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Abstract

This thesis describes the design of an optical set-up for the performance of absorption imaging of
an ultracold cloud of Dysprosium atoms. A telescope set-up made out of three lenses allows us to
create a beam shape that accounts for the technical constraints originating from the experimental
assembly. Furthermore, we investigate the main contributions to the noise occurring in the
images taken with a CMOS camera. We find that non-illuminated images are dominated by
read noise that is mostly statistically random, while illuminated images are instead dominated
by fixed pattern noise mainly originating from a non-uniform illumination of the camera. We
present a method to visibly reduce the latter. Finally, the reliability of the fit routine used in the
experiment is investigated by applying it to simulated optical density images and comparing the
results with the input values. In most cases condensate fraction and temperature are estimated
well, while significant deviations remain for the estimation of the scattering length. We observe
that the duration of the time of flight has no influence on the accuracy of the fit.

Kurzfassung

Die vorliegende Arbeit beschreibt den Entwurf eines optischen Aufbaus zur Abbildung eines
Gases aus ultrakalten Dysprosium-Atomen mittels Absorptionsbildgebung. Ein Teleskop-Aufbau
bestehend aus drei Linsen erzeugt einen Laserstrahl, dessen Form die Anforderungen, die durch
den technischen Aufbau des Experiments gegeben sind, erfüllt. Des Weiteren wird untersucht,
was die Hauptbeiträge zum Rauschen in den Bildern, welche mit einer CMOS-Kamera aufgenom-
men werden, liefert. Es wird beobachtet, dass in unbelichteten Bildern ”read noise” vorherrscht,
welches statistisch zufällig auftritt, während in belichteten Bildern ”fixed pattern noise” do-
miniert. Es wird eine Methode aufgezeigt, mit der letzteres sichtbar reduziert werden kann.
Zuletzt wird die Zuverlässigkeit der Fitroutine, die im Experiment zum Einsatz kommt, unter-
sucht. Dabei wird diese auf simulierte ”optical density”-Bilder angewendet und das Ergebnis
des Fits anschließend mit den Eingabewerten verglichen. In den meisten Fällen können der An-
teil des Bose-Einstein-Kondensats an der gesamten Atomwolke sowie die Temperatur zuverlässig
bestimmt werden. Lediglich bei der Streulänge kommt es zu größeren Abweichungen. Die Dauer
des ”time of flight” hat keinen Einfluss auf die Genauigkeit des Fits.
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Chapter 1

Introduction

1.1 Outline

”When you can measure what you are speaking about,
and express it in numbers, you know something about it.”

∼ Lord Kelvin

Performing an experiment is pointless if you can not measure the result. Therefore, the imaging
of the object that is under investigation is crucial for any experiment. In order to gain a reliable
result one has not only to detect the object successfully but also be aware of the limits of the
measurement.
This thesis presents an optical set-up that meets the constraints of the experimental apparatus
to image an ultracold cloud of Dysprosium atoms using absorption imaging. Furthermore, pos-
sible noise sources of the set-up, which includes a CMOS camera, are investigated. With the
results, the imaging process is simulated in a realistic way. This allows the examination of the
reliability of the fitting procedure used in the experiment.
The present work was conducted in the group ”Quantum Fluids”, which operates under the
leadership of Prof. Dr. Lauriane Chomaz at the Physikalisches Institute in Heidelberg. In the
experiment a Bose-Einstein condensate is generated out of Dysprosium atoms. This element
is particularly interesting because of its large magnetic moment which surpasses that of most
elements in the periodic table. The goal of the experiment is the study of quantum phenomena
of strongly interacting atoms in the two dimensional plane. While still being at a stage were
the experiment is set up the creation of the first Bose-Einstein condensate just before this work
started was a major milestone to achieve.

The following paragraph will provide a short overview of the content of this thesis. After giving
short introductions to the experimental apparatus and to the absorption imaging technique,
which may be helpful to follow the course of this thesis, we present the optical set-up for the
performance of absorption imaging. First, we explain which factors influence the design. The
beam’s shape is simulated to find the lens configuration that meets the requirements best.
Afterwards, the chosen configuration is assembled in a test set-up and the shape of the beam
undergoes a closer investigation to make sure it meets the requirements even if the lenses are
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Chapter 1 Introduction

slightly displaced. Furthermore, the beam polarisation is measured and a suitable set-up for
imaging on a camera is put in place.
In the second part, we investigate the noise that is present in the set-up, which uses a CMOS
camera. After explaining the operating principle of the camera and the noise classification that
is used here, a so-called photon transfer curve is created. It represents a statistical approach
to quantify the relevance of different types of noise in our imaging set-up. Subsequently, read
noise, which dominates non-illuminated images, and fixed pattern noise, which dominates the
illuminated ones, are under closer examination. We also introduce the flat fielding method which
allows us to reduce the latter significantly.
After deriving the density profile of the atomic cloud in terms of experimentally accessible
quantities, we can simulate the process of absorption imaging with the knowledge gained before.
After applying the fit routine used on experimental data to simulated images, we compare the
input parameters with the outcome. This allows us to make a statement on the reliability of
the fit in different experimental settings.

1.2 Experimental Apparatus

The following section gives a short introduction to the assembly of the Dysprosium experiment.
For more details please refer to [6], [7], [9] and [16]. A cross section through the experiment
is shown in figure 1.1. In the present experiment a Bose-Einstein condensate (BEC) is created
out of the bosonic Dysprosium (Dy) isotope Dy164. The experimental set-up consists of two
main parts: the 2D MOT chamber and the 3D MOT chamber, also called main chamber. MOT
stands for magneto-optical trap. It is used to confine as well as to cool the atoms. The 2D MOT
operates under high vacuum, the 3D MOT under ultra high vacuum. Both are connected via the
so called differential pumping stage (DPS). The axis along this is referred to as the x-axis of the
experiment while the one along gravity is the z-axis [9]. The Dy atoms evaporate from the oven
as a hot atomic vapor jet into the 2D MOT chamber, where they are captured in the z, y-plane
by magnetic gradients. These are formed by permanent magnets on the side of the chamber as
well as four 421 nm laser beams. Here the atoms undergo a first cooling. From there a laser
beam, the so called push-beam, which propagates along the x-axis, pushes them into the main
chamber, where they are captured again in a 3D MOT. It is generated by two anti-Helmholtz
coils that create a quadrupole field together with six 626nm laser beams. Subsequently, they are
loaded into an optical dipole trap (ODT), where they undergo evaporative cooling and finally
condense into a BEC [6]. In the end, the lasers of the ODT are turned off and the atomic cloud
expands freely for a time of flight before being imaged. The atomic cloud is supposed to be
observed along the vertical as well as the horizontal axis. The imaging along the latter is the
topic of this thesis. Due to a lack of space in other directions the imaging beam has to propagate
along the x-axis of the experiment entering the experimental apparatus through viewport CF63
and exiting it through viewport CF40. This means it has to not only be superimposed with the
push beam but also travel through all the experimental components before meeting the atomic
cloud in the main chamber. Here the DPS presents a particular constraint due to its narrow
diameter.
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Chapter 1 Introduction

Figure 1.1: cross section through the assembly of the experiment in the x, z-plane; (blue) path
of the imaging beam; (red) indication of the differential pumping stage (DPS) as main technical
limitation to the shape of the beam

1.3 Absorption Imaging

At this point we want to give a short introduction to absorption imaging and describe how it
is conducted in the present experiment. The following explanation is mainly adapted from [5].
Absorption imaging is a widely used technique for measuring the distribution of the atoms. It
is performed by sending laser light of an appropriate wavelength through the atomic cloud to
drive a transition from one atomic level to another. During this process the photon is absorbed
by the atom. During spontaneous desexcitement photons are only emitted in random directions.
Because of that, from the remaining light behind the cloud captured by a camera one obtains
the inverse two dimensional density profile of the atomic cloud. In our case the ground level
of the Dy atom is [Xe]4f106s2 corresponding to a total angular momentum quantum number
J = 8. The atom is excited from the J = 8 state to a J ′ = 9 state. The presence of a magnetic
field leads to additional Zeeman-splitting between the mJ levels and the m′

J levels respectively.
For temperatures we are interested in, we can assume that all atoms are in the mJ = −8

substate. As derived from the Glebsch-Gordan coefficients the transition to J ′ = 9, m′
J = −9

has a probability close to 1 [17]. In order to drive this transition a laser with wavelength λ = 421

nm with an intensity below 0.2 mW
cm2 is sent along the x-axis of the experiment for a duration of

25µs [9]. In the weak intensity regime, the reduction of the beam’s intensity due to absorption
by the atomic cloud with the density distribution n(x, y, z) follows the law of Beer-Lambert.
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Chapter 1 Introduction

The detected intensity in the y, z-plane is given by

Idet(y, z) = I0(y, z) exp
(
−
∫

σ0n(x, y, z) dx
)

(1.1)

where I0(y, z) denotes the incoming beam intensity and σ0 refers to the absorption cross section.
We assume that saturation effects do not play any role here. Using near resonant light allows
use to express σ0 as

σ0 = η
3λ2

2π
with η =

1

2
. (1.2)

The transition from the mJ = −8 substate to m′
J = −9 requires σ− polarized light. However,

in the experiment we use vertical linear polarized light, which can be decomposed in a σ−- and
a σ+-component. This adds an additional factor η = 1/2 to the absorption cross section, since
figuratively spoken only half of the light can be used to drive the transition. The transmission
is defined as the ratio of detected and initial intensity.

T (y, z) =
Idet(y, z)

I0(y, z)
= exp

(
−
∫

σ0n(x, y, z) dx
)

(1.3)

Solving equation 1.3 leads to an expression for the column density.

n2D(y, z) =

∫
n(x, y, z) dx = − 1

σ0
lnT (y, z) (1.4)

In practice T (y, z) is obtained by taking an image with the cloud, the so called absorption
image A(y, z), and dividing it by the background image B(y, z), which is taken under the same
conditions but without the atomic cloud. From both images an image without any incident laser
light, the so called dark image D(y, z), is subtracted in order to remove the background signal.

