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Abstract

This report presents a setup to create arbitrary potentials for trapping two-dimensional Bose Einstein
Condensate of Dysprosium. They are created by modulating the amplitude of a 532nm laser beam using
a Digital Micromirror Device. The algorithm to optimize these potentials is explained and the accuracy
as well as the stability of the trap are characterized. Finally simulations of the condensate in the obtained
flat top trap are conducted and the perturbations of the atomic density with respect to the parameters
of the condensate are studied.
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1 Theoretical and technical background to the tailorable trapping
of Dysprosium atoms

1.1 Dipolar atomic gases of Dysprosium
Before diving into the description of the experimental setup allowing to create tailorable traps, one should

have an overview of the experiment in which it will fit. This experiment, built by the group of Lauriane
Chomaz, is dedicated to the study of ultracold gases of Dysprosium atoms. They are of particular interest
because the Dysprosium is the most magnetic atom, with a magnetic moment µm ≃ 10µB , where µB is the
Bohr magneton. This moment causes a dipolar interaction [1] between atoms separated by a distance r in
the form of :

Vdd (r) =
µ0µ

2
m

4π

1− 3 cos2 θ

r3
(1)

where µ0 is the vacuum permeability and θ the angle defined in Figure 1.

Figure 1 – Illustration of the dipolar interactions between two atoms. In the middle, we have the head to
tail configuration and at the right, this is the side by side configuration.

This interaction is highly anisotropic. We see that for θ = 0, a head to tail configuration, we have attrac-
tive interaction, while for θ = π

2 , a side by side configuration, the interaction is repulsive. This is shown in
Figure 1.

Once they are cooled to very low temperatures, the atoms of mass m turned into a Bose Einstein
Condensate where a macroscopic number of atoms occupy the ground state of the system. However, unlike
most of the cold atom gases, where the behavior of the condensate is determined by a kinetic term and
some contact interaction between the atoms, described by a scattering length as, here the strong dipolar
interactions adds a term in the Gross Pitaevskii equation for the evolution of the system [1, 2] :

iℏ
∂Ψ

∂t
=

[
− ℏ2

2m
∇2 + V (−→r ) + 4πℏ2as

m
|Ψ|2 + µ0µ

2
m

4π

∫
1− 3 cos2 θ

∥−→r −−→r ′∥3
|Ψ(−→r ′)|2d−→r ′

]
Ψ (2)

where Ψ is the macroscopic wavefunction of the system such that its norm is the square root of the atomic
density and ℏ

m∇Φ is the velocity field with Φ the phase of Ψ .

This long range dipolar interaction enables to observe new quantum states like supersolid [1] where the
atom cloud displays superfluid properties as well as discrete translational symmetry like in a crystal and no
longer the continuous one of (2) usually observed in superfluids. The goal now is to study this physics in 2D
as well as the dynamics of for example vortices or turbulence in the atomic cloud. Being in 2D gives access
to different transition mechanism like the Berezinskii-Kosterlitz-Thouless transition [3] and there might be
other crystal structures than the ones observed in 3D.
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The experiment is done in the science chamber shown in Figure 2 :

Figure 2 – Illustration of the science chamber of the main experiment. In addition of the accordion lattice
beam represented coming from the side and the tailored beam from the top, there are six magneto-optical
trap beams at 626nm and two beams at 1064nm for the crossed optical trap (adapted from seminar talk
from L. Chomaz)

In this chamber, the atoms are loaded from a 3D magneto-optical trap [4] into a crossed optical dipole
trap [5]. At this point, a Bose Einstein condensate was achieved in April 2023. In the future, the atoms will
then be transferred in an accordion lattice trap [6] where they will be compressed into quasi-2D regime.
Once they are in this 2D regime, we want to be able to trap them into different potentials and even time
dependent ones to study their behavior and dynamics ; creating this tailorable optical trap is the topic of
this report.

1.2 Optical trapping of Dysprosium
Like in any cold magnetic atoms experiment, the Dysprosium atoms are trapped using laser light [7].

Indeed light of intensity I creates for atoms of polarizabilty α a potential U = − 1
2ε0c

I Re (α) with ε0 the
vacuum permittivity and c the speed of light. Since the Dysprosium ground state has a non zero angular
momentum J = 8 and mJ = −8, it must be considered as an anisotropic medium and hence the polarizability
must be decomposed over its scalar, vectorial and tensorial parts. The potential becomes then [8] :

U (r, ω) = −I (r)
2ε0c

[
Re (αs (ω)) + (−→u ×−→u ∗) · −→ez

mJ

2J
Re (αv (ω)) +

3m2
J − J(J + 1)

J(2J − 1)

3 (−→u · −→ez)
2 − 1

2
Re (αt (ω))

]
(3)

where −→u is the polarization vector of light and −→ez is the quantization axis. Hence (−→u ×−→u ∗) · −→ez is the
cosinus of the angle between the propagation axis and the quantization axis and (−→u · −→ez) the cosinus of the
angle between the polarization axis and the quantization axis.

Furthermore, the scalar, vectorial and tensorial parts of the polarizability can be calculated from spec-
troscopic data with energy and lifetime of each transitions thanks to the equations of [9] (see Appendix).
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Firstly, since 532nm laser are easily accessible with high power and have already been used to trap Dys-
prosium, we chose to work with this wavelength. However, as visible in Figure 3, there is a transition near
532nm which can create issues : a small change of the wavelength can result in a large variation of the
polarizability. The position of the resonance is also not perfectly known and hence it is difficult to have a
precise prediction for the value of the polarizability.

It is then clearly visible that the trapping will depend a lot on the polarization of the light and the angle
of the magnetic field defining the quantization axis as shown in Figure 3.

Figure 3 – (a,b,c) Real part of the polarizability of Dysprosium. The light propagates in the z direction
and the magnetic field being in the (x,z) plane, the different curves are labeled by the angle of this field with
the z axis. (a) The polarization of light is along the y axis and so always orthogonal to the field. Hence the
polarizability does not depend on the direction of the field. The red line is at 532nm. (b) The polarization
of light is along the x axis. The symmetry around π

2 is clearly visible. (c) The light is σ+ polarized, the
graph for σ− is the same but by changing the angle θ → π− θ. For a magnetic field in the −z direction, the
resonances at 530nm and 545nm disappear since they are J → J − 1 and so the light must have +ℏ angular
momentum to do the transition mJ = −8 → −7. (d) Imaginary part of the polarizability for a polarization
of light along the y direction. (e) Lifetime of the atoms if it is limited by light scattering. At 532nm for a
uniform potential of depth 100nK×kB , it is of 530s.

