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Abstract

Absorption imaging techniques are an essential tool in the study of ultracold atomic gases. In our
experiment both bosonic and fermionic atomic clouds are studied using this method. For highly
degenerate Fermi gases at low temperatures the reliable extraction of fitted cloud parameters
is particularly challenging. In this thesis we construct a numerical simulation of the imaging
process and the noise sources involved. This allows us to compare input cloud parameters to
parameters extracted from the simulated images and determine their accuracy and the involved
uncertainties.

We show that the degeneracy parameter T/TF is accurately resolved at sufficiently high cloud
densities and light intensities if T/TF < 0.5. We additionally find that the atom number is reliably
estimated, even in low density regimes. In the case of time-of-flight measurements we find that
for low T/TF it is necessary to fit the Fermi density distribution, because the temperature is
systematically overestimated by the fit of the Gaussian density distribution. We compare the
uncertainty in T/TF as directly calculated from the cloud parameters to the determination from
atom number and temperature, and show that they provide a similar accuracy. Furthermore,
we determine that by employing a principal component analysis to distinguish correlated noise
associated with the underlying experimental parameters and uncorrelated noise from the imaging
procedure the fit accuracy can be significantly improved.

Zusammenfassung

Absorptionsabbildungstechniken sind ein wesentliches Instrument für die Untersuchung ultra-
kalter Atomgase. In unserem Experiment werden sowohl bosonische als auch fermionische
Atomwolken mit dieser Methode untersucht. Für hochgradig entartete Fermi-Gase bei tiefen
Temperaturen stellt die Extraktion der Atomwolkenparameter eine besondere Herausforderung
dar. In dieser Arbeit erstellen wir eine numerische Simulation des Abbildungsprozesses und der
beteiligten Rauschquellen. Dadurch können wir die eingegebenen Atomwolkenparameter mit den
aus den simulierten Bildern extrahierten Parametern vergleichen und deren Genauigkeit sowie
die damit verbundenen Unsicherheiten bestimmen.

Wir zeigen, dass der Entartungsparameter T/TF bei ausreichend hohen Dichten und Lichtinten-
sitäten im Bereich T/TF < 0.5 genau aufgelöst wird. Wir finden außerdem, dass die Anzahl der
Atome auch bei niedrigen Dichten zuverlässig geschätzt wird. Bei Flugzeitmessungen stellen wir
fest, dass es für niedrige T/TF notwendig ist, die Parameter mit Hilfe der Fermi-Dichteverteilung
zu bestimmen, da die Bestimmung durch die Gausssche-Dichteverteilung die Temperatur system-
atisch überschätzt. Wir vergleichen die Unsicherheit in T/TF, die direkt aus den Atomwolken-
parametern bestimmt wird, mit der Bestimmung aus Atomzahl und Temperatur und zeigen,
dass sie ähnlich genau sind. Darüber hinaus stellen wir fest, dass durch die Anwendung einer
Hauptkomponentenanalyse zur Unterscheidung von korreliertem Rauschen, das mit den zugrun-
deliegenden experimentellen Parametern verbunden ist, und unkorreliertem Rauschen aus dem
Abbildungsverfahren die Parameterbestimmung erheblich verbessert werden kann.
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1 Introduction

The study of ultracold-atomic quantum gases provides a highly controllable setting to study
quantum many-body physics. In particular the ability to arbitrarily tune the effective interaction
strength of different particles by means of Feshbach resonances allows studying a wide variety of
phenomena [Chin et al., 2010]. Among them is the observation of emergent quasi-particles such
as the polaron. The polaron describes the quasi-particle character of a single particle impurity
with a many-body background. In the setting of ultracold gases, the Fermi polaron constitutes
the interaction of an impurity in a bath obeying Fermi statistics.

Since the first realization of an attractive Fermi polaron with 6Li atoms in 2009
[Schirotzek et al., 2009], a wide variety of Fermi polarons have been studied experimentally
[Scazza et al., 2022, Massignan et al., 2014]. One still largely unexplored regime remains for
systems of large mass imbalance, such as 133Cs immersed in a quantum-degenerate Fermi sea
of 6Li with a mass ratio of ∼ 22. This limit is interesting due to its relevance in the physics
close to the orthogonality catastrophe [Schmidt et al., 2018], as well as observed resonances in
the impurity-impurity scattering length [Tran et al., 2021, Enss et al., 2020]. To measure this
physics it is necessary to be able to resolve low numbers of atoms and their temperature with a
high signal-to-noise ratio.

A central characteristic of ultracold Fermi gases is provided by the temperature parameter T/TF.
In the case of large mass imbalances the polaron ground state energy and bandwidth are highly
dependent on this parameter [Hu and Liu, 2022], necessitating a precise estimate. Furthermore,
the parameter plays a central role in approaching the so-called orthogonality catastrophe in the
zero-temperature limit [Schmidt et al., 2018]. There exist multiple methods to determining the
parameter T/TF, with the measurement of the temperature from the Bose particle time-of-flight
being the most common. The measurement is usually preferred due to the reliability of cloud
parameter estimations from Gaussian density profiles. In our experiment a Fermi polaron is
created by overlapping a thermal gas of 133Cs with a degenerate single-component Fermi gas
of 6Li. Because the optical trap of the Lithium set to the tune-out wavelength of Caesium at
880.217 90 nm [Ratkata et al., 2021], losses are incurred. These losses impede the thermalization
process between the two clouds, such that a temperature measurement from the boson cloud
becomes unfeasible [Welz, 2024]. An alternative temperature and T/TF measurement is provided
by instead directly imaging the fermionic 6Li cloud. The reliability of this measurement is less
understood in the context of our experiment.

In this thesis we will investigate the reliability of estimating cloud parameters of cold Fermi gases
by absorption imaging. We build up a numerical model to simulate the absorption and imaging
process. In this we take into account various sources of noise and inhomogeneities associated
with the camera CCD sensor and imaging laser. We begin with an overview of the physics of cold
Fermi gases in Chapter 2. Following this we discuss properties of the imaging light in Chapter
3 and noise sources relevant in the camera description in Chapter 4. In Chapter 5 we expand
on the implementation details, as well as choice of parameter space covered by our analysis. We
additionally discuss fitting routines and noise reduction tools employed in the extraction of the
cloud information from the simulated images. Our results are presented in Chapter 6 before
concluding in Chapter 7.
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2 Properties of Ideal Boltzmann and Fermi Gases

The central system of interest in the experiment are cold atomic clouds. In our case cold 6Li
clouds. The following two sections summarize their dynamics based on the extensive treatment
found in [Ketterle and Zwierlein, 2008].

2.1 In-Situ Density Profile

The atomic cloud we want to image by the absorption process consists of 6Li. This atom is a
fermion. For the purposes of our analysis we will assume the 6Li atoms to not interact with
each other. The quantum statistics of the gas is then given by the Fermi distribution. Given a

single-particle Hamiltonian H = p2

2m + V (r) with potential V (r) and energy eigenvalues Ei, as
well as chemical potential µ, the occupation number of atoms in the ith energy eigenstate then
can be expressed by

⟨ni⟩ =
1

eβ(Ei−µ) + 1
. (1)

If the thermal energy kBT = 1/β is significantly larger than the spacing of the energy levels ∆Ei

the continuum approximation may be used. In this case the energy eigenvalues are replaced by
the local classical energy, which yields the corresponding phase-space density. 1

The number of atoms in a phase-space cell centered at (r,p) of volume h3 is

fPSD(r,p) =
1

e
β
(

p2

2m+V (r)−µ
)
+ 1

. (2)

Integrating the momentum dependence yields the number density

n(r) =

∫
d3p

(2πℏ)3
fPSD(r,p) (3)

=
1

λ3
dB

Li3/2(− exp [β(µ− V (r))]) (4)

with the de Broglie wavelength λdB =
√

2πℏ
mkBT and Li3/2 the polylogarithm of order 3/2. In

general the polylogarithm of order s is defined by

Lis(z) =
1

Γ(s)

∫ ∞

0

dt
ts−1

et/z − 1
(5)

for all z ∈ C.

We obtain the atom number by another integration over all spatial components:

1In the experiment the trapping potential is approximately harmonic, i.e. ∆Ei = ℏω, with an angular trapping
frequency of ωrad = 2π 1878Hz in the short and ωax = 2π 32Hz in the long direction. The temperature is about
T = 250 nK. This results in a ratio between thermal energy and energy level spacing of ≈ 2.8 and ≈ 162 for the
short and long direction, respectively. Therefore, the continuum approximation is applicable.
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N =

∫
d3r n(r) =

(
kBT

ℏω̄

)
Li3(−eβµ) (6)

In our case we specify the potential to be harmonic. 2

V (r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(7)

where the ωi represent the angular trapping frequencies of an optical trap.

We now consider the limiting cases of high and zero temperature of the phase space density.
In the high temperature regime the distribution becomes Gaussian, approximating a classical
(Boltzmann) gas:

n(r) =
N

(2π)3/2σxσyσz
exp

(
−
∑
i

x2
i

2σ2
i

)
(8)

with the Gaussian size σi =
√

kBT
mω2

i
.

In the zero temperature limit, due to the Pauli exclusion principle, all the lowest N states, up
to a certain energy, are occupied. This energy is called the Fermi energy EF = µ(T = 0). The
density is then expressed as

nF (r) =
1

6π2

(
2m

ℏ2

)3/2

(µ− V (r))3/2 (9)

=
8

π2

N

RFxRFyRFz

[
max

(
1−

∑
i

x2
i

R2
Fi

, 0

)]3/2
(10)

where RFi =
√

2EF

mω2
i
.

The density then allows to calculate the relationship between atom number and Fermi energy.

N =

∫
d3r nF (r) =

1

6

(
EF

ℏω̄

)3

(11)

⇔ EF = ℏω̄(6N)1/3 (12)

The Fermi energy provides a temperature scale TF defined by EF = kBTF . The high temperature
regime is then defined by T ≫ TF . At temperatures T ≲ TF , the low temperature regime, the
density profile at the centre of the cloud is rather flat (cf. Eq. (10)). Variations in temperature
hence only affects the wings. The most dense parts of the cloud do not contain much information
about the cloud’s temperature.

As the cloud size changes from the Gaussian radius towards the Fermi radius we want to char-
acterize the size of the cloud in between. This can be done by defining the size

2The optical dipole-trap used in the experiment has technically a Gaussian potential shape, which is approxi-
mately harmonic at the centre of the trap.
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R2
i =

kBT

mω2
i

f(eµβ) →

{
σ2
i , T/TF ≫ 1

R2
Fi/2, T/TF ≪ 1

(13)

with

f(x) =
Li1(−x)

Li0(−x)
=

1 + x

x
ln(1 + x) (14)

Note that in our treatment σi andRi are rescaled by a factor 1/
√
2 compared to [Ketterle and Zwierlein, 2008].

This is done in order for σi to represent the standard Gaussian cloud size and Ri to represent
the Gaussian cloud size in the high temperature limit.

2.2 Column Densities

Above we derived the number density of the gas in three dimensions. In the case of absorption
imaging, however, we are more interested in the column density. The column density is obtained
by integrating along the beam-camera axis. In the simplest case the axis is along one of the
eigen-axis, which we choose to be the z-axis. The rotated case will be discussed later.

By employing the identity ∫ ∞

−∞
dx Lis

(
ze−x2

)
=

√
πLis+ 1

2
(z) (15)

the column density can be obtained as

n2D(x, y) = n2D,0

Li2
(
− exp

[
βµ− 1

2βm(ω2
xx

2 + ω2
yy

2)
])

Li2 (−eµβ)
(16)

with the peak density n2D(x = 0, y = 0) = n2D,0.

n2D0 =
N

2πRxRy

Li3(−eq)

Li2(−eq)
f(eq) (17)

We express the column density by considering (Eq. (13)) as

n2D = n2D,0

Li2

(
− exp

[
q −

(
x2

2R2
x
+ y2

2R2
y

)
f(eq)

])
Li2(−eq)

(18)

where q = βµ is the logarithmic fugacity. It is related to T/TF by the relation

T

TF
= [−6Li3(−eq)]

−1/3
(19)

which can be derived by comparing Eq. (6) and Eq. (12). The relationship in the region
T/TF ∈ [0.1, 1] is shown in Figure 1.
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Figure 1: Relationship between the T/TF parameter and the logarithmic fugacity q.

