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Abstract

In this thesis first the theoretical basis for optical trapping is presented. After that a calcula-
tion regarding the modulation of a Gaussian beam potential by means of an acousto-optical
deflector (AOD) is done to describe the generated time averaged potentials. A time averaged
potential with a shape similar to a Gaussian beam potential is characterised with regards to its
depth and width as well as compared to the Gaussian beam potential. Once the theoretical
predictions are made a set-up to produce such a modulated potential is presented and tested.
The modulated potentials that were compared to calculated predictions used the modulation
functions sine, ramp/linear, square-wave and arccosine of which the last one produces the
potential close to a Gaussian beam potential. The set-up was found to be able to produce
time averaged potentials with an aspect ratio of up to ca. 6.

Zusammenfassung

In dieser Arbeit werden zunächst die theoretischen Grundlagen für optische Fallen vorgestellt.
Anschließend wird eine Berechnung zur Modulation eines Gaußstrahlpotentials mittels eines
akusto-optischen Deflektors (AOD) durchgeführt, welche die erzeugten zeitgemittelten Po-
tentiale zu beschreibt. Ein zeitgemitteltes Potential mit einer dem Gaußstrahlpotential ähn-
lichen Form wird hinsichtlich seiner Tiefe und Breite charakterisiert und mit dem Gaußs-
trahlpotential verglichen. Nachdem die theoretischen Vorhersagen gemacht wurden, wird ein
Aufbau zur Erzeugung eines solchen modulierten Potentials vorgestellt und getestet. Für
die modulierten Potentiale, die mit den berechneten Vorhersagen verglichen wurden, wur-
den die Modulationsfunktionen Sinus, Lineare bzw. Dreiecksfunktion, Rechtecksfunktion
und Arkuskosinus verwendet, von denen die letzte ein Potential erzeugt, das einem Gaußs-
trahlpotential nahe kommt. Es wurde festgestellt, dass der Aufbau in der Lage ist, zeitlich
gemittelte Potentiale mit einem Aspektverhältnis von bis zu ca. 6 zu erzeugen.
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1 INTRODUCTION

1 Introduction

1.1 Motivation and Context

The experiment in the course of which this thesis was written has the goal to study quantum
gases of Dysprosium at ultra-low temperatures. The ultra-low temperatures give rise to
different interesting phenomena with one of them being the possibility to prepare the vast
majority of atoms in their ground state. Due to the greatly reduced movement and thus low
energy of the atoms this provides the opportunity of great control over the atoms as they
are unlikely to receive enough energy to change their state. This allows to prepare a spin-
polarised gas in which all or at least the vast majority of atoms have the magnetic sublevel
MJ = −J of the total angular momentum J which makes it possible to investigate the
long-range magnetic dipole interaction of Dysprosium atoms. As this long-range interaction
results from the magnetic moment of the atoms Dysprosium is the most suitable element
for this kind of experiment as its ground-state has the largest magnetic moment out of all
the elements of the periodic table.
The interaction of Dysprosium atoms consists of two interaction types, one being the afore-
mentioned magnetic dipole interaction, which is long-range and anisotropic, and the second
one being the short-range, isotropic contact interaction. This is interesting because the
strength of the contact interaction can be tuned by an external magnetic field when close
to a Feshbach resonance such that one can observe the interaction of Dysprosium atoms for
different relative strengths of the long-range and short-range interactions [Chi+10] [GGP02].
For this tuning to be accessible one needs to confine the quantum gases without using any
magnetic fields which leads to optical dipole traps (ODTs) as they produce a trapping poten-
tial for neutral atoms solely relying on the light-matter interaction of the laser light with the
atoms. In the case of far-detuned ODTs like in this experiment one suppresses the driving
of transitions of the atoms to reduce photon scattering and thus the probability of heating
and losing atoms [GWO99].

In the experiment of the Quantum Fluids group the atoms will be precooled in a 2D- and
3D-MOT before they will be transferred to the ODT. For more information on this set-up
before the ODT refer to the Bachelor thesis by Christian Gölzhäuser from 2021 [Göl21] or
the Master thesis by Joschka Schöner from 2022 [Sch22].

The tunable geometry that is the topic of this thesis has two possible purposes: The first
would be the opportunity to use different shapes of potentials without the need for additional
optical set-ups and the second but more fundamental reason to use a tunable geometry is
the loading of the trap. When loading the ODT from the 3D-MOT the goal is to maximise
the amount of atoms that are kept trapped. To achieve this one should have a good overlap
of the volumes of the MOT and the ODT [ATS05]. As the ODT finally will be used to
have very cold and dense gas cloud as necessary to reach degeneracy, i.e. a BEC, its volume
should not be very large. This results in a conflict with the condition of a large volume
overlap with the bigger MOT when loading which can be resolved with a tunable geometry
as the size of the trap can be large for loading and then be reduced while cooling.
The specifics of the implementation of an ODT in the actual experiment of the group will
not be covered here as this is a preparatory work. The experiment is not yet at the point
where the ODT is needed.
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1 INTRODUCTION

1.2 Properties of Dysprosium

Another reason why Dysprosium (66Dy) is an interesting element for an experiment is due
to the abundance in different stable isotopes (see table 1). Two of the five isotopes listed
in table 1 are fermionic and three are bosonic which further allows to investigate systems of
both statistics from the same element.

isotope 160Dy 161Dy 162Dy 163Dy 164Dy
mass [u] 159.925 160.927 161.927 162.929 163.929
abundance [%] 2.3 18.9 25.5 24.9 28.3

Table 1: Weights and abundances of the 5 most common Dysprosium isotopes from [Lae+03,
p.777]. The unit u is the unified atomic mass unit [Poi19, p.146]. The average weight of
Dysprosium is given as 162.5 u.

Another important property of Dysprosium is the total angular momentum J as well as the
resulting magnetic moment µm. The total angular momentum of the ground-state is inde-
pendent of the isotope given as J = 8. The magnetic moment of the ground-state with
MJ = −J of Dysprosium is roughly µm ≈ −10µB and for the fermionic isotopes it depends
on the hyperfine structure [see Mai15, pp.21-22].

Further one needs to know the polarisability of Dysprosium for the optical dipole trap. For
this the wavelength of the laser is important which in this experiment is given by λ =
1064 nm. At this wavelength the relevant polarisabilities, given in units of 4πϵ0a30 (atomic
units, ϵ0 is the vacuum permittivity and a0 the Bohr radius), are experimentally found to be
ℜ (αs) = 184.4± 2.4 and ℜ (αt) = 1.7± 0.6 [Rav+18] and theoretically were determined to
ℜ (αs) = 193 and ℜ (αt) = 1.3 [Li+16]. The polarisability will be introduced in section 2.1.
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2 THEORY OF OPTICAL TRAPPING

2 Theory of Optical Trapping

This chapter explains how light forms a potential for atoms first in the general case and then
for the specific situation of the experiment this thesis is based on. That means after the
general introduction the potential for the case of Dysprosium atoms in linearly polarised light
will be shown for a single Gaussian beam as well as two crossed Gaussian beams.

2.1 Optical trapping potential, polarisability and the case of dysprosium atoms

Consider an atom in an electric field E. The electric field induces an atomic dipole moment
p which is proportional to the electric field. The so called polarisability α then determines,
like the name suggests, how strongly the atom is polarised:

p = αE (1)

For a general oscillating electric field E(r, t) = êE(r) exp(i(ωt − kr)) + const. , e.g. one
produced by a laser with unit polarisation vector ê, amplitude E, angular frequency ω and
wavevector k = 2π

λ k̂ =
ω
c k̂, the polarisability is a complex-valued tensor which is depended

on the angular frequency ω of the oscillation [see Ilz20, p.24]. The resulting potential for
atoms in the electric field is then given by [GWO99, p.3]

U = −
1

2
⟨pE⟩ (2)

with ⟨·⟩ denoting a time-average and the 12 stemming from the fact that p is an induced
dipole. With the intensity

I = 2ϵ0c |E|2 (3)

ϵ0 being the vacuum permittivity and c being the speed of light, one gets the general potential
at position r of atoms in the electric field and an homogeneous magnetic field [LWD14, p.2]

U(r; θk , θp,A, ω) = −
1

2ϵ0c
I(r) ·[

ℜ(αs(ω)) +

A cos(θk)
MJ
2J
ℜ(αv(ω)) +

3M2J − J(J + 1)
J(2J − 1) ·

3 cos2(θp)− 1
2

ℜ(αt(ω))

] (4)

αs, αv, αt are the scalar, vector and tensor parts of α. Information regarding the theoretical
evaluation of these can be found in the literature [LWD14] and [Li+16]. The former only
shows the formula whereas the latter also calculates the values. J is the total angular
momentum quantum number and MJ is the corresponding quantum number defining the
magnetic sublevel of the state of the atom. θk is the angle between the quantisation axis of
MJ , given by the external magnetic field, and the wave vector k of the electric field. θp is
in turn the angle between said quantisation axis and the polarisation vector and A expresses
the polarisation of the light with A = ±1 being circular polarisation (+ : right, - : left) light
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2 THEORY OF OPTICAL TRAPPING

and A = 0 being linear polarisation.
For simplicity the term in brackets in (4) will be noted as the scaling factor α̃:

U(r; θk , θp,A, ω) = −
α̃(ω, θk , θp,A)

2ϵ0c
I(r) (5)

This α̃ will in fact turn out to be (almost) constant for the intended experiment set-up. Said
set-up is a far red-detuned laser with wavelength λ = 1064 nm and arbitrarily oriented linear
polarised light. This set-up will fix ω = 2π cλ via the laser wavelength, A = 0 due to the linear
polarisation of the laser and also θp to the arbitrary angle between the magnetic field and the
laser polarisation. Therefore the relevant values, given in units of 4πϵ0a30 (atomic units), are
ℜ (αs) = 184.4± 2.4 and ℜ (αt) = 1.7± 0.6 for the given wavelength as found by [Rav+18]
1. This experimental result is a rather new one that also determined the tensor polarisability
and matches quite well with the theory [Li+16] where ℜ (αs) = 193 and ℜ (αt) = 1.3.
As the vector part drops out and the tensor part is two orders of magnitude smaller than
the scalar polarisability the polarisability can be approximated to be constant. Thus to put
it in a simple form the formula relating the potential created by light to its intensity is given
with the positive constant c = α̃

2ϵ0c
> 0 and all dependencies other than the position will be

disregarded as they are fixed or not important in our case:

U(r) = −cI(r) (6)

For more in-depth information regarding the influence of the tensor polarisability refer to the
Appendix A.3.

2.2 Optical trapping potential of a single Gaussian beam

As we now have a general understanding of how a general intensity distribution of light will
introduce a potential for our case we will now specify the used laser beam to be Gaussian.
All we have to do for this is to combine the intensity distribution of a Gaussian beam (see
A.1) and (6):

U(x, y , z) = −
2P c

πwx(y)wz(y)
exp

(
−2
(
x2

w2x (y)
+
z2

w2z (y)

))
(7)

Û = |minU| = |U(0, 0, 0)| =
2P c

πwxwz
(8)

with

wi(y) = wi

√
1 +

y2

z2R,i
; zR,i =

πw2i
λ

(9)

Û is the trap depth, which is often given in units of temperature by dividing it by Boltzmann’s
constant kB as a characteristic of a trap. This also applies in general for depictions of any
potential.

This is a conserving potential and the resulting force is pointing towards the beam focus
at r = (0, 0, 0). This is easy to see as the potential is proportional to the intensity of the

1There are also other works that determine the polarisability of dysprosium experimentally, although they
do not give a tensor polarisability. Examples are [Lu14] with ℜ(α) ≈ 75 or [Wen15] with ℜ(α) = 82± 13
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2 THEORY OF OPTICAL TRAPPING

Figure 1: Plot of a Gaussian beam potential for waists wx = 30 µm, wz = 50 µm and power
P = 10W at the focus (y = 0).