The first noticeable point, is the fact that the polarizabilty doesn’t depends on the angle of the magnetic
field if the light is linearly polarized and orthogonal to the magnetic field plane. Indeed, in that case, after
any rotation in that plane, the field will stay parallel to the polarization of light. This is then the best
choice for our light otherwise some small perturbations of direction of the field could change a lot the trap
depth. For example with x polarization, at 532nm, we see on Figure 3 (b) that the polarizability can vary
roughly between 400 a.u. and 450 a.u., and thus of 12.5%, as we rotate the magnetic field. These values seem
consistent with the measured polarizability Re (α) ∈ [64, 386] a.u.[10]

Furthermore, like for the potential, the scattering rate of the atoms depends on the scalar, vectorial and
tensorial part of the polarizability :

Γ =
I

ℏε0c

[
Im (αs) +A cos θk

mJ

2J
Im (αv) +

3m2
J − J(J + 1)

J(2J − 1)

3 cos2 θp − 1

2
Im (αt)

]
(4)

And so for a given trap depth, the lifetime of the atoms can be expressed as τ = ℏ
2U

|Re(α)|
Im(α) . Thus to trap

the atoms, the best is to have large real polarizability and small imaginary part.
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At 532nm the the calculated polarizability has a real part of 450 a.u. and imaginary part of 3×10−5 a.u.
Hence for a trap depth of 100nK×kB , corresponding to an intensity of 3× 10−25 W/m² and a laser power of
3×10−33 W, the lifetime of the atoms is of around 500s if it is limited by the light scattering. However having
red detuned light, that is to say positive real polarizability, has one disadvantage : the atoms are trapped
at the maximum of intensity and it is much harder to realize flat potential, whereas for blue detuned trap
(negative real polarizability) it can be done easily with a black region surrounded by bright walls. There is
also a possibility to do a blue detuned trap between 600nm and 700nm in the blue detuned side of a narrow
transition as detailled in the Appendix. A promising regime for linear polarized light around 657nm was
found with a lifetime of 144s but this will require the acquisition of a new laser source. That’s why in the
following, we will only focus on the red detuned trap at 532nm.

1.3 Tailoring the beam intensity distribution
We want to be able to generate any kind of potential for our atoms, and so we need to modulate the

intensity profile of the usual gaussian laser beam. This is done using a Digital Micromirror Devide (DMD)
(Vialux V-9001) controlled with a Python API wrapper [11]. It is an array of 2560x1600 individual d = 7.6µm
wide mirrors that can be flipped by θ = 12° along their diagonal axis to reflect light in different directions.
These mirrors can be in two different positions which we will call ON and OFF, depending if they reflect the
light in the optical path of the setup, or not (see Figure 4). Furthermore, due to the small size of the mirror
and their periodic arrangement, the DMD acts as a diffraction grating. So light, of wavelength λ, is reflected
only in given directions fulfilling the constructive interference condition (see Figure 4 for the definition of
the angles) :

mλ = d (sinα+ sinβ) m ∈ Z (5)

Furthermore, the envelope of light is also reflected by individual mirrors and so we have a maximum of
intensity when the reflection condition on the mirrors is also satisfied :

β = −α+ 2θ (6)

Figure 4 – Illustration of the behavior of the DMD with incident light. Light is visible in the directions
where the rays reflected by neighboring mirrors interfere constructively.

Since we want to image as good as possible the DMD on the atomic plane to precisely shape our poten-
tial, all the DMD should be in the focal plane of the imaging setup and hence, the light must be reflected
perpendicular to the DMD even if we loose a little bit of power : β = 0 is chosen. In this setting, (6) gives the
maximum of intensity for α = 24° but this doesn’t satisfy the diffraction condition (5). With our wavelength
and the spacing of the mirrors the closest we can get to 24° is for m = 6 : The beam must illuminate the
DMD with an angle of α = Arcsin

(
6λ
d

)
= 24.8° to be as close to the maximum of intensity as possible and

have a lot of power to trap the atoms.
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Following only geometrical optics, since the mirrors have only two possible states, ON and OFF, it should
be possible to only generate binarized images and thus no potentials with intensity gradients. But for once,
we are saved by diffraction : the beam being cut by the finite size of the optics, a point of the object is not
imaged as a point but as a point spread function, which is well approximated, for spherical optics, by an
Airy disk [12] :

I (r) = I0

(
J1
(
πr
a

)
πr
a

)2

(7)

where J1 is the Bessel function of the first kind of first order.

This intensity vanishes for the first time at a radius of 1.22× a : that defines the resolution of the setup.
So to be distinguishables, two neighboring objects must have their images separated by more than this dis-
tance. Thus in our case, if two neighboring mirrors are not distinguishable, we can group them as patches of
mirrors that behaves, in the image plane, as if they where only one point. Thus depending on the number of
mirrors we turn ON in this patch, the quantity of reflected light will change and so different intensities can
be reached. Some simulated examples with patches of 5x5 mirrors are shown in Figure 5.

Figure 5 – Example of the variation of the observed intensity when the number of ON mirrors changes. The
simulations are made with a Airy disk with resolution of 0.6µm corresponding to patches of 5x5 indistingui-
shables mirrors. On the top right corner are shown the mirror pattern displayed, from left to right there are
9,16 and 20 mirrors turned ON.

The first possibility to grayscale our image is then to divide it in patches of indistinguishables mirrors
and display on each of these patches the appropriate number of mirrors to have the wanted grayscale : this
is Bayer dithering [13]. However, this divisions into patches creates some artifacts in the binarized picture
mostly in the form of straight lines appearing in the uniform regions as visible in the sky of Figure 6 (a).
Therefore, we will instead use error-diffusion dithering with the Floyd-Steinberg algorithm [14]. It works as
follows for pictures with intensity between 0 and 1 : The value of the top left pixel is rounded to 0 if its
value is below 0.5 and to 1 otherwise. Then the difference between this rounded value and the true one is
calculated and redistributed to the neighboring pixels with the weights defined by the kernel :[

0 ∗ 7
16

3
16

5
16

1
16

]
The rounded pixel is represented by ∗ and the values are chosen such that an uniform intensity of 0.5 will
result in a checkerboard pattern.

Then the picture is scanned from left to right and top to bottom. Furthermore, no error is redistribu-
ted to already rounded pixels, as visible in the redistribution kernel : this allows to only scan the picture once.
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This results in a much better dithering, without the artifacts but only some apparent noise in the large
uniform areas, as shown in Figure 6 (b).

Figure 6 – (a) Bayer dithering for patches of 5x5 mirrors, some straight lines artifacts appear in the sky
for example. On the zoomed part, individual patches are visible. (b) Floyd-Steinberg dithering, the defects
due to dithering seem less important. Individual mirrors are visible in the zoomed part.
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2 Experimental realisation
This part will explain how we will generate a tailored intensity distribution in a test setup to later trap

Dysprosium atoms.

2.1 Experimental setup
We will first describe the test setup used throughout the internship to create these tailored traps. We

need to first illuminate the DMD screen and then image it on the horizontal plane where the atoms are
supposed to be. The atoms are not here and hence replaced by a microscope objective (7 in Figure 7) and a
camera imaging the assumed position of the atoms.