In the case that the camera is not parallel to any of the semi-axes, due to the ellipsoid shape of
the potential the functional form of the column density retains an elliptic symmetry, but with
different semi-axes.

In the case of a rotation of the beam-camera axis by an angle θ in the mathematical positive
direction in the x-z plane the effective cloud size for the two-dimensional density changes

R2
x → R2

x′ = R2
x cos

2(θ) +R2
y sin

2(θ), R2
y → R2

y′ = R2
y′ (20)

By the definition of the cloud size Ri =
√

kBT
mω2

i
f(eq) we can associate an effective trapping

frequency to the transformed x′ axis.

ω2
x′ =

ω2
xω

2
z

ω2
x sin

2(θ) + ω2
z cos

2(θ)
(21)

2.3 Ballistic Expansion

Often, not only the in-situ density is interesting. We are also interested in the expansion of
the gas after the harmonic trap is turned off. We only consider the case of the free ballistic
expansion. For the free ballistic expansion to hold, the atoms need to be non-interacting, or at
least to have a mean free path significantly exceeding the size of the cloud. Then the evolution
of an atom initially at point r0 with momentum p0 is given by:

r(t) = r0 +
p0

m
t (22)

p(t) = p0 (23)

Hence the density at r can be described by considering the phase space density of all atoms with
momentum and position at t = 0 such that they reach r at t > 0.
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n(r, t) =

∫
d3r0

∫
d3p0

(2πℏ)3
fPSD(r0,p0)δ(r− r0 −

p0

m
t) (24)

= − 1

λdB

∏
i

1√
1 + ω2

i t
2
Li3/2

[
− exp

(
βµ− β

∑
i

1

2
m

ω2
i x

2
i

1 + ω2
i t

2

)]
(25)

This can be seen to just be the in-situ density rescaled by bi(t) =
√
1 + ω2

i t
2.

n(r, t) =
1

bx(t)by(t)bz(t)
n

(
x

bx(t)
,

y

by(t)
,

z

bz(t)
, t = 0

)
(26)

Equally the size of the cloud is simply rescaled by

Ri(t) = bi(t)Ri(t = 0). (27)

Indeed, from Eq. (25) we can see that the density after expanding for long times t ≫ ωi becomes
independent of the trap shape

β
1

2
m

ω2
i x

2
i

1 + ω2
i t

2
→ β

1

2
m
x2
i

t2
. (28)

.

This results holds for generic cloud shapes and hence the shape at long times is insensitive to
deviations from the ideal harmonic potential. Hence, the temperature can be measured without
relying on precise knowledge of the trapping potential.

Indeed, when the camera-beam axis is rotated with respect to the cloud semi-axes, the expansion
can be characterised by the effective trapping frequency along the axis (Equation (21)), i.e.

b2x′ = 1 + ω2
x′t2. (29)

3 Absorption Imaging

To measure the density profile of atomic clouds a common technique is absorption imaging.
The technique consists of placing the atomic cloud between a light source and a detector. The
difference between two images with and without the atomic cloud present can then be used to
extract information about the density profile of the cloud. In the following we will derive the
necessary concepts to connect the measurement technique to the interaction between photons
and atoms.

3.1 Atom-Photon Interaction

In general the interaction of atoms and photons works by the absorption and re-emission of the
photons by the atoms. If this absorption and re-emission process involves multiple energy levels
of the atom and non polarized light the calculation of the interaction become quite involved. In
our imaging set-up we use the D2-line transition at resonance λ = 671 nm. In the regime of high
magnetic fields with the light polarized along the polarization axis (defined by the magnetic field
direction) the cross-section is given by

7
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σ0 =
3λ2

2π
. (30)

In the case that the light is polarized perpendicular to the polarization axis only a fourth of the
light will interact, which reduces the cross-section to

σ0 =
3λ2

8π
(31)

as discussed in [Heck, 2012].

The saturation intensity for this transition, i.e. the intensity at which more than a fourth
of all atoms is excited simultaneously, is Isat = 25.4W/m2 [Gehm, 2003] for light polarized
along polarization axis. For light polarized perpendicular to the polarization axis the saturation
intensity is four times as large Isat = 100.8W/m2, as the saturation intensity is anti-proportional
to the cross-section [Foot, 2005].

If the intensity of the beam incident on the atomic cloud is significantly lower than Isat and
the inter-atomic distance is large compared to the mean free path of a photon, the absorption
process along the beam-camera axis can be modelled by the Beer-Lambert Law

I(x, y) = I0(x, y)e
−σ0(λ)n(x,y) (32)

where σ0 is the cross-section for the light-atom interaction and n(x, y) the column density along
the beam-camera axis. In our case this density is given by Equation (18). For the Andor and
Ximea camera we will consider the cross-section in (30) and (31), respectively.

To obtain the density we require one image of the light intensity after absorption by the cloud,
called the absorption Image Iabs and another image of the light intensity without the cloud,
called the division image Idiv. To remove offset counts from the image a third image with the
imaging light turned off, the dark image Idark is subtracted.

By means of the three pictures we can then calculate the transmission at position (x, y), where
the position is given in the object plane of the cloud.

T (x, y) =
Iabs(x,y) − Idark(x, y)

Idiv(x, y)− Idark(x, y)
= e−σ0n2D(x,y) (33)

which is then related to the optical density OD and density by

OD(x, y) = n2D(x, y)σ0 = − ln (T (x, y)) (34)

Note that the imaging laser intensity profile has a Gaussian shape and is not constant across
the image. While the beam is approximately constant in the region of interest, the intensity in
the transmission T is only compared locally. Disregarding noise this should not affect the image
creation. The effect of features on the intensity profile (e.g. fringes) will be investigated in later
chapters.
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3.2 Photon Streams

A monochromatic light source with intensity I has an associated mean photon flux ϕ = I/hν
where ν is the light’s frequency. The field associated with the light source consists of different
modes. Each occupied by a different number of photons. The occupation of these modes follow a
probability distribution which is characteristic for a given light source. In the case of a laser the
population of the modes can be described by a coherent state. The measurement of the number
of photons is then distributed as a counting statistic with mean N̄ [Saleh and Teich, 2013]. The
mean number of photons N̄ collected in an area A during a time interval t is given by:

N̄ =
IAt

hν
(35)

3.3 Light Intensity Profile

As discussed before, it is a central assumption of the Beer-Lambert law, that the light intensity is
significantly lower than Isat. We can check the intensity by considering images of the light source
taken by the cameras in the setup, these will be referred to as reference images. To analyse
the light sources we considered 116 and 96 reference images for the Andor and Ximea camera
respectively. The image series had light at a pulse length of 8.4µs for the Andor and 3µs for the
Ximea. Before analysing the images we first subtract a dark image. From the digital images we
then obtain the number of photons Nγ incident on a single pixel during the exposure time (cf.
Chapter 4). Knowledge of the pulse length tpulse, the imaging wavelength λ and the effective
pixel area Apx,eff allows us to calculate the mean intensity incident on pixel (i, j) (similar to
Equation (35):

Ī(i, j) =
Nγ(i, j)Eλ

tpulseApx,eff
(36)

where Eλ = hc/λ is the energy of a photon. The effective area of the pixel is only modified by the
magnification of the imaging system. The effective pixel area for the Andor is 1.86µm× 1.86µm
instead of the real pixel size 13µm × 13µm. In the case of the Ximea the effective size is
8.28µm × 8.28µm instead of 4.54µm × 4.54µm. The calculated mean and variance for the
intensity and photon number across the image series are displayed in Figure 2.

The mean intensity we calculated for the Andor, I = 0.21 Isat = 5.3W/m2 agrees with the light
intensity set by the experimental control. For the Ximea on the other hand the light intensity
turned out far lower than expected I = 0.0068Isat = 0.7W/m2. Furthermore, in both mean
images fringes and intensity gradients are visible. Later we want to consider the influence of
these spatial inhomogeneities on the fit accuracy, wherefore we extract the mean intensity in the
region we expect the atomic cloud to be visible. These regions are shown in Figure 3. The mean
intensity in the region of interest is 0.18Isat for the Andor and 0.005Isat for the Ximea.

If the variation in counts between images would be dominated by shot noise we expect a ratio of
the variance and mean close to unity. In the case of the Andor the ratio, however, is 4.4, whereas
in the case of the Ximea is 1.7. This suggests that there are other sources of noise besides the
photon shot noise, which we discuss in the following chapter.

9



3 Absorption Imaging 3.3 Light Intensity Profile3 Absorption Imaging 3.3 Light Intensity Profile3 Absorption Imaging 3.3 Light Intensity Profile

(a) Mean (b) Mean

(c) Standard Deviation (d) Standard Deviation

Figure 2: Intensity: (a, c) Andor camera at tpulse = 8.4µs, λ = 671 nm, Isat = 25.4W/m2; (b,
d) Ximea camera at tpulse = 3.0µs, λ = 671 nm, Isat = 101.6W/m2.

(a) Andor (b) Ximea

Figure 3: Mean intensity and photon number in the region of interest
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(a) Structure of a MOS capacitor. Figure repro-
duced from [Hu, 2010].

(b) Sketch of a CCD register array. Figure repro-
duced from [Durini, 2014].

4 CCD Cameras

In this chapter we give a brief overview of the working principles of CCD cameras. Following
this we consider different sources of noise during the image creating process and discuss their
relevance. Finally, we present the implementation of this discussion in simulations.

4.1 Basic Working Principles

CCD (charge coupled devices) cameras consist of large arrays of individually controlled photodi-
odes. The photodiodes can register charges created by incident photons due to the photoelectric
effect. The read-out electronics produces a voltage pulse proportional to the number of stored
charges for each pixel. These voltage pulses are subsequently converted into digital units by
an analog-to-digital circuit (ADC). These digital counts then constitute the final image data
[Konnik and Welsh, 2014].

The photodiodes used for CCD cameras work similar to metal-oxide-semiconductor (MOS) ca-
pacitors (cf. Fig. 4a). In our experiment, as in most applied settings, the cameras are based on
a Si substrate. A voltage is applied across two electrodes placed on the metal and the bottom of
the semiconductor material. If the voltage is chosen appropriately a potential well forms on the
semiconductor side of the oxide-semiconductor interface. The region is depleted of charges. An
incident photon can create an electron-hole pair with the electron captured in the potential well.
Electron-hole pairs can equally be created due to thermal fluctuations in the depletion area and
contribute to the electron count of the pixel. We consider this issue later once we discuss the
dark current noise [Saleh and Teich, 2013].

After the photoelectrons are captured by the pixels the pixels need to be read-out. The array is
made up of a rectangular grid of N columns ×M rows of pixels. For the read-out the single rows
are moved sequentially to a serial register situated at one of the edges of the pixel array (s. Figure
4b. The read-out amplifier is located at one end of this serial register and reads-out each pixel
one after another. After a row is read all registers shift by a single register along the columns
towards the serial register. At the output amplifier the number of electrons produce a potential
difference across a capacitance which is measured. This voltage is then first passed through the
output amplifier (usually a MOSFET transistor) and then passed to the analog-to-digital circuit.

This process repeats until all pixels are read-out. If the whole pixel array is read-out at once
the process is called a frame read-out. Another technique, in use for on of our cameras, is
the frame transfer method. In this case a section of the pixel array is covered by an opaque
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mask. After capturing an image on the exposed section of the array, instead of a read-out of
the pixels, the pixels are just shifted to the registers underneath the mask. As the shifting of
registers is considerably faster than the read-out this allows capturing images at higher frame
rates [Durini, 2014].