Figure 2: Plot of a Gaussian beam potential for waists wx = 30 µm, wz = 50 µm and power
P = 10W along the propagation direction y (x = z = 0).
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2 THEORY OF OPTICAL TRAPPING

laser beam which is highest at the focus and monotonically decreases away from it. For the
directions perpendicular to the propagation direction this can be seen in figure 1. Here the
potential created by an elliptical Gaussian beam is shown at the focus of said beam. One
can nicely see that the ratio of the beam waists in x- and z-direction of 35 is also present in
the shape of the potential.
The potential along the propagation axis is shown in figure 2. One can also see here that
the potential has a clear minimum at the focus. Further the potential seen here corresponds
to the minimum of figure 1 at different positions for y , which nicely illustrates that the trap
gets shallower further away from the focus. An effect that is not as apparent from the plots
but also relevant is that the potential shown in figure 1 doesn’t only get shallower but also
wider, which is necessary to still retain the same amount of cumulative intensity and thus
energy in every slice along the propagation direction. Both of these effects are clear also
from the definition of the potential in (7).
Further one has to notice that the confinement of the optical potential in propagation direc-
tion is very weak compared to the other two directions as the length scales here are, in this
example, more than two orders of magnitude apart.

2.2.1 Harmonic Approximation

An often used approximation for the region close to the potential minimum, which requires
the thermal energy of the atoms to be much smaller than the trap depth (kBT ≪

∣∣Û∣∣), is
the harmonic approximation. It allows to get a very simple model for the movement of the
atoms close to the center of the trap and the typical timescales involved. The harmonic
approximation is the Taylor expansion to the 2nd order:

U ≈ −Û +∇U|(0,0,0) ·

xy
z

+ 1
2

(
x, y , z

)
·
(
HU|(0,0,0)

)
·

xy
z

 (10)

Here HU denotes the Hesse-matrix. This results in the following form:

U ≈ −Û

(
1−
2x2

w2x
−
2z2

w2z
−
y2

2z2Reff

)
(11)

with

1

z2Reff
=

(
1

z2Rx
+
1

z2Rz

)
⇔ zReff =

zRx zRz√
z2Rx + z

2
Rz

(12)

or expressed via the beam waists:

zReff =
π

λ
·
w2x w

2
z√

w4x + w
4
z

(13)

(11) can be described by the more common form

U ≈ −Û +
1

2
mω2xx

2 +
1

2
mω2z z

2 +
1

2
mω2yy

2 (14)
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2 THEORY OF OPTICAL TRAPPING

with the so called trapping frequencies

ωx,z =

√
4Û

mw2x,z
ωy =

√
Û

mz2Reff
(15)

Using for example the parameters from figure 1 one gets the values ωx = 2π · 1009Hz,
ωz = 2π · 605Hz and ωy = 2π · 6Hz. This then clearly shows that the atoms are more
strongly confined perpendicular to the propagation direction than along it in the conditions
that usually apply in the experiment.

2.3 Optical trapping potential of crossed Gaussian beams

As seen in the section above a weakly focused single Gaussian beam usually provides unsat-
isfying confinement in the propagation direction. To counteract this one uses two crossed
Gaussian beams, that intersect at their respective foci and whose propagation directions are
not parallel and will be assumed to be 90° in the following. The idea is that the weak con-
finement along the propagation direction of one beam is compensated for by the other beam
as for this beam that direction is perpendicular to its propagation direction.

In the case of crossed beams one has to simply add the corresponding single beam potentials,
given that it is ensured that there is no significant interference. In the case of an angle of
90° between the two beams (one beam propagates along the y-axis and the other one along
the x-axis) one therefore gets:

U = −Û1
exp

(
−2
(

x2

w2x,1(y)
− z2

w2z,1(y)

))
√
1 + y2

z2R,x,1

√
1 + y2

z2R,z,1

+ Û2

exp

(
−2
(

y2

w2y,2(x)
+ z2

w2z,2(x)

))
√
1 + x2

z2R,y,2

√
1 + x2

z2R,z,2

(16)

≈ −Û1 − Û2 +
m

2

(
ω̃2xx

2 + ω̃2yy
2 + ω̃2z z

2
)

with ω̃i =
√
ω2i ,1 + ω

2
i ,2 (17)

For the interested reader: If the beams do not have an angle of exactly 90° between them
one has to calculate ω̃ a bit differently [Bai12, pp. 21-28].
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3 OPTICAL POTENTIAL AND LASER BEAM MODULATION

3 Optical potential and laser beam modulation

Modulating a laser beam of the trap allows to modulate the trapping potential. This is
especially of interest in the loading phase and the evaporative cooling phase for an optical
dipole trap (ODT). In the former case, the reason is the ability to adjust to the volume of
the 3-dimensional-magneto-optical-trap (3D-MOT) when loading which allows to increase
loading efficiency as it is proportional to the overlap volume of ODT and 3D-MOT [ATS05].
In the evaporative cooling phase, where one lowers the trap depth to lose atoms with high
energy, the control over the trap geometry also allows to keep the trap as tight as wanted.
This can be important as lowering the power in the trap reduces the trapping frequencies
(see (15)) which makes the confinement provided by the trap weaker, i.e. it allows the atom
cloud to expand.

There are different ways to achieve control over the trap geometry and here the chosen
method is a time averaged potential by means of an acousto-optic deflector (AOD). Another
method which works for large optical power would be the use of cylindrical lenses to actually
change the shape of the beam. This has the benefit that one does not have to time average
the potential to get the wanted shape and thus knows exactly what shape the beam has as it
is still Gaussian. A disadvantage of this set-up is the need for a fast and precise translation
stage [Pol17], which is subject to wear. Also one is more limited in the trap shape that can
be achieved, as the cylindrical lenses are planned for one potential shape (Gaussian), whereas
with an AOD different modulation functions produce different potential shapes.

With an AOD the modulation of the potential shape happens by moving the beam following
a periodic pattern. Without further restrictions on the modulation this periodic movement
could just result in the trapping potential being moved with the atoms following. Hence it
would result in heating of the atom cloud which is clearly undesirable.
To avoid this one has to do this modulation of the beam on a timescale far shorter than
the timescales of the trap, which are given by the trapping frequencies (15). Therefore
the modulation frequency has to be far greater than the trapping frequencies. Assuming a
single round Gaussian beam with waist w = 30 µm, laser power P = 10W and Dysprosium
atoms with mass m = 162.5 u (u being the unified atomic mass unit [Poi19, p.146]) the
radial trapping frequency is ω ≈ 2π · 1302Hz and thus the modulation frequency has to
be significantly larger. One could also use higher power for larger trapping frequencies, e.g.
P = 40W would double the trapping frequencies, thus one needs fmod ≫ few kHz. One
would like the modulation frequency to by at least an order of magnitude larger than the
trapping frequencies. As there are limitations given by the circuit generating the radio-
frequency-signal (RF-signal) to how fast one can modulate, one also has an upper limit for
the modulation frequency (see 4.1). Therefore one should choose a modulation frequency
around 20 kHz to 30 kHz. In this case the atoms only experience the time averaged potential
generated by periodically moving the beam around. One can then shape this time averaged
potential via choice of the modulation function (e.g. an arccosine or a linear function) and
choice of the modulation amplitude.
As the beam is the same beam as before being moved and now is just moved in position over
time, none of the beam characteristics actually change. This has to be kept in mind when
working with an AOD here because this determines how the beam behaves at lenses.
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3 OPTICAL POTENTIAL AND LASER BEAM MODULATION

Only one out of two beams for the crossed ODT will be modulated via an AOD in this
experiment, which is why in the following only one single Gaussian beam will be considered.

3.1 Time averaged potential - Calculation

A time averaged potential is as the name suggests the time average, denoted by ⟨·⟩, over
a given time-dependent potential U that will here be assumed to be periodic in time with
period T .

⟨U⟩ =
1

T

∫ T
0

Udt (18)

In this case the potential generated by a single Gaussian beam (7), where the position of the
beam in x-direction is modulated by some periodic function xmod(t) with period T , will be
used:

Umod(x, y , z) = ⟨U(x − xmod(t), y , z)⟩ (19)

=
−2P c

πwx(y)wz(y)
exp

(
−2

z2

w2z (y)

)
1

T

∫ T
0

exp

(
−2
(x − xmod(t))2

w2x (y)

)
dt (20)

If the modulation function takes the form xmod(t) = x̂ξ(t) with an amplitude x̂ and ξ(t) ∈
[−1, 1] ∀t ∈ [0, T ] all distances in the integral can easily be expressed relative to the modu-
lation amplitude. Therefore one can see that the result of the integral only depends on the
dimensionless quantities q(y) = wx (y)

x̂ , x̃ = x
x̂ as well as the normalised modulation function

ξ(t):

1

T

∫ T
0

exp

(
−2
(x − xmod(t))2

w2x (y)

)
dt =

1

T

∫ T
0

exp

(
−2
(x̃ − ξ(t))2

q2(y)

)
dt (21)

= −
1

T

∫ µ(T )
µ(0)

exp

(
−2

µ2

q2(y)

)
dµ

ξ′ (ξ−1(x̃ − µ)) (22)

Via substitution one gets the second equality under the assumption that the modulation
function is invertible and differentiable:

µ = x̃ − ξ(t)⇔ t = ξ−1(x̃ − µ) (23)

⇒
dµ

dt
= −ξ′(t) (24)

⇒ dt = −
dµ

ξ′ (ξ−1(x̃ − µ)) (25)

3.1.1 Calculation with arccosine-modulation

In the following the calculation for a modulation with an arccosine will be shown as an
example2. The arccosine was chosen because it produces a time averaged potential with a
shape close to the potential of an unmodulated Gaussian beam.
For a modulation with an arccosine in the form described above one gets for ξ(t):

ξ(t) =
2

π
arccos

(
2t

T
− 1
)
− 1, t ∈ [0, T ] (26)

2For other modulation functions see Appendix B
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3 OPTICAL POTENTIAL AND LASER BEAM MODULATION

Figure 3: Plot of a modulated Gaussian beam potential for waists wx = 30 µm, wz = 50 µm,
power P = 10W and modulation with an arccosine (26) with modulation amplitude xmod =
50 µm at the focus (y = 0).

Hence one gets

ξ′(t) =
4

Tπ

1√
1−

(
2t
T − 1

)2 (27)

ξ−1(ζ) =
T

2

[
cos
(π
2
(ζ + 1)

)
+ 1
]

(28)

⇒ ξ′(ξ−1(ζ)) =
4

Tπ

1

sin
(
π
2 (ζ + 1)

) = 4

Tπ

1

cos
(
π
2 ζ
) (29)

⇒
1

ξ′(ξ−1(x̃ − µ)) = T
π

4
cos
(π
2
(x̃ − µ)

)
(30)

The resulting potential is thus given by

Umod(x, y , z) =
P c

2wx(y)wz(y)
exp

(
−2

z2

w2z (y)

)
·
∫ x̃+1
x̃−1

cos
(π
2
(x̃ − µ)

)
exp

(
−2

µ2

q2(y)

)
dµ

(31)
In this case the integral does not have an analytical solution so one needs to rely on numerical
integration. The benefit of writing it in this form is that only the parameters x̃ and q(y)
remain whereas the period drops out.

In figure 3 the potential generated by time averaging the Gaussian beam from figure 1 mod-
ulated with an arccosine in the x-direction with a modulation amplitude of 50 µm is shown.
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Figure 4: Plot of a modulated Gaussian beam potential and the corresponding unmodulated
potential for waists wx = 30 µm, wz = 50 µm, power P = 10W and modulation with an
arccosine (26) with modulation amplitude xmod = 50 µm along the propagation direction y
(x = z = 0).

