than in the previous Brunel version.

In Brunel v31r10 the algorithm which calculates the NN decision is implemented in the package
Tr/NNTools/v1r0. The NN decision is calculate with the TVMA package from ROOT. The first
version has only the CFMlpANN method from TMVA implemented. The NN which is implemented
in Brunel v31r10 does not use the Ntracks/ev. variable [9].

The NNTools returns the Ghost Probability of a track after NN evaluates the track with respect to
the input variables. The evaluation is performed with the CFMlpANN method and the corresponding
weights file.

The Ghost Probability is stored afterwards as additional information to the track and written to .dst
files if these are produced.

The user can run the NNTools in Brunel editing in RecoTracking.opts file the following lines:

Trac.DetectorList={ "PatForward", ...,
"NNTools"
};

//NeuralNetTmva ghost probability
TrackNNToolsSeq.Members += {NeuralNetTmva};

In DaVinci framework the access to Ghost Probability is as follows:

float gp = protoparticle->track->info(LHCb::Track::GhostProbability,
9999);

A second version Tr/NNTools/v1r1 is planned to have options files which should offer to the user
a higher degree of freedom. As options are forseen different methods from TVMA package and
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own-user trained weights files. In addition, a tool for the TMultiLayerPerceptron from ROOT will
be available and one for writing NTuples with various variables.

More details about the implementation in the LHCb software can be found at the address:
http://twiki.cern.ch/twiki/bin/view/LHCb/LHCbNeuralNet .

9 Conclusion

The purity of the tracks sample found by the pattern recognition algorithms is highly improved when
a neural network which combines various track variables is used.

Variables as P (χ2), n.d.f., NTThits, NV eLohits, η, Ntracks/ev. are characteristics to every track and
have a discrimination power between good tracks and ghost tracks.

To improve the neural network performance, additional variables as number of candidates of a track
with common Outer Tracker segment, χ2

Match, ∆χ2 for Match tracks and QPatForward, ∆QPatForward

for PatForward tracks, are added as input to the neural network. These additional variables are built
inside the pattern recognition algorithms.

The performances of the network show that one can use various neural network decision values for
tracks selection needed for analysing a certain subject. For the best long tracks one can choose to
have for the track sample a Track Efficiency of 90% and a Ghost Rate of 8% instead of 94% and
18.5%, respectively, as given by the algorithm.

Tests on physics signal tracks, opposite side tagger tracks and electron tracks indicate a stabile
neural network performance.The results of the neural network on events at high luminosity and tests
performed on different B meson MC samples demonstrate that the neural network is robust. Once
the neural network is trained on one B meson MC sample is could be used for evaluation also on
MC samples with different B mesons.

First implementation of the neural network software for track evaluation is done in Brunel v31r10
under Tr/NNTools/v1r0 and has the CFMlANN method from TMVA package available. The NNTools
return a Ghost Probability which is stored as additional information to the track and has an easy
access in the DaVinci framework.

A second version of the NNTools is foreseen where more methods from the TMVA should be made
accessible to users via option files.

References

[1] LHCb Collaboration, “Lhcb reoptimized detector design and performance technical design
report”,. CERN-LHCC/2003-030. 6

[2] M. Needham, “Performance of the Track Matching.” LHCb-2007-129. 6

[3] O. Callot and S. Hansmann-Menzemer, “The Forward Tracking : Algorithm and Performance
Studies.” LHCb-2007-015. 6, 10

[4] http://root.cern.ch/root/html310/TMultiLayerPerceptron.html. 6

page 17

http://doc.cern.ch//archive/electronic/cern/others/LHB/public/lhcb-2007-129.pdf
http://doc.cern.ch//archive/electronic/cern/others/LHB/internal/lhcb-2007-015.pdf
http://root.cern.ch/root/html310/TMultiLayerPerceptron.html


Identification of Ghost Tracks using Neural Networks
LHCb Note Issue: 1 Ref:LHCb 2007-158 Date: December 21, 2007
9 Conclusion

[5] http://root.cern.ch/root/htmldoc/TMVA Index.html. 6

[6] http://lhcb-release-area.web.cern.ch/.../class track event clone killer.html. 6

[7] https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbNeuralNet. 9, 10

[8] M. Needham, “Combined Long Tracking Performance.” LHCb-2007-019. 10

[9] http://indico.cern.ch/.../access?contribId=2&resId=0&materialId=slides&confId=10174. 16

page 18

http://root.cern.ch/root/htmldoc/TMVA_Index.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/DOC/brunel/releases/latest/doxygen/db/d83/class_track_event_clone_killer.html
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbNeuralNet
http://doc.cern.ch//archive/electronic/cern/others/LHB/public/lhcb-2007-019.pdf
http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=10174

	1 Introduction
	2 Neural Network Variables
	2.1 General Variables
	2.2 Specific Variables

	3 Neural Network Performance
	4 Studies on Different Types of Tracks in an Event
	4.1 Physics Signal Tracks
	4.2 Opposite Side Tagger Tracks
	4.3 Electron and Positron Tracks

	5 Neural Networks at High Luminosity
	6 Test on a Different B Meson MC Sample
	7 Ghost Types
	8 Implementation in the LHCb Software
	9 Conclusion