First of all, to be able to generate the largest variety of traps, we need to be able to use all the mirrors
of the DMD and to have an image in the atomic plane not larger than the field of view of the objective used
to image the DMD on the atoms. So the incident beam on the DMD must be collimated and have a beam
diameter as large as the short axis of the DMD, but not more to avoid stray light reflected by the mount of
the DMD. We estimate that we need a beam waist of 6mm. We use fiber coupled light with oucoupler of focal
25mm and fiber of numerical aperture 0.07 leading to a beam waist of 1.75mm. Thus a telescope (2 in Figure
7) is formed by a f0 = −60mm and a f ′0 = 200mm lenses having hence a magnification of 3.3, to enlarge
the beam. The incident beam on the DMD has then a measured beam waist of 5.2mm. Second, the imaging
objective having a field of view of 150µm, a demagnification of around 80 must be done during the imaging
on the atomic plane. This is achieved with two 4f-setups, a first one with lenses of focals f1 = 250.9mm and
f ′1 = 50mm resulting in a demagnification of 5.02 and a second one with a lens of f2 = 501.8mm and the
Special Optics objective of effective focal length f ′2 = 32.2mm achieving a demagnification of 15.58 giving
to the final setup a demagnification of 78. However, since the Special Optics objective cannot be used for
the test setup, the second telescope is made with a lens of focal 125mm and a Mitutoyo objective of focal
10mm and thus the demagnification is of only 63. In both cases, the final objective is placed on a 5 axis
translation stage. The test setup is depicted in Figure 7 while the setup that will be implemented in the
main experiment is presented in Appendix.

Figure 7 – Description of the experimental setup. All the distances are in mm. The red arrows are twice the
beam waist. The beam exit the fiber outcoupler (1) with a beam waist of 1.7mm and then its polarization
is cleaned. It is enlarged by the telescope (2), before being reflected by the DMD (3) and passing by two
telescopes such that the beam waist in the fictional atomic plane (6) is of 70µm. The image is then magnified
by 7 with a microscope objective (7) to be observable on a camera. Between the two telescopes, at the
position of the intermediate image, an iris (4) is placed to remove the high diffraction orders of the DMD
and reduce the resolution of the setup. The green rectangles represent the beam, which is collimated between
each 4f-setup, and the orange dashed lines are two light rays coming from the DMD : the image is at infinity
inside each telescope and projected on the atomic plane.
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To simulate as well as possible the final setup in the test one, a viewport (5), identical to the one on the
main experiment, is added just before the fictional atomic plane. Furthermore, since the image of the DMD
is too small to be directly imaged, a microscope objective is added to enlarge it by 7 before projecting the
image on the camera.

To be able to grayscale the image, we first need to ensure the resolution of the setup is not too good,
so that the images of neighbouring mirrors overlap each other. An iris is inserted at the position of the
intermediate image of the DMD formed by the first 4-f setup and we measure the resolution for different
opening of the iris. Patches of 5x5 mirrors are displayed successively over the DMD and the intensity is fitted
by an Airy disk (7). The resolution being then 1.22× a.

A first measurement is made with the iris fully open (Figure 8 (b)) and we obtained, on average over
the DMD screen, a resolution of 1.8 ± 0.2µm. However, the microscope 7 (see Figure 7) used for imaging
in the test setup has a numerical aperture of 0.25 giving a theoretical resolution of d = 1.22λ

2NA = 1.3µm.
The measured resolution being close to this value, this objective might be the limiting factor and the real
resolution on the atomic plane be of only 0.6µm as simulated with Zemax Optic Studio (Figure 8 (a)). The
diagonal of the image of a mirror being

√
2 × 7.6/63 µm = 0.17µm, the point spread function covers only

patches of 3x3 mirrors, not enough to grayscale well the image.
Therefore, the iris is closed as much as possible and a new measurement is made (Figure 8 (c)) leading

to a resolution of 2.2 ± 0.2µm. This clear decrease of the resolution shows that the iris is now the limiting
factor, and hence this is also the resolution on the atomic plane. This leads to patches of 12x12 mirrors for
the grayscales in the test setup and of 15x15 in the final one.

Figure 8 – (a) Theoretical Point Spread Function of the final setup on the atomic plane simulated with
Zemax, the value of the resolution is the first zero, that is to say a little less than 0.6µm. (b,c) Resolution
for point at different positions over the DMD, with iris open (b), or close (c). The variations over the DMD
are due to non perfect alignment as well as geometrical aberrations. Finally, there are some unreliable values
in the corners because here the intensity of the incoming gaussian beam is too small and so there are not
enough illuminated pixels on the camera to fit the image properly.
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2.2 Optimization of the trap
It is now time to shape our potential, and we start by trying to generate a flat top beam ; this is done

using the following algorithm (inspired by [15]) presented in Figure 9 :
1) A small patch of 5x5 mirror is displayed at the center of the DMD to locate its position on the camera.
2) Two of these patches, separated by 400 mirrors, are displayed . Their separation on the image allows

to calculate the demagnification on the camera.
3) All the mirrors of the DMD are turned ON (this define the background pattern of the mirrors) to get

an image of the incident beam and the RMS contrast (standard deviation) of the intensity is calculated.
4) Using the measured position of the center and demagnification as well as the 45° angle of the DMD

with the camera axis, a rotation and rescaling of the image is made to associate each mirror to the group of
pixels of the camera where its image is projected.

5) The image goes into a low pass filter with cut-off frequency of fc = 104 m−1 on the atomic plane to
start by correcting only the low frequency defects. This frequency is approximately the one of the size of the
image.

6) Since the intensity is the square of the field, the inverse of the square root of the image is calculated,
multiplied by the background pattern, then grayscaled using the Floyd-Steinberg algorithm to be displayed
on the DMD. The reflected field should then be at nth iteration En = En−1(x,y)√

In−1(x,y)
and thus close to uniform.

7) A new image is taken and the RMS contrast is calculated : if it is smaller than the previous one, the
pattern is accepted and becomes the new background pattern, otherwise the cut-off frequency is multiplied
by 2 : f ′c = 2× fc to start to correct smaller defects

8) We go back to step 4)

A total of 20 iterations of this loop are made, since no clear improvement were visible most of the time
after the 15th one.

Figure 9 – Description of the optimization algorithm (see text), after 10 to 15 iterations of the depicted
loop, it no longer manages to improve the flatness of the intensity.

We observed that, trying to reach a perfect flat top, with intensity of 1 in a given region and 0 outside
leads to oscillations of the intensity in the border region as seen in Figure 10 (a). Indeed, since the iris is
almost closed, the high frequencies of the image are filtered out while they are necessary to generate abrupt
variations : this is the Gibbs phenomenon in Fourier analysis [16]. Therefore, the targeted image is changed
to be a flat top with smooth borders of intensity I = I0

1+
(

r
r0

)α , where I0 is the intensity of the flat top, r the

distance, in mirrors, from the border and (α, r0) two tunable parameters.
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To find the best values for these parameters, the mean RMS contrast, reached after three distinct runs of
the optimizations algorithm, is measured for different values of r0 and α. The results are presented in Figure
10 (b). The best RMS contrast is obtained for α = 6 and r0 = 50 and hence these values are chosen for the
border section. Luckily, these smooth borders are not just better for having a flat top, but it has also been
shown theoretically [17] that soft-walled potential are better to have homogeneous dipolar quantum gases.