This leads here to a potential which is slightly more elongated in the x-direction than the
z-direction in contrast to the unmodulated potential. Another difference to the unmodulated
potential is that the trap is shallower than before, due to the fact that the power of the beam
as a whole stayed the same and is now spread over a larger area.
As will later be discussed (see 5.2) the goal will be to create a time averaged potential whose
width in modulation direction is 10 times or more the width in the direction perpendicular
to it (z). To achieve this it will turn out that one needs roughly the same ratio between
modulation amplitude and original beam waist when assuming the original beam to be round
(see 3.2.3). That means the experimentally interesting range of values for q are all values
above q ≈ 1

20 . The larger values of q are interesting as the modulation is used during loading
and then will be gradually reduced and turned off before or during the cooling phase.

In figure 4 the potential along the propagation axis is depicted once for the case of the
unmodulated potential shown in figure 2 as well as the modulated potential corresponding
to figure 3. Here both are shown at the same time so that it is easy to compare the two
directly. They both have roughly the same shape, which will be investigated in more depth
in the next section, and have their minimum at the same position. One can also observe
the lower trap depth here as the peak is smaller by roughly a factor of two at the focus.
Interesting here is that this ratio of two between the potentials gets reduced quite fast
when increasing |y |. This means that there is not just a scaling factor between these two
potentials. This is directly clear by thinking about the fact that the beam widens for larger
distances |y | from the focus, such that the modulation changes the potential less the further
one is away (in propagation direction) from the focus as the modulation amplitude x̂ is fixed.
How this compares to a Gaussian beam potential with the corresponding beam waists will be
investigated in a following section (see 3.2.1)
In figure 5.a) the unmodulated potential as well as the modulated potential used as an exam-
ple before are shown together with 4 more modulated potentials with different modulation
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Figure 5: Plot of potentials with beam waists wx = 30 µm, wz = 50 µm, power P = 10W
and modulation with an arccosine (26). The different modulation amplitudes x̂ are given via
q = wx

x̂ . a) along propagation axis, b) along modulation direction
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amplitudes x̂ along the propagation direction y . Here one can clearly see that the effect
observed in figure 4 grows larger, the bigger the modulation is compared to the waist in
modulation direction of the laser beam. That means for an increasing modulation amplitude
the confinement provided by the trap will be decreasing.
In figure 5.b) the same potentials as shown in figure 5.a) are depicted along the modulation
direction x . Here one can observe the effect that the width of the potential grows with the
modulation amplitude, which is the idea of the tuneable geometry. As the lowering of the
trap depth is not a beneficial effect one could for example increase the power of the laser to
counteract it.

3.2 Characterisation of arccosine-modulated potential

It is important to know how the time averaged potential can be characterised by the param-
eters of the Gaussian beam and the modulation. As one has to use numerical integration
in the case of the modulation with an arccosine it is not possible to analytically determine
the shape of the trap in all directions, with the z-direction being an exception as the integral
(see (21)) is in no way dependent on z . To determine the shape of the modulated potential
it is first compared to a Gaussian beam potential of the same depth after which the depth
and width of the trap will be investigated separately.

3.2.1 Comparison to Gaussian beam potential

First the time averaged potential will be compared to a Gaussian beam potential to see how
the shape of the trap changes in the 3 spacial dimensions when it is modulated. More specif-
ically the potential produced by a Gaussian beam given by (7) will be fitted to the modulated
potential along propagation (y) and modulation (x) direction. The third dimension z does
not require any fits as it, as mentioned before, simply scales with the result of the integral
which is independent of z .
Along the two directions x and y the potential is going to be compared for different ratios
q of the beam waist in modulation direction wx to the modulation amplitude x̂ . A Gaus-
sian beam potential will be fit to the numerically calculated modulated potential for different
modulation amplitudes. The only parameter that will be allowed to vary from the parameters
of the original beam in the fit will be the beam waist in modulation direction x . By varying
additional parameters one can increase the goodness of fit, especially in the central region,
but it comes at the cost that then the values of the fitted beam waist for the fits along the
two directions may differ. This can be seen for the example of varying power from the fit
results wx = 69 µm and wx = 46 µm presented in figures 7 and 10.

Starting with comparison of the shape along the modulation direction one can see in figure
6 the normalised time averaged potential for q = wx

x̂ = 1 and the corresponding fit of the
Gaussian beam potential as well as the differences between the two. One can see that the
modulated potential can still be described well by a Gaussian potential with the deviations at
most ca. 1.2% relative to the trap depth. It follows that the same is true for larger values
of q as this means the modulation has even less effect on the potential.
Therefore the next case to look at is when the modulation amplitude is a bit larger than
the beam waist, e.g. two times the beam waist which is depicted in figure 7. Here one
can already clearly see the deviations between the two potentials by eye and said deviations
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reach values of up to 5%. At this point it is clear to see this is no longer a perfect Gaussian
potential.
This can be seen more clearly for even smaller values of q, for example q = 1

10 as shown in
figure 8. Here the potential seems to get closer to a parabola than a Gaussian potential.
For extreme values of q it does not transform to an harmonic potential as it is too wide,
but the edge at |x̃ | =

∣∣ x
x̂

∣∣ = 1 gets harder (see B.2 - figure 35). This means that one could
define the trap size for large modulation amplitudes solely via the modulation amplitude x̂ ,
which will be investigated in the respective section (see 3.2.3).

Figure 6: Comparison of a time averaged potential (original beam waist wx = 30 µm) with
q = 1 and a fitted Gaussian beam potential along the modulation direction (y = z = 0). The
fit function (7) has all values but wx fixed to the same values as the modulated potential.
Top: Plot of the potentials normalised to the trap depth of the modulated potential; Bottom:
Plot of the differences between the normalised potentials (Ufit − Umod).

Turning to the shape along the propagation direction y there is an interesting phenomenon,
as the shape of the time averaged potential can be described well by an unmodulated po-
tential not only for large q but also for small q. Only in the range in which the experiment
will work (ca. q ≥ 1

20 as mentioned before in 3.1.1) the modulated potential is not as easily
described by an Gaussian beam potential, when only using the beam waist wx as parameter.
By allowing the power to vary as well one can reach a much higher agreement with the mod-
ulated potential although the downside is that one produces inconsistent fits for the different
directions. Thus when using this to describe the potential along the propagation direction
one has to make sure to not use it on any other direction as this wouldn’t produce correct
results (compare figures 7&10). As one can see in figure 10 the modulated potential is
actually narrower than a Gaussian beam potential of the same depth when only wx changed.
What this also implies is that with a Gaussian beam potential the same trap shape along the
propagation direction can be achieved with (in this case) only 70% laser power. This is of
course an effect of the widening of the trap in modulation direction which is not visible here.
Hence there needs to be effectively less power along one specific axis (here x = z = 0) as
the power is more broadly distributed.
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Figure 7: Comparison of a time averaged potential (original beam: wx = 30 µm, P = 10W)
with q = 1

2 and a fitted Gaussian beam potential along the modulation direction (y = z = 0).
The fit function (7) has all values but wx (and P ) fixed to the same values as the modulated
potential. The only difference between the orange and red fit is the fact that for the orange
fit the power is fixed to P = 10W. Both fits have been given larger weights for the central
region of the potential. Top: Plot of the potentials normalised to the trap depth of the
modulated potential; Bottom: Plot of the differences between the normalised potentials
(Ufit − Umod).
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Figure 8: Comparison of a time averaged potential (original beam waist wx = 30 µm) with
q = 1

10 and a fitted Gaussian beam potential as well as a parabola along the modulation
direction (y = z = 0). The fit function (7) has all values but wx fixed to the same values
as the modulated potential. Note that the parabola is just fit to the central region of
the potential. Top: Plot of the potentials normalised to the trap depth of the modulated
potential; Bottom: Plot of the differences between the normalised potentials (Ufit − Umod).

Figure 9: Comparison of a time averaged potential (original beam waist wx = 30 µm) with
q = 5 and a fitted Gaussian beam potential along the propagation direction (x = z = 0).
The fit function (7) has all values but wx fixed to the same values as the modulated potential.
Top: Plot of the potentials normalised to the trap depth of the modulated potential; Bottom:
Plot of the differences between the normalised potentials (Ufit − Umod).
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Figure 10: Comparison of a time averaged potential (original beam waist wx = 30 µm, power
P = 10W) with q = 1

2 and a fitted Gaussian beam potential along the propagation direction
(x = z = 0). The fit function (7) has all values but wx (and P ) fixed to the same values
as the modulated potential. Top: Plot of the potentials normalised to the trap depth of
the modulated potential; Bottom: Plot of the differences between the normalised potentials
(Ufit − Umod).

Figure 11: Comparison of a time averaged potential (original beam waist wx = 30 µm) with
q = 1

100 and a fitted Gaussian beam potential along the propagation direction (x = z = 0).
The fit function (7) has all values but wx fixed to the same values as the modulated potential.
Top: Plot of the potentials normalised to the trap depth of the modulated potential; Bottom:
Plot of the differences between the normalised potentials (Ufit − Umod).
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Lastly to note is the fact that in the z-direction nothing changes from the unmodulated
Gaussian apart from the trap depth as the integral is constant if z is the only variable and
hence only works as a scaling factor for the potential. A fit with only wx as parameter would
produce exactly the same result for wx as in the other two directions as there is only one
value for wx that correctly scales the potential.

3.2.2 Trap depth

The first parameter of the trap that will be investigated is the trap depth, more specifically
how the trap depth (relative to the trap depth of the unmodulated potential) changes with
the modulation amplitude. For an arbitrary modulation function one would first need to de-
termine the position of the minimum as it can be moved away from the original beam focus
e.g. when modulating with a sine-wave. In the case of modulation with an arccosine the
potential minimum always stays at the same position (i.e. x, y , z = 0), which means any
relative difference in trap depth can simply be determined by evaluating the integral:

Ûmod

Û
=
1

T

∫ T
0

exp

(
−2
ξ2(t)

q2

)
dt (32)

=
−π
4

∫ +1
−1
cos
(π
2
µ
)
exp

(
−2
µ2

q2

)
dµ (33)

Figure 12: Plot of the trap depth relative to the unmodulated potential for a modulation
with an arccosine. Additionally the function f (q) = 1 − exp(−q) is plotted. Top: double-
logarithmic plot for q ∈ [10−4, 10]; Bottom: cartesian plot for q ∈ [0.1, 10]

This expression does not have an analytical solution and has to be integrated numerically.
As the position is fixed, the only parameter the integral depends on is q = wx

x̂ and one can
easily calculate the relative trap depth for a range of values for q. In figure 12 this is shown
for the range q ∈ [10−4, 10], where one can also see that the relatively simple function
f (q) = 1− exp(−q) provides a somewhat similar shape with suitable limits. These limits are
Ûmod
Û
= 1 for q → ∞ and Ûmod

Û
= q for q → 0. Unfortunately the function fails to describe
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the region around q = 1, which is quite interesting for this experiment. One can experiment
with modifying f (q) by adding parameters and then fit it to the interesting region, but no
simple modification produced great results. Looking for a more sophisticated function to
describe this would take time and not provide a great benefit as the numerically calculated
values show the shape very clear and specific values can be easily calculated.

3.2.3 Trap width

Next to the trap depth the most important characteristic is the trap width, that is to say in
which space the trapped atoms are confined. As the time averaged potential generated with
an arccosine-modulation is still close but not equal to a Gaussian beam potential the trap
width will be characterised via the full width at half maximum (FWHM) and/or the trapping
frequencies in case of an harmonic approximation. As the calculation of both of these values
turns out to be quite difficult for the x- and y -directions they will be determined numerically.
For the z-direction this is not necessary as the integral is not dependent on z , which means
the trap in z-direction still follows the same formulas as before with the depth modified. The
FWHMz is not affected at all and is given as

FWHMz(wz) = wz
√
2 ln(2) (34)

The trapping frequency ωz in z-direction still follows (15) but as the trap depth decreases
the trapping frequency decreases as well.