T (y, z) =
A(y, z)−D(y, z)

B(y, z)−D(y, z)
(1.5)

In many cases the absorption is also characterized by looking at the optical density (OD) which
is defined as

OD = − lnT (y, z) =

∫
σ0n(x, y, z) dz = σ0n2D(y, z) . (1.6)

In our case the images are taken with a complementary metal oxide semiconductor (CMOS)
camera, model Hamamatsu Orca Sparks. During one imaging run three images are taken in
the following order: first the absorption image, than the background image and finally the dark
image [9]. To this an appropriate density profile that includes the thermal cloud as well as the
condensate is fitted. From this, one obtains the properties of the two components, such as size
and atom number. With this information further quantities of the atomic cloud like condensate
fraction, temperature and scattering length can be derived.
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Chapter 2

Imaging Set-Up

2.1 Gaussian Beam

In this section, we review the relevant properties of the Gaussian beam that will be used in the
remainder of this chapter. The following argumentation is adapted from [14].
The laser beam that is used for the imaging can be described in good approximation as a
Gaussian beam. Characteristic of any Gaussian beam is that the intensity profile in the plane
perpendicular to the axis of propagation follows a normal distribution. Assuming the beam
propagates along the x-axis, than the intensity distribution in any y, z-plane follows a normal
distribution and is only dependent on the radial distance r from the axis of the beam. The
intensity distribution I(r, x) is given by

I(r, x) = I0(x) exp
(

−2r2

w(x)2

)
. (2.1)

Here I0(x) denotes the intensity along the x-axis. In general I0(x) is not constant along the
x-axis.
As indicator for the width of the beam the waist w(x) is used. It is the radial distance from the
x-axis to where the intensity has dropped to 1/e2 of the intensity in the center. The change of
the beam waist along the x-axis is determined by a single parameter wmin, which is the minimal
beam waist. Using the location of wmin as origin of the x-axis the beam waist along this axis
follows a hyperbolic distribution.

w(x) = wmin ·

√
1 +

(
x

xR

)2

(2.2)

The Rayleigh range xR is given by

xR =
πw2

minn

λ
. (2.3)

It describes the distance from the minimal waist to where the area of the cross section associated
with this waist has doubled. Here λ denotes the wavelength of the laser light in vacuum and n

the refractive index of the propagation medium. In our case it is assumed that n = 1 for the
whole beam path. Since the size of the beam changes along the propagation axis, so does the
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Chapter 2 Imaging Set-Up

maximum intensity I0(x). It is given by

I0(x) = Imax

(
wmin

w(x)

)2

. (2.4)

Imax is the global maximal intensity, which is the intensity in the center of the beam at the
location of the minimal waist. For distances x ≫ xmin far from the minimal waist equation 2.2
shows a linear dependence on x. Because of this, the half angle θ, which describes the divergence
of the beam, can be calculated by

θ = lim
x→∞

arctan
(
w(x)

x

)
=

λ

πnwmin
. (2.5)

If a Gaussian beam is transmitted through a lens with focal length f , which can be treated as a
thin lens, its wavefront changes. This affects size w′

min and location x′min of the minimal waist
after the lens in the following way

w′
min = Mwmin (2.6)

(x′min − f) = M2(xmin − f) (2.7)

with the magnification

M =
Mr√
1 + r2

(2.8)

where

r =
xR

xmin − f
and Mr =

∣∣∣∣ f

xmin − f

∣∣∣∣ . (2.9)

In case the incident beam is collimated the Rayleigh range becomes infinitely large and xmin

can be set to 0. As a result equations 2.6 and 2.7 reduce to

w′
min ≈ λ

πwmin
· f (2.10)

x′min ≈ f . (2.11)

The formulas presented here allow us to calculate the beam’s shape formed under the influence
of some lenses. What the shape of the beam is supposed to look like in order to propagate
undisturbed through the experimental apparatus and which other requirements it has to meet
will be presented in the next section.
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Chapter 2 Imaging Set-Up

2.2 Requirements and Technical Constraints

The imaging is conducted along the x-axis of the experiment as defined in 1.1. This means that
the laser beam goes through viewport CF63 into the 2D MOT chamber and than through the
DPS to the main chamber where the absorption takes place. This leads to some constraints on
the shape of the beam, which will be presented in the following.
When it comes to the size of the beam the main restriction originates from the DPS. The DPS
has an initial radius of only 1 mm, which becomes larger with a half angle of αDPS = 2◦ over a
length of 55.7 mm [7]. The goal is to create a beam that is small enough to prevent any relevant
cut-off due to the DPS.
A second constraint comes from the object to be imaged. The atomic cloud is positioned in the
centre of the 3D MOT chamber, which has a distance of 328 mm in reference to the DPS, as
can be seen in figure 1.1. We want to image three different situations. First of all, we want
to examine the atomic cloud during the loading of the 3D MOT. At this point the cloud has a
size of about 1mm after a short time of flight of about 5ms. A magnification of 0.5 is used for
imaging on the camera. The vertical displacement of the cloud in negative z-direction sz due to
gravity after switching off the trap is given by

sz =
g

2
t2tof (2.12)

with g denoting the gravitational acceleration. For a time of flight duration of 5ms, we obtain
sz = 0.12mm. Secondly, we are interested in the atomic cloud after compression with a time of
flight of about 12ms, which leads to a vertical displacement of 0.71mm. The atomic cloud has
a size of roughly 1mm × 200µm and usually a magnification of 2 is used. Finally, we want to
image the BEC after a long time of flight, which typically takes about 20ms. This corresponds
to a vertical displacement of sz = 1.96 mm, while the atomic cloud itself reaches a size of
30× 60µm. The camera that is used in the set-up has a sensor size of about 7.03× 11.25mm.
Using a magnification of 2 (more on this in section 2.7) leads to an effective sensor size of 3.52mm
in vertical direction and using a magnification of 0.5 to an effective sensor size of about 14mm.
For the sensor being fully illuminated in vertical direction, we aim for a beam waist of 9mm in
the position of the atomic cloud.
That means our goal is a beam that is small enough in the area around the DPS to prevent
any cut-off and at the same time large enough in the plane of the atomic cloud to picture the
atomic cloud with an adequate intensity. In order to achieve this the minimal waist is supposed
to be located within the DPS. When looking at a cross section of the DPS in the x, z-plane the
minimal waist xmin has its optimal position at the intersection of the diagonals from the corners
of the DPS as shown in figure 2.1. With this the half angle of the divergence of the beam ϑ can
be up to

ϑ = tan
(
2.9mm + 1mm

55.7mm

)
≈ 4◦ (2.13)

before the beam is cut by the DPS.
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Chapter 2 Imaging Set-Up

Figure 2.1: sketch of the DPS

Since the whole experiment is performed under high and ultra high vacuum, all the optical
apparatus have to be set up in front of viewport CF63, which has a window with a radius
of roughly 30mm. Furthermore, the 626nm push beam, which transfers the atoms from the
2D MOT chamber to the 3D MOT chamber, goes along the same axis as the imaging beam.
Therefore, both laser beams are superimposed using a polarizing beam splitter (PBS) just in
front of the viewport. The imaging beam is reflected at the PBS, while the push beam is
transmitted. However, this requires the last lens of the optical set up to keep a distance from
the viewport of at least about 100mm in order to leave enough space for that. This means the
distance of the last lens to the optimal position of the minimal waist is supposed to be at least
370.3mm.
The beam exits the 3D MOT chamber via viewport CF40, which is located at a distance of about
414mm from the minimal waist. At this position the waist should not exceed the radius of the
viewport of roughly 20mm. The camera is placed behind that. Finally, the use of mainly two
inch optics requires the waist of the beam to be smaller than 2.56mm at any optical component.
Due to limited space on the breadboard where the set-up is supposed to be mounted the optical
path should not be too long.
To conclude, tabel 2.1 provides an overview of the constraints to the beam size at different
positions.

last lens CF63 DPS beg DPS end atomic cloud CF40
position x [mm] < −100 0 206 261.7 534 635
waist w(x) [mm] < 25.4 < 30 < 1 < 2.9 > 9 < 20

Table 2.1: constraints on the size of the beam waist imposed by the assembly of the experiment;
positions are given relative to viewport CF63
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2.3 Simulation and Design of the Optical Set-Up

To find the optical set-up that fulfills the requirements best, the size of the beam at the rele-
vant positions is simulated for a telescope set-up with three lenses. The calculations on which
this is based are presented below. For more details about the actual program please refer to
appendix A.2.
As input parameters the simulation takes the focal lengths of the lenses f1, f2 and f3, as well
as their absolute distances l1, l2 and l3 from viewport CF63. The numbering follows the order
in which the lenses are penetrated by the beam.
The light exits a single mode fibre with an effective numerical aperture of NAe2 = n · θ = 0.068.
After that a lens with focal length f0 = 15mm is used to create a collimated beam with a waist
of w0 = 1.022 mm. The first lens is a 1” lens. The influence it has on size w1 and position x1 of
the minimal waist after the lens can be approximated by equation 2.10 and 2.11.

w1 ≈
λ

πw0
· f1 x1 ≈ f1 (2.14)

The position of the minimal waist x1 in reference to the second lens is given by

x̃1 = l1 − l2 − x1 . (2.15)

With this we calculate the impact of lens 2 on the waist according to equation 2.6 and 2.7 as

w2 = Mw1 (x2 − f2) = M2(x̃1 − f2) . (2.16)

In reference to the third lens the position of the minimal waist is given by

x̃2 = l2 − l3 − x2 . (2.17)

With this we obtain size w3 and position x3 of the minimal waist after lens 3 from

w3 = Mw2 (x3 − f3) = M2(x̃2 − f3) . (2.18)

The position of the minimal waist in reference to viewport CF63 is

x̃3 = x3 − l3 . (2.19)

Size w3 and position x̃3 of the minimal waist after lens 3 determine the shape of the beam as it
propagates through the experiment. With this information we can determine the waist at the
relevant positions x listed in table 2.1 from equation 2.2.

w(x) = w3 ·

√
1 +

(
x− x̃3
xR

)2

with xR =
πw2

3

λ
(2.20)

As input to the simulation, we use the focal lengths of the lenses that are available in the labora-
tory. The positions of the lenses are changed in step sizes of 5mm. To the outcome we apply the
constraints listed in table 2.1. Some possible configurations are presented in table 2.2. The val-
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ues for the distances l1, l2, l3 and beam waists w(DPS beg), w(DPS end), w(BEC) correspond
to the mean values we obtain when taking the results for different lens positions that still fulfill
the requirements. The parameters d12 and d23 denote the distances between the focal point of
lens 1 to the position of lens 2 and the focal point of lens 2 to the position of lens 3 respectively.
The minimum and maximum values given in the table can be used as an indication of how much
the lenses can be displaced with respect to each other and still create a beam that fulfills the
requirements. All the possible configurations create very similar beam waists around the DPS
and in the plane of the atomic cloud. Of the lenses we have in stock there is no option but to
use a lens with a focal length ±60 as first lens. Using a negative focal length can shorten the
overall path by several centimeters. In the case of two lenses with focal length f2 = f3 = 100,
the minimum and maximum values of d12 and d23 only differ by 20mm. This means that the
set-up of the lenses would have to be very precise to still fulfill the requirements to the beam
shape. Because of that, this option is excluded. With the third lens being f3 = 250 we have
four different options for the middle lens. In the end we choose the one with the largest focal
length, since it provides the shortest mean overall optical path and the possible displacement of
the lenses is the largest.

f1 f2 f3 l1 l2 l3 d12 d23 w(DPSbeg) w(DPSend) w(BEC)

-60 100 100 902 385 121 515-635 135-145 0.33 1.59 10.96
250 250 970 960 126 60-95 860-1000 0.31 1.53 10.56
300 960 939 127 60-120 830-1020 0.32 1.54 10.64
500 946 861 125 60-255 775-1195 0.32 1.54 10.65
750 921 751 121 60-380 755-1195 0.32 1.57 10.82

60 100 100 974 374 106 515-565 145-145 0.32 1.56 10.72
250 972 907 159 0-10 715-790 0.31 1.50 10.33

250 250 975 900 157 0-35 715-795 0.31 1.50 10.34
300 976 896 157 0-45 715-795 0.31 1.50 10.32
500 978 881 156 0-85 715-810 0.31 1.50 10.34
750 981 779 141 0-380 715-1195 0.31 1.49 10.27

