High-energy collision processes involving intense laser fields

Carsten Müller

Max Planck Institute for Nuclear Physics,
Theory Division (Christoph H. Keitel),
Heidelberg, Germany

EMMI Workshop: Particle dynamics under extreme matter conditions, Speyer, 28 September 2010
Outline

• **Introduction:**
 Ways to reach the MeV energy level with laser fields

• e^+e^- pair creation in laser-particle beam collisions

• Exotic atoms in very intense laser fields:
 $\mu^+\mu^-$ pair creation and nuclear effects

• Laser-assisted relativistic electron-ion recombination

• **Summary**
Introduction
Efficient coupling of a laser field with a quantized system is possible when its level spacing $\Delta \varepsilon$ compares with one of these scales:

- $\Delta \varepsilon \sim \hbar \omega$
 Resonant (multiphoton) transition
- $\Delta \varepsilon \sim eE\Delta r$
 Quasistatic tunneling process
- $\Delta \varepsilon \sim U_p$
 Fast electron-induced reaction
Typical energy scales in laser physics

<table>
<thead>
<tr>
<th>Photon energy</th>
<th>Electric work</th>
<th>Ponderomotive energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hbar \omega$</td>
<td>$eE \Delta r$</td>
<td>$U_p = \frac{e^2 E^2}{4m \omega^2}$</td>
</tr>
</tbody>
</table>

Efficient coupling of a laser field with a quantized system is possible when its level spacing $\Delta \varepsilon$ compares with one of these scales:

- $\Delta \varepsilon \sim \hbar \omega$: Resonant (multiphoton) transition
- $\Delta \varepsilon \sim eE \Delta r$: Quasistatic tunneling process
- $\Delta \varepsilon \sim U_p$: Fast electron-induced reaction

Pioneering experiments on **nuclear reactions** (Ditmire/Ledingham/Umstadter) and **pair creation** (Cowan/Kühl/Chen) where $\Delta \varepsilon \sim 1$ MeV have relied on high U_p of secondary electrons.
Direct laser-induced e^+e^- pair creation

Pair creation requires
\[N\hbar\omega \sim mc^2 \sim 1 \text{ MeV} \]
multiphoton regime
\[\xi \ll 1, \text{ rate } \sim \xi^{2N} \sim I^N \]

or
\[E \sim E_{cr} = \frac{mc^2}{e\lambda_C} \approx 10^{16} \text{ V/cm} \]
tunneling regime
\[\xi \gg 1, \text{ rate } \sim \exp\left(-\frac{E_{cr}}{E}\right) \]

The available frequencies ($\hbar\omega_{\text{XUV}} \sim 100\text{eV}$) and field strengths ($E_{\text{PW}} \sim 10^{12} \text{ V/cm}$) are by 4 orders of magnitude too small...
e^+e^- pair production in laser-particle beam collisions
Relativistic particle beam colliding with laser pulse

Exploit relativistic Doppler shift

lab frame: $\hbar \omega \approx 100 \text{ eV} \ , \ E \approx 10^{12} \text{ V/cm}$
rest frame: $\hbar \omega'$ and E' enhanced by 2γ
Relativistic particle beam colliding with laser pulse

Exploit relativistic Doppler shift

lab frame: $\hbar \omega \approx 100 \text{ eV}$, $E \approx 10^{12} \text{ V/cm}$
rest frame: $\hbar \omega'$ and E' enhanced by 2γ

SLAC experiment:
46 GeV electron + optical laser pulse
(D. Burke et al., PRL 1997)

Pairs were produced in two-step process through an intermediate high-energy Compton photon:

$$\Omega_c + n\omega \rightarrow e^+e^-$$

(nonlinear Breit-Wheeler process)
Relativistic particle beam colliding with laser pulse

\(\hbar \omega \approx 100 \text{ eV} \), \(E \approx 10^{12} \text{ V/cm} \)

rest frame: \(\hbar \omega' \) and \(E' \) enhanced by \(2\gamma \)

