Research topics

Mixtures of ultracold atoms and molecules

In this experiment we use a mixture of two different alkali metals: cesium and lithium. This gives us the possbility to form ultracold LiCs dimers. These molecules have an extremely large electric dipole moment which promises many new experiments. For example, the molecules can be orientated in an external electric field.

Strongly-correlated Rydberg quantum gases

Rydberg atoms are atoms in highly excited electronic states. These atoms are very sensitive to external fields and experience extremely strong interactions with other Rydberg atoms. This gives us a model system for studying strongly-correlated quantum systems that is highly controllable and completely governed by interatomic interactions.

Hybrid ion atom trap for cold chemistry experiments

Interactions between ions and neutrals play an important role in all kind of chemical reactions. In order to gain a full understanding of these systems we are trying to observe reactions at ultra-low temperatures. In this regime the reaction dynamics are no longer concealed by the thermal movement of the particles.

Rydberg physics with ultracold two-electron systems

We are setting up an experiment to study the physics of two-electron Rydberg atoms using a quantum gas of ultracold strontium. The experiment is located at the University of Science and Technology of China (USTC Shanghai Institute for Advanced Studies). First studies will be aiming to explore many-body effects induced by the long-range interactions between highly excited strontium Rydberg atoms, using the inner electron to control the atom's motion and to detect single Rydberg atoms.

Digital Twins in Medicine

The Digital Twin Team incorporates the clinical workflow, clinical evidence, and high-level ML into a single decision support tool for the doctor. Using our unique platform, we work closely with medical doctors and scientist from different departments of the University Hospital, like Urology and Global Health. Besides the diagnosis, the Digital Twin should enable interpretable outcomes which qualitatively and quantitatively define the decision options for the clinician.