Table 2.2: possible configurations for a telescope set-up with three lenses of focal lengths f1, f2
and f3; the values for the distance of the lenses l1, l2 and l3 from viewport CF63 and the waist
of the beams at the beginning w(DOS beg) and end w(DPS end) of the DPS as well as in the
plane of the atomic cloud w(BEC) are the mean values for those lens positions that fulfill the
requirements; the distances between focal point and following lens d12 and d23 are minimum and
maximum values; all values are given in mm

To summarize, in the end, we chose a telescope set-up with three lenses, the first one being a
1” lens with a negative focal length of f1 = −60mm, followed by two 2” lenses with the focal
lengths f2 = 750mm and f3 = 250mm. The first one is placed at a distance from viewport
CF63 of roughly l1 = 830mm; the others are at l2 = 730mm and l3 = 150mm. How the beam
is expected to propagate for the chosen configuration is displayed in figure 2.2. The minimal
waist is expected to be wmin = 4.687µm.
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Figure 2.2: calculated shape of the beam (blue) as indicated by the waist when propagating
through the optical set-up and the experiment

Now we want to know, if the beam created by the chosen configuration is expected to be cut
by any optical apparatus. As a first indicator, the radius of the beam is defined as three times
the waist. At this distance from the propagation axis the intensity of the beam has fallen to
0.03% compared to the center and any cut-off beyond this is considered as neglectable. If the
size of the beam extends that of any component, the size that the beam gets due to the physical
boundary is considered as the radius.
An overview of the expected waists and radii at positions of interest is given in table 2.3. With
a radius of r0 = 3.066 mm the collimated beam is clearly smaller than the radius of a 1” lens.
At the position of the second lens the radius is r2 = 8.16 mm and does also not extend the size
of the 2” lens. A cut-off occurs only at lens 3. At this point the size of the beam is reduced
from 31.491mm to the size of the 2” lens. Because of this, there is no further cut-off by any of
the viewports nor the DPS.

lens 1 lens 2 lens 3 CF63 DPS beg DPS end BEC CF40 camera
waist [mm] 1.022 2.725 10.497 6.209 0.320 1.273 9.058 11.945 21.923
radius [mm] 3.066 8.176 25.4 7.042 0.362 1.444 10.272 13.547 24.863

Table 2.3: theoretical expectations of the size of the beam at relevant positions in the experiment,
after lens 3 the radius is determined by the cut-off at lens 3

In the experiment the whole optical set-up is supposed to be mounted on a 325× 650mm
breadboard while still leaving enough space for the set-up of the push-beam. A scale drawing
of the spacial arrangement is shown in figure 2.3.
The imaging beam and the push beam are superimposed at a 1” PBS. When hitting the PBS
the beam has a radius of 10.2mm, which is about the size of the PBS. As confirmed in a test
set-up, this does not affect the functionality of the set-up any further. However, this is not
included in the simulation.
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Figure 2.3: spacial arrangement of the optical set-up on the breadboard as scale drawing

Furthermore, we are interested in the intensity with which the cloud is expected to be imaged.
From equation 2.1 the intensity at the outer edge of the beam compared to the center can be
calculated as

I(r = rBEC, x = 534mm)

I(r = 0, x = 534mm)
= exp

(
−2

r2BEC
w2

BEC

)
. (2.21)

In the plane of the atomic cloud, i.e. at a position x = 534mm, the beam has a waist of
wBEC = 9.058 mm and a radius of rBEC = 13.547mm. With this, we obtain an intensity at the
outer edge of the beam of 7.6% compared to the center. It is also relevant to know the intensity
at the edge of what can still be imaged. Assuming a magnification of 2, we are interested in a
position 7.03mm in z-direction and 11.25mm in y-direction from the center. Here the intensity
is still 30% and 5% respectively.

2.4 Measurement of the Beam Waist

How large the beam along its propagation axis is in practice is measured in a test set-up. We
use two different measuring techniques depending on the size of the beam.
At positions around the minimal waist the measurement is done directly by using a camera,
which records a two dimensional picture of the intensity profile of the beam at the position of
its sensor. The sensor consists of 1624 × 1224 pixels with a size of 4.4 × 4.4µm each. With
this an area up to 7.1 × 5.3 mm can be imaged [13]. Therefore, we can measure beam waists
up to 2.64mm with this camera. Since the minimal waist is only about the size of one pixel,
it can not be measured directly. Experimentally, we find that the beam has to be larger than
about 100µm to obtain a reliable result. In accordance with equation 2.1 the waist at each
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measurement position is determined from fitting a two dimensional Gaussian distribution to the
beam profil

G(y, z) = A · exp
(
−(y − µy)

2

2σ2
y

− (z − µz)
2

2σ2
z

)
+ C (2.22)

with A as amplitude and C as offset. The center in y (z) direction is given by µy (µz) and the
standard deviation by σy (σz). Comparing 2.22 and 2.1 reveals that the waist corresponds to two
times the standard deviation. The cross section of the beam is approximately circular. Thus,
the mean of the σ-values from both directions is taken in order to obtain the effective waist.
The error of the waist ∆w is given by the sum in quadrature of the errors of the corresponding
fit parameters ∆σy and ∆σz.

w =
1

2
(2 · σy + 2 · σz) ∆w =

√
(∆σy)2 + (∆σz)2 (2.23)

An example for obtaining the waist from the image recorded with the method described above
is shown in figure 2.4.

Figure 2.4: (left) intensity profile of the beam at a distance of about 140 mm after viewport
CF63, (middle) Gaussian fit used to determine the beam waist, (right) fit residue

Further away from the minimal waist the size of the beam extends the size of the sensor. In
this case, we employ another technique. A pupil with 1mm diameter is used in order to shield
everything but a small portion of the beam. It is placed in front of a powermeter, which measures
the power going through the pupil. Therefore, it provides a local estimate of the intensity at the
position of the pupil. We perform a beam waist measurement by shifting the pupil in steps of
1mm along the y-axis, i.e. perpendicularly to the beam propagation. The result corresponds to
a cross section through the power profile of the beam along the y-axis. To the measured values
a one dimensional Gaussian fit is applied

G(y) = A · exp
(
−(y − µ)2

2σ2

)
+ C (2.24)

were A and C again denote amplitude and offset. The center is indicated by µ and the standard
deviation by σ. Comparing equation 2.24 to 2.1 again reveals that the beam waist is obtained by
multiplying the standard deviation by two. Since equation 2.1 is separable in y and z direction
a displacement from the center in one direction does not effect the size of the waist in the other.

13



Chapter 2 Imaging Set-Up

This allows the measurement to be still reliable even if the pupil is not centered on the z-axis.
Two examples where the waist of a larger beam is determined are presented in figure 2.5.

Figure 2.5: measurement of the power going through a pupil with ∅ 1 mm as a function of its
position in y-direction for a beam at about 60 mm in front of viewport CF63 (left) and 110 mm
behind (right)

At this point we have obtained the beam sizes as indicated by the waist for different positions
along the x-axis. Since the absolute position in reference to other optical components is deter-
mined by hand with a ruler, there is a systematic error for each set of measurements. In order
to avoid that the data points from both methods are shifted against each other the position
of the minimal waist is first determined for each set individually by applying formula 2.2 and
than adjusted to the theoretically expected position. After that the same formula is fitted to all
values. The results are shown in figure 2.6.

Figure 2.6: measured beam waist as function of the distance along the x-direction obtained with a
beam profiler (dots) and a powermeter (crosses), to this the function w(x) = wmin·

√
1 + (x/xR)2

is fitted (blue); theoretical expectation (red) for comparison; positions of relevant components
are indicated as reference
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From the fit one obtains a minimal waist of wmin = (4.613±0.024)µm compared to an expected
value of wmin = 4.687µm. This corresponds to a deviation of about 3σ, which means that the
experimental results suit the expectations well. This is especially surprising, since we would not
have expected to achieve such a high focus with the type of lenses that are used in the present
set-up.

Figure 2.7: effects on position (left) and size (right) of the minimal waist when changing the
position of lens 1 (top), 2 (middle) or 3 (bottom) individually
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2.5 Effects of Lens Displacement

In a test set-up we investigate how size and position of the minimal waist change with the
displacement of one of the three lenses. For each of the three lenses its position is changed
while the position of the other two is kept constant. Since the minimal waist is too small to be
measured directly, for each position of the lens the intensity distribution of the beam profile is
measured at different distances around the minimal waist with a beam profiler and the waist
is extracted as described above. The minimal waist is now extracted by fitting equation 2.2 to
all the obtained values. With this, one has the size and position of the minimal waist for each
position of one lens. How these values change with the position of the three lenses is shown in
figure 2.7.
The displacement of lens 3 has the strongest impact on the minimal waist. Moving the lens by
1mm shifts the minimal beam waist by (0.789± 0.009)mm. A displacement by 10 mm causes
the size of the minimal waist to change by (41± 6) nm. The further away from the viewport
lens 3 is placed, the closer is the position of the minimal waist and the larger it becomes.
Looking at the first lens it is observed that a displacement by 1mm causes the minimal waist
to move by (0.381± 0.006)mm into the same direction. The impact on the size of the minimal
waist is about the same as for lens 1, namely (41± 3) nm for a displacement of 10mm. Moving
the lens away from the viewport leads to larger minimal waist.
The effect of lens 2 is smaller than that of the other lenses. Moving this lens 1mm further away
from the viewport makes the minimal waist shift by only (0.13± 0.01)mm. The impact on the
size of the minimal waist is so small that it can not be resolved.
To draw a conclusion we can say that moving lens 3 is best suited to change the shape of the
beam significantly, since it influences the position and size of the waist equally. Changing the
position of the first lens has less impact on the position of the waist and therefore may be used
if one wants to mainly influence the degree of divergence. The middle lens can help when doing
the fine-tuning of the set-up and setting the position of the minimum waist precisely.

2.6 Beam Polarisation

For the absorption process we plan to use light that is as linear polarized as possible. To look
at the pureness of the polarisation after the PBS a half wave plate is placed in front of another
PBS. The orientation of the wave plate is rotated and the maximum and minimum power after
the second PBS are recorded with a powermeter. The following values are measured.

maximum Pmax = (375± 1)µW

minimum Pmin = (1.90± 0.05)µW

This corresponds to a degree of polarization of 99.5%, which is a satisfying result. However, one
has to note, that this measurement is not very precise since the PBS used for the measurement
itself has an extinction ratio of only 1000:1 according to the manufacturer.

16



Chapter 2 Imaging Set-Up

2.7 Image Projection Set-Up

To measure the atomic density distribution, the plane of the atomic cloud has to be imaged
onto the plane of the camera. This is achieved by using an imaging lens. The distance from lens
to object a and the distance from lens to camera b has to fulfill the following relation with the
focal length f of the imaging lens.

1

a
+

1

b
=

1

f
(2.25)

The magnification M is given by

M =
a

b
. (2.26)

In the experiment one wants to image the atomic cloud at three different stages of the cooling
process as described in section 2.2. Depending on the case a lens with focal length f = 100 mm
is placed at either one of two positions behind the viewport CF40. For imaging the atomic cloud
during the loading of the 3D MOT, the lens is placed a = 300mm behind the atomic cloud and
b = 150mm in front of the camera, while for imaging the compressed cloud it is the other way
around. An overview of both lens positions is shown in figure 2.8. The set-up was tested with
a razors blade as object. After setting the camera and one of the lenses roughly at the right
positions in reference to the object, they are aligned by hand, so that the image is as clear as
possible. After that the lenses are exchanged. After slightly changing the camera position, the
alignment is repeated for the first lens.

