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Abstract

Dipolar ultracold quantum gases have recently opened a door for probing new
states of matter arising from unexpected stabilization mechanisms. The study
of these and further new phenomena at low temperatures and low dimensions
is of great interest for the understanding of few- and many-body physics, and
for potential implementations in quantum engineering. At the DyLab in Hei-
delberg, a new experimental setup is being built to probe ultracold Bose gases
of dysprosium atoms, the most magnetic element of the periodic table. A cru-
cial part of future experimental applications is the realization of a red-detuned
optical dipole trap with tunable periodicity that will allow us to enter the 2D
regime, the so-called accordion lattice. We have successfully designed and im-
plemented a first version of an accordion lattice for 164Dy. Initial test results
enable a better understanding of the experimental realization of an optical ac-
cordion and the instability sources that would eventually cause loss or heating
of the dysprosium atoms. Based on the characterization we propose possible
solutions and considerations for future implementations.



Kurzfassung

Dipolare ultrakalte Quantengase haben kürzlich eine Tür zur Erforschung neuer
Materiezustände geöffnet, die sich aus unerwarteten Stabilisierungsmechanis-
men ergeben. Die Untersuchung dieser und weiterer neuer Phänomene bei
niedrigen Temperaturen und geringen Dimensionen ist von großem Interesse
für das Verständnis der Wenig- und Vielteilchenphysik und für mögliche An-
wendungen in der Quantentechnik. Am DyLab in Heidelberg wird ein neuer
Versuchsaufbau aufgebaut, um ultrakalte Bose-Gase aus Dysprosium, dem mag-
netischsten Element des Periodensystems, zu untersuchen. Ein entscheiden-
der Teil zukünftiger experimenteller Anwendungen ist die Realisierung einer
rotverstimmten optischen Dipolfalle mit abstimmbarer Periodizität, die es uns
ermöglichen wird, in das 2D-Regime einzutreten, das sogenannte Akkordeon-
gitter (accordion lattice). Wir haben erfolgreich eine erste Version eines Akko-
rdeongitters für 164Dy entworfen und implementiert. Erste Testergebnisse er-
möglichen ein besseres Verständnis der Entstehung eines optischen Akkordeons
und der experimentellen Instabilitätsquellen, die schließlich zu einem Verlust
oder einer Erwärmung der Dysprosiumatome führen würden. Basierend auf
der Charakterisierung schlagen wir mögliche Lösungen und Überlegungen für
zukünftige Implementierungen vor.
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Chapter 1

Introduction

Physics has been, thorough history, a source of many answers but many more
questions. At the end of the 19th century and the beginning of the 20th cen-
tury, the classic model of the atom had emerged and established itself, where
according to the Newtonian theory negative electrons could orbit the nucleus
at any distance. However, predictions based on this and other models, such
as a continuous spectrum of heated hydrogen atoms, to name a simple case,
caused the emergence of many mysteries and contradictions, which preceded
a theory of quantum mechanics that could explain the inconsistencies. Quan-
tum physics is, in broad terms, an attempt to construct abstract and simplified-
but not too simplified- models to describe the complex nature of the atomic and
subatomic universe. In the 1920s, Albert Einstein, following Bose’s first ideas,
further developed the quantum theory that describes a mono-atomic gas with
indistinguishable particles occupying the same energetic state. He could only
conclude this conjunction to be a paradox and "as good as impossible". Only 70
years later, in July 1995, atom cooling and trapping technologies allowed scien-
tists to reproduce the theorized macroscopic quantum state of bosonic particles.
Ever since, Bose-Einstein Condensates (BECs) have increasingly proven to be
an irreplaceable tool to exhibit unexpected and revolutionary physics. In con-
trast to Einsteins prediction, the production of BECs is not only possible, but
has become standard practice, and every day more customized and specialized
set-ups are brought to life.

At the Quantum Fluids group in Heidelberg, we are taking advantage of the
experimental knowledge gained on BECs during the last 27 years, to dive into
the emerging field of new orders of quantum gases. BECs realized with bosonic
isotopes of highly magnetic elements, have opened the door to precisely tunable
atomic interactions and, together with highly controlled trapping geometries,
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Chapter 1. Introduction

have enabled the observation of self-bound quantum fluids, droplet crystals,
and self-bound, globally coherent assemblies of quantum droplets, also known
as superfluid solids.

A novel combination of 2-dimensional and 3-dimensional magneto-optical
traps (3D and 2D MOT) for dysprosium atoms, complemented with optical
trapping and 2-dimensional dynamical optical trapping techniques, the so-called
Accordion Lattice, will allow us to probe new physical phenomena arising in
low-temperature and low-dimensional quantum gases. Taking advantage of
dysprosium’s high magnetic moment, we can probe, with high-precision, the
competing dipolar and contact interactions, and the stabilization through quan-
tum fluctuations.

In order to prepare a reliable system to enter the low-dimension regime, it is
necessary to find adequate engineering solutions for loading and trapping dys-
prosium atoms. Inspired by the achievements of various laboratories to create
dynamical optical traps for different atomic species, we design and implement
a customized Accordion Lattice for dysprosium. The aim of this work is to in-
troduce the fundamental physical concepts, expectations and constraints taken
into account for the final design, as well as to present the first realization of the
system and its performance.

Outline

Chapter 2 The first chapter of this thesis will introduce the research area of
ultracold quantum gases and the special effects of dipolar Bose quantum gases
that have led to the discovery of new states of matter. As our experiment will
center on bosonic isotopes of dysprosium, a brief introduction to the relevant
properties of this highly magnetic element will be discussed. Finally, the present
status of the general experimental setup will be introduced, emphasizing the
mechanical constraints that determine the final design of an accordion lattice
for 164Dy.

Chapter 3 The second part of this work centers around the theoretical con-
siderations that influence the main optical characteristics of an accordion lattice.
A general overview of the most important concepts for realizing a red-detuned
tunable optical dipole trap is given. In the end, the interference pattern calcu-
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Chapter 1. Introduction

lations on which the accordion lattice design is based are summarized and the
required trap geometry to enter the 2-dimensional regime is established.

Chapter 4 The fourth chapter will focus on the optical design necessary to
achieve the expectations set in chapter 3. A thorough description of the optical
elements and their quality as possible sources of instabilities of the optical ac-
cordion will be given. Ultimately, the opto-mechanical design for the individual
optical components will be detailed.

Chapter 5 The last chapter will be based on the full characterization of the
first application of the accordion setup with a low-power laser. Instabilities
of the pattern itself and possible solutions will be presented. Special attention
will be paid to the alignment of the optical setup and the range of trapping
frequencies that can be achieved considering the mechanical limitations.

Accessibility The following document has been developed taking into ac-
count the potential accessibility for readers with color and general visual de-
ficiencies. Accordingly, a custom high-contrast palette that considers trichro-
macy, anomalous trichromacy, dichromacy, and monochromacy has been used
for most images. Furthermore, all figures count with a detailed caption that
emphasizes the relevant data results.
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Chapter 2

Motivation

2.1 Ultracold Quantum Gases

Ultracold quantum gases of bosonic and fermionic atomic species are robust
and adaptable testing tools to explore new quantum phenomena. The imple-
mentation of artificial periodic potentials of light and highly controllable trap-
ping geometries has enabled a significant development of quantum engineering
possibilities [1]. To understand the importance of ultracold quantum gases as a
platform to study so far unexplored phenomena, it is necessary to start with a
basic definition and the advantages it represents as a research tool.

An ultracold quantum gas is an ensemble of atoms held at temperatures
near absolute zero. Such systems enable the creation of exotic phenomena
such as Bose-Einstein condensation (BEC), bosonic superfluidity, Efimov states,
Bardeen-Cooper-Schrieffer (BCS) superfluidity and the BEC-BCS crossover, to
name a few [2]. Overall, an ultracold quantum gas is a system made of in-
distinguishable particles, which brought to low temperatures or high densities,
exhibits macroscopic quantum behavior. These systems can be described by
either Bose-Einstein statistics or Fermi-Dirac statistics, depending on the spin
of the particle or the wave function under particle exchange. The preparation
of ultracold quantum gases as examples of strongly interacting matter, allows
us to probe theoretical models in highly controllable environments. The char-
acteristics of an ultracold quantum gas, such as shape, density, and excitation
processes, are determined fundamentally by the interparticle interactions. In
the case of atoms at temperatures below the order of microkelvin, the wave-
length associated with each atom is large in comparison to the usual size of a
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Chapter 2. Motivation

diatomic molecule, following the relation

λdB =

√
2πh̄2

mkBT
, (2.1)

where λdB is the De Broglie wavelength, m the atomic mass, T the temperature
of the system, and kB the Boltzmann constant. Furthermore, the delocalization
of cold atoms due to Heisenberg inequality leads to a "smoothing" of the inter-
action potential and long-range interactions will be granted a central role. The
following section serves as an introduction to the models describing the inter-
actions relevant to the scope of this thesis. In the case of our experiment, the
different isotopes of dysprosium can fall under the bosonic or fermionic cat-
egory. However, in the scope of this work only the isotope 164Dy, a bosonic
variant, will be taken into consideration.

2.1.1 Bose-Einstein Condensates

Bose-Einstein Condensation is a phenomenon in which bosonic statistics allow
an infinite part of bosons to occupy the ground state level of the system. The
states of a Bose gas are not subject to any occupation restriction, and in theory, at
a temperature T = 0 all particles could populate the lowest energy level. How-
ever, the populating process of the ground state has been observed at higher
temperatures.

First, we introduce the quantitative description of an ideal Bose gas in an
external potential based on the review by Fetter and Foot [3], to dive into the
requirements for Bose-Einstein condensation. Assume an ideal Bose gas in equi-
librium at temperature T and chemical potential µ in an external potential. The
mean occupation number of a state j is given by

nj =
1

exp
[
β(εj − µ)

]
− 1
≡ f (εj) (2.2)

where β = kBT−1 and f (ε) is the Bose-Einstein distribution function. The den-
sity of states defined as g(ε) = ∑j δ(ε− εj) is given by the sum over all distinct
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Chapter 2. Motivation

single-particle states. The mean total particle number can then be written as

N(T,µ) =
∫

dεg(ε) f (ε). (2.3)

In the classical limit for a fixed number N, the chemical potential is large and
negative. However, for lower temperatures, µ increases and approaches the
lowest, single-particle energy ε0 at the so called critical temperature. Below the
critical temperature, the number of particles in the excited states saturates and
reaches

N′(T) =
∫ ∞

(ε0)
dε

g(ε)
exp [β(ε− ε0]− 1

, (2.4)

which is finite for a vanishing density of states at ε0. In this case, a macroscopic
number of particles populate the lowest state with occupation number N0 and
N = N0(T) + N′(T). The occupation of the lowest state follows a temperature
dependence to conserve the total particle number N. The critical temperature
Tc at which Bose-Einstein Condensation can be observed for a 3-dimensional
system, depends on the mass of the atomic species, the density and the volume
as

Tc = 3.31
h̄2

kBm

(
N
V

)2/3

. (2.5)

In general, Bose-Einstein condensates exhibit unusual properties; due to co-
herence, microscopic quantum mechanical phenomena such as wave function
interference, become apparent microscopically, allowing for better observation
and control than in other cases, e.g electrons. A BEC can then be described by a
unique wave function Ψ(r). In some simple cases (ultracold temperatures), the
well-known Gross-Pitaevskii equation (GPE), a non-linear Schrödinger equa-
tion, accurately describes the state of the particles.

ih̄∂tψ =

[
h̄2∇2

2m
+ Uext(r) +

∫
drV(|r− r′|)|ψ(r′)|2

]
ψ. (2.6)

where m is the mass of the bosons, Uext(r) an external potential, and V(|r− r′|)
represents the inter-particle interactions. The contact interaction and the dipo-
lar interaction dominating the behavior of the bosons in our experiment will be
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Chapter 2. Motivation

detailed in the following sections.

2.1.2 Contact Interactions

Atomic interactions in a weakly interacting quantum gas can be described by
the short-range van-der-Waals (vdW) potential UvdW that arises from induced
electric dipoles

VvdW =−C6

r6 , (2.7)

where r is the interatomic distance and C6 is the van-der Waals coefficient. The
coefficient C6 is positive in most cases, meaning that the vdW interaction is at-
tractive and predominant for long distances, i.e distances where the atoms don’t
overlap with each other. At short distances the repulsion between the atoms be-
comes dominant. The finite range of the vdW interaction is given by the vdW-
radius rvdW. In the case of two interacting dysprosium atoms C6 = 2275a.u,
where the atomic unit is defined by 9.55× 10−80Jm6.

In the ultracold limit, the vdW potential is well approximated by a simple
contact pseudo potential

Vcont(r) =
4πh̄2as

m
δ(r) = gδ(r) , (2.8)

where m is the mass of the atoms, g is the contact interaction strength, and as

is the so-called s-wave scattering length, which corresponds to the first term in
the partial wave expansion.

2.1.3 Feshbach resonances

The scattering length as can be tuned at will making use of the so-called Fes-
hbach resonances. A Feshbach resonance occurs when the bound molecular
state in the closed channel energetically approaches the scattering state in the
open channel [4]. The energy difference can be tuned by a magnetic field when
the corresponding magnetic moments are different. A resonance occurs if there
is coupling between the channels, e.g hyperfine or anisotropic interactions. The
dependence of the s-wave scattering on the external magnetic field can be de-
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scribed by the simple expression

as = aBg

(
1− ∆

B− B0

)
, (2.9)

where aBg is the background scattering length, B0 is the position of the Feshbach
resonance and ∆ the corresponding width. The zero crossing of the scattering
length occurs at a magnetic field B = B0 + ∆.

In the case of 164Dy, the value for the background scattering length was mea-
sured to be abg = 92(8)a0 by Tang et al. in 2015 [5]. Here, the Bohr radius a0 is

defined as a0 =
4πε0h̄2

e2me
, yielding a value of approximately 5.29× 10−11m. Further

measurements and theoretical calculations of Feshbach resonances in magnetic
lanthanides have been commented on in more detail in [6].

In many atomic systems, the character and location of Feshbach resonances
can be calculated with high precision. Nevertheless, the added complexity in
lanthanides caused by the inter-level structure and coupling mechanisms in-
creases the difficulty of accurately describing Feshbach resonances, thus thor-
ough experimental surveys are necessary. Key measurements performed by
various groups including Maier et al. [7] and Durastante et al. [8] by means
of atomic-loss spectroscopy have enabled accurate identification of resonances
for 164Dy, and 161Dy and 164Dy, respectively. The spectrum shown in figure
2.1 demonstrates the high density of resonance positions, even for low mag-
netic fields. Additionally, broad Feshbach resonances decouple from the chaotic
background and offer a large range of possibilities for tuning interactions for the
study of few- and many-body physics [9].

2.2 Dysprosium Quantum Gases

The new experiment being built at Heidelberg by the name of DyLab aims to
study ultracold quantum gases of highly magnetic dysprosium atoms. For
highly magnetic elements, like dysprosium, the dipole-dipole interaction com-
petes with the above-mentioned contact interaction. The following section gives
an introduction to some key properties of Dy, and later on, focuses on the dipo-
lar interaction and its effect on the behavior of ultracold quantum gases.
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Figure 2.1: Feshbach resonances for 164Dy measured by atomic loss for a large range of magnetic fields.
The measurements between no magnetic field (0 G) and large magnetic fields (68 G) demonstrate a high
density of resonances that can be exploited for the tuning of contact interactions. Taken from [7].