4.2 Noise

Quantum Efficiency The process of photon absorption and electron-hole pair creation and
capture is probabilistic. In the case of a photodiode the quantum efficiency (QE) is defined as
the probability that ”a single photon incident on the device generates a photocarrier pair that
contributes to the detector current”. In the case of a CCD array the probability that a single
photon incident generates a photocarrier pair that contributes to the detector count. For a large
photon number the QE then corresponds to the ratio of photons incident on a CCD pixel and
the electron-hole pairs captured in the pixel.

The deviation of the QE from unity arises due to three processes:

Reflection: At the surface of the device photons may reflect and won’t create any electron-hole
pairs. This effect is lessened by applying an anti-reflective coating to the surface.

Recombination: Electron-hole pairs may recombine before being read-out by the CCD circuit.

Non-absorption: Photons may pass the pixel without creating any electron-hole pairs at all. The
magnitude of this process is governed by the absorption probability and thickness of the
material.

Because the above processes depend on the wavelength λ of the incident photon, the quantum
efficiency depends on λ as well [Saleh and Teich, 2013].

Photons at short wavelengths, i.e. high energies, might create multiple electron-hole pairs when
absorbed by the semiconductor. In our case we, however, only consider light in the infrared region
(≈ 670 nm), with an energy (≈ 1.85 eV), roughly comparable but above the bandgap energy of
Si (≈ 1.11 eV). Hence, the issue of multiple pair creation doesn’t concern us [Durini, 2014]. The
quantum efficiency would be modelled by a binomial distribution with the probability p given
by the quantum efficiency ≈ 0.9. In our regimes of about n = 600 the relative deviation defined
by the standard deviation

√
np(1− p) and mean np is about 0.01. Instead of sampling from the

binomial distribution we will therefore just consider the expectation value.

Dark Current Thermal excitations create electron-hole pairs in the pixels. These contribute
to the count of the pixel. The mean number of electrons produced per pixel per second is char-
acterized by the dark current ID. After an exposure time texp the mean number of electron
counts produced is just ND = IDtexp. This noise is Poisson distributed with mean ND. The
dark current is temperature dependent and reduces significantly at lower temperatures. Further-
more, due to spatial inhomogeneities in the substrate the dark current has a spatial dependence
[Konnik and Welsh, 2014].

In the case of the Andor camera the array is cooled to T ≈ 60 ◦C. At this temperature the
dark current is of the order 1 e−/px/s. Given an exposure time of the order of text = 0.3ms.
The order of dark counts is on the order 10−2e−. At this order the dark current is negligible
compared to for example the read-out-noise. The Ximea camera on the other hand is not cooled
and operates at room temperature. While there is no data on the exact comparison with other
data sheets with camera of similar pixel size and substrate yields an estimate of 104e−/px/s for
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the dark current at T = 30 ◦C. This would imply the dark counts to be on the order 10e− for
similar exposure times. In this case we expect a contribution of the dark current to the noise.
We will discuss the non-uniformity again at the end of this chapter.

Streaking If during the read-out phase the CCD array is still illuminated charges will continue
to accumulate on the pixels. Depending on the intensity of the light source as well as the read-out
time this can lead to significant distortions of the image. This effect can be circumvented by a
shutter [Durini, 2014]. In our experiment the pulse length of the imaging laser is significantly
shorter than the exposure time of a single image. Given the experimental set-up stray light is
negligible, and we do not expect streaking to affect the image creation process.

Read-Out Noise Before electrons are moved from the serial register to the read-out-node
the node is reset to a reference-voltage. The reset voltage has an uncertainty attached due to
thermal fluctuations. The uncertainty in the reset voltage leads to an uncertainty of the relative
voltage change once the electrons are moved into the node. In modern CCD cameras this issue
is ameliorated by correlated double sampling, i.e. measuring the node voltage before and after
the electrons are moved to the node [Konnik and Welsh, 2014].

Even though the uncertainty is an uncertainty in the voltage measurement, the uncertainty is
commonly quantified in the corresponding uncertainty in the number of electrons. In the case of
the Andor and Ximea cameras these values are of the order 10e−. In the case of the Andor, this
implies that besides photon-shot-noise the read-out noise is the most significant source of noise
in the set-up. For the Ximea on the other hand the read-out noise is comparable to the dark
current noise and needs to be taken into account.

Analog-To-Digital Circuit Noise The output voltage pulse of the sensing node will be
amplified and subsequently mapped to a voltage to an integer digital count. For an N bit
encoding there can be a maximum of 2N possible intervals. Usually, before mapping to the
voltage bins a bias voltage Vbias is added to ensure that all electron count values are mapped
onto the bins. This bias count is removed by subtracting from the image a dark image obtained
at the same camera settings. Furthermore, the voltage difference of a single electron count Ve−

does not necessarily match the voltage interval distance Vi. The ratio

K =
Vi − Vbias

Ve−
(37)

is referred to as the gain of the camera. If the gain is larger than unity and not an integer one
electron count does not correspond to one digital count then [Konnik and Welsh, 2014].

Uniformity and Linearity In an ideal case the digital counts would be exactly proportional
to the number of photons incident on the array. The reasons for the non-linear behaviour are
mainly twofold. First, a photon-response-non-uniformity (PRNU) is present if the pixels, for
example, differ in their quantum efficiencies. Second, a dark-current non-uniformity (DCNU) is
present if the dark-current varies between pixels. These two non-linearities are however easily
dealt with in post-processing. The DCNU is removed by subtracting a dark image of the same
exposure time from the actual image. The PRNU can be eliminated by dividing the image of
interest by an image illuminated by the same light source. We need to consider, however, that
while these division and subtraction schemes remove the non-uniformity error on average the
noise associated with each pixel might still differ. This issue will be further discussed in 4.3,
when discussing the implementation of the noise in code.
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Last, different voltages and currents might be amplified differently during the analog-to-digital
and read-out process. Also the final voltage might not be mapped perfectly linearly onto the
digital bins. This behaviour is more difficult to remove from an image as well as to simulate.
While approximations are possible (cf. [Konnik and Welsh, 2014]), the precise measurement of
the non-linearity is difficult. The corresponding quantity is the integrated linearity error (ILE).
This error is calculated as the integral of the deviation of digital counts to photons plot from a
straight line up until the full-well-capacity. The upper bound provided by the manufacturers of
the cameras in the data sheets is < 1%. In the case of the Ximea, we detect about 600 photons
during imaging the relative uncertainty (≈ 4%) due to the photon-shot-noise is significantly
larger than the ILE. At lower photon count the ILE becomes even less important. This does not
consider other sources of noise adding to the photon-shot-noise. Hence, both PRNU and DCNU
are removed by the imaging procedure and the ILE is negligible in our case. Therefore, we will
only consider the linear response for the rest of our analysis.

4.3 Code Implementation

While the above discussion is far from complete, we will restrict the simulation of noise to photon-
shot-noise (PSN), dark-current-noise (DCN), read-out-noise (RON) and
analog-to-digital-conversion-noise (ADCN). We will also consider the quantum efficiency dur-
ing the process of image creation, but only as a constant and not as a probabilistic process. An
overview of the image creation sequence as implemented in the simulation is given in Figure 5.
We will consider the different steps separately.

Initially (Step I), a mean intensity per pixel is calculated from a given light source and cloud
density profile. In the case of the absorption image this includes the absorption process. For the
dark images no light source is present. The only light source considered in the simulation is the
imaging laser as we assume stray light to be negligible.

In Step II the mean number of photo-electrons captured in the pixel is calculated for each pixel
by

N̄e−,ph =
ItpulseApxQE

Eλ
(38)

with I the light intensity, tpulse the pulse length of the imaging laser (the intensity is assumed
to be constant), the pixel area Apx, QE the quantum efficiency and Eλ = hc/λ the energy per
photon of the imaging laser at wavelength λ. For each pixel the number of photoelectrons is
drawn from a Poisson distribution defined by the pixel mean photoelectron number.

Ne−,ph = P
(
N̄e−,ph

)
(39)

Even if N̄e−,ph is not an integer, Ne−,ph will be an integer number of photoelectrons.

In Step III the noise sources internal to the camera (excluding adc rounding) are added to the
image. For this step two methods are considered. First, an explicit implementation of the DCN
and RON. Second, a more heuristic method discussed later.

The number of electrons captured in a pixel due to dark currents is determined by drawing from
a Poisson distribution

Ne−,dc = P(N̄e−,dc), N̄e−,dc = idctexp (40)
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Figure 5: Sketch of the simulation noise sequence: (QE) quantum efficiency, (PSN) photon-shot
noise, (DCN) dark-current noise, (RON) read-out noise, (ADC) analog-to-digital conversion,
(DIEN) dark-image extracted noise.

where idc is the dark current in e−/px/s as determined, for example, from the manufacturers
data-sheet for a given working temperature. texp is the exposure time of the camera. The read-
out time is considered short with respect to the exposure time, such that streaking due to dark
noise can be neglected.

After the DCN the read-out noise is applied to the image. The read-out noise is modelled as a
normal distribution. The mean corresponds to the bias voltage and the variance describes the
uncertainty in the voltage measurement by the serial node.

Ne−,ro = N (Ne−,bias, σe−,ro) (41)

In the simulation both are input in units of e−, as provided by the manufacturer. For both, the
DCN and RON, a spatially fixed pattern could be introduced.

This then yields the electron count as measured by the read-out node.

Ne− = Ne−,ph +Ne−,dc +Ne−,ro (42)

Before considering the analog-to-digital step we discuss another heuristic method of introducing
noise.

As described in 4.4, we can approximate the overall noise associated with the camera from a set
of dark images taken at a set camera setting and exposure time. We call this the dark-image
extracted noise (DIEN). This provides a second methods to model the camera noise. In the
simulation the noise profile is input at the read-out stage with the dark current set to zero.

Last, the electron count is converted to digital units (ADU). For a given camera setting this value
is provided by the manufacturer. The value is usually referred to as the sensitivity or (e−/ADU)
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(a) (b)

Figure 6: Example dark images in units of electrons. (a) Andor: Nimages = 11023, texp = 300µs,
TCCD ≈ −80 ◦C. (b) Ximea: Nimages = 2038, texp = 250µs, TCCD ≈ 30 ◦C.

or acquisition gain (ADU/e−). As the final data is given in integer counts the result will be
rounded as well.

NADU = round

(
Ne−

sensitivity

)
(43)

This value then constitutes the final image data.

4.4 Modelling Noise From Dark Images

From the experiment we have a set of dark images given for both the Andor (N = 11023) and
the Ximea camera (N = 2308). Example dark images are depicted in Figure 6b and 6a and for
both cameras.

The conversion of ADU to electrons is given by the sensitivity:

NADU · sensitivity = Ne− (44)

where we neglect any rounding.

When analysing the noise we are interested in the variation of pixel counts across multiple images
instead of the variation across a single image, because each pixel has a potentially different noise
profile. The mean and standard deviation of each pixel are shown in Figure 7. The colour scale
represents the 3σ interval centred at the mean. For both cameras different spatial patterns are
visible in the mean images. In case of the Andor the spatial structure is aligned along the rows
and columns of the CCD array and varies by about 2 e− across the image, a small variation
considering the standard deviation between images is on the order of 22 e−. In the case of the
Ximea the pattern appears more fringe-like. The variation of the mean across the image is about
60 e−, compared to a standard deviation between the images of about 13 e− Furthermore, on
the Ximea, defects are visible in some areas. The mean value is mainly determined by the bias
voltage of the CCD camera, as it does not fluctuate it can be removed from the final image by
subtraction of the dark image. The observed noise is contained in the image-to-image variation
in the dark count, which we characterize by the variance, as shown in Figure 7c and 7d.
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For the Andor some ”hot-pixels” can be distinguished as dark dots. The 10 pixels with the
highest variance have an average standard deviation of 57.8 e−, with the largest variance with
a standard deviation of 197 e−. The variance of dark counts for the Andor matches well with
the read-out-noise as provided by the data sheet (σe−,ro = 22.6 e−). Due to the low cooling
temperature of the Andor (TCCD ≈ −80 ◦C), the dark current count should be on the order of
idc = 0.01 e−/px/s. For exposure times of about texp = 300µs the dark current is therefore
negligible.