Figure 2.8: illustration of the imaging with a magnification of M = 2 (top) and M = 0.5

(bottom)
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To estimate the maximum time of flight ttof that can be used imaging the BEC with different
magnifications the following calculation is done. The camera sensor has a size of 7.03× 11.25mm.
With a magnification of M = 2 this corresponds to an effective pixel size in the vertical of about
3.5mm and with a magnification of M = 0.5 to an effective pixel size of about 14mm. Initially,
the cloud is in line with the center of the sensor. Therefore, the maximum movement in vertical
direction due to gravity corresponds to half the effective size. With

ttof =

√
2sz
g

(2.27)

we obtain a maximum time of flight of 19ms for M = 2 and 38ms for M = 0.5.
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Noise Analysis

3.1 Operating Principle of the Camera

In the imaging set-up we use the camera model ORCA spark manufactured by Hamamatsu.
The following paragraph follows the description provided in the manual [11]. The camera op-
erates with a CMOS sensor, short for Complementary Metal Oxide Semiconductor. Figure 3.1
shows the schematic construction of the sensor chip. When light enters a pixel the photons
are converted into charge by a photodiode. The probability that a photon triggers an electron
is given by the quantum efficiency (QE). At a wavelength of 421nm the sensor’s QE is about
70%. Different from a charge-coupled device (CCD) sensor the charge is directly converted into
voltage in every single pixel by an amplifier. Every pixel has a switch to output its voltage.
Every horizontal line is then converted into a digital signal by an analog-to-digital converter
(ADC). In order to reduce the noise the sensor has a correlated double sampling circuit (CDS)
on the chip that removes a potential off-set.

Figure 3.1: schematic representation on the construction of a CMOS camera sensor: for each
pixel the incident photons are converted into charge in a photodiode and than converted into
voltage by an amplifier, each horizontal line has its own ADC to out-put a digital signal and
CDS to reduce noise; adapted from [11]
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In the next sections we will examine in which way the sensor, among other things, contributes
to the noise that occurs during the imaging process. After giving an overview over potential
noise sources, we look at the photon transfer curve to identify the relevant ones. Additionally,
we examine the read noise and the fixed pattern noise in more detail and try to reduce the latter
by image processing.

3.2 Noise Classification

The following section presents an overview of potential noise sources during imaging and their
classification. We differentiate four types of noise by their impact on the statistical behaviour
of the signal: read noise, photon shot noise (PSN), fixed pattern noise (FPN) and the full-well
noise. Several physical sources can contribute to each type of noise [8].

Read noise refers to any noise that is independent of the signal. It occurs even without the
incoming of any light. It adds an off-set to the variance of the signal independent of the mean
signal.

σ2
read = const (3.1)

Photon shot noise (PSN), which is quantified by the standard deviation σPSN from the mean
signal, has its origin in the quantized nature of light [5]. For common light sources the incoming
number of photons follows a Poisson statistic [4]. Since the quantum efficiency is independent
of the number of photons received for a certain wavelength, σPSN can be expressed as

σPSN,e− =

√
N̄e− (3.2)

were N̄e− denotes the average number of generated photo electrons [8]. To express this in terms
of the digital signal, one introduces the translation factor F (e−/counts), which tells how many
electrons correspond to one digital count assuming a linear dependency [8]. Therefore, a signal
and its noise translate according to

Ne− = F (e−/counts) ·Ncount and σe− = F (e−/counts) · σcount . (3.3)

Inserting these relations into equation 3.2 provides us with an expression for PSN in terms of
digital units.

σPSN := σPSN, count =

√
N̄count

F (e−/counts) (3.4)

Therefore, the variance σ2
PSN scales linear with the number of mean counts.

σ2
PSN ∝ N̄counts (3.5)

Fixed pattern noise (FPN) quantified by the standard deviation σFPN refers to any spatial
differences in the number of counts that do not change over time. It might be either caused
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by photo response non-uniformity (PRNU), which describes a difference in sensitivity that is
individual to each pixel due to slight variations in the manufacturing [12], or a time constant
non-uniform illumination of the sensor [8]. We define the so called FPN quality factor QFPN

that defines over which range the signal spreads due to FPN [8]. With this σFPN is defined as

σFPN = QFPN · N̄counts . (3.6)

FPN contributes to the quadratic term of the variance [8].

σ2
FPN ∝ N̄2

counts (3.7)

The last type of noise, the full-well noise quantified by the standard deviation σfull-well, exhibits
some irregular, non-linear and non-quadratic dependency. Often the variance decreases with
increasing mean count. This is caused by the pixels one by one becoming saturated, the so
called full-well [8].

All noise sources are considered as independent from each other and therefore add in quadrature
to a total variance of

σ2
tot = σ2

read + σ2
PSN + σ2

FPN + σ2
full-well (3.8)

= σ2
read +

1

F (e−/counts)Ncounts + (QFPNNcounts)
2 + σ2

full-well . (3.9)

To determine the relevant types of noise in the present set-up, we use a statistical approach by
calculating the so-called photon transfer curve (PTC).

3.3 Photon Transfer Curve

The PTC refers to a graph whereby the variance of the signal is plotted over its mean and
allows us to compare the different noise contributions. The procedure, how we record the PTC,
mainly follows the description provided in [8]. The PTC is recorded in the unit of digital counts.
To vary the mean count either the light intensity or the exposure time of the sensor, i.e. the
duration of the imaging pulse, is changed. In our case it is the latter. We use laser pulses with
ten different durations between 5 and 140 µs and perform ten repetitions each. We do not look
at the sensor as a whole but at a subarray of a certain size. From a statistical point of view
one wants as many data points as possible, i.e. as many pixels as possible, since the accuracy
scales with the square root of the number of pixels [8]. On the other hand, if the area is too
large the influence of effects like nonuniform illumination becomes too dominant. After testing
different sizes, we choose an area of 10× 10 pixels, which corresponds to a number of pixels of
Npx = 100. The area is centered where the atomic cloud used to be imaged.
First, the mean values i.e. the values on the horizontal axis are determined. For this we subtract
from each image pixel by pixel the dark image, which is taken under the same conditions but
without any laser light. With this we eliminate the offset signal that is added to each image
independent of the incident light. However, the noise that goes along with the dark signal does

21



Chapter 3 Noise Analysis

still contribute to the variance. After the subtraction we calculate the average signal N̄count for
the subarray. The whole process can be described in terms of a formula by

N̄count =

∑Npx

i=1 Ncount,i −Ncount, dark, i
Npx

(3.10)

where Ncount,i denotes the digital count of each pixel of the illuminated image and Ncount, dark, i

that of the dark image.
Secondly, the variance values used for the vertical axis are obtained. This is done by calculating
the variance of the pixel values σ2

Ncount after removing the dark image.

σ2
Ncount =

∑Npx

i=1

(
(Ncount,i −Ncount, dark, i)− N̄count

)2
Npx

(3.11)

We calculate mean count and variance of each pulse duration for each of the 10 repetitions and
then take the average. The error on the obtained values correspond to the standard deviation
from the averaging. The resulting PTC is presented in figure 3.2.

Figure 3.2: PTC for imaging with laser light of a wavelength of 421 nm; the data points (red)
give the mean and the variance of digital counts over 100 pixels, the errorbars correspond to the
standard error from 10 repetitions, to this a second order polynomial fit (black) is applied; see
text for details

Because of equation 3.9 a second order polynomial fit is applied to the data points. From
this we obtain a translation factor of F (e−/counts) = 6.1± 0.4, which means that the cre-
ation of about six electrons results in one digital count. For the FPN quality factor we get
QFPN = 0.0754 ± 0.0003. According to [8] the FPN quality factor would normally be in the
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order of 0.01, if it originated only from PRNU. This indicates that non-uniform illumination
that is constant over time has an effect here.

If one looks at the PTC in double logarithmic scale as presented in figure 3.3 different regimes
can be distinguished easily. In theory, the PTC exhibits four regimes each corresponding to the
dominance of a different type of noise. The read noise leads to a constant off-set on the PTC [8]
and dominates the total variance for low signals. It is followed by the PSN regime, where the
intrinsic shot noise from the light dominates [8]. For higher signals the FPN surpasses the PSN
due to its quadratic dependency. The full-well regime can not be observed here. For the pulse
durations that are used here and also in the experiment saturation effects do not play any role.
In the experiment the imaging is usually operated with a pulse length of tpulse = 25µs. This
goes along with a digital count of about N̄count = 80. The ratio of FPN and PSN is calculated
as [8]

σFPN
σPSN

= QFPN
√
F (e−/counts) ·Ncounts . (3.12)

For the mentioned digital count this is σFPN
σPSN

≈ 1.7. Therefore, FPN is the main contribution to
the total noise, while PSN can still not be neglected.

Figure 3.3: PTC for imaging with laser light of a wavelength of 421 nm in a log-log-plot; this
exhibits three regimes with a different type of noise dominating: read noise (left), photon shot
noise (middle) and fixed pattern noise (right), the mean digital signal usually observed in the
experiment is indicated by the red line
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In the following two sections we will investigate two types of noise in more detail: the read noise,
which is the only type of noise encountered in dark images, and the FPN, which yields the main
noise contribution to illuminated images at a pulse duration used in the experiment.

3.4 Read Noise Analysis from Dark Images

Because of the absence of any light source, the dark images, which are taken in each imaging
cycle, are only affected by read noise. Therefore, we take a closer look at this particular type of
noise and its different components in the following section.
Even without any incident light the sensor creates a signal, the so called dark signal. It can
originate from many different sources. One is the thermal excitation of electrons, a process that
is indistinguishable from the creation of photoelectrons [2]. The signal can also be produced
further down in the process, e.g. in the electronic circuit, where the charge is converted into
voltage [8]. The dark signal is not constant but comes with some fluctuation, the read noise
represented by the standard deviation of the dark signal σread. The read noise can be subdivided
into dark shot noise and dark fixed pattern noise. For example, the creation of thermal electrons
is a random process that follows Poisson statistic and therefore, contributes to the shot noise,
whereas the difference in the manufacturing of the electronic circuit of each pixel leads to fixed
pattern noise [12]. Dark shot noise and dark fixed pattern noise should not be confused with
the PSN and FPN that occur under incident light.
In order to obtain the mean dark signal N̄count, dark as well as its standard deviation σread we
look at a set of 100 dark images recorded with an exposure time of 2ms. This setting is also used
in the experiment. The digital values Ncount of all pixels in all images are plotted in a histogram
as shown in figure 3.4. To this a Gaussian fit with amplitude A and offset C is applied.

G(Ncount) = A · exp
(
−
(N̄count, dark −Ncount)2

2σ2
read

)
+ C (3.13)

For the mean count of the dark signal we obtain N̄count, dark = 50.441± 0.010 and for the stan-
dard deviation σread = 0.793± 0.014. How this compares to the result from the PTC is presented
after examining the nature of the noise in more detail.