We now focus on the FWHM in modulation direction x which is shown as a function of
q in figure 13. The limit for large values of q is obviously the value of the unmodulated
potential which can be seen well in figure 13.a). For the limit of small q on the other
hand it is reasonable to assume that the shape of the beam loses in significance against the
modulation function as the modulation dominates the shape of the time averaged potential.
This leads to the assumption of a linear relation to the modulation amplitude instead of the
beam waist which can best be seen in 13.b). The proportionality factor seems to approach
4
3 fast for small q, which was determined via fitting a straight line.
As the determination of the FWHMx requires more than just numerically evaluating an
integral it would be nice to have a function to get a good estimate of the trap width. For
this reason a fit in the transition area was performed with the results on display in 13.c).
This range of values for q is in fact one that is interesting for the experiment. So here one
can use

FWHMx ≈ x̂ ·

1.35 + (q − 0.392)
√
2 ln(2)

1 +
∣∣∣(q − 0.392)√2 ln(2)∣∣∣−1

 (35)

to get a good estimate of the trap width for 0.2 < q ⪅ 4. In fact the limit for large q is not
very far off as the slope is correct but the approximation will have an offset of ca. −0.2 · x̂
compared to the real function.
A simpler function with the correct limit on both sides would be

FWHMx ≈
√
16

9
x̂2 + 2 ln(2)w2x (36)
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Figure 13: Plots of the FWHM in units of the orignial beam waist wx or modulation amplitude
x̂ in modulation direction with respect to q. a) The FWHM is given in units of wx which
means to limit for large q, i.e. an unmodulated potential is given as

√
2 ln(2). The limit

for small q was acquired with the help of a fit. b) Here the FWHM is given in units of
the modulation amplitude x̂ to illustrate the limits from a) in a different way. c) For the
transition area a fit to the FWHM was performed. This fitted function produces good results
in the desired range but will deviate fast for smaller q. The other function given provides the
right limits but as one can see does not describe the region around q = 1 very well.
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Figure 14: Plots of the FWHM in propagation direction with respect to the varied param-
eter (x̂ , wx or wz). As base value for all three parameters 40 µm was arbitrarily chosen.
Additionally to the calculated FWHM of the modulated potential the FWHM of the unmod-
ulated potential is shown for comparison. a) The modulation amplitude is varied such that
q ∈ [0.1, 10]. b) The beam waist in modulation direction is varied such that q ∈ [0.5, 2] c)
The beam waist perpendicular to the modulation direction is varied such that wzx̂ ∈ [0.5, 2]

21



3 OPTICAL POTENTIAL AND LASER BEAM MODULATION

As here the deviations in the region of q ≈ 1 are larger than those of (35) it may serve as a
simpler but also less exact estimation in the region of interest.

The trapping frequencies can then either be determined via a parabolic fit to a specific
potential like it was done in 8 but this would require a large amount of computation if you
were interested in many values. Therefore as an estimate one can also assume the potential
to be harmonic and calculate the trapping frequencies from the FWHM and the trap depth:

−
1

2
Û = −Û +

1

2

(
FWHMx
wx

)2
= −Û +

1

8
mω2FWHM2x (37)

⇒ ω2 =
4Û

FWHM2xm
(38)

⇒ ω =
2

FWHMx

√
Û

m
(39)

Note that this underestimates the trapping frequencies, as a harmonic potential, that de-
scribes the central part of the potential well, would have a smaller FWHM than a Gaussian
potential or the time averaged potential. This can be seen by assuming the unmodulated
potential as the trapping frequency would then be underestimated by a factor of

ωx,unmod
ωx,estimate

=
FWHMx
wx

=
√
2 ln(2) ≈ 1.18 (40)

This factor will shrink for larger modulation as the potential gets wider (see figures 6-8).
If the modulation is not large it is thus better to assume the modulated potential to be a
Gaussian and use

ω =
2

FWHMx

√
2 ln(2)Û

m
(41)

Regardless which formula is used it is obvious that for a lower trap depth the trapping frequen-
cies decrease at least as fast as in (15) or faster when the modulation amplitude increases.
This is clear as the trapping frequencies still scale with the trap depth ω ∝

√
Û but now

the length scale is no longer fixed to wx but increases with the FWHM as seen in figure 13.
Hence the trapping frequencies additionally drop with the rising FWHM as ω ∝ 1

FWHMx
.

For the propagation direction a fit turns out to be somewhat difficult in general as the shape
of the potential in y -direction can not be simplified as easily as for the other directions due
to the fact that y is a parameter in every part of the function. The integral as well as the
factors multiplied to it depend on y which makes it impossible to assume that q as the only
parameter could determine the FWHM. This is also clear to be seen from figure 14.c) as
even for constant q the trap width varies with wz . Determining the shape of the trap along
the propagation direction in greater detail surpasses the scope of this thesis.

3.3 Acousto-Optic Deflector

An acousto-optic deflector (AOD) allows control over the direction, frequency and intensity
of a laser beam. This is done by varying the frequency and amplitude of the signal which
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drives the AOD. Varying the amplitude of the signal has little effect on the direction or
frequency of a laser beam whereas the frequency of the driving signal influences all three
mentioned aspects of the beam.
The difference in use between an AOD and an acousto-optic modulator (AOM) is the fact
that AODs are specifically geared towards deflection of the beam with very little influence
of the signal frequency on the beam intensity. This is done by increasing the bandwidth of
the AOD in comparison to the AOM. That means the AOD works with a larger range of
driving frequencies and thus can deflect light for a larger range of angles with good diffraction
efficiency.
The information presented in this section about AODs and AOMs can be found in [McC07]
and [ST91, chapter 20].

3.3.1 Working principle

Central to every AOD is a crystal in which sound waves are induced. AODs and AOMs
work in a very similar way with, in our case the only difference being that the sound waves
in our AOD are not generated by a single piezoelectric element but by two phase-shifted
piezoelectric elements.3

The basic principal is to generate periodic sound waves that modulate the density and thus
also the refractive indices of the crystal. By this periodic modulation of refractive indices,
i.e. the generation of a thin diffraction grating, the crystal then scatters the incident light
into different orders m ∈ Z. The scattered light then interferes constructively at an angle θ
with the Bragg condition for the constructive interference where the angles of the incident
and deflected light being the same angle θ:

mλ = 2Λ sin(θ) (42)

with the optical wavelength λ and the acoustic wavelength Λ. This is only the result of an
approximation for the case λ ≪ Λ as it ensures that one period of the sound wave is small
enough compared to the period of the light such that assuming the grating induced in the
crystal is static becomes a good approximation . This is generally the case (by at least five
orders of magnitude) so it does not need further attention.
Another effect that comes together with the deflection of the light is a slight energy shift
of the light. This can be described via the Doppler-effect as the light is reflected off of a
moving wave with velocity vs = ΛΩ

2π which has the angular frequency Ω such that the resulting
frequency of the light is given by

ωd = ω
(
1 + 2

vs
c
sin(θ)

)
= ω

(
1 + 2

ΛΩ

2π
·
2π

λω
·
mλ

2Λ

)
= ω +mΩ

(43)

One can also see from (42) how one can control the angle of the diffraction order by chang-
ing the driving frequency for the sound waves as Λ = vs

fdrive
such that sin(θ) ∝ fdrive.

Here one can also find the reason as to why the angles are controllable and why there is a

3Note that there is not one single AOD design and thus another AOD may be built in a different way but
the simple explanation provided here should be correct independent of the concrete model used.
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non-zero bandwidth for an AOD. The reason for this is that the Bragg angle changes with
the wavelength of the sound waves, i.e. the frequency of the driving signal. As the Bragg
angle changes (see 42) with the frequency of the sound wave, but the angle of the incident
light relative to the sound waves stays the same, the diffraction into the respective order
drops rapidly. It would even drop to zero instantly if both sound and light could be described
as planar waves. As this is not the case one still diffracts light into said order even if the
angle is slightly off.
An AOD optimises the diffraction efficiency over a large range of frequencies to provide a
large bandwidth. In our case this is achieved by cleverly creating sound waves with a larger
spread of directions while carefully making sure that this does not affect the maximal diffrac-
tion efficiency too much. This allows a larger amount of incident light to have the correct
angle with respect to some sound wave and thus allowing the incident light to be diffracted
into the respective order.

The quantum interpretation of these effects is done via the interaction of an incident
photon (momentum ℏk, energy ℏω) with m phonons (momentum ℏq, energy ℏΩ) in the
crystal. Using the conservation of momentum leads to the wavevector kd of the deflected
light being determined by

kd = k+m q (44)

with k the wavevector of the incident light and q = 2π
Λ q̂ the wavevector of the phonon. The

conservation of energy on the other hand directly leads to equation (43). For m > 0 this
corresponds to the photon absorbing m phonons whereas m < 0 means that the photon
induced |m| phonons in the crystal.

3.3.2 Diffraction efficiency into the 1st-order

The usual mode of operation which will also be used in this thesis is to optimise the intensity
of the first diffraction order. To be able to characterise this optimisation independent from
the incident intensity one does not look at the absolute value of the intensity in the first
order but at the so called diffraction efficiency which is defined as the ratio of intensity of
the deflected light and the incident light.
For this it is important to know how the diffraction efficiency in the first order depends on
the parameters that can be controlled. The diffraction efficiency into the first order (m=1)
with the incident light at the Bragg angle is given by:

DE = sin2

(√
2π2n2

L2Λ2

λ4
MIs

)
√
·≪1
≈ 2π2n2

L2Λ2

λ4
MIs

(45)

n is the refractive index of the material, L is the length of the crystal (in direction of the
sound wave propagation) andM is a material parameter which depends on the polarisability,
the refractive index, the density and the sound speed of the material.

When setting up an AOD in practice one will have chosen a laser and AOD for the set-up
beforehand and thus everything but the signal send to the AOD is already fixed. Therefore
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one has only this driving signal and the positioning to control the diffraction efficiency.
Concerning the driving signal one has to be a bit careful about the driving frequency fs = Λ

vs
as AODs have a center frequency that they are built around where they perform the best,
thus one cannot freely adjust the frequency of the sound. One has to rely on the intensity,
i.e. the amplitude of the driving signal to optimise the diffraction efficiency.
The first step is to connect the AOD to the driving signal source with the frequency set
to the center frequency or something close to it and a reasonably high amplitude so that
diffraction orders are visible when directing the beam through the AOD. With this the AOD
has to be turned to the correct angle for diffraction into the first (or minus first) order. As
this angle is very narrow for a given sound frequency one has to do very small adjustments.
The goal is here to have the intensity in the first order at least comparable to the intensity
in the zeroth order to be able to further adjust it afterwards. When this is done one can
tune the intensity of the signal to maximise the intensity of the beam into the first order. If
everything is set-up well one should be able to reach a diffraction efficiency around 80% to
90%.