2.2.1 Dysprosium Properties

Dysprosium (Dy) is a rare-earth element with the atomic number 66. Identified
first in 1886 by Paul Emile Lecoq de Boisbaudran, it was not isolated to its pure
form until the 1950s, when ion exchange techniques became available. Dyspro-
sium, along with holmium, has the highest magnetic strength on the periodic
table [10]. Additionally, naturally occurring dysprosium is composed of seven
stable isotopes, with 161Dy , 162Dy, 163Dy, 164Dy showing similar abundance. In
the frame of this work, we focus on the 164Dy isotope.

Isotope 161Dy 162Dy 163Dy 164Dy
Natural Abundance % 18.889 25.475 24.896 28.26

Atomic Mass 160.927 161.927 162.928 163.929
Neutron Number (N) 95 96 97 98

Nuclear Spin
5
2

0
5
2

0

Table 2.1: Most abundant dysprosium isotopes and their properties. Two isotopes with no nuclear spin,
162Dy and 164Dy, are available for the study of bosonic quantum gases.
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Electronic configuration

The ground state electronic configuration for dysprosium is given by

[1s22s22p63s23p63d104s24p64d105s25p6]Xe4f106s2 (2.10)

As seen in figure 2.2, four electrons on the 4f-shell with angular momenta li =
0,1,2,3 remain unpaired. The ground state can therefore be described by the
quantum numbers L = 6 and S = 2. The (LS)-coupling formalism yields a total
angular momentum J = 8 so that the ground state can be written as 5 I8.

Figure 2.2: Dysprosium orbital diagram. The principal quantum number n is shown on the left. For the
ground state of Dy electrons partially fill up to n = 6 following Hund’s rules. The azimuthal quantum
number l, which determines the quantum state of the electrons, is shown in historical letters notation.
The 12 valence electrons correspond to one pair of electrons on the 6s-shell, and 3 pairs and 4 unpaired
electrons on the 4f-shell.

Generally speaking, the excitation spectrum of dysprosium arising from its
electronic structure is rather complex. However, it is dominated by the broad-
est transition line (Γ/2π = 32.2MHz) at 421 nm. This particular transition takes
place between the initial state 4f106s2(5 I8), J = 8 and the final state 4f106s6p(1P1),
J = 9.
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Magnetic Moment

In the case of bosonic atoms with no hyperfine levels, one can define the mag-
netic moment as

µ = mJ gJµB (2.11)

where mJ is the total angular momentum of the electron projected onto the
quantization axis, µB the Bohr magneton, and gJ the well known g-factor ap-
proximately given by

gJ = 1 + (gs − 1)
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
. (2.12)

For the ground state of dysprosium with mJ =−8, the approximation for the g-
factor yields gJ = 1.25. Dysprosium then has a total magnetic moment of 9.93µB

at its ground state. This value will strongly define the strength of the dipolar
interaction described below.

2.2.2 Dipolar Interactions

An additional competing interaction, the dipole-dipole interaction arises from
the fact that some atomic species, like Dy, present a permanent magnetic dipole
moment even at zero fields. A general description of the dipolar potential be-
tween two dipoles at a distance r yields [6]

Vdd(r) =
µ0

4πr3

[
d1 · d2 − 3

(d1 · r)(d2 · r)
r2

]
(2.13)

where µ0 is the vacuum permeability, r the distance between the dipoles, and d1

the dipole moment of each particle. Figure 2.3 represents the governing param-
eters defining the DDI. The dipolar interaction is long-range and anisotropic,
which greatly impacts the properties of dipolar gases. Altogether, the dipolar
interaction is attractive in one direction and repulsive in the remaining two di-
rections.
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Figure 2.3: Visual representation of the parameters governing the dipole-dipole interaction. left: The
orientation of two dipoles relative two each other determines if the average force is attractive or repul-
sive. Two simple cases, θr = 0◦ and θr = 90◦, are demonstrated here. right: In more complex cases the
force is determined by the potential defined in equation 2.14.

In a fully polarized system, where |d1| = |d2| = µ, where µ is defined in
equation (2.11) for dysprosium, equation (2.2.2) becomes

Vdd(r) =
Cdd

4π

1− 3cos2(θ)

|r|3 , (2.14)

where θ is the angle between r and the polarization axis of the dipoles. The
interaction strength Cdd is given by Cdd = µ0µ2, where µ0 denotes the vacuum
permeability.

Overall, the dipolar potential in (2.14) is described by the spherical harmon-
ics Y j

2 [6]. Consequently, the integration over a 3D space averages zero, and
the average interaction between particles depends strongly on the geometry of
the atomic cloud. Figure 2.4 shows two examples of this effect on the average
DDI of the system. On the left, a prolate trapped condensate displays an overall
attractive force between the particle. In comparison, an oblate-trapped conden-
sate shows a repulsive interaction of the particles.

Earlier, the GPE that describes the behavior of BECs has been introduced
in equation (2.6). In the case of dBECs, the interaction term is the sum of the
simple contact term in (2.8) and the dipolar interaction term (2.14). Properties
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Figure 2.4: Effect of trapping geometries on DDIs. The relative orientation of the dipoles, defined by
an external magnetic field B, with respect to the interatomic axis, determines the nature of the average
dipole-dipole interaction. A condensate in a prolate trap averages to an overall attractive interaction. In
comparison, an oblate trap results in a overall repulsive interaction.

of dilute dipolar quantum gases can then adequately be described by

ih̄∂tψ =

[
h̄2∇2

2m
+ Uext(r) + g|ψ|2 + Φdd(r, t)

]
ψ. (2.15)

The mean field associated with the DDI Φdd(r, t) is given by

Φdd(r, t) =
∫

dr′|ψ(r′, t)|2Vdd(r− r′). (2.16)

Finally, the interaction strength of DDI with respect to the aforementioned con-
tact interaction can be quantified by the dimensionless parameter εdd

εdd =
Cddm
3h̄2as

=
add

as
(2.17)

The natural value for the dipolar length add of 164Dy is 130a0. Considering
the natural value of the contact interaction strength for 164Dy, it follows that
εdd = 1.45. As εdd ≥ 1, it is understood that under natural conditions the dipo-
lar force dominates over the contact interaction.
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Chapter 2. Motivation

2.3 Dipolar Quantum Gases in Two Dimensions

2.3.1 New States of Matter in Dipolar Quantum Gases

In the mean-field theory framework, instabilities in dBECs lead to singularities
for infinite density for the many-body ground state, meaning that in general,
this approach breaks down and the state becomes unstable [6]. In the case of
dipolar gases, it was observed experimentally that instead of instability dynam-
ics, an additional stabilization arises. These observations were later understood
as the emergence of new ground states, which are stabilized beyond mean-field
interactions [6]. The nature of this stabilization and the emerging new states in
dipolar quantum gases are subject to this section

Taking into account quantum fluctuations by a local density approximation
of the first order beyond mean field correction to the ground state energy of the
system called the Lee-Huang-Yang correction, the behavior of the dipolar BECs
can be suitably explained and these novel states arrived at even theoretically.
This correction provides the necessary repulsion that counterbalances the mean
field attraction at high densities.

In the case of no confinement, dipolar gases beyond mean field instability
form droplets corresponding to self-bound states. A transition to even more
exotic states can be expected once anisotropic trapping is introduced. In cases
of strong confinement along the dipoles, self-density modulated states can oc-
cur beyond mean-field instability. It was further found that there is a narrow
regime, which can be entered by a fine-tuning of the s-wave scattering length,
that allows for both spatial modulation in density and global phase coherence,
so-called supersolidity. This name is given as the state simultaneously displays
properties of both crystals and superfluids; a consequence of the simultaneous
breaking of both translational invariance and U(1) gauge symmetry. This vari-
ety of states has been observed in experiment on 3D gases of Er and Dy [6].

2.3.2 Two Dimensional Bose Gas: BKT Transition

As described in section 2.1.1, Bose-Einstein Condensation in a 3-dimensional,
non-interacting bosonic system is expected in the thermodynamic limit (N→∞
and ω → 0). However, in 2-dimensional cases, the population in the excited
states is not bounded (equation (2.4) diverges), which means that the system
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does not undergo Bose-Einstein condensation. At finite temperature, at the
thermodynamic limit, and for a system that is short-range interacting, the long-
range order of the phase of the macroscopic wave function is broken by ther-
mal fluctuations in 2D [11]. This is because in these low dimensions, at non-
zero temperatures, thermal fluctuations have an enhanced role destroying long-
range ordering.

In presence of interactions, another kind of phase transition is possible based
on the Berezinskii–Kosterlitz–Thouless (BKT) mechanism. This transition oc-
curs via the pairing of defects of topological nature below a certain critical tem-
perature, such as vortices for superfluidity and dislocation for solid systems [3].
The microscopic mechanism of the BKT phase transition is usually described in
terms of the energetics of the topological defects. The free energy of the vortices
involves a competition between the interaction energy and entropy resulting in
a logarithmic dependence on the system size scaled by the healing length. This
competition results in the transition between an ordered and a disordered state
– below the BKT critical temperature, there is the ordered state characterized
by bound pairs of vortices with opposite circulations. Above the BKT critical
temperature, there is an unbinding of the vortex pairs and proliferation of free
vortices, resulting in a disordered state of phase defects. This mechanism has
been observed in a variety of systems, in particular in contact interacting gases
like BEC. The relevance of this mechanism however depends on the range of
the inter-particle interaction. If there are long-range interactions on top like
the dipole-dipole interactions, this quasi-long-range ordering may break, un-
less there is a screening effect of the bound vortex pairs which if present can
restore the quasi-long-range ordering. There is also the possibility of some un-
conventional type of quasi-long-range ordering, especially in the novel, exotic
phases.

In the DyLab in Heidelberg, we want to investigate the new kind of dipolar
orders that can exist in 2D ultracold gases and the relevance of the BKT mecha-
nism for the underlying phase transitions.

2.4 The Dylab

In the DyLab in Heidelberg, a new setup focused on ultracold quantum gases
of dysprosium is being prepared for the study of new states of matter in dipo-

15



Chapter 2. Motivation

lar quantum gases, and of the overall effects of low temperatures and low-
dimensionality on the competing interparticle interactions. This section con-
sists of an overview of the process and experimental setup leading to the 2-
dimensional trapping on which this thesis is based.

2.4.1 Overview

The dysprosium atoms used in the DyLab come from a high-temperature dual
cell oven with a reservoir at 800◦ and 1100◦C hot lip. The atomic jet is directed
towards a 2D-MOT chamber, where the atoms are cooled down and trapped
in two directions by four laser beams at 421 nm. The first steps for the vac-
uum design have been performed by Christian Gölzhäuser during his bachelor
thesis [12]. The atoms captured in the 2D-MOT are then redirected by a push-
Beam towards the main chamber, where the atoms are recaptured by a red 3D-
MOT working on the 626 nm intercombination line of Dy. The atoms are later
more tightly confined by a crossed optical dipole trap at 1064 nm and cooled by
evaporative cooling. Afterwards, an accordion lattice formed by laser beams at
532 nm, an additional optical dipole trap with tunable periodicity, will be im-
plemented to reach a two-dimensional probe of dysprosium atoms. The design
of this trap is the subject of the present thesis. The main experimental setup can
be observed in figure 2.5.

Note that our experimental design for the first time implements a 2D-MOT
and excludes the use of a Zeeman slower to produce ultracold gases of dys-
prosium. The 2D-MOT and 3D-MOT designs have been carefully developed
to account for this new approach. A better description of the designed cham-
bers can be found in [13] and [12]. Additionally, up until now custom-designed
magnetic coils and a crossed dipole trap have been successfully installed [14],
[15], [16]. At the moment, a temperature of 300 nK for a cloud of 1× 105 atoms
has been achieved through evaporative cooling in the crossed dipole trap. The
design of the accordion lattice, and characterization of the objective lens for
imaging are currently being carried out and will be installed in the near future.

2.4.2 Science Chamber

The accordion lattice designed for the DyLab will be superimposed on the op-
tical dipole trap in the main chamber of the experiment. Therefore, the dimen-
sions of the main chamber also called the science chamber, and the optical ac-
cess possibilities represent the main limiting factors for the design of the lattice
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Figure 2.5: Overview of the main experimental setup. An atomic jet of dysprosium atoms is created
by a high-temperature effusion oven and captured by a 2D-MOT (421 nm). A push beam (626 nm)
redirects the atoms towards a 3D-MOT (626 nm), where the atoms are recaptured, cooled down and
compressed, reaching the BEC regime. The atom cloud is then more tightly confined by a crossed opti-
cal dipole trap (1064 nm), and finally a quasi- 2-dimensional probe is achieved by an accordion lattice
(532 nm), which confines the atoms strongly in the vertical direction.

itself.

The science chamber follows a standardized design with eight CF40 flanges
on the side and two CF100 flanges at the top. On seven of the CF40 flanges,
view-ports with optical-grade fused silica windows have been installed. The
laser beams responsible for the formation of the accordion lattice will be enter-
ing the science chamber on one of the side viewports, see figure 2.5. The control
setup for the optical accordion will be installed after the opposing window, i.e
where the laser beams exit the chamber. Figure 2.6 shows a cut of the main
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chamber, detailing the specific dimensions which will be defined for the accor-
dion lattice setup: the distance from the viewport’s window to the center of the
main chamber (98.1 mm), the thickness of the window (3.2 mm), and its clear
aperture ( 32 mm). In the vertical direction, the center of the scientific chamber

Figure 2.6: Overview of science chamber’s dimensions. The diameter and thickness of the view port’s
window and the distance from the view-port to the center of the chamber where the atoms will be placed,
are the main limiting factors for the design of the accordion lattice.

where the dBEC of dysprosium will be is placed at 75 mm from the optical table,
which determines the height of the optical path. Furthermore, continuing with
the general design concept of the whole experiment, the accordion lattice setup
should be as compact as possible and optimized for stability.
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Theoretical Thoughts

The main goal of this work is to design and implement the first test setup of an
optical dipole trap that allows entering the quasi-2D regime to probe bosonic
quantum gases of dysprosium. The first section of this chapter will summa-
rize the main theoretical concepts that enable the optical trapping of dyspro-
sium and the different methods that have been used so far. The second section
will discuss the existing experimental implementations that make it possible to
tightly confine atomic clouds in one or two directions and their corresponding
advantages and disadvantages. In the end, the method chosen to realize the
2D trap of dysprosium, the Accordion Lattice, and the most important concepts
will be explained.

3.1 Optical trapping of Dysprosium

Optical dipole trapping is one of the main methods that can be exploited to
produce ensembles of ultracold quantum gases of neutral atoms. This method
relies on the electric dipole interaction of atoms with far-detuned light. The fol-
lowing section consists of a brief introduction to the theoretical description of
Optical Dipole Traps (ODT) based on the 1999 Review by Grimm, Weidemüller,
and Ovchinnikov [17]. Afterwards, the main requirements for trapping dyspro-
sium atoms are summarized.
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3.1.1 Trapping of neutral atoms: Atom-Light Interaction

Optical traps realized with far-detuned light are of great interest due to the
low optical excitation and the negligible radiation force due to photon scat-
tering. Furthermore, they provide a large range of trap geometries, including
anisotropic or multi-well potentials. A simple semi-classical approach, in which
a neutral atom is considered an oscillator in a classical radiation field, allows for
the derivation of the most important equations for the description of the poten-
tial. The monochromatic laser light used for optical trapping can be described
by its electric field E

E(r, t) = êẼ(r)exp(−iωt) + c.c (3.1)

where ê is the unit polarization vector, Ẽ the field amplitude, and ω the driving
frequency. The light induces an atomic dipole moment on the atom

p(r, t) = ê p̃(r)exp(−iωt) + c.c (3.2)

where the amplitude p̃ relates to the electric field by the dynamical polarizabil-
ity of the atom α

p̃ = αẼ. (3.3)

The dipole force Fdip is given by the gradient of the interaction potential Udip,
where

Udip =
〈pE〉

2
=

Re(α)I
2ε0c

(3.4)

Fdip(r) =−∇Udip(r) =
Re(α)
2ε0c

∇I(r). (3.5)

The resulting force is conservative and can therefore only be used for trapping
and not for cooling purposes.