In the following part, we investigate the ratio between the dark shot noise and the dark fixed
pattern noise. First, we look at the part of the read noise that follows a fixed pattern. To avoid
accounting for the dark shot noise the digital count of each pixel is averaged over the 100 dark
images. Since the manufacturing of the pixels slightly differ from one another, this leads to a
factor xdark, i that is constant over time but slightly varies from pixel to pixel [12]. The mean
count of a specific pixel is given by

N̄count, i = xdark,i · N̄count, dark . (3.14)

The factor xdark, i is obtained by dividing the value of each pixel by the mean value obtained
by averaging over all pixel values. As can be seen in figure 3.5 the factor xdark, i is distributed
normally around about 1.
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Figure 3.4: Gaussian fit (red) applied to the distribution of the recorded digital counts of each
pixel of 100 dark images (grey)

From a Gaussian fit one obtains the mean value µx, dark = (1.00014.7± 1.3) · 10−5 and the stan-
dard deviation σx, dark = (220.9± 1.3) · 10−5. With this, the read noise that is due to dark fixed
pattern noise is calculated as

σread, FPN = σx, dark · N̄count, dark . (3.15)

We obtain σread, FPN = (0.1114± 0.0007). This means that about 14% of all read noise is due
to dark fixed pattern noise, whereas the majority of 86% is due to dark shot noise.
When creating the PTC we subtracted the dark image from the illuminated one. Since the
main contribution to the read noise is dark shot noise, we treat the read noise on both images
as independent. Because of that, the variance in the PTC due to read noise is about twice
of what we found in this section. Transforming the result from this section accordingly leads
to a variance of σ2

read = 1.26± 0.04. Treating them like this the value we obtain is in a 1σ

environment to the one from the PTC. This again confirms that it is reasonable to treat the
dark noise as statistically random, a result that will be used in chapter 4.
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Figure 3.5: Gaussian fit (red) applied to the distribution of the dark fixed pattern noise factor
of the pixels after averaging over 100 dark images

3.5 Fixed Pattern Noise Analysis

Since the major part of the total noise for imaging pulse durations of interest comes from FPN,
in the present section we will examine this type of noise in more detail. As mentioned before
there are different reasons for the appearence of FPN. It can be caused by either the sensor itself
or the incident light. The first is referred to as photo response non-uniformity (PRNU). After
an electron is hit by a photon the free electrons are collected in the pixels. Due to some slight
differences between the manufacturing of the individual pixels, like differences in size, material
or the electronic circuit their collecting efficiency differs. This means that there are differences
in the sensitivity from pixel to pixel [12]. In the case of CMOS cameras, additionally, there
might be differences from row to row, since each row has its own ADC. The second source of
FPN is the laser beam. There can be some non-uniformity in the beam profile itself. Further-
more, things like dust along the optical path or on the sensor, might block parts of the light and
reflections can cause some interference pattern. All together creates a spatially fixed pattern
that is constant over time.
For examining the FPN we take 100 shots that are recorded with a pulse duration of tpulse = 25µs,
subtract the dark image and then average over all 100 shots. We now look at a subarray of
300× 300 pixels centered around the position of the atomic cloud. The obtained image is shown
in figure 3.6. Besides the small spherical interference pattern caused by some dirt, there is also a
pattern of almost horizontal lines. A similar pattern was observed in [8] where it was attributed
to reflections between the sensor’s surface and the optical window.
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Figure 3.6: image of size 300 × 300 pixels created from averaging over 100 shots that were
illuminated under conditions present in the experiment

We now look at the distribution of the fixed pattern factor xFPN, i that is individual to each
pixel and is expected to be distributed around 1 [12]. The number of counts per pixel is given
by

N̄count,i = xFPN,i · N̄count . (3.16)

To obtain the fixed pattern factor of each pixel we divide the value of each pixel by the mean
obtained over all pixels. The distribution of the amplification factors is almost Gaussian with a
standard deviation of σx, FPN = 0.1289± 0.0011. This quantity is equivalent to the FPN quality
factor QFPN. Its value is significantly higher than the one obtained from the PTC. This is prob-
ably due to the large difference in the size of the considered areas, which are 300 × 300 pixels
and 10 × 10 pixels respectively. For a larger area the light intensity patterns are more distinct
and it is more likely that the counts per pixel differ over a wider range.

Now we want to investigate the part of the FPN that is due to PRNU, which is denoted as
σPRNU. Equivalent to equation 3.6 the PRNU quality factor QPRNU is introduced. [8]

σPRNU = QPRNU · N̄count (3.17)

In order to calculate its value, one should illuminate the sensor with perfectly uniform light and
create a flatfield image out of that. It is not possible to create such a beam that has a large
enough size with the laser that is used in the set-up, since the high coherence makes it hard
to avoid the creation of interference patterns. Because of that, a smartphone light is used to
illuminate the sensor. However, note that the FPN can show a wavelength dependency [8] and
the present result has to be taken with a grain of salt.
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Figure 3.7: Gaussian fit (red) applied to the distribution of the FPN amplification factors from
300× 300 pixels illuminated with a laser pulse of 25µs, averaged over 100 images

The flatfield image is obtained by averaging over 100 single shots. Since there is still some
gradient in the brightness of the light, we look at a slightly smaller subarray of 100× 100 pixels
centered around the position of the atomic cloud. The image is shown in figure 3.8. One can see
some single pixels that are significantly brighter than the others. That there is more fluctuation
between the rows than the columns can not be observed.
From here we proceed as described in section 3.4. The distribution of xPRNU is shown in 3.9.
We get a standard deviation of σx, PRNU = (3.27± 0.04) · 10−3. This is again equivalent to the
PRNU quality factor. The obtained value is in accordance with an expected value below 1%
as observed in [8]. With QPRNU we can calculate the noise due to PRNU using equation 3.17.
With a digital count of usually around 80 for the pulse duration used in the experiment after
subtracting the dark image we obtain σPRNU = 0.261± 0.003. This is only about 4% of the
total FPN σFPN = 6.032 ± 0.024. This indicates that the main contribution to FPN is not the
difference in the sensitivity of the pixels but rather the non-uniform illumination of the sensor.
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Figure 3.8: flat-field image of size 100 × 100 pixels created from averaging over 100 shots that
are illuminated by uniform light from a smartphone, model Samsung Galaxy S21 FE 5G; the
diagrams at the bottom and right show the average digital count per column and row

Figure 3.9: Gaussian fit (red) applied to the distribution of the FPN amplification factors that
are obtained after averaging over 100 uniformly illuminated shots
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Figure 3.10: raw image of the atomic cloud, which is taken with tpulse = 20µs and of which the
dark image is subtracted (left); corrected by normalizing it by a flat-field image (center); the
flat-field image is created out of 100 shots of tpulse = 25µs (top) or 10 shots of tpulse = 20µs
(bottom); result (right)

3.6 Flat Fielding

The following section deals with the topic of noise reduction. As exhibited before neither the
full-well nor the read noise contribute to the total noise in a notable way for a pulse duration
of interest. Therefore, the only relevant types of noise are PSN and FPN. Since PSN represents
an intrinsic limitation to imaging the only part that can be improved is the FPN. To do this,
we apply the method of flat fielding to the images as described in [8]. The idea is to create a
flat-field image by averaging over a large number of images taken under the same conditions.
Therefore, the flat-field image contains the fixed pattern but no PSN. It is used to normalize the
raw image. The raw image is divided by the flat field image pixel by pixel and than multiplied
by the average digital count of the flat-field image N̄count, flatfield. From this one obtains the
corrected digital count per image Ncount, i, corr.

Ncount, corr, i = N̄count, flatfield
Ncount, i −Ncount,dark,i

Ncount, flatfield, i
(3.18)

We test two different methods to obtain the flat-field image. In the first method, independent
from the imaging pulse duration in the absorption image we use the average of 100 shots recorded
with a laser pulse duration of tpulse = 25µs after subtracting the dark image from each. In the
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second, we create the flat-field image from an average over 10 shots recorded with the same pulse
duration, from which a dark image was subtracted, and apply this only to raw images taken
with the same pulse duration. An example of what applying such a flat-field image to an image
of the atomic cloud looks like is shown in figure 3.10. In both cases larger patterns as well as
the circular interference pattern in the lower right corner could be removed to some extent. For
the second case that works clearly better than for the first. Still, in both images there remain
some small diagonal fringes.
By again creating a PTC that is displayed in figure 3.11 one can see, that the noise is reduced
significantly. The FPN quality factor has dropped from (0.0754 ± 0.0003) to (0.0514 ± 0.0004)
in the first case and to (0.0389± 0.0005) in the second. This corresponds to a reduction of the
FPN of about 30% and 50% respectively. Therefore, also the noise regimes shift. Looking at
a mean count of 80, in the first case, variance due to FPN has dropped from about 70% of the
total variance to 55%, while the PSN is responsible for 40% and the read noise for 5%. In the
second case, the FPN is only responsible for 39%, while photon shot noise and read noise make
up for 54% and 7% respectively.
As a conclusion, one can say that by applying flat fielding it is possible to reduce FPN to
an extent where PSN becomes the dominant noise. Still the FPN is not small enough to be
neglected.

Figure 3.11: PTCs for flat fielding applied images; the flat-field image is created out of 100 shots
of tpulse = 25µs (top) or 10 shots of adjusted pulse duration (bottom); the fit values from a
second order polynomial fit are displayed (left) as well as the different noise regimes (right); the
red vertical line indicates the usual mean digital count observed in the experiment
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Simulation of Absorption Imaging

4.1 Derivation of the Density Distribution

In order to simulate the image of the atomic cloud it is necessary to know the distribution of the
atoms projected on a two dimensional plane, i.e. the column density. After giving the general
formula we will express the column density in terms of quantities that are accessible in the
experiment.
In our case, the imaging is conducted along the x-axis. The observed cloud normally consists of
a BEC and a thermal cloud, which are confined in a harmonic potential. In the Thomas-Fermi
limit where the interaction between the atoms are much stronger than the confining potential
the column density of the condensate can be described as [15]

nc(y, z) = nc,0 · max
(
0 , 1− y2

R2
c,y

− z2

R2
c,z

)3/2

(4.1)

with the condensates peak column density nc,0 and its extension in y (z) direction Rc,y (Rc,z).
The column density of the thermal cloud is given by [15]

nth(y, z) = nth,0 · g2

(
exp

(
− y2

R2
th,y

− z2

R2
th,z

))
(4.2)

where gs(l) =
∑∞

k=1
lk

ks denotes the Polylogarithm. The cloud is characterized by its peak column
density nth,0 as well as its radial extension Rth,y,z in the y, z-plane. Different from the condensate
the edge of the thermal cloud is not well defined, since the polylog term in 4.2 never reaches
0 as can be seen in figure 4.1. However, in first order it can be approximated as a Gaussian
distribution. Therefore, the radius of the cloud corresponds to

√
2 times the standard deviation

of the corresponding normal distribution.
The densities of thermal and condensed part simply add up to the total column density [15].

ntot(y, z) = nc(y, z) + nth(y, z) (4.3)

= nc,0 · max
(
0 , 1− y2
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)3/2

+ nth,0 · g2

(
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(
− y2

R2
th,y

− z2

R2
th,z

))
(4.4)
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We now want to find an expression for equation 4.4 that does not depend on peak densities and
radii but on parameters that are accessible in the experiment, such as temperature T , condensate
fraction f , total atom number N , trapping frequencies ωx,y,z, scattering length a and time of
flight ttof . Because of the bimodality of equation 4.4 we can look at each part individually [10]
starting with the thermal cloud.