Regarding the diffraction efficiency of our AOD in dependence on the driving frequency one
has two vastly different situations depending on the phase difference that is applied between
the two inputs of the AOD. In the case that the additional phase is applied to the right input
(which was found to be the input on the side of the incident light here) one receives the
profile of stable high diffraction efficiency that the AOD is made for. In the case that the
phase difference is inverted one seems to get the diffraction efficiency profile of a regular
AOM, which is unwanted in this context as it does not allow for large modulation due to it’s
low bandwidth.
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4 Experiment - Set-up

4.1 Electronic circuit for AOD

To use the AOD4 one needs to provide the driving RF-signal and produce the correct phase
difference after splitting it. The power splitter5 with cables producing the needed phase
difference were delivered with the AOD, the difference in cable length being 2.461m.
The circuit for the RF-signal is where the modulation is generated and it is also the main
reason why the modulation frequency has an upper limit (see section 4.1.1). The required
parts for this circuit are a voltage controlled oscillator (VCO)6, an arbitrary function generator
(AFG)7, a mixer8 (or a voltage controlled attenuator), a power splitter and two amplifiers9.
A VCO produces a sine-wave of a given frequency, which can be controlled by the function
generator. The conversion of the applied voltage on the VCO to frequency of the signal
can be approximated as linear. This signal from the VCO is fed to a mixer, which regulates
the power of said signal by applying a DC control voltage. After that the signal is split by
a power splitter and accumulates a phase difference by going through different lengths of
cable to the amplifiers. The amplifiers should have the same gain and thus tunable amplifiers
would be somewhat impractical here. The amplified signals are then fed to the AOD. This
circuit is depicted in figure 15. Here one has to be careful of where one connects the cables
as the phase difference has to be in the right direction. Failing to do so will result in the
diffraction efficiency being very similar to the one of an AOM which means there is a much
lower bandwidth for the modulation. In this experiment the correct order was found to be
the longer cable, i.e. the signal with more accumulated phase, closer to the incident beam.
For figure 15 this would for example mean that the light would have to travel upwards in the
picture plane.

Figure 15: The circuit for the generation of the AOD driving signal. The nodes with uninter-
rupted frames are components that require additional power supply that is not shown here.

4.1.1 Limitations

Limitations of this set-up mainly concern the modulation frequency and amplitude. The VCO
takes an input voltage from 1V to 16V but the AFG can only output up to 10V. As here
there is no additional amplifier connected between the two the output of the VCO is limited.
This then of course also limits the diffraction bandwidth of the AOD driven by the signal

4AOD model: Gooch&Housego 4075-2
5power splitter model: Mini-Circuits ZFSC-2-1-S+
6VCO model: Mini-Circuits ZOS-100
7AFG model: Rigol DG4162
8mixer model: Mini-Circuits ZX05-5-S+
9AMP model: Mini-Circuits ZHL-1-2W
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produced. This is not a major problem as the range of frequencies where the AOD provides
the highest diffraction efficiencies is still accessible but it does still provide a limit for the
modulation amplitude.

The frequency output of the VCO as well as the corresponding diffraction efficiency (DE) of
the AOD are shown in figure 16. One can see that the frequency output of the VCO has a
linear dependence on the AFG voltage whose parameters were determined by a fit and are
depicted in figure 16. Further one can see that the DE has two local maxima or a plateau in
the center and drops off to the edges of the plot. The mean diffraction efficiency of 86%
was determined from the data points shown here which is good for a width of 36MHz. The
AOD is specified to have a center frequency of 75MHz which corresponds to an AFG voltage
of ca. 7.6V and the right maximum of the DE in figure 16. This is not in the center of the
diffraction efficiency curve seen here and thus doesn’t result in the largest possible bandwidth.
Therefore for this experiment a center frequency corresponding to 6V AFG voltage, i.e. ca.
68MHz, was chosen as this also allows to make the most of the limited voltage range of the
AFG.

Figure 16: Plot of the diffraction efficiency (DE) and the VCO output frequency in depen-
dence on the AOD voltage without modulation. For the DE the mean is shown and for the
frequency output a linear fit was performed and is displayed. The AOD is specified to work
in the frequency range 59MHz to 91MHz which makes the center frequency 75MHz (right
vertical line) and the bandwidth 32MHz. Due to the result shown here a center frequency
of ca. 68MHz at the offset of 6V (left vertical line) was determined to be more suitable.
The maximal used range in this experiment corresponds to the range depicted here, which is
2V to 10V or (for small modulation frequency) 50MHz to 86MHz.

Concerning the modulation bandwidth the VCO itself has a bandwidth for modulation of
100 kHz10, which means one has to stay below that, as a high modulation frequency will lead
to a reduction in modulation amplitude. Depending on the bandwidths of the electronics

10This is defined by the modulation frequency where the output power is reduced by 3 dB.
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around the VCO a significant reduction can also happen earlier. Therefore one has to check
the bandwidth of the set-up before using it to be sure it is working as intended.

Figure 17: Pictures of the VCO output for the modulation with a ramp-function with the
tuning voltage of the VCO at 6V± 4V for different modulation frequencies. a) modulation
frequency=0.5 kHz b) modulation frequency=25 kHz c) modulation frequency=50 kHz

Regarding the bandwidth the circuit presented here was tested for the relevant modulation
frequencies from 0.5 kHz up to 50 kHz. The used offset for the modulation function fed to
the VCO is 6V with a modulation with a ramp (linear) function using an amplitude of ±4V.
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For 0.5 kHz, 25 kHz and 50 kHz the frequency output of the VCO is depicted in figure 17. It
was measured by connecting the auxiliary output of the VCO to a spectrum analyser11. One
can see that in all three pictures the frequency range that is reached with the VCO is clearly
elevated from the background. In all three pictures one can also see that there seems to be
a bit more intensity at the edges of the range, which is not expected for a ramp function as
it is supposed to be uniform. There are also noticeable differences in the frequency output
between the three measurements: The edges of the frequency range become less sharp and
the range shrinks in size for an increasing modulation frequency. With the range of the mod-
ulation amplitude of the frequency reducing from 36.1MHz over 32.4MHz to 28.8MHz it is
clear that there is already some noticeable reduction of the modulation amplitude x̂ . In the
range where the modulation frequency will be chosen for the actual experiment the modula-
tion range is already reduced by over 10%. This is not great, but it also is not terrible as
it simply means that the modulation amplitude is scaled down slightly since the modulation
frequency remains fixed during operation.

4.1.2 Issue with arccosine-modulation

Modulating with other standard functions of the function generator (sine or square) produces
similar results but modulating with an arccosine-function produced an unexpected behaviour
at the higher modulation frequencies which can be seen in figure 18.a). There one can see a
peak at the edge of the modulation range which should not exist. The same shape is shown
in figure 18.b) for a smaller modulation frequency and amplitude although here it is not as
strong. In both cases one can see a clear asymmetry between the edges as the one towards
lower frequencies is not very sharp whereas the one towards higher frequencies is a clear cut
for both edges. Lower amplitude at the edges of the modulation range is expected for an
arccosine-modulated tuning voltage as this means the voltage is at the maximum/minimum
only for a very short time. This should thus be visible in the spectrum analyser as lower
amplitude for the corresponding frequencies as it is approximately seen in figure 18.b) for the
low frequencies.
To get an idea what shape one would expect theoretically we will follow a simple argument.
We assume that the amount of time that a specific value y of the modulation function is
held is proportional to the amplitude of the frequency corresponding to y as it simply allows
for power to go towards that specific frequency. This time is then inversely proportional to
the derivative of the modulation function at the point y . To see this one can linearise the
function in the point y such that a time interval ∆t is given by

∆t =

∣∣∣∣ ∆yξ′(t)
∣∣∣∣ (46)

for an arbitrary value of ∆y . Thus the shape for the amplitude in dependence on the frequency
f ∝ y is the same as the absolute value of the inverse of the derivative of the modulation
function in dependence on the function value y , which can be seen in figure 19. Both axis
would of course need to be transformed to fit the dimensions of frequency and amplitude.

11spectrum analyser model: Rigol DSA705
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b)

a)

Figure 18: Pictures of the VCO output for the modulation with an arccosine-function with
the tuning voltage of the VCO modulated around 6V with ±4V. a) modulation with 25 kHz
b) modulation with 0.5 kHz

The function that is plotted is given by
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As only the function generator and the VCO produce the signal shown here one of them
has to be the source of the issue. To check for an effect of the function generator the
produced signal was looked at via an oscilloscope12 in a range of 1 kHz to 100 kHz. There
were no obvious differences observed in the waveform as one can see in figure 20, hence the
assumption is that the VCO is the source of this issue.
Another way to assure oneself that the used function generator is appropriate is to look at the
sample rate that was stated at 5×108 s−1 for the used function generator. This means for a
modulation frequency of 25 kHz as in figure 18.a) one would have 2× 104 sample points per
period of the modulation function. Such an amount of sample points should provide enough

12oscilloscope model: Rigol DS1104
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accuracy to correctly model the function and especially not allow large errors as seen in the
signal after the VCO. Therefore one can be sure that the VCO is the reason for these errors.
As there was no other available VCO for the required frequency range and not sufficient time
for an order to arrive after this issue was found it was not investigated further and a lower
modulation frequency was used for the following measurements in this thesis.

Figure 19: Plot of the inverse of the derivative of the modulation function in units of the
modulation period T against the function value of the modulation function. With the transfor-
mations to reach amplitude against frequency this is the shape that describes the dependence
of the amplitude on the frequency of the VCO output signal

Figure 20: Pictures of the waveform generated by the function generator at modulation
frequencies top: fmod = 1kHz bottom: fmod = 100 kHz. Each are shown in a closer view
and a more distant view.
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4.2 Optical Set-up

4.2.1 Optical set-up after AOD

The goal of the optical set-up is to generate the aforementioned time averaged potential for
better loading of the atoms. To achieve this one needs to build an array of lenses after the
AOD that fulfill three conditions:

1. Manipulate the laser beam such that it is focused at the position of the atoms.

2. Give the beam the wanted waist.

3. Manipulate the direction of the modulated beam in such a way that the beams corre-
sponding to different driving frequencies at the AOD are parallel after the last lens.

The first two conditions are the basic requirements for a regular ODT. The condition that
is now new for modulated potentials is that the beams deflected to different angles should
be parallel after the lenses. This is required because otherwise the modulation will have a
different amplitude at different positions.
Without practical limitations fulfilling all conditions can be achieved with a single lens with the
correct focal length. It is then positioned directly in the middle of the AOD and the wanted
trap position with the distance to both being the focal length. As in the actual experiment
there are limitations on the incoming beam waist as well as the distance of the last lens to
the trapped atoms one needs a telescope to achieve the wanted beam waist. Therefore one
now has three lenses that are used to manipulate the beam, with some restrictions on their
placement.

Figure 21: Lens set-up after the AOD. The lenses are indexed in the order the light passes
through them and the distances between the different lenses and their foci are to scale. The
red lines trace the path of the center beam as well as a modulated beam. The blue beam
shows the effect of the lenses on a Gaussian beam. The different colors are not on the same
scale.

In the set-up after the AOD (figure 21) only focusing lenses are used with two neighbouring
lenses always set-up as a telescope, i.e. the distance between them equals the sum of their
focal lengths fi . The AOD is then placed the focal length of the nearest lens away (on the
left in figure 21) and the same happens on the side of the atoms (on the right in figure
21). This ensures that, regardless of what lenses are finally chosen, collimated light from the
AOD will be focused at the position of the atoms whereas the beams diffracted into different
angles by the AOD will have a fixed distance from each other after the last lens. To now
chose the correct focal lengths one has to take into consideration what practical limitations
are given.
In our case this is the beam waist at the AOD of ca. w0 = 550 µm as well as a minimum
distance to the atoms of 25 cm. Further the beam waist at the position of the atoms is
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supposed to be w3 ∈ [20, 30]µm. Additional to these conditions that would also apply for a
regular trap with fixed geometry, one has to consider how large the modulation amplitude
x̂ should be after the last lens. This requirement arises due to the aspect ratio (AR) of
the potential, which is the ratio of the width of the trap in modulation direction x and the
perpendicular direction z , one would like to be possible to achieve with the tunable geometry.
To change the modulation amplitude x̂ one can change the frequency range in which the
signal for the AOD is modulated. There are limits to this of course as the AOD has a limited
bandwidth as discussed in section 3.3.
Considering the constraints provided one can calculate the beam waist w2 that is needed in
front of the last lens to produce w3 ∈ [20, 30]µm given that the last lens has a focal length
of f3 = 250mm. This means by using

w3 =
λf3
πw2

⇔ w2 =
λf3
πw3

(49)

one ends up with a required beam waist of w2 ∈ [2.8, 4.2]mm after the first two lenses. This
then makes the magnification of the telescope made up of the first two lenses to be in the
range M = f2

f1
∈ [5.1, 7.6]. In general the relation between w3 and w0 is then given by

w3 =
λ

πw0

f3f1
f2

(50)

In this experiment a 60mm and a 500mm focal length lens are used (see figure 22) which
theoretically results in M = 8.3̄ and w3 = 18.5 µm. In practice this does not produce the
theoretical waist but a slightly larger value so that we achieve the beam waist goal set before.