Another key quantity is the scattering rate Γsca, which arises from the ratio
between the power absorbed by the oscillator from the driving field Pabs and
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the photon energy h̄ω

Pabs = 〈ṗE〉= ω Im(α)I
ε0c

(3.6)

Γsca =
Pabs

h̄ω
=

Im(α)I(r)
h̄ε0c

. (3.7)

The complex polarizability α can be computed by considering the atom in Lorentz’s
model of a classical oscillator. Hereby, the electron is considered to be bound
elastically to the nucleus of the atom with an oscillating frequency ω0, which
corresponds to the frequency of the optical transition. According to Larmor’s
formula, the dipole radiation of the oscillating electron results in a classical
damping rate Γω. Integration of the equation of motion of the modeled driven
oscillator, yields

Γω =
e2ω2

6πε0mec3 (3.8)

Γ≡ Γω0 = (ω0/ω)2Γω (3.9)

α =
e2

me

1
ω2

0 −ω2 − iωΓω
= 6πε0c3 Γ/ω2

0

ω2
0 −ω2 − i(ω3/ω2

0)Γ
. (3.10)

This description of the polarizability α is only valid for far-detuned light with
very low scattering rates (Γsca � Γ). Following the rotating wave approxima-
tion, the main expressions for the dipole potential and the scattering rate can be
written in terms of the detuning ∆≡ω−ω0, with

Udip(r) =
3πc2

2ω3
0

Γ
∆

I(r) (3.11)

Γsca(r) =
3πc2

2ω3
0

(
Γ
∆

)2

I(r). (3.12)

The sign of the detuning determines if atoms are confined by a far-detuned
source at points of maximal or minimal intensity. In the case of so-called red
detuning (∆≤ 0) the dipole potential is negative and the interaction attracts the
atoms into the electric field. On the other hand, so-called blue detuning (∆≤ 0)
causes the atoms to be repelled by the light field and confines them at the min-
ima of the dipole potential. Because atoms in reality have more than one excited
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state, a full description considers the sum over all excited states.

3.1.2 Polarizability of Dysprosium

In the case of dysprosium, a more thorough calculation of the real and imagi-
nary parts of polarizability is necessary, in which the anisotropy caused by the
non-zero orbital momentum is considered. This means that not only the scalar
polarizability coefficient αs is taken into account, but also the vectorial αv and
tensorial αt ones. A general formula for the polarizability is given by

α(ω) = αs(ω) + i
[u∗ × u] · J

2J
αv(ω) (3.13)

+
J(J + 1)− 3m2

j

J(2J − 1)
1− 3cos2(θp)

2
αt(ω), (3.14)

where u is the polarization vector of the laser field and θp the orientation of u
with respect to an external magnetic field B. The scalar polarizability coefficient
accounts for the diagonal elements of the polarizability tensor. Additionally, the
vectorial coefficient accounts for the anti-symmetric parts of the off-diagonal el-
ements, while the tensorial coefficient introduces the symmetric parts of the off-
diagonal elements. A simplified case can be found for linearly polarized light,
where the middle term vanishes as u∗ × u = 0.

Altogether, the values for the polarizability of dysprosium for various wave-
lengths are based on theoretical calculations rather than experimental measure-
ments. Some publications, like [18] and [19], have dealt in great depth with the
computation of theoretical values for all coefficients of the polarizability of Dy,
which are useful for numerical simulations of ODT (see figure 3.1.

Now it is necessary to find an appropriate wavelength that is far from any
resonances with respect to the dynamic polarizability of dysprosium, and that is
far detuned from any main transitions. Additionally, due to tight confinement
that is expected, high-power laser sources show be readily available.

The main two options to realize the accordion lattice are either a 532 nm or a
1064 nm, both red detuned from Dy. Theoretical values for the polarizability at
these wavelengths are found to be α(532nm) = 350a.u and α(1064nm) = 193a.u.
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Figure 3.1: Dynamical Polarizability of Dysprosium for linearly polarized ligth as a function of the
wavelength. The two main candidates for the realization of a red-detuned optical trap (532 nm and
1064 nm are marked in red [18]. The polarizability for both wavelengths is positive and far away from
resonances.

As mentioned before, the wavelength will directly influence the trap’s depth
and shape. A more detailed look on the final choice of wavelength is given
once the geometry of the trap, defined by the trapping frequencies ωi, comes
into play, in chapter 4.

3.1.3 Red-detuned Optical Dipole Traps

In cases where the light field is tuned below the atomic frequency, the dipole
force points towards increasing intensity. In other words, in red-detuned opti-
cal dipole traps (see Section 3.1), the atoms are trapped in the region of maxi-
mum density. A considerable advantage of red-detuned traps is that the focus
of a laser beam by itself constitutes a stable dipole trap for atoms. Overall, the
trap’s depth is determined by the laser´s power and the beam shape, and with
available laser sources, common values for trap depths are in the range of the
millikelvin. Although a simple single-beam trap can be easily realized, combi-
nations of multiple lasers lead to a wider range of trap geometries and lattices
adequate for the confinement of ultracold quantum gases. Overall, it is com-
mon to use a harmonic oscillator approximation near the maximal intensity to
calculate the effective trapping frequency of a red-detuned trap. The general
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formula for a harmonic trap in 3-dimensions is given by

UHO = U0 +
m
2
(
ω2

xx2 + ω2
yy2 + ω2

z z2) , (3.15)

where m is the mass of the atoms and ωi are the angular trapping frequencies
on the three main directions defined by x,y and z. In the next sections, we will
refer to the trapping frequencies as νi, with νi =

ωi
2π .

3.2 Two-Dimensional Traps

The realization of two-dimensional systems is no trivial task, and different meth-
ods should be taken into account with no disregard for the difficulties that may
appear during experimental implementations and the flexibility they may pro-
vide. In this section, the 3-dimensional harmonic trap will be discussed first,
and the conditions for achieving reduced dimensionality will follow after.

The fundamental idea behind 2-dimensional trapping is to confine the atoms
tightly in one direction so that the motion is effectively frozen in that direction
and the atoms can only move in the residual plane defined by the remaining
two axes. The potential is then highly asymmetric with ωz � wx,wy. In or-
der to achieve a strong enough confinement, the trap potential must fulfill the
condition

h̄ωz� kBT,µ, (3.16)

where T is the temperature of the trapped particles and µ the chemical po-
tential. This condition implies that the atoms occupy only the lowest-energy
harmonic oscillator state in the axial direction. For temperatures in the range of
100 nK, the trapping frequency νz must be well over 2000 Hz.

Generally speaking, a single-beam red-detuned ODT could be introduced to
achieve the desired asymmetrical trapping frequencies. However, such a sim-
ple method results in strong limitations for the experimental implementation,
such as little control over the geometry of the trap and constraints related to the
availability of cylindrical lenses that can be adapted to our setup. A common
method to achieve strong confinement in one direction, which furthermore, of-
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Figure 3.2: Tight confinement of dipolar atoms in one direction. The strong trapping potential Uext in
one direction must fulfill the condition h̄ωz� kBT,µ to guarantee 2D confinement.

fers high control over the trap geometry and tunability of the trap’s size during
measurements, as well as of the trapping frequencies, is the so-called accordion
lattice.

3.3 Overview of an Accordion Lattice

The following section describes the working principle of the optical accordion,
the main equations, and the considerations for its experimental realization.

Working principle

An accordion lattice is an optical trap that enables tight confinement of a cloud
of atoms in one direction while providing real-time control of the trap’s peri-
odicity. First achieved by Li, Kelkar, Medellin, and Raizen in 2008 [20], the
optical accordion demonstrates highly controllable spacing that enables contin-
uous and stable trapping [21]. To date, multiple accordion lattices have been
successfully designed and implemented [22], [23], [24].

The basic concept behind the design, depicted in figure 3.3, is that two laser
beams interfere at a shallow angle 2θ and create a periodic trapping potential
in one direction. For beams propagating in the x-direction, the half-angle θ

between the beams is defined on the x-z plane and the periodic confinement
arises in z-direction.
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Figure 3.3: Working principle of an accordion lattice. Two beams interfere at a shallow half-angle θ,
producing a periodic potential in one direction.

The laser beams used to realize the accordion lattice are assumed to follow
an ideal Gaussian distribution. In general, an elliptical Gaussian beam propa-
gating along the x-direction, as shown in figure 3.4, can be characterized by its
electric field E, such that

E = E0

√
wy0wz0

wy(x)wz(x)
exp

[
−
( z

wz(x)

)2
−
( y

wy(x)

)2
]

exp[i(kx + ϕ(x,y,z))]

(3.17)

(3.18)

k =
2π

λ
(3.19)

wi(x) = wi0

√
1 +

( x
xRi

)2
(3.20)

xRi =
πw2

i0
λ

(3.21)

ϕ(x,y,z) =
kz2

2Rz(x)
+

ky2

2Ry(x)
−Ψ + δ (3.22)

Ψ = arctan
( λx

πwz0wy0

)
(3.23)

Ri(x) = x
(

1 +
(xRi

x

)2
)

(3.24)

where k is the wave vector, wi0 is the beam waist in i-direction with i = y,z, xRi
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is the Rayleigh length, Ri(x) is the radius of curvature, Ψ the Gouy phase at x,
and δ the beam’s phase.

Figure 3.4: Key properties of an ideal Gaussian beam propagating along the x-axis. The beam radius in
i-direction wi(z), with i = y,z expands from the initial beam waist wi0 according to eq. (3.20). At the
Rayleigh length xRi, the beam radius equal

√
2wi0.

This expression can be applied to simulate an accordion lattice resulting
from the interference of two beams at a half-angle θ by rotating the coordinates
in equation (3.17) around the y-axis by θ and −θ. The intensity of the interfer-
ence pattern is then given by

Itot(x,y,z) =|Eθ + E−θ|2 (3.25)

=|Eθ|2 + |E−θ|2 + E∗θ E−θ + EθE∗−θ (3.26)

where Eθ and E−θ are the electrical fields for the rotated beams. Assuming both
beams have equal linear polarization, the total intensity can be expressed in
terms of the individual intensities as

Itot(x,y,z) =Iθ + I−θ + 2
√

Iθ

√
I−θ · cos

(
4π

λ
zsin(θ) + ∆ϕ

)
. (3.27)

Here ∆ϕ = ϕθ − ϕ−θ. The intensities of the individual beams Iθ and I−θ indi-
vidually carry the Gaussian term given in equation (3.17). Consequently, the
resulting interference pattern is wrapped as well in a Gaussian envelope domi-
nating the intensity distribution. This distribution becomes evident once Iθ and
I−θ are explicitly written as a function of the beam waists wz and wy, and the
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power P of each beam:

Iθ(x,y,z) =
2P

πwy(xθ)wz(xθ)
exp

(
− 2y2

w2
y(xθ)

− 2(zcos(θ) + x sin(θ))2

w2
z(xθ)

)
(3.28)

I−θ(x,y,z) =
2P

πwy(x−θ)wz(x−θ)
exp

(
− 2y2

w2
y(x−θ)

− 2(zcos(θ)− x sin(θ))2

w2
z(x−θ)

)
(3.29)

A very thorough explanation of the process to compute the interference pattern
of an accordion lattice can be found in [25]. The cosinusoidal term in equation
(3.27) is responsible for the characteristic periodicity of the accordion lattice ob-
served in figure 3.5, i.e the spacing between the nodes resulting from construc-
tive and destructive interference. The so-called fringe spacing d has the form

d =
λ

2sin(θ)
. (3.30)

So that equation (3.27) can be rewritten as

Itot(x,y,z) = Iθ + I−θ + 2
√

Iθ

√
I−θ · cos

(
2π

d
z + ∆ϕ

)
. (3.31)

Figure 3.5: Example of an optical accordion resulting from two interfering beams. The periodicity aris-
ing from the cosinusoidal term creates so-called fringes with high intensity where atoms can be trapped.
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Finally, the trapping potential in the z-direction can effectively be described
by a convolution of a Gaussian curve- arising from the Gaussian nature of the
individual beams- and a cosinusoidal function reflecting the periodicity.

In the case of a red-detuned light source, the atoms can be trapped at points
of maximal intensity following the explanation given in section 3.1. The trap
depth as well as the trapping frequencies can be extracted by approximating
the final trapping potential to an harmonic oscillator.

U(x,y,z) =
Itot(x,y,z)α

2cε0
≈UHO (3.32)

Figure 3.6: Trapping potential of a red-detuned accordion lattice seen by atoms of along gravity. The
Gaussian envelope dominating the intensity distribution is marked by the light blue area. The trapping
potential in z-direction seen by the atoms is depicted by the light green area. The second-order polyno-
mial fitted to find the trapping frequency for an individual fringe is marked in dark pink.
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The analytical expressions resulting from the approximation are given by

U0 =−
8αP

πwy0wz0cε0
(3.33)

νx =

√√√√ 16Pα

πmwy0wz0cε0

[
2sin2(θ)

w2
z0

+

(
λcos(θ)

π

)2( 1
wy0

+
1

wz0

)]
(3.34)

νy =

√
32Pα

πmwy0wz0cε0
(3.35)

νz =

√√√√ 16Pα

πmwy0wz0cε0

[
2cos2(θ)

w2
z0

+

(
λsin(θ)

π

)2( 1
wy0

+
1

wz0

)
+
(π

d

)2
]

(3.36)

Overall, it is useful to perform the strong trapping along gravity, defined by the
z-axis.

Figure 3.7: Experimental realization of an optical accordion. A convex lens is implemented to focus two
parallel beams that create the interference pattern.

Experimentally, the interfering of the beams is achieved by focusing two
parallel beams using a convex lens as depicted in figure 3.7. The angle is then
determined by the distance between the parallel beams D and the focal length
of the focusing lens f .

θ = atan
(

D
2 f

)
. (3.37)
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Consequently, the fringe distance can be approximated by

d =
λ f
D

. (3.38)

Ideally, the position of the middle fringe should coincide with the center po-
sition of the Gaussian curve, and atoms should be loaded into the middle fringe,
which has the highest intensity and therefore the deepest trapping potential.
For alternative experimental applications, two or more fringes could be loaded
simultaneously to observe interactions between the two quasi 2-dimensional
atomic probes. In general, the position of the center peak can vary if the in-
dividual beams have a phase relative to each other. Consequently, the beams’
phase should be stable in time, as to avoid spatial displacement of the trapping
potential, which can cause significant heating and loss of atoms. Furthermore,
the contrast between the nodes of the interfering pattern should be optimized,
as to guarantee that the potential experienced by the atoms corresponds to the
expected trapping potential. The contrast between the maxima and the min-
ima of the interference pattern is affected by the individual polarization of the
beams, the relative phase, and the relative power. Taking this factor into consid-
eration, the individual beams were produced by the same laser source in [20],
effectively reducing significantly experimental sources of instability. However,
optical elements utilized to perform the beam separation, the beam shaping,
and finally the beam focusing are also to be considered main contributors to
any observed time- and space instabilities of the optical accordion.