Figure 4.1: schematic cross section through the density distribution of a condensate (left) and
a thermal cloud (right)

The atomic cloud is trapped in a confining potential that is approximately harmonic
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1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (4.5)

with ωx (ωy, ωz) denoting the trapping frequencies in x (y, z) direction and m being the mass
of one Dy atom. Therefore, we have the following relation for the size of the thermal cloud
Rth,x,y,z(t = 0) which is still trapped, i.e. before the time of flight.

Vext =
1

2
mω2

x,y,zR
2
th,x,y,z(t = 0) (4.6)

Treating the thermal cloud as classical gas one obtains the following relation from the equipar-
tition theorem
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(4.7)

with kB being the Boltzmann constant. The expression
〈
v2
〉

stands for the mean of the squared
velocity of the atoms in radial direction and

〈
R2

th(t = 0)
〉

for the mean squared radial distance
of the atoms at t = 0. The size of the thermal cloud after a time of flight depends on its initial
size, the variance of their initial velocity and the duration of free flight.

R2
th,x,y,z(t = ttof ) =

〈
R2

th,x,y,z(t = 0)
〉
+
〈
v2
〉
· t2tof (4.8)
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From equation 4.7 we obtain the following relations.
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Inserting them into equation 4.8 yields
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)
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Now we still need the peak density of the thermal cloud. The total number of atoms in the
thermal cloud Nth is given by integrating over the column density distribution.

Nth = nth,0
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Setting this equal to Nth = (1− f)N provides an expression for the peak density.

nth,0 = (1− f)N
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(4.12)

In the simulation this is solved numerically setting the boundaries of the integral to 6/
√
2. This

is equivalent to 6σ of a corresponding Gaussian distribution. Integration up to this point ex-
cludes less than 2 · 10−7 % of all values.

Now we also want to rewrite the density distribution of the condensate. As a starting point we use
the Gross-Pitaevskii equation, which adds a term for the interaction of particles g|ϕ3(x, y, z, t)|2

to the Schrodinger equation [3].

ih̄
∂

∂t
Φ(x, y, z, t) =

(
− h̄2∇2

2m
+ Vext(x, y, z) + g|Φ(x, y, z, t)|2

)
Φ(x, y, z, t) (4.13)

The ground state wave function is given by Φ(x, y, z, t) = ϕ(x, y, z)e−iµt. Its amplitude ϕ(x, y, z)

is real and normalized to the atom number in the condensate Nc. The chemical potential is
indicated by µ [10]. The confining potential can be described by equation 4.5. The coupling
constant g is given by [3]

g =
4πh̄2a

m
. (4.14)

where h̄ denotes the reduced Planck constant. In this experiment the scattering length a is in the
order of a ≈ 300 a0, where a0 denotes the Bohr radius. In the Thomas-Fermi approximation the
kinetic energy is neglected and equation 4.13 leads to an expression for the chemical potential.

µ = Vext(x, y, z) + g|Φ(x, y, z, t)|2 (4.15)

The chemical potential depends on the number of particles in the condensate Nc = f · N and
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the confining potential. Before the time of flight its mean is given by

µ̄(t = 0) =
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2

(
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)2/5

(4.16)

and its spatial dependence accordingly by
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with
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denoting the typical length scale of the trap [3]. After the condensate is released from the trap,
its chemical potential scales with time as [10]

µx,y,z(t) =
µx,y,z(t = 0)

1 + ω2
x,y,zt

2
(4.19)

We now look at the edge of the condensate Rc,x,y,z, where the density becomes 0 and therefore
the last term of equation 4.15 vanishes. Expression 4.18 is inserted into equation 4.19 and with
this 4.15 is solved for Rc,x,y,z setting the time to t = ttof . We obtain the following expression
for the radius of the condensate after a time of flight.
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The peak density of the cloud is located in the center where x = y = z = 0. Therefore, the first
term on the right of equation 4.15 vanishes and we get an expression for the peak density of the
condensate in three dimensions n3D

c,0 .

n3D
c,0 (t) = |Φ(x, y, z, t)|2 = µ̄(t)

g
(4.21)

Integration along the x-axis returns the peak column density.
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(4.22)

With this we have all the relations to replace nth,0, Rth,y, Rth,z nc,0, Rc,y and Rc,z in the total
column density as given in equation 4.4 by the experimentally accessible quantities T , f , N ,
ωx,y,z, a and ttof .
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4.2 Simulation Procedure

In order to simulate the imaging process we adapt the code developed by Felix Borchers [1] to the
situation in our experiment, i.e. we implement the density distribution that describes a cloud of
bosonic atoms at low temperatures in terms of experimentally accessible quantities. The code
for this can be found in appendix A.3. Furthermore, we feed in the characteristics of the noise
that were determined before. The following paragraph will give an overview of the simulation
procedure. A schematic overview of the program’s working principle is shown in figure 4.2. For
more details please refer to [1].
As presented in section 1.3 in order to obtain the OD three different pictures are taken: a dark
image, one were the camera is illuminated without an atomic cloud, the so called background
image, and one were the atoms are present, the absorption image. This is replicated in the
simulation. Each of the three virtual images is created by using a two dimensional array, of
which each entry corresponds to the count in one pixel. We consider both the mean signal and
the effects of the different noise sources described in chapter 3.
To the dark image only read noise is applied. In section 3.4 we have shown that the fixed pattern
part of the read noise only plays a minor role. Therefore, for every entry in the array random
values are created that are distributed normally around 50.441 with a standard deviation of
0.793, which is in accordance with what we observed.
To simulate the illuminated images, we start with the incoming light in terms of intensity. One
uses an average over 100 real background images of which the dark image was subtracted and
translate these into units of intensity. With this we account for the main part of the FPN,
which is caused by non-uniform illumination of the camera due to e.g. interference, as shown in
section 3.6.
For the absorption image we simulate the absorption process by applying formula 1.1 using the
results derived in section 4.1 for the column density distribution ntot.

Idet(y, z) = I0(y, z) exp (−σ0ntot(y, z)) (4.23)

The intensity of both illuminated images is now translated into the average number of photons
N̄ph per simulated pixel via

N̄ph =
I ·Aeff · tpulse

hc/λ
(4.24)

with c being the speed of light and h being the Planck constant. The effective area of one pixel
in the plane of the atomic cloud is Apx, eff = 7.47µm2 in the present case. To the average number
of photons hitting a virtual pixel the photon shot noise is applied by creating random values for
each virtual pixel Poisson distributed around the mean number of photons. Now the number of
photons is transferred into digital counts by

Ncount =
Nph ·QE

F (e−/counts) (4.25)
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taking the quantum efficiency (QE) into account. To this the dark signal with read noise is
added. The result is rounded to integer values. The final image in units of digital counts is
calculated from the three images via equation 1.5 and then transferred into OD by equation 1.6.

Figure 4.2: schematic representation of the simulation of absorption imaging
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4.3 Reliability of the fit

Finally, we want to investigate the reliability of the fit routine that is used in the experiment
and which was developed by Jianshun Gao und Joschka Schöner. In the fit routine formula 4.4
is applied to the OD images. From this the macroscopic quantities characterising the cloud
are extracted. For checking the reliability of the fit we create sets of simulated OD images of
which we know the input parameters and then compare these to the fit result. An example
of the application of a fit to a simulated atomic cloud can be found in figure 4.3. From the
fit we obtain values for size and density of the atomic cloud in terms of number of pixels and
digital counts. These must be converted back into physical units. The radii are converted by
multiplying the number of counts by the effective pixel size in the plane of the atomic cloud
deff = 2.733µm.

Rth[m] = Rth[px] · deff Rc,y,z[m] = Rc,y,z[px] · deff (4.26)

To convert digital counts into number of atoms, we introduce the conversion factor F (count/atoms).

F (count/atoms) = 1

σ0
·Aeff (4.27)

In the present case is F (count/atoms) ≈ 176.5. With this we obtain the number of atoms in the
condensate as well as the thermal cloud by integrating, i.e. summing over the digital counts in
the respective distributions.

Nth[atoms] = F (count/atoms) ·
∑

nth(Rth[counts]) (4.28)

Nc[atoms] = F (count/atoms) ·
∑

nc(Rc,y[counts], Rc,z[counts]) (4.29)

With the extension of the cloud and the number of atoms in physical units we can derive further
quantities, explicitly total atom number, condensate fraction, temperature and scattering length,
by using the results from section 4.1.

N = Nth +Nc (4.30)

f =
Nc

Nc +Nth
(4.31)
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(4.33)

It is assumed that the time of flight and the trapping frequencies are known.
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Figure 4.3: (top left) simulated column density distribution of a partly condensed cloud; (top
center) applied fit; (bottom left) residue; (top right, bottom center) cross sections through the
simulated distribution with applied fits; (bottom right) comparison of the input parameters and
the fit results

The following part compares fit results and input parameters for different sets of simulations.
The goal is to make a statement on the reliability of the fit in different experimental situations.
First, we look at different condensate fractions. In the experiment there are two situations that
are particularly interesting. On the one hand, the transition into condensation with condensate
fractions between 0 and 10% and on the other hand an atomic cloud where there is almost pure
condensate with condensate fractions between 70 and 100%. In the first case, we usually have
trapping frequencies of ωx = 2π · 206 Hz, ωy = 2π · 96 Hz and ωz = 2π · 227 Hz, temperatures
of about T = 300 nK and total atom numbers of N = 3 · 105. In the second case, the trapping
frequencies are ωx = 2π · 45 Hz, ωy = 2π · 10 Hz and ωz = 2π · 126 Hz, the temperature is about
T = 30 nK and the total atom number N = 1 · 105. In both cases, we use a time of flight of
ttof = 20ms and assume a scattering length of a = 300 a0. We create 10 simulations for each
set of parameters and apply the fit routine to each of them. From that we extract condensate
fraction, total atom number, temperature and scattering length and calculate the mean for the
10 sets. The errorbars correspond to the standard error. The result is shown in figure 4.4 and
4.5.
For low condensate fractions f is determined relatively precisely. An exception is the absence
of any BEC. Here a small condensate is fitted anyway. Also for high condensate fractions the
estimate is precise. However, the case of pure BEC is not identified as such.
When it comes to the total atom number there is an almost constant underestimate of about
3% for low as well as high condensate fractions. In the first case, there are about 8000 atoms
missing in the thermal cloud, in the second case, about 3000 atoms in the condensate. This
means that in both cases the atom number of the larger part is slightly underestimated.
The temperature tends to be slightly overestimated by up to 5nK in the case of low condensate
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fractions. For high condensate fractions the result is pretty precise except for very high f above
about 92%. This is only logical, since T is derived from the thermal part of the atomic cloud.
Finally, the scattering length is determined from the condensed part. We observe a distribu-
tion around 300 a0 for low condensate fractions with deviations up to about 15%. Because of
a ∝ R5

c,y,z/Nc, slight deviations in fitting the size of the condensate can cause significant false
estimates of the scattering length. Since fitting very low condensate fractions for single simula-
tions can result in extremely high scattering lengths and therefore distort the result, such cases
were excluded when calculating the mean. Hence, one must note that the determination of a is
not very reliable. In the case of high condensate fractions, there is a constant overestimate of
about 4%. This corresponds to the slight underestimate of the condensates atom number.

