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Abstract
This thesis reports on two separate projects that have been carried out for the two
different Dy experiments in Heidelberg.
The first part focusses on improving an imaging system to enable the in-situ imaging of
dense atomic clouds. The signal to noise ratios of different possible imaging schemes is
calculated, a new phase contrast imaging setup is designed and a high intensity
absorption imaging system, capable of imaging self-structured density modulated phases
of Dy in-situ, is added. The alignment of absorption imaging arm is described, featuring
the use of a Bahtinov-type mask.
Further the trapping of the fermionic isotope 161Dy in a 2DMOT is investigated using
both analytical models and a numerical simulation. It is found, that due to the complex
hyperfine structure of 161Dy the cooling transition cannot be considered to be a closed
transition. Instead it is found that optical pumping to hyperfine states of small total
atomic angular momentum F causes a depletion of the cooling transition at moderate
magnetic fields of around 100 Gauss.
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Chapter 1

Cold Quantum Gases

1.1 Dipolar Quantum Gases

1.1.1 Degenerate Quantum Gases

In his 1924 PhD Thesis [Bro24], Louis de Broglie discovered, that not only photons
have both wave- and particle-like behaviour, but that this dualism extends to particles.
He found that any particle can be associated with a wavelength, that depends on the
particles energy. In an ideal thermal gas that contains only point-like particles that
can collide purely elastically, the momentum distribution of these particle is given by
Boltzmann statistics. The de Broglie wavelength associated with each particle is then
given by [FF12]:

λT =
ℏ√

mkBT
(1.1)

where the particle has a mass m and temperature T and where ℏ and kB are the reduced
Planck constant and the Boltzmann constant. In the classical limit, where ℏ ≪ T this
wavelength is very small and has negligible effect. Explicitly in this case, the inter-particle
distance n−1/3 in a thermal gas of density n is much greater that the de Broglie wavelength
and the density in the space of all states approaches nλ3 ≈ 1.

If the temperature of the gas reduced to near zero, however, the de Broglie wave-
length can become comparable to or greater that the inter-particle distance. Around this
temperature, the wave-like behaviour of the individual atoms can no longer be neglected
and the gas will start to exhibit quantum behaviour. To better understand this regime
of cold quantum gases, the distinction between fermions (particles with half-integer spin)
and bosons (particles with integer spin) is necessary. One isotope of some element may
be fermionic and another may be bosonic. While this difference in overall spin may
appear harmless, it fundamentally changes the behaviour of the particles close to zero
temperature.

Fermions follow Fermi-Dirac statistics, where the average number of fermions in some
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state i is given by [FF12]:

n̄i =
1

exp[(εi − µ)/kBT ] + 1
(1.2)

where εi is the energy of the state i and µ is the chemical potential.
Bosons on the other hand, follow Bose-Einstein statistics, where the average number

of bosons in some state i is given by [FF12]:

n̄i =
g(ε)

exp[(εi − µ)/kBT ]− 1
(1.3)

where g(ε) is the density of states at the energy εi. At ‘high’ temperature and ‘low’
particle density (e.g. for an ideal gas at room temperature and pressure) both these
distributions approach the Maxwell-Boltzmann distribution. At temperatures close to
absolute zero, both fermions and bosons may condense to form degenerate gases. Due to
their fundamentally different nature these processes become distinct. Here the conden-
sation of Bosons in a harmonic trap will be described briefly.

In a harmonic trap, the density of states of Bosons at energy ε can be found to be
[FF12]:

g(ε) =
ε2

2ℏ3ω3
(1.4)

The chemical potential µ depends on the particle density and temperature and under
room conditions it is large and negative. It decreases with temperature however and (in
the case of bosons) when it approaches the lowest state energy µ ≈ ε0, the average number
of bosons in state ϵ0 diverges. This condition defines the critical temperature Tc, below
which the thermal gas undergoes a phase transition and the particles collapse/condense
into the single state with energy ε0. In a harmonic trap with a mean trapping frequency
ω0 = (ωxωyωz)

1/3 the critical temperature can be found to be [FF12]:

Tc ≈ 0.94
ℏω
kB
N1/3 (1.5)

Below this critical temperature the gas form a Bose-Einstein Condensate (BEC). In
this case, all particles can be described by a single macroscopic wavefunction that extents
over the whole system

ψ =
N∑
j

ψj = Nψj (1.6)

where the wavefunction ψj describes a single particle.

1.1.2 Dipolar Atomic Interactions

In BECs realized in experiments, interactions between the particles, that have so far
been neglected, have to be taken into account. At the low temperature limit and at large
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inter-particle spacing, the van der Waals interaction between two natural particle may
well be described by s-wave scattering. In this limit the two-body contact interaction can
be approximated by the isotropic potential

Vc(r− r′) = gs δ(r− r′) (1.7)

where gs = 4πℏ2as/m and as is the s-wave scattering length, which can be widely tuned by
exploiting Feshbach resonances. Experimentally, that means by merely tuning a constant
offset magnetic field, the s-wave scattering length can be chosen over a large range of
values.

In a gas with many particles, a solution accounting for interactions between each and
every particle cannot be found. Instead the interaction can be treated as an effective
mean field potential acting on the ith particle, given by [FF12]

Vc(ri) =
∑
j ̸=i

gs δ(r− r′) ≈ gs n(ri) (1.8)

where n(ri) is the local density.

In the case of Dysprosium (Dy), with a large magnetic moment µm, the dipole-dipole
interaction between the atoms has to be accounted for as well. Within an external
magnetic field the dipoles become polarised and the dipole-dipole interaction can be
described by [Cho25]:

Vdd(r− r′) =
3gdd
4πr3

(1− 3 cos2 θ) (1.9)

where r = |r − r′| , θ is the angle between the magnetic field B and the inter-particle
position r− r′ and where gdd = 4πℏ2add/m is the coupling constant, associated with the
dipolar length add = mµBµ

2
m/12πℏ2. The dipole-dipole interaction potential is anisotropic

and may be attractive, repulsive or zero, depending on the angle θ. In the case of Dy
add ≈ 130a0 where a0 is the Bohr radius and with the scaling of 1/r3 the dipole-dipole
interaction remains long-range and anisotropic in the regime of cold quantum gases.

The relative importance of the contact and dipole-dipole interaction can be tuned with
a magnetic field. Feshbach resonances can be exploited [Cho+19] by tuning the magnitude
of the magnetic field and the character of the dipole interaction can be tuned by the
direction of the magnetic field. Magnetic lanthanide atoms exhibit a dense spectrum of
Feshbach resonances at low magnetic fields, such that both as and θ can be tuned easily
in experiment.

Accounting for both contact and dipolar interactions, a weakly interacting BEC at
very low temperature, where nearly all particles have condensed, the system may well be
described by a classical complex field ψ(r), that embodies the macroscopic wavefunction,
but neglects its fluctuations and where all interactions are only accounted for in a mean-
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field approach [Cho25]. The total particle number is then given by N =
∫
|ψ(r)|2d3r,

while the local density is n(r) = |ψ(r)|2. Within this description, the system obeys the
Gross-Pitaevskii equation (GPE)

iℏ
∂ψ

∂t
=

[
−ℏ2∆

2m
+ V (r) + gsn(r) + Φdd(r)

]
ψ. (1.10)

where the first two terms give the kinetic and potential energy analogous to a Schrödinger
equation and the last to terms describe the mean-field contact and dipole-dipole interac-
tion. The latter is given by

Φdd(r) =

∫
Vdd(r− r′)n(r′)d3r′ (1.11)

1.1.3 Supersolidity

By investigating the dispersion relation of the solutions to the GPE interesting observa-
tions can be made. In the absence of any confinement, the fundamental excitations of a
Bose gas are plane waves of momentum k. The energies of these excitations can be found
to be [Cho25]:

ε(k) =

√
ℏ2k2
2m

(
ℏ2k2
2m

+ 2Ṽint(k)n

)
, (1.12)

where Ṽint(k) is the total interaction potential Vint(r) = Vdd(r) + Vc(r) in momentum
space which is given by the Fourier transform of the total interaction potential:

Ṽint(k) = gs + gdd(3 cos(θk)
2 − 1) (1.13)

Thus the energy of the excitations become dependent on θ, the angle between the k and
the dipole axis, and can both increase and decrease, depending on the value of θ. In
2015 it was shown experimentally [Kad+16] that this can lead to self-structured and self-
stabilised density modulations in the ground state of a strongly confined dipolar quantum
gas. Exemplary pictures from the report on this first discovery are shown in Figure 1.1.
Furthermore, theory predicts [RBB23; Her+21] a small zoo of different supersolid phases,
forming droplets, stripes, honeycombs and more. These formation of these states and the
transitions between them are studied currently being studied in the bosonic Dy experi-
ment in Heidelberg. This thesis will partly focus on improvement to the imaging system
of the bosonic Dy experiment and partly on the development of a new experiment, able
to trap fermionic Dy. A short overview on both experiments is given in the following
section.
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Figure 1.1: Single shot in-situ images of self-structured droplets in a confined dipolar
quantum gas of Dy. Figure adapted, taken from [Kad+16]

1.2 Dipolar Experiments in Heidelberg:

BoDy and FerDy

In the following section, an overview of the two Dysprosium experiments in our group
will be given and the contents of this thesis will be associated with the two experiment.

1.2.1 BoDy Experiment

In the recent years a new experiment was built to study bosonic Dysprosium (BoDy).
Due to the large magnetic moment µm ≈ 10 of Dy, the atoms exhibit strong, long-range
dipolar interactions. As described in the previous section, under 2D confinement and at
large densities, this can lead to interesting and novel self-structured phases of matter.

An overview of the experimental layout is given in Figure 1.2. The experiment consists
mainly of an oven, a 2DMOT chamber and a 3DMOT chamber. The novel design does
not feature a Zeeman Slower, but instead loads the permanent magnet 2DMOT from a
thermal jet of atoms directly [Jin+23]. From the 2DMOT, atoms may be transferred to
a 3DMOT with a push beam. The metallic chamber surrounding the 3DMOT contains
large, re-entrant viewports in the vertical direction to enable the use of a high NA objec-
tive. From the 3DMOT they may be transferred to an accordion lattice and an optical
dipole trap at the same place.

The BoDy experiment currently focusses on self-structured density modulated states
similar to those depicted in Figure 1.1. The focus especially lies on whether these state
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Figure 1.2: Overview of the experimental setup of BoDy. Arrows indicate the blue 421nm
and the red 626nm light that is mainly used for the MOTs and transfer. On the lower left,
the effusion oven can be seen. The long, water-cooled arm entails a large crucible and
the aperture of the oven extends slightly into the 2DMOT chamber (middle). The upper
left side of the schematic contains pumps for the high vacuum section of the experiment
and a viewport for the push beam that transfers atoms from 2DMOT to 3DMOT. Just
after the 2DMOT a valve, a differential pumping stage and a pump for the ultra-high
vacuum section are positioned. Finally on the right hand side, the octagonal 3DMOT
chamber with the re-entrant viewports on the top and bottom can be seen. Figure taken
from [Sil23]
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form a supersolid, a state of matter that has both the superfluid property of frictionless
flow and the long-range order of a crystalline solid. Also identifying the regimes of
different supersolid phases & the nature of the phase transitions between them will be
studied. As these fragile but highly dense states form on small length scales inside a high-
vacuum chamber, measuring their density profiles requires some thought. Chapter 4 will
describe the development two imaging schemes able to image these structures in-situ.
Chapter 3 will introduce the physical concepts relevant to imaging.

1.2.2 FerDy Experiment

While the BoDy experiment reaches ‘completion’, a new experiment is being designed
that will be able to study fermionic Dysprosium (FerDy).

As will be seen later on in this thesis, the trapping of fermionic Dy in a 2DMOT is
rather more complicated than in the bosonic case due to the complex hyperfine structures
of the fermions. That means a Zeeman slower will have to be re-incorporated into the
design. The slowed atomic jet will then be deflected by an angled 2DMOT into a 3DMOT.
The 3DMOT will be contained in a glass cell, surrounded by a modular arrangement of
breadboard pieces following the design of the Heidelberg Quantum Architecture [Ham+25].
Equally, the whole vacuum setup will be movable, so that the point in space where the
atoms are trapped is accessible.

Once the atoms are trapped in a 3DMOT, they will be transferred into an optical
tweezer where the number of fermions can be, controlled precisely by reducing the trap
depth and thus ‘spilling’ almost all atoms out of the tweezer [Ser+11]. With few atoms
of well controlled number, the crossover between few- and many-body physics and the
emergence of collective behaviour in few dipolar atoms will be studied.

Within this thesis, the trapping of 161Dy, especially in a 2DMOT, was investigated
both analytically and with a numerical simulation. The relevant physical concepts wil be
introduced in Chapter 2 and the results of the simulation and analytical consideration
will be presented in Chapter 5.
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Chapter 2

Atom Light Interactions

Accurate manipulation and trapping of atoms relies on a good understanding of their
internal structure and of their interaction with light. Specifically, trapping fermionic
Dy requires a good understanding of its electronic structure including the availability
of closed transition and their hyperfine structure. As the interaction of fermionic Dy
and light be be analysed analytically and numerically (see Chapter 5), a brief overview
will on the most important aspects involved will be given in the following. First, some
data on the relevant Dy isotopes and their optical transition will be listed. Then, the
Hamiltonian of an atom with many electrons will be introduced, then the dependence
of electronic energy levels on external magnetic fields will be discussed and finally the
interaction with light will be described.

2.1 Atomic Electronic Structure of Dysprosium

Dysprosium is a lanthanide with atomic number 66. It has a metallic silver surface and a
melting point of 1412°C [You11], but at low pressures Dy will sublimate at significantly
lower temperatures so that even at an oven temperature of T=800°C (with a hotlip tem-
perature of 1100°C) the atomic flux is high enough to collect the atoms in a 2DMOT,
without using a Zeeman slower [Jin+23]. The four isotopes 161Dy to 164Dy are roughly
equally abundant (see Table 2.1), while the remaining stable isotopes make up less than
3%. With a value of µm = 10µB (where µB is the Bohr magneton), Dysprosium (to-
gether with Terbium) has the highest atomic magnetic moment of all elements. The
availability of both fermionic and bosonic isotopes of an element with a strongly dipolar
character (due to the magnetic moment) makes Dy an interesting element to study in the
regime of ultra-cold quantum gases. The anisotropic interatomic interaction gives rise
to new physics, while the availability of Feshbach resonances allows the character of the
interatomic interactions to be tuned conveniently.
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The electronic ground state of Dy is given by [Mai15]:

[Xe]4f 106s2 (2.1)

where [Xe] indicates the closed shell configuration of the noble gas Xenon, which contains
54 electrons. The remaining 12 electrons are distributed in the 4f and 6s shells. While
the closed 6s shell does not contribute to the ground state quantum numbers, the 10
electrons in the 4f shell combine to maximise both the total spin S = 2 and the total
orbital angular momentum L = 6. The ground state may be described with L-S coupling,
giving rise to a total angular momentum quantum number of J = L+S = 8. The ground
state electronic configuration may thus be expressed by the term symbol 5I8.

The nuclear spin of I = 5/2 of the fermionic isotopes gives rise to a hyperfine structure
(see Section 2.2.3) with hyperfine coefficients AHFS and BHFS which connect to the
magnetic dipole and the electric quadrupole moments in the atom-light interaction, that
be found in Table 2.1. The nuclear magnetic moment associated with the nuclear spin is
given in Table 2.1 as well.

Isotope 160Dy 161Dy 162Dy 163Dy 164Dy Reference

Abundance [%] 2.3 18.9 25.5 24.9 28.2 [Mei+16]
Mass [u] 159.9 160.9 161.9 162.9 163.9 [Lae+09]
Nuclear spin I 0 5/2 0 5/2 0 [LCB09]
Nuclear Magn. Mom. µI [µN ] 0 –0.4806 0 0.6726 0 [Mer25]

Ground state
AHFS [MHz] – –116.2 – 162.8 – [FDG74]
BHFS [MHz] – 1091.6 – 1152.9 – [FDG74]

Excited state 421nm
AHFS [MHz] – –86.9 – 121.6 – [LCB09]
BHFS [MHz] – 1747.4 – 1844.9 – [LCB09]

Table 2.1: Nuclear and atomic properties of dysprosium isotopes 160Dy through 164Dy.
The ground state is the 4f 106s2 5I8 state. The excited state 4f 106s2(5I8) 6s6p(8, 1)9
belongs the 421nm cooling transition.

Dysprosium features a complex electronic excitation spectrum. An overview can be
seen in Figure 5.1. The strongest transition, frequently used for slowing and cooling is
the broad 421nm transition between the ground state and the excited state
4f 106s2(5I8) 6s6p(1P1) (8, 1)9. As indicated by the 4f 106s2(5I8) term, the electrons in
the submerged half-filled f shell remain unaffected in this transition. However one of the
6s2 electrons is lifted into the p orbital giving rise to the singlet state 1P1 (where the odd
parity is sometimes indicated by 1P ◦

1 ). The excited state is best described in jj-coupling,
where the electrons in the f shell with J = 8 couple to the singlet with J = 1 to give the
total electronic angular momentum J = 9, described by the coupling term (8, 1)9. For
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Figure 2.1: (a) Overview of the spectrum of electronic states. The arrows indicate dif-
ferent transitions relevant to trapping and cooling Dy. Within this thesis the 421nm and
626nm transitions are relevant especially. (b) Illustrates the hyperfine structure of 163Dy.
The arrow indicates the closed 421nm cooling transition. (c) Illustrates the hyperfine
structure of 161Dy where the arrow again indicates the closed 421nm cooling transition.
Figure taken from [You+10]

the ground state, the Landé factor associated with the total angular momentum is given
by ggJ = 1.242 while for the excited state it is geJ = 1.22 [You11].

Similarly, the 6s2(1S0) electrons can be excited into a triplet configuration 6s6p(3P1).
Transitions between different spin multiplicities are typically called ‘spin-forbidden’ as
they are not allowed in pure LS-coupling. Due to a more complex structure in the
complex electronic configuration of Dy, the transition is allowed with a small probability.
This gives rise to the narrow inter-combination 626nm line where the excited state is
described by 4f 106s2(5I8) 6s6p(

3P1) (8, 1)9. The narrow linewidth allows both to choose
large relative detunings (that can be useful in dipole traps and imaging schemes) and
reduces the recoil temperature.

An overview on the relevant parameters of the 421nm and the 626nm transitions is
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given in Table 2.2.

2.2 Electronic Structure and Light Interactions

2.2.1 Non-Relativistic Hamiltonian of a Many-Electron Atom

To understand the electronic structure of Dy Z = 66 protons and N = 66 electrons
with charge e and mass me we will write down the Hamiltonian for the interaction of
the electrons and the nucleus. Here, the approaches presented in Foot’s Atomic Physics
[Foo05a; Foo05b] and in Bransden & Joachain’s Physics of Atoms and Molecules [BJ83a;
BJ83b] will be followed. Both provide comprehensive and rigorous derivations of the
relevant concepts. The nucleus will be assumed to be point-like and of infinite mass and
only kinetic and electrostatic energies will be included (for now). In this case we can
write the non-relativistic Hamiltonian as:

Ĥ0 =
N∑
i=1

(
− ℏ2

2me

∇2
ri
− Ze2

4πε0ri

)
+

N∑
i<j=1

e2

4πε0rij
(2.2)

where ri = |ri| is the distance between one electron and the nucleus and rij = |ri − rj| is
the distance between two electrons. ℏ is the reduced Planck constant and ε0 is the vacuum
permittivity. For now relativistic and quantum fluctuation effects will be neglected.

The Schrödinger equation for the atomic wavefunction Ψ(q1, q2, . . . , qN) is then given
by:

Ĥ0Ψ(q1, q2, . . . , qN) = EΨ(q1, q2, . . . , qN) (2.3)

where the qi describe the spatial (ri = (ri, θi, φi)) and spin (si) coordinates of the elec-
trons. As the N electrons are indistinguishable fermions, the Hamiltonian must be in-
variant under exchange of any two electrons and the total wavefunction Ψ must be anti-
symmetric.

Because the Hamiltonian 2.2 does not depend on the spin of the electrons, the
Schrödinger equation may equally be written in terms of a purely spatial wavefunction
ψ(r1, r2, . . . rN). Using atomic units to further declutter the notation the Schrödinger
equation reads:[

N∑
i=1

(
−1

2
∇2

ri
− Z

ri

)
+

N∑
i<j=1

1

rij

]
ψ(r1, r2, . . . rN) = Eψ(r1, r2, . . . rN) (2.4)

The term 1/rij prohibits us from separating this 3N dimensional differential equa-
tion and as the sum of all these inter-electronic interactions can (for the outer electrons
for example) become comparable to the strength of interaction of between electron and
nucleus, we cannot treat this term perturbatively.
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Instead we approximate this hamiltonian by treating each electron as an independent
particle, moving in the Coulomb potential of the nucleus and the averaged Coulomb
potential of all other (N − 1) electrons. This centrally symmetric potential may be
written for some electron i as:

V (ri) = ⟨ψ|
N∑
i ̸=j

1

rij
|ψ⟩ (2.5)

With this central field approximation we can rewrite Equation (2.2) as:

Ĥ =
N∑
i

(
−1

2
∇2

ri
− Z

ri

)
+

N∑
i<j=1

1

eij
(2.6)

and by adding and subtracting the potential V (ri) = −Z/ri + S(ri), the central field
Hamiltonian can be separated into a centrally symmetric part Ĥc and (small) not neces-
sarily spherically symmetric correction to the centrally symmetric part Ĥnc as:

Ĥ0 = Ĥc + Ĥnc (2.7)

Ĥc =
N∑
i=1

(
−1

2
∇2

ri
+ V (ri)

)
(2.8)

Ĥnc =
N∑

i<j=1

1

rij
−

N∑
i

(
Z

ri
+ V (ri)

)
(2.9)

=
N∑

i<j=1

1

rij
−

N∑
i

S(ri) (2.10)

The energy contribution of Ĥnc is much smaller than that of Ĥc and the former can be
treated as perturbation to the latter.