Figure 10 – (a) Observation of the oscillations of the intensity near a sharp wall. (b) RMS contrast of the
picture after the optimization process for different values of the parameters α and r0, even if the distribution
seems a little bit random, small α give worse results as well as too large r0, while the region around (6,50)
is on average better. (c) Cut of the target flat top for different (α, r0). The blue curve has a discontinuity
when we reach the borders of the DMD. The thick green line is the one chosen.

With these improvements and an alignment of the setup as good as possible, flat top squares 120µm wide
in the atomic plane with RMS contrast below 1.3% are reached, with an example shown on Figure 11 (a)
with a cut on Figure 11 (b).

Figure 11 – (a) Example of Flat top obtained after the optimization process, here the RMS contrast is of
1.27%. In (b) a cut of the intensity is shown.(c,d) show the image and cut of a beam with targeted intensity
I (X,Y ) = I0 sin (fxX) sin (fyY ).
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Furthermore, it is also possible to generate more complicated potentials : indeed, in the optimization
algorithm, if we calculate the standard deviation around the targeted intensity It (x, y) and multiply, in step
6, En by the square root

√
It (x, y), the algorithm will converge no longer to a flat top but toward the desired

potential. One example of lattice potential is shown in Figure 11 (c,d). However, unlike the flat top case
where we can directly calculate the standard deviation, here, it must be calculated around the value of the
targeted beam and so, the picture and the target must have the same normalization. To ensure this point,
they are normalized such that the two have the same mean ; indeed, since the picture has a lot of fluctuations,
if the normalization is made with respect to the maximum, noise of the measured intensity of this pixel can
change a lot the result, while the mean has the advantage to be not influenced by these fluctuations because
their mean value is 0 (Figure 11 (d)).

2.3 Stability of the trap
Once a tailored intensity profile has been created, it is important to ensure the stability of the potential

over time. Three main effects need to be taken into account :
First, the power of the laser source must be very stable to not change the depth of the potential, this is

not the case in this test setup, but in the final setup the power will be stabilized using AOM.
Next, the setup must be mechanically stable such that the position of the image doesn’t move over time.
Finally, perturbations in the environment like for example variation of the temperature of the lab, can

change the optical index of air and hence disturb the picture.

Figure 12 – (a) Deviation of the position of the center of the DMD on the camera over time. Its position
is calculated by displaying a 5x5 mirrors patch on the center of the DMD and fitting the image by an Airy
disk. (b) Evolution of the measured RMS contrast over time for 10 different flat top pattern displayed on
the DMD. The standard deviation of this RMS contrast as well as the difference between the maximum and
minimum values reached are presented in table (d). (c) Difference between the final and initial image of the
trap for the run 10 of (b). The two pictures where renormalized such that their mean intensity is 1, so the
variations observed are of the order of 4% of the intensity and seem distributed randomly.
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Apart from having very well screwed optical elements, it is necessary to isolate as much as possible the
DMD from its control board to have mechanical stability. Indeed, the control board is active cooled and this
fan induces vibrations in the board that are transmitted to the DMD via the ribbon cables between them.
To do so, some foam is pressed on these cables to dampen the oscillations as suggested in [18]. The stability
is then tested by following the position of the center overtime. As shown in Figure 12 (a), over more than
2min, the center moves less than 0.4µm : this is 0.3% of the size of the trap and 18% of the resolution size
of the setup. The position can be considered stable !

To test now the stability of the trap, the optimization algorithm is run until a good flat top is reached,
then the obtained pattern is displayed for 20min during which an image is taken every second and the RMS
contrast is calculated ; this process is then repeated 10 times over one night. The results are summarized on
Figure 12. Not taking into account some unstable curves, the standard deviation of the flatness of the images
is on average of 2% of the initial value and hence the trap is sufficiently stable to consider that the trap is the
same in successive shots, ensuring the reproducibility of the experiment. However, there are some interesting
facts to highlight : First of all the 4th curve seems surprising, after 600s the RMS contrast decreases and thus
the flatness improves but in a very noisy way. In fact, looking at the pictures at the end, one sees that they
are completely saturated, probably due to fluctuations of the power of the laser diode. This creates then a
false impression of flatness of the intensity and confirm the importance of power stability. Furthermore, the
first two runs are way less stable and it can be explained quite easily. These datas were taken at the end of
the day when there were still activities in the lab, and so small perturbations of the environment, while the
others happened during the night. It indeed shows the importance of isolating as much as possible the setup
from the environment which will be much better in the final experimental setup. Finally, it has not been
possible to test the stability of the trap on timescales shorter than the second. Indeed the time needed to
take a picture and extract the RMS contrast is of the order of one second. So unfortunately we cannot test
how stable the trap is during the illumination time planned during one run of the experimental sequence,
which is of the order of 100ms.
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3 Simulation of the condensate
We realized flat top traps with RMS contrast below 1.5% but one remaining question is how flat should

be the potential such that the perturbations are not felt by the BEC ? This part will try to answer this
question by simulating the ground state of the BEC in the obtained trap.

3.1 Theoretical background
First of all, our atoms of Dysprosium are confined by the harmonic accordion lattice in a quasi-2D

regime. We can thus separate the wave function over the z component and the in plane wave function

Ψ(−→ρ , z) = ψ (−→ρ )ϕ (z), where ϕ (z) =
(
πl2z
)−1/4

e
− z2

2l2z is the ground state of the harmonic oscillator in the z

direction and lz =
√

ℏ
mωz

is the confinement length in the z direction : here for trapping frequency of 5 kHz,
we have lz = 0.11 µm.

Injecting this wavefunction into the Gross Pitaevskii equation (2) and integrating over the z direction,
one get the effective 2D equation [19] :

iℏ
∂ψ

∂t
=

[
− ℏ2

2m
∇2
ρ + V (−→ρ ) + 4πℏ2as√

2πmlz
|ψ|2 +Φdd

]
ψ (8)

where the dipolar interaction term is the convolution :

Φdd (
−→ρ ) =

∫
U2D
dd (−→ρ −−→ρ ′) |ψ (−→ρ ′)|d−→ρ ′ (9)

The Fourier transform of the 2D effective dipolar interaction can be expressed analytically as a function
of the angle α of the dipoles with the z direction [19] :

F
(
U2D
dd

) (−→
k
)
=

µ0µ
2
m

3
√
2πlz

[
F∥ (

−→q ) sin2 α+ F⊥ (−→q ) cos2 α
]

with−→q =
lz√
2

−→
k (10)

And if we define the x axis such that the dipoles are in the (x,z) plane, F∥ and F⊥ have the following
expressions : {

F∥ (
−→q ) = −1 + 3

√
π
q2x
q e

q2erfc (q)

F⊥ (−→q ) = 2− 3
√
πqeq

2

erfc (q)
(11)

where q is the norm of the q vector and erfc the complementary error function erfc (x) = 2√
π

∫∞
z
e−t

2

dt.