For the Ximea, the variance in dark count is an order of magnitude lower than the Andor.
The noise, as estimated from the variance, turns out to be lower than the data-sheet value
for the read-out noise (σe−,ro = 68 e−). While there is no manufacturer value provided we
expect a contribution due to dark-current noise, as the camera operates above room temperature
(TCCD ≈ 30 ◦C). After correcting for the pixel size we can obtain a rough estimate for the dark
noise from the Andor dark current at the same temperature (idc = 1200 e−/px/s). For the
exposure time of the Ximea this suggests a dark current noise on the order of 0.5 e−/px. For the
Ximea we observe a correlation between the mean and variance of the dark images. Considering,
the dark noise variation is of the same order as the data-sheet value, it is unlikely that this is due
to stray light. The variance differs across the image by about 2 e−/px, which could be accounted
for by a variation in the dark current.

4.4.1 Maximum-Likelihood-Estimate

We next want to model our noise by considering the dark images. We consider the normal
distribution, as expected from the read-out noise. The parameters for the distributions are
estimated by means of the Maximum-Likelihood-Estimate. The following introduction to the
Maximum-Likelihood-Estimate is summarized from [Almudevar, 2021].

Given a parametric family of probability densities P = {pθ : θ ∈ Θ}, with pθ a probability
distribution parametrized by θ from the parameter space Θ. For example in the case of a normal

distribution, θ = (µ, σ2) and pθ(x) = 1√
2πσ2

exp
(

(x−µ)2

2σ2

)
. Then given a set of independent

observations X = {X1, X2, ..., Xn} the likelihood of the observation for a given distribution of
the parameter family is

L(θ;X) =

N∏
i=1

pθ(Xi) (45)

where we now consider L to be a function of θ for a fixed observation X. In practice the
log-likelihood is computationally more amenable

ℓ(θ;X) = logL(θ;X) =

N∑
i=1

log pθ(Xi) (46)

The Maximum-Likelihood-Estimate (MLE) is in turn defined by maximising the likelihood for a
given set of observations

θ̂ = argmaxθ∈Θ L(θ;X). (47)
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(a) Andor: Mean (b) Ximea: Mean

(c) Andor: Standard Deviation (d) Andor: Standard Deviation

Figure 7: Mean and standard deviation of dark image counts in units of electrons. Andor (left):
Nimages = 11023, texp = 300µs, TCCD ≈ −80 ◦C. Ximea (right): Nimages = 2038, texp = 250µs,
TCCD ≈ 30 ◦C.
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In the case of the normal distribution the log-likelihood is given by

ℓ(µ, σ;X) = −N log
(√

2πσ
)
− 1

2σ2

N∑
i=1

(Xi − µ)
2
. (48)

The MLE parameter can then be found explicitly as

µ = X̄ (49)

σ2 =
1

N

N∑
i=1

(Xi − X̄)2. (50)

4.4.2 Maximum-Likelihood-Estimate Analysis of the Dark Images

Due to the dominance of read-out noise, as discussed for the dark images, we expect the noise to
be modelled by a normal distribution. While the optimal parameters for the MLE of the normal
distribution can be computed directly as the sample mean and variance we want to convince
ourselves that the noise is indeed modelled by a normal distribution. In Figure 8 we show a
histogram for three different pixels as well as the corresponding normal noise model sampled the
same number of times as the number of dark images available.

(a) Andor

(b) Ximea

Figure 8: Maximum-Likelihood-Estimate: Results for three different pixels.
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In both cases the normal distribution appears to approximate the noise distribution well. To
obtain a rough estimate about the validity of the normal model we additionally check for nu-
merical convergence of the MLE. Convergence is defined by convergence of the scipy.maximise
function after 1000 iterations with initial parameters given by the optimal MLE parameters. The
convergence test was performed for 100 randomly selected pixels in the region of interest. In the
case of the Andor the MLE converged numerically in 78/100 cases and in case of the Ximea in
75/100 cases.

Due to these results we decided to model the dark-current and read-out noise in the simulation by
a normal distribution with mean and variance provided by the dark images. While this removes
a small contribution due to the counting statistics of the dark current, it allows to capture some
of the spatial variation in the noise profile. We decided this to be a more accurate model of
the camera noise. When in the following we present simulated images with noise applied, unless
explicitly mentioned otherwise, the normal noise profile with local mean and variance is used.

5 Simulation and Data Analysis

During a run of the experiment we usually collect a set of images of our atomic clouds for given
experimental settings. These settings consist of a choice of camera and noise profile (Chapter
4), a light source (Chapter 3) and a cloud model (Chapter 2). Afterwards, we fit a theoretical
model to the density profile to obtain fit-parameters which constitute our knowledge about the
cloud. It is this process which we try to model. In this section we will therefore discuss different
parts of the experimental set-up and the chosen model for our simulation. Once we set up our
model we can create images of the atomic clouds and subsequently perform a fitting routine and
post-processing to arrive at our final set of data. This data is then in turn compared to the
input parameter of the simulated clouds to deduce the effect of different experimental settings
and sequences on the fit accuracy. By creating large sets of input images we can obtain statistics
about these effects.

In this chapter we consider the set of cloud parameters for which we run the simulations. In the
following we call a series of simulations run for a subset of the parameter space, e.g. the T/TF

parameter, a sweep.

5.1 Image Creation

To create a density image according to Equation 34 we need to simulate at least three different
images. For each we first calculate the mean intensity incident on each pixel, before calculating
the corresponding image in digital units output by the camera. For the purposes of our simulation
we consider the intensity constant across the area of a single pixel. This is, however not exactly
true for the atomic cloud densities. In the case of the absorption image the intensity is therefore
not determined by the density at the pixel centre alone. A better approximation is given by the
pixel average density (cf. Appendix C).

For the dark images zero intensity is incident on the camera. Similar to the experiment, in the
case of the Andor, we create 6 dark images, which we average to obtain a single dark image. In
the case of the Ximea a single dark image is used.

In Figure 9 an example density image from the experiment and the corresponding simulated
image is shown. They are normalized by subtracting the mean density in the far regions.
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(a) Experiment (b) Simulation

Figure 9: A density image obtained from (a) the experiment and (b) the simulation. The input
parameter for the simulation are the fit results of the experimental image: n2D0 = 3.6e12m−2,
T/TF = 0.32, Rx = 12µm, Ry = 149µm.

5.2 Sweep Parameter Choice

The cloud column density profiles we consider are either the thermalised Boltzmann (8) or Fermi
gas (4). We describe these gases either in-situ (Chapter 2.1) or during expansion (Chapter 2.3).
We will assume to be able to image the clouds instantaneously, i.e. no blurring due to movement
within the cloud or due to expansion of the cloud. This is justified for the given pulse lengths of
our imaging lasers as discussed in [Filzinger, 2018].

The 3D density of the Fermi gas in-situ is fully determined by specifying the atom number
N , the temperature T and the trap frequencies ωx, ωy and ωz (Equation (4) and 6). For the
time-of-flight experiment the expansion time tTOF is added as an independent parameter.

We were provided an already analysed set of data by the lab group, from which we deduced an
average atom number N = 35000 and temperature T = 250 nK. The trapping frequencies of the
optical trap were measured by an independent measurement [Freund, 2022] as

ωrad = 2π 1878Hz, ωax = 2π 32Hz (51)

where ωrad is the radial component of the trap and ωax the axial component. They are related
to the camera x− y axes as

ωx = ωax

ωy = ωrad

for the Andor set-up and
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ωx =
ωradωax√

ω2
rad sin

2(40◦) + ω2
ax cos

2(40◦)

ωy = ωrad

for the Ximea set-up, as described by Equation (21).

If we consider the column density of the Fermi gas in-situ, the cloud (18) is parametrized by
n2D0, Rx, Ry and q. This set of parameters can be completed by adding the parameter ωz.
The various relation between this set of quantities and the set of quantities above are detailed
in chapter 2. We are therefore free to either specify N , T and ωx, ωy, ωz or the column density
quantities.

One experimental parameter of great interest is the T/TF parameter. We want to perform a
sweep for the range T/TF ∈ [0, 1]. As discussed before our density profile isn’t fully specified
by only determining T/TF. To choose the other parameters we realize, that the density features
prominently in the Beer-Lambert law. We therefore want to ensure, that the result in the fit
accuracy isn’t mostly due to the density, rather than the T/TF parameter we are interested in.
Furthermore, we consider the trap frequency fixed, which provides a further constraint. For this
reason, we calculate the peak density (17) as given by the experimental input parameters as
n2D0(t = 0) = 18.8× 1012 m−2 for the Andor and n2D0(t = 0) = 29.9× 1012 m−2 for the Ximea
camera. For a specific T/TF this provides us with a total of 5 parameters which fully specifies
our cloud in-situ. Due to the scaling behaviour of R2

i (t) = R2
i (0)(1 + ω2

i t
2), and N and T/TF

being constant during the TOF, the peak density (17) stays the same for all T/TF for all times
t.

In Figure 10, we provide a overview of the relation of the various cloud parameters for this choice
of parameters. Additionally, one choice of a higher and lower density is shown. Later, we will
perform the sweep for a set of different densities, to see the resolution limit for the different
cameras. The scaling relation holds for all choices of peak density.

5.3 Fitting Routine

To obtain physical quantities from the absorption images we need to fit a model to the data. Due
to the scaling of the cloud in the TOF expansion we can fit both, in-situ and expanded clouds,
with the same fit functions. As in the limit of large T/TF the Fermi density distribution becomes
Gaussian the fit of the Gaussian provides some characterization of the cloud as a Boltzmann gas.
In our fit we make use of two different fitting functions:

n2D,fit(x, y;n2D0, q, Rx, Ry, µx, µy, θ, noffset) = n2D0

Li2

(
− exp

[
q −

(
x′2

2R2
x
+ y′2

2R2
y

)
f(eq)

])
Li2 (−eq)

+ noffset

(52)

nG,2D,fit(x, y;n2D0,G, σx, σy, µx, µy, θ, noffset) = n2D0,G exp

(
− x′2

2σ2
x

− y′2

2σ2
y

)
+ noffset (53)

Where (x′, y′) describe the coordinate system of the cloud and (x, y) the coordinate system of
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Figure 10: In-situ cloud parameter for T/TF sweep for different peak densities and constant
trap frequencies ωx = 2π 32Hz, ωy = 2π 1878Hz, ωz = 2π 1878Hz for the Andor camera.

n2D0 = 2.35× 1012 m−2, n2D0 = 18.77× 1012 m−2, n2D0 = 37.54× 1012 m−2.
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the CCD array. They are related by:(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
−
(
µx

µy

)
(54)

In the experiment, the cloud isn’t perfectly centred and the angular and spatial are required for
a proper fit. In our simulation we choose a slight spatial offset (±2µm), to avoid that the cloud
is perfectly centred on a single pixel. The fit routine we use for cloud images is composed of two
steps. First, we fit a Gaussian to the image. The Gaussian fit provides an initial estimate for
the cloud size, position, angle, peak density and offset. Second, we fit the Fermi column density
with initial parameters provided by the Gaussian.

The Gaussian fit is initialized by the parameters

n2D0 = max(In2D
)−mean(In2D0

)

σx = 50µm

σy = 50µ

µx = 0.0µm

µy = 0.0µm

offset = mean(In2D0
).

The Fermi fit is additionally provided with an initial guess for q corresponding to T/TF = 0.5.
As discussed in the appendix Appendix B we use a sufficiently accurate spline approximation
for the polylogarithm function. The spline implementation is about three orders of magnitude
faster than exact implementations (e.g. the mpmath Python library). If the fit routine does not
converge a NaN result is returned, which is taken care of during the post-processing.