Finding a good approximation of V (ri) at all radii is no trivial task but can be done
with several methods such as the Thomas-Fermi and Hatree-Fock methods [BJ83b] or by
the the density functional theory [AF05]. A full discussion of these methods exceeds the
scope of this thesis, however the potential can be readily approximated for neutral atoms
(Z = N) at small and large radii by:

V (ri) → −Z
ri

r → 0 (2.11)

V (ri) → −1

r
r → ∞ (2.12)

In other words, for an electron far away from the nucleus the Coulomb interaction of
the Z = N protons is shielded by the remaining N − 1 electrons, whereas close to the
nucleus the full potential of the Z = N protons acts on the electron.
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Closed subshells will not contribute to the non-central part of the hamiltonian, an
most of the electronic structure may be captured by Ĥc alone. Within the central field
approximation, neglecting the perturbation Ĥnc the Schrödinger equation can now be
written as:

Ĥcψc(r1, r2, ..rN) =
N∑
i=1

(
−1

2
∇2

ri
+ V (ri)

)
ψc(r1, r2, ..rN) = Ecψc(r1, r2, ..rN) (2.13)

This equation is now separable intoN equations forN electrons. The electronic wavefunc-
tion ψc(q1, q2, ..., qN) which has to satisfy the Pauli exclusion principle can be determined
by calculating the Slater determinant (see [BJ83b]). It may be written as:

ψc(r1, r2, ..rN) = u1nlml
(r1) · u2nlml

(r2) · ... · uNnlml
(rN) (2.14)

where each of the central one-electron orbitals uinlml
(ri) are products of radial functions

and spherical harmonics that come from the analytical solution of the Hydrogen atom:

uinlml
(ri) = Rnl(ri)Ylml

(θi, ϕi) (2.15)

Here, the spin of the electrons can be reintroduced by simply multiplying the orbitals
with spin-1/2 eigenfunctions χms as:

uinlmlms
(ri) = χmsRnl(ri)Ylml

(θi, ϕi) (2.16)

Ei
nlu

i
nlmlms

(r) =

(
−1

2
∇2

r + V (r)

)
uinlmlms

(r) (2.17)

and
Ec =

∑
i

Ei
nl (2.18)

The n, l,ml are the quantum numbers with

n = 1, 2, ... (2.19)

l = 0, 1, ..., n− 1 (2.20)

ml = −l,−l + 1, ..., l − 1, l (2.21)

ms = ±1

2
(2.22)

The orbital angular momentum of the electrons L has the simultaneous eigenstates
to the operators L2 and Lz, that are described by the quantum numbers l and ml. The
energies Ei

nl will be 2(2l+1) times degenerate and only give a first approximation of course.
To describe the electronic energy levels within an atom to a meaningful degree of precision
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further corrections will have to be included, which can be treated as a perturbation to
Ĥc.

2.2.2 Electronic Spin-Orbit Coupling

So far, only the Coulomb interactions between electrons and the nucleus was included into
the Hamiltonian. To improve the central field approximation relativistic corrections will
have to be included that give rise to the coupling the electronic spin S and the electronic
angular momentum L (Spin-Orbit coupling), a relativistic correction to the electronic
mass and the Darwin term. In total these corrections give rise to the fine structure
which splits degenerate energies Enl. In the following an overview on the Spin-Orbit
coupling will be given, as similar concepts will become relevant in the later discussion of
the hyperfine structure of Dy.

For an independent electron in a central field given by a potential V (ri), the spin-
orbit-coupling term can be written as:

Ĥso =
∑
i

1

2m2
ec

2ri

dV (ri)

dri
Li · Si (2.23)

where Li is the orbital angular momentum, Si is the spin angular momentum of an
electron and me is its mass.

It turns out that only partially filled subshells contribute to the spin-orbit coupling
and that the relative strength of the terms Ĥnc and Ĥso, depends on the nuclear charge
number Z. For small Z, in the so-called LS-coupling regime, Ĥso may be treated as a
perturbation to Ĥc + Ĥnc. For large Z however, in the jj-coupling regime, the term Ĥso

has a much stronger contribution than the electrostatic correction term Ĥnc and in turn
Ĥnc may be treated as a perturbation to Ĥc + Ĥso.

The case of Dysprosium with Z = 66 actually lies somewhere in between these regimes,
while the atomic ground state may be described by LS-coupling the excited state of the
421nm transition is better described in jj-coupling. To illustrate this transition from the
LS to jj-coupling regime, Figure 2.2 shows the fine-structure of the first excited 1P and
3P terms along the carbon sequence. At small Z, the levels are first spilt according to
their orbital quantum number L and the electronic spin quantum number S and at large
Z split according to the total angular momenta of the electrons ji. Here the the coupling
regimes and the resulting energy shifts will be described briefly, following [BJ83b].

LS-Coupling

If the Spin-Orbit coupling hamiltonian Ĥso contributes much weaker to the electronic en-
ergy levels, than the non-central hamiltonian Ĥnc, the eigenstates of Ĥ can be calculated
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Figure 2.2: Energy levels of the first excited 1P and 3P states along the carbon sequence.
The transition from the LS-coupling regime at small Z to the jj-coupling regime at large
Z can be seen. Within the LS-coupling regime the electronic states are described by the
term symbol 2+1LJ , in the jj-coupling regime they are described by the term (j1, j2)J .
Figure taken from [BJ83b].

by treating Ĥso as a perturbation as:

Ĥ = Ĥ ′ + Ĥso (2.24)

where Ĥ ′ = Ĥc + Ĥnc. To do so, first the eigenfunctions of Ĥ ′ have to be found by
diagonalizing the perturbation Ĥnc within the degenerate manifold of Ĥc, and treating
Ĥnc as a first order perturbation to Ĥc, yielding corrected eigenstates.

To find the fine-structure corrections on these states, the perturbation Ĥso now has to
be included. As Ĥso will clearly does depend on L and S, a change of basis is necessary.
By changing from the basis |sLSmLmS⟩ to |sLSJmJ⟩ new eigenstates can be found,
described by the Russel-Sounders term symbol 2S+1LJ that are 2J + 1 times degenerate
in mJ . The energies of these states with respect to the term 2S+1L is given by:

E(J) =
AFS

2
[J(J + 1)− L(L+ 1)− S(S + 1)] (2.25)

and an energy spacing between levels of E(J)− E(J − 1) = AFSJ .

The change of basis from |sLSmLmS⟩ to |sLSJmJ⟩ is dictated by the Clebsch-Gordan
Coefficients. |sLSJmJ⟩ can be expressed in the basis of |sLSmLmS⟩ as:

|sLSJmJ⟩ =
∑

mL,mS

C(LSJmLmSmJ) |sLSmLms⟩ (2.26)

where C(LSJmLmSmJ) are the Clebsch-Gordan Coefficients.
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jj-Coupling

In contrast, in the jj-coupling case the the hamiltonian Ĥnc will be treated as a pertur-
bation with

Ĥ = Ĥ ′ + Ĥnc (2.27)

where Ĥ ′ = Ĥc + Ĥso. The eigenstates of Ĥ ′ will in this case be fully characterised by a
set of (j1, j2, ..., jN) for N electrons.

The spin orbit term splits the degenerate energy levels Enl (for l ̸= 0) into two
sublevels levels Enlj. One electron with spin s = ±1/2 couples to its orbital momentum l

to j = l+ s with the quantum number j = l± 1/2. Because of this splitting in sub levels
with a quantum number j, this regime is called jj-coupling regime. Including the smaller
perturbation of Ĥnc, the eigenenergies of Ĥ ′ are again split into sublevels according to
the angular momentum j, where each sublevel Enlj remains 2j + 1 times degenerate.

For the excited states of Dysprosium relevant here, the special case of J1J2-coupling is
applicable[Ilz20]. Here the inner electrons of the closed subshells in the [Xe] configuration
couple together to J1 with quantum number J1 while the outer electrons in the 6s shell
couple together to J2 with quantum number J2. They then couple to give the total
angular momentum J = J1 + J2 with quantum number J . The (excited) state is then
described by the notation (J1, J2)J [Fri14]. Within this description the 421nm and the
626nm transitions between the ground and excited states can be characterised. The
wavelength λ corresponds to the energy difference of these states, Γ (or ∆ν = 2πΓ) gives
their linewidth and τ = 1/Γ. With this, the Doppler temperature and velocity and the
recoil temperature and velocity may be calculated.

Transition 421nm 626nm

λ 421.291 nm 626.082 nm
Γ 2.02× 108 0.85× 106

τ 4.94 ns 1.17 µs
∆ν 32.2 MHz 136 kHz
Isat 56.3 mW/cm2 72 µW/cm2

TDoppler 773 µK 3.3 µK
vDoppler 198 mm/s 12.9 mm/s
Trecoil 659 nK 298 nK
vrecoil 5.8 mm/s 3.9 mm/s

Table 2.2: Comparison of relevant atomic parameters for the 421 nm and 626 nm tran-
sitions, including the vacuum wavelength λ, transition rate Γ, lifetime τ = 1/Γ, natural
linewidth ∆ν = Γ/(2π), saturation intensity Isat = 2π2ℏcΓ/(3λ3), Doppler tempera-
ture TDoppler = ℏΓ/(2kB), Doppler velocity vDoppler =

√
ℏΓ/(2m), recoil temperature

Trecoil = (ℏk)2/(mkB) and recoil velocity vrecoil = 2πℏ/(λm), where ℏ is the reduced
Planck constant, k = 2π/λ the wavenumber and m = 162.5 a.u. the mean atomic mass
of Dy. Table adapted, taken from [Mai15].
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2.2.3 Hyperfine Structure

To include another subtle effect of the electronic energy levels, the nucleus has to be
described a bit more precisely. So far the nucleus was assumed to be a point like electric
monopole of infinite mass. In reality however, the nucleus definitely has a finite mass
and it can exhibit an electromagnetic multipole moments of order 2k [BJ83a]. The finite
(isotope-dependent) mass will only cause some small isotope shifts across all energy levels
without changing the structure of the levels, while the different electric and magnetic
multipole moments of the nucleus will cause an additional (small) splitting of the fine
structure energy levels, giving rise to the so-called hyperfine structure.

It can be shown, that the nucleus can only exhibit electric multipole moments of even
k (electric monopole, quadrupole...) while the magnetic multipole moments may only
have orders of odd k (magnetic dipole, octapole ...). These multipole moments will only
interact with non-circularly symmetric, partially filled sub-shells and as their range will
roughly be proportional to 1/r(k+1) their contributions will become ever smaller with
increasing k.

In the following (apart from the usual electric monopole) only the magnetic dipole an
the electric quadrupole will be taken into account. This description will give rise to the
hyperfine structure constants AHFS & BHFS.

It can also shown [BJ83a], that a nucleus of nuclear spin I may only exhibit multipole
moments of order 2n, where n ≤ 2I. Thus, bosonic Dysprosium with a nuclear spin I = 0

will not exhibit any hyperfine structure, as the nucleus can be accurately treated as an
electric monopole. Fermionic Dysprosium with I = 5/2, however, will exhibit a hyperfine
structure with significant consequences for trapping and cooling.

Similar to the spin-orbit coupling that was described above, the nuclear magnetic
moment may couple to the total magnetic flux of the orbiting electrons, depending on
their relative orientation.

The nuclear magnetic moment µI may be written as:

µI = gIµNI/ℏ (2.28)

with nuclear magneton, comparing the electron mass me and the proton mass mp

µN =
me

mp

µB (2.29)

and where gI is the Landé factor associated with the nuclear spin I. Often, µI is given
in units of the Bohr magneton µB as:

µI = g′IµBI/ℏ (2.30)
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with an adjusted Landé factor
g′I =

µN

µB

gI (2.31)

As g′I is very small, its contribution can typically be neglected.

Much more detail may be found in Bransden & Joachain’s Physics of Atoms and
Molecules ([BJ83a; BJ83b]), this description shall be limited however to the resulting
energy splitting of the fine structure levels. Similar to the energy splitting found for the
LS-Coupling (see Equation (2.25)) the energy splitting is given by:

∆E =
AHFS

2
[F (F + 1)− I(I + 1)− J(J + 1)] (2.32)

where the constant AHFS may best be determined experimentally via the hyperfine in-
terval law ∆E(F )−∆E(F − 1) = AHFSF .

Similarly, the electric quadrupole moment will give rise to another interaction with
the magnetic moments of the orbiting electrons and causes a energy shift, deviating from
the hyperfine interval law:

∆E =
AHFS

2
K +

BHFS

4

3
2
K(K − 1)− 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
(2.33)

with
K = F (F + 1)− I(I + 1)− J(J + 1) (2.34)

The values of AHFS and BHFS for the ground state and the excited state of the 421nm
transition for Dysprosium can be found in Table 2.1. Transition between hyperfine levels
have to obey F ′ = F + ∆F with ∆F = 0,±1 and where F = 0 → F ′ = 0 is forbidden
(see section 2.2.6). Each hyperfine level is F (F + 1) times degenerate. For Dysprosium,
the hyperfine levels have energy differences on the order of hundreds MHz (see Figure 2.1
(b), (c).

2.2.4 Atoms in a Magnetic Field

So far, the hamiltonian of an atom was only described without the effects of any external
fields. To include the effect of an external magnetic field on the hyperfine structure,
another interaction term is introduced.

The interaction with a (constant) external magnetic field is described by the sum of
the interaction of the electronic magnetic moment with magnetic field and the nuclear
magnetic moment with the magnetic field. Taking the quantisation axis to be along the
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z-axis we can write:

ĤZem = µeB− µIB (2.35)

=
µB

ℏ
Bz(mL + 2mS)− gI

µN

ℏ
BzmI (2.36)

where mL,mS,mI are the projections of L,S, I along the quantisation axis and gI is the
Landé factor associated with the nuclear spin. This interaction will lift the degeneracy
of the hyperfine states.

Weak Magnetic Field

In the case of a weak magnetic field the energy correction due to Ĥ can be treated as a
small perturbation to the hyperfine Hamiltonian. Then the corresponding energy shift to
the hyperfine sublevels will be given by:

∆E = gFµB|B|mF (2.37)

where the direction of the z-axis was arbitrarily chosen along the magnetic field direction
and with:

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− g′I

F (F + 1)− J(J + 1) + I(I + 1)

2F (F + 1)
(2.38)

and
gJ = 1 +

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.39)

This value of gJ is only a first approximation however. Including the Schwinger
correction, that gives an accurate value of the gyromagnetic ratio of the electron, a
correction for non-perfect LS-coupling, a correction for relativistic kinetic energies and
diamagnetic correction depending on the charge density of the inner electrons, for the
ground state of Dy a theoretical value of

gtheoJ = 1.2370 (2.40)

is determined [JL61].

Experimentally the values

g161J = 1.2415870(10) (2.41)

g164J = 1.2415867(10) (2.42)

are obtained for the ground states of 163Dy and 164Dy [FDG74].
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Strong Magnetic Field

For strong magnetic fields, the energy due to the interaction with the magnetic field will
be much larger than that of the hyperfine states. The hyperfine structure will then be
treated as a perturbation to the magnetic field interaction and the splitting will rather
be given by

∆E = (mJgJ −mIgI)µB|B| (2.43)

where the contribution of the total angular momentum is much larger than that of the
nuclear spin, as gI ≪ gJ . At very large fields, the eigenstates will regroup according to
their mJ values. This gradual transition between the weak and strong field regime can
be seen in Figure 2.3. There both in the weak and strong field regime the Zeeman effect
is linear in |B|. The strength of the Zeeman Hamiltonian at magnetic fields around a few
hundred Gauss will become comparable or larger than that of the hyperfine Hamiltonian
ĤHFS, which means that treating ĤZem as a perturbation to ĤHFS is no longer possible
and |F mF ⟩ will no longer be a good basis.

21



0 250 500 750 1000 1250 1500 1750 2000
Magnetic field, B (G)

15

10

5

0

5

10

15

En
er

gy
, E

 (G
Hz

)

161Dy Ground state 4f106s2 5I8

0 250 500 750 1000 1250 1500 1750 2000
Magnetic field, B (G)

15

10

5

0

5

10

15

En
er

gy
, E

 (G
Hz

)

163Dy Ground state 4f106s2 5I8

Figure 2.3: Energies of the hyperfine states of the ground states of 161Dy (top) and 163Dy
(bottom). At zero magnetic field, the hyperfine manifolds (from F = 21/2 in purple to
F = 11/2 in yellow) are degenerate. At small fields, the approximately linear Zeeman
effect lifts the degeneracy. At large fields, in the Paschen-Back regime the energy is again
approximately linear with the field. However, because gI ≪ gJ the eigenstates begin
to regroup into 17 manifolds of 6 nearly degenerate states, according to the 17 possible
values of mJ for J = 8 while the contribution of mI is only a small perturbation.

2.2.5 Light-Atom Interactions

Following [Foo05b; CDG98], to describe the interaction of an atom with light, we will
consider a toy model of an atom with only two states |a⟩ and |b⟩, separated by the
energy ℏω, with a rate of spontaneous emission Γ. We will consider monochromatic light,
described by the field

E(r, t) = εE0 cos(ωLt+ ϕ(r)) (2.44)

As the number of photons emitted from the atom into the field will be small compared
to the number of photons in the field itself, we can assume any back-action of the atom
on the field to be negligible. Also, as the distance between an electron and the nucleus
will be much smaller than the wavelengths used in this theses, the field will be assumed
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to be constant over the extend of the atoms and the dipole approximation becomes valid.

The Hamiltonian Ĥ can then be a term describing the center of mass motion p2/2m,
a term describing the internal electronic structure of the atom Ĥint as described above
and a time dependent part dE(r, t) describing the interaction with the field:

Ĥ =
p2

2m
+ Ĥab + dE (2.45)

The equations of motion for the position R and momentum p operator of the atom
are then given by the Heisenberg equations as [CDG98]:

Ṙ =
∂Ĥ

∂p
=

p

m
(2.46)

ṗ = mR̈ = −∂Ĥ
∂R

=
∑

i=x,y,z

di∇REi(R, t) (2.47)

To describe the motion of the center of mass rC = ⟨R⟩, we will take the average of this
equation:

mr̈C =
∑

i=x,y,z

⟨di⟩∇REi(R, t) (2.48)

=
∑

i=x,y,z

⟨di⟩ εi[cos(ωLt)∇E0 − sin(ωLt)E0∇ϕ] (2.49)

The two terms in the above equation will lead to reactive force, proportional to the
gradient of the amplitude of the field and and a dissipative force, proportional to the
phase gradient of the field.

The average of the dipole operator can be found to be [CDG98]:

⟨di⟩ = 2 ⟨a|d |b⟩i (ust cos(ωLt)− vst sin(ωLt)) (2.50)

where ust and vst are the steady state solutions to the Bloch equations given by

ust =
Ω

2

δ

δ2 + (Γ2/4) + (Ω2/2)
(2.51)

vst =
Ω

2

Γ/2

δ2 + (Γ2/4) + (Ω2/2)
(2.52)

where Ω = E0 ⟨a|d |b⟩ /ℏ is the Rabi frequency and ∆ = ωL − ω is the detuning of the
light to the atomic transition.

For a plane wave ϕ(r) = kr and so, by averaging over on period of the light field the
two following forces are obtained [CDG98]. The radiative pressure, proportional to the
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phase gradient:

Fsc = ℏk
Γ

2

Ω2

Ω2 + Γ2/2 + 2∆2
(2.53)

As Ω2 is proportional to intensity, the force will be proportional to intensity at low
intensities but it will saturate to the value ℏkΓ/2 at large intensity.

The second force is the dipole force, proportional to the gradient of the field amplitude
is given by:

Fdip = −ℏ
δ

8

∇(Ω2)

Ω2 + Γ2/2 + 2∆2
(2.54)

This force acts along the gradient of the intensity, while the sign of the detuning deter-
mines whether the force will directed to the intensity maximum or minimum. In contrast
to the radiation pressure its magnitude may increase with intensity without saturating.

2.2.6 Clebsch-Gordan Coefficients and Wigner Symbols

Finally, some subtleties in the coupling of photons to atoms have to be discussed. The
relative angle between the angular momenta of a photon and the electronic states (indi-
cated by the mF ,m′

F quantum numbers in the case of hyperfine splitting) gives rise to
certain weights being associated with certain transitions. Here a brief overview on the
correct handling of transitions between angular momentum state will be given where the
weights of different possible transitions and the selection rules of dipolar transitions will
be found.

We can de describe a transition probability between two states |F mF ⟩ and |F ′m′
F ⟩

induced by and electric dipole operator d as the electric dipole cross-section:

⟨F ′m′
F | dq |F mF ⟩ (2.55)

where dq is the projection of the dipole operator along spherical coordinates e+, e−, ez
which relate to the Cartesian coordinates as:

e± =
1√
2
(ex ± iey) & ez = ez (2.56)

Remember that the dipole operator d = er only acts on the relative position between
electron and nucleus. The dipole operator therefore does not act on the spin of electron
or nucleus. As the total atomic angular momentum F = J+ I = (L+S)+ I is composed
of both spin angular momenta and orbital angular momenta, the dipole operator will
only affect ‘a part of’ F. That means that the dipole operator will not affect these parts
of the atomic states, which means that they can be factored out of the equation.

An excellent discussion of this process can be found in the lecture notes of D.A. Steck
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[Ste07], especially in chapters 7.3.4-7.3.71. The key points of which will be summarised
here. For convenience the projection mj of an angular momentum j will be written as m.

Let us look at the action of a tensor operator of rank k on an angular momentum
state

T(k)
q |α′ j′m′⟩ (2.57)

where α′ represents all (radial) quantum numbers that do not interact with the angular
momentum operator. It can be found that the action of that angular momentum operator
looks just like the mixing of two angular momenta. This gives rise to the Wigner-Eckart
theorem:

⟨α j m|T (k)
q |α′ j′m′⟩ = (−1)2k ⟨α j| |T(k)| |α′ j′⟩ ⟨j m|j′m′; k q⟩ (2.58)

Equation (2.58) splits the interaction with the angular momentum operator into a ori-
entation independent reduced matrix element ⟨α j| |T(k)| |α′ j′⟩ which is just a scalar and
an orientation dependent part which is the Clebsch-Gordan Coefficient ⟨j m|j′m′; k q⟩.
These can be calculated explicitly (using [Tea25] for example) or can be found in look-up
tables [con25].
Explicitly in the case of the dipole operator d = er (which is of rank k = 1) and the hy-
perfine state |F mF ⟩ (omitting the radial part) the Wigner-Eckart theorem can be written
explicity as:

⟨F ′mF ′|dq|FmF ⟩ = ⟨F ′∥d∥F ⟩ ⟨F mF |F ′mF ′ ; 1q⟩ (2.59)

Further, it can be found that for an operator, that acts only on a part J1 of a composite
angular momentum state J = J1 + J2 the reduced matrix element is given by:

⟨j∥T(k)∥j′⟩ = δj2j′2(−1)j
′+j1+k+j2

√
(2j′ + 1)(2j1 + 1)

{
j1 j′1 k

j′ j j2

}
⟨j1∥T(k)∥j′1⟩ (2.60)

That means the reduced matrix element for the composite angular momentum can be
further reduced into a reduced matrix element for the interacting angular momentum
J1 and a Wigner-6j symbol (in curlya brackets). This Wigner-6j symbol again is just a
scalar that can readily be computed (by use of [Tea25] for example). Now one should
remember that the dipole operator d = er only acts on the relative position of electron
and nucleus, but not on any spin angular momenta.