The setup of an accordion lattice allows real-time tuning of the fringe dis-
tance by tuning the interfering angle. This additional advantage can be achieved
by implementing a mechanical system that dynamically increases or decreases
the beam distance D. In the case of [20], a mirror placed on a liner translation
stage was responsible for the beam separation control. Once again, multiple
instability sources should be considered at this point. The control over the trap-
ping frequency is applicable for adiabatic compression of an atomic cloud with
minimal atom loss, as long as high stability of the optical accordion is achieved.
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3.4 Interference pattern calculations

Making use of the understanding gained by looking at the origin of the in-
terference pattern, we can now proceed to choose parameters that fulfill the
2D conditions for our Dy probe. According to equation (3.2), for an atomic
cloud at 50 nK, the vertical trapping should strongly surpass 1040 Hz. We aim
to reach values around 15 kHz for the strong confinement while maintaining
much weaker residual trapping below 100 Hz.

Vertical Trapping

In the case of our setup, the beam separation and the minimal focal length of
the focusing lens, and consequently the half-angle θ, are limited by the dimen-
sions of the chamber. The maximal beam separation at the view-port - which
is at 101.3 mm from the chamber’s center- can reach 32 mm, thus the maximal
interference angle is given by

θmax = atan
(

Dmax

2scenter

)
= atan

(
32

2 · 101.3

)
= 8.976◦. (3.39)

For the aimed strong trapping frequency ( 15 kHz), it can be assumed that an
angle of at least 8.9◦ will be achieved experimentally.

According to (3.36), interference at larger angles provides a smaller fringe
distance d, and thus a higher trapping frequency νz. In particular, in the limit
d� wy0,wz0 the last term in the square root dominates and the expression for
νz can be simplified to

νz =

√
16P

πmwy0wz0cε0
·
(π

d

)2
. (3.40)

Furthermore, it is understood from equation (3.36) that smaller beam waists
will provide higher trapping frequencies at the center of the trap, as the beam is
more strongly focused. By carefully looking at the equations, it also becomes ev-
ident that this dependence is not directly on the individual values wy0 and wz0,
but rather on the geometric mean √wy0wz0. Accordingly, it results practical to
define the so-called aspect ratio (AR) wy0 : wz0. Overall, we opt to maintain a
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rather small aspect ratio that does not surpass 10. A broad scan over different
values of wz and wy, with AR ≤ 10, for λ = 532nm and λ = 1064nm at typical
laser power P = 10W, provides a better overview of the achievable trapping fre-
quencies. The results of the numerical simulation show that vertical trapping
frequencies well above 15 kHz can be achieved for wz ≤60 µm and wy ≤600 µm
for both wavelength candidates at 8.9◦. Nevertheless, we observe that to main-
tain both conditions, for vertical trapping as well as for residual trapping, the
532 nm laser offers better results. Therefore, it is decided to go ahead with this
wavelength for the experimental implementation. The exact geometry of the
beam will be chosen after the effect on the residual trapping is introduced in
the next section.

In comparison to the maximal angle, the minimal interference angle we want
to achieve is not motivated by the value of the trapping frequency but rather by
the size of the fringes. Ideally, the atom cloud should be loaded entirely into a
single fringe site, which means that the fringe dimensions should be compara-
ble to those of the cloud. In our case, we aim for a maximal fringe size of 20 µm,
which according to equation (3.30), corresponds to a half-angle θmin = 0.76◦ for
532 nm, and to a minimal beam separation Dmin = 2.7mm.

Residual Trapping in Plane

The geometry of the beams and the wavelength of the laser, which determine
the fringe distance, play a crucial role to determine the trapping frequencies in
all directions. At this point, the trapping frequencies in x and y and their ratio
will be commented on in more depth.

Altogether, it cannot be assumed that the trapping in one direction is linked
solely to the beam waist in the same direction. Rather, the specific combination
of beam waist sizes yields the residual confinement in plane, as indicated in
equations (3.34) to (3.36). According to scans over multiple combination possi-
bilities of wz and wy, for a ratio wy : wz = 6.4, the resulting frequencies νx and
νy are equal. Note that the scans were performed for the aforementioned pa-
rameters: θ = 8.9◦, P = 10W, and λ = 532nm. For equal trapping frequencies
νx,νy the potential is symmetric, i.e circularly shaped. To achieve symmetry
we would have to apply a strongly elliptical beam with an aspect ratio of 6.4,
however, we consider that a slight asymmetry of the residual trapping could
be compensated by other means. Therefore, we decide to limit the aspect ra-
tio to 6. Figure 3.8 displays an example of three different geometries resulting
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from different ratios AR = 6.4,3,1. Based on the simulation, it is decided that
wz = 40− 60µm wy = 240− 260µm, taking into account that AR ≤ 6. A final
consideration to reduce the range of the applicable beam waists is the ratio of
the middle fringe and the side fringes at a maximal fringe size. In order to ef-
fectively load the atoms in the middle fringe, the trapping at the center should
be significantly higher than on the side fringes. In general, we observe that a
smaller beam waist wz yields a larger fringe intensity ratio. Finally, we decide a
good compromise is wz = 50µm and wy = 250µm, with AR = 5.

Figure 3.8: Residual trapping of the atoms in plane. left: Symmetric trapping in plane resulting from
beam geometry wz = 50µm and wz = 320µm, i.e AR = 6.4. center: Cigar-shaped trap for wz =

50µm and wz = 150µm. The trapping in y-direction is slightly above the desired trapping frequency at
169 Hz. right: Strongly elongated trap for wz = 50µm and wz = 50µm. The trapping frequency along
the y-axis is around 880 Hz, significantly surpassing the expected trapping frequency of 100 Hz

3.4.1 Final Beam Properties

The final calculations for the desired trapping frequencies are performed with
the parameters displayed in table 3.1. The experimental implementation de-
scribed in chapter 4 will be based specifically on these values.

The resulting trapping frequencies, trap depth, and fringe distances for the
maximal and minimal interference angle are summarized in table 3.2. The trap
geometries for both cases are displayed in figure 3.9. The trapping potential in
the x-z plane showcases the two incoming beams interfering at a shallow angle.
The small fringes observed on the left, barely under 2 µm in size, reflect the high
trapping frequency that provides the strong confinement needed to achieve a
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Wavelength λ Power P Polarizability α wz wy θmax θmin

532 nm 10 W 350a.u 50 µm 250 µm 8.9◦ 0.76◦

Table 3.1: Final choice of parameters for the calculation of the interference pattern. It is decided to
implement a high-power 532 nm laser, with an elliptical beam waist. The chosen beam waist ratio
wy : wz = 5 is responsible for the slightly elongated shape of the trap in the residual trapping plane.

quasi-2D regime. The larger dimensions of the fringes on the right ( 20 µm) will
allow for the loading of atoms into one single fringe site.

Interference angle
θ

Trapping Frequencies
νz : νx : νy

Trap depth
U0

Fringe Size
d

θmax = 8.9◦ (25672 : 60.9 : 78.8) Hz 80.2 µK 1.7 µm
θmin = 0.76◦ (1478 : 3.4 : 79.65) Hz 80.2 µK 20 µm

Table 3.2: Final calculation results for the desired accordion lattice for dysprosium atoms. The vertical
trapping frequency for the maximal interference angle fulfills the requirements for quasi-2D trapping
of the atoms. The fringe size for the minimal interference angle should allow for the clean loading of a
single fringe. The ratio of the trapping frequencies on the residual plane νy : νx for θmax is roughly 1.3,
reflecting the subtle cigar-shape geometry.
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Figure 3.9: Overview of the simulated trapping potentials for the expected maximal (right), and mini-
mal (left) interference angles θ.
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Experimental implementation

The following chapter will briefly summarize existing designs of optical accor-
dions and the considerations and requirements for the accordion lattice for dys-
prosium atoms at the DyLab. Afterwards, the optical design based on these
considerations and the parameters calculated in the previous chapter will be
explained. Finally, the opto-mechanical solutions necessary to implement said
optical design will be presented.

4.1 Accordion Lattices for Ultracold Quantum Gases

The convenient application of optical accordions to investigate ultracold atoms
has promoted a large range of design variations that have been proposed to im-
prove stability and control possibilities [21], [26], [27], [22]. Additionally, signifi-
cant design variations are usually required to adapt the concept of the accordion
lattice to each individual experimental setup and the trapping requirements for
different atomic species, as well as the geometrical constraints of the appara-
tus. This section consists of a general overview of the different existing designs
of an accordion lattice for ultracold atoms and considerations extracted for our
design. The section will focus on two main points necessary for a successful
design: separation of one laser beam into two parallel beams, and mechanical
compression of the accordion lattice.
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4.1.1 Beam separation

In the original paper [20] the method used to produce two nearly identical
beams is to place two polarizing beam-splitters on top of each other, see fig-
ure 4.1. The single beam entering the first PBS is split into its s- and p-polarized
components. The s-polarized beam is reflected away from the cube and towards
a focusing lens. The second beam, corresponding to the p-polarized part, is
transmitted through the first and second cube, and is then reflected by a mir-
ror placed on top of the second PBS, passing two times through a quarter-wave
plate. Finally, the second beam, now also s-polarized, is reflected by the second
cube towards the focusing lens. This basic setup has been adapted to accom-
modate experiments with ultracold atoms, like in the case of Innsbruck (Er and
Dy) [27], and Paris (Rb) [21].

Altogether, the principle of using polarizing beam splitters is common in
many setups. However, in many cases, the second cube has been replaced by
a mirror and the first cube has been flipped as seen in 4.1. In Hamburg this 1
PBS method has been implemented successfully for Lithium atoms [24]. In this
setup, the reflected beam on the first - and only - cube is directed towards a
back mirror and quarter-wave plate, and then is transmitted through the cube
towards the focusing lens. On the other hand, the transmitted part reaches a
second mirror placed at 45◦ on top of the cube and is reflected directly towards
the focusing lens.

A third method that has been implemented at Harvard, is to separate the
beam with a custom hexagonal beam-splitter, made of two dove prisms [23], as
sketched on figure 4.1 along with the other two methods. Although all three
methods seem similar, they represent significant variations for such a sensitive
system as the optical accordion. Overall, the path difference between the beams
should be minimized to avoid strong fluctuations of the beams with respect to
each other. In the case of the 2 PBS method, the path difference is the longest,
as one beam is directly send towards the lens, while the other has to travel
through both PBS’s and be reflected two times before heading towards the lens.
In comparison, the axicon design provides the shortest path difference, as the-
oretically it should be equal to zero. Nonetheless, the axicon design is a single
fixed mounted optical element, which means that any alignment precision is
limited to the gluing procedure of the dove prisms. If the prisms are not per-
fectly parallel to each other, this can not be corrected later. Similarly, two PBS
placed on top of each other may not lay perfectly parallel. In contrast, the 1 PBS
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method introducing an additional mirror instead of the second PBS provides
more control over the tilting and alignment of the two parallel beams produced
by the setup. Therefore, for our design we have chosen to implement the 1 PBS
setup with a few adaptations. The final design will be explained in the next
section.

Figure 4.1: Overview of the main beam splitting methods considered for our accordion lattice. left: The
2 PBS method uses two polarizing beam splitters, one mirror and a quarter-wave plate to produce the
parallel beams. This setup causes the largest path difference between the beams out of the three designs.
center: The 1 PBS method replaces the second beam splitter with a mirror mounted at 45◦ to shorten
the path difference. Additionally, it provides more control over the alignment of the parallel beams.
right: A customized axicon made of two dove prisms reduces the path difference the most. However, the
fixed nature of the setup doesn’t allow for corrections on the alignment once the prisms have been glued
together. Adapted from [20], [27], [23]

4.1.2 Mechanical compression and dynamic stability

Finally, we will consider the different possibilities to achieve the mechanical
compression of the trap. Initially, it was proposed by Li et al [20]. to control
the beam separation with a mirror mounted on a linear stage. Here, a smooth
transition from d =0.81 µm to d =11.2 µm in 3 s was achieved. The linear stage
also showed relative dynamic stability, as it was observed that the central fringe
shifted by less than 2.7 µm along the vertical direction during the compression.

Alternatives to achieve a higher compression speed have been implemented:
in [27] and [23] a rotational stage was used in combination with a specially de-
signed periscope to control the beam spacing. This was done because com-
mercial rotating stages usually achieve larger rotation velocities than commer-
cial linear translation stages, which with the use of suitable mirror systems can

39



Chapter 4. Experimental implementation

reach faster compression times. On the other hand, the use of Acousto-Optical-
Deflectors (AOD) has also been considered, like in [26]. However, due to the
large intensity loss caused by AODs, this was decided against. Considering
that the compression of our optical accordion should happen in an adiabatic
time scale, and after reviewing the offers for commercial linear stages, it has
been decided to implement a simple linear translation stage for our first version
of the accordion lattice for dysprosium. Further details about the chosen linear
stage are given in the section about the mechanical design, where additional
factors are taken into account. The vibration caused by the chosen linear stage
will have to be accounted for and possible solutions to reduce the impact on the
stability of the accordion will be presented later.

The following table summarizes some additional key points in the men-
tioned setups that are considered for the design of our accordion.

Reference Beam
Separation

Lattice
spacing

Mechanical
Compression

Time
Scale

Li et al. [20] 2 PBS 0.96 - 11.2µm Linear Stage 1s
Brandstetter [27]

(Er / Dy) 2 PBS 2.66 - 22.2µm Rotational Stage 0.1s

Saint-Jalm [22]/
Ville [21]

(Rb)
2 PBS 1.2 - 11µm Linear Stage 1s

Kerkmann [24]
(Li) 1 PBS 2.1 - 45µm Linear Stage 0.112 s

Hebert [23]
(Er) Axicon 2 - 20µm Rotation Stage 0.015 s

Williams et al. [26] 1 PBS 1.8 - 18µm AOD 0.1 s

Table 4.1: Accordion lattice references for ultracold quantum gases. Implementations make use of dif-
ferent methods for the beam separation. The achieved ranges of lattice spacing tend to be in the same
order of magnitude, and they overlap with the expected fringe distances for the DyLab. The adiabatic
mechanical compression we expect has been proven to be achievable with motorized linear translation
stages.
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4.2 Optical Design

In order to simplify the explanation of the design process, the following section
will be divided into three main points :

• Beam focusing

• Beam separation

• Beam shaping

For each item, the selection process of the optical elements will be briefly dis-
cussed, and in the cases where customized design are necessary, the design pro-
cess will be explained in detail. The design has been developed in reverse order
with respect to the optical path, i.e starting from the focusing lens, as the main
constrains arise from the science chamber and have to be worked on from there.

4.2.1 Beam focusing and crossing

The choice of the focusing lens applied to focus both beams to create the accor-
dion directly impacts the stability of the central fringe during the compression
procedure. This is because optical aberrations cause slight shifts of the real in-
terfering point relative to the theoretical focus when the beams enter the surface
of the lens at different places as shown in figure 4.2. An overall agreement is that
a plano-convex lens doesn’t provide the necessary stability for an accordion lat-
tice. Following recommendations, we consider either an achromatic doublet
lens or an aspherical lens.

Figure 4.2: Overview of performance of a standard plano-convex lens. The shift of the interfering point
for parallel beams at different distances from each other will cause significant instabilities of the accor-
dion lattice.
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Altogether, we decide to reduce all types of aberrations, especially spherical
aberrations, by implementing a high-quality aspherical lens. The focusing lens
used for the accordion lattice must also be suitable for high-power laser appli-
cations, therefore we opt for fused silica or similar material. Furthermore, the
focal length of the lens should be larger than the distance between the view-
port and the center of the science chamber. A convenient choice is found to be
150 mm. Now, since the lens is not going to be placed directly at the viewport,
the diameter must be adapted to take advantage of the entire aperture of the
chamber’s window. At a distance of roughly 150 mm, the clear aperture of the
lens should be at least 52 mm to achieve an interference half-angle θ = 8.9◦. The
final requirements for the high-precision lens are summarized in table 4.2.