Let’s look now at our specific case of flat top potential. In the case of a uniform potential, the solution
for the condensate is a uniform density except in a region close to the border where the density decreases
to zero. The size of this region is given by the healing length. Assuming the healing length is much smaller
than the system size, we will here neglect these variations. To describe the effect of potential imperfections,
we consider a uniform potential V0 with some small perturbation δV of zero mean such that the total
potential is : V = V0+ δV . We finally treat the ground state via first order perturbation and assume that its
wavefunction can be written : ψ =

√
n0lz +ψ(1) where n0 = N√

πlz×L2 is the 3D density of atoms in the trap.
Furthermore, since we search a time independent density, we will look only at the spatial variations and

replace in equation (8) iℏ∂ψ∂t by µψ, where µ is the chemical potential [2].

At order 0 in perturbations, one get the chemical potential (the conservation of the number of atoms in
the perturbation ensures that this potential stay the same at first order (see Appendix)) :

µ =
4πℏ2as√
2πm

n0
[
1 + εdd

(
3 cos2 α− 1

)]
(12)
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with εdd =
mµ0µ

2
m

12πasℏ2 the ratio of the strength of dipolar and contact interactions.

This chemical potential allows us to calculate the healing length of our system lh =
√

ℏ2

mµ . This is the
length scale over which the density varies at the borders of the trap. For a density of 1021 atoms/m3, which
is the one used in all the following, dipoles aligned in the z direction, and scattering length of as = 110a0
the healing length is of the order of 0.1 µm and so 0.1% of the typical size of our trap. Furthermore, since
µ scales with

√
n0, this conclusion stay true for a wide range of density. Thus it was reasonable to assume a

uniform density and neglect the effects of the borders.

For the expansion at first order, we will decompose the perturbations over their Fourier components
δV (−→ρ ) =

∫
δV−→

k
ei

−→
k ·−→ρ d

−→
k and ψ(1) (−→ρ ) =

∫
ψ−→
k
ei

−→
k ·−→ρ d

−→
k . One can then calculate the density perturbation

as a function of the potential perturbations :

ψk =
−
√
n0lz

ℏ2k2

2m + 2× 4πℏ2as
m

√
2π
n0

[
1 + εdd

(
3 cos2 α− 1 + 3

√
π
q2x
q e

q2erfc (q)− 3
√
πeq2erfc (q)

(
q2x
q + q

)
cos2 α

)]δVk
(13)

And from this formula, one can directly compute at first order the density of atoms :

n2D =
∣∣∣√n0lz + ψ(1)

∣∣∣2 = n0lz + 2
√
n0lzRe

(
ψ(1)

)
(14)

We see that n2D is a function mainly of the mean 2D atomic density n0lz, the s-wave scattering length
as and the ratio of dipolar and contact interactions εdd. In contrast to the purely contact case, where the
equation (13) is a Lorentzian with main component at k = 0, here the interaction term is a function of q and
then the main contribution can be at a non zero wavevector : this is a consequence of the long range effects
of the dipolar interactions. Furthermore, the fact that ψk is a function of qx shows the anisotropic dipolar
interactions and thus this can create anistropic perturbations. However, in the case of all dipoles pointing
in the z direction, that is to say α = 0, the qx cancels out, and we recover isotropic perturbations. Finally,
one interesting fact, is that the dipolar interactions can induce mean-field instabilities. Indeed if we look for
example at low frequency perturbations k → 0, the denominator becomes 2× 4πℏ2as

m
√
2π
n0
[
1 + εdd

(
3 cos2 α− 1

)]
and this can vanish for a given α if εdd > 1, that is to say larger dipolar interactions than contact ones. This
is a well known fact of ground state calculations [1], which luckily appears also in this potential perturbation
calculations. However, in that case one Fourier mode of the density perturbation will diverge and we will no
longer be in the small perturbation regime used in the derivation. In reality there would be stabilisation of
exotic states as supersolids, but this need more complex theory to treat it beyond the scope of the present
work (see [1]).

3.2 Numerical results
In all this subsection, we will consider the atoms in a trap of mean depth U0 = kb×100nK while the values

of the s-wave scattering length as, the atomic density n0 and the ratio of contact and dipolar interactions
εdd will vary.

First of all, we need to find for which values of the parameters we have no instability and are in the small
perturbations regime. Since the instability occurs when the denominator of (13) vanishes, its existence can
be probed by a change of sign. This is summarized in Figure 13 : it represents the smallest angle α at which
the instability occurs, with value for the trapping frequency along z of νz = 5kHz and the dipolar scattering
length of Dysprosium add =

mµ0µ
2
m

12πℏ2 = 133a0 where a0 is the Bohr radius. We clearly see that the instability
happens only when the s-wave scattering length is smaller than the dipolar one, confirming the threshold
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εdd > 1. Furthermore, as as → add, the critical angle increases toward π
2 , the dipoles need to point as much

as possible in the atomic plane to maximise the dipolar interaction and be above the contact ones.
Thus to stay in the condition of validity of the small perturbations, we will always keep εdd < 1 or stay

at small angle α.

Figure 13 – Smallest angle of the dipoles with the vertical confinement direction, at which the instability
occurs for different density and s-wave scattering length. A given set of parameters, (n0,as,α) is considered to
have at least one unstable wave vector

−→
k if the denominator of (13) changes of sign. There are no instability

for as above 133a0 as expected. We also see that as the scattering length increases toward 133a0 the critical
angle tends to π

2 . Furthermore, we also see that as we increases the density, the system becomes more
unstable.

We start by looking at the influence of each Fourier component, of the perturbation of the potential,
on the perturbation of the density. To do so, a pure sinusoidal perturbation of the potential is created
δV = 2δV0 cos kr with δV0 = 1.5 × 10−2U0 and the density perturbation is computed using equation (13).
The results are shown in Figure 14 for a density n0 = 1021 atoms/m3. First of all, as expected with formula
(13), the purely contact case is a Lorentzian with a value at k = 0 decreasing with as. Furthermore, in
the dipolar case, a maximum at finite k appears whose amplitude increases with εdd (Figure 14 (b)) The
position of this maximum seems to stay roughly the same at a constant add (Figure 14 (c)). This maximum
also increases and shift to low frequencies when the dipoles are tilted (Figure 14 (d)).

The fact that the amplitude of the perturbation increases with εdd, is caused by the decrease of contact
interactions through as as visible in Figure 14 (b) and Figure 15 (b). Furthermore, the fact that the posi-
tion of the maximum does not depends on as but only on add (Figure 14 (c)), let think that this position
is entirely set by the competition between the dipolar and kinetic parts of equation (13) and not on the
contact interaction. Indeed, if we look at equation (13), the contact part is not a function of k and thus
changing as only change the denominator by a constant value. This is different from the roton minimum
in the dispersion relation, where the scattering length as also play in the competition [1, 20]. Finally, the
shift to low frequencies with the tilting angle of the dipoles (Figure 14 (d)) can be explained by the fact
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that tilting the angle is roughly equivalent to making the dipolar interaction less repulsive as we create one
attractive direction. Thus the kinetic part compensate the dipolar one at lower k.