Thus finally by combining equations 2.58 & 2.60 the transition between two hyperfine
states, induced by the dipole operator d can be decomposed as follows:

⟨F ′mF ′ |dq|F mF ⟩ = ⟨F ′∥d∥F ⟩ ⟨F mF |F ′mF ′ ; 1q⟩ (2.61)

1As these lecture notes are presumably work in progress, the chapter numbers might change. The
entire chapter 7 on Atomic Angular-Momentum Structure is worth reading. Here however, especially the
subchapter on the Wigner-Eckert Theorem to the Application to Atomic Transitions are useful.
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where 1q corresponds to the photon of angular momentum 1 and its projection q, that
drives the transition. The angular dependence is then absorbed by a Clebsch-Gordan
coefficient. The reduced matrix element still consists on F however, which needs to be
decomposed into the total electronic angular momentum J and the nuclear spin I, giving
rise to a Wigner 6j symbol:

⟨F ′ ∥d ∥F ⟩ ≡ ⟨J I F ′ ∥d ∥ J ′ I F ⟩ (2.62)

= ⟨J ∥d ∥ J ′⟩ (−1)F
′+J+1+I

√
(2F ′ + 1)(2J + 1)

{
J J ′ 1

F ′ F I

}
(2.63)

To find ⟨J∥d∥J ′⟩ a further decomposition of J = L+S may be dine in the same way.
This finally end in the reduced matrix element ⟨L ∥d ∥L′⟩ which can be calculated via
the analytical solutions for the orbitals unlml

(r). (For complex atoms like the lanthanides,
this can of course become quite an involved affair.)

However, one can also recognise, that:

ΓJgJe =
ω3
0

3πϵ0ℏc3
· 2Jg + 1

2Je + 1
|⟨Jg∥d∥Je⟩|2 (2.64)

which means that the reduced matrix element ⟨J∥d∥J ′⟩ is proportional to the decay rate
(or linewidth) which is readily available in experiment to great precision. To understand
the general effect of the Wigner 6J symbols, as an example Table 2.3 gives the Wigner
6j symbol values for J = 1/2 with S = 1/2 and L = 0 to states of L′ = 0, 1, . . . with
S ′ = 1/2 and J ′ = 1/2, 1/2, 3/2, . . . 2. This could represent a single photon transition
from a 3S1/2 state to some other state. For Dy, a similar table is given in Section 5.2.

Lp Jp Wigner 6-j

0 0.5 0.000000
1 0.5 0.408248
1 1.5 -0.408248
2 0.5 0.000000
2 1.5 0.000000
2 2.5 0.000000
...

...
...

Table 2.3: Values of Wigner 6-j symbols for L = 0, J = L+S = 1/2 and given L′ and J ′

The Wigner-6j symbols thus just compute how different angular momenta can be
added together. From a conservation of angular momenta point of view it is clear that
an electron in an S-shell (L = 0) can be transferred (in a single proton process) only to a
P-shell with L′ = 1. For the two possible combination of J = L+S the Wigner-6j symbols

2J = 1/2 is mentioned twice deliberately, as there is two different ways for J = L+ S to add to 1/2.

26



gives a certain ‘weight’. These are the only allowed transitions. All other processes aren’t
allowed due to conservation of angular momentum and the Wigner-6j symbol is 0.

And finally to clarify the influence of the Clebsch-Gordan coefficients, a similar ex-
ample will be given. As the Clebsch-Gordan coefficients capture the angular dependence
of the process, the Clebsch-Gordan coefficients will be given here for a transition of
|J ;LS⟩ = |1

2
; 0 1

2
⟩ to |J ′;L′ S ′⟩ = |3

2
; 1 1

2
⟩ will be given. There are different possibilities

of the light to couple the atomic state resulting in different possible mJ and m′
J . Which

values of ∆mJ = m′
J − mJ are allowed is given by projection of the photon angular

momentum on the quantisation axis q = 0,±1, which depends on the polarisation of the
light. The resulting Clebsch-Gordan coefficients for this process are given in Table 2.4.
Again, for values of m′

J that are impossible due to conservation of angular momenta, the

m q m′ CGC

-1/2 -1 -3/2 1.000000
-1/2 0 -1/2 0.816497
-1/2 1 1/2 0.577350
1/2 -1 -1/2 0.577350
1/2 0 1/2 0.816497
1/2 1 3/2 1.000000

Table 2.4: Clebsch–Gordan coefficients (CGC) for the given (m, q) → m′ combinations
for J = 1/2, J ′ = 3/2.

Clebsch-Gordan coefficients are zero. However for those, that are allowed, we can clearly
see that not all mJ → m′

J are created equal. Finally the scattering rate for a certain
process will depend the square of these Clebsch-Gordan coefficients, so there might be a
large scattering rate between different transitions.

In summary, we retrieve the expected selection rules for single photon transitions of
F ′ = F ± 1 except F ′ = F = 0 and m′

F = mF ± 1 while S ′ = S and I ′ = I.

2.3 Optical Trapping of Dysprosium Atoms

2.3.1 Optical Molasses

From the radiative pressure given in Equation (2.53) we can see that a near resonant
laser causes a force on an atom, increasing with intensity and decreasing with detuning.
With this, a first step into laser-cooling and trapping can be made: An atom moving
with a velocity v along some direction in a laser beam of wavevector k will experience
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the frequency of the light shifted by a Doppler Shift :

∆Dop = −kv

2π
(2.65)

If the laser light has some detuning ∆L (as defined above Equation (3.5)), the effective
detuning seen by the atoms will be ∆L + ∆Dop such the force of the laser acting on the
atoms will be largest at some velocity of the atom where the effective detuning is smallest.

By using to counter-propagating beams that will be oppositely Doppler detuned,
each with some small negative detuning ∆L an atom within the light field will experience
a velocity-dependent force from both beams. Due to the effective detuning, the force
from the beam propagating against the atomic motion will be larger and the velocity
component of the atom along the light propagation direction will be reduced.

By plotting the scattering force (Equation (2.53)) of two counter-propagating beams
in Figure 2.4, where the force is given in units of [ℏkΓ], we can see that the net force
Fnet = F1 + F2 causes any atom to be decelerated towards vk = 0.

Most clearly this effect can be seen by approximating the net force for small velocities
via Taylor expansion as:

Fapprox = v
k

k
8ℏk2

s∆/Γ

(1 + s+ (2∆/Γ)2)2
(2.66)

If the detuning is negative, this term will be negative for positive velocities and vice
versa, thus acting like a force of friction. Upon closer inspection it can be seen however,
that the degree to which the atoms can be slowed is limited. As the method relies
on random, spontaneous scattering the lowest temperature that can be achieved with a
(standard) optical molasses for a two-level atoms is the Doppler Temperature [GWO99]:

TD =
ℏΓ
2kB

(2.67)

2.3.2 Zeeman Slowers

Another way to compensate a detuning ∆L is by inducing a detuning through a Zeeman
shift. For small magnetic fields, this detuning between two hyperfine states |g⟩ and |e⟩
will take the form (see Section 2.2.4)

∆Zem =
µB|B|

ℏ
(geFm

e
F − ggFm

g
F ) (2.68)

This detuning is typically exploited to slow down an atomic jet exiting an oven with
a large range of velocities, by using a Zeeman Slower. As the velocities within a thermal
atomic jet will be Boltzmann distributed, just using a counter-propagating beam at a fixed
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Figure 2.4: Optical Molasses: Two counter-propagating beam causing a ‘friction’ force

detuning would not be very effective. As the atoms are slowed the apparent detuning
would change due to the Doppler effect and so would the force they experience.

However by applying a magnetic field gradient along the axis of propagation, atoms
of a much larger range of velocities can be slowed down to a certain exit velocity. By
having a large Zeeman detuning ∆Zem at the beginning of a Zeeman slower, only atoms
with a large velocity for which ∆Dop(|v|) + ∆Zem(|B|) + ∆L = 0 will be resonant and
decelerated. Atoms of with a slower velocity will, at the entrance of the Zeeman slower,
be more or less unaffected. The width of the affected velocity range will be more or
less given by the linewidth of the transition Γ (see Equation (2.53)). The atoms that
where slowed early on, will remain resonant with the light as the magnetic field and thus
∆Zem decreases while atoms of slower velocities will join the process later on. Finally,
the Zeeman slower has to be terminated before the atoms are reflected by the slowing
beam. This can be done by limiting the magnetic field gradient in the end such that
∆Dop(|v| = 0) + ∆Zem(|B|) + ∆L ̸= 0 everywhere in the Zeeman slower.

2.3.3 Magneto Optical Traps

While the Zeeman slower and the optical molasses may respectively slow and cool atoms
down they do not confine them in space. To get confinement the effect of a optical
Molasses can be combined with a magnetic field gradient. To see the working principle
of a magneto-optical-trap (MOT) this description will focus on the confinement in one
spatial direction.

By applying two counter-propagating beams with some detuning together with a mag-
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Figure 2.5: Space dependent detuning of Zeeman sublevels in a MOT. Figure taken from
[Gao22]

netic field gradient, we can trap atoms at the position of zero magnetic field. Schemati-
cally this is shown in Figure 2.5.

If an atom is displaced by some distance x from the centre of the MOT, it will
acquire a Zeeman shift ∆Zem(x) which will make it stronger detuned from one beam
and less detuned to the other. By choosing the detuning of the beams to be negative
(red-detuned) the scattering force of the atom will experience a restoring force towards
the centre of the MOT.

Some care has to be taken to the polarisations of the counter-propagating beams. Here
different conventions for the quantisation axis can be used. Two common conventions
exist: One may keep the quantisation axis either 1) along some fixed axis or 2) along the
local magnetic field direction. These two conventions will decide how the mF sublevels are
labelled. In Figure 2.5 the first convention is used. In this case on one side of the MOT
the ∆mJ = −1 transition has lower energy, while on the the other side the ∆mF = +1

transition has lower energy. Thus the polarisations of the beams have to be chosen such,
that the beam which is resonant with ‘the mF = +1 side’ of the MOT drives a σ+

transition and vice versa.

Then, atoms that are displaced from the centre of the MOT will experience a force
that accelerates them back towards the centre of the MOT. The atoms may also have
some velocity. As long as the Doppler shift of this velocity is not too large and can be
compensated by the laser and Zeeman detuning, the atoms may be trapped in the MOT.

Here in the DyLab, a first 2DMOT for Dysprosium, that traps atoms from a hot
atomic jet without the need for a Zeeman slower, was introduced [Jin+23]. A simulation
of this 2DMOT can be seen in Figure 2.6.

One can clearly see two regions of de- and accelerations, that correspond to the two
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Figure 2.6: Simulation of the trajectories of 164Dy atoms though the phase space of the
DyLab 2DMOT. A capture velocity of around 100m

s
can be seen. Figure taken from

[Gao22].

counter-propagating beams3 in Figure 2.5. If the magnitude of the magnetic field gradient
gives the slope of these two regions in the plot, while the laser detuning ∆L sets the spacing
between the two regions. One can clearly see that atoms with velocities of up to 100m

s

are trapped in this 2DMOT.
By choosing one, two or three pairs of counter-propagating beams, the atoms can be

confined in one two or three dimensions respectively. To be able to generate a magnetic
field gradient in all three spatial directions, coils in anti-Helmholtz configuration can be
used. These generate a quadrupole magnetic that has a gradient in all three directions.
The temperature that can be reached in a MOT is again fundamentally limited by the
Doppler temperature defined in Equation (2.67).

2.3.4 Optical Dipole Traps

Another option for spatially confining atoms is an optical dipole trap (ODT). By ex-
ploiting the dipole force of Equation (2.54) one can trap atoms as well. By choosing
the detuning of the light to be negative (’red detuned’) or positive (’blue detuned’) one
can choose whether the atoms experience a force towards to or away from the intensity
maximum.

In the case of a red detuned ODT atoms will ’simply’ accumulate in the focus of
a laser beam. The detuning ∆ of the beam has to be chosen large enough, that the
scattering force of Equation (2.53) scaling with 1/∆2 is smaller than the dipole force
of Equation (2.54), scaling with 1/∆. In general, this force will be quite small and an
ODT will have to be loaded with already quite cold atoms[GWO99] (typically from a

3The situation is actually a bit more complicated as this 2DMOT consists of four pair-wise counter-
propagating beams that are at an angle of 45° to the atomic jet. For a full description see [Gao22;
Jin+23].
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3DMOT). However, with an ODT it is possible to reach even lower temperatures than
in a MOT. By choosing the trapping force (dynamically) such that the atoms with the
largest velocity can escape the trap, the mean velocity in the trap will go down as long
as long as the velocity of the atoms within the trap is redistributed among the remaining
atoms as they scatter with each other. This continuous elimination of the ‘hot’ tail of
the velocity distribution can cool the atoms down to degeneracy and is called evaporative
cooling.

Dipole traps can come in a varied of shapes and forms including crossed dipole traps
[GWO99], optical tweezers & tweezer arrays [Ash70; Blo+23] and static & dynamic op-
tical lattices [Blo05; Wil+08].
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Chapter 3

Imaging Ultracold Quantum Gases

3.1 Imaging Optics

The primary method of measurement in ultracold quantum gas experiments is imaging
the ultracold gas with light. From these measurements the density distribution real
and momentum space, the overall number of atoms, the temperature and more can be
deduced. As the atomic clouds are typically small (few micrometers), fragile (destroyed
by a single flash of resonant light for absorption imaging) and inside a vacuum (causing
long working distances) imaging can present some difficulties and interesting challenges.

Many experiments use absorption imaging after time of flight (TOF) to measure the
momentum distribution of the atoms [You+10; Wen15; Soh+21; Jin+23]. This method
is relatively easy to implement, robust and the expansion of the atoms may facilitate the
imaging process. The increase in size reduces the need for diffraction limited optics while
a reduction of the density during expansion can limit the optical density and enable low
intensity absorption imaging.

However, for imaging the density of an atomic sample in-situ, one might have to deal
with structures less then a micron in size and with very large densities. This requires both
the use of a microscope near the diffraction limit and an imaging scheme that can deal
with very large optical densities. Different established imaging scheme will be described
in section 3.2. Their analysis and comparison leads to a choice of imaging schemes for
the vertical in-situ imaging arm of the BoDy experiment. A high intensity absorption
imaging scheme was implemented (Section 3.2.1) while a new design of a phase contrast
imaging scheme is described in Section 4.5.

To be able to describe the working principles of different imaging schemes some optics
need to be introduced. While many different formalism may be used that simplify the
propagation of and interaction with light in various ways, here we will assume light to be
a monochromatic (typically plane) wave described by a scalar field, that may pick up a
phase and change its amplitude while transmitting through optical media.
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When simulating the propagation of a complex light field through an imaging system,
Fourier Optics will proof to be most useful. Below, some important concepts of both
these formalism will be introduced.

3.1.1 Light Field Propagation through Optical Media

An atomic gas may be considered as a resonant dielectric medium of density n(r). While
propagating though this medium light will pick up a phase, depending on the refrective
index of the gas.

Following the notation of [Soh21], light at some position r and time t inside a dielectric
medium may be described as an electromagnetic wave

E(r, t) = E0 exp [i(k
′r− ωt)] = E0 exp [i(kr− ωt)] exp [iβ(r)] (3.1)

where E0 is the amplitude of the field, k is the wave vector in vacuum, k′ = k+ iβ is the
wavevector in the medium and ω is the frequency of the (monochromatic) light.

Inside a dielectric with complex refractive index

nc = nr + ini (3.2)

the complex phase

β = φ+
i

2
ϵ with φ = (nr − 1)kr and ϵ = 2nikr (3.3)

modifies the field propagation. φ is connected to the conventional real refractive index
nr and is called the dispersive phase. The imaginary part ϵ, connected to the imaginary
part of the refractive index ni, which relates to the absorption coefficient and is called
optical depth (OD) of the medium.

The intensity of this field is given by

I(r, t) = |E(r, t)|2 = I0e
−ϵ (3.4)

where the optical depth causes a reduction of intensity.

For a light field, interacting with an atomic cloud of density n(x, y, z), the dispersive
phase and the optical density can be connected to the polarisability of the atoms α(ω).
An atom, with discrete internal levels, that correspond to possible resonant excitations
though light coupling, may here be approximate as a two level system. Within this ap-
proximation a ground state and an excited state exist, that are connected via a transition
of frequency ω0 and linewidth Γ. For light with intensity I = s · Isat with a detuning
∆ = ωL − ω0, the complex phase β can be connected to the polarisability α under the
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rotating wave approximation as follows:

φ(r, s,∆) = −σ0n̄z(x, y)
Γ∆

4∆2 + Γ2(1 + s)
∝ R{α} (3.5)

ϵ(r, s,∆) = +σ0n̄z(x, y)
Γ2

4∆2 + Γ2(1 + s)
∝ I{α} (3.6)

Here, it was assumed, that the light is propagating in z-direction and traverses the
column density

n̄z =

∫ z

0

n(x, y, z′)dz′ (3.7)

The transition is characterised by a scattering cross section

σ0 =
6πc2

ω2
(3.8)

and a saturation intensity given by:

Isat =
ℏΓω3

0

12πc2
(3.9)

In this thesis the factor σ0n̄z(x, y) may be called the bare OD, as it is the optical
depth for resonant light without saturation effects. It will be often referenced as it is
directly connected to the atomic density and therefore often a quantity interest. The
phase ϵ will just be called the OD as it is the phase that the light actually acquires as it
propagates through the cloud. Thus it is the only quantity that is actually accessible to
the (resonant) light.

From Equation (3.4) it can be seen that keeping the OD between ϵ = 0.1 and ϵ = 4.6

(after transmission through the full atomic cloud) the intensity will be reduced between
10% and 90%. By increasing ∆ and s the OD can be adjusted to a favourable value. To
be able to extract the atomic density from an intensity measurement we will typically
try to make either φ or ϵ small compared to the other. We will thus either increase work
on resonance where φ(∆ = 0) = 0 and increase s (see Section 3.2.1 or we will increase ∆

large enough until ϵ≪ φ and map φ onto the intensity via an interference effect (Section
3.2.2). In both cases ∆ and s will be adjusted to keep the intensity in a usable range for
a given atomic density.

3.1.2 Fourier Optics

After light acquires some space-dependent phase in a (thin) optical element or atomic
cloud, it is essential to understand how it will propagate through free space, to know how
and where to collect an image of the object in question.

In the context of this thesis, this propagation is well described by Fourier Optics. As
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demonstrated by Jean-Baptiste Fourier, any periodic functions can be split into a sum of
sinusoids. That means, one may split a periodic function into its frequency components
and reconstruct the original function by summing these frequency components, scaled by
appropriate weights.

This technique can be extended to a finite sequence of samples, that represents a func-
tion, via the Discrete Fourier Transform (DFT). This step is invaluable to computational
and experimental physics, as one will only ever be able to measure discretised sequences
of finite length.

The Fourier decomposition can readily be applied to the propagation of light and
will be briefly explained here. It is important however, that while we will be discussing
a decomposition of different frequency components, we will be talking about spatial fre-
quencies νx in the following. The following discussion is limited to a monochromatic beam
of light with angular frequency ω. To avoid confusion between the temporal frequency
ν = c/λ, the angular frequency ω = 2πν will be used for temporal frequencies, while
νx, νy, νz will be used for spatial frequencies. Due to the linearity of the Helmholtz equa-
tion, light with a broad spectrum may be treated as a linear combination of monochro-
matic components.

A one-dimensional function f(x) may be decomposed as an integral of weighted spatial
frequency components as follows:

f(x) =

∫ +∞

−∞
F(νx) exp[−i 2π νxx]dνx (3.10)

This is called the inverse Fourier transform. The ‘frequency components’ are the har-
monic functions exp(i 2π νx) of spatial frequency ν at position x and they are weighted
by the complex amplitudes F(ν). These complex amplitudes can be computed as:

F(νx) =

∫ +∞

−∞
f(x) exp[i 2π νxx]dx (3.11)

which is called the Fourier transform of f(x). The functions f(x) and F(ν) are (inverse)
Fourier transforms of each other and both contain the full information of the other. If
one is known, the other can be calculated.

The Fourier transform and its inverse have some important properties such as linearity
and that translations in space merely corresponds to a phase factor the Fourier transform.
A list of these properties can be found in Saleh and Teichs textbook [ST91b], the notation
of which will be used here.

In the context of wave optics, some light field may be described by the complex
wavefunction

E(r, t) = A(r)eiwt (3.12)
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Figure 3.1: Plane Wave, appearing as harmonic functions in the z = 0 and z = d planes

with angular frequency w and complex amplitude A. This wave must satisfy the wave
equation

∇2E(r, t)− 1

c2
∂2E(r, t)

∂t2
= 0 (3.13)

Substituting 3.12 into the wave equation above, Helmholtz Equation is obtained:

∇2E(r, t) + k2E(r, t) = 0 (3.14)

with
k =

ω

c
(3.15)

being the wavenumber.

Many different wavefunctions may solve the Helmholtz equation, however let us in-
vestigate a simple solution, the plane wave with wavenumber k =√
k2x + k2y + k2z :

E(r) = A exp [−ikr] = A exp [−i(kxx+ kyy + kzz)] (3.16)

Such a plane wave is depicted in figure 3.1, where the plane wave is depicted propagat-
ing a distance d. Before the concept of a Fourier decomposition is introduced to describe
the propagation of an arbitrary light field let us first look at the simple example of a plane
wave. The propagation of a plane wave can be fully described by the above Helmholtz
equation. However as we will see that any light field can be described as a combination
of plane wave components and that, if propagation of these components components is
known, the propagation of the whole arbitrary field can be calculated.

The field of the plane wave in figure 3.1 is also depicted in the z = 0 and z = d

planes. Within these planes, the plane wave to appears as a harmonic function of spatial
frequencies νx = kx/2π and νy = ky/2π:

f(x, y) = E(x, y, 0) = A exp[−i2π(νxx+ νyy)] (3.17)

The wave vector k is at an angle of θx = sin−1(λνx) and θy = sin−1(λνy) with the
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x − z and y − z planes. Here we can recognise, that the Fourier transform of f(x, y) is
simply given by

F(νx, νy) =

∫∫ +∞

−∞
f(x, y; νx; νy) exp[i 2π(ν

′
xx+ ν ′yy)] dxdy (3.18)

=

∫∫ +∞

−∞
A exp[i 2π(νxx+ νyy)] exp[−i 2π(ν ′xx+ ν ′yy)] dxdy (3.19)

= Aδ(νx − ν ′x) δ(νy − ν ′y) (3.20)

where δ(νi − ν ′i) is the Dirac delta function.