Effective
Focal Length

Clear
Aperture Substrate Coating

Specifications
Surface
Quality RMSi

150 mm ≤52 mm Fused Silica
AR-Coating

532 nm
Ravg <0.2%

10-5 <100 nm

Table 4.2: Requirements for a high-quality aspherical lens to be implemented in the accordion lattice
setup in the DyLab.

Unfortunately, no commercial options that fulfill all specifications were avail-
able. However, the lack of commercial options opened the possibility to de-
sign the surface of the lens given by the aspherical equation specifically for our
setup. The customized option was designed on Zemax and sent to be man-
ufactured by Trionplas in Germany. Due to production possibilities that were
discussed with different companies, we limited the order of corrections in the
aspherical equation while optimizing the lens design. Additionally, we consid-
ered the thickness and diameter of raw material available, the thickness of the
window and the vacuum of the science chamber. The overview of the final de-
sign is summarized in table 4.3.

Radius Conic Constant 2nd-order 4th-order 6th-order

69.106 mm -0.562 0 −2.700× 10−9 −1.793× 10−12

Table 4.3: Final design of the customized high-precision aspherical lens. The radius is optimized for
achieving an effective focal length (EFL) of 150 mm at 532 nm. The aspherical design was limited to the
6th-order correction term due to manufacturing possibilities.
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The expected wavefront error of the final lens was analyzed for an aperture
of 1 mm and compared to a commercially available aspherical lens from Ed-
mund Optics that most resembles our own design but that is unfortunately only
available in N-BK7 and therefore not suitable for our high-power application.
Due to the aforementioned custom production, the delivery of the lens was not
achieved on time to perform the first test measurements. On that account, the
aspherical lens from Edmund optics was used for the first setup of the accor-
dion lattice. Accordingly, the test setup is a probe with a low-power laser.

Detailed information about the aberrations dominating the wavefront error
can be gained from taking a look at the Zernike polynomial coefficients of the
wavefront resulting from the Zemax analysis. The Zernike polynomials are a
complete sequence of polynomials orthogonal to the unit disk described in po-
lar coordinates. The so-called fringe convention yields 36 coefficients that di-
rectly represent classical aberrations such as spherical, tilt, coma, astigmatism,
and defocus. For our custom lens analysis, we find that only coefficients 9, 16,
25, and 36 are non-zero. These all correspond to spherical aberrations of differ-
ent orders as shown in table 4.2.1.

Zernike Fringe Coefficient Aberration Value

9 3rd-order spherical 0.00095768
16 4th-order spherical 0.0008764
25 5th-order spherical 0.00059867
36 6th-order spherical 0.00000728

Table 4.4: Zernike fringe coefficients for the customized lens design. The only non-zero values corre-
spond to spherical aberrations of higher orders.

4.2.2 Beam separation

The design chosen for the beam separation and its control setup affects the
achievable fringe distance, the time scale of the compression, the phase and
polarization stability, and therefore the contrast between the interference pat-
tern minima and maxima. In the first instance, we consider purely the optical
design, i.e the optical elements.
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Figure 4.3: Wavefront error analysis of the final lens design for an aperture of 52 mm. top: Wavefront
error of the aspherical surface for our final design of the focusing lens. bottom: Wavefront error of a
commercially available aspherical lens implemented for the first setup of the accordion. The performance
of our design is expected to be better than the one of the stock lens used in the test setup.

To minimize the path difference between the parallel beams without giv-
ing up control over the degrees of freedom of the elements, we have chosen
the 1 PBS + Mirror method for the separation of the beam. The necessary op-
tical elements include a PBS, a mirror mounted at 45◦, a quarter-wave plate,
and a back mirror. To reach the maximal interference angle θ = 8.9◦, the PBS
and the 45◦ mirror must be at least half as high as the clear aperture of the fo-
cusing lens, i.e 26 mm. Since the desired height is slightly above the standard 1
inch for such optical elements, we decided to order custom-sized elements from
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Lens-Optics in Germany. A sketch of the beam separation setup displaying the
elements’ dimensions is shown in figure 4.4. The customization furthermore
allowed us to better fulfill the quality requirements for our setup. Some of the
relevant specifications for the final elements responsible for the beam separation
are summarized in table 4.5. Similarly to the lens choice, these optical elements
responsible for the beam separation are required to be very high-quality to min-
imize any kind of aberrations and loss of power. Special attention is paid to the
quality of the edges so that the beams will not be cut-off or deformed for the
cases of maximal and minimal beam separation.

Description Clear Aperture Surface Quality Coating

Optically-contacted
PBS 90% / 27 mm 20-10

AR-Coating
532 nm

Ravg <0.25%

Right-Angle
Mirror - 20-10

Dielectric Coating
HR 532 nm/ 45◦

Ravg >99.9%
Air-spaced
Zero-order

Quarter-Wave Plate
30 mm 20-10

AR-Coating
532 nm

Ravg <0.25%

Table 4.5: Quality requirements for the optical elements responsible for the beam separation.

Figure 4.4: Overview of elements’ dimensions for the beam separation setup.
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4.2.3 Beam shaping

The expected beam characteristics discussed in the previous chapter can be ex-
perimentally realized by implementing a telescope setup before the focusing
lens. The high-power laser planned for the real setup is a Continuous Wave
Green Single-Frequency Fiber Laser with a maximum output power of 20 W
and an estimated output beam size 0.9 mm× 0.9 mm. The laser output will be
fiber-coupled as in the test setup using polarization-maintaining (PM) fiber and
adequate outcoupler lenses. By these means, we can achieve an output beam
size of roughly 1 mm. In the following, we will discuss the designing of the tele-
scope setup for a collimated, theoretical output beam size of 1 mm, i.e a beam
waist of 500 µm.

Due to the fact that the desired beam shape is elliptical, it is necessary to
employ cylindrical lenses. First, we consider the expected final beam waist in z-
direction wz = 50µm. The beam waist of a beam after focusing can be computed
by

w′0 = f θ = f
λ

πw0
(4.1)

where θ is the divergence of the beam, f the focal length of the focusing lens,
and w0 the beam waist of the incoming beam. For an incoming beam with
w0 = 500µm and a focusing lens with f = 150mm, the resulting beam waist is
w′0 = 50.8µm, which is almost identical to the value we want to achieve. There-
fore, in the z-direction we do not need to implement additional telescope lenses.

Furthermore, we again apply equation (4.1) to find out the beam waist of an
incoming beam, which focused by our aspherical lens will yield a beam size of
wy =250 µm. The result is a beam waist of 101.6 µm. In general, a broad combi-
nation of cylindrical lenses can be convenient to produce this beam. However,
we take into account, that the combination of the telescope lenses and the fo-
cusing lens, must be suitable for the long path that the beam will travel. This
rules out lenses with very short focal lengths. Finally, we choose two cylindrical
lenses with f1 = 200mm and f1 = 150mm, which we plan to place at a distance
of 442 mm of each other. The final setup for the beam shaping can be observed
in figure 4.5.
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Figure 4.5: Beam shaping setup for wy = 250µm. Two cylindrical lenses with f1 = 200mm and
f2 = 150mm are placed at 442 mm from each other before the aspherical lens with fAL = 150mm to
produced the desired beam waist.

4.3 Opto-mechanical Design

After having decided on the optical elements that will be implemented to real-
ize the accordion lattice experimentally, we now focus on suitable mechanical
options to mount them, and on the mechanical system to achieve the compres-
sion of the lattice. During this design process, the priorities are the stability of
the system, the implementation of only enough degrees of freedom for align-
ment, and maintaining the compact nature of the whole experimental setup. In
the first part of this section, the design of the mounts for all optics will be briefly
described, emphasizing the design process of a vertical structure where the ele-
ments responsible for the beam separation will be mounted, the so-called tower
mount. In the end, the choice for the linear translation stage will be introduced.

4.3.1 Aspherical Lens Holder

The aspherical lens ordered for our setup provides a large enough clear aper-
ture (≈54 mm) to achieve the maximal beam separation (52 mm) and thus the
maximal interference half-angle (8.9◦). However, the extension of the lens in
the y-z plane blocks the whole optical access to the viewport, which limits fur-
ther applications that could be introduced in the future. Therefore, we have
decided to cut the lens around the center to have a thin rectangular shape with
15 mm× 60 mm. Accordingly, we design a simple holder for the lens that suits
these dimensions and that secures the lens properly with two screws. Figure 4.6
provides an overview of the cut and the holder.
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Figure 4.6: Cut and mounting of the custom lens. To avoid the lens from blocking the complete optical
access in one direction, we decide to cut a rectangle around the center of the lens. Accordingly, a custom
holder is designed to hold the rectangular version of the aspherical lens.

Figure 4.7: Overview of the lens holder on the 5-Axis mount. The combined height of the 5-axis stage
and the holder ensure that the center of the lens is at 75 mm from the breadboard.

As stated before, the alignment of the lens, i.e the stability of the interfer-
ence point of the beams at different separations, is crucial for the stability of the
accordion. We conclude that at least 5 degrees of freedom will be necessary:
translation along y and z, as well as tilt around these axes, will be used to align
the parallel beams to the lens and guarantee that they enter the surface orthog-
onal to the optical axis, while translation along the x-direction will be necessary
to accurately place the optical accordion at the position of the atoms in the sci-
ence chamber. Finally, we decide to order a 5-axis mount from Newport. Due to
the fact that the center of the science chamber lies 75 mm over the breadboard,
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the combined height of the holder and the mount must ensure that the center
of the lens is also perfectly positioned at this height. Figure 4.7 shows the final
design of the mounted lens on the 5-axis mount.

4.3.2 Tower Mount

The following part will focus on the mounts and holders designed for the op-
tical elements for the beam separation, namely the PBS, the right-angle mirror,
the quarter-plate, and the back-mirror. All of these elements will be mounted
inside of a robust vertical structure made of aluminum, shown in figure 4.8,
called the tower. At first, the mounting requirements for each individual com-
ponent will be described to explain the internal structure of the tower mount.
At the end, an overview of the final design of the fully mounted tower setup
will be presented.

Figure 4.8: Overview of the tower mount. All optical components for the beam separation are mounted
inside a robust aluminum structure.

Polarizing Beam Splitter

One of the key considerations for the design of the vertical mount is the place-
ment and securing of the polarizing beam splitter. Due to the fact that the opti-
cal setup for the beam separation implements two mirrors that can be used for
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the alignment of the parallel beams, we conclude that the PBS does not need to
have any degrees of freedom, as the alignment can be performed with respect to
it. The cube will be fixed in space and the tower must only provide passive or-
thogonal alignment along gravity. Furthermore, we consider the fact that four
surfaces of the cube are going to be needed for the realization of the parallel
beams, including the bottom surface. Therefore, the cube must be mounted on
a platform which provides at least partial optical access from the bottom. A
high degree of parallelism to the ground can be achieved by fine polishing the
surface of the flat platform. An additional consideration for the design of the
mount, is the optical height of the main experimental setup which must align
with the upper surface of the cube. The center of the chamber is at 75 mm over
the bread board , meaning that the 30 mm PBS has to be elevated by 45 mm. The
placement of the cube inside the tower can be observed on the left in figure 4.9.
For stability, the PBS is fixed by three M2 screws from one side

Figure 4.9: Polarizing beam splitter and right-angle mirror mounted inside the tower. left: The PBS is
mounted at the lower part of the tower at 45 mm from the breadboard and secured by three M4 screws.
The aperture on the bottom provides access to the vertical incoming beam. Fine polishing of the flat
surface ensures that the cube is parallel to the ground. right: The right-angle mirror inside the cus-
tom holder is mounted on top of the cube by securing the commercial mirror mount on two sides to the
tower.
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Right-Angle Mirror

Due to the custom size and shape of the right-angle mirror, no commercial
mount can be used directly. However, a special holder with an adapter was
designed and a standard commercial 1 inch mirror mount available at Radian
Dyes was implemented. The design of the right-angle mirror holder attached to
the commercial mirror mount and a picture of the finalized product can be seen
in figure 4.10.

Figure 4.10: Right-angle mirror holder on commercial 1 inch mirror mount. left: Final design of the
RAM holder with a special adapter to be attached to a commercial mirror mount with two tilt degrees of
freedom. right: The finalized product was produced in-house by the mechanical workshop. The custom
RAM can be secured inside the holder by three M2 screws going through the cap of the holder.

The chosen mirror mount provides two tilt degrees of freedom, which are
necessary for the final alignment of the parallel beams. The right-angle mirror
is to be mounted on top of the PBS, therefore the top of the tower mount is
design to fit the standard 1 inch mirror mount. The mount is fixed with M4
screws on two sides to the tower to guarantee stability as shown in figure 4.9.

Quarter-Wave Plate

In order to reduce the optical path difference between the beams, we aim to
place the PBS, the quarter-wave plate, and the back mirror as close to each other
as possible. Accordingly, the quarter-wave plate is mounted on an aperture
right behind the cube. The implementation of a special holder which resembles
common rotational mounts allows for manual rotation of the wave plate inside
the tower. The air-mounted wave plate is fixed inside the holder with a metal
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ring. One side of the holder fits inside the aperture on the tower, while the
other side of the holder slightly extrudes from the tower to allow alignment of
the wave plate’s axes. A screw on the outside can be tightened to secure the
holder once the plate is in its final position.

Figure 4.11: Custom holder for quarter-wave plate. left: Design of the holder for the quarter-wave
plate. The holder allows for a seamless manual rotation of the plate to its final position. right: Mount-
ing of the holder inside of the tower. The aperture for the plate is designed to be as close as possible to the
PBS. The holder can be secured in place by a screw on the side of the tower.

Back-Mirror

Similarly to the quarter-wave plate, the back mirror should be placed as close as
possible to the PBS to shorten the optical path. However, any path difference in
the order of the laser’s wavelength (532 nm) will cause a phase difference of the
beams, affecting the contrast and stability of the accordion lattice. Therefore, the
back-mirror must be attached to a piezo-ring that allows control of the path dif-
ference in the range of a few nanometers. To avoid any mechanical noise from
the translation caused by the piezo during measurements, we implement an ad-
ditional adapter based on the design by Magnan et al. [28]. The asymmetry and
large mass of the adapter, see figure 4.12, should help drive the mechanical noise
to a high enough frequency that it doesn’t affect the optical accordion. In an ef-
fort to find the best option for our implementation, we design and manufacture
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two different-sized adapters that will be probed together with the piezo-ring.
The piezo will be glued between the small end of the adapter and the back-
side of the back-mirror. Additionally, the piezo adapter can be attached to a
commercial Radiant-Dyes mirror mount, similarly to the RAM holder. To allow
for different adapters’ sizes we drill four holes in the back of the tower mount,
where the mirror mount will be secured. On the side of the tower, an elongated
tap hole for the second screw to attach the mirror mount is drilled.

Figure 4.12: Overview of the adapter for the back-mirror. left: Example of one of the designed adapters
attached to a small piezo ring and the rectangular back-mirror. right: Mounting of the back-mirror
inside the tower with a commercial mirror mount.

It is important to mention that the final design of the adapter and the piezo
control are not implemented in the time frame of this work. The test results in
chapter 5 are acquired by mounting a simple 1-inch mirror on the back of the
tower, therefore limiting the minimal beam distance that can be achieved.

Final Design

The described holders and the tower mount are polished and anodized before
being installed in the test setup. Additionally, a series of plates are designed to
cover the tower and avoid any damage to the optics. The side view of the final
tower and the covered version are shown in figure 4.13.
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Figure 4.13: Final design of the tower mount. top left: Side view of the beam separation setup and
the custom mounts/ holders for each element. top right: Side view of the fully mounted uncovered
tower.bottom View of the covered tower from two different angles.