In the case of the TOF expansion, after we obtain the cloud size fit parameter, they are fitted
by the expansion formula:

fTOF(t; a, b) =
√

a+ bt2 (55)

The parameter a corresponds to σ2
i (t = 0) or R2

i (t = 0) depending on whether we use the
Gaussian or Fermi sizes. The second parameter b is proportional to the temperature. In the
case of the Gaussian size b = kBT/m and in the Fermi case b = kBTf(e

q)/m. The Fermi case,
therefore, requires an estimate of q to obtain T . The error is propagated from b and q to T ,
via Gaussian error propagation. We can then use the temperature estimate to calculate T/TF

by calculating TF from the atom number and mean trapping frequency as described by (12).
Another method, which we will call the ’direct method’ is to calculate T/TF from the obtained
q fit parameters for all TOF images and determine T/TF from the mean with the uncertainty
given by the standard deviation.

5.4 Post Processing

Depending on the noise and density regime the fits of the Fermi and Gauss column densities,
might not converge or converge with large uncertainties in their fit parameters. We decided to
remove fit parameters with large uncertainties attached to them or outliers with fit parameters
orders of magnitude removed from the actual parameters. To not bias the analysis the selection
procedure is defined the same for all simulation runs discussed in the following chapters. For
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single time instance simulations, all fit parameters with a relative fit error larger than 0.2 in the
n2D0, Rx and Ry were discarded. The relative error in q is not considered, due to the exponential
relationship with T/TF. This error was determined by calibrating the T/TF sweep for tTOF = 0.6
and n2D0(t = 0) = 37.6 × 1012 m−2 with the Andor camera to provide a good accuracy in the
T/TF parameter. For time-of-flight series the procedure is slightly more complicated to avoid
discarding all data points.

1. If more than 60% of all data points fulfil the 0.2 relative error threshold, remove all values
with higher relative error.

2. If less than 60% of all data points fulfil the relative error threshold, increase the threshold
by 0.1, repeat.

3. Remove all time steps with a relative deviation in the cloud size parameter Ri greater than
0.7.

This procedure allows keeping enough data points to fit a time-of-flight fit function. No data
points were removed individually.

5.5 Principal Component Analysis

Instead of removing data points with high fit uncertainties, one can try to reduce the overall
noise in the images before performing the fit. We present one such method, the principal compo-
nent analysis, in this section. We consider our final density images to represent a p-dimensional
image, with p the number of pixels, with the basis vectors represented by single pixel. For our
atomic clouds, the density values in one pixel will be correlated with the density values in the
neighbouring pixels, whereas they won’t be correlated with density values of pixels far removed.
Hence, the basis vectors in the ”pixel basis” are not statistically independent. The principal com-
ponent analysis provides a procedure to find a different set of basis vectors, which are statistically
independent [Segal et al., 2010]. In the ideal case each variation of an independent experimental
parameter, e.g. N , or T , will have a single associated basis vector. All basis vectors not related
to an experimental parameter will then represent noise and can be discarded. The resulting
basis vectors (a superposition of pixel basis vectors) can be visualized as images. In practice,
due to insufficient statistics and correlation of experimental parameters, the new basis vectors
don’t correspond to only one feature and still contain some noise. This will be discussed in the
results chapter. The new basis is determined by the following algorithm:

Consider a set of n images X = {X1, . . . , Xn}, each consisting of p pixels. The mean image is
denoted by

X̄ =
1

n

n∑
i=1

Xi (56)

such that each image is decomposed as

Xi − X̄ = Yi = Yi,1e1 + . . . Yi,pep (57)

with ek the kth pixel basis vector and Yi,k the coefficient of the kth pixel basis vector for the ith
image. The covariance matrix S is of dimension p× p and constructed as

Sjk =
1

n− 1

n∑
i=1

Yi,jYi,k. (58)
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The diagonal elements of the matrix represent the variance of the pixels and the off-diagonal
elements the covariance of different pixels. By diagonalizing the covariance matrix we obtain a
new set of basis vectors uk for which only the diagonal elements remain. The new basis vectors
are hence statistically independent and are referred to as the principal components. The diagonal
element of S associated with each basis vector (their eigenvalue) determines their explanatory
strength for the observed variation between images, as most of the variation between images
is assumed to result from the variation of experimental parameters. Because before the basis
vectors weren’t statistically independent the variance will vanish for all but m of the new basis
vectors. The images can then be expressed in the basis as

Yi = Y P
i,1u1 + . . . Y P

i,mum. (59)

The components Y P
i,k are calculated by projection on the respective basis vector as

Y P
i,k = Y · uk. (60)

In practice, due to noise and insufficient statistics some of the variances will be small even if not
zero. In this case it is practical to only choose the basis vectors associated with the l largest
variances. The image is then approximated by

Yi ≈ Y P
i,1u1 + . . . Y P

i,lul. (61)

Most of the information is then contained in l instead of p components, where l is typically
significantly smaller (∼ 10) than the number of pixels.

In our analysis we used of the scikit-learn [Pedregosa et al., 2011] package, which provides a
convenient and tested implementation of the PCA algorithm.
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6 Results

In this chapter we present the results of the simulation and fitting procedure for different ex-
perimental realizations. We first consider the viability of the PCA method to improve the fit
accuracy. Subsequently, we discuss the resolution limit due to noise involved in the absorption-
imaging process. For this we consider different T/TF, density and cloud size regimes, as well as
different simulated imaging-laser sources. Last, we analyse an actual experimental run of a ramp
and provide a lower uncertainty bound on the accuracy of the actual fit parameter.

6.1 Principal Component Analysis and Improvement of the Fit Accu-
racy

By means of the PCA we hope to distinguish correlated from uncorrelated noise. Therefore, we
hope to distinguish changes in our cloud shape due to fluctuations in the experimental parameters
from the uncorrelated noise involved in the imaging process. For this analysis we choose the atom
number N and the cloud temperature T as fluctuating cloud parameters. The atom number
mainly influences the overall density (Equation (17)), while the temperature affects the size
(Equation (13)). Both change the cloud shape also via T/TF. The fluctuation is modelled by a
normal distribution with µN = 36000 and σN = 3600 for the atom number and µT = 278 nK and
σT = 14nK for the temperature. The two parameters are modelled to fluctuate independently.
The cloud is then imaged at early time tTOF = 0.6ms and late time tTOF = 2.1ms for the
atom number case and only imaged at early time in case of the temperature variation. After
the expansion the cloud size is about Rx = (207 ± 4)µm, Ry = (25 ± 1)µm at early times and
Rx = (224 ± 4)µm, Ry = (87 ± 2)µm at late times. Following this we consider simultaneous
fluctuations in T and N , as specified before, with an additional fluctuation in the centre position
of the cloud of σµx

= 2µm and σµy
= 2µm. To complement this analysis we present the results

of a PCA on a complete TOF series at 12 linearly spaced time steps with fixed N , T and spatial
position from 0.2ms − 2.9ms. In all cases we only consider images simulated with the Andor
camera profile. We input noise and light as discussed in 4.2 and 3.3. For the temperature and
number variation we consider sets of 40 images each. For the TOF we create 5 images at each
time step.

6.1.1 Atom Number Fluctuation

From the PCA we obtain the principal components as explained in 5.5. We want to quantify how
the fit accuracy changes after taking into consideration different numbers of the components. For
the case of the fluctuation in the atom number the components are displayed as images in Figure
14a. Each image explains a share of the complete variance between the images. The first image
explains the greatest share of the variance with 0.032. For all higher order principal components
the relative share of the explained variance decreases. In Figure 12 the variance explained by
each component is shown. It turns out that in the case of atom number fluctuations the relative
explained variance is approximately constant for all component except the first. All components
of order higher than 40 vanish, because for 40 images all the variance can be captured by an
equal or lower number of principal components.

We know want to quantify the effect of reconstructing the image by taking into account the
highest n principal components. One such reconstruction is shown in Figure 11. Going from
the first (mean) image to the second the variation associated with the first principal component
is added back onto the image. The change is difficult to distinguish from the image alone. For
adding back higher order components it becomes clear, that an increasing amount of noise gets
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Figure 11: PCA image reconstruction for n principal components. Parameter fluctuation in the
atom number N = (36 000 ± 3600) at constant temperature T = 278 nK. Cloud expansion for
early times tTOF = 0.6ms.

introduced back into the image.

The cloud parameters for the original and PCA reconstructed images are estimated by the image
fitting routine as described in 5.3. The results for the fluctuation in the atom number at early and
late expansion time are shown in Figure 13a and 13b. The cloud parameters fluctuate for each
of the 40 images. Therefore, we calculate the relative error with respect to the input parameters
for each image. The standard deviation and mean of the relative errors then describe the fit
accuracy. We additionally consider the fit accuracy of the mean image. In this case we fit the
mean image once and then compare these fit parameters with the input parameters.

Overall, the error in the fit parameters relative to the mean input parameter is ≲ 10% and the
fit accuracy improves compared to the fit without the PCA applied. The fit results are the most
accurate when we consider only the first PCA component. Once more components are added,
the fit accuracy decreases until it attains the same accuracy as the fit without the PCA applied.
This is not surprising as for 40 components all the variation (and thereby all the noise) is added
back to the images. The fact that the fit is most accurate after adding only the first component
is explained by the principal components in Figure 14. For both early and late times only the
first component displays structure, albeit less pronounced for the late time images. In both cases
the first component explains a greater share of the total variance compared to components of
higher order.

We can equally consider only the mean image (n = 0 in Figure 13), without any principal
components taken into account. For the N fit parameter the variation in N matches the input
variation σN = 3600, which is expected. The accuracy for N is worse than the fit with and
without the PCA applied. On the other hand the fit accuracy for T/TF improves with respect
to the fit without the PCA applied. Due to the relationship T/TF ∝ N−1/3 the 10% variation
in N changes the parameter by about 3%. As discussed in Chapter 2 the information about the
parameter is mostly contained in the wing shape. As the variation in the parameter is less than
the relative error in the plain fit, fitting the mean image improves this result. In the case of the
clouds size parameters Rx and Ry, fitting the mean image degrades the fit accuracy for early
times, but improves accuracy for late times. The atom number does not change Ri, the different
effect on accuracy is therefore due to the relative relevance of noise at lower density compared
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Figure 12: Relative explained variances of PCA components. Parameter fluctuation in the atom
number N = (36 000 ± 3600) at constant temperature T = 278 nK. Cloud expansion for early
times tTOF = 0.6ms.

to the blurring of the clouds wings at higher densities.

6.1.2 Temperature Fluctuation

Instead of a fluctuation in the atom number we now consider fluctuations in the temperature,
while keeping the atom number fixed. We again consider a set of 40 images. The results are
shown in Figure 15a. Theoretically, the 5% variation in T has a proportional effect on T/TF while
only corresponding to a 2.5% change in the cloud size Ri ∝ T 1/2. The fit accuracy for the plain
fit is on the order 5%. The fit accuracy does not change significantly for either the mean image
or the PCA reconstructed images. Different to the variation in the atom number, the principal
components in Figure 15b don’t display any visible structure. The relative share of explained
variance is equal for all components. This implies, that the variation in the images due to the
variation in T is on the same order as the variation due to noise. For the other fit-parameters,
besides T/TF, fit accuracy improves for the mean image compared to the plain fit. Similar to
before the fit accuracy reaches the same initial level as for the plain case once all components
are added. However, no improvement in accuracy is found after adding the first component.

6.1.3 Multiple Parameter Fluctuation

We now consider the simultaneous fluctuations of multiple experimental parameters: T , N , µx

and µy. The sample set consists of 40 images as before. The results of the analysis are shown in
Figure 16a.