The Delta function arises because the plane wave only consists of one frequency com-
ponent with amplitude A, while the ‘weights’ of all other frequency components are zero.

As expected, we find that the plane wave is described by only one frequency component
per spatial direction. Since the wavenumber k and two of its components in the plane
z = 0 are known, the third component can be determined to be:

νz =
√
k2 − k2y − k2x/2π (3.21)

Therefore, as the phase of the beam evolves with exp[−ikzz] at a distance d, the field
gains an additional phase

H(νx, νy, z = d) = exp[−ikzd] (3.22)

= exp
[
−id

√
k2 − k2y − k2x

]
(3.23)

which is called the transfer function of free space.

This means that the plane wave appears in the z = d plane as

g(x, y) =

∫∫ +∞

−∞
H(νx, νy)F(νx, νy) exp [−i 2π(νxx+ νyy)] dνxdνy (3.24)

= A exp [−i 2πνzz] exp [−i 2π(νxx+ νyy)] (3.25)

= E(x, y, z = d) (3.26)

This example was only able to describe the propagation of a plane wave, which was
already fully described by Equation (3.16). However due to the linearity of the Fourier
transform we can perform this kind of propagation for any arbitrary light field. If only
the intensity (and phase1) at some input plane is known, the field can be propagated into
any direction by the following the same few steps as above.

1If an image is taken with a laser beam that is collimated in the object plane, we can safely assume the
phase of the light field in the object plane to be flat. Thus knowledge of the intensity alone is sufficient
to propagate the field. In the case of a lens it is clear however that the intensity may be flat, but the
phase actually gives the full information about the propagation of the field.
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First the light is split into its spatial frequency components via the Fourier transform,
then each frequency component is propagated to the distance d by multiplying the transfer
function of free space. Then all components are recombined into a field at position z = d,
via the inverse Fourier transform. In short, as long as we now the field f(x, y) at some
input plane, the field g(x, y) at any output plane is given by Equation (3.24).

Fourier Transformation with a lens

One of the more interesting results of the above propagation through real space is the
fact, that a lens can be used to perform a Fourier transform. Put more precisely, within
the Fresnel approximation the field in the back focal plane of a lens is exactly the Fourier
transform of the field in its front focal plane. That means a lens ‘sorts’ the frequency
of the light field in space. To see this, one can approximate the transfer function of free
space for ν2x + ν2y ≪ 1/λ2. Within the Fresnel approximation the transfer function of free
space then reads [ST91b]:

H(νx, νy, z = d) = exp [−i kd] exp
[
i πλd (ν2x + ν2y)

]
(3.27)

As we will typically be dealing with laser beams travelling along the axis of a long optical
path, this will usually be true within this thesis.

With Equation (3.27), the input beam is propagated from the front focal plane to the
lens. The lens is assumed to be thin and to imprint a phase

∆φlens(x, y) = exp

[
ik

(x2 + y2)

2) = expf

]
(3.28)

Then the beam is further propagated from the lens to a distance d, following Equation
(3.24). The field is then given by

g(x, y) = F(
x

λf
,
y

λf
) · i

λf
exp [−i k(d+ f)] exp

[
iπ

(x2 − y2)(d− f)

λf 2

]
(3.29)

Thus in the back focal plane, i.e. at d = f , the intensity of the beam is given by

I(x, y) =
1

(λf)2

∣∣∣∣F(
x

λf
,
y

λf
)

∣∣∣∣2 (3.30)

which is the Fourier transform of the input field, scaled by 1/λf .
The sorting of frequency components can have interesting implications. By placing

an aperture or a beam block in the Fourier plane for example, one can cut out specific
frequencies of the image. An aperture will cut the high frequency components and thus
limit the resolution of the image. However, a beam block in the centre of the beam will
block the low frequency parts and will act as a sort of high-pass filter, where only edges
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of the object will show up in the image. These kinds of filters find use in compression
and pattern recognition software and neatly showcase the Fourier transforming abilities
of a lens. An example of such a high pass filter is depicted in figure 3.2. On can clearly
see that blocking a part of the in the focal plane of the first lens in a 4f-setup blocks most
of the intensity of the light. But what remains are the high frequency components, that
give rise to the edges in the picture.

(a) (b)

Figure 3.2: Simulation of USAF1951 test image illuminated by a Gaussian 421nm laser
beam of 20mm waist. The smallest group (1,6) has a linewidth of 80µm in the object
plane. The intensity in the image plane of a 4f-setup with f1 = 32.2mm & f2 = 75mm is
shown in (a) without and in (b) with a beam block of 500µm radius that was placed in
the Fourier plane.

3.1.3 Resolution Limit

For any imaging scheme, light that has been emitted, scattered or transmitted at some
point in space has to be collected and redirected onto an imaging screen. Imaging small
structures can be challenging however. Let us imagine we want to image an infinite
grating of structures with a spacing of Λ (see Figure 3.3). Whether the grating is made
to be of varying thickness or whether it consists of many slits does not affect the following
discussion. The diffraction of the wave will be (to first order) only be affected by the
periodicity of the grating Λ.

Let the grating be illuminated with a monochromatic plane wave
E(x, y, z) = E0 exp[−2kxx] at a right angle to the grating (θi = 0) where kx = |k| and
investigate the field in the yz-plane. In the far field, the wave will interfere constructively
with itself at angles θ to the x-axis, where the path length difference ∆l introduced by

40



Figure 3.3: A diffraction grating consisting of a thin transparent plate of periodically
varying thickness, with a period of Λ. The incident wave with a wavelength λ, angled at
θi to the grating, is split into a zeroth and two first orders, angled at θ ≈ λ/Λ. Figure
taken from [ST91c].

variations in the plate’s thickness is:

∆l = mλ for m in [0,1,2,3...] (3.31)

⇒ sin(θ) = mλ/Λ (3.32)

Thus for decreasing slit periodicity Λ, the beam will be diffracted at larger and larger
angles θ. When Λ = λ, even the first order will be diffracted at an angle of 90°. In
this case the information on the spatial frequency of the grating is lost and cannot be
collected on a screen, even if it is infinitely large.

Similarly, if we are only able to collect a certain part of the light after transmission,
for example a light cone at half-angles smaller than Ω, only diffracted beams at angles
θ ≤ Ω can be collected and imaged. This the minimal observable grating size is then
given by:

Λ = λ/ sin(Ω) (3.33)

If the system has a refractive index n, this equation has to be adjusted to

d =
λ

n sin(Ω)
=

λ

NA
(3.34)

where NA is called the numerical aperture.

However, this is only true for coherent light sources like the plane wave chosen in this
example. Using fully spacially incoherent light, the resolution may actually be improved
by a factor of two [Smi13]. This stems from the fact that a fully incoherent light source
illuminates the grating at any angle. Thus the m = 0 order might point at 90° to the
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grating, increasing the maximal angle between zeroth and first order to 180°. The same
principle can also be exploited by using angled coherent light.

Then, as discussed in Abbe’s 1882 paper [Abb82], the resolution limit for periodic
structures and incoherent light is thus given by Abbe’s diffraction limit :

Λ =
1

2

λ

NA
(3.35)

Abbe also notes that, while this limit might only be strictly true for periodic struc-
tures, his experience shows that objects of any shape will not be resolved sufficiently
below this limit, but ‘will look more and more alike (becoming more and more circular
or elliptical in form)’[Abb82].

From Equation (3.35) we see that, when imaging small objects, smaller wavelengths
are favourable. In practice however using arbitrarily short wavelengths is not possible.
Usually due to the availability of light sources at a specific frequency which may cater a
certain atomic transition suitable for imaging, the choice is quite restricted. In fields like
biology, short wavelengths might also become damaging to the sample, while in atomic
physics, one will have to find an atomic transition of matching frequency. Thus, typically
rather a certain wavelength will be chosen and the NA of the system will be maximized. If
(as in oil submersion microscopes) the refractive index of the system might be increased,
one can reach NA values greater than 1.

In the case of cold quantum gas experiments, one cannot (without difficulty) place an
objective close to the object, as the atoms sit in vacuum. In the BoDy experiment here
in Heidelberg, a NA=0.6 is achieved by placing a large objective as close to a re-entrant
viewport as possible.

3.1.4 4f-Imaging

After collecting as much light as possible, to form an image of an object one has to
replicate the light field from the object plane as close as possible in the image plane.
There are two standard approaches to do so, using lenses to guide and refocus the light
in the correct plane:

Imaging with a single lens

From both ray and Fourier optics we can find that if an object is placed a distance d1
from a lens, an image of the object will be formed at a distance d2 if the focal length of
the lens is (see [ST91b]):

1

f
=

1

d1
+

1

d2
(3.36)

The resulting image will have a magnification of M = −d2/d1.
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Imaging with two lenses

By using two lenses in a so-called 4f-configuration, one might gain some control over the
imaging process. To achieve an imaging configuration the first lens with focal length f1

has to be placed a distance f1 from the object and the second lens has to be placed a
distance f1 + f2 from the first lens. As both lenses perform a Fourier transform of the
field at the front focal plane to the back focal plane (see section 3.1.2) the the Fourier
transform of the object plane will be formed in the so-called Fourier plane between the
lenses. The image of the object plane will then be formed in the back focal plane of the
second lens, a distance d = 2f1 + 2f2 from the object. This configuration has mostly
two advantages. Firstly, one can access the Fourier plane of the image in the focal plane
of the first lens. This can be important for phase sensitive imaging schemes such as
phase contrast imaging (see Section 3.2.2. Secondly, the magnification of a 4f-imaging
system is given by M = −f2/f1. Thus, by adjusting f1 and f2 accordingly, an arbitrary
magnification might by selected.

Interestingly, if the phase information of the light field in the imaging plane is not
important (such as in an absorption imaging scheme3.2.1) the distance between lenses
L1 and L2 is irrelevant. One may choose the distance between L1 and L2 according to
the constraints on the optical table, while being able to control the magnification via the
choice of f1 and f2. If the distance between the lenses is chosen to be zero, in fact if
the lenses were to be glued together, one recovers the single lens imaging system where
d1 = f1 , d2 = f2 and the focal length of the combined lens isf = 1

f1
+ 1

f2
according to

the lens-makers-equation.

3.2 Overview of Imaging Schemes

Depending on experimental setup, particularly the density of atoms and goal of the mea-
surement different imaging schemes may be appropriate. In time-of-flight (ToF) mea-
surements, the atomic density is typically low enough that a linear relationship between
the recorded intensity and the atomic density can be assumed. However, when imaging
dens atomic clouds in-situ, some additional care is required. A the atomic cloud may
become opaque to the imaging beam and due to the closely spaced atoms () a resonant
van der Waals interaction can be induced [Cho+12]. However, these issue can be reduced
by imaging at intensities far above the saturation intensity.

In the following the most common imaging methods and their applications to in-situ
imaging of dens atomic clouds will be described.
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3.2.1 Absorption Imaging at Low and High Intensity

Absorption at Low Intensity

For low atomic densities, especially after ToF, absorption imaging at low intensity is a
common [You+10; Wen15; Soh+21; Jin+23], easily implemented imaging scheme. Here,
a resonant laser beam is shot at the atoms and a camera behind the atoms records their
‘shadow’ caused by absorption [KDS99].

Equation (3.4) can be applied to calculate the OD from the transmitted intensity.
In the low intensity regime (s ≪ 1) and on resonance (∆ ≈ 0) Equations 3.5 and 3.6
become:

φ(r,∆) = −σ0n̄z(x, y)
Γ∆

4∆2 + Γ2(1 + s)
≈ 0 (3.37)

ϵ(r,∆) = +σ0n̄z(x, y)
Γ2

4∆2 + Γ2(1 + s)
≈ σ0n̄z(x, y) (3.38)

The density of the atoms can then in principle be calculated, by comparing the initial
intensity Iprobe and the transmitted intensity after absorption Iabs, retrieving Lambert-
Beers law :

ln(Iprobe/Iabs) = −ϵ ⇒ n̄z(x, y) = − ln(Iprobe/Iabs)

σ0
(3.39)

In practice however, merely imaging the distribution of Iabs in a single absorption picture
is not really useful as the intensity distribution Iprobe will not be well known.

But by simply measuring a flat field reference image with the same intensity and
exposure time, but without the atoms, the received intensity distribution at the detector
can be measured and Equation (3.39) can be applied. That is to say, by just measuring
both Iprobe and Iabs the OD can be computed.

The output of the camera sensor always includes some noise that consits of different
contributions, each with a different scaling with intensity (see Section 3.3). To be able
to eliminate some of these contributions, that would otherwise artificially increase the
measured intensity a third picture should be taken. This will be called a dark field
reference image as it will be taken without any probe light. As some of the processes
contributing to the noise can be time dependent, both the dark field and the flat field
should be taken at the same exposure time as the absorption image. Also, many dark and
many flat field images can be taken and averaged to reduce shot noise in these reference
images.

In digital counts the absorption image at pixel (i, j) is given by:

Cabs(i, j) = Iabs · η ·
1

F
+ Cdark(i, j) (3.40)
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where η is the quantum yield gain given in [electrons/photon] and 1
F

is the Analogue-to-
Digital (ADC) conversion factor in [counts/electron].

The flat field reference in digital counts at pixel (i, j) is then:

Cprobe(i, j) = Iprobe · η ·
1

F
+ Cdark(i, j) (3.41)

And the dark field reference in digital counts at pixel (i, j) is simply Cdark(i, j).

From this the column density at low intensity can be calculated as [Wen15]:

ϵ ≈ σ0n̄z(x, y) = − ln

(
Cabs − Cdark

Cprobe − Cdark

)
(3.42)

= − ln

(
Cout

Cin

)
(3.43)

where Cin = Cprobe − Cdark and Cout = Cabs − Cdark.

As low intensity absorption is only useful for low OD, it will often be used for imaging
atoms after they are released from a trap and expand during a few (tens of) millisecond
long ToF. During ToF the atomic cloud will expand and typically reach an OD below
one where low intensity absorption may be applicable.

Absorption at High Intensity

If the bare OD is too large to be resolved by the low intensity absorption imaging system,
(according to Equation (3.6)) increasing the intensity of a near-resonant beam may reduce
the OD again to measurable values [Hor+17; Hue+17; Wen15; Rei+07].

In the resonant, high saturation case the optical depth ϵ is given by

ϵ(r,∆ = 0) = σ0n̄z
1

1 + s
(3.44)

In this case the Lambert-Beer law is modified to:

dI(r)

dz
= −σ0n

1

1 + I(r)/Isat
I(r) (3.45)

integrating along z an expression for the bare OD can be obtained [Hue+17]:

σ0n̄z(x, y) = − ln

(
Iabs(r)

Iprobe(r)

)
+
Iprobe(r)− Iabs(r)

Ieffsat

(3.46)

where Ieffsat = αIsat is the effective saturation intensity, where 0 < α < 1 accounts
for non-perfect polarisation and magnetic field orientation that might reduce the actual
saturation intensity.
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In digital counts Equation (3.46) reads:

σ0n̄z(i, j) = − ln

(
Cabs(i, j)− Cdark(i, j)

Cprobe(i, j)− Cdark(i, j)

)
+
Cprobe(i, j)− Cabs(i, j)

Ceff
sat

(3.47)

= − ln

(
Cout(i, j)

Cin(i, j)

)
+
Cin(i, j)− Cout(i, j)

Ceff
sat

(3.48)

The only remaining problem now is that the count Ceff
sat has to be calibrated. Horikoshi

et al.[Hor+17] propose to measure the bare OD at different intensities put keeping the
atomic density constant. By rewriting Equation (3.48) as:

− ln

(
Cout(i, j)

Cin(i, j)

)
= σ0n̄z(i, j)−

Cin(i, j)− Cout(i, j)

Ceff
sat

(3.49)

They identify − ln
(

Cout(i,j)
Cin(i,j)

)
as a linear function of Cin(i, j)− Cout(i, j), scaled by Ceff

sat .

Thus, by taking many pictures at different intensities, they can determine Ceff
sat as the

slope of this linear function. This method is however limited to the accuracy with which
the atom density can be kept constant between different experimental runs. Also, the
parameter α = Ieffsat /Isat remains elusive. Reinaudi et al. [Rei+07] present a method to
determine α directly for high intensity absorption imaging. However their method again
relies on extracting the parameter from many measurements at the same atomic density.

Another way to calibrate the absorption imaging system however, is presented by
Hueck et al.[Hue+17]. They measure the scattering rate directly by measuring the mo-
mentum transferred from the imaging beam to the atomic cloud after ToF with an second
imaging system. Thus, by measuring the scattering rate γ(s) = Γ

2
s

1+s
for different Inten-

sities, they can determine Isat = Iprobe/s directly.

3.2.2 Phase Contrast Imaging

Instead of reducing the OD by increasing s and using light on resonance, one might
decrease the OD by increasing ∆ and use the dispersive phase φ to image the atomic
density [KDS99]. First, considering equations 3.5 and 3.6, it can be recognised that ϵ
is proportional to 1/∆2 while ϕ is proportional to 1/∆. Thus by increasing ∆ to above
10Γ, the effect of ϵ on the overall phase β can be kept small (below 1%) compared to the
effect of φ.

As imaging sensors are only sensitive to the intensity but not the phase of light, the
remaining issue is to map the phase β ≈ φ onto intensity. In a absorption imaging setup,
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the intensity of the transmitted beam is measured, given by:

I(r) = |E(r)|2 = |Eprobe exp[iβ]|2 (3.50)

= Iprobe| exp[iφ− ϵ/2]|2 (3.51)

= Iprobe exp[−ϵ] (3.52)

where the dispersive phase φ just cancels out. However, a variety of different methods
to extract the phase φ from an intensity image. Similar to methods of x-ray tomography
[Lan+08], φ may be reconstructed from the diffraction pattern of a far detuned beam
of light via the transport of intensity equation (TIE) [Wig+16]. More commonly for
cold quantum experiments, the phase will be mapped to intensity by letting the beam
interfere with itself. This may be done, employing off-axis holography [SMS20], where
the probe beam is split into an arm the interacts with the atoms and a separate non-
interacting arm, which interfere on a camera sensor. The two separate arms may add
some complexity to the experimental setup however, as their divergence, angle on the
camera and polarisation have to be matched.

Another option, adding very little experimental complexity is Faraday imaging. Here,
an atomic cloud in an external magnetic field is illuminated by an far detuned beam,
linearly polarised perpendicular to the magnetic field. The linear polarisation is a su-
perposition of left- and right-handed circular polarised light. Depending on the direction
of the magnetic field, the transition probability of light of one handedness will be much
greater than the other. Due to the Faraday effect, the polarisation of the light is rotated
while passing through the atomic, by a degree proportional to the density of the atomic
cloud. This method, often called Faraday imaging, exploits this birefringence of a spin
polarised atomic cloud to map the phase φ to the intensity of the beam. By simply
placing polarisation filter in front of the camera, the beam can be made to interfere with
itself resulting in φ-dependent intensity variations on a screen [Soh21; BSH97; Cab+18;
Kad+16; Gaj+13]. This method required a specific magnetic offset field and a light of
linear polarisation which again limits the usability of this method.

Circumventing these limitations, an experimentally even simpler method can be used.
The interference between two parts of the imaging beam, where one interacts with the
atoms and the other does not can be achieved by ‘manually’ imparting a relative phase
shift between these two parts of the beam. By focussing the imaging beam after the atoms
and placing either a small beam block [And+96] or a phase plate [And+97; Mep+10;
Joo13; Sad06] in the Fourier plane of the beam, the two parts of the beam can be made
to interfere regardless of polarisation or external magnetic fields. This again causes the
phase φ to be mapped onto the intensity which can then just be measured by a camera.
These so-called phase contrast imaging schemes yield signal to noise ratios similar to
Faraday imaging schemes[Gaj+13] and as it presents an easily implemented, versatile and
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non-destructive imaging method, it was decided to be implemented for high density in-
situ imaging in the BoDy experiment. Specifically, here the focus will be of implementing
such a scheme with a phase plate.

Figure 3.4: 4f Imaging Setup including a phase plate in the Fourier plane, the (mostly)
shifts the phase of the focussed Eprobe field, while the Eatom field remains (mostly) unaf-
fected.

As visualized in figure 3.4, a phase plate is transmissive plate, containing a small
phase spot that is used to imprint an additional phase to a part of the beam. Specifically,
the part of the beam that did not ´see’ the atoms (Eprobe) is to be shifted by a small
phase compared to the rest of the beam, that did collect a phase at the atoms (Eatom).
Separating these to parts of the beam in space to manipulate them separately can be
achieved in a 4f imaging setup, where Eprobe will be focussed in the focal point of the first
lens, i.e. in the Fourier plane of the 4f setup. As Eatom gains an additional phase and is
diffracted at the atoms, it is no longer collimated before the first lens. Thus the beam
will not be focussed down to the same focal point.

By placing a small2 optical element into the Fourier plane that shifts the intensity of a
large part of the probe beam3 can acquire a phase shift, while the other part of the beam
is nearly untouched. In practice this can be done with a glass plate that is polished very
flat and that has only one small indentation or a small protrusion. Due to the refractive
index of glass being larger than 1, the two parts of the beam pick up a relative phase θ.
The glass plate is positioned at the Fourier plane, such that only the focal point of Eprobe

coincides with the so-called spot.
This simple method allows us to imprint the dispersive phase φ into the measured

intensity. Following the Meppelink et al.[Mep+10], the beam may be split into two parts
(where the dependence on r is omitted for readability):

E = Eprobe + Eatom = Eprobe + (Eprobe exp[iβ]− 1) (3.53)

2on the order of the beam waist
3remember, that 99.97% of the power of a beam is transmitted within a circle of twice its waist
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By using far detuned light β ≈ φ can be assumed. By adding a phase shift between these
to parts of the beam, the intensity becomes:

I(θ, φ) =|Epobe exp[iθ] + Eatom|2 = |Epobe exp[iθ] + Epobe(exp[iφ]− 1)|2 (3.54)

=Iprobe| exp[iθ] + exp[iφ]− 1|2 (3.55)

=Iprobe(3− 2 cos(θ) + 2 cos(θ − φ)− 2 cos(φ)) (3.56)

With the choice of different relative phases θ, the contrast of the interference of these
two beams can be adjusted. Figure 3.5 illustrates the phase dependent intensity in the
image plane is plotted for different choices of θ.
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Figure 3.5: Intensity in the phase contrast image in dependence of φ for different choices
of θ. The green region marks a region of approximate linearity (where the difference
between approximated and precise result is smaller than 10%) for θ = −π/3.