Figure 4.4: (red) mean values for condensate fraction (top left), total atom number (top right),
temperature (bottom left) and scattering length (bottom right) obtained by applying the fit rou-
tine used in the experiment to 10 simulations for each condensate fraction from 0 to 10%; (blue)
expected values as fed into the simulations for trapping frequencies ωx,y,z = 2π · (206, 96, 227)Hz
and a time of flight ttof = 20 ms
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Figure 4.5: (red) mean values for condensate fraction (top left), total atom number (top right),
temperature (bottom left) and scattering length (bottom right) obtained by applying the fit
routine used in the experiment to 10 simulations for each condensate fraction from 70 to
100% (bottom); (blue) expected values as fed into the simulations for trapping frequencies
ωx,y,z = 2π · (45, 10, 126)Hz and a time of flight ttof = 20 ms

In the following we investigate the situation for different time of flight durations between 12
and 38ms, once for a low condensate fraction of 2% and once for a high condensate fraction of
90%. First, we look at the low condensate fraction of 2%. The result is presented in figure 4.6.
The fitted condensate fraction tends to be slightly too small but never falls below 1%. The
total atom number is again constantly underestimated to the same degree as observed before.
The fitted temperatures scatter around the real value of 300nK by up to about 3nK. The scat-
tering length shows relative high deviations from the real values being mostly overestimated as
observed before. In general, there is no tendency of a difference in the fits reliability connected
to the duration of the time of flight.
Also in the case of a high condensate fractions, there is no correlation between the duration of
the time of flight and the precision of the fit as can be seen in figure 4.7. As observed before, the
input condensate fraction of 90% is determined very precisely. The same slight underestimate
of Nc as before is observed, while Nth is always estimated well. When it comes to temperature,
T is determined rather accurately with deviations of less than 1nK. As observed before, the
scattering length is slightly overestimated for high condensate fractions.
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Figure 4.6: (red) mean values for condensate fraction (top left), total atom number (top right),
temperature (bottom left) and scattering length (bottom right) obtained by applying the fit
routine used in the experiment to 10 simulations for each time of flight from 12 to 25 ms for a
condensate fraction of 2% and trapping frequencies ωx,y,z = 2π·(206, 96, 227) Hz; (blue) expected
values as fed into the simulations

We briefly summarize what we found in this section. The atom number in the larger part of the
atomic cloud tends to be slightly underestimated. However, it does not effect the determination
of the condensate fraction in a significant way. Only the cases of a pure BEC and a pure thermal
cloud are not detected as such. In general, the temperature is always determined relatively
precisely with deviations of only a few nK except for very high condensate fractions. However,
the estimate of the scattering length is rather imprecise especially for low condensate fractions.
Slight deviations in fitting the condensate can result in high deviations of a. The overestimate
of a for high condensate fractions corresponds to the underestimate of the atom number in the
condensate. Furthermore, we could observe that the duration of the time of flight has no impact
on the accuracy of the fit result.
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Figure 4.7: (red) mean values for condensate fraction (top left), total atom number (top right),
temperature (bottom left) and scattering length (bottom right) obtained by applying the fit
routine used in the experiment to 10 simulations for each time of flight from 14 to 27 ms for
a condensate fraction of 90% and trapping frequencies ωx,y,z = 2π · (206, 96, 227) Hz; (blue)
expected values as fed into the simulations

43



Chapter 5

Conclusion

In the course of this thesis an optical set-up for the conduction of absorption imaging of an
ultracold Dy cloud was designed. Furthermore, the contributions to the noise that comes with
the imaging was analysed and the reliability of the fitting routine that is applied to the OD
images investigated.

When it comes to the optical set-up there are two major constraints to the shape of the imaging
beam provided by the experimental apparatus. The laser beam must have a small enough waist
to avoid any cut-off by the DPS and still be large enough to image the whole atomic cloud at
different stages of the cooling process with an appropriate intensity. This was fulfilled by a
telescope set-up made out of three lenses, which are placed in front of viewport CF63. That the
shape of the beam meets the expectations was confirmed in a test set-up. Here also the effects
of lens displacement were investigated. We found out that the last lens is suited to change the
beam’s shape significantly and influence position and size of the minimal waist equally. The
first lens mainly influences the degree of divergence, while the last lens is suited for fine-tuning
the set-up. The imaging beam is superimposed with the push beam by a PBS. We measured
a degree of polarization of 99.5%, which is a satisfying result. For projecting the atomic cloud
onto the plane of the camera, we used two different imaging lenses, which create a magnification
of 2 and 0.5 respectively. This allows time of flights up to 19 ms and 38 ms before the atoms
fall out of the frame due to gravity.

In the second part of this thesis, we examined the contribution of different types of noise to the
images, which are recorded with a CMOS camera. On the images without any incident light
the only noise contribution is due to read noise, which mainly occurs statistically random as
we found out. For illuminated images taken with an imaging pulse duration of 25 µs, which is
used in the experiment, the relevant noise contributions are PSN and FPN. The vast majority
of the FPN is due to a non-uniform illumination of the sensor. By applying the method of
flatfielding it could be reduced significantly. Even though it did not become negligibly small, it
was surpassed by PSN as the dominant noise source. The latter presents an intrinsic limitation
to imaging.
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In the last part, the observations made so far were implemented in a simulation that imitates
the imaging process of absorption imaging. The simulation was adapted to the situation in the
experiment by implementing a density distribution that describes the distribution of bosonic
atoms at low temperatures in terms of experimentally accessible quantities. Furthermore, we
fed in the characteristics of the noise that we determined before. To the obtained simulated
OD images the fit routine that is also implemented in the experiment was applied. For the two
situations we are interested in, namely condensate fractions close to transition and almost pure
BEC, we found that the condensate fraction is always determined rather precisely. Only the
absence of any condensate or thermal cloud could not be detected as such. The atom number in
the larger part was slightly underestimated, what resulted in a slight underestimate of the total
atom number of about 3%. The determined temperature normally deviated from the input
values by only a few Nanokelvin, except for very high condensate fractions above more than
90%. Since the scattering length is determined from the condensate its estimation was rather
imprecise for low condensate fractions. For high condensate fractions, it was much more accu-
rate, but tended to be slightly overestimated to the degree of the underestimate of the number
of atoms in the condensate. Finally, we observed that the duration of the time of flight does
not influence the reliability of the fit.

In the future, further effort could be done on improving the image quality and the reliability
of the fit. There are two things that have to be kept in mind when it comes to the fit routine.
First, how to account for the slight underestimate of the atom number in the larger part of the
atomic cloud and its effects on the other quantities and second, how to deal with pure thermal
clouds or pure BECs. One approach to enhance the reliability of the fit may be improving
the quality of the images. In particular, the occurrence of FPN can be decreased in two ways.
On the one hand, one can minimize the influence of non-uniform illumination of the camera
sensor, especially the occurrence of interference patterns. This might be achieved by using
optical components of higher quality and performing a more precise alignment. On the other
hand, the obtained images could undergo some sort of post-processing. Concerning the latter,
the technique of flatfielding has shown a first promising result. The method could be further
improved and, if appropriate, implemented in the imaging routine. With this, a good foundation
is laid for the observation of further quantum mechanical phenomena in ultracold Dy gases with
this experiment. In particular, the group plans to investigate thermal effects on many-body
phases and the shift of the critical temperature of the BEC phase transition due to dipole-dipole
interactions in the near future.
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A.1 Acronyms

2D MOT two dimensional magneto-optical trap.

3D MOT three dimensional magneto-optical trap.

ADC analog-to-digital converter.

BEC Bose-Einstein condensate.

CCD charge-coupled device.

CDS correlated double sampling circuit.

CMOS complementary metal oxide semiconductor.

DPS differential pumping stage.

Dy Dysprosium.

FPN fixed pattern noise.

MOT magneto-optical trap.

OD optical density.

ODT optical dipole trap.

PBS polarizing beam splitter.

PRNU photo response non-uniformity.

PSN photon shot noise.

PTC photon transfer curve.

QE quantum efficiency.

46



A Appendix

A.2 Program for Simulating the Optical Set-Up

## imports
import numpy as np
import pandas as pd

## p r o p e r t i e s o f the co l l imat ed beam
lam = 421e−6 # wavelenght in mm
w0 = 1.022 # waist o f the co l l imat ed beam
n = 1 # r e f r a c t i v e index

## h e l p f u l f u n c t i o n s
# Rayle igh range
de f x_R (w_min ) :

r e turn np . p i ∗ w_min∗∗2 ∗ n/lam
# waist a long the x−ax i s depending on the s i z e and p o s i t i o n o f the
# minimal wais t
de f w (x , w_min, x_min ) :

r e turn w_min∗np . sq r t (1+((x−x_min)/x_R(w_min) )∗∗2 )
# waist a f t e r f o c u s i ng a co l l imat ed beam
def f o c u s i n g ( f , w_in ) :

w_fin = np . abs ( lam∗ f /np . p i /w_in)
x_fin = f
re turn w_fin , x_fin

# change o f the beam waist due to a th in l e n s
de f l e n s ( f , w_in , x_in ) :

M_r = np . abs ( f /( x_in−f ) )
r = x_R(w_in )/ ( x_in−f )
M = M_r/np . s q r t (1+r ∗∗2)
w_fin = M∗w_in
x_fin = M∗∗2∗( x_in − f )+ f
re turn w_fin , x_fin

## f i n d i n g an appropr ia te set−up
# p o s s i b l e l e n s e s to choose from
f1_in = np . array ([ −100 , −60, 60 , 100 , 125 , 150 , 175 , 200 , 300 , 400 ] )
f2_in = np . array ( [ 4 0 , 100 , 250 , 300 , 500 , 750 ] )
f3_in = np . array ( [ 4 0 , 100 , 250 , 300 , 500 , 750 ] )

# d i s t ance o f the l e n s e s
l1_in = np . arange ( [ 0 , 1200 , 5 ] )
l2_in = np . arange ( [ 0 , 1200 , 5 ] )
l3_in = np . arange ( [ 0 , 1200 , 5 ] )
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# empty ar rays to s t o r e the c a l c u l a t e d va lue s
f 1 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
f 2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
f 3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
d12 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
d23 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
w1 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
w2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
w3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
x1 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
x2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
x3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
xR1 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
xR2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
xR3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
l 1 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
l 2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
l 3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗ l en ( l2_in )∗

l en ( l3_in ) )
w_lens2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗

l en ( l2_in )∗ l en ( l3_in ) )
w_lens3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗

l en ( l2_in )∗ l en ( l3_in ) )
w_CF63 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗

l en ( l2_in )∗ l en ( l3_in ) )
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w_DPSbeg = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

w_DPSend = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

w_BEC = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

w_CF40 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

w_camera = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_lens2 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_lens3 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_PBS = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_CF63 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_DPSbeg = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_DPSend = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_BEC = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_CF40 = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

r_camera = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

I_BEC = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗ l en ( l1_in )∗
l en ( l2_in )∗ l en ( l3_in ) )

I_ef fCameraSize = np . ones ( l en ( f1_in )∗ l en ( f2_in )∗ l en ( f3_in )∗
l en ( l1_in )∗ l en ( l2_in )∗ l en ( l3_in ) )