Because in this case a total of four parameters fluctuate we expect the structure to be contained
in more than one principal component. This can be seen indeed in both the fit accuracy results
and the components displayed in Figure 16b. For the components, the first two components show
visible structure an explain a relatively larger share of the variance compared to the higher order
components, which are on the same order again and therefore mostly contain noise. While the
shape of the visible structure is again cloud shaped (similar to the fluctuation in N) the structure
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(a)

(b)

Figure 13: PCA fit accuracy results. Parameter fluctuation in the atom number N = (36 000±
3600) at constant temperature T = 278 nK: T/TF = (0.20± 0.01). Cloud expansion for (a) early
times tTOF = 0.6ms, Rx = (207 ± 4)µm, Ry = (25 ± 1)µm and (b) late times tTOF = 2.1ms,
Rx = (223± 4)µm, Ry = (87± 2)µm. : fit accuracy of the original images, : fit accuracy
of the mean image.
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(a)

(b)

Figure 14: PCA components n = 1 – 6. Parameter fluctuation in the atom number N =
(36 000 ± 3600) at constant temperature T = 278 nK. Cloud expansion for (a) early times
tTOF = 0.6ms and (b) late times tTOF = 2.1ms.
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(a)

(b)

Figure 15: PCA fit accuracy results (a) and components n = 1 – 6 (b) Parameter fluctuation
in the temperature T = (278.0 ± 13.9) nK at constant atom number N = 36 000: T/TF =
(0.20± 0.02). Cloud expansion for early times tTOF = 0.6ms, Rx = (206± 1)µm, Ry = 25µm.

: fit accuracy of the original images, : fit accuracy of the mean image.

looks distinctly different, splitting into an upper and lower part. This can be understood from
the variation in µy. In the short direction Ry ≈ 25µm a change in 2µm is significant, while in
the long direction Rx ≈ 224µm the change in the position centre is not picked up. From the
four fluctuating parameters only two, N and µy, are distinguished by the PCA.

For the fit accuracy this results in the highest accuracy for taking into account the first two
principal components. The reconstruction with only the first parameter taken into account
instead has a similar accuracy compared to the mean image. Overall the accuracy decreases
compared to the fluctuation of individual parameters.
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(a)

(b)

Figure 16: PCA fit accuracy results (a) and components n = 1 – 6 (b) Parameter fluctuation
in the temperature T = (278.0 ± 13.9) nK, atom number N = (36 000 ± 3600) and atom centre
µx = (2 ± 2)µm, µy = (2 ± 2)µm: T/TF = (0.20 ± 0.02). Cloud expansion for early times
tTOF = 0.6ms, Rx = (208± 4)µm, Ry = (25± 1)µm. : fit accuracy of the original images,
: fit accuracy of the mean image.

6.1.4 TOF Variation

Before we considered the effect of fluctuations in experimental parameters for single time in-
stances. We now assess the effect of the PCA on a complete set of TOF images, where the
experimental parameters are kept constant. The results and components are shown in Figure 17.
For all components the fit accuracy is significantly degraded compared to the plain fit. Again,
most of the visible structure is present in the first few components, with all higher order compo-
nents explaining equal amounts of variation. Therefore, a lot of the variation due to experimental
parameters, i.e. tTOF, is not distinguished from the uncorrelated camera noise. Only once the
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complete variance is added back to the image the fit accuracy is comparable with the one for
the initial images. Note, that our analysis did not assess the effect on different time regimes or
consider whether the temperature fit by TOF is improved. Although, the latter appears unlikely
considering the error introduced in the cloud size parameters.

(a)

(b)

Figure 17: PCA fit accuracy results (a) and components n = 1 – 6 (b). TOF expansion for
t = 0.2ms – 2.9ms: temperature T = 278 nK, atom number N = 36 000 and T/TF = 0.20. :
fit accuracy of the original images, : fit accuracy of the mean image.

While the results above suggest improvements in the fit accuracy for single time instance images
when applying the PCA, we won’t employ the PCA in the further analysis. This is due to the
fact, that we don’t introduce a variation in the experimental parameters. In this case performing
a PCA on a set of images is equivalent to calculating an average image. As we expect the exper-
imental parameters to fluctuate in the actual experiment involving a PCA in the data analysis
of the experimental images appears advantageous, especially considering that the fit results did
not degrade for the cases considered above. Looking at the principal components themselves also
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provides a qualitative measure to understand whether fluctuations in the experimental data is
dominated by correlated or uncorrelated noise. The analysis of results for the case of multiple
fluctuating parameters indicates, however, that attributing variations in experimental parameters
to single principal components is not feasible.

6.2 Influence of Imaging Noise on Fit-Parameter Accuracy

In this section we investigate the question of the fit parameter accuracy. The simulations were
set up as discussed in Chapter 5.1 and run for parameter ranges as discussed in Chapter 5.2. If
not stated otherwise the simulations were performed with the noise (Chapter 4.2) and imaging
light profiles (Chapter 3.3) obtained directly from the experimental data. The fitting routine
and data analysis follows Chapter 5. While we only present some of the fit results in this section,
we provide the full set of data in Appendix E. The goal is to estimate the fit accuracy for the
given set-up for the range T/TF ∈ [0, 1]. Given the influence of the peak density on the results
for a sweep of the T/TF parameter the peak density is held constant. We will first consider the
fit accuracy of single images, before moving to evaluating the fit accuracy in TOF expansions.

6.2.1 T/TF at Single Time Instance

To quantify the fit accuracy for single images we create for a given n2D0 20 images for each
T/TF. The T/TF values are given in steps of 0.1 in the range [0.1, 1]. From theses images we
extract the fit parameters with the fitting routine described in 5.3. The accuracy of the fit
parameter is then quantified by comparing the mean and standard deviation across the set of 20
images to the respective input parameter. We want to consider the accuracy of T/TF and N .
While these parameters are not directly obtained from the fit parameters they can be calculated
from appropriate relations, as described in 5.3. The accuracy in the calculated quantity is
then again determined from their mean and standard deviation. In Figure 18 the results for
T/TF of the T/TF sweep at constant peak density n2D0 = 2.62 × 1012 m−2 for the Andor and
n2D0 = 4.03 × 1012 m−2 for the Ximea are shown. For both cameras the fit accuracy decreases
as T/TF → 1. This is expected, as the information about the parameter is mostly contained in
the wings of the density distribution. As the distribution approaches the Gaussian distribution
in this limit the wings become indistinguishable for different T/TF. In the other limit we expect
the fit accuracy to decrease for T/TF as well, as the spatial scale of the density decay falls below
the pixel resolution. For the sweeps presented the degradation of the fit accuracy in the low
temperature limit is less pronounced compared to the large temperature limit. Apparently, the
resolution limit for low temperatures is not yet relevant at the lower bound of the sweep range
T/TF = 0.1.

To estimate the error in the T/TF fit parameter for the experimental parameter at T/TF = 0.18
we consider the data point at T/TF = 0.2. The fit result for the cameras are

Ximea: T/TF = (0.18± 0.16) (62)

Andor: T/TF = (0.200± 0.014) (63)

It is evident that for these given parameters the image of the Andor camera provides more
accurate fit results. This pattern holds true for the whole range of T/TF values.

This difference in fit accuracy is significantly reduced for increased light intensities. In Figure 19
the results for three different simulated light sources are shown. The sweep fit already improves
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(a) (b)

Figure 18: Comparison of T/TF fit accuracy results for a T/TF sweep at constant peak density.
(a) Andor n2D0 = 2.62×1012 m−2. (b) Ximea n2D0 = 4.03×1012 m−2. • indicates the parameter
as originally obtained from the experiment.

for the case of the flat-field light source, compared to the light source with fringes. If instead a
light source at higher intensity 0.075Isat, but including fringes is used, the fit accuracy improves
significantly.

Due to the Beer-Lambert relation for the absorption we expect the signal to strongly depend on
the density of the cloud. In Figure 20 the fit results are displayed for different peak densities.
In the case of the Ximea the fit results become meaningless for peak densities less than n2D0 =
4 × 1012 m−2 and OD2D0 ≈ 0.2. Most fitting routines don’t converge or the results have large
uncertainties attached to them. In the case of the Andor the fit accuracy degrades for lower
peak densities as well, but is able to resolve T/TF for lower densities than the Ximea. Even
at n2D0 = 0.65 × 1012 m−2, OD = 0.14 the T/TF can be resolved in the mean, even if the
uncertainty increases to ∆T/TF = 0.17 At peak densities higher than n2D0 = 2.62 × 1012 m−2,
OD = 0.68 the T/TF fit accuracy improves for T/TF in the range 0.2 - 0.7. For larger T/TF

the fit accuracy continues to have a similar uncertainty attached. The largest optical considered
during this simulation run is OD = 1.12. At this level the fit accuracy for T/TF = 0.1 degrades
to T/TF = 0.15(5). The data can be found in Appendix E. We did not probe higher optical
densities at which saturation effects become significant.
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(a) (b) (c)

Figure 19: T/TF fit accuracy results for T/TF sweep at constant peak density n2D0 = 4.03 ×
1012 m−1 for different simulated light sources with the Ximea: (a) I = 0.0049Isat (fringes), (b)
I = 0.0049Isat (flat-field), (c) I = 0.075Isat (fringes), tpulse = 3µs. • indicates the parameter as
originally obtained from the experiment.

6.2.2 Atom Number at Single Time Instance

Following T/TF we now consider the accuracy of N as determined from the fit parameters by
Equation (17). The results are shown in Figure 21. We again estimate the uncertainty for the
original experimental value by looking at the T/TF = 0.2 data point.

Ximea: N = (35 800± 2200) (64)

Andor: N = (36 300± 300) (65)

While the results are still worse for the Ximea, compared to the Andor, in both cases the relative
uncertainty in the fit parameter is far lower than the relative uncertainty in the case of T/TF.
It turns out that this result holds true for broad ranges of peak densities and T/TF values.
Remarkably, even if the fit accuracy is low across all cloud parameters (Rx, Ry n2D0 and T/TF),
the atom number appears to be reliable. As an example we present the fit parameters at low peak
density and calculated atom number in Figure 22. It appears that the fit parameter adjust such
that the overall atom number is conserved. This phenomenon can be explained, by considering
the definition of the atom number in Equation (6). The atom number is an integrated quantity,
which does not depend on the local make-up of the cloud, but only the global total absorption.
This leads to a low susceptibility to noise of the atom number and makes it a very reliable
quantity.
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(a)

(b)

Figure 20: T/TF fit accuracy for a T/TF sweep of different constant peak densities (increasing
left to right). The fit parameters are determined for the Andor (a) and Ximea (b) camera. The
absence of data points indicates lack of convergence of the fit. • : indicates the parameter as
originally determined from the experiment.

6.2.3 TOF

After the discussion of the fit accuracy at single time instances we now discuss the fit accuracy
for time-of-flight expansion cloud images, as discussed in 2.3. Here we consider time of flight
expansions from 0.2ms to 2.9ms. A set of 5 images is created for each of the 12 time steps
spanning the time interval. For the two parameters we discuss, T and T/TF, the accuracy for a
given T/TF and peak density n2D0 is then determined from the TOF analysis of the time series
consisting of 60 images. Due to the low fit accuracy of the Ximea, as discussed above, we only
discuss the Andor camera in this part of the analysis. Because at higher light intensities the
Ximea appears to provide a comparable fit accuracy as the Andor it might be assumed that the
results for the TOF parameter accuracy of the Andor will be qualitatively similar in the high
intensity regime of the Ximea.

The TOF is usually performed to obtain a temperature measurement of the cloud. By addition-
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(a)

(b)

Figure 21: Atom number fit accuracy for a T/TF sweep of different constant peak densities
(increasing left to right). The fit parameters are determined for the Andor (a) and Ximea (b)
camera. The absence of data points indicates lack of convergence of the fit. • : indicates the
parameter as originally determined from the experiment.

ally estimating the atom number from the fit parameter the T/TF parameter can be deduced as
well (cf. Equation (12)). Because the scaling of the Gaussian cloud size is the same as the Fermi
cloud size, both can be used to obtain the temperature estimate. We will discuss both methods
in the following. The results for the temperature measurement in the long (x) and short (y)
direction are shown in Figures 24a and 24b, respectively. The T/TF estimate is shown in Figure
24c.