Figure 14 – Relative importance of each Fourier component on the perturbation of the density. All the
curves are plotted with a background density n0 = 1021atoms/m

3. (a) Amplitude of the perturbation as a
function of the wavevector for different parameters (as,add). Except for the purple dotted line, all the curves
are for α = 0. The black dotted vertical lines, corresponds to defects of the size of the wavelength : smaller
defects, and so higher k are not expected. (b) Amplitude of the maximum of the curve of (a) as a function
of εdd. For the orange curve add is held constant at 133a0 and as varies to have the right εdd, while for the
blue one this is the opposite (as held constant at 133a0). (c) Position of the maximum of the curve of (a) as
a function of εdd. This position changes only when add is varied. (d) Position of the maximum of the curve
of (a) as a function of the angle α. These are calculated for as = 200a0 and add = 133a0

Let’s now look at the influence of the different parameters on the perturbations of the density. First of
all, it is clear from the equation (13), that the perturbation of density are linear in the perturbation of the
potential, so from now, we will always consider perturbations with a standard deviation of 1.5% of U0. To
be as general as possible, the potential is perturbed with white noise with amplitude such that the standard
deviation is the targeted one. This noise has frequencies between kmin = 0.04 rad/µm and kmax = 6 rad/µm.
The maximum frequency is chosen such that it correspond to a discretization of roughly the size of the
wavelength of the trapping light, which is the smallest size of defects we can hope to correct. The minimum
frequency correspond to a size of 70µm that is approximately the size of the trap we will use. Then the

relative variation of the density, 2
Re(ψ(1))√

n0lz
is numerically calculated as a function of the different parameters

(n0,as,α). The results are presented in Figure 15.

Firstly, it is clear in Figure 15 (a) that the variations of the density decrease as the background density
n0 increases : Two main regimes seems to exist : First at low densities, the relative variations scales as
n−β0 with β = 0.588 ± 0.004 while at high densities, it scales as n−γ0 with γ = 0.9832 ± 0.0007. The two
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regimes are separated around a density such that the kinetic and interactions term are of the same order :
ℏ2k2

2m ≃ 8πℏ2as
m

√
2π
n0, that is to say n0 = k2

8
√
2πas

.Depending on the value of k between kmin and kmax we use,
we have this critical density ranging from n0min

= 1016 atoms/m3 and n0max
= 3× 1020 atoms/m3. Looking

at Figure 15 (a), the transition seems to be close to log n0max
= 20.4 this mean that we enter in the high

density regime, when the interaction term is larger than the kinetic one at all the frequencies that are in the
noise.

Furthermore, there is also a decrease of the perturbations as the s-wave scattering length increases as
visible in Figure 15 (b). However, these variations are much smaller than those induced by a change of
the mean density (see Figure 15 (b,c)). Additionally, the presence of dipolar interaction reduces further the
scattering length effect. In our case, the best parameter to reduce the fluctuations of the density of atoms
dues to the non perfect flat top, is to work with high density of atoms.

Finally, when the angle α of the dipoles with the z direction varies, the perturbations in the density
increases (see Figure 15 (c)) and when εdd is close to 1, these variations become much larger for angles near
π
2 as we are approaching the instability. In that case, we would need more complex theory to describe the
system (see [1]). There are also obviously no variations when there is only contact interactions.

Figure 15 – Dependance of the perturbation of the density with the different parameters (n0,as,α). In all
cases, the perturbation of the potential is generated with white noise for frequencies up to 4× 106rad/m (a)
Dependence with the background density in a log log scale. Except the line at α = π

4 , they are calculated at
α = 0. The perturbations clearly decreases with the density and two power law regimes seems to exist at low
and high densities ; the dotted lines being the linear fit of these regimes. All the curves have approximately
the same behavior but their starting values decreases as as and add increases. Finally, for non zeros α, the
starting value increases and the transition between the two regimes seems faster. (b) Dependence with the
s-wave scattering length. Except the line at α = π

4 , they are calculated at α = 0. There is also a clear decrease
of perturbation as as increases and we recover the fact that the perturbation decrease with n0 at fixed as
and add. (c) Dependence with the angle of the dipoles with the vertical confinement direction. As expected,
the purely contact case is constant, while in the other cases, tilting the dipoles increases the perturbations.
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After this discussion, to get back to our original experimental question, using the best flat top potential
obtained, with RMS deviation of 1.27% and a trap depth of kB × 100 nK, the variation of atomic density,
for n0 = 1021 atoms/m

3, add = 133a0, as = 130a0 and α = 0°, is around 3% of n0. Thus we can consider
that the potential is flat enough to not be felt by the atomic cloud. The simulation of the atomic density is
presented in Figure 16 (a), where the relative variation of the density is plotted for a potential perturbation
shown in Figure 16 (b).

Figure 16 – (a) Simulation of the relative perturbation of the atomic density in a perturbed flat potential
shown in (b). The mean value of the potential is kB × 100 nK= 10−30J. The simulation is made for n0 =

1021 atoms/m
3, add = 133a0, as = 130a0 and α = 0°.
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Conclusion
Throughout this report we have demonstrated the possibility to create arbitrary potentials to trap atoms.

The process of optimizing the trap geometry is reliable and stable enough to be used for several successive
measurement runs ensuring the reproducibility of the experiment. Flat top with RMS deviation of 1.25%
around the targeted intensity are obtained for trap 100µm wide. Simulations of the atomic cloud in these
traps have shown that this will generate variation of the density of less than 3% which is probably good
enough for the experiment.

Furthermore, not only flat top trap can be reached but also any kind of potential. It will be thus possible
to study the behavior of dipolar gases of Dysprosium in a large variety of traps but also to induce any kind of
velocity field in the cloud. Indeed, by projecting a non uniform potential on the atoms for a small amount of
time τ , the phase evolves as −U(r)τ

ℏ and so a phase gradient can be created. We can thus create for example
vortices in the condensate with a phase winding potential.

Finally, it is now time to move the test setup to the main experiment but unfortunately some challenges
will appears. Indeed, as we will not be able to image the final trap on the atoms, the light must be separated
just before the final objective to be imaged (see Appendix) to optimize the trap. We hence need to hope
that the imaged trap is as close as possible to the one on the atoms. Once a good enough flat top will be
reached, it will probably be possible to optimize no longer with the image of the trap but with the density
of the atoms.
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Appendices

Polarizability calculations
We want to calculate the polarizability of Dysprosium to have the value of the potential trapping the atoms

with equation (3). To do so, we need to express the scalar, vectorial and tensorial part of the polarizability
from the spectroscopic data we have : the energy of the levels, labelled by their total angular momentum J ′,
their other quantum numbers β′ and their lifetime γβ′J′ . This is done using the equations of [9] :

Re (αs) =
2

3 (2J + 1)

∑
β′ J′

(Eβ′J′ − EβJ) |⟨β′ J ′| |d| |β J⟩|2

(Eβ′J′ − EβJ)
2 − ℏ2ω2

(15)

Im (αs) =
1

3 (2J + 1)

∑
β′ J′

ℏγβ′J′

[
(Eβ′J′ − EβJ)