4.3.3 Linear translation Stage

The linear stage chosen for the accordion lattice has to be non-magnetic, so as to
not affect the dysprosium atoms with its magnetic field. Additionally, it must
have a travel range ≥26 mm and a speed ≥300 mm/s to achieve a compression
time below 0.1 s.

A good option was found to be the V-408 PIMag Linear stage from Physik
Instrumente with a travel range of 50 mm and a velocity of 700 mm/s. The max-
imal translation speed will allow a minimal compression time of approximately
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Figure 4.14: Linear stage for adiabatic compression of the accordion lattice. The maximal translation
velocity will allow for compression from the smallest interference angle θ = 0.76◦ to the largest θ =

0.89◦ in approximately 40 ms.

0.04 s. This time scale is still considered adiabatic with respect to the trapping
frequencies summarized in table 3.2. This linear stage is made of black anodized
aluminum instead of steel which is more common for similar applications but
which is unfortunately magnetic. Our application further requires highly pre-
cise bidirectionality repeatability in order to ensure that the beam separation
remains within the expected values, and so the whole clear aperture of the
viewport’s window is utilized properly. The chosen stage offers a precision
of roughly 0.1 µm. Once the linear stage is implemented, a right-angle mirror
with the reflective surface at 45◦ will be mounted on top of the linear stage to
translate the horizontal displacement into the vertical displacement responsible
for the control of the beam separation.
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Experimental Characterization

The main goal of this chapter is to determine the stability of the interference
pattern, especially of the middle fringe, at the focal point of the aspherical lens
and in dependence on the linear stage translation. The alignment procedure
and the final deviations from the ideal accordion are thoroughly analyzed to
determine the optimal alignment sequence to be followed once the accordion
setup is finalized and ready to be mounted around the main chamber. This per-
formance analysis will also help define any improvements that may have to be
implemented in the future.

The first setup for the Accordion lattice is probed with a 532 nm laser diode
at low power. Some of the custom-designed optics could not be implemented
in the time frame of this work, therefore temporary solutions that differ from
the design described in Chapter 4.2 are used. The characterization described in
this chapter is limited by the test elements.

5.1 Test Setup

The test setup is divided into two main parts, the lower setup, and the upper
setup. On the lower optical table, we have placed the beam source and the op-
tical elements responsible for the beam shaping and collimation. Afterwards,
the beam is redirected to a breadboard mounted 275 mm over the optical table,
where the upper setup has been mounted. The designed tower mount, respon-
sible for the creation of two parallel beams, as well as the focusing aspherical
lens and the imaging system are part of the upper setup. The propagation di-
rection of the beam defines the x-axis and the vertical direction is the z-axis.
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Figure 5.1: Overview of the first test setup of an accordion lattice for dysprosium atoms. bottom:
Lower setup responsible for beam shaping, contrast control and accordion compression. top: Upper
setup responsible for beam separation, focusing and imaging.

Lower Setup

The beam source available for the test measurements is a CW532-005 Com-
pact size fix collimated diode pumped solid state Nd:YVO4+KTP laser-module
from Roithner LaserTechnik, which produces a beam with a maximum power of
4 mW at a wavelength of 532 nm. The output is coupled to a Schäfter-Kirchhoff
high-power, polarizing maintaining fiber. The numerical aperture of the fiber is
0.066 at 532 nm and the Mode Field Diameter (MFD) equals to 5.1 µm. A theo-
retical beam radius of 521.05 µm can be achieved by an outcoupler lens with a
focal length of 8 mm.
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Directly after the outcoupler, the polarization of the beam is cleaned by a
one-inch half-wave plate and a PBS. The half-wave plate is used to do the PM
alignment of the fiber. After the PBS, two cylindrical lenses for the telescope
( f1 = 200mm and f2 = 150mm) are placed with a distance of 442(2)mm from
each other. In between the telescope, two one-inch mirrors are placed to main-
tain the beam path within the dimensions of the breadboard. Right behind the
second lens of the telescope, a one-inch half-wave plate is placed to control the
polarization of the beam, which will later determine the intensity ratio of the
two parallel beams produced at the tower. The last element in the lower bread-
board, the Right-Angle Mirror (RAM1) that is responsible for redirecting the
beam upwards, is mounted on a linear stage with a travel range of 25 mm.

Figure 5.2: Optical path on the lower setup. The polarization of the low-power beam (3.3 mW) com-
ing from the outcoupler is cleaned by a half-inch half-wave plate (L/2) and Polarizing beam split-
ter (PBS). The desired beam shape is achieved by a telescope consisting of two cylindrical lenses
( fTL1 = 200mm and fTL2 = 150mm). An additional half-wave plate is added afterwards to control
the intensity ration between the s- and p- polarized components of the beam. Finally, the beam is redi-
rected upwards by a Right-Angle Mirror (RAM 1) mounted on a translation stage with a travel range
of 25 mm.
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Upper Setup

The vertical beam goes through a hole in the upper breadboard and through the
custom-designed PBS, and is separated by the cube into its s- and p-polarized
components. The s-polarized beam is reflected by the cube towards a one-inch
mirror placed at the back of the tower, which reflects it back through the cube
and away from the tower, the so-called Back-Mirror (BM), passing two times
through a quarter-wave plate secured between the cube and the BM. Note that
the BM used for the test setup differs from the custom 30 mm square mirror
which will be used in the final setup, limiting the minimal separation of the
beams at which the accordion can be observed. In this case, the minimal sepa-
ration achievable is 19.33 mm.

Figure 5.3: Optical path on the upper breadboard. The setup, mainly mounted inside the designed
mount tower, produces two parallel beams (beam 1 and beam 2) with tunable separation. The Aspher-
ical Lens (AL), with a focal length of 150 mm, then focuses them at a shallow angle and produces the
desired interference pattern. The separation of the beams is achieved by a PBS and a combination of a
Back-Mirror (BM), a second Right-Angle Mirror (RAM 2), and a quarter-wave plate. Due to the small
size of the test Back-Mirror, the minimal separation of the beams that can be reached is 19.33 mm. The
maximal separation planned for the real setup is achieved at 47.5 mm.

On the other hand, the p-polarized component is transmitted by the PBS and
reflected by the upper Right-Angle Mirror (RAM 2) away from the tower. The
resulting parallel beams, both p-polarized, are focused by an aspherical lens
from Edmund Optics with a diameter of 75 mm and an effective focal length of
150 mm.

At the time of this thesis, the final custom lens, designed for the real setup,
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has not been delivered, thus the use of the temporary solution available in stock
at Edmund optics.

Imaging Setup

The resulting interference pattern is imaged with a Newport Beam Profiler from
the LBP2 series with a pixel size of 4.4 µm. The camera can be placed on a linear
stage at the estimated focal point of the lens, or alternatively, a microscope ob-
jective can be used to magnify the pattern and better observed the small fringes
at a maximal beam separation.

Figure 5.4: Raw data recorded with the Newport Beam Profiler. top left: Individual beam measured
directly at the focus of the lens with no magnification. top right: Individual beam measured with the
microscope objective with a magnification of ×21. Note that the beam waist in the horizontal and ver-
tical direction is measurable and will be use for analysis purposes. bottom left: Accordion lattice for a
beam separation of 19.33 mm recorded with ×21 magnification. bottom right: Accordion lattice for a
beam separation of 19.33 mm with the maximal magnification of ×55.

For precise measurements of the fringe distance, a ×20 DIN Achromatic fi-
nite conjugate objective from Edmund Optics is placed on the translation stage.
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The distance between the objective and the camera will determine the final
magnification. Throughout this chapter, three setups are implemented. First,
no magnification is used, which allows determining the real size of the beams
at different points of the optical path. A second magnification of ×21 is used
to precisely look at the beams’ vertical and horizontal displacement, and the
larger fringes, while also being able to observe the beam profile. Finally, the
largest magnification of around×55 is used to analyze the fringes for the whole
beam separation range. Figure 5.4 depicts examples for all three cases after the
alignment procedure has been performed.

A rough alignment of the described test system, as shown in figures 5.2 and
5.3 allowed to obtain the first images of the Accordion Lattice, however a thor-
ough alignment procedure is imperative to guarantee the best performance.

5.2 Alignment procedure

The most important step to assure the dynamic stability of the accordion lattice
is the proper alignment of all the optical elements. Even a small misalignment
can be the source of significant aberrations. As mentioned before, the passive
alignment of some elements is one of the main purposes of the opto-mechanical
design, however, many degrees of freedom have to be optimized actively and
with respect to each other.
Firstly, the lower setup is aligned paying special attention to the elements which
will most strongly influence the final interference pattern. Afterwards, the ele-
ments in the tower are adjusted carefully with respect to the lower setup, i.e the
vertical incoming beam. Finally, the aspherical lens, which is the most sensitive
element, is aligned by different methods to achieve the highest precision pos-
sible. In the following sections, the exact steps are thoroughly described and
commented on with recommendations for future alignment procedures.

The last step of the beam shaping is recording the beam profile at the fo-
cal point of the lens to make sure that it agrees with the expected values of
wy = 250µm− 260µm and wz = 40µm− 50µm. After the beam has been pic-
tured with the camera, the data is run through a fitting procedure to find the
width of the corresponding Gaussian curve. Figure 5.5 depicts one of the indi-
vidual beams at the expected focal point of the lens, as well as the fitting curve
and corresponding beam waists. The beam shows an inclination of 1.1◦ caused
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by the misalignment of the aspherical lens, which is corrected during the more
precise alignment procedure. This inclination was considered for the measure-
ment of the beam waists and a correction was performed.

Figure 5.5: Measurement of the beam profile at the focus of the aspherical lens. The shaded areas repre-
sent the fitted beam diameters for wy (purple) and wz (pink). After performing a correction to account
for the inclination, the beam waist in y-direction is measured to be 255.98(1)µm and the beam waist
in z-direction is 48.268(8)µm. The crossing of the horizontal and vertical white lines represent the
calculated position of the peak.

The measurement of the focused beam is used later on to determine the mag-
nification of the system once the objective lens is applied.

5.2.1 Lower Setup

Beam Collimation

The first step, before going forward with the optical alignment procedure, is
to optimize the collimation and shape of the outgoing beam by adjusting the
position of the outcoupler lens. The beam profile is measured over a range on
the order of the expected Rayleigh length ( 1.6 m) with a Newport Beam Profiler.

Before the lens was properly adjusted, measurements of the beam profile
showed an unexpected behavior. On the one hand, the beam didn’t show a
symmetric Gaussian shape near the outcoupler. The intensity profile seemed to
be shifted towards one side. Altogether, the strongest shape distortion appears
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between 0 mm and 700 mm

Figure 5.6: Measurement of the beam collimation within the expected Rayleigh length. A fit function of
the data after the 600 mm mark (dashed lines) provides the beam waist and its position. The shaded area
represents the 3σ uncertainty for the fit on the beam waists. The beam waist in the y-direction (dark
pink) is found to be 483.6(12)µm and is positioned at 615(11)mm from the outcoupler. The beam
waist in the z-direction (light blue) is 514.7(81)µm at 432(58)mm. The measurement and fitting
of the beam waists in both directions show strong astigmatism. Once the high-power laser for the real
accordion is installed, a much better collimation with less aberrations should be achieved.

On the other hand, the beam profile seems to be affected by the unexpected
beam shape at different distances. At close distances from the outcoupler, 0 mm
to 400 mm, the beam seems to diverge , but suddenly starts to focus between
500 mm and 600 mm, reaching minimum values below the expected beam waist
in both directions. While the expected value is 521 µm, the beam waist in y-
direction reaches approximately 480 µm, and 515 in z-direction. The large dif-
ference between the beam waists also demonstrates large astigmatism caused
by the outcoupler lens. The divergence and then focusing of the beam gives the
impression of a "hill" that goes up and down in the mentioned range. At larger
distances, the beam diverges slowly, following the expected scaling for a Gaus-
sian beam. The collimation achieved after various attempts, shown in figure
5.6, minimizes the observation of the small "hill" at small distances, as well as
the divergence of the beam within the Rayleigh length. To estimate the precise
divergence, a fit to determine the beam waist and its position is performed.

Taking into account the dimensions of the setup, the achieved collimation
is considered to be sufficient. The positions of the telescope lenses are chosen
to be close to the outcoupler to minimize the overall length of the optical path
in the aim of avoiding the beam’s divergence from affecting the waist in the y-
direction at the lens’s focus.
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Beam Shaping

The two cylindrical lenses for the telescope setup are installed on rotational
mounts in order to precisely adjust the major and minor axes to be orthogonal
and parallel to the optical table respectively. The profile of the beam is mea-
sured after the two cylindrical lenses (before the aspherical lens) with the New-
port beam profiler at large distances, which represent the expected length of the
optical path through the tower and the focusing lens.

Figure 5.7: Measurement of the beam profile after the telescope. A fit function of the data (dashed lines)
provides the beam waist and its position. The shaded area represents the 3σ uncertainty for the fit on
the beam waists. The beam waist in the y-direction (dark pink) is approximately 146.4(2)µm and
is positioned at 959(27)mm from the outcoupler. The beam waist in the z-direction (light blue) is
522.8(2)µm, which is within the expected value of 521.05 µm, and looks sufficiently collimated.

Right-Angle Mirror and Translation Stage

Once the collimation procedure and beam shaping are done, the alignment of
the lower optical path can be performed, especially of the Right-Angle Mirror
mounted on the linear stage, which is directing the beam upwards. One part of
the vertical beam is reflected by the PBS towards the back mirror, while the other
is transmitted in direction of the second Right-Angle Mirror. Due to the fact that
neither the position nor the tilt of the PBS can be adjusted in any direction, the
RAM1 tilt must be aligned in order to assure that the beam is orthogonal to
the PBS bottom surface. Blocking the back-mirror and observing the reflection
on the PBS surface allows for a relatively precise alignment of the RAM1’s tilt
around the y- and z-axes. Once this part is done, the RAM1 should not be read-
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justed any further. A sketch for the alignment of the RAM 1 is depicted in figure
5.8 a. .

Figure 5.8: Alignment procedure of the RAM1 and the back-mirror.a. Alignment procedure of the
lower right-angle mirror on the translation stage (RAM 1). All retro-reflections on the bottom and
upper surface of the cube should overlap with the incoming beam. The alignment should be checked for
various positions of the translation stage. b. Alignment of the back-mirror is done with respect to the
RAM 1. The tilt of the BM should not be readjusted afterwards.

5.2.2 Upper Setup

Alignment of the Parallel Beams

The parallel beams result from the separation of the incoming beam at the tower.
Through this chapter, the beam coming from the reflection on the PBS and the
back-mirror, will be referred to as the lower beam, while the parallel beam com-
ing from the reflection at the RAM 2 will be the upper beam.
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Figure 5.9: Alignment procedure of the upper Right-Angle Mirror (RAM 2). An additional 2-inch
mirror is placed as far as possible from the tower and aligned orthogonal to the lower beam. The mirror
is then used to overlap the upper beam and its reflection.

The proper alignment of the lower parallel beam with respect to the verti-
cal beam is determined exclusively by the two degrees of freedom of the back-
mirror in the tower. Removing the quarter-wave plate means that the polariza-
tion of the incoming beam remains unchanged, thus it is reflected back down-
wards by the PBS. One can make use of this reflection to adjust the back-mirror:
once the incoming and the reflected beam overlap on the RAM1, one has achieved
a good alignment. By adding the quarter-wave plate one can observe the path
of the parallel beam relative to the upper setup. In case the beam is not follow-
ing a straight path towards the expected position of the focusing lens, either the
orientation of the whole tower or of the breadboard can be adjusted. However,
the tilt of the back mirror should not be altered after its reflection downwards
has been aligned. The adjustment of the RAM1 and the back-mirror is tested
for various positions of the translation stage.