In this thesis, following [Mep+10], a choice of θ = −π
3

will be made (see Section 4.5).
In this case Equation (3.56) can be simplified. By referencing ones favourite collection of
trigonometric relations [Brü06] one can recognise that

I(θ = −π/3, φ) = 2Iprobe

(
1 + sin

(
−π
6
− φ

))
(3.57)

≈ 2Iprobe

(
6− π

6
− φ

)
(3.58)

Thus for low small φ this equation will be reasonably linear and the bare OD may be
extracted form a set of three images similar to Equation (3.48) as

φ =
6− π

6

Cout − Cin

Cin

(3.59)
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where Cin and Cout are defined as in equations 3.40-3.43.
Remembering Equation (3.5), for ∆ > 10Γ and s < 1, the bare OD can be connected

to φ as:

σ0n̄z(x, y) = −φ4∆
Γ

(3.60)

Figure 3.6: Phase contrast image of dens atomic cloud. As the light acquires a phase
of up to 3π, the interference pattern shows both minima and maxima. As long as the
phase varies smoothly enough, the atomic density distribution can be extracted, following
Equation (3.57). Figure taken from [Mep+10].

Meppelink et al. [Mep+10] have demonstrated however, that one can make use of the
periodicity of the acquired phase. By allowing φ to reach values of multiple π and using
the periodicity of the resulting intensity signal, they are able to increase the dynamic
range of this imaging scheme significantly. As the density of the atomic cloud in figure
3.6 increases toward the center, φ increases. However, once φ > 2π

3
, the intensity in the

image decreases until φ > 6π
3

. Following Equation (3.57) and figure 3.5 the intensity is
periodic in φ. Using a suitable fitting algorithm the overall phase in a continuous image,
and thus the bare OD, can be determined.

3.2.3 Fluorescence Imaging

Fluorescence imaging is used for imaging either pinned single atoms [Su+25; Ber+18] or
entire atomics clouds [Büc+11; DeP+00] with up to single atom number resolution.

In fluorescence imaging, atoms are illuminated with near-resonant light. Each atom
may absorb and re-emit many photons, are collected off-axis from the exciting beam.
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This way, only the fluorescence photons are counted, while (ideally) no background light
from the exciting beam reaches the detector. So in principle arbitrarily high intensities
can be used to detect arbitrarily low densities (or single atoms). However, imaging freely
expanding atomic clouds, the exposure time and intensity are limited as not to disperse
the atomic cloud. Together with possible multiple scattering events within optically
thick atomic clouds and saturation effect, fluorescence imaging suffers similar limitations
as resonant absorption imaging. Albeit potentially at a larger signal to noise ratio, due
to a lack of background light.

There are however some drawbacks. As there is no ‘bright background’ that could be
used to calibrate the intensity of the beam, the actual calibration is more difficult. While
a calibration can be done following [Hue+17], it will typically rely on the reproducibility
of specific atomic densities in experiment, which can limit the accuracy of the calibration.

Compared to absorption imaging, far grater laser intensities are needed to reach the
high intensity regime necessary to reliably image dens clouds [Rei+07]. This means that
a large momentum can be imparted on the atoms. Stringly limiting the usable exposure
times. To prevent excessive displacement of the atoms during the measurement one
might use pulsed, counter propagating beams [Su+25]. This however, adds quite a bit
of experimental complexity. And finally, a priori it is difficult to estimate how large the
effect of stray light will be on the background intensity. While this is not necessarily a
drawback on the method itself, it makes calculating the expected performance of such
a system, before embarking on building a more involved optical setup, more challenging
and less precise.

As a combination of phase contrast imaging and high intensity absorption imaging
can be implemented into the current experimental setup while adding little experimental
complexity, and as these are expected to be suitable for high density in-situ imaging at
a good SNR, fluorescence imaging was not prioritised.

3.3 Noise and the Photon Transfer Curve

In any imaging system there are many different sources of noise. Some might stem from
non-ideal experimental setups such as the pixel dependent sensitivity of a sensor, dirt,
stray light etc., while others are of fundamental nature such as shot noise. A detailed
discussion of different noise sources in photon detection processes is given in [Jan07],
including methods to quantify the different noise components in any system.

A brief overview on different noise components including an explanation of the Photon
Transfer Curve (PTC) will be given here, to later be able to characterise the noise
contributions within an existing imaging setup in Section 4.1 and to estimate signal to
noise ratios for different imaging schemes in Section 4.3.
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3.3.1 Shot Noise

When a detector is illuminated by a (perfectly) homogeneous field of light, each pixel will
not measure exactly the same number of photons. This is obvious when the field intensity
is so weak and the measurement duration so short, that the number of incoming photons
is smaller than the number of pixels on the detector. As a pixel can only detect whole
numbers of photons, but never half a photon, the photons will have to spread randomly
over the whole detector, governed by Bose-Einstein Statistics. The variance of events per
pixel (or per time period) is called shot noise.

If the photons don’t couple to phonons in the detector (in silicon, for λ < 1000nm)
the variance in the number of photons incident per pixel Npho, is given by:

σShot[photons] =
√
Npho (3.61)

where the bracket is to indicate that σShot is measured in number of photons (per pixel)
here. As we will talk about numbers of photons, photoelectrons and counts in very similar
contexts, this distinction will be made wherever necessary.

As the variance of the number of photons increases, the Signal to Noise Ratio (SNR)
for a purely Shot Noise limited process goes as:

SNRShot[N
pho] =

Npho

√
Npho

=
√
Npho (3.62)

That means, the SNR improves with the number of photons and is worst for low
intensity, which is the reason why photographs and film in dark lighting conditions can
look ‘grainy’. If a large gain is applied in digital photography (or high ISO film is used),
the number of photoelectrons (area of reduced silver halide crystal) can be increased.
But this will amplify the signal and the noise equally. Therefore to increase the signal
to noise ratio, one can only increase the exposure time, at a lower gain (lower ISO) to
increase the actual number of photoelectric events, instead of amplifying their effects.

The digital readout of a camera however will know nothing about the actual number
of incident photons that were incident on a pixel. Rather only some part of the incident
photons will be converted to photoelectrons. The number of photoelectrons per photon
is given by the Quantum Efficiency and is given by:

Qe =
N

Npho
(3.63)

where N is the number of photoelectrons on a pixel. The photoelectrons will then be
converted into a certain number of digital counts C in a analogue to digital converter.
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The number of digital counts is finally given by:

C = NphoQe
1

F
=
N

F
(3.64)

With this conversion in mind we can rewrite the shot noise in number of counts as:

σShot =
1

F

√
QeNpho =

1

F

√
N (3.65)

The quantum efficiency Qe is usually determined by the architecture of the sensor itself.
To artificially increase the number of counts in a picture, one might increase the factor
1/F , but as can be seen above, this will not change the Signal to noise ratio.

3.3.2 Fixed Pattern Noise

Fixed pattern noise (FPN) describes the variance of counts per pixel between different
pixels, while they are illuminated homogenously. Differences in pixel counts can stem
from (small) differences in pixel sensitivity, that originate in the manufacturing process
of the detector, but they can also be the result of dirt on the detector or even unwanted
interference patterns in the optical path.

As these fixed patterns just scale with intensity and thus the number of photoelectrons
itself, the FPN is given by:

σFPN = QFPNN (3.66)

where QFPN is the quality factor of the detector and N is again the number of photo-
electrons.

As σFPN scales with N rather than
√
N , fixed pattern noise will usually dominate at

large intensities. In any reasonable detector, the variance between pixel sensitivity will
be rather small and often dust and other dirt will dominate the value of PN . Luckily,
through flat fielding, most of the FPN can be removed. To do so, one has to illuminate
the detector with a field of constant/flat intensity over all pixels and measure the intensity
per pixel. By averaging, shot noise can be eliminated. The (normalised) averaged picture
of intensity per pixel can be used as mask remove FPN from other images.

3.3.3 Read Noise

Finally, read noise σRead captures all noise in the photon detection process that does not
depend on the number of photoelectrons and thus on the incoming intensity. Electrons
might be lost in the read-out process, dark currents might alter the electron count; all of
these sources may be reduced but ultimately all detectors and sensors have a small but
non-zero read noise.
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3.3.4 Total Noise and Photon Transfer Curve

Including all sources above, the total noise in the digital counts of a sensor can be written
as:

σ2
Total =

1

F

√
QeNpho + σ2

Shot + σ2
FPN (3.67)

=σ2
Read +

1

F
N + (QFPNN)2 (3.68)

As the different noise contributions are independent from each other they add quadrat-
ically and σ2

Total becomes a 2nd order polynomial in N . This allows us to extract the
different noise contributions in experimental data, by measuring a photon transfer curve.
This is done by illuminating the sensor in question homogeneously at different intensities
and recording the variance of the observed counts per pixel for each intensity.

By plotting the variance against intensity, and fitting a second order polynomial,
we will be able to retrieve the contributions of read noise, shot noise and FPN noise
separately. This can allow a more detailed and realistic estimation of expected signal to
noise ratios in the system.
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Chapter 4

Design and Implementation of In-Situ
Imaging Schemes for high OD in BoDy
Experiment

4.1 Characterisation of Imaging System

To be able to choose and design a suitable imaging scheme for the vertical in-situ imaging
arm of the BoDy experiment, knowledge of its characteristics is necessary.

The experiment features and custom high resolution objective (see [Phi23]) with a
working distance of 22.5mm away from the atoms, an NA of 0.6 and a focal length
of 32.2mm. The average resolution over the whole field of view of this objective was
measured to be (0.6±1.8)µm at depth of field of only 0.3µm. The objective is positioned
vertically over the atoms and is intended to be used for the main imaging system.

The camera intended for the main imaging is an ORCA Quest quantitative CMOS
camera build by Hamamatsu [KK22], that is able to count the actual number of photons
detected by the sensor. Together with a large number of 4096 × 2304 pixels, this makes
it an attractive choice for high resolution, high dynamic range imaging. But even a low
noise camera like this, has non-zero noise in detection and readout, which will have to
be determined to enable a quantitative estimate of the signal to noise ratio (SNR) for
different imaging system designs.

Following previous efforts [Bad23] and as described in Section 3.3.4, a photon transfer
curve (PTC) was recorded to decompose and quantify different noise contributions. As
the read noise σread, the shot noise σshot and the fixed pattern noise σFPN scale differently
with intensity (see Equations 3.67), their individual contributions to the overall noise can
be determined, by measuring the total variance in a subset of pixels at different intensities
and fitting the resulting curve with a second order polynomial. The resulting PTC is
depicted in Figure 4.1.
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Figure 4.1: Photon Transfer Curve for the vertical imaging arm over a region of 100x100
pixels on the Orca Quest camera. The 421nm imaging beam was modulated to different
intensities with an AOM.

The data in for this PTC was taken by modulating the intensity of the imaging beam
that was used at that time with an AOM. However, an AOM has a limited modulation
range, such that the intensity cannot be reduced down to arbitrarily low levels. (Notice
the log scale in the graph that indicates an intensity modulation over three orders of
magnitude.) The extra data point at very low intensity, was taken without any imaging
light. This data point was taken from a dark image and only contains read noise. As a
rather narrow bandpass filter for 421nm light is placed in front of the camera sensor and
because the experiment is shielded from external light sources, stray light should have
little to no effect.

A read noise in digital counts of σ2
read[counts] = 9.1 ± 0.5 can be extracted with

reasonable confidence. However, the image is largely dominated by FPN with quality
factor QFPN = 0.116 ± 0.003 and there are very few data points that can contribute to
the fitting of the factor F = 0.088± 0.004, which is proportional to the shot noise.

In principle, the FPN can be reduced to an arbitrarily low level by flat fielding (see
chapter 3.6 in [Bad23]). By doing so and then repeating the PTC analysis with a corrected
image, a better estimate of 1/F may be gained.

However, due to the photon counting capabilities of the camera, a simpler and more
precise method was chosen. The factor 1/F can be calibrated by merely plotting a
histogram of digital counts per pixel for a very low intensity image. As can be seen in
Figure 4.2, the histogram follows roughly a binomial distribution with a peak around 420
counts, where the width of the distribution is given by shot and FPN noise.

But more interestingly, periodic peaks modulate the binomial distribution, each of
which connects to a distinct photon number that was detected. By removing the overall

56



trend of the binomial by a simple quadratic regression the peaks in the remaining distribu-
tion can be found numerically (see Figure 4.2). This was done by fitting a Savitzky-Golay
filter [SG64] to the discrete bins in the histogram and detecting the peaks in the resulting
curve.

A mean distance between two peaks of

8.9± 0.4 [counts/e−] = 1/F

was found. With this conversion factor the read noise in photoelectrons may be calculated:

σread = Fσread[counts] = 0.308± 0.008

This result deviates significantly from the manual, where a noise of σspec
read = 0.27 is speci-

fied, but this might simply be due to an underestimated uncertainty.

Figure 4.2: Histogram of digital counts per pixel on the Orca Quest camera at an exposure
time of 5.3µs

In principle, the read noise may be determined form the histogram as well. As read
noise gives rise to the width of the individual peaks in the histogram, the peak-valley
modulation may be used to measure σread[SF16].

In the following calculations however, (see Section 4.3) the read noise determined from
the PTC and the conversion factor determined from the histogram where used.
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4.2 Appropriate Probe Conditions

In equations 3.5 and 3.6 it is assumed that the atomic cloud retains its density and that
the detuning does not change during measurement. To be able to extract the OD of the
atomic cloud with reasonable precision it is crucial therefore, to find probe conditions
under which neither the density distribution of the cloud nor the detuning changes.

During a high intensity pulse, an atom may scatter many photons, and quite a sig-
nificant impulse may be transferred to an atom, causing it to gain some velocity which,
affects both the detuning (due to the Doppler shift) and the local density (as the atoms
are dispersed).

This constrains the allowable intensity and duration of the imaging beam. Following
Horikoshi et al. [Hor+17], the corresponding limits will be determined below.

4.2.1 Doppler Limit

With each absorbed photon, an atom gains a momentum of ℏk along the propagation
direction of the beam. Upon re-emitting a photon a momentum of the same magnitude
will be gained in a random direction. After many scattered photons the mean momentum
transferred to the atom is simply given by ℏk as the random spontaneous emission cancels
out. Thus the (net) velocity gained along the beam direction is vrecoil = ℏk/m per
scattered photon.

This causes a Doppler shift per photon of

kvrecoil =
ℏk2

m
(4.1)

After a time t the atom will acquire a Doppler shift of

∆Doppler = Rsct
ℏk2

m
· t (4.2)

where Rsct =
Γ
2

s
1+s

is the scattering rate.

As a reasonable restriction we will simply impose that the Doppler shift be smaller
than half the effective linewidth, that is:

∆Doppler <
Γeff

2
=

Γ

2

√
1 + s (4.3)

In this case, the influence of the Doppler effect on the OD will be small (compare Equation
(3.6)). Thus, explicitly the exposure time cannot exceed

tdoppler(s) <

√
1 + s

3

s

mλ2

2πh
(4.4)
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4.2.2 Random Walk Limit

We will also impose the limit, that (on average) an atom should not be displaced by more
than one pixel on the camera during the imaging pulse. During the imaging pulse the
atoms will not only acquire a velocity of v = vrecoilRsctt along the beam direction, but the
atom will also perform a random walk on the plane perpendicular to the imaging beam.
This causes an RMS velocity increasing with exposure time as ⟨v2⟩(s, t) = Rsctvrecoil ·t/

√
3

[Foo05c] where the factor 1/
√
3 gives the velocity in one axis in a 3D random walk. This

leads to an average displacement

rrecoil(t, s) =

∫ t

0

√
1√
3
Rsctvrecoil · t (4.5)

Therefore, imposing that this distance shall not surpass the length of one pixel in the
object plane Lpix we get the exposure the time limit [Hor+17]:

tdipl <
3

22/3

(
Lpix

mλ

h

√
1

Γ

1 + s

s

)2/3

(4.6)

4.2.3 Pixel Saturation Limit

Finally, the camera itself imposes a limit on the maximum intensity of an image. It can
only read out each pixel with a limited amount of bits, in our case 16bits. Thus there is
a maximum number of photoelectrons per pixel that can processed by the camera, before
the pixel saturates. The maximum number of photoelectrons before a pixel saturates is
given by

Nmax = (216 − Cback)F (4.7)

where Nback = FCback is the number of per photoelectrons per pixel that belong to the
read noise.

The number of photons that illuminate one effective pixel in the object plane, corre-
sponds to the number of photoelectrons:

N =
IL2

pixt

Eph
=
IL2

pixλt

hc
TpQe (4.8)

where I is the intensity of the beam, Tp the fraction of photons transmitted from the
object plane to the camera and Qe is the quantum efficiency of the camera. The exposure
time limit due to the saturation of a pixel is then given by:

tsat(s, t) < Nmax
hc

s · IsatL2
pixλQeTp

(4.9)

59



As long as the exposure time and the saturation parameter are chosen such that these
limit given in Equations (4.4), (4.6) and (4.9) are not exceeded, Equations (3.5) and 3.5
remain valid and a reasonable estimate of the atomic density can be made. What remains
to be estimated (in the following section), is the SNR that can be expected for a certain
set of parameters in a given imaging scheme.

4.3 Estimation of Signal to Noise Ratios for Different

Imaging Schemes

With the above values of σread and 1/F and with knowledge on the constraints for the
exposure time in dependence of the intensity, the SNR for different imaging schemes and
different parameters can be estimated. Importantly however, the SNR of course depends
on the OD that is to be imaged.

From [Soh+21], an experiment with roughly similar experimental conditions, an esti-
mate of the maximum atomic column density n̄z can be made. From Equation (3.6) we
can estimate the following bare ODs for the available light:

In-Situ after ToF
421nm 254 2.5
626nm 561 5.6

Table 4.1: Expected bare ODs for both in-situ and after ToF imaging for 421nm and
626nm light

These estimates will be used to find a scheme, able to image atoms at these bare OD
values.

4.3.1 Signal to Noise Ratio for

High Intensity Absorption Imaging

We will first focus on a high-intensity imaging scheme, that would allow the detection of
the OD given in Table 4.1. The SNR itself is calculated as:

SNR(s, t;OD) =
OD

σOD(s, t;OD)
(4.10)

where the OD is calculated by Equation (3.46) (or equations 3.48 in digital Counts) and
σOD(s, t;OD) is the standard variation of that value. The variance σ2

OD can be calculated
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with a Gaussian error propagation to be [Hor+17]:

σ2
OD(s, t;OD) =

(
∂OD

∂Cin

)2

σ2
Cin

+

(
∂OD

∂Cout

)2

σ2
Cout

(4.11)

= (1 + s)2
(
σCin

Cin

)2

+ (1 + sTabs)
2

(
σCout

Cout

)2

(4.12)

Where Cin and Cout are defined below Equation (3.43) and σ2
Cin

& σ2
Cout

are their respective
variances. Here s and Tabs are defined as:

s(i, j) =
Cin(i, j)

Csat

(4.13)

Tabs(i, j) =
Cout(i, j)

Cin(i, j)
(4.14)

where Csat is the number of digital counts C at the saturation intensity Isat which can
be estimated to be:

Csat(t) =
tIsatL

2
pixλ

hc

Qe

F
(4.15)

Where the first term describes the number of photons with a wavelength λ that arrive
on the area of a pixel Lpix at an intensity Isat over a time t. The second term determines
how the number of incoming photons is converted to a number of counts due to quantum
efficiency Qe and the conversion factor F (see Equation (3.64)).

We can write the number of counts as

Cin(s, t) = sCsat(t) (4.16)

Cout(s, t) = sCsat(t)Tabs(s,OD) (4.17)

From the PTC analysis (see Section 4.1) we found that:

σ2
tot = σ2

read +
1

F
Ci + (QFPNCi)

2 (4.18)

Where Ci was the number of counts in an image, which allowed us to extract the read
noise σread, the fixed pattern noise factor QFPN and the camera gain F [e−/count] that
will be used here. With this we can write the respective variances as:

σ2
Cin

(s, t) = (2σ2
read + sCsat +Q2

FPNs
2C2

sat) (4.19)

σ2
Cout

(s, t) = (2σread + TabssCsat + T 2
absQ

2
FPNs

2C2
sat) (4.20)

Where the factor 2 on the read noise comes from the fact that Cin = Cprobe − Cdark and
that the only noise contribution in the dark background picture is the read noise.
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Finally, the variance of the OD can be identified from Equation (4.12) to be:

σ2
OD(s, t;OD) =

(1 + s)2

s2C2
sat(t)

(2σ2
read + sCsat(t) +Q2

FPNs
2C2

sat(t)) (4.21)

+
(1 + sTabs)

2

s2C2
sat(t)T

2
abs

(2σread + TabssCsat(t) + T 2
absQFPNs

2C2
sat(t)) (4.22)

With this, the SNR can be calculated at some OD, following Equation (4.10) in depen-
dence of the intensity s and the exposure time t.

For the vertical absorption imaging scheme, light of 421nm and 626nm is available.
At the above determined expected bare ODs and the two wavelengths, the calculated
SNRs are shown in Figure 4.3.

(a) 421nm, ToF (b) 421nm, In-Situ

(c) 626nm, ToF (d) 626nm, In-Situ

Figure 4.3: Calculated Signal to Noise Ratios (SNRs) for absorption imaging with 421nm
and 626nm light. For both available wavelengths, the SNRs where calculated for the
expected bare ODs in-situ and after ToF (see Table 4.1). The exposure time limits due
to the displacement of the atoms, the Doppler shift and the saturation of the pixels is
given by a cyan dashed line, a blue continuos line and a white continuos line respectively.
The colourbar indicates the calculated SNR at each parameter set. Notice the change of
colourbar scale between (a) and (b),(c),(d). Within the numerical precision used here,
the calculated SNR in-situ is zero.
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According to these calculations, absorption imaging will give a usable SNR for the
expected bare OD in-situ, both for 421nm and 626nm light. For the images in ToF at
lower bare OD, 421nm light can give a good SNR at moderate saturation and within the
appropriate probe conditions found above. However, the 626nm light with a much smaller
linewidth does not to be suitable for absorption imaging within the available parameter
range. In the following (Section 4.6), the existing vertical absorption imaging arm will
be improved to make full use of the intensity regime available.