For heavy projectiles such as nuclei Compton channel strongly suppressed and pairs would be produced directly by nuclear Coulomb field:

\[
Z + n\omega \rightarrow Z + e^+e^- \\
\text{(nonlinear Bethe-Heitler process)}
\]

SLAC experiment:
46 GeV electron + optical laser pulse
(D. Burke et al., PRL 1997)

Pairs were produced in two-step process through an intermediate high-energy Compton photon:

\[
\Omega_c + n\omega \rightarrow e^+e^- \\
\text{(nonlinear Breit-Wheeler process)}
\]
Laser-dressed QED approach to trident pair creation

In the presence of the laser field, the intermediate photon may reach the mass shell:

\[k'^2 = (q - q' + nk)^2 = 0 \]

In this case, the second-order diagram decays into two first-order diagrams, which describe the consecutive two-step mechanism via Compton emission.

Furry-Feynman diagrams:

\[
S_{fi} = -i \alpha \int d^4x \int d^4y \bar{\Psi}_{q'}(x) \gamma_\mu \Psi_q(x) D^{\mu\nu}(x-y) \bar{\Psi}_{q_-}(y) \gamma_\nu \Psi_{q_+}(y)
\]
Transition from perturbative to nonperturbative regime

46.6 GeV electron beam collides with 527 nm laser beam

![Graph showing the transition from perturbative to nonperturbative regime.](Image)

- Perturbative domain
- SLAC experiment
- Nonperturbative domain
All-optical setup for laser-induced pair creation

Combine laser-accelerated electron beam with second counter-propagating laser pulse: All-optical realization of SLAC experiment to probe the tunneling regime

Hu, Müller & Keitel, PRL 105, 080401 (2010)
Nonlinear Bethe-Heitler pair creation by ultrarelativistic proton impact on an XUV laser beam

Attosecond laser sources based on high-harmonic generation deliver $\hbar \omega \sim 100 \text{ eV}$ at focused intensities of 10^{14} W/cm^2

Large Hadron Collider ($\gamma \sim 3000$-7000)
Nonlinear Bethe-Heitler pair creation by ultrarelativistic proton impact on an XUV laser beam

Attosecond laser sources based on high-harmonic generation deliver
\(\hbar \omega \sim 100 \text{ eV} \) at focused intensities of \(10^{14} \text{ W/cm}^2 \)

\(\hbar \omega ' \sim 1 \text{ MeV} \)
\(E' \sim 10^{-4} E_{\text{cr}} \)

Large Hadron Collider
\((\gamma \sim 3000-7000) \)

Two-photon Bethe-Heitler pair creation becomes feasible in this setup:
About one event per second, when a bunch of \(10^{11} \) Pb ions collides with attosecond-pulse trains of 30 fs duration at 10 kHz rep rate.

Exotic atoms in very intense laser fields
The concept of laser-driven recollisions in atomic physics

Recollision can lead to...

... scattering (ATI)
... double ionization (NSDI)
... recombination (HHG)

Corkum & Krausz, Nature Phys. 2007
Exotic atoms in very intense laser fields:

a) $\mu^+\mu^-$ pair creation from laser-driven positronium
e^+e^- collisions from laser-driven positronium

Due to identical charge-to-mass ratios → dynamical response of Ps unique:

High-energy reactions by laser-driven e^+e^- collisions:

- Muon production ($Mc^2 = 106$ MeV)
- Pion production ($Mc^2 = 140$ MeV)

Henrich, Hatsagortsyan & Keitel, PRL 93, 013601 (2004)

\[eE \lambda \geq \Delta \varepsilon = 2Mc^2, \]

\[I \geq 5 \times 10^{22} \text{ W/cm}^2 \text{ at } \lambda = 1 \mu\text{m} \]
Laser-Driven Colliders

Positronium atom in two counterpropagating laser waves:

Recolliding wave packets may be microscopically small

Process observable at high Ps density and laser rep rate

luminosity enhancement due to coherent component:

$$\mathcal{L}_m = \left[\frac{N_e(N_e - 1)}{S_b} + \frac{N_e}{a^2} \right] f$$

Hatsagortsyan, Müller & Keitel, Europhys. Lett. 76, 29 (2006); PRA 78, 033408 (2008)
A numerical example

Ps gas density = 10^{15} cm$^{-3}$ [Cassidy et al., PRL 95, 195006 (2005)]

Laser pulses of 10^{23} W/cm2, 100 fs duration, 10 µm focus, 1 kHz rep rate

Luminosity $\mathcal{L} \sim 10^{28}$ cm$^{-2}$s$^{-1}$

Event rate $R \sim 1$/min ($\sigma \sim 10^{-30}$ cm2)

These numbers are comparable with those at large-scale accelerators.

Muon creation in electron-positron-photon plasma also considered in:

M. H. Thoma, Rev. Mod. Phys. 81, 959 (2009)
Exotic atoms in very intense laser fields:
 b) Nuclear effects in laser-driven muonic atoms
Nuclear effects in HHG from muonic atoms

Muonic atoms very compact due to large muon mass $M = 207m$

Muonic hydrogen
Nuclear effects in HHG from muonic atoms

Muonic atoms very compact due to large muon mass $M = 207m$

Need to consider relative motion; cutoff determined by reduced mass

$$U_p = \frac{e^2 E^2}{4\omega^2 M_{\text{red}}}$$

HHG spectra of muonic hydrogen and deuterium at 60 eV and 10^{23} W/cm2 (ELI)
Nuclear effects in HHG from muonic atoms

Muonic atoms very compact due to large muon mass $M = 207m$

Need to consider relative motion; cutoff determined by reduced mass

$$U_p = \frac{e^2E^2}{4\omega^2 M_{\text{red}}}$$

$\varepsilon_{\text{cutoff}} = 80$ keV

HHG spectra of muonic hydrogen and deuterium at 60 eV and 10^{23} W/cm2 (ELI)

Shahbaz, Bürvenich & Müller, PRA 82, 013418 (2010)
Laser-assisted relativistic electron-ion recombination
Radiative electron-ion recombination

What happens when the system is subject to a strong laser field?

Photon energy

$$\omega = \varepsilon_{\text{kin}} + |\varepsilon_{\text{bind}}|$$

free electron
Radiative electron-ion recombination

What happens when the system is subject to a strong laser field?

Photon energy

$$\omega_\gamma = \epsilon_{\text{kin}} + |\epsilon_{\text{bind}}|$$

Quantum mechanical amplitude:

$$S_{fi} = -i \int_{-\infty}^{+\infty} dt \langle \Psi_f(t) | \hat{W} | \Psi_i(t) \rangle$$

Interaction term

$$\hat{W} = \alpha \cdot \hat{A}_\gamma$$

with

$$\hat{A}_\gamma(r, t) = \sum_{k, \rho} \sqrt{\frac{2\pi c^2}{V \omega_k}} e_{k, \rho} \left(c_{k, \rho}^+ e^{i(\omega_k t - k \cdot r)} + \text{C.C.} \right)$$
Energy spectrum of emitted photons

\[Z = 50 \text{ (bare Sn)} \]

\[E_i = 4.7 \text{ MeV} \]

\[\hbar \omega_0 = 1.5 \text{ eV} \]

\[I = 4 \times 10^{18} \text{ W/cm}^2 \]

(PHELIX @ GSI)
Energy spectrum of emitted photons

$Z = 50$ (bare Sn)

$E_i = 4.7$ MeV

$\hbar \omega_0 = 1.5$ eV

$I = 4 \times 10^{18}$ W/cm2

(PHELIX @ GSI)
Energy spectrum of emitted photons

Energy of incoming electron is modulated by the field:

\[E(\varphi) = E_i + U_p + \frac{cp_i c F_0}{E_i \omega_0} \cos \varphi \]