The second parallel beam is aligned with respect to the first beam by ad-
justing the tilt of the RAM 2. In this case, an additional two-inch mirror can be
placed at a large distance in front of the tower. The two-inch mirror has to be
aligned relative to the first parallel beam, and only afterwards it can be used to
proceed with the alignment of the second beam.
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Alignment of the Aspherical Lens

The main advantages of an aspherical lens, are the reduced focal shift caused
by spherical aberrations, the improved resolution, and overall better system
performance. However, one main disadvantage is the heightened sensitivity
to the position and alignment of the lens relative to the incoming beams. An
optimally aligned lens would mean that for all separations of the parallel beams,
the beams meet at the same position in the x-direction. The relative shift on the
x-axis caused by a misalignment will be referred to as shift of the focal point,
or focal shift for short. For this particular lens, two alignment procedures were
implemented to test the precision that can be achieved in terms of the resulting
focal shift.

Figure 5.10: First method for the alignment of the aspherical lens. a. Sketch of the working principle of
the alignment procedure. The two parallel beams first meet the curved surface of the aspherical lens and
are partially reflected outwards. The beams are reflected a second time on the planar back surface of the
lens and are redirected inwards with an angle. Once the reflected pattern is symmetrical on the z-axis
and perfectly aligned along the y-axis, the aspherical lens should be on the right position and orienta-
tion in respect to the incoming parallel beams. b. Example of a misaligned lens showing an asymmetri-
cal pattern of the four reflections. The brightest points represent the entering point of the parallel beams.
Between them, the reflections on the planar face of the lens can be observed. Finally going towards the
edges, it is possible to see the reflections on the curved surface.

67



Chapter 5. Experimental Characterization

The first method relies on using the reflections of the two beams on the
two surfaces of the aspherical lens. For a perfect alignment, the four reflected
beams should be symmetrical around the y-axis and centered along the z-axis,
as shown in figure 5.10a. . The fine adjustment of the lens is possible thanks to
the fact that it is mounted on a 4-axis stage, however, for this stage, it is not pos-
sible to decouple the lens position and its tilt. Therefore, it becomes increasingly
harder to adjust the lens the closer one gets to the optimal alignment. One way
to decouple the adjustment of the height and the tilt is to turn the lens around to
have the flat surface directly after the tower. The alignment of the incoming and
reflected beams allows to find the point at which the beam and the lens’s surface
are perfectly orthogonal. Once this has been done, one can turn the lens back
around and try to achieve the best symmetry of the four reflections by rotating
the screws equally. A careful iteration of this process should help align the lens
to a high degree. The maximal focal shift observed at different positions of the
lower linear stage after this alignment procedure was of 1.9 mm, therefore, the
second alignment procedure was performed in an attempt to reduce this value.

Figure 5.11: Second method for the alignment of the aspherical lens. The incoming (continuous line)
and outgoing (doted line) beams do not overlap, which reflects a misalignment of the focusing lens.
The accuracy achieved by eye is sufficient to continue with the fine alignment procedure with a beam
profiler.

For the second method, a mirror is placed on a linear stage near the ex-
pected focal point of the lens. Firstly, this mirror is aligned by removing the
lens and overlapping the retro-reflection to the incoming beams, similarly to
the alignment of the second parallel beam described before. Afterwards, the
lens is mounted back and the linear stage with the mirror is moved until one
finds the focal point. Finally, the 4-axis stage is adjusted until once again the
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reflected beams overlap with the incoming beams. This procedure doesn’t re-
quire the lens to be flipped back and forth and seems to allow for a more precise
alignment, with a resulting focal shift of 0.96(5)mm.

In addition to the aforementioned procedures, fine-tuning of the lens align-
ment can be performed by placing a camera at the expected focal point of the
lens. The focal shift is mainly caused by a vertical and/or horizontal displace-
ment of the individual beams for different positions of the lower translation
stage. For this measurement, the second beam is blocked and the position of
the first parallel beam is recorded for a fixed position of the upper translation
stage. This position is chosen to be at the focal point observed for a constant
beam separation, even though this will be varied in the last step. The lens is
then adjusted until the overall displacement of the first beam is minimized. Di-
rectly afterwards, the procedure is repeated for the second beam. Nevertheless,
in this case, the Right-Angle Mirror is adjusted instead of the lens. Once the
displacement has been minimized, the blocking of the first parallel beam is re-
moved and the focal shift is measured. At this point, a more precise focal point
should be chosen and the procedure repeated until the displacement of both
beams is minimized and the real focal point of the lens has been determined. If
both beams are perfectly centered on the lens axis, any remaining displacement
of the beams should be symmetrical.

Once this alignment was finished, no displacement of the beams could be
observed for translation stage positions between 10 mm and 20 mm, as well as
no focal shift. This measurement was done without any type of magnification,
limiting the precision of the procedure. For the real setup and to avoid any
misalignment below 100 µm, the alignment procedure can be repeated with a
microscope objective between the lens and the camera. The following measure-
ments of the beams’ displacement as well as the final focal shift were recorded
with a magnification of roughly ×21.

Furthermore, the distance between the back of the lens and the objective was
found to be approximately 141(1)mm. Taking into consideration the working
distance of the objective (0.8 mm), we estimate the focal point of the aspherical
lens to be at 140.2(10)mm. The uncertainty here is roughly estimated by the
precision we can achieve with a standard rule.
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5.3 Test Results

5.3.1 Individual Beam Characterization

Before characterizing the stability of the optical accordion, we first measure the
stability and control of the individual beams, which will be the source of any
instability of the accordion lattice.

In the first part of this section, the control of the beam separation is deter-
mined by the relation between the lower translation stage position and the mea-
sured beam separation. A good alignment of the system will yield a perfect
linear dependence, with the beam separation augmenting twice the shift of the
translation stage. Afterwards, the spatial stability of each beam is studied by
observing its vertical and horizontal displacement at the estimated focal point
of the lens. In theory, the position of both beams at the focus should be the
same for all beam separations. In reality, this is not the case, which means that
the interfering point of the beams is shifting back and forth along the propa-
gation direction for different positions of the lower translation stage. Since the
atoms will be trapped exactly at the interfering point, if it shifts strongly, the
atoms will be heated or could escape the trap. Additionally, for a significant
displacement of the beams relative to each other at one position, the intensity
of the middle fringe will be reduced compared to the maximal overlap of the
beams, reducing the trap depth seen by the atoms.

Beam separation

The final beam separation D was determined by measuring the beam separation
for multiple lower translation stage positions and then fitting a linear function
as shown in figure 5.12. The slope of the fitted line is 2.01(19) , which means
that for every increase of 1 mm on the linear stage, the beam separation will
increase by 2.01 mm, matching the expectations.

Vertical Displacement of the Individual Beams

The vertical displacement of the individual beams at the focal point, i.e the
movement along the z-axis, will later reflect as a shift of the interference pat-
tern along the x-axis, which is the propagation direction. A significant shift of
the interfering point will be detrimental to the experimental application, due
to the fact that a reduced trap depth of the central fringe may cause heating or
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Figure 5.12: Measurement of the beam separation as a function of the lower manual translation stage
position.

significant, if not total loss, of the trapped atoms. The use of the microscope ob-
jective allowed us to observe the vertical displacement more clearly than during
the alignment procedures. Figure 5.13 depicts the vertical shift of the individual
beams as a function of the lower translation stage position.

Figure 5.13: Vertical Displacement of the individual beams. left: Vertical displacement of the individ-
ual beams measured on the beam profiler with ×21 magnification. The lower and upper beam, in dark
pink and light blue respectively, show an asymmetric displacement around the center, with unexpected
high values after 20 mm. The shaded areas around the data points represent the beam waist of the beams
for every measured point, and should serve as a reference to observe the overlap of the beams. right:
Zoom on the most stable area 10 mm to 20 mm. The beams show a maximal displacement of 22 µm,
with the upper beam showing a higher stability than the lower beam. Large vertical displacements will
cause a significant loss of intensity of the middle fringe of the Accordion. For the measured beams, we
expect the loss to be below 3%.
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The shaded area represents the beam waist and should help reference the
overlap of both beams. Altogether, we observe constant overlap for the major-
ity of the measured data points. The upper beam shows less vertical displace-
ment between 10 mm and 20 mm than the lower beam, with a maximal shift
below 11 µm. On the other hand, the lower beam shows two times the devia-
tion of the upper beam, with a maximal shift of around 22 µm. After the 20 mm
mark, the vertical displacement seems to increase significantly, and at 22 mm
the beams do not overlap anymore. The large separation between the beams
between 21 mm and 25 mm could not be reduced after multiple alignment at-
tempts, and due to the observation of a strange jump at 20.5 mm while moving
the lower translation stage, we concluded that the focal shift is caused by spheri-
cal aberrations of the lens. This issue may be resolved once the custom-designed
lens is implemented. A maximal beam separation of 20 µm, observed between
10 mm and 19 mm, represents around 42% of the beam waist and reduces the
trapping frequency by nearly 2.85% according to simulations. Similar values
have been observed in [22] and [27]. The minimal beam separation for positions
after 19 mm is 30 µm, around 63% of the beam waist. The trapping frequency
is reduced by around 6.3%. Assuming a trapping frequency in z-direction of
nearly 20 kHz, the loss will represent over 1250 Hz. For the final setup, 20 µm
should be considered the upper limit, especially since higher-quality optics, like
the custom-designed lens, will be implemented.

Additionally, we observe a significant asymmetry in the beams’ movement.
As mentioned before, for an ideal lens we expect a symmetric displacement for
a perfectly aligned lens. A better alignment and a higher-quality lens will im-
prove the measured displacement and reduce the variation of the trap depth for
the dynamic application of Accordion.

Horizontal Displacement of the Individual Beams

Analogously to the vertical displacement, the horizontal displacement is mea-
sured thoroughly. The plotted data demonstrates a good overlap of the hori-
zontal beams for all translation stage positions. However, a closer look shows
a shift in the order of 20 µm for beam 2, and of roughly 30 µm for beam 1. This
means that the contribution of the horizontal movement of the beams to the
shift of the interfering point is in the same order as the vertical displacement.
Nevertheless, due to the larger beam waist, the intensity variation caused by
this is expected to be much smaller. Once again, a jump after the 21.5 mm mark
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suggests spherical aberrations caused by the lens. The upper beam seems to be
better aligned with respect to the lens, with a total deviation below 10 µm for
linear stage positions between 10 mm and 18 mm.

Figure 5.14: Horizontal Displacement of the individual beams.left: Horizontal displacement of the
individual beams as a function of the lower translation stage position. The stable overlapping of the
beams, depicted as the purple shaded area, means a rather stable intensity and trapping frequency of the
interference pattern for different beam separation. right: A more detailed look to the stable area, i.e the
position range which is not strongly affected by spherical aberrations, 10 mm to 20 mm, reveals that
the contribution of the horizontal displacement to the focal shift is in the order of the contribution of the
vertical displacement discussed before.

5.3.2 Characterization of the Interference Pattern

The following section consists of the analysis of a carefully recorded set of data
measured with the test setup. After the measurements to determine the stabil-
ity of the individual beams, we continue with a detailed characterization of the
optical accordion itself. Taking the vertical and horizontal displacement of the
beams at the expected focal point into account, we expect to observe a certain
spatial instability of the fringe pattern as well. The first part of this section will
present the measured shift of the interfering point of the beams.

Afterwards, the range of achieved fringe distances will be discussed, as well
as the dynamic stability of the middle fringe. Finally, additional deviations
from the ideal simulated patterns, regarding the orientation, the phase shift,
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and the contrast of the accordion, will be explained and exploited to trace back
issues with the experimental setup. Possible solutions and recommendations to
achieve the best stability and performance for the final setup will be discussed.

Shift of the Beams’ Interfering Point

The displacement of the interference point is measured by finding the strongest
overlap of both beams while looking at the interference pattern on the camera
with a magnification of approximately ×21. The effects of the vertical and hor-
izontal displacement discussed previously are reflected in the measurement, as
shown in figure 5.15. For the stable range mentioned above, 10 mm to 20 mm,
the interfering point’s shift doesn’t exceed 100 µm, while after that, it increases
linearly to almost 500 µm. This shift is equivalent to the displacement that the
deepest point of the trap will experience along the x-direction, causing heat-
ing and significant loss of atoms. A fine-tuning of the alignment procedure is
imperative to reduce the shift of the interfering point as much as possible, and
the values recorded with this setup should be considered the upper limit to the
achievable precision.

Figure 5.15: Shift of the beams’ interfering point measured with a magnification of ×21 for a large
range of linear sage positions. The alignment procedure helped reduce the variation of the focal point
to less than 100 µm for the majority of the beam separations. However, sudden jumps and loss of the
interference pattern at larger beam separations, indicate strong spherical aberrations far from the center
of the aspherical lens.
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Fringe Distance

The fringe distance, together with the intensity, determines the trapping fre-
quency that can be achieved by the interference pattern. In fact, the overall
concept of an accordion lattice relies on the possibility to dynamically control
and adjust the fringe spacing. If a convolution of a cosinusoidal and Gaussian
function is fitted on the data recorded on the beam profiler, the fringe separa-
tion can be extracted directly from the period of the cosine term. However, in
order to decouple the error of the fit of the Gaussian function from the calcu-
lation of the fringe distance, a Fourier Transform is performed instead. Figure
5.17 illustrates the recorded data at a beam separation of 19.33 mm and the cor-
responding z-Potential slice at the center. The computed fringe distance d is
depicted by the blue lines as the distance between two fringes near the center.
Figure 5.16 displays the performed Fourier Transform with a peak at the inverse
of the fringe distance.

Figure 5.16: Example of the Fourier transform performed to abstract the period of the Accordion Lat-
tice.

Note that for this set of measurements, the interference pattern with a mag-
nification of ×21, which has been used above to characterize the individual
beams, doesn’t provide a high enough resolution to observe the smallest fringes.
Therefore, the camera is moved further away from the objective to a distance
of 442(2)mm, which according to calculations represents a magnification of
×55.25(25). The real magnification can be found by measuring large fringe
distances with the first magnification and comparing them to the size resulting
from the second magnification, see 5.4. The real magnification is measured to
be ×55.89(30), which is well within the 3σ margin of the expected value. The
peak signal away from the zero-point in figure 5.16 represents the inverse of
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Figure 5.17: Processed image of the interference pattern at 19.33 mm. One of the analyzed slices along
the y-direction, which represents the potential along z-direction, is plotted on the left in dark pink. The
calculated fringe distance is represented by the distance between the two light blue lines.

the period of the lattice, which yields a fringe distance of 215.58 µm for the raw
data, which equals 3.85 µm once the magnification correction is done.

This process is repeated for beam separations between 19.33 mm and 41.49 mm
in roughly 1 mm steps. The fringe distances are plotted as a function of the beam
separation in figure 5.18. The focal length of the aspherical lens can be precisely
calculated by applying the approximation

d =
λ fAL

D
. (5.1)

The fitting yields fAL =139.5(5)mm, which is within the 1σ of the mea-
sured focal length of 140.2(10)mm (see section 5.2.2). The fit also provides
a better overview of the achievable fringe distances for our setup. The min-
imal beam separation, which yields the maximal fringe distance, is expected
to be around 3 mm. This corresponds to the distance between the RAM 2 and
the PBS (1.5 mm), plus a margin of three times the beam waist for each beam
(2× 3×255 µm), which guarantees that the beam is not cut off by the optical el-
ement. The expected maximal fringe distance is computed to be 24.74 µm. For
the maximal beam separation of 47.5 mm we expect a fringe distance of 1.56 µm.
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Figure 5.18: Fringe distance d as a function of the beam separation D. The data points (dark pink) are
fitted to find the focal point of the aspherical lens (light blue).