4.3.2 Signal to Noise Ratio of Bright Background

Dispersive Imaging

For a phase contrast imaging scheme as described in Section 3.2.2, we can carry out
a similar kind of calculation. However a few differences arise due to the way, the OD
is calculated from the images (see Equation (3.56)). Depending on the exact choice of
imaging scheme this can change to some degree. In Faraday imaging schemes, different
choices of the orientation of the polarisation filter result in imaging system with a dark
or a bright background or something in between. Similarly, in a phase contrast imaging,
the exact choice of the relative phase difference θ will influence how the phase is mapped
to intensity. All these choices will affect the SNR in the final imaging system. Gajdacz et
al. have demonstrated however that all theses choices yield comparable SNRs leaving the
choice of the exact scheme to experimental convenience [Gaj+13]. Here the SNR ratio
will be estimated for a bright background Faraday imaging scheme similar to [Soh21;
Soh+21]. This choice was simply made before it was decided to implement a phase
contrast imaging scheme, but the results will only differ by a factor on the order of one.

For the Faraday scheme, at small dispersive phases phases φ (see Equation (3.5)), the
intensity is given by [Soh21]:

Iatom/Iprobe ≈
1 + φ

2
(4.23)

Within this approximation, we can again find the phase from a set of three different
pictures. Cprobe and Cback will again be the digital count without atoms and without light,
while Catom will be the count of the interference pattern caused by the phase φ. We will
again define Cin = Cprobe − Cback and Cout = Catom − Cback

We can also again define a transmittance

Tdisp = I(φ)/I(φ = 0) = 1 + φ (4.24)

however as the intensity is now given by an interference effect, rather than by absorption,
this transmittance must not necessarily be smaller than one.
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With this definition we can recognise, that

φ =
Cout − Cin

Cin

(4.25)

which allows us to find the SNR

SNROD =
OD√
σ2
OD

(4.26)

with

σ2
OD =

(
∂OD

∂Cin

)2

σ2
Cin

+

(
∂OD

∂Cout

)2

σ2
Cout

(4.27)

=

(
4∆

Γ

Tdisp
Cin

)2

σ2
Cin

+

(
4∆

Γ

1

Cin

)2

σ2
Cout

. (4.28)

Where ∆ si the detuning and Γ the linewidth. Thus with the results from the PTC
analysis, we can again write the total noise in Cin and Cout in units of digital counts as:

σ2
Cin

(s, t) = (2σ2
read + sCsat +Q2

FPNs
2C2

sat) (4.29)

σ2
Cout

(s, t) = (2σread + TdispsCsat + T 2
dispQ

2
FPNs

2C2
sat) (4.30)

And the variance is then given by:

σ2
OD(∆, s, t) =

(
4∆

Γ

Tdisp
sCsat

)2

(2σ2
read + sCsat +Q2

FPNs
2C2

sat)

+

(
4∆

Γ

1

sCsat

)2

(2σread + TdispsCsat + T 2
dispQFPNs

2C2
sat). (4.31)

And the SNR of a bright background dispersive imaging scheme at small φ may be
estimated to via Equations (4.26) and (4.31). To keep the dispersive phase small enough
to have an approximately linear relationship with the intensity, detunings (in units of Γ)
of about half the bare OD are needed (see Equation (3.5)). Due to the large linewidth of
the 421nm transition, reaching these large detunings is not easily possible for expected
bare ODs around 100. For the 626nm transition, reaching detunings of hundreds of
linewidth is easily done with a single AOM. The following calculations will therefore only
consider the 626nm light as it is much better suited for far off resonance imaging and
they are shown in Figure 4.4.

For these calculations, the detuning is kept above ∆ > 10Γ, to keep the effect of the
phase ϵ small compared to φ (see Equations 3.5,3.6). For bare ODs in the single digits,
phase contrast imaging then results in limited SNRs. At very large OD however very
high SNRs can be reached.
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(a) 626nm, ToF (b) 626nm, In-Situ

Figure 4.4: Calculated Signal to Noise Ratios (SNRs) for dispersive imaging at 626nm
light. The SNRs where calculated for the expected bare ODs in-situ and after ToF (see
Table 4.1). The exposure time limits due to the displacement of the atoms, the Doppler
shift and the saturation of the pixels is given by a cyan dashed line, a blue continuos line
and a white continuos line respectively. The colourbars indicate the SNR at a parameter
set.

4.3.3 Choice of Suitable Imaging Scheme

From the above results it was decided to keep and improve the vertical absorption imaging
arm at 421nm. By increasing the intensity of the imaging beam, high SNR absorption
imaging of within the appropriate probe conditions can be expected as long enough
intensity is available (up to s = 100) and as long as the bare OD is not too large (below
σ0n̄z = 100).

At the same time, for imaging very large atomic densities a dispersive imaging scheme
for 626nm light was designed. Dispersive imaging will also have the advantage of being
non-destructive so that many pictures of the same atomic cloud may be taken in succes-
sion. The ability to tune the detuning over a large range should make this an attractive,
versatile imaging scheme. Both the design of a dispersive imaging scheme (Section 4.5)
and the improvements to the absorption imaging scheme (Section 4.6) will be described
below. A simulation that was written to aid the design of a phase contrast imaging
scheme, will be introduced in the following section.

4.4 Simulating Phase Contrast Imaging

In order to be able to explore different imaging techniques, especially phase-contrast
imaging, the propagation of an arbitrary beam through a system of optical components
was simulated. This was used to verify the functionality of a phase spot in general and
to aid the design of a specific phase spot. Although calculating the waist of a Gaussian
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beam after a lens or during free space expansion may even be done by hand using rather
simple formulas [ST91a], calculating the evolution of a complex light field of arbitrary
shape through different optical elements requires rather more computational power and
some more thought.

The simulation written for this thesis is based on Fourier optics and is able to take
a beam/ light field of arbitrary (space-dependent) intensity and phase and to simulate
(among others) the following :

1. free space propagation

2. effect of an aperture

3. effect of a (thin) lens

4. effect of a phase spot

Thus, the simulation allows one to define an input field of arbitrary intensity and
phase and let it propagate through the desired optical system. The ability to let the
field acquire space-dependent phases and magnitudes allows one to simulate absorption
imaging and phase contrast imaging.

Simulating free space propagation

The propagation in free space is simulated as described in Section 3.1.2. By taking
the Fourier transform of an arbitrary light field in the input plane, multiplying it with
the transfer function of free space and calculating the inverse Fourier transform of that
product, the propagation of any light field to some output plane can be simulated. It was
verified, that the propagation yields expected results such as Fraunhofer diffraction and
the evolution of a Gaussian beam.

Simulating an aperture

An aperture can simply be implemented by setting the value of the complex field to zero
in certain regions of the simulated space. The simulation verifies that effects such as airy
rings etc. follow directly from a subsequent free space propagation as described above.

Similarly one might simulate absorption in an atomic cloud, by reducing the intensity
of the field according to the Lambert-Beer law for the local density of the atomic cloud.

Simulating a lens as an imprinted phase

This paragraph and the next cover two different possibilities of doing so, each with their
(dis-)advantages.
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One way to approach this problem may be to imprint a space-dependent phase factor
onto the beam just as a real lens would. The phase shift ∆φ caused by a thin lens
centred in the x,y plane around (x,y)=(0,0) on a monochromatic beam may be described
as [ST91d]:

∆φ(x, y) ≈ exp

[
i k0

x2 + y2

2f

]
(4.32)

where i is the imaginary unit, k0 the (free space) wavenumber, f the focal length of the
lens and x, y are the spacial coordinates.

To simulate a field propagating through a lens at z = zlens (where z is the direction
of beam propagation), one only has to multiply the incoming field with this (imaginary)
factor at each position (zlens, x, y) of the wave and let the wave propagate through the
free space after the lens.

This method has the advantage that one may propagate the field to any distance
such that it allows one to place arbitrary apertures at arbitrary positions like directly
before or after the lens and it may work quite well if the focal length of the lens is not
too short, i.e. if the imprinted phases aren’t too big. However it has the disadvantage,
that one might have to define a very large grid with a very small grid size to be able to
use ‘short’ focal lengths and/or large magnifications.

For lenses as will be used here, with a 2 inch aperture and focal lengths around 10cm,
the gradients of imprinted phases become quite large, and one has to choose an extremely
small step size in the simulation to achieve smooth phase shifts in the field. If the grid
size in the simulation is too small and the step size too large the difference in phase
between two adjacent pixels becomes large, the field becomes strongly pixelated and the
simulation breaks down. Taking a Fourier transform of a field, which has a (strongly
varying and) strongly pixelated phases, results only in nonsensical outputs that have
some kind of square symmetry, representing the pixels in the grid. From experience, it
seems that using a simulation grid, that is 3 times longer than the largest waist a Gaussian
beam will acquire while propagating the system is usually sufficient not to get noticeable
aberrations from the non-infinite grid size. Then the step size has to be adjusted that
both intensity and phase varies smoothly over the whole grid.

If one wants to work with large magnifications, this can become problematic, as during
part of the propagation most of the grid will be empty, while nearly all of the beam (and
thus most of the phase information) will be squeezed into a few pixels. This strongly limits
the accuracy and dictates the use of very small step sizes. Ultimately, the performance
of the computer sets the limit to the usability of this method.

Simulating a lens via its Fourier Transform Properties

Another method to simulate the transmission through a lens is to exploit the property
that the field in the back focal plane of a lens is exactly the Fourier transform of the front

67



focal plane of that lens (see discussion in 3.1.2). Thus, simulating the propagation through
a lens is as easy (and computationally efficient) as taking a single Fourier transform of
the input field. The only care has to be taken when transforming the output coordinates
accordingly. As can be seen in Equation (3.29), the output field is proportional to the
Fourier transform F(x/λf, y/λf). Thus after taking the Fourier transform of the field in
the front focal plane, the coordinates in the back focal plane are rescaled. This scaling
can be compensated by rescaling the step size ∆x. The new step size is:

∆x′ =
∆kx
λf

(4.33)

where ∆kx is the step size of frequencies in the Fourier transform. As symmetrical grids
where used in this simulation, where ∆x = ∆y the same scaling applies to both axes.

The disadvantage of this method is, that the beam propagation can only be sim-
ulated form exactly the front focal plane to exactly the back focal plane. To simulate
optics that are a short distance out of focus, one may do a subsequent free space prop-
agation (forward or backwards of the light propagation direction). Simulating optics far
out of focus (like an aperture at the position of the lens however, is not practical with
this method.

Simulating the effect of a phase spot

To simulate a phase spot, an additional phase was simply added within the radius of the
phase spot. To understand the importance of homogeneity of the phase spot, a degree of
random noise could be added to the phase imprinted by the spot.

Also, showcasing the functionality of a phase contrast imaging scheme, the Figure 3.6
taken from Meppelink et al. [Mep+10] could be replicated (see Figure 4.5). The simu-
lation was used through the design of the phase contrast imaging scheme, to determine
appropriate parameters.

4.5 Design of new Phase Contrast Imaging Setup

The specific design of a phase spot for phase contrast imaging depends on the specific
requirements and characteristics of the imaging system in which it will be employed.
Specifically, the depth of the phase spot will of course depend on the required phase shift
and on the wavelength, that is to be shifted. The size of the spot will depend on the
waist of the beam in the Fourier plane. Here, the chosen geometry depicted in Figure
4.6.

For the implementation of a phase contrast scheme it is not relevant whether the
‘spot’ itself is a small indent into or an extrusion out of a substrate. If a spot is chosen
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Figure 4.5: Simulation of a phase contrast image using a phase spot. The phase spot
causes a π/3 phase shift between atom beam and probe beam. An atomic cloud was
approximated to having a Gaussian distributed surface density. In the center, this cloud
imprints the dispersive phase φ = 3.5π. The oscillating intensity pattern is due to the
intensity dependence given by Equation (3.57)

to be a small extrusion from the substrate, the phase of the ‘probe beam’ (Eprobe) will
be advanced compared to the rest of the beam (θ > 0). In this case a negative detuning
of the imaging light will cause the atomic density to imprint positive phases φ on the
light (see Equation (3.5)) and the intensity will be roughly linear with φ for small φ. For
technical reasons, etching a small recess into a substrate was found to be more precise. In
this case the phase of the probe beam will be retarded compared to the rest of the beam
(θ < 0) and a positive detuning of the imaging beam should be chosen. The intensity of
the light in the imaging plane is then given by Equation (3.57) and depicted in Figure
3.5. It will again be linear with intensity for small phases, but in this case I ∝ −φ.

The substrate that will contain the phase spot is a 2” fused silica window [Cor25]. A
surface finish of λ/20 was chosen after the surface flatness was determined to be sufficient
in a simulation. At a wavelength of 626nm fused silica has a refractive index of n =

1.45724. Thus, to reach a phase retardation of θ = −π/3 a 228nm deep recess has
to be etched into the substrate. Different manufacturers where contacted and finally
(only) HOLOEYE Photonics AG agreed to manufacture such a spot, who had previously
manufactured a very similar phase spot for the group Oberthaler group in Heidelberg (see
[Joo13]). The manufacturer estimated that the depth of the spot can be manufactured
to a precision of ±10nm, while the transition zone (see Figure 4.6) was estimated to be
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at an angle of below 10°, which may reduce the radius of the spot by 40nm.

Figure 4.6: Schematic of a phase spot consisting of a small recess or ‘dip’ in a larger
substrate. The left side shows a side view, cut though the center of the phase spot itself.
The etching process results in a certain ‘transition zone’ around the spot. The right side
shows the position of the recess on the substrate. Figure adapted, taken form [Joo13]

The radius of the phase spot should of course be sufficiently larger than the waist of
the focussed probe beam (Eprobe in Figure 4.7), such that ‘all’ of the probe beam is phase
shifted against the diffracted part of the beam, also called atom beam (Eatom in Figure
4.7). At the same time the phase spot should be small enough as not to disturb the atom
beam and to allow for some margin of error in the alignment of the phase spot to the
beam. The waist of a beam depends on the focal length of the lens, that focusses the
beam. In the vertical absorption imaging setup of BoDy, the first Fourier plane is not
accessible, as the focal plane of the objective is mere millimetres behind the objective
optics [Phi23]. To get access to a second Fourier plane, where a phase spot may be
employed, a second 4f-setup can be build behind the first and the phase plate containing
the phase spot may be placed in the Fourier plane of the second 4f-setup (see Figure 4.7).
The focal lengths of the lenses where chosen due to the constraints of the optical table
to be f2=400mm, f3=300mm and f4=500mm. This results in an overall magnification of
M=20.7.

To determine an optimal radius the formation of an image was simulated for phase
spots of different radii. The image of a test object contains sharp features with sizes
similar to the atomic cloud that is to be imaged in experiment. The prominence of these
peaks (given by the difference in local background intensity and peak intensity) may thus
give an indication on the expected contrast in the atomic images. The prominences are
plotted for a range of different phase spot radii in Figure 4.8.

The prominence for a spot radius of 4µm is significantly below that of an 8µm spot.
This reduction in contrast is expected to happen when the size of the phase spot becomes
smaller than the waist of the focussed beam and no phase shift is applied to a significant
part of the probe beam. For larger radii the contrast remains more or less constant,
while at phase spot sizes larger than 36µm the atom beam Eatom begins to be affected,

70



Figure 4.7: Position of the phase in a second 4f setup. The Fourier plane of the objective
is not accessible due to the actual size of the objective (not shown here, see Figure 4.10).
The objective and lens f1 make up one 4f-setup, while the lenses f2 and f3 make up the
second 4f-setup. Imaging beam illuminating the atoms is depicted with black outlines
(Eprobe) while the part of the beam that is diffracted at the atoms is depicted in red
(Eatom). The phase spot is expected to only introduce a phase shit exp[iθ] to the probe
beam. The image is formed by interference of the two beams where the total field is given
by E = Eprobe + Eatom.

distorting the image. These distortions can be seen in Figure 4.8, where the intensity
varies over the peaks. In conclusion, the actual size of the phase spot seems not to be
very critical as long as the focussed probe beam is not cut too much. The more stringent
constraint on the phase spot size will be ones own ability to position the focal point a
beam with a waist of a few microns onto an equally small sphase spot. Comparing to
other phase spot designs [Joo13; Mep+10; Sad06; And+97] in which spot radii ranging
from 25µm to 250µm where used it was decided to order two phase plates, one with a
spot radius of rspot = 25µm, one with a spot radius of rspot = 50µm, both on a 2” fused
silica substrate.

Unfortunately, due to a combination of a process deviation and a handling error,
the manufacturing of the smaller spot was delayed. The larger spot was successfully
manufactured and the depth of the spot was measured by HOLOEYE using white light
interferometry to be 229µm (see Figure 4.9). This results in an only 0.4% larger phase θ,
which should have no significant effect.

As an anti-reflection coating needs to be applied to both phase plates, it was decided
to wait until the smaller spot was remade so that both can be coated and afterwards
delivered together. As the phase plates where not received to this day, the implementation
of the phase contrast imaging system did not yet proceed.

4.6 High Intensity Setup and Beam Shaping

Instead, the existing absorption imaging setup was upgraded to improve both the res-
olution and to enable the imaging of dense atomic clouds in-situ. The resolution was
improved by properly aligning the absorption imaging system, which consists of a custom
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Figure 4.8: Simulated prominence of intensity peaks for different phase spot sizes. Mul-
tiple points at one radius correspond to multiple intensity peaks within one image. The
radii are given in meters, the prominences in arbitrary units.

high resolution objective and a tube lens in a 4f-configuration. The alignment procedure
is described in the next section.

Before aligning the imaging arm, a new smaller beam waist was chosen for this arm
to increase the intensity on in the object plane. From the results of sec.4.3, an intensity
range of s = 0.5Isat → 50Isat in the object plane was thought to be optimal. By setting
the maximum intensity to be around s = 50Isat the saturation of bright background
pixels can be avoided, while a single AOM enables the imaging parameters to be tuned,
providing a versatile high SNR imaging system for ODs in the single digits and below.

The available optical power of the 421nm laser in the imaging arm was measured to

Figure 4.9: White light interferometry measurement of the depth of the rspot = 50µm
phase spot. The mean depth within the coloured section in the spot itself is 229nm.
Measured by HOLOEYE Photonics AG
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be Pimg = 2.5mW. To reach a saturation of s = I/Isat = 50 with this little power, a
beam width of around 240µm would be needed in the object plane. To achieve a simple
imaging system with a small beam waist on the order of a few hundred µm different
available collimators in the 60FC and 60FC-SF series form Schäfter+Kirchhoff [Oec25]
where tested. The tested collimators featured focal length from 6.2mm down to the
shortest focal length available of 4.0mm, where a shorter focal length corresponds to a
smaller waist of the collimated beam.

The 60FC-SF series feature a ‘super-fine’ adjustment screw that allows for a more
precise setting of the focus. Without this 0.35mm thread pitch adjustment screw a precise
setting of the focus was experienced to be highly challenging and not well reproducible
and the collimators of the 60FC series where ruled out.

Within the 60FC-SF series, the collimator with the shortest focal length of 4.5mm

was chosen to be installed into the imaging arm. The beam was focused onto the position
of the atoms, around 250mm away from the collimator, which yields a waist of around
w0 = 300µm.

In a test setup, the width of a beam was measured at various positions after the
collimator of 4.5mm focal length. The beam was collimated by using a shear plate
positioned about 250mm away from the collimator and the resulting expansion can be
seen in Figure 4.10 (bottom). With the thus found values for the waist and focal point of
the beam, the expansion in the imaging arm was calculated following Gaussian optics (see
[ST91a]). In Figure 4.10 (top) the evolution of the width of the beam through the optical
system can be seen, where the shaded colours indicate the radius of 1w, 2w & 3w where w
indicates the width of the beam where the intensity has fallen off by 1/e2. Evidently, even
such a small beam expands quite significantly after the objective. The 2′′ lens 782.2mm
away from the objective is just large enough not to cut the beam below 3ω.

With a beam of waist w0 = (305± 2)µm a saturation of s = 30 can be expected. This
is still large enough to enable a versatile vertical absorption imaging arm. To increase
s further, a little more power will have to be distributed to the imaging arm or the loss
of power in the arm itself, due to beam splitting and dichroic optics, would have to be
reduced.

4.7 Alignment of a 4f Setup

During the adjustment of the high intensity absorption imaging system, the whole 4f
setup needed to be aligned to bring the atoms and the camera into focus. This proved
to be challenging, as the microscope objective has a depth of field of only 0.3µm [Phi23]
and the alignment of objective, tube lens and camera is coupled. Misalignment of either
one may be somewhat compensated by any other element, however the lowest optical
aberration may only be found in the optimal setup. The process can be improved, by
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Objective
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Figure 4.10: Bottom: Least squares fit to measured beam widths. A beam waist of
w0 = (305± 2)µm and a focal point at (192± 11)µm were found. Top: Evolution of the
width ω(z) for a Gaussian beam of these parameters (blue) through the vertical imaging
system of BoDy. In red, light that scatters in the object plane and that can be collected
by the objective is indicated. The dashed lines indicate the sizes and positions of different
mirrors in the imaging arm. Both: Three different intensity shades indicate the radius of
1w,2w and 3w.

decoupling the alignment of the tube lens and the alignment of the objective.

First of all, we note (as explained in Section 3.1.4) that the distance between objective
and tube lens does not actually matter in an absorption imaging system. Thus one ‘only’
has to align the objective to the atoms and the tube lens to the camera. The distance
between objective and tube lens can then be chosen more or less freely, according to the
experimental constraints, without the need for precise alignment.

In our case, where the objective of 32.2mm focal length has a very short depth of
field, while the tube lens of 750mm has a much larger depth of field, the needed precision
for the alignment of the tube lens is far smaller.

The allowable misalignment of the tube lens was estimated in a simulation. For a
4f-setup of the same parameters, the tube lens was misaligned by an increasing amount.
Using a USAF1951 resolution test chart as an input intensity pattern, where the smallest
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structure (group 1,6) has a line width of about 2.5µm in the atom plane, the defocus of
the tube lens was simulated and the loss of resolution was visually probed.

(a) 0 µm (b) 50 µm (c) 100 µm

Figure 4.11: USAF1951 resolution test chart with a smallest line width of 2.5µm in group
1,6 in a 4f-setup with M=23.3. The 750mm tube lens was misaligned by 0µm, 50µm and
100µm

As this imaging system will be used to investigate supersolid states with density
modulated features on the order of a few microns and to be able to use the full resolution
of about 0.5µm, the loss of resolution for a 50µm displacement was deemed as a limit.

Thus if the tube lens can be aligned within 50µm precision to the camera, the objective
may then be aligned by focusing small structures in a camera image. However, reaching
a 50µm precision on a distance of 750mm is still a challenging task.