For the temperature T as obtained from the fit in the long and short direction, we observe that
the temperature is more accurately determined in the short direction across the whole range of
T/TF. While for T/TF < 0.3 the temperature we obtain from the Fermi cloud size does not
differ substantially from the input temperature, at higher T/TF the temperature isn’t resolved
any more. In both cases the Fermi fit tracks the temperature more closely for low T/TF. In
the long direction the temperature we determine from the Gaussian strictly overestimates the
temperature. On the other hand, the Gaussian fit improves over the Fermi fit for T/TF > 0.5 for
lower densities and tracks the same temperature as the Fermi fit for higher densities. Additionally,
the uncertainty in the Gaussian fit is far smaller than the Fermi fit across all realizations. This is
again due to the fact, that much of the temperature information is contained in the wing shape
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Figure 22: Fit accuracy of cloud parameters for a T/TF sweep at constant peak density n2D0 =
0.33× 1012 m−2. The fit accuracy of the calculated atom number is shown in red.

of the cloud, which the Gaussian fit does not track for lower T/TF. In Figure 23 we give an
example for a single time of flight simulation from the sweep. In this example the error in the
Gaussian sizes is orders of magnitudes larger than the error in the Fermi fit. Nevertheless, the fit
parameters are consistent between cloud images for the same expansion time. From the plot one
can deduce that different to the Fermi fit the Gaussian fit overestimates the size of the clouds at
late times. This in turn then leads to an overestimation of the temperature.

The reason the temperature fit is more reliable in the short direction is due to the relative
change in cloud size during the expansion time. If the uncertainty in the size is on the order of
the change in size then the temperature fit quality deteriorates. The behaviour for low T/TF is
unexpected, as for lower temperatures the relative change in size decreases. A possible reason
for this behaviour is that, as we saw in the previous section, the fit is more accurate for smaller
T/TF. The increased accuracy in the cloud size parameters appears to be more significant than
the reduced change in cloud size. Different to the discussion above the density dependence is
less pronounced across the density regimes, with the uncertainty in the temperatures increasing
slightly for higher peak densities.

Last, we discuss the accuracy of the T/TF parameter as shown in Figure 24c. Here we only
consider the temperature estimates in the short direction, due to their greater reliability. For
T/TF, similar to the temperature case, the Gaussian fit overestimates T/TF in the low T/TF

limit. This is expected, as the parameter is calculated by means of the atom number and tem-
perature. As the atom number is determined very accurately by the Gaussian fit, the deviation
in the temperature measurement directly propagates to the accuracy of the T/TF parameter.
The accurate determination of temperature and atom number by the Fermi fit translates to an
accurate estimate of the T/TF parameter. This estimate is complemented by T/TF as determined
from the cloud parameter directly. Here we consider the mean of the T/TF measurement across
all images of the TOF time series. This direct fit method has a similar accuracy and slightly
lower uncertainty in the low T/TF regime. In the large T/TF regime the method becomes less
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Figure 23: TOF time series and fit result: T/TF = 0.3, n2D0(t = 0) = 18.7×1012 m−2. The cloud
sizes in the long (x) direction as determined by the Fermi fit (top left) and Gaussian fit (top
right) as well as the cloud sizes determined in the short (y) direction by the Fermi fit (bottom
left) and Gaussian fit (bottom right). The input cloud expansion ( ) and fitted cloud expansion
( ) are shown as well.

accurate compared to the temperature method. It should be noted, that we do not take into
account any uncertainty in the trapping frequency ω used to calculate TF from the atom number,
which would increase the uncertainty in the temperature method.

The above discussion of the fit parameter accuracy from a TOF allows for some tentative results.
First, the Gaussian fit appears to become unreliable in the low T/TF regime, wherefore a Fermi
fit becomes necessary to reliably determine the temperature and T/TF parameter. Second, both
methods to determine T/TF, from the direct fit and from the temperature and atom number
appear to provide a similar accuracy.

6.3 Ramp-down Fit Reliability

After we analysed the dependence of the fit parameter accuracy for different density and T/TF

regimes, we now attempt to estimate the uncertainty in the fit parameters for a specific set of
data obtained from the experiment. In the experiment a ramp-down in an optical dipole-trap
was performed during which the trapping frequency ω is continuously lowered. When lowering
the trap frequency fast atoms are lost such that the temperature and atom number decreases. In
theory T/TF remains constant during the procedure. In the experiment T/TF was measured by
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(a)

(b)

(c)

Figure 24: TOF fit results for T/TF sweep of constant n2D0. (a) T fit in the long (x) direction,
(b) T fit in the short (y) direction, (c) T/TF fit. i, N denotes T/TF estimate from T TOF fit in
i-direction and mean N . T/TF Fermi denotes T/TF estimate from mean of all fitted T/TF.
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means of a TOF expansion for different values of the trapping frequencies. The T/TF parameter
can be obtained either directly from the cloud parameters or from the temperature and atom
number as explained in 5.3. The experiment and analysis of the experimental data was performed
by other members of the group.

To estimate the uncertainty due to camera noise we simulate a TOF expansion for the atom
number N , temperature T and trap frequencies obtained from the experimental data. Here it
should be noted, that the input parameter heavily bias the simulation and its result. Furthermore,
because the experimental and simulated images were analysed separately, different fitting routines
were used. While the same fitting function was used, the initial parameters,the chosen fitting
regions and selection criteria for excluded data points might differ. Therefore, it needs to be
assumed that this circumstance explains at least part of the difference between the simulated
and experimental data. We simulate the TOF with the same time steps and image sample sizes
as the experiment. In the case of the Andor the cloud was measured at 7 equidistant time steps
from 0.1ms to 0.7ms with 9 images taken at each time step. In the case of the Ximea the cloud
was measured at 12 equidistant time steps from 0.8ms to 2.5ms with 9 images taken at each time
step. Note, that for these simulations we adjusted the light intensity and sensitivity to closer
match the experiment as described in Appendix D. The experimental and simulation results are
shown in Figure 25.

The experimentally obtained T/TF does decrease during the ramp down. The range of T/TF

is 0.06-0.39. The range of mean trap frequencies are 2π 765Hz to 2π 3014Hz, all above the
frequency ω = 2π 483Hz considered in the previous sections. In all cases the simulated T/TF,
both for the direct and expansion method agree with the input parameter within their uncer-
tainty. This is consistent with the results of the previous sections. The T/TF estimate for the
experimental by the direct method is on average 58% lower than estimated by the expansion
method for the Andor data. The simulation does not reproduce this behaviour. Instead, the
T/TF estimation from the simulated data by the direct method closely tracks the input parame-
ter from the expansion method. This discrepancy in the experimental data can therefore not be
accounted for by noise in the imaging process.

For the Ximea the T/TF estimate agrees far better for both methods which is then reproduced
by the simulated data. Interestingly the uncertainty in T/TF by the expansion method is similar
for both simulation and experiment. For the direct method on the other hand the uncertainty
attributed to the data points by the simulation is far lower compared to the experiment. This
could indicate strong shot-to-shot fluctuations in both the temperature and atom number. The
attribution of this observation is, however, not certain due to the aforementioned difference in
fitting procedure. We might also make the observation, that in case of the expansion method
T/TF has a closer agreement between experiment and simulation for the Andor then the Ximea,
which suggest the Andor data to be less influenced by imaging noise.

This proof-of-concept comparison of simulated and experimental data indicates a few possible
paths to use the simulation to understand the uncertainty attached to experimental results.
First, we can estimate whether a discrepancy between values can be accounted for by noise in
the imaging process. Second, if data points match we can compare uncertainties to estimate the
uncertainty in the experimental data point not explained by imaging noise but fluctuations in the
experimental parameter. For this it is necessary, however, to use the exact same fitting routine
for both analyses. Third, if simulation and experiment disagree significantly this can indicate,
that in the regime of interest the accuracy of the experimentally obtained fit parameters is lower
than assumed. This method is, however, not suited to verify single data points in any case.
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(a) Andor, direct method (b) Andor, expansion method

(c) Ximea, direct method (d) Ximea, expansion method

Figure 25: Experimental ( ) and simulation ( ) results for the T/TF parameter of a ramp-
down in an optical dipole-trap measured by a time-of-flight expansion. The simulation input
parameters ( ) N and T are determined by the fit parameters of the experimental data. The
input parameter of the mean trap frequency ω is determined from an independent measurement.
The direct method correspond to the calculation of T/TF directly from the cloud parameters.
The expansion method calculates T/TF by means of the temperature of the TOF, the atom
number and mean trap frequency.
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7 Conclusion and Outlook

In this thesis we constructed a numerical simulation of the absorption imaging process of an
ultracold 6Li cloud to estimate the effect of camera noise and the light source on the fit accuracy
of the cloud parameters. The camera noise was modelled by considering different sources of noise
present in CCD cameras and determining their relevance. The noise model was then calibrated
with the noise found in images taken from the experiment. The spatial intensity distribution for
the light source was similarly characterized by considering images taken from the experiment and
calculating the intensity from given camera parameters. In the case of the Ximea this yielded
an unexpectedly low intensity, for which since additional measurements by a photo-diode have
been performed showing the incident intensity to be larger than estimated from the camera (for
a discussion confer Appendix D). The intensity results for the Andor, however, still hold as
presented in the thesis.

For the absorption images we modelled the absorption process and cloud density distribution
for appropriate parameters obtained from the experiment. To extract the cloud parameter we
implemented a fitting routine such that we could fit both Fermi and Gaussian density profiles.
The accuracy of an image fit can then be determined by comparing the input parameters of the
cloud with the extracted parameters.

We found that for densities realised in the experiment, the accuracy in the fit parameter as deter-
mined from a harmonically trapped Fermi gas distribution improves for low T/TF, theoretically
allowing to distinguish T/TF up to ∆T/TF = 0.02 in the regime T/TF < 0.3 using the Andor
camera. We showed that the Ximea has difficulty to resolve the clouds at the light intensity
determined from the experimental images. At higher intensities the fit accuracy improves sig-
nificantly for the Ximea. Due to the issues involved with the intensity measurement, a precise
accuracy estimation still needs to be worked out. We further showed that for both cameras the
atom number is reliably determined from the fit parameters, even in the low density and low
intensity regimes.

By simulating image series of time-of-flight expansion we could show that the temperature as
estimated from the cloud size expansion by a Gaussian fit systematically overestimate the tem-
perature in the low T/TF regime. In this regime only by considering the cloud size of the Fermi
cloud distribution we can reliably measure the temperature. For the estimation of T/TF we
examined two methods. In one method the parameter is determined directly from the cloud
parameters. In the other the parameter is calculated from the temperature determined from the
time-of-flight expansion, the average atom number and trap frequency. We showed that both
methods are equally accurate.

We extended the above analysis of the fit accuracy to a particular set of experimental data
points obtained by TOF measurements of a ramp-down sequence. We simulated these TOF
image series with the input parameters given by the fit parameters of the experimental images.
While this analysis cannot verify the experimental results, it proved insights into the uncertainty
explainable by camera noise compared to fluctuations in the experimental parameters. It thereby
can help to analyse whether the discrepancy between two experimentally obtained data points
can be explained by camera noise alone.

Last, we assessed the feasibility of using a principal component analysis to distinguish corre-
lated noise in the images due to fluctuations in the experimental parameters from uncorrelated
noise introduced by the imaging process. We showed that using the principal component anal-
ysis fit results improved significantly. Furthermore, the principal components can be used to
gain a qualitative understanding of the relative magnitude of fluctuations in the experimental
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parameters.

While the simulation does not capture all noise and fluctuations associated with the imaging of
cold atomic clouds it can provide of the resolvability of cloud parameters in different density and
temperature regimes. Moreover, due to the high level of control it is well suited to evaluate other
data analysis and noise reduction techniques.
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Appendix

Appendix A Camera Parameters

In Table 1 we summarize relevant camera parameters referred to in this thesis.