# c a l c u l a t e the data in a loop
counter = 0
f o r i in range ( l en ( f1_in ) ) :

f o r j in range ( l en ( f2_in ) ) :
f o r k in range ( l en ( f3_in ) ) :

f o r l in range ( l en ( l1_in ) ) :
f o r m in range ( l en ( l2_in ) ) :

f o r o in range ( l en ( l3_in ) ) :
# input parameters ( f o c a l l enghts , d i s t a n c e s )
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f1 [ counter ] = f1_in [ i ]
f 2 [ counter ] = f2_in [ j ]
f 3 [ counter ] = f3_in [ k ]
# d i s t ance o f the l e n s e s from CF63
l 1 [ counter ] = l1_in [ l ]
l 2 [ counter ] = l2_in [m]
l 3 [ counter ] = l3_in [ o ]
d12 [ counter ] = l 1 [ counter ] − l 2 [ counter ]
d23 [ counter ] = l 2 [ counter ] − l 3 [ counter ]
# s i z e and p o s i t i o n o f the minimal wais t
w1 [ counter ] , x1 [ counter ] = fo c u s i ng (

f 1 [ counter ] , w0)
xR1 [ counter ] = x_R(w1 [ counter ] )
w2 [ counter ] , x2 [ counter ] = l e n s ( f 2 [ counter ] ,

w1 [ counter ] ,
d12 [ counter ]−x1 [ counter ] )

xR2 [ counter ] = x_R(w2 [ counter ] )
w3 [ counter ] , x3 [ counter ] = l e n s ( f 3 [ counter ] ,

w2 [ counter ] ,
d23 [ counter ]−x2 [ counter ] )

xR3 [ counter ] = x_R(w3 [ counter ] )
# s i z e o f the beam waist at d i f f e r e n t p o s i t i o n s
w_lens2 [ counter ] = w( d12 [ counter ] , w1 [ counter ] ,

x1 [ counter ] )
w_lens3 [ counter ] = w( d23 [ counter ] , w2 [ counter ] ,

x2 [ counter ] )
w_CF63 [ counter ] = w(0 , w3 [ counter ] ,

x3 [ counter ]− l 3 [ counter ] )
w_DPSbeg [ counter ] = w(206 , w3 [ counter ] ,

x3 [ counter ]− l 3 [ counter ] )
w_DPSend [ counter ] = w(261 . 7 , w3 [ counter ] ,

x3 [ counter ]− l 3 [ counter ] )
w_BEC[ counter ] = w(534 , w3 [ counter ] ,

x3 [ counter ]− l 3 [ counter ] )
w_CF40 [ counter ] = w(534+101 , w3 [ counter ] ,

x3 [ counter ]− l 3 [ counter ] )
w_camera [ counter ] = w(534+101+349 , w3 [ counter ] ,

x3 [ counter ]− l 3 [ counter ] )
# r a d i i o f the beam at d i f f e r e n t p o s i t i o n s
r_lens2 [ counter ] = 3∗w_lens2 [ counter ]
theta = np . arctan ( r_lens2 [ counter ] / x2 [ counter ] )
i f r_lens2 [ counter ] > 2 5 . 4 :
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r_lens2 [ counter ] = 25 .4
theta = np . arctan (25 . 4/ x2 [ counter ] )

r_lens3 [ counter ] = np . abs (np . tan ( theta )∗
( d23 [ counter ]−x2 [ counter ] ) )

theta = np . arctan ( r_lens3 [ counter ] / x3 [ counter ] )
i f r_lens3 [ counter ] > 2 5 . 4 :

r_lens3 [ counter ] = 25 .4
theta = np . arctan (25 . 4/

( d23 [ counter ]−x2 [ counter ] ) )
r_PBS [ counter ] = np . tan ( theta )∗ ( x3 [ counter ]−

l 3 [ counter ]+85+25.4/2)
r_CF63 [ counter ] = np . tan ( theta )∗

( x3 [ counter ]− l 3 [ counter ] )
r_DPSbeg [ counter ] = np . tan ( theta )∗np . abs (

( x3 [ counter ]− l 3 [ counter ] −206))
i f r_DPSbeg [ counter ] > 1 :

r_DPSbeg [ counter ] = 1
theta = np . arctan (1/

np . abs ( x3 [ counter ]− l 3 [ counter ] −206))
r_DPSend [ counter ] = np . tan ( theta )∗np . abs (

( x3 [ counter ]− l 3 [ counter ]−
2 6 1 . 7 ) )

i f r_DPSend [ counter ] > 2 . 9 :
r_DPSend [ counter ] = 2 .9
theta = np . arctan (2 . 9/

np . abs ( ( x3 [ counter ]− l 3 [ counter ]−
2 6 1 . 7 ) ) )

r_BEC[ counter ] = np . tan ( theta )∗
(534+ l3 [ counter ]−x3 [ counter ] )

r_CF40 [ counter ] = np . tan ( theta )∗(534+101+
l3 [ counter ]−x3 [ counter ] )

r_camera [ counter ] = np . tan ( theta )∗
(534+101+349+
l3 [ counter ]−x3 [ counter ] )

# i n t e n s i t y o f the beam at the rad iu s compared
# to the cente r in the plane o f the BEC
I_BEC[ counter ] = np . exp(−2∗r_BEC[ counter ]∗∗2/

w_BEC[ counter ] ∗ ∗2 )
I_ef fCameraSize [ counter ] = np . exp ( −2∗11.25∗∗2/

w_BEC[ counter ] ∗ ∗2 )
# r e p e t i t i o n s
counter = counter + 1
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# c r e a t e a pandas dataFrame
r e s u l t = pd . DataFrame (

{
” f1 ” : f1 ,
” f 2 ” : f2 ,
” f 3 ” : f3 ,
”d12 ” : d12 ,
”d23 ” : d23 ,
” l 1 ” : l1 ,
” l 2 ” : l2 ,
” l 3 ” : l3 ,
”w1 ” : w1 ,
”w2 ” : w2 ,
”w3 ” : w3 ,
”x1 ” : x1 ,
”x2 ” : x2 ,
”x3 ” : x3 ,
”xR1 ” : xR1 ,
”xR2 ” : xR2 ,
”xR3 ” : xR3 ,
”w_lens2 ” : w_lens2 ,
” r_lens2 ” : r_lens2 ,
”w_lens3 ” : w_lens3 ,
” r_lens3 ” : r_lens3 ,
”r_PBS” : r_PBS ,
”w_CF63” : w_CF63,
”r_CF63 ” : r_CF63 ,
”w_DPS_beg” : w_DPSbeg ,
”r_DPS_beg ” : r_DPSbeg ,
”w_DPS_end” : w_DPSend,
”r_DPS_end ” : r_DPSend ,
”w_BEC” : w_BEC,
”r_BEC” : r_BEC,
”w_CF40” : w_CF40,
”r_CF40 ” : r_CF40 ,
”w_camera ” : w_camera ,
” r_camera ” : r_camera ,
” I /I0_BEC” : I_BEC,
” I / I0_effCamera ” : I_ef fCameraSize

}
)
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A.3 Implementation of the Density Distribution of a Bosonic
Cloud

# imports
import numpy as np
import s c ipy . cons tant s as const
import s c ipy . i n t e g r a t e as i n t e g r a t e

# po ly l og func t i on
Li2_vec = np . v e c t o r i z e ( lambda x :

np . array (mp. fp . po ly l og (2 , x ) , dtype=np . complex128 ) )

# dens i ty d i s t s r i b u t i o n
de f n2D_bose (xy_mesh , T, N, f , omgx , omgy , omgz , a_fac , t o f ) :

”””
c a l c u l a t e the column dens i ty d i s t r i b u t i o n f o r pa r t l y condensed cloud
o f bosons

Parameters
−−−−−−−−−−
x , y : a r rays ( f l o a t )

observed area in the x , y−plane
T: f l o a t

temperture o f the condensate [K]
N: f l o a t

t o t a l atom number
f : f l o a t

condensate f r a c t i o n
omgx , omgy , omgz : f l o a t s

t rapping f r e q u e n c i e s in x , y , z d i r e c t i o n [1/ s ]
a_fac : f l o a t

s c a t t e r i n g l enght in terms o f the Bohr rad iu s [ a_0 ]
t o f : time o f f l i g h t

durat ion o f the time o f f l i g h t [ s ]

Returns
−−−−−−−
n2Dtot : 2DArray ( f l o a t )

array whith column dens i ty f o r each po int in the
x , y−plane [1/m^2]

”””
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x , y = xy_mesh
m = 164∗ const . u
Nc = f ∗N
omg = (omgx∗omgy∗omgz )∗∗(1/3)
aho = np . sq r t ( const . hbar /(m∗omg) )
ahox = np . sq r t ( const . hbar /(m∗omgx ) )
ahoy = np . sq r t ( const . hbar /(m∗omgy ) )
ahoz = np . sq r t ( const . hbar /(m∗omgz ) )
a = a_fac ∗ 4∗np . p i ∗ const . eps i lon_0 ∗ const . hbar ∗∗2/

( const . e ∗∗2∗ const . e lectron_mass )
mu = const . hbar∗omg/2∗(15∗Nc∗a/aho )∗∗(2/5)
g = 4∗ const . p i ∗ const . hbar ∗∗2∗a/m
Rxth = np . sq r t ( const . k∗T/m∗(1/omg∗∗2+ t o f ∗∗2))
Ryth = np . sq r t ( const . k∗T/m∗(1/omg∗∗2+ t o f ∗∗2))
Rxc = np . sq r t ( const . hbar∗omgx/m)∗np . s q r t (

(1+omgx∗∗2∗ t o f ∗∗2)/omgx∗∗2)∗(15∗Nc∗a/ahox )∗∗(1/5)
Ryc = np . sq r t ( const . hbar∗omgy/m)∗np . s q r t (

(1+omgy∗∗2∗ t o f ∗∗2)/omgy∗∗2)∗(15∗Nc∗a/ahoy )∗∗(1/5)
Rzc = np . sq r t ( const . hbar∗omgz/m)∗np . s q r t (

(1+omgz∗∗2∗ t o f ∗∗2)/omgz∗∗2)∗(15∗Nc∗a/ahoz )∗∗(1/5)
n2D0c = 4/3∗Rzc∗mu/g∗1/(1+omgx∗∗2∗ t o f ∗∗2)∗∗(1/2)∗1/

(1+omgy∗∗2∗ t o f ∗∗2)∗∗(1/2)∗1/(1+omgz∗∗2∗ t o f ∗∗2)∗∗(1/2)
i f ( Rxth == 0) or ( Ryth == 0 ) :

n2D0th = 0
n2Dth = 0

e l s e :
n2D0th = (1− f )∗N∗ i n t e g r a t e . nquad (

lambda x , y :
np . r e a l ( Li2_vec (np . exp(−(x/Rxth)∗∗2−(y/Ryth ) ∗ ∗ 2 ) ) ) ,
[ [ −6/np . sq r t (2)∗ Rxth , 6/np . sq r t (2)∗ Rxth ] ,
[−6/np . sq r t (2)∗ Ryth , 6/np . sq r t (2)∗ Ryth ] ] ) [ 0 ] ∗ ∗ ( − 1 )

n2Dth = n2D0th ∗ np . r e a l ( Li2_vec (np . exp(−(x/Rxth)∗∗2−(y/Ryth ) ∗ ∗ 2 ) ) )
argument = 1−(x/Rxc)∗∗2−(y/Ryc)∗∗2
n2Dc = n2D0c ∗ np . p i e c ew i s e ( argument , [ argument<=0, argument >0] ,

[ 0 , lambda argument : argument ] ) ∗ ∗ ( 3 / 2 )
n2Dtot = n2Dc + n2Dth
return n2Dtot
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