4.7.1 Alignment of 4f-setup with a large Gaussian beam

One way to precisely position the tube lens compared to the camera is by focussing a
large Gaussian beam to the smallest possible waist with the tube lens. By moving the
camera to the position where the width of the beam is smallest, that is where the beam
profile on the camera screen is smallest, the camera can be brought into the focal plane
of the lens. The resolution achieved is then on the order of the Rayleigh range of the
focussed beam.

Two issues arise however. First of all, the large beam need to be collimated very well,
which is to say, the lens has to be placed more or less exactly at the beam waist. The
notion of ‘more or less’ is specified by the Rayleigh length of the beam. For a Gaussian
beam with large waist, the Rayleigh length can be huge (for a 20mm Gaussian beam at
421nm it is around 3km). That means that the placement of the lens relative to actual
beam waist does not have to be all that precise at all! However, the issue remains at
collimating such a beam. Without being able to measure the beam width at different
positions over the range of the Rayleigh range itself (which can be several kilometres), it
is not easy to find its waist or to be able to tell where it actually is collimated.

Another issue is that with a 750mm lens even a 20mm beam cannot be focussed down
such that its Rayleigh range is small to allow for a 50µm precision. This can be seen in
a basic calculation for the width of a Gaussian beam (see Figure 4.12).
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Figure 4.12: Width ω(y) of a 24mm Gaussian beam, focussed by a 750mm lens

The waist of the focussed beam is 4.2µm and it about doubles after 250µm. That
means that the beam diverges from a spot with a radius at 1/e2 Intensity of just around
1 pixel to a radius of around 2 pixels, 250µm away from focus. Thus finding the focus
point within a precision of 50µm can be quite challenging.

4.7.2 Alignment of 4f-Setup with a Bahtinov-type mask

Instead of finding the focal plane of a large Gaussian beam, one can also exploit the
property of a lens that the Fourier transform of the field in the front focal plane can
be found in the back focal plane. Thus a mask with a pattern that has a known and
recognisable Fourier transform may be placed in front of the lens and the focal plane will
be found there, where the Fourier transform of the mask pattern is visible. This can be
expected to yield a greater precision in alignment, as the structures in an optical Fourier
transform will diverge faster than a Gaussian beam.

In the beginning of the 20th century masks with holes at specific locations where
developed by Hartmann [Har04], which could be used to map out aberrations in astro-
nomical telescopes and to bring them into focus. Following along similar ideas Bahtinov
presented a specific mask design as a focusing aid for amateur astronomers in an online
forum [Bac05]. This kind of mask seems to have gained quite some popularity among
(amateur) astronomers and sparked different, similar kinds of designs [Car09].

As the mask is intended to be used on focusing telescopes on stars, which are dim
point-like sources of white light, a mask as presented by Bahtinov can be quite helpful
(see Figure 4.13).

The use of grids at three different angles, as presented by the Bahtinov mask in Figure
4.13, serves the dual purpose of 1) allowing enough light of a dim light source through
the mask to the sensor and 2) having an asymmetric Fourier transform. As can be seen
in Figure 4.13, the Fourier image (the 2D Fourier Transform of the image) of the mask is
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(a)
(b) (c)

Figure 4.13: (a) Original Bahtinov Mask with simulations of the observed pattern on a
screen (b) in focus and (c) out of focus by 100µm. Figures adapted from [Bac05].

only symmetric in the focal plane, but starts to tilt away from this position as the screen
moves out of focus.

In a cold atom experiment a similar kind of mask may be used, however it should be
adapted as very different light sources are available. First of all, the use of white light may
cause chromatic aberrations in the Fourier image, which are actually rather helpful in the
case of astronomy. In our case however, we can illuminate a mask with monochromatic
laser light of comparatively arbitrary intensity. That means, while a similar arrangement
of angles may be kept in a mask design to from a asymmetric Fourier image, the grids
can be replaced by single slits. While the Fourier image of a finite grid consists of points
of decreasing intensity, the Fourier image of a slit is again a line, which will be helpful in
trying to focus our system.

(a) Bahtinov-type Mask
(b) 0µm (c) 50µm

Figure 4.14: (a) Adapted Bahtinov-Type Mask with the observed pattern on a screen (b)
in focus and (c) out of focus by 50µm simulated with using the propagation algorithm
presented in Section 4.4.

Figure 4.14 shows the adapted Bahtinov-type mask that was designed and used for
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aligning the tube lens in this thesis. The simple pattern of three slits forming a Y shape,
where the lower two slits meet at a 30° angle, produces a Fourier image of three lines
intersecting in one point. If the screen is displaced from the focal plane of the lens by
even a small amount, the central line is displaced against the other two lines that are
forming an X shape (see Figure 4.14c).

Due to the nature of the Fourier transform, the Fourier image will have some degree
of modulation due to the finite aperture of the mask. The size of the pattern itself in the
Fourier plane is determined by the width of the slits in the mask. Here, as the tube lens
in question has an aperture of 2′′, all masks shared that same aperture. In this case the
pattern-modulation due to the aperture was of no concern.

The smaller the slits are (up to Abbe’s limit) the longer the pattern will appear in the
Fourier plane. After simulating and experimenting with Bahtinov-type masks of different
slit widths, the smallest slit that could be manufactured with a width of 100µm was found
to work best. In fact, for a slit of such small size at an aperture of 2′′ and a 405nm laser
of around 20mm waist and around 1µW power, the pattern is so large that it is easily
visible by eye and can serve as a rough positioning guide for the camera already.

Figure 4.15 shows a mask that was used for the alignment of the tube lens and exem-
plary images in and out of focus by a few hundred micrometers. This should illustrate
how the misalignment of the lens can be seen in the Fourier plane. With a high resolu-
tion camera and a fitting algorithm, to quantify the displacement of the centre line in the
Fourier image, an alignment within tens of micrometer was achieved.

(a) 0.1mm slits (b) in focus (c) out of focus

Figure 4.15: (a) Bahtinov-type mask with 0.1 mm slits that was used to align the tube
lens of a 4f setup. Notice the small 0.1mm slits in a larger groove. The measured intensity
in the Fourier plane when the tube lens is in focus (b) and out of focus (c).

A large beam is again helpful for precise alignment and the alignment is again critically
dependent on the collimation of the beam. While this problem cannot be circumvented
by the Bahtinov-type alignment tools, this method proved to serve as a good initial
alignment of the tube lens. From there, the objective can be focussed on small structures
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in the object plane. In practice a beam of 25mm waist was used and collimated with a
shear plate.

Prior to this effort the collimation and intensity of the imaging beam was unclear and
the 4f-setup was not well aligned. Neither the ideal position of the objective, nor of the
tube lens were known and the alignment of both was done in the image plane on the
camera. In such an alignment their positions are coupled however and it turned out (as
the microscope objective was misaligned) that the 750mm tube lens was roughly 100mm

out of ideal alignment. Once the tube lens was aligned to the camera independently of
the objective position, the objective could be brought into focus and the resolution of the
imaging system could be improved.

4.7.3 In-Situ Images of Density Modulated States

After increasing the intensity of the vertical absorption imaging arm and its aligning im-
ages of density modulated phases of Dy could be taken. A few of these pictures, taken at
different intensities and exposure times, are shown in Figure 4.16. These pictures demon-
strate that the high-intensity absorption imaging scheme is suitable for imaging highly
dense atomic clouds in-situ. They also finally allow the verification of the calculated
SNRs and probe conditions.

In the images of the droplet phases of Figure 4.16, we find that the actual maximum
bare OD increases with intensity and is around σeff n̄z = 8 in the highest intensity
pictures. The increase with intensity could indicate that the fully saturated regime is
not yet reached and that the SNR is underestimated at lower intensities. But even at
the highest intensities the value σeff n̄z = 8 is much smaller than the bare OD of 254
previously estimated from a similar experiment [Soh+21] (see Table 4.1). Partly this
reduced OD can be attributed to the polarisation of the light currently used, which
reduces the absorption cross-section by about half (σeff = σ0/2). On the other side,
this can also simply be attributed to differences in the experimental conditions. Indeed,
compared to [Soh+21], we observe a larger system size.

At the maximum bare OD of around 8, the SNR and appropriate probe conditions
can once again be calculated (see 4.3). Both for the used absorption imaging scheme
and for the designed phase contrast imaging scheme, the result are shown in Figure 4.17.
The parameters that where used to take the images in Figure 4.16 are indicated by the
letters a,b,c and d. By eye, there seems to be a nice agreement between the experimental
pictures and the estimated SNR. Interestingly, the pictures with parameters a and d
are outside of the appropriate probe conditions. It may therefore be assumed that the
droplets in the picture taken at s=0.7 were dispersed by the imaging light itself. Also,
in the image taken at s=63, a problem of apparent negative OD appears. The colour
scheme in Figure 4.16 is cut at OD=0, but the regions of apparent negative OD can be
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Figure 4.16: In-Situ absorption imaging pictures of droplet and stripe phases. The
droplets (stripes) where prepared at an external magnetic field of 2.30G (2.45G). The
images where taken at different intensities and exposure times indicated above the fig-
ures.

80



seen where ‘voids’ appear in the cloud of droplets. Comparing to Figure 4.17, this issue
may arise due to the saturation of the pixel in the bright background picture.

The calculated SNRs for the dispersive imaging scheme indicates a usable parameter
regime for high SNR images. Quite large saturation parameters may be need on the
order a few hundreds. Due to the low saturation intensity of the 626nm transition,
this may actually be achieved even at a large beam waist of 12mm. A phase contrast
imaging scheme may thus still present a useful addition to the experiment providing
non-destructive measurements.

(a) (b)

Figure 4.17: Calculated SNRs and appropriate probe conditions for the measured in-situ
density of droplets. For the (a) absorptive imaging scheme at 421nm and (b) for the
dispersive imaging scheme at 626nm. The letters in (a) indicate the parameters used in
Figure 4.16. Notice, that the bare OD for the phase contrast imaging differs from the
absorption imaging scheme, due to a change of the absorption cross section σ.
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Chapter 5

Simulating 161Dy Trapping for FerDy
Experiment

5.1 Experimental Results from BoDy

During the planning phase of the new FerDy experiment in which fermionic Dysprosium
is to be studied, the trapping of 161Dy was attempted in the 2DMOT of the currently
operating "BoDy" experiment in Heidelberg. The 2DMOT is well described in [Jin+23;
Gao22]. While it was clear that the fermionic isotopes will behave differently to the
bosonic ones due to the hyperfine splitting of the former, it is a priori not clear how this
difference would affect the trapping efficiency.

In principle, two choices for fermionic Dysprosium isotopes are available due to the
abundance of isotopes. The isotope 163Dy has an inverted hyperfine structure due to a
positive AHFS coefficient, which results in the ground state hyperfine level F = 21/2

having the highest energy. The only closed hyperfine transition between J = 8 to J ′ = 9

is the transition between the F = 21/2 to the F = 23/2 sublevels, it is required to drive
a transition between these highest hyperfine sublevels. Cooling to degeneracy from these
highest hyperfine states leads to losses due to spin changing collisions.

Therefore, we focus on trapping 161Dy. To probe the influence of the hyperfine struc-
ture, trapping of the different largely available isotopes from 160Dy to 164Dy was attempted
in the current experimental setup of BoDy.

Different transition of the different isotopes are detuned by only a few GHz from the
421nm transition of 164Dy. A spectrum of different transitions can be seen in Figure
5.1. Thus, by simply scanning the detuning of the single laser in bow-tie configuration,
that forms the 2DMOT, the trapping of different isotopes can be selected. To quantify
the trapping of the different isotopes, fluorescence images where taken at many different
detunings. By the brightness of these pictures and the data from [LCB09], the different
transitions and isotopes could be identified.
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Figure 5.1: Spectrum of different transitions of different Dysprosium isotopes. All tran-
sitions are from J = 8 to J ′ = 9, for the bosonic isotopes, this gives only one peak each,
for the fermionic the spectrum is divided into the different hyperfine transition, labelled
by (F → F ′). Figure taken from [LCB09].

With the 2DMOT of BoDy that features a magnetic field gradient of 34G/cm, four
421nm laser beams in a bow-tie configuration at an intensity of 1.76Isat and a detuning
of −1.8Γ, no trapping of 161Dy was observed. It was tried to improve the trapping, by
adding a (up to 20mW) repumper was added. The repumper is an additional laser beam,
that serves the purpose of pumping atoms that are in the ‘wrong’ hyperfine state back
into the desired one (see Figure 5.2). The blue laser that drives the closed transition
from F = 21/2 to F ′ = 23/2, that forms the 2DMOT, has a small chance to drive
the F = 21/2 to F ′ = 21/2 transition. Even though this transition is around 10Γ

detuned from resonance, including the detunings form the Zeeman and Doppler shifts,
the transition probability is non-negligible. Once in the F ′ = 21/2 state, the atoms may
decay back into the F = 21/2 or the F = 19/2 hyperfine state as F = F ′ ± 0, 1. The
purpose of the repumper then is to pump atoms that decayed into the F = 19/2 state
back to the F ′ = 21/2 state, where they again have some probability to enter back into
the ‘closed’ transition starting from F = 21/2.

The results of the attempted trapping including a repumper are shown in Table 5.1.
For better clarity the intensities of the images have been integrated along the horizontal.
The background brightnesses come from the strongly and broadly distributed Doppler
shifted atomic jet being more or less resonant with the fluorescence light. The intensity of
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Figure 5.2: Hyperfine structure of 161Dy and the two beams used for an attempted
2DMOT. The blue arrow indicates the 2DMOT beam driving the 421nm transition,
whereas the orang arrow indicates the repumper that was used in an attempt to improve
the trapping of 161Dy. Figure taken from [LCB09] and adapted.

the 2DMOT is both dependent on the trapping efficiency and on the natural abundance of
a given isotope. The 2DMOT of 160Dy with a natural abundance of only 2.3% [Kon+21]
shows up only faintly against the background in fluorescence imaging. But evidently, there
is still no trace of a 161Dy 2DMOT even though its natural abundance is comparable to
that of 164Dy. At this point it is not yet clear if the atoms are actually not being trapped
or if the fluorescence signal is merely to faint. It is clear however, that this issue requires
a more thorough understanding.

Thus, two approaches where chosen to investigate the dynamics of trapping 161Dy.
An analytical model was built to investigate the relevant detunings between the different
hyperfine transitions under at different magnetic fields. At the same time the trapping of
different Dysprosium isotopes was simulated with the PyLCP python package [Eck+20].
In the following, first the analytical model is introduced, then the working principles
of the PyLCP simulation are described and the combined results and conclusions are
presented.

5.2 Analytical Model

The aim of the analytical model was to calculate the detuning of all possible hyperfine
transitions for a set laser frequency and from this, calculate a scattering rate for each
of the transitions. This can be used to estimate the force contribution of each of these
transitions and to help understand the dynamics of optically pumping the atoms into
specific states.

As a fast atom travels into a 2DMOT, it experiences a whole range of Zeeman shifts
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Isotope Detuning[GHz] Fluorescence Image Integrated Intensity
[a.u.]

164Dy 0

0

100

200

300

163Dy 0.29

0

100

200

300

162Dy 0.93

0

100

200

300

160Dy 1.93

0

100

200

300

161Dy 2.18

0

100

200

300

Table 5.1: Fluorescence pictures of a 2DMOT for the different isotopes. To help see even
the faint 2DMOTs, the intensity of the fluorescence pictures was integrated along the
horizontal and is depicted in the rightmost column. The laser detuning was optimized
to maximise the brightness of the fluorescence images. In the range of frequencies that
are expected to trap 161Dy no indication of a 2DMOT was found. The detuning is given
relative to the optimized 164Dy 2DMOT. Data taken (with repumper) by the DyLab
team.

due to the gradient field in the MOT and (if it is affected by the MOT beams) a similarly
large range of Doppler shifts due to the change of velocity. It is therefore quite possible
that some transition becomes resonant with one of the four MOT beams at an unwanted
position in the phase space spanned by velocity and local magnetic field. To estimate
this behaviour, the analytical model takes the following mechanisms into account:

Doppler Shift

The detunings and scattering rates are calculated at some fixed velocity v. This velocity
causes a Doppler shift given by Equation (2.65).
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Light Detuning

All detunings are specified to a reference frequency (usually the frequency of the closed
F = 21/2 → F ′ = 23/2 transition). The laser frequency is statically red detuned to the
reference frequency. Each transition is given the linewidth of 32.3MHz, which dictates
the scattering rate for detuned light. Furthermore, a certain polarisation of the laser light
is specified, which limits the amount of available transitions between hyperfine levels.

Hyperfine Structure

Essentially, the hyperfine structure of the isotopes is specified. Each hyperfine level is
split into Zeeman sublevels in the presence of a magnetic field following Equation (2.68).

The average force contribution of the transition between two states was estimated,
following Equation (2.53) & Section 2.2.6, to be:

FFF ′

mFm′
F
= ⟨F mF |d |F ′m′

F ⟩
ℏk
2
Γ

s

1 + 4(∆/Γ)2
(5.1)

The detuning ∆ = ∆L +∆Dop +∆Zem +∆HFS is the total detuning of the laser light
from a reference value. As reference, the F = 21/2 → F ′ = 23/2 hyperfine transition
was chosen. The hyperfine splitting from the fine structure level at zero field is given
by ∆HFS. The Zeeman effect shift the energy levels of the Hyperfine states, lifting the
degeneracy of the hyperfine manifolds. This energy shift is described by the described as
the detuning ∆Zem

This rate equation model does not model the actual force on an atom accurately. It
rather described the scattering probability between different hyperfine levels. The force
is approximated by multiplying this rate with photon momentum ℏk/2. This model does
not take the actual populations of specific hyperfine levels into account and there is no
mechanism implemented, that simulates the optical pumping to different levels. This
dynamic is implemented in PyLCP to some degree (see Section 5.3.1).

Hyperfine Detunings at Zero Field

Nonetheless, it offers some understanding of the relative detunings of different transitions
and how likely these transitions are. As a first example, the accelerations in the rate
equation model for the fermionic isotopes in a counter-propagating beam at zero magnetic
field are shown in Figure 5.3 for a range of different velocities. Here, the push beam points
in the ‘negative’ direction, resulting in negative accelerations. The beam is resonant with
the F = 21/2 → F ′ = 23/2 transition at zero velocity. The analytical model and the
PyLCP simulation yield near-identical results, as both implement a similar rate equation
model (see Section 5.3.1).
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Where a bosonic isotope would only show one central peak at zero velocity with a
width given by Γ, due to the more complex hyperfine structure the fermionic isotopes show
multiple, distinct peaks. The analytical model calculates the detuning of every possible
|F mF ⟩ → |F ′m′

F ′⟩ transition, which are plotted individually and summed to give the
total accelerations at each velocity. By plotting F → F ′ = F±0, 1 in different colours, the
overall accelerations can be assigned to different transitions. In this case, the F → F ′ =

F + 1 transitions contribute the largest scattering rates, a small contribution is given by
the F → F ′ = F transitions whereas no contribution of the F → F ′ = F − 1 transitions
can be seen on this scale. The ‘closed’ cooling transition F = 21/2 → F ′ = 23/2 is
therefore about 40 times more probable than the F = 21/2 → F ′ = 21/2 transition, even
when both transitions are resonant with the light.
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Figure 5.3: Accelerations due to a counter-propagating push beam for (a) 161Dy and
(b) 163Dy atoms at different velocities, without a magnetic field. The push beam has
an intensity of I = Isat and is resonant with the F = 21/2 → F ′ = 23/2 transition
at zero velocity. The accelerations are calculated both via the analytical model (black)
and the PyLCP simulation (cyan). Due to the good agreement between both models,
the cyan and black curve appear mostly identical in the plot. In the analytical model,
every possible |F mF ⟩ → |F ′m′

F ′⟩ transition is plotted and later summed yielding the
total acceleration (black). F → F ′ = F − 1 transitions are plotted in dash-dotted green,
F → F ′ = F transitions are plotted in dotted blue, and F → F ′ = F + 1 transitions are
plotted in dashed red.

The centered peak for both fermions belongs to the F = 21/2 → F ′ = 23/2 transition,
to which the laser is resonant at zero velocity. For 161Dy, in the regime of negative
velocities (velocities that are parallel to the push beam direction) different transitions
with large scattering rates can be seen. The peak around -200m/s belongs to the F =

19/2 → F ′ = 21/2 transition, the peak above -300m/s is a combination of the F =

17/2 → F ′ = 19/2 and F = 11/2 → F ′ = 13/2 transitions. At positive velocities of
around 100m s−1 to 150m s−1 there seem to be two smaller peaks. These are actually
the contributions of all five transitions where F = F ′. The individual scattering rates of
these transitions are so small however, that they are next to invisible in a linear scaled
plot.
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Similarly, for the 163Dy isotope, the larger peaks, which are in this case found at
negative detunings, belong to the five different possible F → F ′ = F + 1 transitions.
The smaller peaks in the range of negative velocities/ more positive detunings belong
to the F → F ′ = F transitions. However, in this case they can be identified to belong
to the F = 15/2 → F ′ = 15/2 and the F = 17/2 → F ′ = 17/2. Importantly, the
F = 21/2 → F ′ = 21/2 transition is so far detuned, that it only becomes resonant at a
velocity of around −890m s−1. As will be discussed below, this large detuning will explain
the observed trapping of 163Dy where 161Dy was elusive.

The relative strength of scattering rates, which is indicated by the height of the peaks
in Figure 5.3, is given by the the squares of the values of the Wigner-6j symbols (see
Equation (5.1) and (2.62)). The values for Dy are given in Table 5.2. We can see that
the contributions of F → F ′ = F − 1 transitions is heavily suppressed, that F → F ′ = F

transitions give only a small contribution and that the scattering rate is largest for the
F → F ′ = F + 1 transitions.

F \F ′ 13/2 15/2 17/2 19/2 21/2 23/2
11/2 1.0000 0 0 0 0 0
13/2 0.0370 0.9630 0 0 0 0
15/2 0.0005 0.0514 0.9481 0 0 0
17/2 0 0.0007 0.0513 0.9480 0 0
19/2 0 0 0.0006 0.0413 0.9582 0
21/2 0 0 0 0.0003 0.0237 0.9761

Table 5.2: Squares of Wigner 6j symbols for the transitions F → F ′.