Now that we know that the set-up could work as a regular optical dipole trap as it fulfills
the first two conditions stated in the beginning of this section it is time to investigate the
modulation of the potential. Therefore one needs to calculate the modulation amplitude x̂
after the lens system. For this one needs to assure oneself first that the diffracted beams are
indeed parallel at the position of the atoms. In the described case that is shown in figure 21
this is the case if the AOD is placed at the focal point of the first lens, i.e. at the left edge
of the figure. We will assume that the AOD deflects the beam at an angle β with respect
to the center beam. This then means the deflected beam has a distance

d1 = sin(β)f1 (51)

with respect to the center beam at the position of the first lens. After the first lens the
beams are parallel such that they will be parallel again after the next two lenses as those
work as an telescope with magnification M = f3

f2
. Thus this leads to the following equation

for the modulation amplitude

x̂ = sin(β)
f3f1
f2

(52)

Due to the fact that for a change of the AR only the relative size q of waist to modulation
amplitude is important a change of the focal lengths does actually not help to modify this as

q =
wx
x̂
=

λ

π sin(β)wi
(53)

Therefore with a set-up of three lenses it is found that the only way to decrease q is to
maximise the beam waist of the beam sent through the AOD and to maximise the range of
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deflection angles so that sin(β) gets as large as possible. To maximise sin(β) one uses the
Bragg condition (42) for the first order (m = 1). Assuming small angles we get that

β = |θ − θcenter| ≈ |sin(θ)− sin(θcenter)| =
λ

vs
∆f (54)

with vs the sound speed of the AOD crystal and ∆f = |f − fcenter| the difference in sound
frequency, which means q ∝ 1

∆f . The limitation on ∆f and its effect for the modulation
amplitude were already mentioned in the previous section (see 4.1.1).

Figure 22: Sketch of the optical set-up. Only the distances between the last three lenses
with respect to each other and to the atoms are to scale. The focal lengths are given in
millimeters. As in this thesis there was no actual trapping performed the ’atoms’ are there
to show the idea of the set-up. In this thesis this position is occupied by a camera.

4.2.2 Optical set-up before the AOD and beam shaping

In practice one of course has to first acquire the light going through the AOD. For this
preparatory work a diode laser was used which had to be coupled into a fiber to ensure a
good Gaussian mode of the beam. After the fiber outcoupler the beam waist is roughly two
times as large as needed for the AOD which is corrected via a telescope. The set-up for this
can be seen in figure 22. When implemented in the actual experiment the laser that will be
used is already coupled into a fiber.

One has to check if the set-up works as intended and one hindrance there is for example
astigmatism, which would mean that the foci of the beam in the two directions perpendicular
to the propagation direction are not at the same position. This is checked here by measuring
the beam waist at different positions after the last lens, i.e. around the position of the
atoms in figure 22. The beam waist was measured using a beam profiler13 whose pixel size is
5.5 µm×5.5 µm. Due to spacial restrictions two additional mirrors were used between lenses
2 and 3 of figure 21. This leads to the data points shown in figure 23.
To the beam waists that are acquired this way then a fit for the beam waist at the focus as
well as the position of the focus via (9) is performed with the additional parameter M2, the

13Dataray CMOS beam profiler WinCamD-LCM
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Figure 23: Plots used to check for astigmatism as well as beam waists in the two directions
perpendicular to the propagation direction. a) beam waist in modulation direction b) beam
waist perpendicular to modulation direction.

so-called figure of merit to account for an non-perfect Gaussian beam. The results of this
are also displayed in figure 23.
To quantify the astigmatism one has to compare the distance between the foci y0,x − y0,z =
0.20(5)mm to the Rayleigh length of the beam zR,x ≈ 1.1mm. As the astigmatism y0,x−y0,z
remains small compared to the Rayleigh length zR,x here one can ignore the slight deviations
it induces in the potential that the atoms see.
Furthermore the fit yields an estimate for the beam waists w3,x , w3,z at the foci positions.
To note here is that one has to be careful as the minimal waist is in this case not given by
wfit,i alone but by M2wfit,i which then results in the values w3,x = 21.7(8) µm and w3,z =
22.8(8) µm. Thus we can see here that the goal of a waist of 20 µm to 30 µm is achieved.
It is also clear that the beam before modulation is not perfectly round, but as the deviation
is not extremely large this is not a problem.
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5 Experiment - Result

Figure 24: Picture of
the normalised inten-
sity of the unmodu-
lated beam. Pixel size:
5.5 µm× 5.5 µm

In this chapter the focus will be on the time averaged potentials that
can be achieved using the presented set-up. For this the effects
of the modulation frequency and amplitude will be visualised by
capturing images where the exposure time is multiple times the
period of the modulation. For this again the Dataray beam profiler
is used.

The unmodulated beam, i.e. the beam that is used to generate
the time averaged potentials, can be seen in figure 24 whose waists
were determined to be wx = 20.6 µm and wz = 22.8 µm in this
position. These values have an error due to the size of the pixels
which is ca. 10%. As the camera was not moved until the last
series of pictures, when checking the shape along the propagation
direction, this remains the basis for calculations (as later seen in
figure 26)
In the following paragraph the standard values for the parameters
concerning the modulation are given. These will be used through-

out the whole chapter unless it is specified otherwise. Due to the issues present at the
modulation frequency of 25 kHz (which would usually be used) a modulation frequency of
1 kHz will be the standard. The issue occurring at 25MHz can be seen in figure 25 and was
described in section 4.1.2. The offset of the tuning voltage of 6V is kept the same for all
measurements and pictures as it corresponds to the deflection of the beam which was used
to set up the optical elements. The reason for this choice is that an offset of 6V corresponds
to the center frequency of the AOD that was found in section 4.1.1. The standard for the
modulation amplitude of the tuning voltage will be ±2V. The maximal possible value, where
the tuning voltage is modulated by ±4V, was avoided as this was seen to enhance the issue
with the frequency output of the VCO.

Figure 25: Modulation with ±4V and arccosine at a modulation frequency of 25 kHz. a)
Plot of the intensity along the modulation direction with the additional peak observed in
the frequency spectrum (figure 18.a)). The distances given are the diameters at 13.5% ≈
exp(−2) and 50% of the maximal intensity. b) Picture of the normalised intensity.
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First we will compare different modulation functions and the time averaged potential they
produce with the predicted shape. After this there will be three further measurement series
to investigate the effects of modulation frequency and amplitude as well as the position along
the propagation axis in more detail.

5.1 Comparison of different modulation functions

In the following the captured pictures of the time averaged intensity of the 4 modulation
functions arccosine, sine, ramp and square-wave will be compared to the theoretical calcula-
tion of the corresponding potential. The modulation functions as well as the corresponding
potentials are depicted in figure 26. To note is that the modulation functions are depicted in
such a way that they fulfill the conditions set in section 3.1 for the modulation function ξ(t).
In the case of the square-wave and the arccosine the implementation of the functions is to
just repeat the functions as shown in figure 26 but for the other two functions, namely sine
and ramp, the shown function is first followed by its negative such that the implementations
at the function generator of both functions are continuous.

The calculations for the modulation with an arccosine were shown before (see 3.1.1) and
for the other 3 modulation functions shown in figure 26 they can be found in the Appendix
(see B.1). The results as well as the captured pictures are normalised but use different
color scales. The beam waists wx and wz that were assumed for the calculation were taken
from the picture of the unmodulated beam shown in figure 24 with the help of the Dataray
software. The modulation amplitude x̂ = 66 µm, i.e. q ≈ 0.31, was determined via the
square-wave-modulation with the help of the Dataray software. This will be covered in more
detail in section 5.2.
Starting with the picture of the square-wave-modulation shown on the right in figure 26.a)
we can see that the potential is split into two parts that both have a very similar shape to
the unmodulated potential. Due to imperfections in the set-up and the limited resolution of
the camera the two spots are not actually exactly equal. In the theoretical case shown by the
plot on the left they are exactly equal which is also clear from the fact that the modulation
function ξ(t) is 1 or −1 for the exact same time.
The next potential we will look at is the time averaged potential created by the modulation
with an arccosine which is depicted in figure 26.b). One can see that its general shape looks
very similar to the original Gaussian potential but stretched along the modulation direction.
Here there is some slight asymmetry perpendicular to the propagation axis but it is hard to
say how strongly it actually deviates due to the pixel size of the camera. As it otherwise does
look quite similar to the calculated potential shown to its left, one can say that it is overall
quite similar to the prediction although there are some notable differences.
For the two remaining modulation functions (c: sine and d: ramp) it is possible to see some
asymmetry along the modulation in the pictures taken. As there seems to be less intensity in
both of the respective bottom right corners this has to be a systematic error. Whether this is
a result of a less sensitive camera area or due to an optical element is difficult to determine
accurately and thus would need more time and possibly equipment. Therefore this falls out
of the scope of this thesis and is not pursued further.
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rampd)sinec)

squarewavea) arccosineb)

Figure 26: Plots and pictures of the time averaged intensity of the laser beam for different
modulation functions. The parameters of the beam and modulation in the calculation are
wx = 20.6 µm, wz = 22.8 µm and x̂ = 66 µm. The modulation function is always depicted
above the two images of which the calculated plot is to the left and the picture taken with
the camera on the right. Note that the intensities are normalised and plot and picture are
displayed with different color scales as shown to the right of the respective image.
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After comparing the pictures to their prediction another point one can make is that, within
limits, not only are the generated potentials similar to the prediction but also the modulation
amplitude determined via the square-wave-modulation works very well for the other modu-
lation functions. Hence one can be sure that none of the modulation functions tested here
(for a small modulation frequency) have no noticeable effect on the modulation amplitude.

5.2 Influence of the modulation frequency

Now that it is clear that the modulation seems to work as intended in the first test with the
different modulation functions, we start to look at the effects of the modulation frequency on
the potential. The measurement that is done is similar to the one done in figure 17, where
the frequency range of the VCO was examined, with the difference that now the modulation
amplitude x̂ itself will be examined by taking pictures of the beam that is modulated with a
square-wave. Determining the distance between the two spots generated by this allows to
infer the modulation amplitude as it given as half of this distance. The distance is determined
with the help of the Dataray software which determines the positions of the two spots such
that one can easily calculate the difference.
The pictures are taken for values of the modulation frequency in the range 1 kHz to 100 kHz.
It turns out that there is no discernible change in modulation amplitude until the modulation
frequency reaches values above 50 kHz as one can see in figure 27. As such high modulation
frequencies are not used anyways this does not pose a problem.
Further one can see that for higher modulation frequencies the amount of light scattered
into the region between the two points is increased substantially. This is the result of the
VCO with a bandwidth of 100 kHz is nearing its limits at these modulation frequencies and
therefore also the intermediate frequencies are taking up a relevant part of the power. In
the region that the VCO will be used in practice the effect is not yet extremely strong which
means it is not a problem. Another point that further reduces the importance of this ef-
fect is the fact that for the modulation with an arccosine, which will mainly be used, there
is only one jump per period of the signal and thus the effect is halved. If this would still
be unsatisfying one could program a custom function in the function generator by chaining
an arccosine and its negative and thus eliminate the jump in frequency entirely. For the
other functions which will be shown, namely sine and ramp, there are no jumps to consider
anyways as they are continuous and periodic in nature or are programmed without any jumps.