Table 1: Summary of camera parameters.

Property Andor iKon-M Ximea xiD

Model DU934P-BEX2-DD-9OT MDO28xU-SY
Resolution 1024 x 1024 1934 x 1456
Pixel size [µm] 13x13 4.54x4.54
Effective pixel size [µm] 1.86x1.86 8.28x8.28
QE @ 671 nm 0.93 0.9
Read-out noise [e−] 21.7 8.3
Dark-current noise [e−/px/s] 0.01 (T = −80 ◦C) N/A (T = 30 ◦C)
Sensitivity [e−/ADU] 6.2 1.37

• Because the Andor camera is operated in the fast kinetics mode, images are only taken on
a 1024x196 subsection of the pixel array.
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Appendix B Spline Approximation of Lis

During the simulation and fit procedure the function

Li2 (−ez) (66)

is called numerous times, due to its occurrence in the column density (cf. Equation (18)).
The implementation, as found in the mpmath library is computationally expensive. Our goal
is to construct a computationally less expensive approximation to this function with sufficient
accuracy.

To this end we used a cubic spline interpolation as explained in [Kong et al., 2021]. The strategy
is to approximate a set of n data points (xi, yi) with piecewise defined cubic polynomials. That
is, one cubic polynomial Si(x) = aix

3 + bix
2 + cix + di defined for each of the n − 1 intervals

[xi, xi+1].

The coefficient for the polynomials can be found by demanding that the splines intersect the
data points at the interval boundaries

Si(xi) = yi (67)

Si(xi+1) = yi+1 (68)

and that the first and second derivative be continuous

S′
i(xi+1) = S′

i+1(xi+1) (69)

S′′
i (xi+1) = S′′

i+1(xi+1). (70)

Additionally, two boundary constraints are required. Usually, the second derivative at the end
points is set to zero.

S′′
1 (x1) = 0, S′′

n−1(xn) = 0 (71)

The effect of this choice will be discussed again.

Ton construct the spline we used the scipy.interpolate.CubicSpline module, which imple-
ments the computation of the spline coefficients.

The data points in our case are a sample of 66, where we consider the implementation from the
mpmath library as the ground truth.

The region of interest for the parameter z is derived from the expression for z in Equation (18)

z = q −
(

x2

2R2
x

+
y2

2R2
y

)
f(eq) (72)

We assume the following bounds for the parameters

T/TF ∈ [0.002, 6] →

{
q ∈ [500,−7]

f(eq) ∈ [500, 1]
(73)

x, y ∈ [0µm, 8000µm]
Rx, Ry ∈ [1µm, 8000µm]

}
→
(

x2

2R2
x

+
y2

2R2
y

)
∈ [0, 6.4× 107] (74)
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Figure 26: Deviation of the asymptotic approximations and spline approximations from the
function Li2(−eq).

which yields
z ∈ [−3.2× 1010, 500] (75)

Where the upper limit is determined by the lower bound of T/TF. The limits in x, y are given
by the effective size of the CCD array and the lower limit of the cloud size is determined by the
minimum effective pixel size.

The asymptotics of the function are

Li2(−ez) =

{
−ez for z → −∞
− z2

2 for z → ∞
(76)

Their relative error is shown in Figure 26 for z < −30 and z > 400. In the case of large negative
value the asymptotics the relative deviation from the function is less than 10−5. Whereas for
large positive values the asymptotic deviates more ≲ 2 × 10−5. Note that z > 400 corresponds
to T/TF < 0.0025, a regime we are unlikely to enter.

We can therefore extend our interpolated functions to all values z ∈ (−∞,∞) by substituting
the asymptotics for large arguments.

g(z) =


− exp(z) z < −40

CubicSpline(z) −40 ≤ z ≤ 500

−z2/2 z > 500

(77)

The region considered for the cubic spline interpolation is then restricted to

z ∈ [−45, 505] (78)

which we partition in 4000 equidistant intervals. We purposefully extended beyond the asymp-
totic boundaries, such that the boundary conditions of the spline do not concern us. The relative
and absolute deviation from the actual function are displayed in Figure 26. For z < 480 the rel-
ative error remains below 10−8 with an absolute deviation no larger than 10−9. We estimate

49



7 Conclusion and Outlook Appendix B Spline Approximation of Lis7 Conclusion and Outlook Appendix B Spline Approximation of Lis7 Conclusion and Outlook Appendix B Spline Approximation of Lis

Figure 27: Maximal relative and absolute deviation from the actual function value of (79) for
the CubicSpline implementation on the Ximea effective pixel grid for Rx = Ry = 50µm and
T/TF ∈ [0.01, 2].

the speed-up by measuring the time of seven evaluations of the function on 106 values on the
interval [−100, 200].

mpmath: (12.1± 0.2) s

CubicSpline+Asymptotics: (36.1± 0.8)ms

a speed-up of about 300 times.

In the actual expression of the column density we compute the fraction

Li2

(
− exp

[
q −

(
x2

2R2
x
+ y2

2R2
y

)
f(eq)

])
Li2(−eq)

(79)

We calculate the relative and absolute deviation on the Ximea camera grid for Rx, Ry and
variable T/TF ∈ [0.01, 2]. The results are shown in Figure 27 The results show that while the
relative is low for all T/TF with a relative error below 10−6, the lowest deviations are found for
low T/TF.

Therefore, we can replace the mpmath implementation with the approximate function g.
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Appendix C Pixel Density Average

The intensity at point x, y in the object plane is given by (32). As the pixel size is finite,
the intensity incident on a pixel is not equal to the intensity at the centre of the pixel. In the
following we will discuss this effect and our implementation in the simulation. In this analysis
we don’t consider variations of intensity across the image. Due to the form of (32) we expect
the deviation to be most significant if the variation across the pixel is large. In regimes of small
optical density OD = σ0n ≪ 1 it is equally possible to average the density instead and calculate
the transmission for this average density.

To analyse this behaviour, we again consider a cloud with parameters T = 278 nK, N = 36000
and optical trap frequencies as described in 5.2. Additionally, we apply an offset of mux = 1µm,
to see how the asymmetry of the cloud with respect to the pixel grid changes the results. The
cloud density is considered at in-situ and after an expansion time of t = 0.6ms. The column
density is of course different for the two camera set-ups. We calculate an average column density
value of each pixel by averaging the column density in the short-direction (x) across the length of
a single pixel. The results are shown in Figure 28. In the Figure we additionally plot two relative
errors. First, the relative error of n2D at the pixel centre compared with the pixel average of the
column density. Second, the relative error of the pixel centre and the average value across the
pixel obtained from averaging the transmission, i.e.

n̄2D(i, j) =
−1

σ0
log (meani,j (exp(−σ0n2D(x, y)))) (80)

For both cameras the deviation of the density at the pixel centre from the average pixel density
is largest in the wings and lowest at the centre of the cloud. In the case of the Ximea the relative
deviation is larger than 2. In the case of the Andor the relative deviation is smaller than 0.4. For
the Andor the relative difference between the estimate from the pixel density compared to the
density calculated via the transmission is below 0.1, while for the Ximea the deviation is about
1. For larger cloud sizes this effect vanishes, as the mean density and pixel centre density get
closer.

For the density profile beyond the cloud wings, we see larger errors again. The relative error in
the transmission average settles at one. This is due to numerical errors introduced by applying
an exponential and logarithm in sequence, which maps a low optical density to zero. This in turn
then yields a relative error of one with respect to the pixel centre density. The relative error for
the average density method is larger still and not shown in the plot. The error is introduced due
to division by very low densities and numerical errors leading to comparatively large differences
of the pixel centre and average density. This does not, however, concern us. When we perform
the simulation, as the density enters only through the Beer-Lambert law, the low densities are
mapped to a unity transmission, independent of whether we average or not.

In the simulation we decided to implement the corrections in the intensity average by averaging
the density across each pixel. A numerical integration of the density across each pixel is pro-
hibitively expensive. Instead, we opted to calculate the average mean by sampling the density
of the pixel on a n ×m sub-grid. We chose 20 × 20 for the Andor camera and 40 × 40 for the
Ximea.

The above results also suggest adapting the fit function to actually fit the average density. Due to
the required sub-sampling this increases the computational cost quite significantly. Furthermore,
for cloud sizes similar or larger than the clouds discussed in this section, the deviation becomes
is not significant.
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(a) (b)

(c) (d)

Figure 28: Comparison of average pixel density (•) and density at the pixel center. Density
profiles for the Andor (top) and Ximea (bottom) for in-situ (left) and TOF (right). Relative
deviations of the pixel average (×) and transmission average (•).
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Appendix D Light Intensity Adjustment

The intensity as calculated for the Ximea turned out to be lower than expected (cf. 3). To
understand this issue the same intensity setting of the imaging laser was measured independently
by the Ximea, the Andor, a power meter and a photo-diode. In Figure 29 the results of this
measurement are shown for a pulse length of 7µs and 3µs. The intensity was calculated from
the digital counts of the camera as described in 3. For the Andor the total power was then
calculated as the sum over the power incident on each pixel. For the Ximea instead of summing
a Gaussian beam profile was fitted to the division image, from which the total incident power
was deduced. The measurement shows that the Ximea significantly underestimates the intensity
compared to the power meter and photo-diode which agree on the intensity value. The Andor
appears to slightly overestimate the power. Assuming a negligible error in the effective pixel size,
pulse length and quantum efficiency this implies that the sensitivity factor is underestimated for
the Ximea and slightly overestimated for the Andor.

To adjust the simulation this would require to adjust the sensitivity according to the following
equation:

Iactual
Icamera

=
sactual

sdata-sheet
(81)

The ratios of the intensity as measured by the photo-diode and the intensity by the camera are

Ximea: IPD/IXimea = 4.363

Andor: IPD/IAndor = 0.744

For the simulation discussed in 6.3 the intensity and sensitivity were adjusted by these values.

Appendix E Results Data

In this appendix we will provide the fit parameters n2D0, T/TF, Rx Ry in the case of single time
instance sweeps and T , N , T/TF, TF , Rx(t = 0) Ry(t = 0) in the case of time-of-flight sweeps.
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(a)

(b)

Figure 29: Power measurements of the imaging laser in (a) x-direction for tpulse = 3µs and
(b) z-direction tpulse = 7µs. The imaging laser light in the x-direction was measured by the
Andor camera, the Ximea camera, a power meter and a photo-diode (PD). In the z-direction
the power was measured by the power meter, photo diode and Andor camera.The input power
is determined by the setting of the acousto-optical modulator (AOM).
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Figure 30: Fit parameter results for T/TF sweep for different constant peak densities for the
Andor camera. I = 0.18Isat (flat-field).
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Figure 31: Fit parameter results for T/TF sweep for different constant peak densities for the
Andor camera. I = 0.18Isat (fringes).
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Figure 32: Fit parameter results for T/TF sweep for different constant peak densities for the
Andor camera. I = 0.0049Isat (flat-field).
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Figure 33: Fit parameter results for T/TF sweep for different constant peak densities for the
Andor camera. I = 0.1Isat (fringes).
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Figure 34: Fit parameter results for T/TF sweep for different constant peak densities for the
Andor camera. I = 0.1Isat (flat-field).
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Figure 35: Fit parameter results for T/TF sweep for different constant peak densities for the
Andor camera. I = 0.0049Isat (fringes).
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Figure 36: Fit parameter results for T/TF sweep of time-of-flight simulation at n2D0 = 9.4 ×
1012 m−2. Time series: 12 different times from 0.2ms to 2.9ms with 5 images each.
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Figure 37: Fit parameter results for T/TF sweep of time-of-flight simulation at n2D0 = 18.8 ×
1012 m−2. Time series: 12 different times from 0.2ms to 2.9ms with 5 images each.
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Figure 38: Fit parameter results for T/TF sweep of time-of-flight simulation at n2D0 = 32.5 ×
1012 m−2. Time series: 12 different times from 0.2ms to 2.9ms with 5 images each.
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