2
+ ℏ2ω2

]
|⟨β′ J ′| |d| |β J⟩|2[

(Eβ′J′ − EβJ)
2 − ℏ2ω2

]2 (16)

Re (αv) =
∑
β′ J′

J ′ (J ′ + 1)− J (J + 1)− 2

(J + 1) (2J + 1)
× ℏω|⟨β′ J ′| |d| |β J⟩|2

(Eβ′J′ − EβJ)
2 − ℏ2ω2

(17)

Im (αv) =
∑
β′ J′

J ′ (J ′ + 1)− J (J + 1)− 2

(J + 1) (2J + 1)
× ℏ2ωγβ′J′ (Eβ′J′ − EβJ) |⟨β′ J ′| |d| |β J⟩|2[

(Eβ′J′ − EβJ)
2 − ℏ2ω2

]2 (18)

Re (αt) = −
∑
β′ J′

3 [J ′ (J ′ + 1)− J (J + 1)]
2 − 9J ′ (J ′ + 1) + J (J + 1) + 6

3 (J + 1) (2J + 1) (2J + 3)
×

(Eβ′J′ − EβJ) |⟨β′ J ′| |d| |β J⟩|2

(Eβ′J′ − EβJ)
2 − ℏ2ω2

(19)

Im (αt) = −
∑
β′ J′

3 [J ′ (J ′ + 1)− J (J + 1)]
2 − 9J ′ (J ′ + 1) + J (J + 1) + 6

6 (J + 1) (2J + 1) (2J + 3)
×

ℏγβ′J′

[
(Eβ′J′ − EβJ)

2
+ ℏ2ω2

]
|⟨β′ J ′| |d| |β J⟩|2[

(Eβ′J′ − EβJ)
2 − ℏ2ω2

]2 (20)

where J = 8 is the total angular momentum of the ground state of Dysprosium, β the quantum numbers
characterising this ground state. The sum is made only on the accessible states from the ground state, that
is to say with J ′ = 7, 8 or 9 because the light can only give 0, ℏ or −ℏ angular momentum to the atom.

We now need to express the reduced dipolar matrix element, this is done also with the equation of [9] :

|⟨β′ J ′| |d| |β J⟩|2 =
3πε0ℏ4c3 (2J ′ + 1) γβ′J′

(Eβ′J′ − EβJ)
3 (21)

Let’s now study the possibility to do a blue detuned trap between 600nm and 700nm. To do so, we need
a negative part of the real polarizability : this happens only near resonances. In this range, there are 3 main
resonances : J → J + 1 at 626nm, J → J − 1 at 657nm and J → J at 684nm.

Then like for the case at 532nm, the lifetime of the atoms is calculated and plotted in Figure 17 for
different directions of the magnetic field and different polarization of light (linear in (a,b) and circular in
(c,d). We see that the best lifetime is achieved at 657nm for a circular polarization. However, this lifetime
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varies a lot with the direction of the magnetic field. It is hence better to use linear polarization : even if the
lifetime is twice shorter, it is still of more than 100s, long enough for any experiment, and have the advantage
to not depends on the direction of the field, making the alignment easier.

The best choice to have a blue detuned trap is then at 657nm with a light polarization along y for a
propagation along z and a magnetic field in the (x, z) plane.

Figure 17 – Lifetime of Dysprosium atoms in a trap of depth 100 nK× kB . Only the wavelength were the
trap is blue detuned are plotted. The light propagates along z direction and the magnetic field is in the (x, z)
plane. The different curves are labelled by their angle with respect to z in unit of π. (a) The polarization of
light is linear and along y. There is no variation with the direction of the field and the resonance at 684nm is
almost not visible. (b) The polarization of light is along x. The resonance at 684nm allows to have long life
time if the angle is of π/2, indeed in that case the light is π polarized and so we have a good probability for
the transition J → J . But it varies a lot when the magnetic field is tilted. (c) The light is σ+ polarized, and
here the transition J → J +1 and J → J − 1 are enhanced. The σ− case in (d) is the same but by changing
θ → π − θ.
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Final setup
On the main experiment, the optical setup is almost unchanged but will differ from the test setup by

mainly two things : first the Special Optics objective will be used. Its effective focal length is of 32.2mm, so
to keep a demagnification of the same order as the test setup the lens of the second telescope is replaced by
one with focal length of 501.8mm. The total demagnification is then of 78. Second it will not be possible to
image the final trap, so the beam must be separated before the objective. This is done using a polarization
beam splitter just before the objective. Furthermore, to project the image another lens must be used to
complete the second 4f setup. This is done with a 175mm lens giving a total demagnification of 14.4. A small
microscope objective will also be used to magnify the image on the camera. The setup is sketched to scale
in Figure 18.

Figure 18 – Sketch of the setup that will be implemented on the main experiment. The beam is separated
with a beam splitter cube just before entering the objective placed below the hole in the breadboard. On the
transmission path of the cube, we have a lens, microscope objective and camera to image the trap we create.
On the reflexion side, a mirror (not represented here) is positionned just above the hole of the breadboard
to send the light to the Special Optics objective 200mm below. The right side of the breadboard is not used
since it will be needed for another optical setup.

Finally the whole setup will be placed on a breadboard above the chamber and the light will enter the
objective from above as shown in Figure 2 to trap the atoms in the horizontal plane, orthogonal to the
direction of confinement of the accordion lattice.
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Detailled calculations of the GPE perturbations
We want to find the ground state of the atoms in the perturbed potential V = V0 + δV . So we will start

with the time independent version Gross Pitaevskii equation for quasi 2D dipolar gases (8) :

µψ =

[
− ℏ2

2m
∇2 + V (−→ρ ) + 4πℏ2as√

2πmlz
|ψ|2 +Φdd

]
ψ (22)

If there were only contact interactions, the healing length of the system would be lh =
√

ℏ2

mn0
4πℏ2as

m

≃

0.1µm for 1021 atoms/m3, which is way smaller than the size of our trap of around 100µm. Thus we will
neglect the variations of density at the border and check at the end that this is still true for dipolar gases.
We develop then the wave function and chemical potential at first order :{

ψ =
√
n0lz + ψ(1)

µ = µ(0) + µ(1) (23)

Injecting into the equation (22), and keeping only order 0, we get :

µ0

√
n0lz = V0

√
n0lz +

4πℏ2as
m
√
2πlz

n0lz
√
n0lZ + n0lz

√
n0lz

∫
trap

U2D
dd (−→ρ −−→ρ ′) d−→ρ ′ (24)

Since we neglected the border sections, all the atoms are surrounded by roughly the same number of
atoms and since U2D

dd scales as 1
r3 , we can neglect the finite size effect and assume that the integral in (24)

is taken over the whole space :∫
trap

U2D
dd (−→ρ −−→ρ ′) d−→ρ ′ ≃

∫
R2

U2D
dd (−→ρ −−→ρ ′) d−→ρ ′ = F

(
U2D
dd

)
(
−→
0 )

So with the expression of the Fourier transform of the 2D dipolar potential (10), we get :