Hyperfine Detunings in a Magnetic Field

To study the effect of a magnetic field on the above transitions, the same scenario as
above but at a constant magnetic field of |B| = 100G is plotted in Figure 5.4. A field of
100G was chosen because it roughly corresponds to the field magnitude where the atoms
enter the 2DMOT in BoDy. To keep the F = 21/2 → F ′ = 23/2 resonant, a detuning
of around −4.11Γ/100G was applied. A detuning of around −7.37Γ/100m s−1 has to be
applied to compensate for the Doppler effect. While there are quantitative differences
between the PyLCP simulation and the analytical model, they agree qualitatively. The
likely origin of these differences is the definition of the eigenstates in the two different
approaches. While in PyLCP the eigenstates are determined locally (see Section 5.3.1),
by diagonalizing the atomic Hamiltonian including the Zeeman shift, the eigenstates in
the analytical model are always taken to be the |F mF ⟩ states. As discussed in Section
2.2.4, this basis will cease to be a good approximation as the Zeeman effect can no longer
be treated as a perturbation to the hyperfine Hamiltonian. Working at moderate field
strengths, this only causes quantitative differences.
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Figure 5.4: Accelerations due to a counter-propagating push beam for (a) 161Dy and (b)
163Dy atoms in dependence of velocity at a magnetic field of 100G. The push beam has
an intensity of I = Isat and is right-handed polarised along k. A detuning of ∆ = −4.11Γ
keeps the beam resonant with the F = 21/2 → F ′ = 23/2 transition at zero velocity.
The accelerations are calculated both via the analytical model (black) and the PyLCP
simulation (cyan). For the analytical model, every possible |F mF ⟩ → |F ′m′

F ′⟩ transition
is plotted and later summed. The colour scheme is identical to Figure 5.3.

In the presence of a magnetic field the polarisation of the laser becomes important.
Here the laser has a right-handed polarisation along the wavevector k which will drive
σ− transitions, where mF → m′

F ′ = mF − 1. Most importantly Figure 5.4 shows how
the Zeeman effect broadens the F → F ′ = F transitions. In the case of 161Dy, the
F = 21/2 → F ′ = 21/2 transitions, which is detuned by around −10Γ at zero field,
becomes nearly resonant with the light at zero velocity.
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The Influence of the F = 21/2 → F ′ = 21/2 Transition

To understand the relevance of the F → F ′ = F transitions we need to consult Table 5.2
again. Evidently, the F = 21/2 → F ′ = 21/2 transition remains relatively unprobable,
even if it becomes resonant with the laser. However, if it does happen the atom that is
now in the F ′ = 21/2 state will decay into the F = 19/2 state with a 96% probability.
That means that if a F = 21/2 → F ′ = 21/2 transition happens, it will cause a pumping
to smaller F with near certainty. At the same time there is nearly no natural pumping
from other F ̸= 21/2 into the cooling transition. Even though the F = 21/2 → F ′ = 21/2

transition remains unlikely, as the probability of ‘losing’ the atom into another state is
large and the number of scattering events is very high, this transition causes a quick
de-pumping of the ‘closed’ cooling transition as soon as it is resonant with the light. This
causes the atoms to no longer be resonant with the MOT light and it will be lost. In
comparison, this does not happen in the case of 163Dy, as the F = 21/2 → F ′ = 21/2

transition is too far detuned from resonance to have any significant effect.

The Figure 5.4, may be interpreted as depicting the situation at the ‘entrance’ of a
Zeeman Slower, where the velocity is given relative to the capture velocity of the Zeeman
slower. The positive velocity in the graph correspond to atoms with velocities larger than
the capture velocity, which will not be captured. The negative velocities indicate atoms
that have a velocity smaller than the capture velocity, which are supposed to become
resonant with the light at a later point in the Zeeman slower. In this picture, for 161Dy,
the F = 21/2 → F ′ = 21/2 causes rapid de-pumping of the slowing transition if the fields
are large enough. At some point if the magnetic field is small enough, the scattering rate
of this transition might become small enough, such that its de-pumping effect is negligible
or that it can be compensated. The other F → F ′ = F + 1 transitions do not matter
much in this scenario, as they will not result in any significant pumping to the F = 21/2

state. If atoms in the F ̸= 21/2 states will be slowed by the Zeeman slower and to what
degree will depend on its design.

Similarly this picture can be extended to the ‘beginning of’ a 2DMOT. At the position
where the atoms first come into contact with the beams of the 2DMOT, the situation is
similar as to the entrance of a Zeeman slower as described above, only that an additional
beam is added, co-propagating with the atoms. In this case, atoms that are too slow to be
resonant with the counter-propagating beam at the beginning, will actually be accelerated
into the 2DMOT by the co-propagating beam. This beam will become resonant with the
F → F ′ = F + 1 before it becomes resonant with the cooling transition, causing fast
optical pumping out of the cooling transition before the atom even reaches the center of
the 2DMOT, from whereon it is supposed to be slowed by the counter-propagating beam.

The analytical estimates alone, therefore suggest that low maximal magnetic fields
might be necessary, to successfully capture 161Dy. To get a better quantitative estimate
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on the usable magnetic field range, a simulation of the atomic trajectories can be helpful.
An approach to such a simulation will be discussed in the following section.

5.3 PyLCP Simulation

To better understand the trapping behaviour of the different isotopes in experiment,
the trapping of Dy was simulated. Previously, during the design of the 2DMOT for
BoDy, a Monte-Carlo simulation was written [Gao22]. This simulation however focussed
on the behaviour of 164Dy which was approximated as a two-level system. While this
approximation is reasonable for the bosonic isotopes, the complex hyperfine structure of
the fermionic isotopes necessitates a more precise description.

Other simulations are available in literature either for two-level atoms [Che+21] or
for multi-level, hyperfine structure resolved atoms [Eck+20]. It was decided to rather try
and adapt the existing PyLCP simulation instead of building a new simulation able to
handle multi-level atoms from scratch.

5.3.1 PyLCP Overview

PyLCP is a object orientated simulation written in Python [Eck+20]. The user can
choose between different atomic species and between different levels of approximation
of the governing equations. Arbitrary laser beams can be set up, that are specified by
their beam profile, intensity, detuning and polarisation. By being able to add a custom
magnetic field profile and atoms with initial velocities in initial electronic states, the
simulation can calculate the trajectories of a variety of different atomic species in good
agreement with experimental results [Ste20].

The PyLCP package is able to automatically generate the optical Bloch equations
(OBEs) (see [Ste07; Foo05b]) and solve them for any given atomic species. However
for complex atoms these will be hundreds of (time and) position dependent coupled
differential equations which can be computationally expensive to solve. As we are aiming
to simulate the propagation of Dy atoms we would need to solve the OBEs for a large
number of time steps which will result in very long computation times. The PyLCP
package however offers a step of simplification of the calculations.

By generating rate equations, that compute the scattering rate for transitions between
different eigenstates of the hamiltonian, the calculations can be greatly simplified and
speed up. The full Hamiltonian that is to be approximated is given by: [Eck+20]

Ĥ = Ĥatom + Ĥfield − d · E− µ ·B (5.2)
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The first term is the unperturbed atomic Hamiltonian

Ĥatom =
p2

2M
+ Ĥint (5.3)

with atomic mass M and momentum p, where the term Ĥint contains the internal (elec-
tronic) structure of the atom. The second term describes the external field by

Ĥfield =

∫
ϵ0E

2

2
+

B2

2µ0

(5.4)

where E and B are the electric and magnetic field operators.

For complex atoms the eigenstates of the atomic Hamiltonian are grouped into man-
ifolds n,m, ... associated with a carrier frequency ωn→m and a linewidth Γn→m. For
Dysprosium, these manifolds correspond to the total atomic angular momentum F mani-
folds where the carrier frequency is given by the difference in energy between the |FnmFn⟩
and the |FmmFm⟩ states at zero magnetic field.

The manifolds are coupled through the third term in Equation (5.2), dE, while the
last term µB only acts on the states within a manifold. The µB interactions introduces
Zeeman shifts and lifts the degeneracy between the states in one manifold which are here
denoted as |i, n⟩ with an energy ωn

i . Finally, to find the eigenstates of the atom |i, n⟩, the
Hamiltonian Ĥint −µB is diagonalized and the states are sorted and labelled by energy.

The scattering rate between two states |i, n⟩ and |j,m⟩ due to the laser L with detuning
∆L from ωn→m is then given by:

Rn→m
ij,L =

(Ωn→m
ij,L )2

Γn→m

1

1 + 4
[(
∆L − (ωm

j − ωn
i )− kL · v

)
/Γm→n

]2 (5.5)

where the excitation rate is a generalized Rabi frequency

Ωn→m
ij,L =

Γm→n

2

(
dnm
ij · ϵL

)√
2s(r, t) (5.6)

Here, ϵ′L is the polarisation of the laser and the dipole matric operator between the
manifolds n,m is given by

dnm
ij = ⟨i, n|dnm |j,m⟩ (5.7)

The Doppler effect is captured by the term kL ·v while the Zeeman effect is captured
in the energies of the local eigenstates ωn

i . The quantisation axis is given by the local
magnetic field. A derivation of this rate equation can be found in [Tar15].
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The evolution of population Nn
i in the state |i, n⟩ is given by:

Ṅn
i =

∑
m>n,j,L

Rn→m
ij,L

(
Nm

j −Nn
i

)
+
∑

m<n,j,L

Rm→n
ji,L

(
Nm

j −Nn
i

)
+
∑

m>n,j

Γm→n
ij Nm

j −
∑
m<n

Γn→mNn
i

(5.8)
where the first two terms denote the evolution of the population due to optical pumping
and stimulated emission. The last two terms describe the rate of spontaneous emission
into and from the state n. Γm→n is the decay rate of manifold m to n and Γm→n

ij is the
branching ratio

Γm→n
ij = Γm→n

|dnm
ij |2∑

i |dnm
ij |2

(5.9)

For each time step in the simulation, the evolution of the populations of states is
calculated and the force at each time step is connected to the sum of scattering rates of
all lasers as:

F =
∑
L

ℏkL

2

∑
m,n,j,L

Rn→m
ij,L (Nm

j −Nn
i ) +Ma (5.10)

where a is a constant acceleration due to gravity that can be specified.
The user now only has to define a number of time steps that are to be simulated and

the simulation will calculate the trajectory for the specified amount of time.

5.3.2 Adaptations to PyLCP

While PyLCP allows the use of different pre-defined atomic species, Dy is not included in
this list. Therefore, a function was added, that includes the necessary data to set up the
Hamiltonian Ĥint for Dy in the coupled hyperfine basis. This data consists of the atomic
mass, the nuclear spin and nuclear magnetic moment to define the nuclear properties. To
define the relevant electronic states, the ground state and the 1P1 excited state of Dy was
specified, including the quantum numbers, the lifetime, the Landé factor, and hyperfine
coefficients of each state and the energy of the excited state compare to the ground state.
The relevant data can be found in Section 2.1. The relevant code can be found here:
[Hoe25b].

Apart from calculating trajectories, PyLCP can generate force fields in the phase
space of velocity and position. These forcefields can give a useful visualisation of the
local forces in a MOT. However, the generation of these profiles was implemented by
basically pinning an atom at one position in phase space and letting the populations
involve until they reach an equilibrium. Only then is the force calculated for this specific
equilibrium population.

Due to different pumping effects and the possible non-adiabaticity of a trapping tra-
jectory, this can lead to confusing results. Instead, the function was adapted, such that
some initial population can be defined and will remain fixed, while the forces at each
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point in phase space is being calculated. This variation of the calculated force can be
found (among other useful functions) here: [Hoe25a].

Finally, as the simulation of a single trajectory of an atom with hyperfine structure
can take many hours, meaningful abort conditions where added to the package. These
conditions terminate the simulation when the atom enters a certain region in phase space.
Specifically, the user can add a global radius in real space, that ends the simulation once
an atom surpasses it. This is useful to end simulation runs of atoms that are not trapped.
The user can also specify a set of velocity and position, that defines a ‘trapped’ region.
Once the atom is slow enough and within a certain radius, the simulation is interrupted.

5.3.3 Limitations of the rate equation formalism

and the PyLCP Package

Before showcasing some results of the simulation an important issue has to be mentioned.
Due to the way PyLCP finds the eigenvalues of the Hamiltonian Ĥint − µB and the
way state populations are handled, certain issues arise that can lead to unphysical and
meaningless results.

Underestimation of the Force

This limitation arises due to the simplifications made in the rate equation model. As the
force on an atom is calculated according to Equation (5.10), the force an atom experiences
is proportional to the population in the transition states that are being driven.

This is quite unphysical however, as only the scattering rate depends on the probability
that an atom is in a certain state, but the overall force per scattering event will always be
the same. That means that in the simulation, because an atom is always treated as being
in a superposition of all states, the accelerations of trajectories can be underestimated.
Instead of accelerating/decelerating the few atoms that are in the ‘correct’ state with
the full maximal acceleration and separating their trajectories from those that are in the
‘wrong’ state, a sort of average trajectory is calculated that misrepresents both cases.
If the cooling transition is a closed transition and the atoms are continuously being
pumped into the cooling transition this effect may not matter much. But if there are
de-pumping processes that cause only a small percentage of the atoms to remain in the
cooling transition, their trajectories will not be estimated to a usable degree of accuracy.

Labelling of Hyperfine States

PyLCP finds the eigenstates of the local Hamiltonian Ĥint − µB, by diagonalizing it
numerically and returns states ordered by energy. At low fields this yields the states in
the hyperfine |F mF ⟩ basis. As discussed in Section 2.2.4, the hyperfine basis will cease
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to be a good approximation with increasing field strength. Therefore, the states |i, n⟩
are given in the local eigenbasis rather than in the |F mF ⟩ basis. As the dipole matrix
operator dnm is projected onto this local eigenbasis, this method gives correct results.

However, the method of labelling eigenstates by energy gives unphysical results. Be-
cause the hyperfine manifolds of Dy are closely spaced in energy, the energies of hyperfine
states in different manifolds can cross at moderate fields already. This is illustrated in
Figure 5.5. At fields of only tens of Gauss, the hyperfine sub-states cross in energy val-
ues. Labelling the states only by their energy, then results in an entirely different case as
properly labelling them according to their |F mF ⟩ labels. The numerical diagonalisation
and sorting does not retain any information about state labels, and thus the populations
of two states will exchange abruptly as they cross energy levels. This causes a kind of
sudden, unphysical pumping between states and yields unphysical results.
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(b) States properly sorted

Figure 5.5: Sorting of hyperfine states. The colours in (a) indicate states merely sorted
by their energies. The colours in (b) indicate the actual energies of the |F mF ⟩ states.

As will be illustrated in the following, both of these limitations only apply to atoms
that exhibit a hyperfine structure and the latter due to the pumping dynamics between
different hyperfine states, these issues have only a small effect on 163Dy but basically
prohibit a meaningful simulation of 161Dy trajectories.

5.3.4 Simulation Results

To benchmark the PyLCP simulation, it was first compared to the previously established
results of trapping bosonic 164Dy (see [Gao22]) which were compared to experiment in
good agreement.

In Figure 5.6 simulations of the trapping of 164Dy in the 2DMOT of BoDy are shown.
Both the results of the PyLCP simulation as well as the previously used Monte-Carlo
simulation of a two-level atom are compared in the figure. For the atoms, initially travel-
ling along the x-axis into the 2DMOT angled at 45°, a good agreement is found between
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both between the qualitative behaviour of the simulations, as well as for the trapping
velocity of around 100m

s
. Both graphs show the accelerations, that the atoms experience

at each point in the (phase) space in colour and a set of exemplary trajectories in white.
The cut-off of the force field at a position of around 25mm is due to the aperture of the
cooling beams. A good quantitative agreement of the accelerations is found between the
two simulations.

(a) (b)

Figure 5.6: Simulated trajectories of 164Dy into the 2DMOT of BoDy. The results of the
PyLCP simulation (a) are in good aggrement with those of the Monte Carlo simulation
developed previously [Gao22].

In this case it becomes evident, that the shortcomings of the rate equation model
of PyLCP do not affect the trapping behaviour of 164Dy significantly. First of all the
mislabelling of states does not occur as the bosonic isotope has no hyperfine structure
and all available states can indeed be sorted by energy. And secondly the forces acting
on the atoms are not significantly underestimated, as the circular polarised light quickly
pumps the Zeeman sublevels into a closed transition. There, the population of one state
becomes large and the force is adequately estimated.

The simulations of fermionic Dy are more affected by the limitations of PyLCPs rate
equation model that where explained above. Due to the complex hyperfine structure and
the energetic mixing of different Zeeman sublevels at even moderate fields, the results
of fermionic trapping break down in many cases. For 161Dy, the mislabelling of Zeeman
sublevels happens at around 30G for the ground state and at only around 10G for the
excited state. This leads to an unphysical kind of pumping between sublevels, which will
typically result in a fast depumping of the cooling transitions causing the 2DMOT light
to become ‘invisible’ to the atoms in the simulation. In early simulation runs, a 2DMOT
of 163Dy was seen while 161Dy could not be trapped. What was initially thought to be a
qualitative agreement between the experimental results of Table 5.1, was soon discovered
to be more or less coincidence. The Zeeman energetic mixing between sublevels of the
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F = 21/2 manifold with others, happens only at larger fields (around 80G for the ground
state and around 70G for the excited state) for the 163Dy isotope. Therefore, the issue of
mislabelling the hyperfine states will affect this isotope less (for a fixed magnetic field).

By simulating the trapping of 161Dy in a 2DMOT that works at a lower magnetic
field gradient and thus has a smaller trapping velocity, the effect of the above mentioned
issues can be reduced. And indeed by simulating an angled 2DMOT, similar to that of
BoDy, but at a smaller magnetic field and laser parameters as used in a 3DMOT for
161Dy developed by Lev et al. [You+10], a 2DMOT of 161Dy was found.

Figure 5.7 shows the simulated trajectories for 161Dy both for the BoDy 2DMOT and
an angled 2DMOT inspired by Lev et al. The 2DMOT of BoDy has a magnetic field
gradient of 34G/cm a detuning of −1.8Γ and an aperture of 17.5mm. The Lev et al.
MOT in this simulation has a magnetic field gradient of 10G/cm a detuning of −1.2Γ

and an aperture of 11mm.

(a) (b)

Figure 5.7: Simulations of trapping 161Dy in a 2DMOT. These results suffer from the
limitations of the simulated model, as explained above. The parameters for the 2DMOTs
follow the 2DMOT of (a) the Body experiment and (b) the 3DMOT for fermionic Dy of
Lev et al.[You+10].

Due to the lower magnetic field gradient, the trapping velocity of the 2DMOT in
Figure 5.7 (b) is reduced, but trapping of velocities of up to 15m

s
can be observed. These

results however, should be seen as merely qualitative examples, as the mislabelling of
states was not resolved in these simulations.

5.4 Conclusions from Analytics and PyLCP

The comparison of the hyperfine detunings including different Doppler and Zeeman shifts
shows a good agreement between the analytical model and the PyLCP simulation, vali-
dating the working principle of the simulation.
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The analytical considerations indicate that a quick de-pumping of the cooling tran-
sition at large magnetic fields, due to the F = 11/2 → F ′ = 11/2 transition becoming
resonant, prohibits the capture of 161Dy in the 2DMOT of the BoDy experiment. As
soon as an atom is pumped out of the closed cooling transition, it will be ‘lost’ as further
scattering events and decays will only pump it to lower F manifolds. Also due to the scat-
tering rates between the hyperfine manifolds, the repumper that was used experimentally,
was less effective than naïvely expected.

With the PyLCP simulation successful trapping of 161Dy was simulated, as long as the
maximal magnetic field strength was below 11G. This limitation both reduced unwanted,
unphysical errors in the simulation as well as the expected influence of the F = 21/2 →
F ′ = 21/2. Due to the limitations of the rate equation model as well as the mislabelling
of hyperfine sub-states, the simulation could not be used to determine optimal field
parameter. However, the limitations mentioned above should both reduce the trapping
velocity of 161Dy, as the simulated forces are weaker and the pumping in other hyperfine
manifolds is stronger than in reality. Therefore, the simulation can be treated as a worst
case limit, and trapping of 161Dy can be expected at small field gradients, limiting the
maximal field magnitude.

These results indicate that the permanent-magnet 2DMOT used in BoDy is not suit-
able for trapping 161Dy, and that a 2DMOT operating at much lower magnetic field
gradients will be required. A smaller magnetic field gradient will limit the capture veloc-
ity of the MOT, which will necessitate the use of a Zeeman slower to increase the flux of
captured atoms. Lev et al. successfully trapped 161Dy in a 3DMOT, after slowing a ther-
mal atomic jet in a Zeeman slower [You+10]. The use of a glass cell prohibits positioning
the science chamber in line with the thermal atomic jet however, because this would
result in coating at least one optical window of the cell. Therefore a design featuring a
Zeeman Slower and an angled 2DMOT loading a 3DMOT in the science chamber might
be adapted [Wod+21; Li+23].

More work has to be done, regarding the simulation of trapping 161Dy. The issue
of labelling the hyperfine sub-states will have to be fixed and the rate-equation model
may either need to be improved or a less simplified model might need to be used. These
improvements to the simulation of the trapping of fermionic Dy are currently being im-
plemented by Ximeng Song and the results will be soon be found in his Bachelor’s Thesis.
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Chapter 6

Outlook

This thesis was split into to separate project, one dealing with the in-situ imaging of Dy in
the BoDy experiment and the other with trapping fermionic Dy in the FerDy experiment.

For the BoDy experiment signal to noise ratios (SNRs) of different imaging schemes
where estimated and a high absorption imaging setup was implemented that enabled the
imaging of density modulated states of a cold quantum gas of Dy in-situ. With these
images the SNR estimates were be validated. The design of a new phase contrast imaging
system was presented, it could not be implemented however, due to long delays in the
manufacturing process. In the future this system may still be implemented as it would
enable non-destructive measurements of a highly dens degenerate gas in situ. Both the
ability to measure even larger densities accurately and to take many images of the same
degenerate gas sample may be a useful addition to the experiment. Also a rather unusual
method for aligning a 4f imaging system was employed successfully which enabled an
increase in the resolution of the absorption imaging system.

For the FerDy experiment, the trapping of 161Dy was analysed both analytically and
numerically. The combination of both gave some insights as to why 161Dy can not be
trapped with the BoDy 2DMOT. The F = 21/2 → F ′ = 21/2 was identified to cause
significant losses of the atoms out of their ‘closed’ cooling transition. While a reliable
numerical simulation of the trapping of Dy could finally not be implemented, the findings
indicate that a Zeeman slower will have to be implemented into the experimental design
in order to trap 161Dy. Improvements to the model and to the PyLCP simulation will be
pursued by Ximeng Song, to further aid the design of the new experimental setup.
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