- \(Z = 50 \) (bare Sn)
- \(E_i = 4.7 \text{ MeV} \)
- \(\hbar \omega_0 = 1.5 \text{ eV} \)
- \(I = 4 \times 10^{18} \text{ W/cm}^2 \)

(PHELIX @ GSI)
Angular spectrum of emitted photons

\[p_z(\varphi) = \frac{U_p}{c} + \frac{p_i c}{E_i} \frac{F_0}{\omega_0} \cos \varphi \]

Müller, Voitkiv & Najjari,
JPB 42, 221001 (2009)
Summary

- All-optical e^+e^- pair creation via laser-accelerated electron colliding with second laser beam (two-step process)
- Multiphoton Bethe-Heitler pair creation in collisions of LHC proton beam with XUV laser pulse
- Muon pair creation feasible in the near future via strongly laser-driven positronium gas or e^+e^- plasma of very high density
- Nuclear signatures in the radiative response from laser-driven muonic atoms
- Characteristic photon spectra from laser-assisted electron-ion recombination

Thank you for your attention!
Volkov states

Dirac equation: \[
\left(ic\gamma^\mu \partial_\mu - e\gamma^\mu A_\mu - mc^2 \right) \Psi = 0
\]

Volkov solutions:

\[
\Psi_{p,s}(x) = \left(1 - \frac{e k A}{2c(kp)} \right) u_{p,s} e^{-i(px)} e^{if(x)}
\]

\[
f(x) = \frac{e}{c(kp)} \int^{(kx)} \left[p \cdot A(\eta) + \frac{e}{2c} A^2(\eta) \right] d\eta
\]
Theory of laser-driven muon creation

Employ Volkov states in the usual amplitude for $e^+e^- \rightarrow \mu^+\mu^-$:

$$S_{e^+e^- \rightarrow \mu^+\mu^-} = -i\alpha \int d^4x\, d^4y\, \bar{\Psi}_{p_+}(x)\gamma^\mu\Psi_{p_-}(x)$$
$$\times D_{\mu\nu}(x-y)\bar{\Psi}_{P_-}(y)\gamma^\nu\Psi_{P_+}(y)$$

Average over the momentum distribution $\Phi(p)$ in the Ps ground state:

$$S_{Ps \rightarrow \mu^+\mu^-} = \int \frac{d^3p}{(2\pi)^3} \Phi(p) S_{e^+e^- \rightarrow \mu^+\mu^-}$$
Coherent versus incoherent collisions

(a) conventional colliders: mean impact parameter \sim beam size S_b

(b) laser-driven Ps: mean impact parameter can be microscopic ($\rho \sim$ Bohr radius a_0)

Luminosity enhancement due to coherent component:

$$\mathcal{L}_m = \left[\frac{N_e(N_e - 1)}{S_b} + \frac{N_e}{a_0^2} \right] f$$
Comparison with HHG from highly charged ions

Similar nuclear size effects in the HHG spectra may be expected when $R_{\text{nuc}} / R_{\text{atom}}$ of similar value, e.g. about 1% for:

- muonic He$^+$
- electronic U$^{91+}$

Mass scaling leads to

$$I_p = 10 \text{ keV}$$
$$E_{\text{at}} = 1.8 \times 10^{15} \text{ V/cm}$$

Z-scaling leads to

$$I_p = 130 \text{ keV}$$
$$E_{\text{at}} = 4 \times 10^{15} \text{ V/cm}$$

→ Higher laser frequencies and intensities must be applied to U$^{91+}$.
Relativistic versus nonrelativistic spectra

![Graph showing relativistic and nonrelativistic spectra]

- \(Z = 30 \) (bare Zn)
- \(p_i = 0.3 \ mc \)
- \(\hbar \omega = 1.5 \ eV \)
- \(I = 4 \times 10^{17} \ W/cm^2 \)