µ(0) = V0 +
4πℏ2as
m
√
2πm

n0 +
µ0µ

2
m

3
√
2π
n0
[
− sin2 α+ 2 cos2 α

]
We can change the origin of the energy to remove V0, and rewrite the potential with εdd =

mµ0µ
2
m

12πasℏ2 :

µ(0) =
4πℏ2as
m
√
2πm

n0
[
1 + εdd

(
3 cos2 α− 1

)]
(25)

Let’s now go to first order with still V0 = 0 :

µ(0)
√
n0lz+µ

(0)ψ(1)+µ(1)
√
n0lz = δV

√
n0lz−

ℏ2

2m
∇2
ρψ

(1)+
4πℏ2as
m
√
2πlZ

(√
n0lzψ

(1) +
√
n0lzψ

∗(1) + n0lz

)
+
[√

n0lz + ψ(1) (−→ρ )
] ∫

U2D
dd (−→ρ −−→ρ ′)

[√
n0lzψ

(1) (−→ρ ′) +
√
n0lzψ

∗(1) (−→ρ ′) + n0lz

]
d−→ρ ′

The zeroth order simplifies and we get, keeping only order 1 terms :

µ(0)ψ(1) + µ(1)
√
n0lz = δV

√
n0lz −

ℏ2

2m
∇2
ρψ

(1) +
4πℏ2as
m
√
2πlz

(
2n0lzψ

(1) + n0lzψ
∗(1)
)

+ n0lzψ
(1)

∫
U2D
dd (−→ρ −−→ρ ′) d−→ρ ′ + n0lz

∫
U2D
dd (−→ρ −−→ρ ′)

[
ψ(1) (−→ρ ′) + ψ∗(1) (−→ρ ′)

]
d−→ρ ′

The expression of the order 0 of the chemical potential (25) appears in factor of ψ(1) and simplifies the
equation into :

26



µ(1)
√
n0lz = δV

√
n0lz−

ℏ2

2m
∇2
ρψ

(1)+
4πℏ2as
m
√
2π

n0

(
ψ(1) + ψ∗(1)

)
+n0lz

∫
U2D
dd (−→ρ −−→ρ ′)

[
ψ(1) (−→ρ ′) + ψ∗(1) (−→ρ ′)

]
d−→ρ ′

(26)
It is now time to go to Fourier space :

ψ(1) =
∑
−→
k

ψ−→
k
ei

−→
k ·−→ρ

δV =
∑
−→
k ̸=0

δV−→
k
ei

−→
k ·−→ρ (27)

The potential perturbation has no
−→
k = 0 component since it has zero mean. Furthermore, since we look

for an equilibrium state, the chemical potential is uniform : µ(1) is not developped over Fourier modes.
Injecting this in the equation (26), we get :

µ(1)
√
n0lz =

√
n0lz

∑
−→
k ̸=0

δV−→
k
ei

−→
k ·−→ρ +

ℏ2

2m

∑
−→
k

k2 ψ−→
k
ei

−→
k ·−→ρ +

4πℏ2as
m
√
2π

n0

∑
−→
k

(
ψ−→
k
+ ψ∗

−
−→
k

)
ei

−→
k ·−→ρ

+ n0lz

∑
−→
k

∫
U2D
dd (−→ρ −−→ρ ′)

(
ψ−→
k
+ ψ∗

−
−→
k

)
ei

−→
k ·−→ρ d−→ρ ′ (28)

The term of zero frequency is then :

µ(1)
√
n0lz =

4πℏ2as
m
√
2πm

n0

(
ψ−→

0
+ ψ∗−→

0

)
+ n0lz

(
ψ−→

0
+ ψ∗−→

0

)∫
U2D
dd (−→ρ −−→ρ ′) d−→ρ ′

So :

µ(1)
√
n0lz =

[
4πℏ2as
m
√
2πm

n0 + n0
4πµ0µ

2
m

9
√
2π

(
3 cos2 α− 1

)] (
ψ−→

0
+ ψ∗−→

0

)
Since the total number of atoms is not modified by the perturbation, we have

〈
ψ(1)

〉
= 0, that is to say

ψ−→
0
= 0. Thus the first order of the chemical potential vanishes : µ(1) = 0 !
Let’s now look at the non zero frequencies, we have :

0 =

[√
n0lzδV−→k +

ℏ2

2m
k2ψ−→

k

]
ei

−→
k ·−→ρ +

[
4πℏ2as
m
√
2π

n0e
i
−→
k ·−→ρ + n0lz e

i
−→
k ·−→ρ

∫
U2D
dd (−→ρ −−→ρ ′) e−i

−→
k ·(−→ρ−−→ρ ′)d−→ρ ′

](
ψ−→
k
+ ψ∗

−
−→
k

)
We see that the Fourier transform of the 2D dipolar interaction appears, whose expression is given in

(10), and so we get :

0 =
√
n0lzδV−→k +

ℏ2

2m
k2ψ−→

k
+

[
4πℏ2as
m
√
2π

n0 +
µ0µ

2
m

3
√
2πlz

(
F∥ (

−→q ) sin2 α+ F⊥ (−→q ) cos2 α
)] (

ψ−→
k
+ ψ∗

−
−→
k

)
(29)

We denote λ
(−→
k
)
= 4πℏ2as

m
√
2π
n0+

µ0µ
2
m

3
√
2πlz

(
F∥ (

−→q ) sin2 α+ F⊥ (−→q ) cos2 α
)

and writing (29) for
−→
k and −

−→
k ,

we get :  −
√
n0lzδV−→k =

[
ℏ2

2mk
2 + λ

(−→
k
)]
ψ−→
k
+ λ

(−→
k
)
ψ∗
−
−→
k

−
√
n0lzδV

∗
−
−→
k

=
[

ℏ2

2mk
2 + λ

(
−
−→
k
)]
ψ∗
−
−→
k
+ λ

(
−
−→
k
)
ψ−→
k
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Since the perturbation of the potential is real, we have δV ∗
−
−→
k
= δV−→

k
. It is then possible to equate these

two equations and to get :

ψ−→
k

[
ℏ2

2m
k2 + λ

(−→
k
)
− λ

(
−
−→
k
)]

= ψ∗
−
−→
k

[
ℏ2

2m
k2 + λ

(
−
−→
k
)
− λ

(−→
k
)]

But looking at the expressions of F∥,⊥ (11), we see that they don’t depend on the sign of
−→
k and so

λ
(−→
k
)
− λ

(
−
−→
k
)

= 0. So we get : ψ−→
k

= ψ∗
−
−→
k

! This allows us to directly link the perturbation of the
wavefunction with the one of the potential with (29) :

−
√
n0lzδV−→k =

[
ℏ2

2m
k2 + 2λ

(−→
k
)]
ψ−→
k

Using the expressions of λ
(−→
k
)

and F∥,⊥, we finally have :

ψk =
−
√
n0lz

ℏ2k2

2m + 2× 4πℏ2as
m

√
2π
n0

[
1 + εdd

(
3 cos2 α− 1 + 3

√
π
q2x
q e

q2erfc (q)− 3
√
πeq2erfc (q)

(
q2x
q + q

)
cos2 α

)]δVk
(30)
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