Figure 27: The plot shows the change of the modulation amplitude with the modulation
frequency for a modulation with a square-wave and the three pictures on the right correspond
to the marked measurements which are 1 kHz, 25 kHz and 100 kHz.
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To sum up the modulation frequency does have adverse effects on the modulation amplitude
but only for large modulation frequencies that are not going to be used. Further any function
having jumps in its definition will have part of the power scattered roughly evenly over the
range of modulation due to the limitations of the VCO. This effect is stronger for higher
modulation frequencies and depends on the modulation function that is used.
Therefore the conclusion is that with the correct preparation, i.e. correct function and limited
modulation frequency, the modulation frequency does indeed not have a relevant effect on
the generated time averaged potential, as calculated before (see chapter 3).

5.3 Influence of the modulation amplitude - Aspect ratio

The second measurement investigates the effect of the modulation amplitude on the shape
of the potential with the main focus on the aspect ratio that is achieved. It would be the goal
to have the ability to reach an aspect ratio of AR ≥ 10. This means the ratio of modulation
amplitude to beam waist has to be of roughly the same size.
For this the modulation is performed with an arccosine varying the modulation amplitude of
the tuning voltage given by the function generator in the range ±0.5V to ±4V.

Figure 28: Pictures of the averaged intensity of the (left to right) unmodulated potential,
for modulation with an arccosine and Vmod = 0.5V, 1V, 1.5V, 2V, 3V, 4V. All pictures
but the unmodulated potential and the time averaged potential with maximal modulation
amplitude have the same exposure time.

Assuming the presented set-up and constant diffraction efficiency over the whole modulation
range (which was also assumed for the calculations of course) for this one would need
∆f ≈ 24MHz. Hence the modulation would need to be performed over a range of 48MHz
which is a lot larger than the guaranteed 3 dB bandwidth of the AOD of 32MHz and even
larger than the stated goal 3 dB bandwidth of 40MHz. This then means that in practice the
diffraction efficiency of the AOD will drop noticeably as the range is even larger than the one
depicted in figure 16. Therefore the aspect ratio will be significantly smaller than one would
expect from the calculation with the assumption of constant diffraction efficiency. Due to
the declining diffraction efficiency it is not feasible to achieve large aspect ratios solely by
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increasing the used frequency range as this will also change the shape of the potential and
will lose a lot of power by diffraction into different orders (especially into the 0th order).
Apart from that the Electronic circuit for the driving frequency used in this experiment does
not allow access to the region above f = 86MHz (see section 4.1), which means one would
need to use a different function generator or transform the voltage range of the AFG before
applying it on the VCO.

Figure 29: Plot of the aspect ratio in dependence on the amplitude of the tuning voltage
modulation. The values for the AR gained from the diameter at different percentages of the
maximum are displayed to show that there is a difference from a perfect Gaussian potential
for larger modulation. A fit was performed to compare to the predicted shape. For the error
it was assumed that the values for the diameter by the Dataray software have errors given
by the pixel size.

We now investigate the aspect ratio achieved for different amplitudes of the AFG-signal at
different depths. Specifically the FWHM and the diameter at 13.4% ≈ exp(−2) of the trap
depth are chosen to determine the aspect ratio. These values are then determined with the
Dataray software.
One finds that the aspect ratio rises with the amplitude as seen in figure 29. This increase is
in fact not linear but can be described with the simple model (see (36)) by dividing with the
FWHM of the Gaussian beam potential (see (34)), which leads to the formula in figure 29:

ARFWHM =

√
1 +

8

9 ln(2)

1

q2
with

1

q2
= a2V 2amp (55)

As this calculation is based on numerical results for the FWHM in modulation direction this
formula is originally only useful for the aspect ratio from the FWHM. But as the aspect ratio
has always the limit of 1 for low modulation amplitudes and it is reasonable to assume that
the trap width at 13.4% of the trap depth is proportional to the modulation amplitude x̂ as
well, potentially with a different proportionality constant, one can also use (55) here. The
ratios of the fit parameters a will then equal the ratio of these proportionality constants.
To check if the formula gives sensible results we can compare the value for q at Vamp = 2V
to the one determined before in section 5.2 where it was q ≈ 0.31. From the fit for the
ARFWHM in figure 29 we get q = 1

2aV = 0.36(4). As it is not entirely clear how exact the
calculation of parameters is with the Dataray software the error on this value was estimated
by assuming the determination of the position to have an uncertainty given by the pixel size
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of the camera. This shows that although the values are not equal they are in good agreement
such that we can infer that the range for q in this case is given by q ∈ [0.18, 1.45].
Further we can see that there is a difference in the values determined for the AR at different
percentages of the maximum that also increases with the amplitude. The trend visible in the
plot can be well understood by reminding oneself of the shape of the time averaged potential
for large modulation amplitudes x̂ that was discussed before in section 3.2.1. Especially in
figure 8 one can clearly see that the FWHM compared to the diameter at 13.4% is much
larger for the modulated potential than it is for the Gaussian beam potential. Due to the fact
that the direction perpendicular to the modulation direction does not experience this change
and stays Gaussian in shape the values determined for the aspect ratio will diverge further
with higher modulation amplitude.
One can also see here that the largest aspect ratio reached in this measurement and thus
with this set-up is around 6 (depending on what percentage of the maximal intensity one
looks at), which is still quite a bit away from the goal of the aspect ratio being 10 or more.

5.4 Shape along the propagation direction

Figure 30: Pictures taken at different positions along the propagation axis of the laser beam.
Every picture was taken at a position 1mm away from the position of the picture(s) next to
it.

The last test that is done with the set-up is to check the shape along the propagation
direction. For this the camera is moved away from the focus along the propagation direction
(against the beam propagation, i.e. towards the lenses) repeatedly by 1mm to capture the
time averaged intensity at different positions. To note here is that the Rayleigh length of
the beam is only slightly larger than 1mm which means the pictures here were taken over a
range of more than seven Rayleigh lengths. The resulting pictures can be seen in figure 30,
where one can observe the area that is illuminated grow with the distance as one expects
from a focused beam.
For the larger pictures one can see that the averaged intensity is not perfectly symmetric
along the direction perpendicular to the modulation direction, that is left to right in the
picture, as the maximum in intensity seems to be off-center. As the picture closest to the
focus does not have the necessary resolution it is not clear if this is also the case there,
but due to the fact that all of the larger pictures seem to possess this characteristic it is
sensible to assume that it is. The reason for the maximum being off-center could be one of
the optical elements or a tilt of the camera. Such a tilt in the direction in question is quite
unlikely and can not be adjusted as it is the direction aligned with the gravitational axis and
the beam was made sure to be parallel to the surface.
Regardless of the imperfections the averaged intensity starts from the shape shown in figure
26.b) and then slowly converges to the shape of the unmodulated potential which was shown

42



5 EXPERIMENT - RESULT

close to the focus in figure 24. For a large distance away from the focus the shape should
eventually be indistinguishable from the original beam as the modulation becomes irrelevant.

Figure 31: Plots of the diameter of the trap in modulation direction (x) as well as the
direction perpendicular to it (z) at different depths compared to the trap depth. The fit
performed is to determine the position of the focus as well as getting an estimate on the
trap width at the focus in the approximation of a Gaussian beam potential.

In figure 31 the diameters in both directions are displayed for the same two levels (50% and
13.4%) as before. Here additionally a fit as it was done analogue to the one in figure 23 to
get an estimate of the minimal trap diameter in the approximation of a Gaussian beam. The
results from this as well as the fit-function are displayed in figure 31.
One can see the diameter of the trap growing at both levels the further one gets away
from the focus like one expects. Additionally one can see the gap between the FWHM
and the diameter at 13.4% growing. Comparing the two directions one can easily see that
closer to the focus the trap is significantly wider in the modulation direction than it is in the
perpendicular direction due to the modulation. For the larger distances one can see that the
relative difference in size is not as large anymore.
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From the fit results one can also again see that the modulation has a significant effect on
the potential shape as the beam in modulation direction has a figure-of-merit of almost 2
whereas the trap in the perpendicular direction can be fitted with an ideal figure-of-merit of
1. One can also reaffirm that there is no relevant astigmatism as the difference between the
positions of the foci is not even 10% of the Rayleigh length.

Figure 32: Plot of the aspect ratio in dependence on the position along the propagation axis.
The values for the AR gained from the diameter at different percentages of the maximum
are displayed.

In figure 32 the aspect ratio at the different positions is plotted. One can see that the
AR drops the further one moves away from the focus which corresponds to the previously
described behaviour. This is also what one would expect to happen as the modulation
amplitude x̂ remains constant whereas the beam widens when moving away from the focus
in propagation direction such that the modulation is less noticeable as it get smaller compared
to the beam size. Thus one can say that for large distances from the focus, compared to
the Rayleigh length of the original beam, there are no discernible differences between the
modulated and unmodulated potential.
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6 Conclusion

6.1 Summary

In this thesis a potential set-up for a tunable optical dipole trap was presented. For this we
first looked at the theory of optical trapping before using it to determine what to generally
expect when periodically moving the beam to modulate the potential the atoms experience.
This was then calculated for the case of the modulation with an arccossine as this provides
a time averaged potential similar to a Gaussian beam potential. After the theoretical part a
possible set-up as well as the results it produced were presented.

After the formula for the time averaged potential was derived to better grasp the character-
istics of this potential it was first compared to the potential of a Gaussian beam with the
same depth, before the trap depth and width of the modulated potential were examined.
The comparison to a Gaussian beam potential made it obvious that there are some significant
differences as soon as the modulation amplitude x̂ is larger than the beam waist wx of the
laser beam that is used, i.e. for values of q = wx

x̂ < 1. Thus it was found that the time
averaged potential can only be described by a Gaussian beam potential for large values of q
and the assumption of a Gaussian beam potential is more and more inaccurate the larger the
modulation gets, i.e. the smaller q gets.
After this the trap depth was looked at relative to the trap depth of the unmodulated poten-
tial, which is the potential the static laser beam produces. For large modulation amplitudes
x̂ , i.e. small q, it was found that in this limit the ratio of the trap depths is equal to q (see
figure 12) and for large q the ratio is 1 as the modulation loses its significance:

Ûmod

Û
≈ q ∀q ≤ 0.1,

Ûmod

Û
≈ 1 ∀q ≥ 5

Although the ranges for q are just a rough estimation, this still leaves the intermediate range
of q ≈ 1 which will have to be used in the experiment of the Quantum Fluids group. Here
there was not found such a simple estimation as before for the limits and one would need to
use the numerical results in this region or spend more time to find a better estimation than
f (q) = 1− exp(−q).
In the analysis of the time averaged potential finally the trap width was investigated. As
indicator of the trap width here the full width at half maximum (FWHM) was chosen. The
simplest description of the FWHM along the modulation direction is given by (36)

FWHMx ≈
√
16

9
x̂2 + 2 ln(2)w2x

which also provides sensible limits but fails to accurately describe the region around q = 1
similar as in the case of the trap depth. From this one can also easily see the limits of the
FWHM which were found to be FWHMx →

√
2 ln(2)wx for q = wx

x̂ →∞ and FWHMx → 4
3 x̂

for q → 0. Along the propagation direction it is more complicated as an additional parameter
influences the beam shape and trap size due to the waist of the beam perpendicular to the
modulation direction also playing a role. Due to this there was no deeper analysis performed
in this thesis and only an example of the shape for different changes was given in figure 14.
The direction perpendicular to the two others is not of great interest as it stays Gaussian in
shape and can thus be easily calculated via (34)
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In the presented set-up for the AOD driving signal an issue where the VCO output was
distorted was noticed for the modulation with an arccosine. As it got worse for increasing
modulation frequency (see figure 18), it forced a reduction of the modulation frequency for
the pictures that were taken. The reason for this distortion was found to be the VCO.

