

Physikalisches Institut
Im Neuenheimer Feld 226
69120 Heidelberg
Tel: 06221/ 54 19471
Fax: 06221/ 54 19545
Quantum dynamics of atomic and molecular systems
Our group studies atomic and molecular quantum systems with respect to their interactions on different levels of complexity. Of special importance is the application and extension of modern methods for the manipulation and quantum control to many-body quantum systems, in particular using coherent light. The systems under investigation range from highly excited Rydberg atoms over atomic and molecular quantum gases to molecular aggregates. The group develops technologies for trapping and cooling of neutral atoms as well as quantum-state sensitive diagnostics.
Latest news from the lab
Scattering of two heavy Fermi polarons - resonances and quasibound states: paper published in PRA | 17.12.2020 |
Our paper on the " Scattering of two heavy Fermi polarons: Resonances and quasibound states” got published this month in PRA! We theoretically investigate the scattering properties and compute the scattering phase shifts and scattering lengths between two heavy impurities in an ideal Fermi gas at zero temperature. We find that impurities strongly and attractively interacting with the medium exhibit resonances in the induced scattering with a sign change of the induced scattering length and even strong repulsion.
|
Reference: Scattering of two heavy Fermi polarons: Resonances and quasibound states , PhysRevA, 102.063321 (2020) , or see our full list of publications |
Fermions Meet Two Bosons - the Heteronuclear Efimov Effect Revisited: paper published in Braz. J. Phys. | 09.11.2020 |
Our paper on the "Fermions Meet Two Bosons—the Heteronuclear Efimov Effect Revisited" got published in Braz. J. Phys., in a special issue for Prof. Mahir S. Hussein! In this paper we theoretically investigate two limiting cases of the Efimov scenario, first, in vacuum, and second, in the presence of a Fermi Sea, focusing on the specific case of two heavy bosons and a light fermion. While the first case reproduces the well-known features of the Efimov effect, the second case provides novel insights serving as a precursor to understand effective interactions of Fermi polarons, i.e., strongly correlated impurities in a Fermi sea.
|
Reference: Fermions Meet Two Bosons—the Heteronuclear Efimov Effect Revisited, Braz. J. Phys. (2020), https://doi.org/10.1007/s13538-020-00811-5, or see our full list of publications |
Successful second funding period bid of IsoQuant (CRC 1225) | 01.06.2020 |
Our collaborative research centre (CRC 1225) studying “Isolated Quantum Systems and Universality in Extreme Conditions” has been granted and will continue its work in the second funding period, from July 2020 to 2024! Our group will continue to participate in the collaboration to the project A05 “Dynamics of tunable disordered many-body spin systems” and C03 “Fermi-Bose mixtures with large mass ratio”. Congratulation to everybody!
|
For more information: |