Dynamic Stability of the Central Fringe

The central fringe of the optical accordion is where the atoms will be loaded and
trapped. It is imperative that its position shifts as less as possible during the
compression of the trap, as has been mentioned before. In order to determine
the dynamic stability of the central fringe, it must first be identified. Ideally,
the position of the central fringe would coincide with the center of the Gaussian
packet defining the intensity of the potential. Due to factors discussed later, this
is not always the case for the experimentally realized interference patterns. In
case the intensity distribution is well defined by a single Gaussian curve, one
could assume that the fringe positioned closest to the center of the fitted Gaus-
sian packet is the central fringe. However, if the beams are not at the same
position, and instead show a large enough separation that two Gaussian curves
can be identified, the position of the middle fringe should be confirmed man-
ually by considering the evolution of the interference pattern in dependence
of the beam separation. The measurement of the vertical position of the central
fringe is performed for different positions of the lower linear stage, i.e for differ-
ent beam separations. Note that for the test setup, only a manual linear stage is
available, so the measurements have been taken over a longer time period and
fluctuations in the environment that could affect the accordion cannot quantita-
tively be accounted for. The results are plotted in figure 5.19.

The vertical position shifts by around 5 µm in total from the smallest to the
largest beam separation. The variation seems to be stronger at the beginning,
with jumps in the order of 2 µm, while it seems to be more stable at larger beam
distances. We note that in the case of the first data point at 19.33 mm, the Gaus-
sian center appears to be in the middle of two fringes with similar intensity,
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Figure 5.19: Vertical position of the central fringe as a function of the beam separation D.

making the choice of the middle fringe more difficult. Observing the tendency
of the movement of the central fringe from that point onwards, it could be ar-
gued that the "real" middle fringe is the next fringe in the negative z-direction.
A more detailed discussion regarding the shift of the middle fringe in respect
to the Gaussian packet follows at the end of this section. In contrast, between
28 mm and 41.5 mm the central fringe does not shift by more than 2 µm. In [22]
and in [27], a displacement below 1.5 µm and 2 µm for much larger d ranges has
been achieved, which warrants a more precise alignment of the present setup.

Figure 5.20: Vertical position of the central fringe as a function of the beam separation D for the full
camera range in z-direction (-45 to 45µm). In the background, superimposed to the vertical shift dia-
gram, are the corresponding intensity slices of the fringe patterns.
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Inclination of the fringes

During the initial imaging of the Accordion lattice, two key observations were
made. On the one hand, a significant inclination of the fringes relative to the
horizontal axis was identified. On the other hand, an unexpected bending of the
individual fringes was observed. During the real application, the lattice fringes
should be as flat and parallel to the ground as possible to avoid gravitational
effects from affecting the in-plane potential seen by the atoms. After the careful
alignment procedure, the inclination for different stage positions was consider-
ably reduced but still measurable with the largest magnification. Interestingly
enough, the previously observed bending completely seems to disappear. To
begin with, the tilt of the fringes present after the alignment will be discussed.
At the end of the section, an additional example of the initially observed bend-
ing will be displayed and discussed.

The final tilt for a fixed D is determined by slicing the data along the y-axis
and finding the peaks corresponding to the fringes in z-direction. Afterwards,
the y-profile for a single fringe is reconstructed and fitted with a linear equa-
tion. In order to avoid large errors caused by the uncertainty of broader, smaller
peaks’ positions, the fitting was performed only for the fringes within the beam
waist. The final orientation of the interference pattern results from the averag-
ing of the slopes for all fringes in the selected range.

Figure 5.22 shows the same potential as in figure 5.17 with an additional
green line following the middle fringe to reference the calculated final tilt of
0.0124(6) rad.

The inclination of the lattice is measured for all data files and plotted against
the beam separation D, as shown in figure 5.23. In order to correct the tilt exper-
imentally, we now search for its cause. From the geometry of the setup leading
to the interference pattern, it can be deduced that the observed tilt of the fringes
on the y-z-plane is caused by a rotation of the ideal system around the x-axis
by ψ. In practice, this means that the axis defined by the middle points of the
individual beams is not orthogonal along gravity because the central points of
both beams are shifted in respect to each other on the y-axis by ∆y.

This shift is attributed to a misalignment of the parallel beams before enter-
ing the aspherical lens. The relative position difference at the lens, ∆y in figure
5.23, is found to be approximately 0.93(6)mm. The effect of the horizontal shift
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Figure 5.21: Measurement of the fringes’ inclination. top: Reconstruction of the fringe positions on
the y-z plane. Points corresponding to the same fringe are marked by the same color. Only the fringes
within the beam diameter are used for the tilt analysis. bottom: Linear fits corresponding to the indi-
vidual fringes above. The final inclination is given by the average of all slopes.

of the beams can be simulated by determining the corresponding angle ϕ, where

ϕ = atan
tanψD

fAL
. (5.2)

The calculation of the relative displacement, together with the information
gathered in section 5.3.1, can help us deduce how the observed misalignment
can be corrected. In this case, it has become clear that the lower beam has to be
readjusted slightly, as its measurement of the horizontal displacement shows a
stronger variation, which indicates that it is not centered on the lens. However,
it has been explained during the alignment procedure, that any readjustment
of the lower beam should be avoided. For this reason, one could consider the
alternative of adjusting the aspherical lens position and tilt to better align with
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Figure 5.22: Processed image of the interference pattern for D =19.33 mm and d =3.86 µm. The posi-
tion of the central peak is marked by the light blue line on the left graph. The measured inclination of the
central fringe is shown by the green line.

Figure 5.23: Rotation of the interference pattern around the x-axis by ψ caused by an horizontal shift of
the beams ∆y.

the lower beam, and then readjusting the upper beam accordingly.

As mentioned before, a bending of the fringes could be observed previous
to the final alignment procedure. The shape of the bent fringes could be fitted
with a quadratic function and analyzed similarly to the case of the linear fringe.
Figure 5.25 shows an example of the reconstruction of the fringes and the cor-
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Figure 5.24: Inclination of the lattice for different beam separation. A fitting on the measured orienta-
tion yields ∆y =0.93(6)mm.

responding quadratic fits. The unexpected bending of the interference pattern

Figure 5.25: Bending of the lattice fringes before alignment. top: A reconstruction of the fringes allows
to observe a slight bending in the upwards direction. Data points in the same color correspond to the
same fringe. bottom: Quadratic fits corresponding to the individual fringes above. The final fit parame-
ters for an interference pattern are given by the mean of the parameters for all quadratic fit functions.

is most certainly caused by a misalignment relative to the aspherical lens. This
assumption is derived from the fact that the bending vanishes once a precise
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alignment of the lens is achieved. A possible explanation would be that the
spherical aberration curves the pattern when the beams are not centered prop-
erly. According to simulations, another probable cause for the bending is the
path difference itself. Additional measurements of this effect could provide a
more certain explanation and possibly allow for its simulation.

Phase measurements

To determine the trapping frequency inside the central fringe of the optical ac-
cordion, it was assumed during simulations that the central fringe was located
at the center of the Gaussian packet. This corresponds to a deeper trap on the
center than on any side fringes. Nevertheless, phase shifts ∆δ 6= 0 cause a dis-
placement of the fringes within the Gaussian packet. The maximal effect of a
phase shift is found at ∆δ = π( mod 2π), where the fringe pattern is symmet-
rical around the Gaussian center, causing the two fringes closest to this position
to have the same intensity.

Figure 5.26: Example of a large phase shift. The measured phase shift of 0.45x2π for D = 19.33 mm
is very close to the maximal possible phase shift π. This means that the central fringe (light blue) is
almost a half-period away from the Gaussian center (gray). The large phase creates an almost symmetric
interference pattern around the Gaussian center. The symmetry of the pattern makes it more difficult to
identify the real central fringe.

An example of a large phase was found at 19.33 mm, which, as mentioned
before, made the identification of the real central fringe more difficult. The
phase was determined by calculating the distance between the Gaussian cen-

83



Chapter 5. Experimental Characterization

ter and the closest fringe, and dividing it by the periodicity d (see figure 5.26.
For 19.33 mm the calculation yields 0.45 in terms of 2π.

Figure 5.27: Example of a small phase shift. The measured phase shift is 0.008x2π for D = 26.39 mm,
which means that the central fringe (light blue) is positioned almost at the Gaussian center (light gray).

In contrast to the last example, figure 5.27 depicts the interference pattern
for D =26.39 mm, with its central fringe very closely positioned to the Gaus-
sian center, and therefore a very small phase shift (0.008 × 2π). The computed
phases for all beam separations are plotted in figure 5.28.

Considering the relation

∆ϕ =
2π∆L

λ
, (5.3)

the two main causes for the phase shift are variations of the optical path ∆L in
the order of nanometers and variations of the wavelength λ. Assuming a stable
wavelength during one measurement, we can trace the phase back to an optical
path difference between the beams.

Adding a phase ∆ϕ and a tilt term to our simulations, we can accurately
replicate the experimental measurements. An example for 19.33 mm is depicted
in figure 5.29.
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Figure 5.28: Overview of phase and path difference measurements for different beam separations. top:
Phase in terms of 2π as a function of the translation stage position. bottom: Path length difference
calculated from the phase measurement above.

Figure 5.29: Measured accordion vs simulated accordion. left: Measured accordion for a 19.33 mm
beam separation, 0.0124(6) rad inclination and phase 0.45× 2π. right: Simulation for 19.33 mm beam
separation, replicating the experimentally observed tilt and phase.

In general, we expect that the implementation of a piezo ring behind the
back-mirror will allow for precise control of the path’s difference, and therefore
for a significant reduction of the phase difference. Additionally, measurements
of the phase in time will provide more information about the stability of the
accordion. Temperature fluctuations and mechanical noise caused by the piezo
and the linear stage during the compression of the lattice will have to be con-
sidered for such measurements.
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Contrast

The last property of each interference pattern that was analyzed was the con-
trast. We define the contrast as

Contrast =
Amax − Amin

Amax
. (5.4)

where Amax is the amplitude of the fitted Gaussian packet defined by the max-

Figure 5.30: Contrast for different beam separation.

ima of the fringes. Similarly, Amin results from the amplitude of a Gaussian
curve fitted on the minima of the pattern. The contrast is calculated for all beam
separations D and the results are plotted in figure 5.30.

The causes of contrast loss are broad and varied. On the one hand, when
the beams are not overlapping perfectly we observe a decrease in the maximal
intensity of the middle fringe, while the values of the minima seem to increase.
Figure 5.31 demonstrates the change of the intensity profile along z for the case
of ideal overlapping and for a slight shift of the beams’ positions with respect
to each other.

On the other hand, power imbalance between the beams can strongly affect
the final contrast. Figure 5.32 depicts the contrast loss caused by a power ratio
Pθ : P−θ = 2 : 1. In this case, the shift of the minima follows a Gaussian curve
instead of two individual peaks, as in the case before.

Additionally, contrast loss can be expected due to the phase- and polariza-
tion discrepancies between the beams. Once the control mechanisms for the
phase and the polarization are in place, their effect on the pattern contrast can
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Figure 5.31: Simulation of contrast loss of the interference pattern caused by imperfect overlapping of
the beams.

Figure 5.32: Simulation of contrast loss of the interference pattern caused by power imbalance of the
incoming beams.

be tested in detail.
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Summary and Outlook

The main goal of this thesis has been to follow the design process of an accor-
dion lattice for the bosonic isotope 164Dy from the conceptual considerations up
to the experimental characterization of a first test setup. First of all, we consider
the interest in the new phenomena exhibited by ultracold dipolar quantum
gases, especially their behavior in 2 dimensions described by the BKT transi-
tion. Initially, a numerical simulation of the interference pattern has yielded the
necessary laser wavelength, power, and beam geometry to realize an optical ac-
cordion that confines dysprosium atoms tightly enough to enter the 2D regime.
Assuming an atom cloud at 50 nK, we aim to achieve a trapping frequency along
gravity of at least 15 kHz that fulfills the 2D trapping condition. According
to calculations, for a maximal interference angle θ = 8.9◦, which is limited by
the dimensions of the science chamber, and a laser with λ = 532nm, P = 10W,
wy = 250µm and wz = 50µm, a maximal trapping frequency νz = 25kHz can be
reached. The chosen beam geometry produces a nearly-symmetrical trapping
geometry in the residual plane, which is of interest for our future experimental
applications. Furthermore, at a minimal half-angle θ = 0.76◦ a maximal fringe
size d = 20µm, which is comparable to the atomic cloud’s dimension, will allow
for efficient loading of a single fringe from the crossed optical dipole trap.

Motivated by the large range of applications of accordion lattices for ultra-
cold quantum gases that have proceeded this work, we have aimed to optimize
the performance of the optical- as well as of the opto-mechanical design for
our setup. Accordingly, many optical elements have been custom ordered, in-
cluding a high-quality aspherical lens, and high-quality custom-sized polariz-
ing beam splitters, right-angle mirrors, and wave plates. The engineering solu-
tions to implement the customized optics guaranteeing stability and practicality
have led to the design of a robust vertical structure called the tower mount.
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For the first part of the test measurements, we have characterized the beam
shaping and the general observation of an accordion lattice. During the test
measurements we have noticed the sensitivity of the lattice’s stability and per-
formance to the proper alignment of the optics, especially of the aspherical lens.
We propose three different methods for the alignment procedure that are ex-
pected to yield best results.

After the alignment, we have probed the realization of the minimal and max-
imal beam separation. Unfortunately, due to the use of test elements that dif-
fer from the custom ones, the minimal beam separation achieved is 19.33 mm,
which represents an interference angle θ = 3.96◦ and a fringe size d = 3.85µm.
The instability of the accordion after the alignment procedures has been charac-
terized by analyzing the vertical and horizontal displacement of the individual
beams at the estimated focus. The shift in both directions is in the order of a cou-
ple of micrometers (≈ 20µm), indicating the need to refine the alignment in the
future. The instability observed for the individual measurements is reflected in
the test measurements of the fringe pattern, especially of the interference point
of the beams. Altogether, we have been able to quantify and trace back differ-
ent effects, such as the inclination of the accordion lattice, the shift of the middle
fringe, and the loss of contrast. Overall, we conclude that a more detailed align-
ment procedure will significantly reduce these effects. In the near future, we
expect to implement two tools that will help further stabilize the accordion: a
piezo ring attached to the back mirror to control the phase, and two additional
half-wave plates after the tower mount to correct the polarization. Additionally,
once the custom lens arrives, its performance can be probed. Due to the sim-
ulated wavefront error of our lens in comparison to the wavefront error of the
test lens, we expect a smaller shift of the beams’ interference point for different
beam separations, as we assumed that the main factor of the large shift, besides
the alignment, is the spherical aberration.

Soon the mechanism for the compression, meaning a motorized linear stage,
will be implemented as well. Once the motorized compression has been charac-
terized and the accordion’s setup refined, we will be able to mount everything
in the main setup and apply the trap to the atoms. From there, the possibilities
are endless...
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Nomenclature

ε0 Electric constant 8.854187817× 10−12 Fm−1

µB Bohr magneton 5.7883818012(26)× 10−5 eVT−1

c Speed of light in a vacuum inertial system 299792458 ms−1

h Planck Constant 4.135667662(25)× 10−15 eVs
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