For the lens system after the AOD a set-up made up from three focusing lenses was presented
(see figure 21). This proved to be able to produce the wanted potential but turned out to be
rather limited in regards to the influence on the aspect ratio due to the conditions placed on
it. Therefore the AR is in fact independent of the focal lengths of the lenses that are used
with the given set-up. Hence the aspect ratio can mainly be controlled with the range of
the frequency modulation in the AOD driving signal, which is not ideal as it is limited in the
electronic circuit presented in the thesis. Further also the diffraction efficiency of the AOD
will drop significantly at the edges for a large frequency range and thus limit the achievable
AR.

Finally the pictures of time averaged intensities produced with the presented set-up are
compared to the predictions that were made based on the calculations of the time averaged
potential. It was found that the averaged intensities match quite well with the respective
predictions but do have small, notable differences (see figure 26). Further the shape of the
potential was observed for different modulation amplitudes x̂ where a maximal aspect ratio
of ca. 6 was reached.

6.2 Outlook

There are two main points that need to be addressed in a future set-up:

1. The issue with the arccosine-modulation.

2. The achievable aspect ratio.

Resolving the issue in the first point is essential for the set-up to be usable as a tunable ODT
as otherwise the atoms can either follow the motion of the trap due to the low modulation
frequency or one does not get the wanted trap shape. For this one needs to check the
electronic circuit with a different VCO. This VCO can be one of the same model so that
one can make sure whether it is an issue with the individual VCO used here or if the model
itself is just not suitable for this purpose. In any case one will want to also have another
VCO model to compare. An option for this could be the VCO used in the set-up of the
master thesis of Claudia Politi [Pol17] which is the Mini-Circuits model ZX95-100. Apart
from this one could think about whether it might be worth to manually implement a version
of the arccosine at the function generator that does not have a large jump. This might be
interesting in the case one wants to also test higher modulation frequencies as otherwise it
will not have a large effect.
Although the second point is not as crucial to whether or not the set-up can be used as
a tunable ODT a limited aspect ratio takes away from the utility a tunable geometry can
provide. To reach larger aspect ratios it is not very sensible to just increase the frequency
range of the VCO output as the declining diffraction efficiency of the AOD will reduce the
gain in the aspect ratio and also change the shape of the potential. Therefore to increase
the aspect ratio that can be reached with a set-up it will be more effective to build a new
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lens system after the AOD. This new lens system would need to have at least 4 lenses to
add another degree of freedom.
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A Appendix - Optical Trapping

A.1 Gaussian beam

Laser beams are usually described by Gaussian beams, that means they have a characteristic
intensity distribution which is given by a two-dimensional Gaussian in the plane perpendicular
to the propagation direction. For a Gaussian beam its size varies along the propagation
direction due to diffraction.
The waist of a Gaussian beam is defined here14 as the distance from the intensity maximum
at which the intensity is only 1

e2
≈ 13.5% of said maximum. The change of this the waist

along the propagation direction (in this case chosen to be y) is given by [ST91, p.83]

w(y) = w0

√
1 +
y2

z2R
(56)

where w0 is the waist at the focus. zR is the Rayleigh length, which is the distance from the
focus where the waist is larger by a factor of

√
2. It is given by [ST91, p.83]

zR =
πw20
λ

(57)

with λ being the wavelength of the laser. Given these definitions one can write the intensity
of an elliptical15 Gaussian beam as [Pol17, p.23][ST91, p.85 (round case)]

I(x, y , z) =
2P

πwx(y)wz(y)
exp

(
−2
(
x2

w2x (y)
+
z2

w2z (y)

))
(58)

The effect of focusing lenses on a Gaussian beam is characterised via their waists at the
focus, the wavelength of the laser and the focal length f of the lens used [ST91, p.95]

w ′0 =
w0√

1 +
(
zR
f

)2 zR>>f≈ w0
f

z0

(57)
=
λf

πw0
(59)

In the case of telescopes their magnification determines the ratio of the waists before and
after the telescope.

A.2 Force of Gaussian beam potential

With the potential for a single Gaussian beam (7):

F = −∇U = −

∂xU∂yU
∂zU

 (60)

− ∂xU = x
4

w2x (y)
U


> 0 ∀x < 0
= 0 if x = 0

< 0 ∀x > 0
(61)

14There may be different conventions as 1
e2

is an arbitrarily chosen value, albeit it is used often.
15The elliptical case is not much harder to handle, but is more general than the round case. Using cartesian

coordinates further allows for simpler combination of crossed beams (see 2.3)
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− ∂zU = z
4

w2z (y)
U


> 0 ∀z < 0
= 0 if z = 0

< 0 ∀z > 0
(62)

− ∂yU = −y

4
 x2
wx

1

z2Rx

(
1 +

y2

z2Rx

)−2
+
z2

wz

1

z2Rz

(
1 +

y2

z2Rz

)−2

−
1
z2Rx
+ 1
z2Rz
+ 2y2 1

z2Rx z
2
Rz

1 + y2
(
1
z2Rx
+ 1
z2Rz

)
+ y4 1

z2Rx z
2
Rz

 · U (63)

Therefore for example on the y-axis (x = z = 0) we have

− ∂yU = y ·
1
z2Rx
+ 1
z2Rz
+ 2y2 1

z2Rx z
2
Rz

1 + y2
(
1
z2Rx
+ 1
z2Rz

)
+ y4 1

z2Rx z
2
Rz

· U


> 0 ∀y < 0
= 0 if y = 0

< 0 ∀y > 0
(64)

A.3 Influence of tensor polarisability

Assuming one uses linearly polarised light of a fixed wavelength, α̃ can be written in the form

α̃(θp) = ℜ(αs) +
3M2J − J(J + 1)
J(2J − 1) ·

3 cos2(θp)− 1
2

ℜ(αt) (65)

as ω is fixed and the second term drops out due to A = 0.
The value of α̃ then only depends on the state of the respective atom and the angle θp
between laser polarisation and magnetic field axis. αs and αt are the same for all atoms.
θp will be approximately the same for all atoms in the trap so it will not introduce differences
between the different atoms. This holds strictly for plane waves of light, but in the case of
real applications one has to use waves with imperfect wavefronts. As the wavevector stands
perpendicular to the wavefront its direction changes according to the wavefront errors when
moving out of the center of the beam. Due to the fact that the polarisation of light is always
transversal and thus perpendicular to the wavevector, the angle θp might change for different
positions. As it will turn out the uncertainties to θp do not matter much for the trap depth,
but it’s individual effect on atoms at different positions will have an effect on the optical
potential even though it will be small.
This leaves the state of the atoms as a possible difference between individual atoms. As this
experiment produces spin-polarised gases with MJ = −J this is also an effect that will apply
to all atoms equally.

Now that it is determined that the created optical potential will be approximately the same
for all atoms in the trap, one can look at the possible range of values for α̃. With the spin-
polarisation of the atoms range of possible values is independent of the value of J. We had
(65) with the scalar and tensor parts of the polarisability being fixed for a given wavelength
of the laser. Now we have the variables MJ = −J and θp ∈ [0, π] ⊂ R which means:

3 cos2(θp)− 1 ∈ [−1, 2] (66)
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⇒ 3M2J − J(J + 1) = 2J2 − J (67)

⇒
3M2J − J(J + 1)
J(2J − 1) =

2J2 − J
J(2J − 1) = 1 (68)

⇒
3M2J − J(J + 1)
J(2J − 1) ·

3 cos2(θp)− 1
2

∈ [−0.5, 1] (69)

⇒ α̃ ∈ [ℜ(αs)− 0.5ℜ(αt), ℜ(αs) + ℜ(αt)] (70)

⇒ ∆α̃ = 1.5ℜ(αt) (71)

This remaining uncertainty of the value is given due to the arbitrary orientation of the laser
polarisation into the trap. The real part of the tensor part of the polarisability is smaller
than the corresponding value of the scalar part by two orders of magnitude for the chosen
wavelength of 1064 nm [Rav+18][Li+16]. Hence it is possible to disregard the dependence
on θp of α̃ for the case of this thesis as it will not greatly affect the depth of the potential.

A.4 Additional plots
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Figure 33: This figure is the contour-plot counterpart to figure 1

Figure 34: This figure is the contour-plot counterpart to figure 3
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B Appendix - Modulation

B.1 Modulation functions

B.1.1 Linear modulation

For a linear modulation one possible modulation function is

ξ(t) =
2t

T
− 1 (72)

The other possibility satisfying the set conditions would be the negative of this, which would
give the same results.

ξ′(t) =
2

T
(73)

⇒
1

ξ′(ξ−1(x̃ − µ)) =
T

2
(74)

Umod(x, y , z) = −
P c

πwx(y)wz(y)
exp

(
−2

z2

w2z (y)

)
·
∫ x̃+1
x̃−1

exp

(
−2

µ2

q2(y)

)
dµ (75)

Umod(x, y , z) = −
P c exp

(
−2 z2

w2z (y)

)
πwx(y)wz(y)

·
q(y)

2

√
π

2

[
erf

(√
2
x̃ + 1

q(y)

)
− erf

(√
2
x̃ − 1
q(y)

)]
(76)

B.1.2 Discret modulation

The integral can be replaced with a sum for discret levels n ∈ N ⊂ [−1, 1]. This leads to
the following potential:

Umod(x, y , z) = −
2P c exp

(
−2 z2

w2z (y)

)
πwx(y)wz(y)

·
∑
n∈N
an exp

(
−2
(x̃ − n)2

q2(y)

)
(77)

with
∑
n∈N an = 1. For the case of a regular square-wave this leads to

Umod(x, y , z) = −
P c exp

(
−2 z2

w2z (y)

)
πwx(y)wz(y)

[
exp

(
−2
(x̃ + 1)2

q2(y)

)
+ exp

(
−2
(x̃ − 1)2

q2(y)

)]
(78)

B.1.3 Sinusoidal modulation

Using a sine one gets the modulation function

ξ(t) = sin

(
π
t

T
−
π

2

)
(79)

ξ′(t) =
π

T
cos

(
π
t

T
−
π

2

)
(80)

ξ−1(ζ) = T

(
1

π
arcsin(ζ) +

1

2

)
(81)

⇒ ξ′(ξ−1(ζ)) =
π

T
cos (arcsin(ζ)) (82)

=
π

T

√
1− ζ2 (83)
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⇒
1

ξ′(ξ−1(x̃ − µ)) =
T

π

1√
1− (x̃ − µ)2

(84)

Therefore the potential is given by

Umod(x, y , z) =
2P c exp

(
−2 z2

w2z (y)

)
π2wx(y)wz(y)

·
∫ x̃+1
x̃−1

exp
(
−2 µ

2

q2(y)

)
√
1− (x̃ − µ)2

dµ (85)

This does not have a nice solution and has to be integrated numerically. In this case one
might rather use the original version (see 21) to compute the integral.

B.2 Additional plots
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Figure 35: Comparison of a time-averaged potential with q = 1
1000 and a fitted Gaussian

potential as well as a parabola along the modulation direction (y = z = 0). The fit function
(7) has all values but wx (and P ) fixed to the same values as the modulated potential. Note
that the parabola is just fit to the central region of the potential. Top: Plot of the potentials
normalised to the trap depth of the modulated potential; Bottom: Plot of the differences
between the normalised potentials (Ufit − Umod).
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Figure 36: Comparison of a time-averaged potential with q = 1 and a fitted Gaussian
potential along the propagation direction (x = z = 0). The fit function (7) has all values
but wx fixed to the same values as the modulated potential. Top: Plot of the potentials
normalised to the trap depth of the modulated potential; Bottom: Plot of the differences
between the normalised potentials (Ufit − Umod).

Figure 37: Comparison of a time-averaged potential with q = 1
10 and a fitted Gaussian

potential along the propagation direction (x = z = 0). The fit function (7) has all values
but wx fixed to the same values as the modulated potential. Top: Plot of the potentials
normalised to the trap depth of the modulated potential; Bottom: Plot of the differences
between the normalised potentials (Ufit − Umod).
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